Semantic interface for machine-to-machine communication in building automation

Daniel Schachinger, Wolfgang Kastner
Contents

1. Motivation
2. Requirements
3. Interface definition
4. Feasibility evaluation
5. Conclusion
Motivation

- **Building automation (BA) in the Internet of Things (IoT)**
 - Smart homes and buildings
 - Smart communities
 - Smart factories
 - ...

- **Requirements**
 - Horizontal system integration
 - Vertical system integration
 - Interoperable communication
 - Autonomous communication
 - ...

Semantic interface
Motivation

- Machine-to-machine (M2M) communication
 - Autonomous
 - No human intervention

- Technologies
 - Low-cost
 - Scalable
 - Reliable

Motivation

- Internet protocol suite
- Reuse existing technologies
- Service orientation
 - Autonomy
 - Interoperability
 - Flexibility
- Web services
 - REST
 - WS-*

Motivation

- Complex management applications
- Machine-processible semantics
- Common understanding
- Semantic Web standards
- Existing Ontologies
 - ThinkHome
 - BASont
 - M3
 - ...

Motivation

- Results of this work...
 - ... semantic interface for M2M communication
 - ... based on (Semantic) Web standards
 - ... ontology for semantic modeling
 - ... definition of relevant services
 - ... scope is BA domain
 - ... M2M between BA devices
Requirements

1. Architectural needs
 - Potentially high number of connected devices
 - Requirements are application-dependent
 - Internet protocol suite solves most issues
 - BA domain with moderate latency
 - Bandwidth is sufficient
 - Mobility by wireless technologies
 - Scalable and reliable protocols
 - Secure transmission
Requirements

2. Application layer services
 - Vertical and horizontal integration
 - Bidirectional communication

- Identification services
- Publication services
- Observation services
- Data services
- Querying services
- Status services

Building automation system

Semantic interface
3. Considerations regarding semantics

- **Building**
 - Zones
 - Structure
 - Orientation

- **Automation system**
 - Resources
 - Devices
 - Location
 - Topology

- **Sensing**
 - Precision
 - Placement
 - Dependency
 - Interval
 - Values

- **Parameter**
 - Ranges
 - Units
 - Types
 - Energy
 - Impact
 - Conditions
 - History
 - States

- **Actuating**
3. Considerations regarding semantics
3. Considerations regarding semantics
3. Considerations regarding semantics
3. Considerations regarding semantics
Interface definition

1. Protocol selection
Interface definition

2. Application services
 - 12 services
 - Header fields
 - Message ID
 - Content type
 - Sent date
 - Expires date
 - Reference ID
Interface definition

3. Semantic modeling

- Common understanding
- Local knowledge bases
- Platform-independent representation
- Ontology reuse (previous work)
 - Building: Zones, zone delimiters, ...
 - Automation system: BA resources, appliances, ...
 - Parameter: Units, values, parameter types, ...
 - Sensing: Data service, parameter configuration, ...
 - Actuating: Control service, states, conditions, ...

M2M communication
Shared knowledge
Feasibility evaluation

- Proof-of-concept implementation
 - KNX installation as BAS
 - Web application as demo BMS
 - Semantic core as message broker
Feasibility evaluation

- Functional capability
 - Atomic test cases
 - Test scenarios

```sparql
SELECT (?f as ?function) ?c ?t ?u
WHERE {{ ?f rdf:type colibri:DataService.
    BIND ('sensing' AS ?c).
        ?t rdfs:subClassOf colibri:EnvironmentalParameter.
        OPTIONAL {?p colibri:hasUnit ?u. }}
    UNION { ?f rdf:type colibri:ControlService.
        BIND ('actuating' AS ?c)
        OPTIONAL { ?f colibri:controlsParameter ?p. [...] }}
    ORDER BY ?function

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX colibri: <https://[...]/colibri.owl#>
```
Feasibility evaluation

- Hardware requirements
 - Memory
 - 25MB after garbage collection (<= 21,000 triples)
 - Transmission time
 - Comparable to other non-critical BA communication
 - Processing time
 - Ontology reasoning as performance bottleneck

→ Feasible for constrained hardware (Raspberry Pi)
Conclusion

- Semantic interface for M2M communication in BA
 - Existing M2M combined with semantic modeling
 - Service set based on WebSocket
 - Automatic message interpretation
 - Feasible for constrained hardware

- Outlook
 - Improvement of proof-of-concept implementation
 - Detailed performance evaluation (throughput, response times, content encodings, ...)
 - Investigate ontology reasoning over message contents
Thank you!