

Ontology-based generation of optimization problems for building energy management

Daniel Schachinger, Wolfgang Kastner

Institute of Computer Aided Automation Automation Systems Group TU Wien, Vienna, Austria https://www.auto.tuwien.ac.at

Contents

2. Ontology-based information extraction

3. Automatic problem formulation

4. Case study and discussion

5. Conclusion

Motivation

- Reduce energy demand of buildings
 - Constructional measures
 - Operational measures
- Building energy management system (BEMS)
 - Trade-off between comfort and energy needs
 - Supported by building automation
 - Focused on different domains
 - Strategies based on heuristics and exact methods
 - Building-specific design

Motivation

Motivation

General problem

- High building-specific design effort by domain experts
- Limited reuse of developed models

Contribution

- Expert knowledge modeled in ontology
- Machine-readable semantics
- Automatic extraction process
- Mapping to objective function and constraints
- Reduction of manual design effort
- Basis for further processing

Ontology-based information extraction

Automatic problem formulation

1. Mapping to objective function and its variables

Automatic problem formulation

- 2. Mapping to constraints
 - Device-specific constraints (e.g. capacities)
 - Comfort-specific constraints (e.g. thresholds)
 - Default constraints for energy objective
 - Flow conservation (storages)
 - Positive storage levels
 - Examples

. . .

$$b_{(t-1)y} + l_{ty} \cdot a_y - s_{ty} \cdot u_y - w_y = b_{ty} \quad \forall t, y$$
$$l_{ty} + s_{ty} \leq 1 \quad \forall t, y$$
$$b_{ty} \geq 0 \quad \forall t, y$$

Case study and discussion

AUTOMATION SYSTEMS GROUP

Case study and discussion

Run extraction process based on SPARQL queries

```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX colibri: <https://[...]/colibri.owl#>
SELECT ?device ?service ?energytype
WHERE
{
    ?service colibri:covers ?zone.
    ?service colibri:controlsParameter ?param.
    ?param rdf:type ?type.
    ?device colibri:provides ?service.
    OPTIONAL {?service colibri:hasEnergyType ?energytype}.
    FILTER (?zone = <http://www.example.org/Office_3_11>) .
    FILTER (?type = colibri:BrightnessParameter)
}
```

- Initialize control variables (e.g. p=1 for temperature)
- Create data structures for constants (e.g. occupancy)
- Map control variations (e.g. light of Service C)
- Create threshold constraint (e.g. CO₂)

Case study and discussion

- Advantages compared to traditional BEMS design
 - 1. Available machine-readable semantics
 - Reuse, publish, share, link, reasoning
 - 2. No manual development of optimization problem
 - But modeling effort to populate ontology
 - Combined expert knowledge of different domains
 Possible synergy effects

Conclusion

Ontology-based optimization problem generation

- BEMS design based on abstract ontology
- Expert knowledge in machine-readable form
- Automatic extraction and mapping process
- Basis for further processing
- Outlook
 - Implementation of optimization on top
 - Extensions for white and brown goods
 - Flexibility trading in the smart grid

Thank you!

