

Semantic interface for machine-to-machine communication in building automation

Daniel Schachinger, Wolfgang Kastner

Institute of Computer Aided Automation
Automation Systems Group
TU Wien, Vienna, Austria
https://www.auto.tuwien.ac.at

Contents

- 1. Motivation
- 2. Requirements
- 3. Interface definition
- 4. Feasibility evaluation
- 5. Conclusion

Building automation (BA) in the Internet of Things (IoT)

- Smart homes and buildings
- Smart communities
- Smart factories
- ____

Requirements

- Horizontal system integration
- Vertical system integration
- Interoperable communication
- Autonomous communication
- • •

- Machine-to-machine (M2M) communication
 - Autonomous
 - No human intervention
- Technologies
 - Low-cost
 - Scalable
 - Reliable

Atzori et al., "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

- Internet protocol suite
- Reuse existing technologies
- Service orientation
 - Autonomy
 - Interoperability
 - Flexibility
- Web services
 - REST
 - WS-*

Atzori et al., "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

Complex management applications

Machine-processible semantics

Common understanding

Semantic Web standards

Existing Ontologies

- ThinkHome
- BASont
- M3
- •

Atzori et al., "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, 2010.

Results of this work...

- ... semantic interface for M2M communication
- ... based on (Semantic) Web standards
- ... ontology for semantic modeling
- ... definition of relevant services
- ... scope is BA domain
- ... M2M between BA devices

Requirements

1. Architectural needs

- Potentially high number of connected devices
- Requirements are application-dependent
- Internet protocol suite solves most issues
 - BA domain with moderate latency
 - Bandwidth is sufficient
 - Mobility by wireless technologies
 - Scalable and reliable protocols
 - Secure transmission

Requirements

- 2. Application layer services
 - Vertical and horizontal integration
 - Bidirectional communication

Building Zoi		g Zon	es Stru	Structure		ion
	Automation system		ı		То	pology
	Resources		Devices	Loc	ation	
	Sens	sing	Precision	Place	ement	
		Dependency	Interval	Values		
		Parameter	Ranges	Units	Types	
		Er	nergy	Impact	Con	ditions
		Actuating	Hist	ory	States	

Building Zone		es Stri	Structure		ion	
	Auto	mation system	Devices			pology
	_	Resources	Devices	Loc	ation	
	Sens		Precision	Place	ement	
		Dependency	Interval	Values		
		Parameter	Ranges	Units	Types	
		Er	ergy	Impact	Con	ditions
		Actuating	Hist	ory	States	

Building Zone		es Stro	Structure		ion	
	Auto	omation system	1		То	pology
		Resources	Devices	Loc	ation	
	Sen	sing	Precision	Place	ement	
		Dependency	Interval	Values		
		Parameter	Ranges	Units	Types	
		Er	nergy	Impact	Con	ditions
		Actuating	Hist	ory	States	

Building Zone		es Stru	Structure		Orientation		
	Auto	mation system			То	pology	
		Resources	Devices	Loc	cation	1	
	Sens	sing	Precision	Place	ement		
		Dependency	Interval	Values			
		Parameter	Ranges	Units	Types		
		Er	nergy	Impact	Con	ditions	
		Actuating	Hist	ory	States		

Building Zone		es Stru	Structure		ion	
	Auto	mation system	l		То	pology
	Resources		Devices	Loc	cation	1
	Sens	sing	Precision	Place	ement	
		Dependency	Interval	Values		
		Parameter	Ranges	Units	Types	
		Er	nergy	Impact	Con	ditions
		Actuating	Hist	ory	States	

Interface definition

1. Protocol selection

Interface definition

2. Application services

- 12 services
- Header fields
 - Message ID
 - Content type
 - Sent date
 - Expires date
 - Reference ID

Interface definition

- 3. Semantic modeling
 - Common understanding
 - Local knowledge bases
 - Platform-independent representation
 - Ontology reuse (previous work)
 - Building: Zones, zone delimiters, ...
 - Automation system: BA resources, appliances, ...
 - Parameter: Units, values, parameter types, ...
 - Sensing: Data service, parameter configuration, ...
 - Actuating: Control service, states, conditions, ...

- Proof-of-concept implementation
 - KNX installation as BAS
 - Web application as demo BMS
 - Semantic core as message broker

- Functional capability
 - Atomic test cases
 - Test scenarios

```
Content-Type: application/sparql-query
Message-Id: 2017030123
PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX colibri: <https://[...]/colibri.owl#>
SELECT (?f as ?function) ?c ?t ?u
WHERE {{ ?f rdf:type colibri:DataService.
  BIND ('sensing' AS ?c).
  OPTIONAL { ?f colibri:monitorsParameter ?p.
      ?p rdf:type ?t.
     ?t rdfs:subClassOf colibri:EnvironmentalParameter.
     OPTIONAL {?p colibri:hasUnit ?u. }}}
UNION { ?f rdf:type colibri:ControlService.
  BIND ('actuating' AS ?c)
  OPTIONAL { ?f colibri:controlsParameter ?p. [...] }}}
ORDER BY ?function
```


Feasibility evaluation

- Hardware requirements
 - Memory
 - 25MB after garbage collection (<= 21,000 triples)
 - Transmission time
 - Comparable to other non-critical BA communication
 - Processing time
 - Ontology reasoning as performance bottleneck

→ Feasible for constrained hardware (Raspberry Pi)

Conclusion

Semantic interface for M2M communication in BA

- Existing M2M combined with semantic modeling
- Service set based on WebSocket
- Automatic message interpretation
- Feasible for constrained hardware

Outlook

- Improvement of proof-of-concept implementation
- Detailed performance evaluation (throughput, response times, content encodings, ...)
- Investigate ontology reasoning over message contents

Thank you!

