
Simulation of different selfish
mining strategies in Bitcoin

Simulation respecting network topology and
reference implementation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Simon Mulser, BSc
Matrikelnummer 01027478

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Edgar Weippl, Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn.
Mitwirkung: Aljosha Judmayer, Univ.Lektor Dipl.-Ing.

Wien, 8. März 2018
Simon Mulser Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Simulation of different selfish
mining strategies in Bitcoin

Simulation respecting network topology and
reference implementation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Simon Mulser, BSc
Registration Number 01027478

to the Faculty of Informatics

at the TU Wien

Advisor: Edgar Weippl, Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn.
Assistance: Aljosha Judmayer, Univ.Lektor Dipl.-Ing.

Vienna, 8th March, 2018
Simon Mulser Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Simon Mulser, BSc
Dadlergasse 18/1/7, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. März 2018
Simon Mulser

v





Danksagung

Ich möchte mich herzlichst bei meinen Eltern Theresia Jud Mulser und Josef Mulser
für deren unermessliche Unterstützung während meiner gesamten Ausbildung bedanken.
Ohne ihr Vertrauen in mich und meine Fähigkeiten hätte ich nie die Möglichkeit gehabt,
diesen Erfolg in meiner akademischen Karriere zu erreichen. Weiters möchte ich mich
bei meiner Freundin Julia für den starken Rückhalt in schwierigen Phasen und das
Korrekturlesen dieser Arbeit bedanken.

Ein spezieller Dank geht auch an die Internet Privatstiftung Austria für die Förderung
meiner Abschlussarbeit. Dank ihrer Unterstützung hatte ich die Möglichkeit mehr Zeit und
Ressourcen in meine Arbeit zu investieren. Zusätzlich konnte ich meine implementierte
Simulationssoftware für allgemeinere Zwecke erweitern und als alleinstehendes Framework
für weitere Entwicklung und Forschung zur Verfügung stellen.

Abschließend möchte ich mich bei Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar
Weippl und Univ.Lektor Dipl.-Ing. Aljosha Judmayer für die sorgsame Betreuung meiner
Diplomarbeit und das stets konstruktive Feedback bedanken.

vii





Acknowledgements

First, I would like to sincerely thank my parents Theresia Jud Mulser and Josef Mulser
for their ongoing support throughout my whole education. Without their trust in and
my abilities, I would have never had the opportunity to reach this goal in my academic
career. Furthermore, I would like to thank my girlfriend Julia for her tireless motivation
during critical phases and for reviewing the present work.

Special thanks go to Internet Foundation Austria for granting me a scholarship for this
thesis. With the scholarship, I had the possibility to invest more time and resources in
the thesis. Additionally, I could extend the implemented simulation software for a more
general purpose and provide it as a stand-alone framework to foster more investigation
and development in the research area.

Finally, I would like to thank Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar
Weippl and Univ.Lektor Dipl.-Ing. Aljosha Judmayer for the possibility of conducting
this master thesis as well as their supervision and their constructive feedback.

ix





Kurzfassung

Die Cryptocurrency Bitcoin wurde im Jahre 2008 mit dem Erstellen des ersten Blocks,
dem Genesis Block, gestartet. Seitdem hat sich die Rechenleistung des Netzwerkes, welches
die Blockchain der digitalen Währung absichert, erheblich vervielfacht. Heute erweitern
um die zwanzig professionelle Miner laufend die Blockchain, indem sie immer auf den
jeweils neuesten, ihnen bekannten Block aufbauen. Die Miner belohnen sich dabei selbst,
da sie mit jedem erstellten Block für sich neue Bitcoins schürfen.
Im Jahre 2014 zeigte Eyal und Gün Sirer erstmals, dass es neben diesem gewünschtem,
ehrlichen Verhalten abweichende Miningmethoden gibt, welche den relativen Ertrag eines
Miners gegenüber seiner Kontrahenten erhöht. Dieser sogenannte Selfish-Mining-Angriff
und all seine Modifikationen werden in der vorliegenden Diplomarbeit in einem definier-
ten Szenario mit zwanzig Miner untersucht und mit bisherigen Forschungsergebnissen
verglichen. Im Gegensatz zu vorangegangen Untersuchungen, wurde hierfür eine neuar-
tiges, deterministisches Simulationsframework basierend auf Docker entwickelt. Dieses
Simulationsframework ermöglicht es einerseits die Netzwerklatenz auf natürliche Art
und Weise zu berücksichtigen und andererseits die Referenzimplementierung von Bitcoin
direkt wiederzuverwenden. Letzteres hat den Vorteil, dass keine zeitaufwendige und
fehleranfällige Adaptierung oder Abstraktion der Referenzimplementierung notwendig
ist und alle Eigenschaften des implementierten Bitcoinprotokolles automatisch in die
Simulation miteinfließen. Um das Simulieren der verschiedenen Selfish-Mining-Strategien
zu ermöglichen, wurde weiters ein Proxy implementiert, welcher einen Node im Netzwerk
eclipsed und mithilfe dessen verschiedenste Selfish-Mining-Angriff ausführt.
Die Simulationen der verschiedenen Selfish-Mining-Strategien zeigen, dass ein dishonest
Miner seinen relativen Ertrag gegenüber den Rest des Netzwerkes steigern kann und
untermauern somit den momentanen Forschungsstand sowie die Relevanz des Selfish-
Mining-Angriffs. Als effizienteste Selfish-Mining-Strategien unter dem verwendeten Simu-
lationsszenario mit zwanzig Miner konnte Selfish-Mining und Equal-Fork-Stubbornness
identifiziert werden.

Schlagwörter
Selfish-Mining, Selfish-Mining-Angriff, Bitcoin, Blockchain, Simulation, Simulationsfra-
mework, Netzwerklatenz, Referenzimplementierung, Docker

xi





Abstract

The Cryptocurrency Bitcoin was started in 2008 with the creation of the first block,
the Genesis Block. Since then, the computing power of the network, which secures the
blockchain of the digital currency, has multiplied considerably. Today, around twenty
professional mining pools share over 95% of the hash rate, and are constantly extending
the blockchain, always building on the latest block known to them. The miners are
incentivised to do so, as they create with each found block new Bitcoins for themselves.
In 2014, Eyal and Gün Sirer showed for the first time that apart from this desired, honest
behaviour, there are deviating mining methods that increase the relative gain of a miner
compared to the rest of the network. This so-called selfish mining attack and all its
modifications are examined in this thesis in a defined scenario with twenty miners and
are compared with previous research results. In contrast to previous investigations, a
novel, near-deterministic simulation framework based on Docker was developed for this
purpose. This simulation framework makes it possible to naturally include the network
latency and to directly reuse the reference implementation of Bitcoin. The latter has
the advantage that no time-consuming and error-prone adaptation or abstraction of the
reference implementation is necessary and all properties of the implemented Bitcoin
protocol are automatically included in the simulation. To simulate the various selfish
mining strategies, additionally, a proxy was implemented that eclipsed a node in the
network and misuses the node to perform the various selfish mining attacks.
The simulations of the various selfish mining strategies show that a dishonest miner can
increase its relative gain over the rest of the network, thus reinforcing the current state
of research and the relevance of the selfish mining attack. In accordance with previous
results, the most efficient selfish mining strategies under the simulation scenario with
twenty miners, selfish mining and equal-fork-stubbornness were identified.

Keywords
selfish mining, selfish mining attack, Bitcoin, blockchain, simulation, simulation frame-
work, network latency, reference implementation, Docker

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State-of-the-art 5

3 Simulation framework 9
3.1 Tick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Virtualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Storage of simulation data . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Evaluation of simulation framework 23
4.1 Near-deterministic behaviour . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Reference scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Selfish proxy 29
5.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Receiving blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Sending blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Selfish mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Simulation of selfish mining strategies 39
6.1 Selfish mining scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xv



6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Evaluation 47
7.1 RQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 RQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Profitability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Further research 51
8.1 Selfish proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9 Conclusion 55

List of Figures 57

List of Tables 59

List of Listings 61

Bibliography 63



CHAPTER 1
Introduction

The cryptocurrency Bitcoin started back in the year 2008 with the release of the Bitcoin
white paper [Nak08]. As of today, the cryptocurrency has reached a market capitalization
of over 20 billion dollars [Mar]. Internally the Bitcoin cryptocurrency records all trans-
actions in a public ledger called blockchain. The blockchain is basically an immutable
linked list of blocks where a block contains multiple transactions of the cryptocurrency.
In Bitcoin, each block needs to contain a so-called proof-of-work (PoW) which is the
solution to a costly and time-consuming cryptographic puzzle. Miners connected in a
peer-to-peer network compete with their computation power to find solutions to the
puzzle and hence to find the next block for the blockchain. Finding a block allows the
miners to add a transaction to the block which gives them a certain amount of Bitcoins.
Additionally, the grouping of the transactions in blocks creates a total order and hence
makes it possible to prevent double-spending. After a block is found by a miner, all other
miners should adopt this new tip of the chain and try to find a new block on top. This
mining process is considered as incentive compatible as long as no single miner has more
than 50% of the total computation power.

[ES14] showed that miners under 50% have an incentive to not follow the protocol
as described depending on their connectivity and share of computation power in the
peer-to-peer network. By conducting a so-called selfish mining strategy a miner can
obtain relatively more revenue than its actual proportion of computational power in the
network. In general, the miner simply does not share found blocks with the others and
secretly mines on its own chain. If its chain is longer then the public chain, it is able to
overwrite all blocks found by the honest miners. If the two chains have the same length
the private miner also publishes its block and causes a block race. Now the network is
split into two parts where one part is mining on the public tip and the other part is
mining on the now public-private tip. In general, the selfish miner achieves that the other
miners are wasting their computational power on blocks which will not end up in the
longest chain and thus is able to increase its relative share of mining rewards.

1



1. Introduction

Even though the selfish miner can increase its relative gain compared to the other miners,
its total gain is lower than it would behave honestly. This is possible because the execution
of the selfish mining algorithm by the selfish miner decreases the number of blocks which
end up in the longest chain. During selfish mining more block, of the selfish miner as well
as the honest network, are not included in the longest chain, the so-called stale block rate
increases. Hence, less mining rewards are distributed between the nodes in the network
which also affects the miner conducting selfish mining. The fact that less mining rewards
are distributed prevails the relative gain obtained by the selfish miner and therefore
the selfish miner earns less than it would earn behaving honestly [NKMS16, SSZ16].
Since there end up fewer blocks in the longest chain the Bitcoin protocol would simplify
the cryptographic puzzle during the next difficulty adjustment. From then on, more
blocks are found and it is likely that the selfish miner would also increase its total gain.
The scenario where the difficulty is adjusted was not yet investigated by researchers or
observed on a blockchain network like Bitcoin and is also not a focus of this thesis.

Despite the normal selfish mining further research [NKMS16, SSZ16, GRK15, GKW+16,
Bah13] showed different modifications of the algorithm which perform slightly better
under certain circumstances. These modifications include for example the idea that the
selfish miner does not adopt immediately to new blocks but trails behind the public chain
and tries to catch up with its secretly mined, private chain. Furthermore, the selfish
mining attack can be combined with different other attacks such as double spending
increasing the gain of the misbehaving miner [GKW+16, SSZ16, NKMS16, GRK15].

To prove the existence and attributes of selfish mining different approaches were applied.
The researchers used simple probabilistic arguments [ES14, Bah13], numeric simulation
of paths with state machines [GRK15, NKMS16], advanced Markov Decision Processes
(MDP) [SSZ16, GKW+16] or gave results of closed-source simulations [ES14, SSZ16].
Unfortunately, we cannot discuss the closed source simulations in detail. All other
above-mentioned methodologies have the following drawbacks:

• Abstraction of the Bitcoin reference implementation which runs inside a node of the
peer-to-peer network. Since there is no official specification of the Bitcoin protocol
it is hard to capture all details. Furthermore, it is hard to keep the simulation
framework up-to-date because of the ongoing development of the protocol.

• Abstraction of the whole network layer of the peer-to-peer network. The available
simulations abstract the network topology by either defining a single connectivity
parameter [ES14, Bah13, NKMS16, SSZ16, GRK15] or by additionally using the
stale block rate as input for the MDP [GKW+16]. Hence they highly abstract the
presence of network delays and natural forks of the chain.

In this thesis, we propose a new simulation approach which tackles this two drawbacks
and hence captures more accurately the details of the Bitcoin reference implementation
and the whole network layer while allowing for a high degree of determinism. The

2



1.1. Structure of this thesis

introduced simulation approach is then used to examine the following selfish mining
strategies:

• selfish mining [ES14]

• lead stubborn mining [NKMS16]

• trail stubborn mining [NKMS16]

• equal-fork stubborn mining [NKMS16]

These strategies are executed by a selfish mining node in a defined, realistic simulation
scenario with a certain amount of participating nodes. To gain a holistic insight different
distributions of computation power between the selfish miner and the public network are
used.

The result of the executed simulations shows which strategy is the best strategy for a
certain distribution of mining power in the simulation scenario. Furthermore, the relative
and total gain of the selfish miner is observed and compared with previous research. The
evaluation of the simulation results is sustained with following two research questions:

• RQ1: Do the simulations of selfish mining with the proposed software solutions
show an increase of the total and relative gain for the selfish miner compared to
the normal, honest mining behaviour?

• RQ2: How do the obtained results of the simulation match the outcome of previous
research in the area of selfish mining?

An additional outcome of the thesis is a general simulation framework. The implemented
framework allows an accurate and near-deterministic simulation of the blockchain by
using directly the Bitcoin reference implementation and a realistic network topology.
Hence, the simulation framework could not only be used to simulate selfish mining attacks
but could also be used to simulate other attacks as well, on different protocol versions
of Bitcoin. Since many other cryptocurrencies are derived from Bitcoin, the simulation
framework could also be utilized to simulate their behaviour and properties.

1.1 Structure of this thesis
First, a simulation framework is implemented. To be able to control when a certain
node finds a block, all Bitcoin nodes are executed in regtest mode. In this test mode,
the real PoW-algorithm is disabled and every node accepts a command which lets the
node create immediately a new block. With this functionality, it is possible to define
a block discovery series which basically reflects the computation power of each node.
The more blocks are found by a node the more simulated computation power the node

3



1. Introduction

has. Additionally to the block generation, the simulation framework also controls the
network topology and hence the connectivity of each node. For the simulation run, it is
important that the connectivity of the nodes stays the same to make the results better
comparable. This is achieved by setting the connections from the nodes by the simulation
framework itself which is in contrast to the normal behaviour. Normally Bitcoin nodes
share their connections with other nodes over the Bitcoin protocol and try to improve
the connectivity over time.

Subsequently, the degree of determinism of the simulation framework is evaluated.
Therefore a near-deterministic behaviour and a realistic reference scenario reflecting the
Bitcoin network are defined. The results of executing the scenario with the framework
show then that the framework behaves near-deterministic as defined.

In the next step, the different strategies selfish, lead stubborn, trail stubborn and equal-
fork stubborn mining from [NKMS16] and [ES14] are implemented. This is achieved
by implementing a proxy which eclipses a normal Bitcoin client from the other nodes
in the network. Now, if a block is found the proxy decides, depending on its selfish
mining strategy, if a block should be transmitted from the eclipsed node to the rest of
the network or vice versa. The proxy design pattern makes it possible to implement the
selfish mining strategies without altering the reference implementation of Bitcoin and is
therefore preferred over an implementation directly in the Bitcoin client.

Lastly, the simulation framework and the selfish proxy is used to simulate the various
selfish mining strategies. Therefore the reference scenario defined for evaluating the
framework is combined with different distributions of computation power between the
selfish miner and the honest network. The results of this simulations are then analysed
and compared with previous research in this area.

4



CHAPTER 2
State-of-the-art

Already in the year 2010, the user ByteCoin described the idea of selfish mining in the
Bitcoin forum bitcointalk [Byt]. The forum user provided simulation results of the attack
which at that time was called mining cartel attack. Nevertheless, the discussions in the
thread never caught fire and no further investigations or countermeasures were taken by
the community [Bite, Bah13].

Later in 2014 [ES14] released the paper "Majority is not enough: Bitcoin mining is
vulnerable." and coined the term selfish mining. The paper gives a formal description of
selfish mining and proves how a miner can earn more than his fair share by conducting
the attack. Figure 2.1 shows the attack as a state machine where α denotes the mining
power share of the selfish miner. The labels of the states are representing the lead of the
selfish miner over the public chain. Whenever the public network finds a block and the
selfish miner publishes a competing block of the same height a block race occurs denoted
with the state 0’. In the case of such a block race, the variable γ expresses the probability
of the selfish miner to win the block race. Hence γ part of the miners are mining on the
public-private block and respectively (1 − γ) are mining on the public block. The labels
on the transitions are representing the transition probabilities between the states. The
profitability of the simple strategy of [ES14] was proven by using probability calculations
based on the state machine of figure 2.1. Furthermore, results of an undisclosed Bitcoin
protocol simulator were given. In the simulation, 1000 miners with the same mining
power were simulated and a fraction of these miners formed a pool which applied the
selfish mining algorithm. In the case of a block race they artificially split the network
where one part is mining on the public block and one part is mining on the block of the
selfish pool.

Further research showed that more generalised selfish mining strategies lead to even more
relative gain for the selfish miner [NKMS16, SSZ16, GRK15, GKW+16, Bah13]. The
authors of [NKMS16] provided a comprehensive description of the strategy space and
also coined different names for the selfish mining variations:

5



2. State-of-the-art

Figure 2.1: Selfish mining state machine with transition probabilities [ES14]

• Lead stubborn: This mining strategy compromises the idea to cause as many
block races as possible and to never overwrite the public chain with a longer chain.
This strategy continuously tries to split the network to mine on different blocks
and is therefore especially promising when the probability to win the block race is
very high.

• Equal-fork stubborn: The mining strategy equal-fork stubborn changes the
selfish mining strategy just by one transition. In case the selfish miner finds a block
during a block race, it does not publish his block to win the race but it also keeps
this block undisclosed to secretly mine on this new tip of the chain.

• Trail stubborn: The mining strategies based on trail stubbornness are reflecting
the idea to even trail behind the public chain and to eventually catch up. Trail
stubbornness is defined with an integer denoting how many blocks the strategy
should allow the selfish miner to trail back.

The strategy space for a selfish miner is practically endless and combinations of the
aforementioned strategies are possible and are leading to even more relative gain compared
to honest miners [NKMS16, SSZ16, GRK15, GKW+16, Bah13].

To find the best strategy for a given mining power share α and connectivity γ researchers
used different methodologies. [ES14, SSZ16] used closed-source simulations which we
cannot discuss here. Other researchers used numeric simulations of paths in the state
machine to find optimal selfish mining strategies [GRK15, NKMS16]. Lastly, [SSZ16,
GKW+16] used MDPs based on a state machine to find strategies with the most relative
gain. The basic structure of the used state machines is for all publications the same,
despite the MDP introduced by [GKW+16]. They additionally they used in their MDP
the so-called stale block rate which denotes the ratio between blocks from the consensus
chain and stale blocks. This metric accounts for the most important parameters of a
blockchain protocol such as block sizes, block intervals, network delays, information
propagation mechanisms and network configuration and can be seen as a general security
parameter of a blockchain protocol. The higher the stale block rate, the less secure the
blockchain protocol [GKW+16].

Besides using variations of the selfish mining strategies, the attack can also be combined
with other attacks to achieve better results [GKW+16, SSZ16, NKMS16, GRK15]. If
the eclipse attack is used in combination with selfish mining the victim contributes its

6



mining power to the private chain and hence, strengthens the position of the selfish
miner [NKMS16, GKW+16]. [NKMS16] additionally shows that the eclipsed victim
under certain circumstances can benefit from the attack and therefore has no incentive
to stop the attack. Another attack which can be used in combination with selfish mining
is double-spending [SSZ16, GKW+16]. Every time the selfish miner starts his selfish
mining attack it can publish a transaction and include a conflicting transaction in his
first secret block. During the execution of the selfish mining attack, the payment receiver
may accept the payment depending on his block confirmation time. Now in the case of a
successful selfish mining attempt, the adversary can overwrite the public chain, which
additionally results in a successful double spending. The operational costs of unsuccessful
double-spending can be seen as low because the adversary still would get goods or a
service in exchange for the transaction [SSZ16, GKW+16].

Last but not least also the prevention of selfish mining is part of the current work in selfish
mining research [ES14, Hei14, SPB16, ZP17]. A backwards-compatible patch to mitigate
selfish mining is uniform tie-breaking [ES14]. This means whenever a node receives two
blocks of the same height it randomly select one of the blocks to mine on. [ES14] showed
that this would raise the profit threshold to 25% of the computational power and hence
mitigating selfish mining. The drawback of this proposed change is that it would increase
the connectivity of badly connected attackers to almost 50% with no actual effort for
them. Ethereum, the currently second largest cryptocurrency by market capitalization
[Mar], has implemented uniform tie-breaking as a countermeasure against selfish mining
[GKW+16, uni]. Another countermeasure foresees unforgeable timestamps to secure
Bitcoin against selfish mining [Hei14]. This countermeasure would make all pre-mined
blocks of the selfish miner invalid after a certain amount of time. The implementation
of this patch would require random beacons and hence introduce complexity and a
new attack vector [Hei14]. [ZP17] proposes backwards-compatible countermeasure by
neglecting blocks that are not published in time and allows incorporation of competing
blocks in the chain similar to Ethereum’s uncle blocks [Woo14]. This enables a new
fork-resolving policy where a block always contributes to neither or both branches of the
fork [ZP17]. All of this mentioned countermeasures are not planned to be implemented
or implemented in Bitcoin [bita, bitd]. The countermeasures against selfish mining are
forming an interesting research field but are not in the focus of this thesis. Nevertheless,
all of them would profit from an evaluation method introduced in the next chapter.

7





CHAPTER 3
Simulation framework

The simulation framework provides all needed functionalities to orchestrate a peer-to-peer
network where the nodes are running the Bitcoin reference implementation. The whole
simulation runs on a single host using the virtualisation software Docker. The framework
furthermore coordinates the block discovery in the network. Based on a sequence defined
in a configuration file the software sends commands to the nodes which are then generating
valid blocks. To be able to create blocks the nodes are executed in the regtest mode,
where the CPU-heavy proof-of-work is disabled, and the nodes are accepting a RPC-call
from outside which lets them create a new block immediately. After a simulation run, the
software parses the logs produced by the nodes and based on them the software generates
a report which displays the key metrics of the simulation.

3.1 Tick
A fundamental concept of the simulation framework is a so-called tick. A tick represents
a small time span containing information about which nodes should find a new block in
this tick. Hence a tick forms an abstraction of a certain time span in the real time. All
blocks which should be generated in this time span are aggregated into the corresponding
tick. Since all blocks created in the same tick are considered to be created at the same
time, a tick should never contain the information that one node creates multiple blocks.
This fact is also respected by the script creating the ticks.csv explained in chapter 3.5.3.

For a simulation run, multiple ticks are combined forming a sequence of ticks. In
combination with two other configuration files, the tick sequence builds the simulation
scenario for a particular simulation run. The exact duration of a tick is defined on
execution time of the simulation and determines the actual speed of the simulation.

The concept of a tick helps to have an upper bound for the simulation speed. This upper
bound of a certain simulation scenario is reached when the execution time of at least one

9



3. Simulation framework

tick last longer than the tick duration itself. In that case, the temporal succession of the
block events is disturbed, which can result in inaccurate or wrong results. In such a case
the simulation speed should be lowered or the simulation scenario should be changed.

Additionally, the usage of ticks would allow to speed up the simulation by cutting out
empty ticks or ticks which do not influence the investigated results of the simulation.
In that case, it needs to be defined when a certain event in a tick is over. For example,
block events can be considered to be over when all nodes received the whole block
or heard about the block but did not requested it. If such a block event is over, all
subsequent ticks until the next tick with a block event could be ignored because those
ticks would not influence block related simulation results. Currently, such a mechanism is
not implemented and therefore no ticks of a simulation scenario are ignored even though
they are empty and would not influence the results.

3.2 Virtualisation

The simulation framework virtualises the whole peer-to-peer network on one single host
by using Docker. The software Docker runs the nodes as so-called containers, which are
using the functionalities of the same kernel in an isolated manner. Hence, they do not
interfere each other as long as the host system provides enough resources to them. In the
case that the host system is under-provisioned and does not provide enough resources
to the nodes, the simulation results may be distorted. To resolve that problem the
simulation scenario needs to be simplified or a better host machine needs to be used.

The virtualisation of the network on one host machine has the advantage of an easy and
manageable setup. As long as the host machine can scale vertically with the defined
simulation scenario, there is no need to deploy a physically peer-to-peer network to
simulate the scenario. Furthermore, since all nodes rely on the same kernel functionalities
also all nodes use the same system time. This is especially helpful for the aggregation of
the log files of all different containers because it assures that the timestamps in the log
lines actually happened in exactly this order.

Other simulation technologies are not using virtualisation features and simulate the
peer-to-peer networks with more abstract models such as numeric simulations and MDP’s
[ES14, Bah13, GRK15, NKMS16, SSZ16, GKW+16]. Compared to these simulation
technologies the introduced simulation framework has the advantage that already existing
implementations, as in the case of this thesis the Bitcoin reference implementation, can
be reused directly. Hence, there is no significant implementation effort needed to simulate
a certain blockchain protocol and the simulations reflect all implementation details by
relying directly on the implemented code.

10



3.3. Configuration files

3.3 Configuration files
A simulation executed by the software needs to be configured with the configuration files
nodes.csv, network.csv and ticks.csv. The configuration files are stored in the concise CSV
format and on a specific location on the disk to be processed by the simulation framework.
The usage of configuration files as input for a simulation provide the flexibility that they
can be written manually, that they can be generated by scripts or a combination of both.
For example, a script generates a needed configuration file. Afterwards, the user can
adjust the configuration file by editing it and does not need to implement an own script
for the specific scenario but does also no need to write the whole configuration file by
hand. Furthermore, the created configuration files can be copied to the output directory
of a simulation run providing an easy method to preserve all input parameters used for
the run.

The simulation framework already implements a script for each configuration file, which
can be executed by the corresponding commands nodes (chapter 3.5.1), network (chapter
3.5.2) and ticks (chapter 3.5.3).

3.3.1 nodes.csv
The nodes.csv contains the configuration of every node which should be orchestrated by
the simulation framework. Each row in the file reflects one node consisting of:

• node_type: Either bitcoin if the node is a normal node or selfish if the node should
act like a selfish node.

• share: The computation power proportion of the node in the network.

• docker_image: The Docker image to use for the node.

• latency: The latency of the node in the peer-to-peer network. The node will have this
latency to all other nodes with the exact same latency. For other connections, the
two different latencies are added. Hence, two nodes, one node with 100 milliseconds
of latency and one node with 50 milliseconds, will have 150 milliseconds of latency
between each other during the simulation.

• group: Which group the node did belong to during the creation of the nodes.csv
by the script introduce in chapter 3.5. The parameter group is ignored during the
actual execution of the simulation.

3.3.2 network.csv
The network.csv reflects a connection matrix as shown in table 3.1. The simulation
framework starts each node in a way that a node on the y-axis tries to establish an
outgoing connection to another node on the x-axis whenever the corresponding value in
the matrix is 1.

11



3. Simulation framework

node a node b node c
node a 0 1 0
node b 0 0 1
node c 1 1 0

Table 3.1: An example network.csv represented as table

3.3.3 ticks.csv
The ticks.csv contains all ticks which should be executed by the simulation framework.
Each line represents a tick with no, one or multiple block events. Hence the length of
lines in a ticks.csv varies depending on the number of block events in the corresponding
tick.

3.4 Simulation

The main functionality of the simulation framework is to coordinate a simulation based
on the configuration files. The software uses therefore the high-level programming
language Python and the virtualisation software technology Docker. Python is mainly
used to handle the configuration files and to execute Docker and other binaries whenever
necessary automatically. Docker on the other side provides the needed capabilities to
run the Bitcoin reference implementation and other programs in lightweight containers
on one single host as explained in chapter 3.2.

To execute a simulation the command simulate (chapter 3.5.4) can be used. In that
case, the configuration files need to be available on disk. The commands run (chapter
3.5.5) and multi-run (chapter 3.5.6) provide another possibility to execute a simulation,
creating all configuration files before starting the simulation. The simulation itself can
be split up into the three phases preparation, execution and post-processing.

3.4.1 Preparation

The preparation phase is the first phase of a simulation run. At the beginning, a
simulation directory is created and all configuration files are copied into the new directory
to assure reproducibility. Subsequently, a virtual peer-to-peer network is assembled as
depicted in figure 3.1. Therefore firstly a Docker network with the driver set to bridge is
created which under the hood configures a new network interface in the networking stack
of the host machine. This network interface is used by the Docker containers to connect
and communicate to other containers. Afterwards based on the two configuration files
nodes.csv and networking.csv the nodes are created as Docker containers with bitcoind
set as command to be executed in the container. Listing 3.1 shows how Docker is
used to create a container, which executes bitcoind on start-up. In line 2 the unique
IP of the container is set by using the --ip argument. Line 3 shows the usage of a
so-called Docker volume to mount the folder data/run-10/node-5/ into the container’s

12



3.4. Simulation

Figure 3.1: Overview of the virtual peer-to-peer network

folder /data/regtest. By running bitcoind in regtest mode (line 6) and setting the data
directory of bitcoind to /data (line 7) Bitcoin persists all relevant data into /data/regtest.
Hence all the data persisted by bitcoind under /data/regtest will actually be persisted
under data/run-10/node-5/ on the host machine and is therefore still available after the
destruction of the container. In line 8 we define to which other nodes the node should
connect to by specifying their IP. By using the -connect parameters the Bitcoin reference
implementation automatically stops to listen for incoming connections. Since this is
needed to accept incoming connections, it is re-enabled in line 9 by setting -listen to 1.

Lastly, after all nodes are spawned, an RPC-connection to the Bitcoin API running in
each node is established by using the library python-bitcoinlib. These connections are
later used to directly send commands to the nodes.

1 docker run
2 --ip=240.1.0.5
3 --volume data/run-10/node-5:/data/regtest
4 bitcoind_image
5 bitcoind
6 -regtest
7 -datadir=/data
8 -connect=240.1.0.2 -connect=240.1.0.9
9 -listen=1

Listing 3.1: Simplified version of how a node is started with Docker and bitcoind

13



3. Simulation framework

3.4.2 Execution

In the execution phase, the simulation framework iterates over each tick from the ticks.csv.
If a tick contains a block event, the framework calls generate on the Bitcoin API of
the specific node to generate a new block. Since all nodes are running in regtest mode
the proof-of-work is deactivated and the block can be created immediately. Some ticks
may contain multiple block events. In this case, the block events are executed one after
another always waiting for the block hash to be returned by the nodes. The sequential
execution of the block events is preferred over a parallelisation, which would introduce a
new source of uncontrollable indeterminism making the results harder to reproduce even
on the same host.

A simulation run is always executed with a certain tick duration. This tick duration
specifies how long a tick should last in real time. Therefore the simulation framework
keeps track of the passed time during the execution of the block events and sleeps
afterwards until the tick is over. If the completion of the block events lasts longer then
the tick duration, then the framework immediately starts with the next tick. If this
happens more frequent the simulation scenario is configured too fast, which likely creates
inaccurate results as explained in chapter 3.1. Thus, the defined scenario should be
created with fewer block events per tick or a higher tick duration should be configured
for the simulation run. The simulation framework itself states the number of exceptions
of this type in the final report.

During the execution of the ticks, a thread separately collects on the host machine
information about the current CPU and memory usage. For the CPU usage, the thread
queries periodically the /proc/stat file which is showing how much time the CPU spent
in a certain state. The collected snapshots can later be used to determine the actual
utilization of the CPU by calculating the differences between the snapshots. For the
memory usage, the thread reads periodically the MemAvailable in /proc/meminfo file.
This value provides a heuristic of the currently available memory on the machine.

3.4.3 Post-processing

The post-processing phase is the last phase of a simulation run. At the beginning of this
phase the consensus chain, denoting the longest chain of blocks all nodes agree on, is
calculated. This is done by starting at block height one and asking each node for the
hash of the block on this height in their longest chain. If all nodes have a block at this
height and the hashes of all blocks are the same, then all nodes reached consensus and
the block is added to the consensus chain. In the next step, the height is increased by
one and the previously described check is repeated. If one node has no block at a certain
height or the hashes of the blocks differ then the calculation of the consensus chain stops.

After the calculation of the consensus chain, all Docker nodes are stopped and removed.
Because a separate data directory was mounted on each node by using Docker volumes
all relevant data, especially the log files, are still available on the host machine after the
deletion of the Docker nodes. In the next step lines of the logs from nodes and from

14



3.4. Simulation

the log file of the simulation framework are parsed to retrieve information about the
simulation run. These log line types are:

• BlockGenerateLine: Log line produced by a node when a new block is generated.

• BlockStatsLine: A log line displaying various information like block size about a
freshly generated block.

• UpdateTipLine: Log line produced by a node whenever a block updates a tip of
the chain.

• PeerLogicValidationLine: Log line produced when the proof-of-work of a received
compact block is checked.

• BlockReconstructLine: A log line created when a compact block was successfully
reconstructed.

• BlockReceivedLine: Log line created when a node receives a normal block.

• TickLine: A log line with information about an executed tick.

• BlockExceptionLine: Log line created whenever the simulation framework was not
able to successfully execute a block event.

• RPCExceptionEventLine: Log line denoting an exception occurred while using the
RPC-connection to a node.

The log lines BlockGenerateLine, BlockStatsLine, UpdateTipLine, PeerLogicValidation-
Line, BlockReconstructLine and BlockReceivedLine are all produced by nodes executing
Bitcoin where on the other hand TickLine, BlockExceptionLine and RPCExceptionEvent-
Line are created by the simulation framework itself. Furthermore, the BlockGenerateLine
log line was added especially for the simulation framework to the Bitcoin reference imple-
mentation. Normally the reference implementation does not create a log line containing
the block hash when it creates a new block. To work around this, a log line was added
to the reference implementation to persist the event of the block creation including a
hash of the block.

The simulation framework persists all parsed log lines into CSV files where each log line
type gets its file. Subsequently, the preprocess.R script prepares the CSV files for the
final report creation. When a simulation is executed a parameter can be passed which
denotes how many ticks at the beginning and at the end should not be evaluated in the
post-processing phase (skip_ticks). The skip_ticks parameter allows the user to discard
ticks which may create distorted data. Right after the start it is likely that the nodes
behave differently because the execute some initializing routines or run faster because
they just started up. At the end of the simulation run, it makes sense to ignore some
ticks because blocks created at the end of the simulation would distort the analysis of the

15



3. Simulation framework

simulation. Those blocks probably propagate faster, because right after them no other
competing blocks are created. Another problem could be that the simulation frameworks
already starts to shut down the peer-to-peer network even though some blocks are still
transmitted to other nodes. How many ticks should be omitted depends on the simulation
scenario and the right amount is difficult to determine. An additional mitigation is to
extend the overall simulation, which would reduce the influence of the distorted data from
the first and last ticks. The R script then figures out when the first and the last tick to be
evaluated occurred and tailors the log line types BlockGenerateLine and BlockStatsLine
respectively. All other types do not need to be tailored because they either are used
to calculate some combined statistics like the block propagation time or because the
statistics of these types are still calculated over the whole simulation duration like the
memory usage. Additionally, by omitting some ticks, the preprocess.R script sorts all
CSV files according to the timestamp of the log line. This is necessary because the
parsing of the log files is implemented in a multi-threading manner and thus the ordering
from the original log files is lost.

After all CSV files are created the simulation framework generates a report by executing
an R Markdown file. The final report contains:

• general information about the simulation like the start and end time

• specifications and settings of the host machine used in the simulation

• all input arguments passed to the simulation

• summary of block events

• overview of the duration of each phase of the simulation

• chart visualizing CPU and memory utilization

• chart showing the duration of a tick over time

• charts and information about blocks created during the simulation

• charts and information about exceptions happened during the simulation

Most of the stated information and charts can be directly generated from the CSV files
with respective R commands. Only the stale block rate and the propagation time of
blocks need some further processing, which is executed on report creation.

The stale rate, describing how many blocks did not end up in the longest chain, is
calculated by checking each created block against the consensus chain determined pre-
viously by simply merging the BlockGenerateLine log lines with the consensus chain.
The propagation time of blocks is calculated with R as shown in listing 3.2. First, the
BlockGenerateLine log lines are merged with the lines describing the event of receiving
a block, namely UpdateTipLine, PeerLogicValidationLine, BlockReconstructLine and

16



3.5. Commands

BlockReceivedLine creating a new data frame. Since for example, UpdateTipLine is
also logged by the node which created the block in line 5 all these elements are filtered
out of the data frame. Afterwards, the data set is grouped by the block hash and the
name of the node (line 7). By filtering out the element with the lowest timestamp, the
data frame now represents the points in time when a node heard first about a certain
block. Lastly, the propagation time is calculated by subtracting the timestamp of the
BlockGenerateLine log line from the timestamp of the receiving log lines.

1 log_lines <- merge(log_lines_receiving_block, block_generate,
2 by = ’hash’)
3
4 log_lines %>%
5 filter(as.character(node.x) != as.character(node.y)) %>%
6 select(-node.y, node = node.x) %>%
7 group_by(hash, node) %>%
8 filter(which.min(timestamp.x)==row_number()) %>%
9 mutate(propagation_time = timestamp.x - timestamp.y)

Listing 3.2: Calculation of propagation time with R

3.4.4 Multi-runs

When the simulation framework is executed with the multi-run command (chapter 3.5.6)
multiple simulations are conducted depending on the passed input arguments. After each
simulation, the created CSV files of the simulation are copied by the simulation framework
into an own directory. Once the last simulation finishes the software aggregates all copied
CSV files into single CSV files for each log line type. Subsequently, the R Markdown file,
which also is used to create the final report of a single simulation, is executed to create a
report comparing all simulation runs.

3.5 Commands
The simulation framework exposes six commands to the user. Three of this commands are
creating configuration files necessary for the execution of a simulation. One command, the
simulate command, executes a simulation based on these configuration files. The other
two commands, run and multi-run, are aggregations of the before mentioned commands.

3.5.1 nodes command

The nodes command can be executed with so-called node groups (eg. node_group_a)
as input parameters. A node group represents a group with a certain amount of nodes
sharing the same node type, Docker image and latency. Alongside these attributes, a
node group specifies a certain share of the computational power in the network. On

17



3. Simulation framework

execution, the simulation framework parses all passed node groups and checks if the
shares defined for each group are summing up to a total of 100%. In that case, the
framework persists the nodes of each group in a file called node.csv, where the share
of the computational power of the group is equally distributed over all members of the
respective group.

3.5.2 network command

When the simulation framework gets executed with the network command it reads a
node.csv, which needs to be available, to determine all planned nodes. Based on an
additional connectivity parameter (connectivity), which defines how many nodes a node
should be connected, the simulation framework creates a matrix reflecting connections
between two nodes. The Bitcoin reference implementation itself does not differentiate
between established incoming or outgoing connection, hence it suffices to define one
connection in the connection matrix if two nodes should be connected. The connection
matrix is afterwards persisted in the configuration file network.csv.

3.5.3 ticks command

The ticks command can be used to create the configuration file ticks.csv, which contains
the ticks to be executed. When executing the ticks command the simulation framework
accepts one parameter denoting the number of ticks to create (amount_of_ticks) and
one parameter about how many blocks per tick should be generated by the nodes
(blocks_per_tick). Additionally, the simulation framework reads the nodes.csv, which
needs to be available, to determine all planned nodes and their computational share
(share). Afterwards, the software parametrises for each node an exponential distribution
[Nak08, Ros11] as shown in 3.1 with λ = blocks_per_tick · share. From this exponential
distribution sufficient samples are drawn, which are denoting points in time when a
specific node should find a block. With this time series at hand, the ticks are created
by starting with the 1st tick. For every point in time lower than the number of current
tick a block event for the respective node is added to the tick and the point in time is
removed from the time series. This procedure is repeated for every tick until reaching
amount_of_ticks. For example, if we have 0.1 blocks per tick and a miner with a
computational share of 50%. Then, the miner expects to find every 20th tick a new block.
Possible samples drawn from the exponential distribution for this specific miner are 5.1,
20.2, 23.4 and 60. These samples are then assigned to the respective ticks, resulting in a
block event in tick 6, 21, 24 and 60. Simultaneously block events for all other miners are
added to the ticks, resulting in ticks with multiple block events, one block event or no
block event. After calculating all block events for all miners and assigning them to the
respective ticks, the ticks are persisted in the ticks.csv.

f(x;λ) =
{

1 − exp(−λx) x ≥ 0,
0 x < 0

(3.1)

18



3.5. Commands

Figure 3.2: Sequence diagram of the multi-run command

3.5.4 simulate command

On execution of the simulate command, the simulation framework starts a simulation
based on the configuration files nodes.csv, network.csv and ticks.csv. All these files need
to be available and furthermore, the duration of ticks (tick_duration) and the number of
ticks which events should not be evaluated (skip_ticks) are parsed as input arguments.
Afterwards, the simulation framework executes the simulation as described in section 3.4.

3.5.5 run command

When the simulation framework is started with the run command basically the commands
nodes, network, ticks and simulate are executed in exactly this order. It is possible to
pass all desired input arguments to the specific commands, but since the simulation is
started right after the creation of the configuration files, it is not possible to change those
files before the simulation.

19



3. Simulation framework

3.5.6 multi-run command

The multi-run command accepts an input parameter denoting how often a run should be
repeated (repeat). The simulation framework then creates all configuration files using
the passed input arguments and subsequently executes the simulation repeat times using
the same configuration files as depicted in figure 3.2.

3.6 Storage of simulation data

During a simulation run, all nodes persist their data on the disk of the host machine.
Hence, for better perfomance the data should be written into RAM by provding a disk
with ramfs or tmpfs.

Most of the persisted data by a node are the blocks created during the simulation
scenario. Since all nodes act independently, these blocks are furthermore replicated
multiple times on the host. Thus, the amount of simulation data can be very large
occupying multiple gigabytes on the host disk. To reduce the needed space for a long-term
storage the replicated blocks can be deduplicated by using the file system ZFS. The
usage of deduplication trades off with a slower performance when persisting or retrieving
files from a ZFS system. Hence, a ZFS file system may not be used during a simulation
where a slow file system could impact the results of a simulation.

To use deduplication for the created blocks the method to store the blocks is crucial. The
nodes involved in the simulation persist their blocks in files with the name blk*.dat, where
the * is an ongoing file number. These blk-files have a fixed size and whenever a file is
full a new file is allocated starting initially with one single file. During the simulation,
the node persists the blocks according to their arrival order. Hence, the arrangement of
the blocks in the files can vary between the nodes, because the blocks can arrive with a
different order at a node. For example, when a fork happens, some nodes will persist
block A as next block, where other nodes will persist the competing block B which results
in different blk-files between the nodes. These differing blk-files cannot be deduplicated by
ZFS even though they contain the same blocks of the simulation. If ZFS is configured to
deduplicate newly stored files, it internally splits the files according to a pre-defined block
size (to avoid confusion this block sizes will be called ZFS-block-size) and checks if this
block (ZFS-block) is already stored by the file system. In the case that the ZFS-block is
already stored, ZFS stores for the inserted file a reference to this block. In the other case
where the ZFS-block is not known, ZFS stores the new block and updates an internal
table denoting the presence of this ZFS-block. Hence, to fully deduplicate all blocks
available multiple times in the blk-files, the blocks need to be aligned with a multiple of
the ZFS-block-size.

20



3.6. Storage of simulation data

1 unsigned int nextPowerOfTwoExponent
2 = ceil(log2(nBlockSize + 8));
3 unsigned int nextPowerOfTwo
4 = nextPowerOfTwoExponent > 9?
5 pow(2, nextPowerOfTwoExponent) : pow(2,9);
6 nBlockSize = nextPowerOfTwo - 8;

Listing 3.3: Aligning the block size in the Bitcoin reference implementation for ZFS

Listing 3.3 shows how this can be achieved in the Bitcoin reference implementation by
setting the nBlockSize in the file validation.cpp to the next power of two. The blocks
persisted by nodes implementing the introduced patch are then occupying a power of
two big space in the used blk-file. If now the ZFS file system persists a blk-file all blocks
are aligned and can be deduplicated if they are already stored in the file system. The
added and subtracted eight bytes in line 2 and 6 are an implementation detail in the
Bitcoin reference implementation.

21





CHAPTER 4
Evaluation of simulation

framework

The simulation framework aims to simulate different simulation scenarios based on
supplied configuration files. To be able to trust in the results of such a simulation, the
outcome needs to be similar to each repeating execution of particular ticks. During
a simulation run, the different nodes are not synchronised in any manner, and the
orchestrated containers run entirely independently from each other. For example, the
order of low-level operations executed by the different nodes on the host machine depends
on many various parameters and circumstances, like for example random behaviour in
the reference client, and is likely to change in every simulation run. This indeterminism
introduced by how the simulation framework works is unchangeable without breaking the
whole architecture of the simulation framework. Hence, the results of multiple executions
of a particular tick sequence are only evaluated against a specific similarity and not if
the outcome is exactly the same.

4.1 Near-deterministic behaviour

The simulation framework is assessed against a defined near-deterministic behaviour to
have confidence in single executions of particular simulation scenario. The software is
considered to behave near-deterministic if:

The standard deviation of the stale block rate is lower than 0.2% after 100 executions of
the reference scenario.

In this definition solely the stale block rate is used to define a near-deterministic behaviour
because it reflects the outcome of a simulation comprehensively. All configuration param-
eters of a simulation run influence the stale block rate directly or indirectly[GKW+16]:

23



4. Evaluation of simulation framework

• The tick sequence reflects the computational share of the nodes and the block
interval time of the overall network. Changes to the tick sequence yield in less or
more block races in the peer-to-peer network. The stale block rate condenses the
outcome of these block races.

• The latency in the peer-to-peer network directly influences the propagation time of
blocks. With lower latency nodes can faster adopt the currently highest available
block, where on the other hand with higher latency nodes more likely create
competing blocks and cause block races. The block races are causing then stale
blocks reflected by the stale block rate.

• The network topology defines how the peer-to-peer network is connected. Hence,
the topology impacts how fast or slow blocks are propagating in the network which
impacts the stale block rate.

4.2 Reference scenario
The reference scenario used to evaluate the simulation framework for its near-deterministic
behaviour, tries to abstract the real Bitcoin network. The mining process in the real
system is known to be dominated by a few mining pools [GKCC14, BS15, TS16, BMC+15,
GBE+]. Current statistics show that about twenty miners create almost all blocks
[GBE+, blo, coia, bitf]. Hence, in the reference scenario, a total of twenty nodes are used.
These nodes are all directly connected to each other with a latency of 25 milliseconds. The
configuration of network topology with direct, fast connections is based on the assumption
that every miner wants to hear about new blocks as fast as possible. The rapid propagation
time of the blocks reduces the number of stale blocks for each participating peer and thus,
increases the revenue gained from the block rewards. For the latency of the connections
additionally an upper bound from previous research was taken into account [DW13].

For the sake of simplicity all nodes part of the network run the same version 0.15.0.1 [bitc]
of the Bitcoin reference implementation. This adjustment is in contrast to the real network
where different implementation and version are used [coib]. Another simplification is
taken for the virtual distribution of the computational power in the system. In the
reference scenario, all participating nodes receive the same amount of computational
power. Consequently, the probability that a node finds the next block is the same for
every particular node at every point in time. In the real network, the distribution of the
computational power is unevenly, and about five mining pools mine over fifty percent of
all blocks [GKCC14, blo, coia, bitf].

The duration of the simulation itself is set to contain about 2016 blocks which correspond
to two weeks in the real Bitcoin network. This time span is also identical to the time
used for the difficulty adjustment of the proof-of-work in Bitcoin which is relevant for
the simulation of selfish mining. The needed tick sequence is generated by using the
ticks command described in section 3.5.3. The command uses an exponential distribution
to determine when a specific node should find a block. The exponential distribution

24



4.3. Evaluation

realistically mimics the block intervals caused by the cryptographic proof-of-work puzzle
normally executed by every node to search a new block [Nak08, DW13, ES14]. In the
reference scenario, the simulation is divided into 0.1 second long ticks. Hence, by setting
the blocks per tick to 0.03̇, the simulated network finds every three seconds a block.
Compared to Bitcoin, wherein average every ten minutes a block is created, this results
in a 200 times shorter block interval, and instead of two weeks, it takes 100.8 minutes to
simulate about 2016 blocks.

4.3 Evaluation
For the evaluation of the near-deterministic behaviour the reference scenario was executed
100 times to obtain sufficient figures of the stale block rate. The individual simulations
were conducted on an x86 Linux host machine with Ubuntu 4.4.0-97-generic installed.
The CPU of the host machine was virtualised with QEMO 2.5+ and provided 16 cores.
Furthermore, the machine provided 57.718 GB of memory. During a particular simulation
run, about 4% of CPU and 6% of the storage were utilised as shown in the corresponding
figures 4.1 and 4.2. The metrics about the usage of the CPU and storage were continuously
collected by the simulation framework as described in chapter 3.5.

The outcome of the evaluation is shown as box plot in figure 4.3 and as a density plot in
4.4. Despite one outlier at 4.521% all data points are inside the whiskers area defined
by [Q1 − 1.5IQR,Q3 + 1.5IQR] with the median value equal 4.821%. Even though the
stale block rate is a continuous variable, the calculated 100 values are accumulated at
certain values because the fixed amount of blocks only allows certain combinations of
accepted and stale blocks.

To evaluate if the simulation framework has a near-deterministic behaviour as defined
in chapter 4.1 the standard deviation is calculated. The calculation of the standard
deviation results in 0.159%. Hence, it can be assumed that the simulation framework
behaves near-deterministic as defined.

25



4. Evaluation of simulation framework

Figure 4.1: CPU usage during a particular simulation run

Figure 4.2: Memory usage during a particular simulation run

Figure 4.3: Box plot of the stale block rate of 100 executions

26



4.3. Evaluation

Figure 4.4: Density plot of the stale block rate of 100 executions

27





CHAPTER 5
Selfish proxy

The selfish proxy is a node in the peer-to-peer network which performs selfish mining
in collaboration with a connected, eclipsed Bitcoin node. Together the two nodes are
forming a selfish miner as shown in figure 5.1. The proxy implements parts of the Bitcoin
communication protocol and requests all blocks created either by the honest network
or by the eclipsed node. With the retrieved blocks the selfish proxy recreates the chain
locally and whenever the public or the private chain changes the node executes the
configured selfish mining algorithm. Depending on the outcome of the selfish mining
algorithm the proxy afterwards relays blocks to the other part of the network. With
this withholding method, the selfish proxy can mimic different selfish mining strategies
without creating a single block.

5.1 Network
The selfish proxy is a normal member of the peer-to-peer network and is also executed
as a Docker container. During the simulation run, the proxy mimics the behaviour of
a normal Bitcoin node. In figure 5.1 a possible network topology with a selfish proxy
is depicted. The nodes on the left side are forming the honest, public network working
together on the public chain. The two nodes on the right side are forming the selfish
miner where the proxy abuses the private chain build by the eclipsed node to execute
a particular selfish mining strategy. In the current implementation, the selfish proxy
can only eclipse one single node. In the case where the proxy could eclipse multiple
nodes to build a private chain, the selfish proxy could also be used as a stand-alone
man-in-the-middle attacking tool eclipsing a larger amount of nodes.

The topology of the peer-to-peer network in a simulation run is solely established by the
simulation framework. First, the software starts the selfish proxy which then just listens
for new incoming connections. Afterwards, the normal Bitcoin nodes are started with
the respective -connect parameters set. If such a normal node has the IP of the selfish

29



5. Selfish proxy

Figure 5.1: Selfish proxy eclipsing a normal node

proxy set in a -connect parameter, then the Bitcoin node simply connects to the listening
proxy. The proxy accepts the connection and behaves like a normal Bitcoin node during
the whole simulation run by obeying the Bitcoin communication protocol.

The implementation of all network related functionalities of the selfish proxy is based
on the two open-source libraries pycoin [pyc] and python-bitcoinlib [pyt]. The library
pycoin provides simple networking utilities to connect to other Bitcoin nodes and to
manage those connections. The python-bitcoinlib library, on the other hand, implements
functionalities to serialise and de-serialise Bitcoin network messages.

5.2 Chain

The selfish proxy continuously collects all blocks and block headers sent by the connected
peers and reassembles the whole chain locally. To execute the selfish mining algorithm
efficiently the proxy needs to retrieve updates of the private and public chain as fast as
possible. Therefore the proxy uses solely block headers to update the chain despite using
whole blocks. The block headers which contain all necessary information to update the
chain can be retrieved faster than the full block because they are just a part of the block
and hence smaller. Furthermore, it is secure for the proxy to trust in the validity of the
block header since all other nodes in the network are assumed to behave honestly in our
simulation and hence are sending only valid block headers.

When the selfish proxy tries to update the chain with a so far unknown block header, it
simply looks at the hash of the previous block stored in the block header. If the previous
block hash is in the chain, the newly received block header is appended to the chain. On
a programmatic level, the proxy uses for that a one-way linked list with the possibility to

30



5.3. Receiving blocks

Figure 5.2: Selfish proxy receiving a block from another node

navigate to the previous block. In the case the block header has no direct ancestor in
the current chain, the header gets preserved as an orphan block. All orphan blocks are
checked on every successful insertion of a block if they now can be added to the chain.

Alongside the information stored in the block, the proxy also keeps track of the block
origin and a boolean variable called transfer_allowed. The block origin is a simple
enumeration if the block was received from the honest network or from the eclipsed node
and hence does not change over time. The transfer_allowed variable determines if the
transfer of a block is allowed and is initially always set to False. Depending on the selfish
mining strategy the block may be relayed to the other nodes at some later point in time
changing the boolean to True. These two variables are stored to be able to distinguish
between the public chain, the current longest chain known to the honest network and
the private chain, the current longest chain known to the eclipsed node. For example,
to determine the current private chain all blocks originated by the eclipsed node and
all blocks with transfer_allowed set to True are used. The two views of the chain are
essential for the selfish mining algorithm to decide which action to take and hence when
to relay which block to the other side of the network.

5.3 Receiving blocks

An essential capability of the selfish proxy is to retrieve blocks and block headers from
its peers. Figure 5.2 depicts the communication flow between an arbitrary node called
node_a and the selfish proxy which wants to retrieve the information of a new block.
Firstly node_a either finds a new block itself or retrieves a new block from some other
node in the network. Then, adhering to the Bitcoin protocol, the node sends an inv
message (1) containing the hash of the block to its peers including the proxy. The proxy
subsequently checks if it already requested the block from another node or even has

31



5. Selfish proxy

the block in the own local chain. In this two cases, the proxy would just ignore the
received hash, and the communication flow would end. If the block hash is unknown, the
proxy sends a get_headers (2.a) message and a get_data (2.b) message to the node_a as
pictured in figure 5.2.

The get_headers message (2.a) sent by the proxy is composed with an array called block
locator hashes and is used to retrieve all block headers after the known block hashes
denoted in the array. To create the array the proxy uses either the private or the public
chain depending if node_a is the eclipsed node or a node of the honest network. The
proxy adds then the highest, 2nd, 4th, 8th and 16th highest blocks of the selected chain
to the array. If the chain does not provide all needed bocks, then only the available
blocks are added to the block locator array. Node_a, after it received the get_headers,
will search the block hashes from the block locator array in its own longest chain starting
with the highest block. Once a block hash matches a block in the longest chain of node_a,
node_a collects all block headers after the matched block in a headers message and sends
the message back to the proxy (3.a). In the normal case the proxy trails just one block
behind the highest block known by node_a, hence the headers message will contain
only one single block header. In the usual cases, the proxy actually felt more than one
block behind and node_a will send multiple block headers back to the proxy. Since the
proxy only needs block headers to update the chain, it can immediately update with the
received headers the whole chain to the newest tip known tho the node_a.

The get_data message (2.b) sent by the proxy just contains the block hash of the desired
block. As soon as the node_a receives the request for the block, it will return the full
block in a block message (3.b) to the node. The request for the whole block lasts typically
longer than the request for the newest block headers with the get_headers message as
it is pictured in figure 5.2. The proxy request the full block containing all information
solely to be able to respond to get_data request by other nodes when it advertises the
block on later point in time.

5.4 Sending blocks

After the execution of the selfish mining algorithm, the proxy may want to send a block
to the opposite origin of the block. Figure 5.3 shows the communication flow between
an arbitrary node_a and the selfish proxy which intends to relay a block. The proxy
therefore firstly sends the block hash as inv message (1) to the node_a. The node_a
after receiving the inv message will then reply with a get_headers message (2) because it
has not seen the withheld block so far. The get_headers message contains, similar to the
get_headers build by the proxy when it receives a block, known block hashes by node_a.
The proxy then selects either the private or the public chain depending if node_a is
the eclipsed node or a node of the honest network. In the case that there is no unique,
longest chain the selfish proxy prefers the chain where the origin of the highest block is
the eclipsed node to promote the blocks of the eclipsed node. Subsequently, the proxy
iterates over the selected chain until a block hash from the locator array send by the

32



5.5. Selfish mining

Figure 5.3: Selfish proxy sending a block to another node

Figure 5.4: Different possible leads of the private chain [NKMS16]

node_a matches. The proxy then returns all headers of the blocks after the matched
block until the highest block composed in a headers message (3). Afterwards, the node_a
will iterate over the received headers and request all missing blocks. In the usual case,
node_a will just lack one block which the node will simply request by sending a get_data
message (4) to the proxy. The selfish proxy replies to this message then by sending a
block message (5) containing the full block. Since the selfish mining algorithm already
processes the block header before the whole block is available, it could be the case that a
block requested by a node is not yet available. In this case, the proxy defers the reply to
the node until it receives the entire block from another node.

5.5 Selfish mining

The selfish proxy executes selfish mining in collaboration with an eclipsed node which is
only connected to the proxy as shown in figure 5.1. During the simulation, the proxy

33



5. Selfish proxy

monitors the honest network which works on the public chain and the eclipsed node
which works on the private chain and performs selfish mining by withholding the blocks
created by both sides.

5.5.1 Private lead

Every time a block header is inserted in the chain the proxy checks if either the public or
private chain was altered. In the case that one of these two chains changed the proxy
executes the configured selfish mining algorithm. To easier track the changes between
the two chains an integer variable called private lead is used which describes the distance
between the two tips of the chain as shown in figure 5.4. A positive lead n denotes
an advantage of n blocks of the private chain over the chain of the honest network.
Conversely, a negative lead n stands for a n block lag of the eclipsed node over the public
chain. Furthermore, there exist positive leads annotated with an apostrophe denoting
that at the height of the public chain a block race happens. In this block race, the
possibility that the private chain is extended to the height of the public chain is γ and
the probability that the public chain gets extended is 1 − γ. Lastly, a private lead of zero
can be annotated with two apostrophes expressing that both chains have the same height
but everyone is mining on his own chain.

5.5.2 Actions

The execution of the algorithm outputs one of the four possible actions adopt, override,
match and wait equivalent defined in the work of [SSZ16]. An action describes which
blocks should be advertised and relayed to the other side of the network at a given point
in time:

• Adopt: The action adopt means that the selfish miner adopts the chain of the
honest network. This is a typical action if the private lead is zero and the honest
network finds a new block. Then it can be sensitive to just adopt to this new block.
To execute the adopt action the selfish proxy relays the public chain to the eclipsed
node by advertising unknown, public blocks.

• Override: The override action is only possible if the private lead is greater then
zero after the insertion of the new block header. In this case, the selfish proxy can
override the public chain by sending out the private blocks mined by the eclipse
node. Hence, when the proxy executes the override action, it sends all private
blocks including the first block strictly higher than the public chain. If there are
even higher private blocks, the selfish proxy keeps them back for further selfish
mining.

• Match: The match action is only feasible if the private lead previous the insertion
of the block header was greater than zero and the origin of the block is the honest
network. In this case, the selfish proxy can advertise the private block at the same

34



5.5. Selfish mining

Figure 5.5: Categorization of different mining strategies [NKMS16]

height to the honest network creating a block race. After the execution of the
match action, the resulting private lead is annotated with an apostrophe to denote
the block race.

• Wait: If the selfish algorithm outputs the wait action, then the proxy does simply
nothing and waits for the next block which changes either the private or the public
chain.

5.5.3 Strategies

The selfish mining strategies are defining which action the algorithm implemented in
the proxy should execute after a new block was found in the network. All strategies
implemented in the proxy are based on the selfish mining strategy described by [ES14]
(abbreviated with H ) and can be modified with the three modifications lead (L), equal-
fork (F) and trail stubborn (T ) by [NKMS16]. Figure 5.5 shows all strategies as a state
machine where the label of the states stands for the private lead. The labels α and β
used in the transitions are describing the probability that either the eclipsed node or the
honest network finds a block. The variable γ represents the likelihood that the part of
the honest network which mines on the private chain finds a block.

In the normal selfish mining strategy, two possible cases can occur in state 0. If the
honest network finds a block, then the selfish miner immediately adopts to the public
chain and hence remains in the state 0. In the other case where the selfish miner finds
a block, the state 1 is reached because the selfish miner does not share the block with
the honest network. The same happens if the selfish miner finds more blocks. Then the
selfish miner simple does not share his blocks advancing to state 2 and onwards. In state
1 the selfish miner has a private lead of one block. If then the honest network honest
network finds a block the selfish miner immediately releases the private block and starts
a block race. Any node in the honest block either chooses the private-public or the public

35



5. Selfish proxy

block to mine on top depending which block it sees first. The block race is dissolved
after any node in the network finds a block. If the honest network finds a block, then
the selfish miner adopts to the new tip. In the other case where the selfish miner finds a
block, it immediately sends out the block to win the race. In both cases, the state 0 is
reached again. Lastly, if the private lead is two and the honest network finds a block
then the selfish miner immediately publishes the two blocks. This overrides the newly
created block by the honest network, and the state 0 is reached.

As introduced by [NKMS16] the selfish mining strategy can be modified as follows:

• Lead stubborn mining (L): In lead stubborn mining, the selfish miner tries to
cause as many block races as possible. So whenever the private chain is longer than
the public chain, and the honest network finds a block the selfish miner releases the
competing block with the same high causing a block race. This behaviour is also
applied in state 2 where the selfish miner overwrites typically the block appended
to the public chain by publishing two blocks. In lead stubborn mining, the selfish
miner only releases the competing block an starts a block race denoted with the
state 2’. This strategy is promising when γ is high implying that whenever a block
race occurs, it is likely that the honest network finds a block on published block of
the selfish miner. Hence, the honest network unwillingly helps the selfish miner to
succeed the private chain during the block race.

• Equal-fork stubborn mining (F): The equal-fork stubborn mining strategy
changes the behaviour of the selfish miner during a block race in state 0’. Usually,
the selfish miner would use the created block to overwrite the public chain hence
winning the block race. Using the equal-fork stubborn strategy, the miner keeps
the block back which leads to state 1 and the honest network remains mining on
two different tips of the chain. Thus the strategy compromises the idea to keep the
honest network split over two chains as long as possible.

• Trail stubborn mining (T): In trail stubborn mining, the selfish miner allows
the private chain to even trail behind the public chain. If the block race in state 0’
is won by the honest network, the selfish miner does not adopt the public chain and
trails back leading into the state -1. In the case that the selfish miner can catch
up by creating a new block the state 0” where both chains have the same length.
The trail stubborn strategy finally pays off when the selfish miner finds another
block and can override the public chain with the private chain. Trail stubbornness
is parametrised with an integer n determining how many blocks the private chain
is allowed to trail behind the public chain. If this threshold is reached the selfish
miner dismisses his private chain and adopts to the public chain by reaching again
state 0.

The modifications of the selfish mining strategy can lead to even more gain for the selfish
miner depending on the actual computational share and the parameter γ.

36



5.5. Selfish mining

1 if private_lead == 0:
2 if length_private == 0:
3 if last_block_origin is BlockOrigin.public:
4 return Action.adopt
5 else:
6 return Action.wait
7 else:
8 if last_block_origin is BlockOrigin.public:
9 if self.trail_stubborn < 0:

10 return Action.wait
11 else:
12 return Action.adopt
13 else:
14 if self.active and self.equal_fork_stubborn:
15 return Action.wait
16 else:
17 return Action.override

Listing 5.1: Part of the selfish mining algorithm where private lead is zero

Furthermore, the strategies can be combined and since the trail stubbornness can be
parametrised the build an infinite strategy space.

5.5.4 Algorithm

The selfish mining strategies and its modifications are implemented in selfish proxy by a
simple algorithm using normal control flow structures. Since the selfish proxy does not
have a holistic overview of when a node finds a block, it only can try to apply selfish
mining whenever the public or private chain changes locally after the insertion of a new
block header. The algorithm mimics the behaviour shown in the state diagram from
figure 5.5 by looking at the private lead before the insertion of the block header and the
origin of the inserted block header. For example, if the private lead before the insertion
of the block header was one and the block header was appended to the public chain. This
would correspond to the state 1 and the outgoing transition β which leads in the state
diagram to the state 0’ denoting a block race. The selfish mining algorithm must now
assure that this state is also reached in the simulated network by starting a block race.
Thus the algorithm needs to execute the match action by publishing the private block to
the honest network.

Listing 5.1 shows a part of the algorithm, namely the part where the private lead before
the insertion is 0, and an action to be executed is searched. Hence, this part of the
algorithm reflects the states 0, 0’ and 0” of the state machine pictured in figure 2.1. In
the lines 2 to 6, the state 0 is treated by simply looking at the origin of the last block. If

37



5. Selfish proxy

the block was mined by the honest network, then the proxy just adopts to the public
chain. In the other case, the block was found by the eclipsed node, and the proxy just
waits for the next block to be discovered.

The lines 7 to 17 are covering the 0’ and 0” states. In the case the last block was found
by the honest network, the proxy adopts to the public chain except the algorithm was
configured with trail stubbornness. Then the proxy waits and hopes to catch up with the
public chain at a later point (line 10). The other case, implemented from line 7 to 17,
reflects the fact when the block is found by the eclipsed node. Then normally the proxy
would override the chain by sending the respective private blocks to the honest network.
An exception to this is when currently a block race is happening, and the algorithm is
configured with equal-fork stubbornness. In that case, the selfish algorithm currently has
set the variable active to True and applies equal-fork stubbornness by executing the wait
action.

5.5.5 Configuration

The selfish proxy started with any configuration executes the standard selfish mining
strategy with no modifications. On execution time the three modifications lead, equal-fork
and trail stubborn mining can be configured by using input arguments:

• lead_stubborn: A boolean input argument determining if lead stubbornness should
be used.

• equal_fork_stubborn: A boolean input argument defining if equal-fork stubbornness
should be applied or not.

• trail_stubborn: Used with an integer specifying how much the selfish proxy should
trail back.

38



CHAPTER 6
Simulation of selfish mining

strategies

With the introduced software solutions, the simulation framework and the selfish proxy,
it is now possible to analyse selfish mining and its impact on the relative gain of the
selfish miner. For the simulation, the scenario described in chapter 4.2 is adapted. One
of the twenty nodes is eclipsed with the selfish proxy forming a selfish miner. To obtain
a comprehensive overview of the impact of selfish mining the selfish miners conducts
various combinations of selfish mining strategies. Additionally, different distributions of
the computation power between the nodes and the selfish miner are applied.

6.1 Selfish mining scenarios

As strategies, the standard selfish mining strategy and the three modifications lead
stubborn, equal-fork stubborn and trail stubborn mining are put into action. The used
trail-stubborn strategy is parametrised with 1 meaning that the selfish miner will at the
maximum trail one block behind the public chain. Hence, the at least trail stubborn
strategy is executed in the different scenarios. To capture the strategy space in a sensitive
way, the strategies are also combined between each other resulting in a total of eight
different selfish mining strategies.

For the distribution of computation power, five different settings are used where the selfish
miner receives either 15%, 22.5%, 30%, 37.5% or 45% of the computation power. The
rest of the computation power in each scenario is distributed equally over all remaining,
honest nodes. The five used shares are each 7.5% apart covering sensitive shares of the
computation share. All possible scenarios where the selfish miner would receive more
than 50% are omitted because in that cases for the selfish miner it would be more efficient
to launch the so-called 51%-attack copping all mining rewards [Nak08, BMC+15, TS16].

39



6. Simulation of selfish mining strategies

Additionally, the scenario with a share of 7.5% is discarded because it is very likely
that in that case, selfish mining has no advantages as already shown in previous studies
[ES14, SSZ16, NKMS16].

With eight different mining strategies and five different distributions of computation
power, a total of 40 different scenarios are obtained. Listing 6.1 shows how a specific
scenario is started with the simulation framework. In this particular scenario, the selfish
miner receives 30% of the computation power (line 4), and the rest of the network
consisting of 19 nodes gets with 70% the rest of the mining power (line 3). As shown
in line 5 the selfish mining strategy in this simulation run is modified with equal-fork
and trail stubbornness. These arguments are passed by the simulation framework to
the selfish proxy when it gets created. Furthermore, it can be seen in line 5 that the
strategy modification trail stubborn is set to 1. From line 6 to 8 the scenario is configured
with the same blocks per tick rate, amount of ticks and tick duration as in the reference
scenario described in 4.2.

1 python3 simcoin.py multi-run
2 --repeat 3
3 --group-a bitcoin 19 0.7 25 simcoin/patched:v2
4 --group-b selfish 1 0.3 0 simcoin/proxy:v1
5 --selfish-args ’--equal-fork-stubborn --trail-stubborn 1’
6 --blocks-per-tick 0.0333333333333333
7 --amount-of-ticks 60480
8 --tick-duration 0.1

Listing 6.1: Command to execute a particular selfish mining scenario

6.2 Simulation
The previously defined selfish mining scenarios are executed on an x86 Linux host machine
with 16 virtualised cores and 57.718 GB of memory, the same machine used to examine the
near-deterministic behaviour of the simulation framework in chapter 4.3. Each scenario
gets executed three times by using the multi-run command as shown in line 1 and 2 in
the listing 6.1. To extract a particular metric from the multiple executions of a scenario,
the simulation with the median stale block rate is used. Since the simulation framework
can not behave perfectly deterministic due its architecture, the median provides a robust
method against possible outliers and hence, more accurate results are achieved.

6.3 Results
The results of the 40 simulations are shown in table 6.1. In the first column, the different
selfish mining strategies and its combinations are listed in abbreviated form. The second
column reflects the computational share of the selfish miner during each specific simulation.

40



6.3.
R
esults

strategy share blocks honest blocks selfish stale blocks honest stale blocks selfish share selfish share stale selfish stale block rate

H 0.150 1560.6 275.4 79.050 13.950 0.15000000 0.1500000 0.04821151
H 0.225 1422.9 413.1 72.075 20.925 0.22500000 0.2250000 0.04821151
H 0.300 1285.2 550.8 65.100 27.900 0.30000000 0.3000000 0.04821151
H 0.375 1147.5 688.5 58.125 34.875 0.37500000 0.3750000 0.04821151
H 0.450 1009.8 826.2 51.150 41.850 0.45000000 0.4500000 0.04821151
S 0.150 1536 78 108 193 0.04832714 0.6411960 0.15718016
S 0.225 1350 166 149 237 0.10949868 0.6139896 0.20294427
S 0.300 1116 328 232 231 0.22714681 0.4989201 0.24278972
S 0.375 919 442 299 271 0.32476120 0.4754386 0.29518384
S 0.450 624 601 446 249 0.49061224 0.3582734 0.36197917
L 0.150 1538 79 106 192 0.04885591 0.6442953 0.15561358
L 0.225 1350 160 149 243 0.10596026 0.6198980 0.20609884
L 0.300 1126 301 222 258 0.21093203 0.5375000 0.25170425
L 0.375 931 415 287 298 0.30832095 0.5094017 0.30295184
L 0.450 648 538 422 312 0.45362563 0.4250681 0.38229167
F 0.150 1542 70 102 201 0.04342432 0.6633663 0.15822454
F 0.225 1356 152 143 251 0.10079576 0.6370558 0.20715037
F 0.300 1120 314 228 245 0.21896792 0.5179704 0.24803356
F 0.375 921 417 297 296 0.31165919 0.4991568 0.30709477
F 0.450 597 597 473 253 0.50000000 0.3484848 0.37812500
T1 0.150 1534 81 110 190 0.05015480 0.6333333 0.15665796
T1 0.225 1350 163 149 240 0.10773298 0.6169666 0.20452156
T1 0.300 1119 325 229 234 0.22506925 0.5053996 0.24278972
T1 0.375 921 441 297 272 0.32378855 0.4780316 0.29466598
T1 0.450 648 575 422 275 0.47015536 0.3945481 0.36302083
L, F 0.150 1543 65 101 206 0.04042289 0.6710098 0.16031332
L, F 0.225 1362 136 137 267 0.09078772 0.6608911 0.21240799
L, F 0.300 1160 254 188 305 0.17963225 0.6186613 0.25852124
L, F 0.375 981 306 237 407 0.23776224 0.6319876 0.33350596
L, F 0.450 733 375 337 475 0.33844765 0.5849754 0.42291667
L, T1 0.150 1537 77 107 194 0.04770756 0.6445183 0.15718016
L, T1 0.225 1353 153 146 250 0.10159363 0.6313131 0.20820189
L, T1 0.300 1131 302 217 257 0.21074669 0.5421941 0.24855794
L, T1 0.375 922 420 296 293 0.31296572 0.4974533 0.30502330
L, T1 0.450 648 537 422 313 0.45316456 0.4258503 0.38281250
F, T1 0.150 1540 68 104 203 0.04228856 0.6612378 0.16031332
F, T1 0.225 1353 151 146 252 0.10039894 0.6331658 0.20925342
F, T1 0.300 1119 317 229 242 0.22075209 0.5138004 0.24698479
F, T1 0.375 911 429 307 284 0.32014925 0.4805415 0.30605904
F, T1 0.450 613 581 457 269 0.48659966 0.3705234 0.37812500

L, F, T1 0.150 1545 62 99 209 0.03858121 0.6785714 0.16083551
L, F, T1 0.225 1358 138 141 265 0.09224599 0.6527094 0.21345952
L, F, T1 0.300 1160 255 188 304 0.18021201 0.6178862 0.25799685
L, F, T1 0.375 1000 294 218 419 0.22720247 0.6577708 0.32988089
L, F, T1 0.450 720 389 350 461 0.35076646 0.5684340 0.42239583

Table 6.1: Results of the 40 simulations with the additional honest behaviour H

41



6. Simulation of selfish mining strategies

Figure 6.1: Relative revenue of the selfish miner

The two columns blocks honest and blocks selfish contain the number of blocks from
each party which ended up in the longest chain. The following two columns reflect the
number of stale blocks for the honest network and the selfish miner. The columns share
selfish and share stale selfish are derived from the previous columns and describe the
relative proportion of accepted and stale blocks for the selfish miner. Lastly, in the ninth
column, the overall stale block rate of each simulation run is stated. Additionally, to
the 40 results, the simulation with the median stale block rate from the evaluation of
the simulation framework in chapter 4.3 is added with the abbreviation H. Since in that
simulation the computational share was always distributed evenly amongst all nodes
the result of the simulation is multiplied by the corresponding share for each defined
distribution of computation power.

In figure 6.1 the relative revenue, given a particular computation share and selfish mining
strategy, is shown. The graph shows that the two strategies selfish mining with lead
stubborn, equal-fork stubborn (L, F) and selfish mining with all three modifications (L,
F, T1) are the worst performing strategies. The relative share of accepted blocks of
the two strategies stays clearly under the relative proportion which could be obtained
by behaving honestly. Also with an increase of the computational power, the efficiency
of the two selfish strategies is not amplified and the curve shows a linear progression.
The other six, better performing strategies are all exhibiting a similar behaviour. The
performance of these strategies is intensified with the augmentation of the computational
share underlined by a concave curve. Overall all selfish mining strategies are performing

42



6.3. Results

strategy share selfish rank difference to best

F 50% 1 -
S 49.1% 2 0.9%

F, T1 48.7% 3 1.3%
T1 47% 4 3%
L 45.4% 5 4.6%

L, T1 45.3% 6 4.7%
H 45% 7 5%

L, F, T1 35.1% 8 14.9%
L, F 33.8% 9 16.2%

Table 6.2: Relative share of selfish miner with 45% of computational share

Figure 6.2: Share of stale blocks created by the selfish miner

poorly and only with a computational share of about 40% the six better performing
strategies can retain a more significant share than the share obtained behaving honestly.
In table 6.2 the relative revenue share of the selfish miner with 45% of computation
power is shown. The best performing strategies are equal-fork stubbornness (F) and
normal selfish mining (S) followed by trail stubborn mining modified with equal-fork
stubbornness F, T1 and the strategy trail stubborn (T1). These four strategies achieve
almost similar results and are only 3% apart.

Figure 6.2 shows the share of stale blocks found by the selfish miner. In the honest
case, the share of created stale blocks increases linearly with the computational share.
Contrary to the line showing the honest behaviour proceed the lines depicting the
different selfish mining strategies. Especially if the computational share is low, over 60%

43



6. Simulation of selfish mining strategies

Figure 6.3: Blocks created by the selfish miner and accepted in the longest chain

of the stale blocks of the network are created by the selfish miner. With an increasing
share of computational power, the share of stale blocks declines significantly, except
the two strategies lead stubborn combined with equal-fork stubborn (L, F) and selfish
mining modified with all stubborn variations (L, F, T1) which remain on the same level.
Additionally, the figure shows that only with a very high amount of computational share
the selfish strategies are achieving better results than the normal, honest behaviour.

The total amount of accepted blocks by the selfish miner, given a particular strategy and
computational share, is shown in figure 6.3. The graph shows again the gap between the
two bad performing strategies and the six other strategies which work slightly better.
Additionally, it can be seen that the absolute amount of accepted blocks during the
execution of selfish mining is significantly lower than the number of blocks accepted
when the nodes behave honestly. Hence, in the short-run, all selfish mining strategies are
yielding less mining rewards for the selfish miner than the normal, honest behaviour.

The honest network also creates less accepted blocks during a selfish mining attack as
shown in figure 6.4. Since the selfish mining strategies are functioning better with an
increasing computational share of the selfish miner, the gap between the case where
all nodes behave honestly and the case where one node conducts selfish mining even
increases. The performance differences between the selfish mining strategies can also be
seen in this figure.

Lastly, in figure 6.5 the relative amount of stale blocks in the network during the
simulations is shown. If all nodes behave honestly, the stale block rate is 4.821% as
measured during the evaluation of the simulation framework. In the case that a node
conducts a selfish mining strategy the stale block rate is significantly higher and increases
further if the computational power of the selfish miner is augmented. Furthermore, the

44



6.3. Results

Figure 6.4: Blocks created by the honest network and accepted in the longest chain

Figure 6.5: Stale block rate

gap between the two worst performing selfish strategies and the other strategies can be
observed. If a node conducts lead stubbornness combined with equal-fork stubbornness
(L, F) or selfish mining with all three modifications (L, F, T1), there are even more stale
blocks in the network.

Similar as during the evaluation of the near-deterministic behaviour of the simulation
framework in chapter 4.3, also during the execution of the selfish mining scenarios the
utilisation of the CPU and the memory of the host machine stayed under 10% as shown

45



6. Simulation of selfish mining strategies

Figure 6.6: CPU usage during the triple execution of a simulation scenario

Figure 6.7: Memory usage during the triple execution of a simulation scenario

in figure 6.6 and figure 6.7. Thus, the specifications of the host machine did not restrict
the simulations in any way.

46



CHAPTER 7
Evaluation

The simulation of eight different selfish mining strategies with five distinct distributions of
computational power provides a reasonable outcome to argue the two research questions
of the thesis.

7.1 RQ1
Do the simulations of selfish mining with the proposed software solutions show an increase
of the total and relative gain for the selfish miner compared to the normal, honest mining
behaviour?

The simulation showed that the relative share of mining rewards obtained with selfish
mining is higher compared to the honest mining if the miner has over 40% of mining
power and conducts a satisfactory selfish mining strategy. To the satisfactory strategies,
all strategies expect the combination lead stubborn and equal-fork stubborn (L, F) and
selfish mining with all three modifications (L, F T1) can be counted. The curves of the
six good-performing strategies depicted in figure 6.3 show all a similar behaviour where
their relative gain increases non-linearly with a higher computational share. Out of these
six strategies, the most promising strategies are normal selfish mining (S) and equal-fork
stubbornness (F). When these two strategies are applied, the selfish miner can create
49.1%/50% of the blocks of the longest chain even though its share of the mining power
is only 45%.

In all cases where the selfish miner has a low share of computational power, the results
of the simulation show that the selfish mining does not increase the relative gain. For
example, when the selfish miner has 15% of the mining power in the network only about
5% of its blocks end up in the longest chain. Even if the selfish miner has 37.5% share of
the computational power the most advantageously strategy (S) only creates 32.4% blocks
of the longest chain. The worst performing mining strategy in the scenario where the

47



7. Evaluation

selfish miner has 37.5% is the strategy with all three modifications (L, F, T1) generating
only 22.7% of the accepted blocks.

Concluding it can be said that with the defined simulation scenario and the proposed
software solutions only for a very high computational share an increase of the relative
gain could be observed. For all scenarios where the selfish miner has less than 40%
percent, the miner would earn relatively more by behaving honestly.

7.2 RQ2

How do the obtained results of the simulation match the outcome of previous research in
the area of selfish mining?

When comparing the outcome from the simulations with recent studies, it first needs to
be considered that with the introduced simulation framework the outcome of the block
races cannot be defined directly, as it is the case in previously used types of simulation.
Instead, the block races happen naturally during the execution of a scenario. With the
used simulation scenario and implementation of the selfish proxy, it is likely that the
parameter γ, denoting if an honest node extends the private chain during a block race,
is almost zero. This assumption is based on the configured network topology and the
implementation of the selfish proxy. In the scenario, a fully connected network topology
is used where each connection has the same latency. Hence, when a node finds a block, it
sends the block to all nodes directly. Then it is unlikely that the selfish node can advertise
its block faster to other nodes using the same connections before the honest nodes have
already adopted to the new public tip. The implementation of the selfish proxy further
worsens the position of the selfish miner when trying to match a competing block during
a block race. The proxy which eclipses the private node does not implement the fast
block propagation mechanism compact blocks. Instead, the proxy uses the standard but
slower block propagation technique to receive and send blocks. Thus, the proxy receives
and sends blocks slower than the rest of the network.

Assuming that the probability of the selfish miner to win a block race is very low, the
attained results match the outcome of previous research. In figure 7.1 the red line shows
the relative revenue of the selfish miner conducting normal selfish mining when it is not
able to win any block race [ES14]. The curve shows the same concave course as in figure
6.3 underlining that with an increase of the computational share the efficiency of the
selfish mining is amplified. Moreover, the selfish miner achieved more relative revenue
compare to the honest miner with about 36% of the mining power, similar to the slightly
worse results of 40% showed in chapter 6.3. Comparable outcomes for the selfish mining
without any modification were produced in other recent research [NKMS16, SSZ16].

In figure 7.2 optimal selfish mining strategies including stubborn modifications from the
research of [NKMS16] are shown. In the case, where the selfish miner loses all block races,
the honest behaviour is the most profitable strategy until a computational share of 34%
is reached. Afterwards, the most advantageous mining strategy is trail stubbornness (T1)

48



7.2. RQ2

Figure 7.1: Results obtained by [ES14] with normal selfish mining

up to a computational share of 45%. From 45% to 50% the dominant strategy is trail
stubborn in combination with equal-fork stubborn (T1, F), but in many cases, the best
strategy is not clear signalised by the black dots in the graphic. The results of the optimal
stubborn mining strategy by [NKMS16] slightly differ to the outcome of the simulation
from chapter 6.3. In the proposed simulation the best performing strategies were the
normal selfish mining (S) and equal-fork stubborn mining (F) with trail stubbornness
combined with equal-fork stubbornness (T1, F) and trail stubbornness (T1) being only
the third and fourth most satisfactory strategy.

[NKMS16] does not propose the actual ranking of different selfish strategies regarding
their performance for a specific γ but provides a comparison of the relative gain obtained
by selfish mining and selfish mining with stubborn modifications. On the assumption
that γ is zero, the relative gain achieved by using stubborn modifications over selfish
mining is very low as shown in figure 7.3. Thus, also in the research of [NKMS16], the
normal selfish mining forms a viable strategy comparable to the results obtained in the
previous chapters. Furthermore, figure 7.2 showed that between 45% and 50% the best
strategy is not always known denoted by the black dots. From that concludes, that in
the case where all block races are won by the honest network, the optimal strategy is not
identifiable, similar to the outcome from the proposed simulations where the four best
strategies were 3% apart.

Summarising the obtained simulations results are comparable to recent research even
though the outcome of the simulation was slightly worse than results from previous
research. Regarding the best performing selfish mining strategies also the research of
[NKMS16] showed that differences in the case where γ equals zero are subtle. Nevertheless,
both studies showed similar good performing selfish mining strategies.

49



7. Evaluation

Figure 7.2: Optimal stubborn mining strategies retrieved by [NKMS16]

Figure 7.3: Selfish mining compared to optimal stubborn mining strategies by [NKMS16]

7.3 Profitability
As previously evaluated selfish mining can increase the relative gain of the misbehaving
miner, but the results of the simulations show further that the absolute amount of
accepted blocks is lower as shown in figure 6.3. Hence, the selfish miner is earning less
mining rewards even though its relative revenue is increasing. The loss of profit is possible
because the stale block rate increases during selfish mining, and thus, fewer blocks end
up in the longest chain. To still profit from the attack the miner would need to wait for
the difficulty adjustment. After the difficulty adjustment, the nodes in the network can
find more blocks and hence, also the selfish miner can create more blocks. Since selfish
mining was never observed for such a long time and no research was conducted in this
area, it is not clear if such a long attack would be successful [NKMS16].

50



CHAPTER 8
Further research

The thesis examines the relative gain of a selfish miner in a peer-to-peer network similar
to the original Bitcoin network. The selfish miner is implemented by eclipsing a normal
Bitcoin peer with a proxy. The proxy then conducts selfish mining by withholding blocks
created by the honest network and the eclipsed node. The network and the containing
nodes were realised by using Docker and hence, virtualised on one single host. Both
approaches, the selfish proxy and the virtualised peer-to-peer network, are novel and are
leaving many possibilities for improvement and research directions open.

8.1 Selfish proxy

The selfish proxy needs to receive information of new blocks as fast as possible to conduct
selfish mining efficiently. Currently, the proxy requests the whole block and all headers
of blocks higher than its local best tip after hearing about a new block as described in
chapter 5.3 and 5.4. To successfully relay the block to the other side of the network,
the selfish proxy needs to receive both messages entirely where especially the full block
request is very time-consuming. By using the compact block relay mechanism, the selfish
proxy could speed up this whole communication. The compact block relay mechanism
shown in figure 8.1 is implemented in the Bitcoin reference implementation since late
2016 [bitb] and allows the node to broadcast blocks to its peers directly [bip]. The
difference to the normal block relay mechanism is that the node relays the block without
any transactions. To verify the block, the receiving node first checks which transactions
are in the local mempool and asks afterwards with a specific request only for the missing
transactions. Compared to the traditional block relay mechanism where the node sends
the full block containing all transactions, the compact block relay mechanism reduces the
amount of data transferred and accelerates the block relay [bip, OAB+17]. In the case of
the selfish proxy, the update of the local chain could be executed right after the compact
block is received. Then, depending on the outcome of the selfish mining algorithm, the

51



8. Further research

Figure 8.1: Compact block relay mechanism [bip]

relevant blocks could be relayed using the compact block relay mechanism. Compared
to the currently used relay mechanism the whole communication flow would be reduced
from six sent messages to two messages because during a simulation only empty blocks
are created. It is very likely that the compact block relay would improve the efficiency of
the selfish mining strategy performed by the proxy, especially if at some later point also
transactions are created during a simulation. Then the transmission of the blocks is even
more time consuming and increases the time needed by the proxy to relay blocks.

Another direction of research consists of implementing the selfish mining strategies directly
in the code executed by the nodes of the network. For example, the publicly available
reference implementation could be extended to implement selfish mining. In the current
setting, the selfish proxy adds an extra hop between the communication of the honest
network and the eclipse node. Hence, the proxy increases the latency of the eclipsed
node significantly. With the raised latency the position of the selfish miner during a
block race is worsen resulting in a lower efficiency of the conducted selfish mining. By
implementing the selfish mining directly in the reference implementation, the extra hop
would be removed, and the selfish miner now consisting only of one node would not have
a lower latency compared to the honest network. The downside of this approach would
be that the reference implementation is altered which could cause unexpected side-effects.

Last but not least combining attacks with selfish mining provides a possible field of
research. The selfish miner could improve the profitability of the selfish mining by
combining it with other attacks [GKW+16, SSZ16, NKMS16, GRK15]. New insights and
combinations could be tested by implementing and simulating the attacks directly in the
simulation framework or selfish proxy.

52



8.2. Simulation scenario

8.2 Simulation scenario
Currently, no transactions are included in the simulation runs. Thus, all blocks generated
by the nodes are empty and consequently propagate faster in the network than a block
with transactions. A further research direction consists of including transactions in
a simulation run to simulate the block propagation more realistically. This could be
either achieved by filling up the mempool with prepared transactions or by creating
the transactions during the simulation run. In the latter approach also the relaying of
transactions would be simulated resulting in an even more realistic simulation. Using
this method the performance and reliability of the RPC-connections over TCP/IP needs
to be considered. The current implementation of the simulation framework has troubles
to maintain the connection to the API of the nodes often resulting in broken pipe errors.
At the moment these errors are recovered by simply reconnecting to the node which costs
time. Due to the lost time, the execution speed of the simulation needs to be lowered
resulting in unsustainable long simulation durations. Hence, to support the creation of
transaction during a simulation run, the unreliability of the RPC-connections should be
dissolved, or it should be considered to use the more performant Unix domain sockets.
The Unix domain sockets are providing their performance by bypassing the TCP/IP stack,
and are likely to sustain the higher workload when adding transactions to a simulation
scenario. The capability to use Unix domain socket to communicate with the provided
API by the nodes is planned for the next release of the reference implementation of
Bitcoin [bitg].

Another compelling research area is the topology of the network and the nodes par-
ticipating in the peer-to-peer network. The network topology chosen in this thesis is
just an abstract simplification of the real Bitcoin network. The actual network changes
continuously and contains multiple diverse nodes running different implementations of
the Bitcoin protocol. Hence, a better capturing of the actual topology of the Bitcoin
peer-to-peer network containing dissimilar nodes could be an area of research.

8.3 Mitigation
The mitigation of selfish mining is also a possible future research direction. The simulation
framework and the proxy can be used to assess different proposed mitigation approaches
[ES14, Hei14, SPB16, ZP17] against their impact on selfish mining. Since the simulation
framework uses the reference implementation a mitigation proposal like the uniform tie-
breaking [ES14] can be implemented directly in the actual code. Hence, those mitigations
can be tested quickly and under realistic circumstances providing accurate results.

53





CHAPTER 9
Conclusion

In this thesis, the selfish mining attack was simulated by using a novel simulation
framework based on Docker. Despite previous simulation approaches, the framework
allows to naturally include the network latency in the simulation and to directly reuse
the reference implementation of Bitcoin. The selfish mining itself is implemented in a
separate node. This node eclipses a normal peer of the network and conducts selfish
mining by withholding blocks created by the eclipsed peer.

The results of the simulation showed that the attack increases the relative gain of the
selfish miner and hence, emphasises the relevance of the selfish mining attack. As the most
promising selfish mining strategies, the normal selfish mining and equal-fork-stubbornness
were identified. In the scenario where the selfish miner has 45% of the mining power,
the two strategies were able to increase the gain of the selfish miner by 4.1% and 5%
respectively.

55





List of Figures

2.1 Selfish mining state machine with transition probabilities [ES14] . . . . . 6

3.1 Overview of the virtual peer-to-peer network . . . . . . . . . . . . . . . . 13
3.2 Sequence diagram of the multi-run command . . . . . . . . . . . . . . . . 19

4.1 CPU usage during a particular simulation run . . . . . . . . . . . . . . . . 26
4.2 Memory usage during a particular simulation run . . . . . . . . . . . . . . 26
4.3 Box plot of the stale block rate of 100 executions . . . . . . . . . . . . . . 26
4.4 Density plot of the stale block rate of 100 executions . . . . . . . . . . . . 27

5.1 Selfish proxy eclipsing a normal node . . . . . . . . . . . . . . . . . . . . . 30
5.2 Selfish proxy receiving a block from another node . . . . . . . . . . . . . . . 31
5.3 Selfish proxy sending a block to another node . . . . . . . . . . . . . . . . 33
5.4 Different possible leads of the private chain [NKMS16] . . . . . . . . . . . 33
5.5 Categorization of different mining strategies [NKMS16] . . . . . . . . . . 35

6.1 Relative revenue of the selfish miner . . . . . . . . . . . . . . . . . . . . . 42
6.2 Share of stale blocks created by the selfish miner . . . . . . . . . . . . . . 43
6.3 Blocks created by the selfish miner and accepted in the longest chain . . . 44
6.4 Blocks created by the honest network and accepted in the longest chain . 45
6.5 Stale block rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.6 CPU usage during the triple execution of a simulation scenario . . . . . . 46
6.7 Memory usage during the triple execution of a simulation scenario . . . . 46

7.1 Results obtained by [ES14] with normal selfish mining . . . . . . . . . . . 49
7.2 Optimal stubborn mining strategies retrieved by [NKMS16] . . . . . . . . 50
7.3 Selfish mining compared to optimal stubborn mining strategies by [NKMS16] 50

8.1 Compact block relay mechanism [bip] . . . . . . . . . . . . . . . . . . . . 52

57





List of Tables

3.1 An example network.csv represented as table . . . . . . . . . . . . . . . . 12

6.1 Results of the 40 simulations with the additional honest behaviour H . . . 41
6.2 Relative share of selfish miner with 45% of computational share . . . . . . 43

59





List of Listings

3.1 Simplified version of how a node is started with Docker and bitcoind . 13
3.2 Calculation of propagation time with R . . . . . . . . . . . . . . . . . 17
3.3 Aligning the block size in the Bitcoin reference implementation for ZFS 21
5.1 Part of the selfish mining algorithm where private lead is zero . . . . . 37
6.1 Command to execute a particular selfish mining scenario . . . . . . . . 40

61





Bibliography

[Bah13] Lear Bahack. Theoretical Bitcoin Attacks with less than Half of the Compu-
tational Power (draft). 2013.

[bip] Bitcoin bip 152 - compact block relay. https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki. Accessed: 2018-02-01.

[bita] Bitcoin - reference implementation of the bitcoin protocol. https://
github.com/bitcoin/bitcoin. Accessed: 2018-02-01.

[bitb] Bitcoin - reference implementation release 0.13.0. https://github.com/
bitcoin/bitcoin/releases/tag/v0.13.0. Accessed: 2018-02-01.

[bitc] Bitcoin - reference implementation release 0.15.0.1. https://github.
com/bitcoin/bitcoin/releases/tag/v0.15.0.1. Accessed: 2018-
02-01.

[bitd] Bitcoin bips - bitcoin improvment proposals. https://github.com/
bitcoin/bips. Accessed: 2018-06-21.

[Bite] Thread about mining cartel attack on bitcointalk. https://bitcointalk.
org/index.php?topic=2227.0. Accessed: 2018-02-01.

[bitf] Bitcointicker - charts. https://charts.bitcointicker.co/
#miningpools. Accessed: 2018-02-01.

[bitg] Pr for bitcoin: Unix sockets support for rpc. https://github.com/
bitcoin/bitcoin/pull/9919. Accessed: 2018-02-01.

[blo] Bitcoin hashrate distribution - blockhchain.info. https://blockchain.
info/en/pools. Accessed: 2018-02-01.

[BMC+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.
Kroll, and Edward W. Felten. SoK: Research Perspectives and Challenges
for Bitcoin and Cryptocurrencies. In 2015 IEEE Symp. Secur. Priv., pages
104–121. IEEE, may 2015.

63

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin/releases/tag/v0.13.0 
https://github.com/bitcoin/bitcoin/releases/tag/v0.13.0 
https://github.com/bitcoin/bitcoin/releases/tag/v0.15.0.1 
https://github.com/bitcoin/bitcoin/releases/tag/v0.15.0.1 
https://github.com/bitcoin/bips
https://github.com/bitcoin/bips
https://bitcointalk.org/index.php?topic=2227.0
https://bitcointalk.org/index.php?topic=2227.0
https://charts.bitcointicker.co/#miningpools
https://charts.bitcointicker.co/#miningpools
https://github.com/bitcoin/bitcoin/pull/9919 
https://github.com/bitcoin/bitcoin/pull/9919 
 https://blockchain.info/en/pools
 https://blockchain.info/en/pools


[BS15] Alireza Beikverdi and Jooseok Song. Trend of centralization in Bitcoin’s
distributed network. In 2015 IEEE/ACIS 16th Int. Conf. Softw. Eng. Artif.
Intell. Netw. Parallel/Distributed Comput. SNPD 2015 - Proc., pages 1–6.
IEEE, jun 2015.

[Byt] User bytecoin on the mining cartel attack. https://bitcointalk.org/
index.php?topic=2227.msg30064#msg30064. Accessed: 2018-02-01.

[coia] Coin dance | bitcoin nodes summary. https://coin.dance/blocks#
thisweek. Accessed: 2018-02-01.

[coib] Coin dance | bitcoin nodes summary. https://coin.dance/nodes. Ac-
cessed: 2018-02-01.

[DW13] Christian Decker and Roger Wattenhofer. Information Propagation in the
Bitcoin Network. 2013.

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 2014.

[GBE+] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and
Emin Gün Sirer. Decentralization in Bitcoin and Ethereum Networks.

[GKCC14] Arthur Gervais, Ghassan O Karame, Srdjan Capkun, and Vedran Capkun.
Is Bitcoin a Decentralized Currency? 2014.

[GKW+16] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjaň Capkun. On the Security and Performance of Proof of
Work Blockchains. 2016.

[GRK15] Arthur Gervais, Hubert Ritzdorf, and Ghassan O Karame. Tampering with
the Delivery of Blocks and Transactions in Bitcoin. 2015.

[Hei14] Ethan Heilman. One weird trick to stop selfish miners: Fresh bitcoins, a
solution for the honest miner (Poster Abstract). In Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
volume 8438, pages 161–162, 2014.

[Mar] Cryptocurrency market capitalizations. https://coinmarketcap.com/.
Accessed: 2018-02-01.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi @bullet. Stub-
born Mining: Generalizing Selfish Mining and Combining with an Eclipse
Attack. 2016.

64

https://bitcointalk.org/index.php?topic=2227.msg30064#msg30064
https://bitcointalk.org/index.php?topic=2227.msg30064#msg30064
 https://coin.dance/blocks#thisweek
 https://coin.dance/blocks#thisweek
https://coin.dance/nodes
https://coinmarketcap.com/


[OAB+17] A Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr, and
Brian N Levine. Graphene: A New Protocol for Block Propagation Using
Set Reconciliation. 2017.

[pyc] Minimalistic python implementation of the bitcoin networking stack. https:
//github.com/cdecker/pycoin. Accessed: 2018-02-01.

[pyt] Python2/3 library providing an easy interface to the bitcoin data
structures and protocol. https://github.com/petertodd/
python-bitcoinlib. Accessed: 2018-02-01.

[Ros11] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv
preprint arXiv:1112.4980, 2011.

[SPB16] Siamak Solat and Maria Potop-Butucaru. ZeroBlock: Timestamp-Free
Prevention of Block-Withholding Attack in Bitcoin. 2016.

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal Selfish
Mining Strategies in Bitcoin. 2016.

[TS16] Florian Tschorsch and Bjorn Scheuermann. Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies. IEEE Commun. Surv. Tutorials,
18(3):2084–2123, 2016.

[uni] Release of uniform tie breaking in ethereum. https:
//github.com/ethereum/go-ethereum/commit/
bcf565730b1816304947021080981245d084a930. Accessed: 2018-02-
01.

[Woo14] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. 2014.

[ZP17] Ren Zhang and Bart Preneel. Publish or Perish: A Backward-Compatible
Defense against Selfish Mining in Bitcoin. 2017.

65

https://github.com/cdecker/pycoin 
https://github.com/cdecker/pycoin 
https://github.com/petertodd/python-bitcoinlib 
https://github.com/petertodd/python-bitcoinlib 
https://github.com/ethereum/go-ethereum/commit/bcf565730b1816304947021080981245d084a930
https://github.com/ethereum/go-ethereum/commit/bcf565730b1816304947021080981245d084a930
https://github.com/ethereum/go-ethereum/commit/bcf565730b1816304947021080981245d084a930

	Kurzfassung
	Abstract
	Contents
	Introduction
	Structure of this thesis

	State-of-the-art
	Simulation framework
	Tick
	Virtualisation
	Configuration files
	Simulation
	Commands
	Storage of simulation data

	Evaluation of simulation framework
	Near-deterministic behaviour
	Reference scenario
	Evaluation

	Selfish proxy
	Network
	Chain
	Receiving blocks
	Sending blocks
	Selfish mining

	Simulation of selfish mining strategies
	Selfish mining scenarios
	Simulation
	Results

	Evaluation
	RQ1
	RQ2
	Profitability

	Further research
	Selfish proxy
	Simulation scenario
	Mitigation

	Conclusion
	List of Figures
	List of Tables
	List of Listings
	Bibliography

