
Developer Documentation 
 
 
SoniControl is a novel technology for the       
recognition and masking of acoustic tracking      
information. The technology helps end-users to      
protect their privacy. Technologies like Google      
Nearby and Silverpush build upon ultrasonic      
sounds to exchange information. More and more       
of our devices communicate via this inaudible communication channel. Every device with a             
microphone and a speaker is able to send and receive ultrasonic information. The user is               
usually not aware of this inaudible and hidden data transfer. To overcome this gap              
SoniControl detects ultrasonic activity, notifies the user and blocks the information on            
demand. Thereby, we want to raise the awareness for this novel technology. 
  
The project SoniControl is funded by Netidee       
(www.netidee.at) and is a project at the Media        
Computing Group at the Institute for      
Creative\Media/Technologies at Sankt Pölten    
University of Applied Sciences (mc.fhstp.ac.at). 
The project website of the SoniControl project with        
all published results and resources can be found here: sonicontrol.fhstp.ac.at. The           
SoniControl App can be downloaded on Google Play Store. 

License 
This code developed in the SoniControl project is licensed under the GNU General Public 
License Version 3 - see fsf.org/. This document is released under CC BY-SA 3.0 license. 
 

Source Code 
The entire source code can be found on: git.nwt.fhstp.ac.at/m.zeppelzauer/SoniControl  

Contributing 
Please feel free to open issues, submit pull requests, or just send us feedback at               
sonicontrol@fhstp.ac.at  

Open topics / Features to add 
● Recognition of the detected signal 
● Record the signal and play it back in the audible range 

 
Contact: sonicontrol@fhstp.ac.at 
Web: sonicontrol.fhstp.ac.at 
 

http://www.netidee.at/
http://mc.fhstp.ac.at/
http://sonicontrol.fhstp.ac.at/
https://play.google.com/store/apps/details?id=at.ac.fhstp.sonicontrol
https://fsf.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://git.nwt.fhstp.ac.at/m.zeppelzauer/SoniControl
mailto:sonicontrol@fhstp.ac.at
mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/


Credits 
● Audio by Superpowered (http://www.superpowered.com/) 
● Material Icons, which are under Apache License Version 2.0 

(www.apache.org/licenses/LICENSE-2.0.txt) 
● The project SoniControl is funded by Netidee (www.netidee.at) 

Installation & Setup 
Sonicontrol is an Android application, developed in Java and C++ using Android Studio 3.              
We used the library SuperpoweredSDK (http://superpowered.com/) for the soundprocessing         
part. 
 
To compile and run the project you need to: 

● download the source code (git.nwt.fhstp.ac.at/m.zeppelzauer/SoniControl), 
● import it in Android Studio version 3 or above,  
● download the corresponding Android SDK and NDK, 
● download the Superpowered SDK (http://www.superpowered.com/), 
● link to Superpowered SDK in the local.properties file (at the root of the Android Studio               

project) 
e.g. : superpowered.dir=[some_path]/SuperpoweredSDK/Superpowered 
 

The first version is usable on devices running Android 4.1 and above. 

Software Architecture and Implementation Details 

User Interface overview 
Our application consists of three main screens/activities (main, settings and stored locations            
activities). The main activity has five buttons to: start / stop scanning, open the detected               
locations, open the settings, and the last one with the “x” icon to exit the app and release all                   
resources. 

Start of the app 
When tapping on the start-Button, a service and a threadpool are created. We start our scan                
process in one thread. We also request location updates in order to have a precise location                
when the user detects a signal. This allows the app to remember where the user wants to                 
block/ignore ultrasonic signals. 

 

 
Contact: sonicontrol@fhstp.ac.at 
Web: sonicontrol.fhstp.ac.at 
 

http://www.superpowered.com/
https://www.apache.org/licenses/LICENSE-2.0.txt
http://www.netidee.at/
http://superpowered.com/
https://git.nwt.fhstp.ac.at/m.zeppelzauer/SoniControl
http://www.superpowered.com/
mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/


SoniControl Detector 
The SoniControl Detector is implemented in C++ in “FrequencyDomain.cpp”, and called from 
the Java “Scan” class. The underlying concept is that we create a background model of the 
surrounding ultrasonic noise and then detect strong changes (signals). 
 
Please have a look at the flowchart “SoniControl Detector” at the end of this document. 
 
We use Superpowered to get the audio input with low latency and compute the fast Fourier 
transform (FFT). This transforms the signal from the time domain to the frequency domain 
(namely to a spectrogram), making it possible to evaluate the amplitude of the signal for 
each frequency. 
 
The main steps of our processing are for each sample (every ~46ms): 

- Filter the audible frequencies. We apply a highpass filter at about 17kHz in order to 
analyze only the ultrasounds (some technologies use frequencies at the edge of the 
hearable range, which is the reason for this rather low value), 

- Normalize the spectrogram, 
- Add this normalized spectrogram to the background buffer (which is a list of 

spectrograms), 
- Check if the background buffer is full (after about 10s), if it is, we can start analyzing 

it as follow: 
- We compute the “current background model”, which contains for each 

frequency, the median amplitude value over the last 10s, 
- We compare this current background model to the current normalized 

spectrogram (using the Kullback Leibler Divergence as distance metric), 
- If the difference is high, we consider it as a “detection”, or rather a 

sub-detection as it is calculated on a rather short time (about 46ms), 
- We put this “detection” result (0 or 1) in a “median buffer”, 
- If this median buffer is full (after 1,5s), we compute its median, if it is 1 we 

consider that we detected an ultrasonic communication. 
(meaning that if over the last 1,5s there was more “detections” than 
“non-detections”, we consider there really was an ultrasonic communication) 

- If we detected something, we delete the last entries in the background 
model to avoid learning the detected signal as being normal. 

Recognition of the signal 
The recognition of different ultrasound transmission technologies and protocols will be           
subject of further development and is planned as a next step. 
 

 

 
Contact: sonicontrol@fhstp.ac.at 
Web: sonicontrol.fhstp.ac.at 
 

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/


On signal detection 
When a signal is detected, the current location is determined by a java class called               
“GPSTracker”, which handles the location methods like “getLongitude” and “getLatitude”,          
and cached until user choice. 
 
Detections are then handled as follow: 

- Spoof on each detection 
After a Signal is found, we check the setting “Block on           
each location”. When this is checked, the user always         
wants to block detections, which will lead him to the          
blocking part (described in “Blocking routine”). 

- New sound? 
When “Block on each location” is unchecked, we will loop          
through the entries in the JSON-file, where all detections         
are saved, to check if the location of the current detection           
match a previous detection. The distance between the        
detection location and the one from the JSON entry is          
calculated to check if it is within the radius. The radius is            
a separate entry in the settings activity called “Location         
radius (x metres)”. 
 
If there is a match, the process will lead to the question “Should spoof?”, which is described                 
in the next paragraph.  
If no entry matches the detected location, it is a new signal and will open the alert. In this                   
case, there is another setting called “Preventive blocking”, which is described below. 

- Should spoof ? (in location?) 
If there was a match with the JSON-file (we already had the same kind of signal here), we 
check the spoofing-status attribute of the matching JSON-entry. If this parameter is true, the 
process will go to the blocking part. Otherwise it will start scanning again, as the signal 
should not be blocked. In both situations the JSON-entry will get updated. 

- Preventive blocking 
Preventive blocking is another setting in the app, which is triggered when the alert opens.               
When the setting is checked, the detected signal will be blocked (leads to the “Blocking               
routine” described later), even before a user decision in the alert, for as long as it takes the                  
user to make a choice in the alert. 

 
Contact: sonicontrol@fhstp.ac.at 
Web: sonicontrol.fhstp.ac.at 
 

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/


- Alert 
When the alert is opened, the user gets four options. The “Block always here” and “Block                
this time” buttons lead to the blocking part. The other two buttons are “Dismiss this time” and                 
“Dismiss always here”, they make it possible for the user to utilize the ultrasonic              
communication technology. One is only for one time and saved in a separate JSON-Object,              
while the other option is for permanently ignoring this signal at this location. 

Blocking routine 

- Mic / Jam 
There are two options for blocking. One is the active part, which will send out a broadband                 
noise in the ultrasonic frequency area, and the other option is to block the microphone, so                
that no other app can use it. The Android OS only allows one app at the same time to use                    
the microphone. 
The routine starts with a check of the microphone access. If “Use the microphone for               
blocking” setting is checked and if the microphone is available, we start a new Audio               
Recorder to block the microphone. There will be nothing saved during this blocking part.              
When we do not have access to the microphone, we start jamming and sending out the                
noise. Both blocking actions update the notification. 

- Looping system 
These two blocking methods run as long as specified in the setting “Blocking duration”. Then               
there will be a check for the location again, to see if we are still in the area of the detected                     
signal. If we are, we start the routine again with checking for microphone access. If not, we                 
start the scan and detection process again. 

Stored Detections activity and JSON entries 
Every detection will be saved into a JSON-file. In the “Stored Detections” activity we display 
all the detections where a location was found and the user chose an “always”-option. 
The list is a listview item with a custom adapter and a custom row item, where  
all the information is filled into textviews and can be changed. 
 
The JSON-file itself consists of three different JSON-Arrays which are: 

- One for all found signals with correct location, which should be always blocked or 
always ignored, 

- The second one is for all signal with correct location, but where the user decided one 
of the two “this time”-options at the alert, 

- The last one is for all detected signals with no location data. 
 

 
Contact: sonicontrol@fhstp.ac.at 
Web: sonicontrol.fhstp.ac.at 
 

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/


Alert

Main Activity

start

start

stop

settings

stored locations

exitend

Settings Activity

save

Locations Activity

back

delete entry

playback (at fs/4)

JSON

update notification

scan & detect...

Message 
Detected?

no

play

spoof

dismiss this time

dismiss always 
here

New Sound?

yes

no yes

Should 
Spoof? 

(in location?)

no yes

write (new entry)

read (get all entries)
write (delete entry)

read (search for entry at location of recognized type)

get location

Get Mic Access?
no yes

spoof for N 
minutes

block mic for N 
minutes

still in location?

get location

yes yes

no

write „last detected at [date/time] (location must be checked before))“

lat/
lon

spoof / 
dismiss 
always 
here

play
last 

detec-
tion

del-
ete

update notification

SoniControl System Architecture
Expert Settings

Spoofer:
 Pulse duration
 Pause duration
 Amplification
 Bandwidth
 Spoofing duration (N)

Detector:
 diverse detector parameter

Settings

 Spoof on each detection
 Location acces: {permanent GPS, 

permanent mobile net, never, 
onDemand}

 Mic access: {onDemand, 
permanent}

 Location radius {default 30m}

Items {
item {

lon/lat
technology
last detection
spoof / dismiss at location
url

}
}

Spoof on each 
detection?

no yes

always

Outputs of detector

 technology, e.g. „lisnr“
 lon/lat
 url of high-pass filtered wav file

yes

store hi-pass 
file to disk

get 
url

Items {
item {

lon/lat
technology
last detection
spoof / dismiss at location
url

}
}

Items {
item {

lon/lat
technology
last detection
spoof / dismiss at location
url

}
}

Stored on internal storage. 



Detection Parameters

Buffer sizes:
 bufferSize=50; %ms

 backgroundBufferSize = 10; %sec

 medianBufferSize = 1; %sec

Detector parameters
 cutoffFrequency = 16800; %lower limit for prontoly!

 decisionThreshold = 0.5; %this is for Kullback Leibler Divergence

 decisionThresholdNearby = 3.5; %the decision threshold for
nearby signals. If the RMS Energy in the Nearby band is N-times 
higher than in the neighboring bands above and beneath the Nearby 
band, then declare a nearby detection.

 decisionThresholdNearbyAC = 0.05; %the recognition threshold
for nearby based on autocorrelation (this is not used for detection, only 
later for recognition to differentiate nearby from other technologies like 
Lisner / Protntoly etc.

Recognition parameters
 specs.nearby.nBands=64;

 specs.nearby.bw=(20000-18500)./
specs.nearby.nBands/2;  %unit Hz

 specs.nearby.centerFreq = 18496:23.6:20000;

 specs.lisnr.centerFreqs = [18750,18895,19051,19196,19500];

 specs.lisnr.bw = 40; %unit Hz

 specs.prontoly.centerFreqs=[16968,17054,17140,17226,1731
2,17398,17486,17571,17918,18430, 18516 
,18692,18778,18949,19035, 19379,19466,19724];

 specs.prontoly.bw = 10; %unit Hz, this is the minimum for
prontoly

 specs.shopkick.centerFreqs=[19960,20040,20120,20200,2028
0,20360,20440,20520,20600,20680,20760,20840,20920,21000,21080
,21160,21240,21320,21400,21480,21560,21640];

 specs.shopkick.bw = 4; %unit Hz

 specs.silverpush.centerFreqs=[18000,18075,18150,18225,18
300,18375,18450,18525,18600,18675,18750,18825,18900,18975,190
50,19125,19200,19275,19350,19425,19500,19575,19650,19725,1980
0,19875,19950];

 specs.silverpush.bw = 4; %unit Hz

Main Activity

start

start

stop

settings

stored locations

exit

Compute cutoffFrequencyIndex from
cutoffFrequency (see function freq2idx.m)

Compute nFFT = number of expected FFT
coefficients that remain after cutting away all 
frequencies below cutoffFrequencyIndex

Initialize all buffers (with zeros)

buffer: 
size = bufferSize

backgroundModelBuffer:
size = [nFFT x

backgroundBufferSize]

medianBuffer:
size = medianBufferSize

bufferHistory:
size = bufferSize *
medianBufferSize]

Initialize decision variables:
detection=0; %becomes one, if the current frame

fulfulls detection condition
detectionAfterMedian = 0; %becomes one

only if more than the half of the frames in the 
medianBuffer fulfill detection condition

Loop (until we have a detection)

buffer ← get next buffer

buffer ← convert buffer to mono (average over
both channels)

bufferFFT ← abs(fft(buffer))

buffer_FFT_HiPass_Norm ← remove all
coefficients below cutoffFrequencyIndex

buffer_FFT_HiPass_Norm ←
buffer_FFT_HiPass_Norm/

sum(buffer_FFT_HiPass_Norm)

Is 
backgroundModelBuffer 

full?

no yes

save current buffer in bufferHistory

a
p
p
e
n
d
 s

a
m

p
le

s 
o
f 

cu
rr

e
n
t 

b
u
ff
e
r 

to
 b

u
ff
e
rH

is
to

ry

compute median of 
backgroundModelBuffer

g
e
t 

m
e
d
ia

n

backgroundDist ← get Kullback
Leibler Divergence between median of

backgroundModelBuffer and
bufferFFT_HiPass_Norm

backgroundDist ← get Kullback
Leibler Divergence between median of

backgroundModelBuffer and
bufferFFT_HiPass_Norm

Nearby RMS detection 
(not implemented yet):

get bufferFFT

normalize: bufferFFTNorm ← bufferFFT
/(sum(bufferFFT)+eps

centerFreqIdx ← get nearby center frequency indices

rmsIn ← get RMS between lowest and highest nearby
frequency

rmsOut ← get RMS outside nearby frequency band

scoreNearby ←  (rmsIn/rmsOut)^2

g
e
t

if 
backgroundDist >

decisionThreshold OR
scoreNearby >

decisionThresholdN
earby

no yes
p
u
sh

detection ← 1detection ← 0

update medianBuffer: medianBuffer ← detection

Is 
backgroundModel

Buffer and medianBuffer
full?

no yes

median is 1?
no yes

indivudial short detections 
(outliers) may become 
part of the background 

model get median from medianBuffer

clean backgroundBuffer: replace
all items captured during the last 
medianBufferSize seconds by

the values captured before 

update backgroundBuffer
with bufferFFT_HiPass_Norm

to remove potential foreground 
sound in the background model)

update

update

get locationdetected
technology

this buffer stores 
the incoming 

audio signal for 
the total duration 

of the 
medianBuffer

(e.g. 1.5s)

We use this 
longer signal for 
the detection of 

the type of 
message 
detected

This buffer is 1D

SoniControl Detector


	sonicontrol_developer_doc
	Architecture_public
	1: Gesamtarchitektur
	2: Detection
	3: Recognition
	4: Alte Version




