

Public Feed-Extension for Hivebrite
Technical Documentation

Revision: 1.1, Draft
Date: 28.05.2018

This web application allows to easily embed information coming from multiple Hivebrite
communities on websites. The concept is similar to the Facebook Page Plugin.
The following document describes the technical backend as well as the usage of the feed-
extension.

Architecture
The architecture of the application is split into several modular parts:

➔ API Layer
➔ Storage Layer
➔ Presentation Layer

Image 1: Schematic of the architecture.

This layers are encapsulated separately and used by the web application to update and
render the feed. Through the module nature of the architecture, it is easily possible to
extend the functionality.

https://developers.facebook.com/docs/plugins/page-plugin/

API Layer
The API layer implements parts of the Hivebrite API, that are needed for this project to
function properly. It can handle data from multiple Hivebrite Communities with one instance
of the web application.

This development is based on the Hivebrite Admin API documentation.

Authentication
To authenticate against the API, username, password, UID and secret key are needed. The
latter two can be obtained from the Hivebrite backoffice plattform. In exchange for this
information, a token is issued. This token is then used to obtain further information.

Importing Data from Hivebrite
Due to limitations of the Hivebrite API, only events will be imported in the first stage of
development. This can be extended to include more data as the Hivebrite API evolves.

To improve performance of the feed for the end user, the data will be imported on a regular
basis. The import script can be triggered via command line or URL. It is recommended to
use a cron job to keep data up to date. It then fetches and processes data provided by the
Hivebrite API. Using the storage layer, the processed data will then be stored and rendered
by the presentation layer.
The script can manually be called from the command line via ./bin/console feed:import or via
the URL https://feed.yourdomain.io/import.

https://hivebrite.com/documentation/api/admin
https://hivebrite.com/documentation/api/admin#events

Storage Layer
Data fetched by the cron job will be stored within the application using the storage layer.
Due to the nature of the data used by the application, the storage layer uses the JSON
format. The gathered information will be cached in plain files directly on the filesystem..

Image 2: The cached JSON object.

Each Hivebrite community is represented by one JSON file. This file holds all information,
the web application needs to render the feed and is used directly when rendering the feed
on project websites.

Storage functionality can easily be replaced/extended by a database in the future, if
necessary.

Presentation Layer
The presentation layer will render a feed. This feed can then be implemented on project
websites. It will be implemented either via iframe or JavaScript.

Image 3: The rendered feed with default styles.
Image 4: The rendered feed customized to fit into the Impact Transfer website.

Configuration
A basic set of rules can be configured when implementing the feed on the website of a
project. The configuration will include style (colors, etc..) and functional(community, etc..)
elements. See Customisation.

Installation and Setup
The web application needs to installed in a web server. The public part of the application
must be publicly accessible in order to render the feed. One instance of the application can
power multiple feeds from multiple Hivebrite communities.

Requirements
In order to host the application, a web server must fulfill certain requrements. It is build
upon Symfony 4 and therefore requires PHP 7.1.3 or higher to run, in addition to other minor
requirements. The hosting provider must also allow the setup of cron jobs (through
command line or URL) to asynchronous fetch, process and store the data.
No database setup is required.

Symfony 4 is released unter MIT License.

Installation on the Web Server
All files of the source code must be transferred to the web server.

The web application uses composer to manage its external dependencies. Depending on
the type of access to the server, the composer installation routine must be ran either locally
or directly on the server. The --no-dev option should be used while installing to avoid the
installation of unnecessary dependencies. In case of a local installation, the resulting vendor
folder needs to be transferred to the server too.

The domain (i.e. https://feed.yourdomain.io) must point to the public/ folder.

Configuration
The application allows simple configuration through the hivebrite.yaml file, located in
config/api/. It the file is not present, copy hivebrite.yaml.dist to hivebrite.yaml or create a
new file with that name. The file must contain valid YAML for the web application to
function correctly. The configuration allows for multiple communities to be configured as
YAML array.

https://symfony.com/4
https://symfony.com/doc/current/reference/requirements.html
https://symfony.com/doc/current/reference/requirements.html
https://symfony.com/doc/current/contributing/code/license.html
https://getcomposer.org/
https://getcomposer.org/doc/03-cli.md#install
http://yaml.org/
https://symfony.com/doc/4.0/components/yaml/yaml_format.html

Image 5: Configuration of the web application.

The following options are available:

● name Human-readable name of the community
● description A short introduction of the community, shown below the name (optional)
● logo A logo to be shown above name and description (optional)
● slug Machine-readable name of the community. Should only contain lower-case

letters and hyphens (-). The value needs to be unique and is used to identify the
community

● url Publicly accessible URL of the community
● email Email of the account that is used to gather the data from the API
● password Password of the account that is used to gather the data from the API
● uid UID of the community. This information can be found on the Hivebrite backoffice

portal
● secret App secret of the community. This information can be found on the Hivebrite

backoffice portal

Cron Setup
The cron job can be set up to run a command or access a website on a regular basis. It is
recommended to execute the cron job at least one time per hour.

Via Command line:
0 * * * * /<path-to-the-web-application>/bin/console feed:import

Via URL:
0 * * * * wget https://feed.yourdomain.io/import

https://en.wikipedia.org/wiki/Cron
https://crontab.guru/every-1-hour

Usage and Implementation in existing Websites
The web application generate a valid HTML webpage, that can be imported into any existing
website via a IFrame.

Customisation
In order to blend into existing websites, the design of the feed can be modified by using
parameters in the URL.

The following options are available:

● community Slug (machine-readable name) of the community. Can be found the the
configuration of the web application

● font A valid Google font name (i.e. Roboto)
● backgroundColor Bachground color of the feed (i.e. #3B3B39)
● primaryFontSize Primary font size (i.e. 14px)
● primaryFontColor Primary font color (i.e. #ffffff)
● secondaryFontSize Secondary font size (i.e. 13px)
● secondaryFontColor Secondary font color (i.e. #AEAEAE)
● tertiaryFontSize Tertiary font size (i.e. 13px)
● tertiaryFontColor Tertiary font color (i.e. #AEAEAE)

The resulting URL should look something like this:

https://feed.yourdomain.io/?community=impact-
transfer&font=Roboto&primaryFontSize=14px&primaryFontColor=%23ffffff&b=13px&s
econdaryFontColor=%23AEAEAE&tertiaryFontSize=13px&tertiaryFontColor=%23AEAE
AE&backgroundColor=%233B3B39

Example Implementation
An example implementation of the feed via IFrame can be found below. The IFrame can be
styled using CSS (i.e. height of the feed or border).

<iframe

style="border: 0px none; height: 200px;"
src="https://feed.yourdomain.io/?community=impact-
transfer&font=Roboto&primaryFontSize=14px&primaryFontColor=%23ffffff&b=1
3px&secondaryFontColor=%23AEAEAE&tertiaryFontSize=13px&tertiaryFontCol
or=%23AEAEAE&backgroundColor=%233B3B39"

https://www.w3schools.com/tags/tag_iframe.asp

 />

Extended Usage
As an alternative tp IFrames, the web application provides data also as plain JSON files. This
files can be used to render the feed using another programming language (i.e. JavaScript or
PHP). Using this method a deeper integration into existing projects can be accomplished.

The JSON object of a community can be simple accessed via a public URL.
Example: https.//feed.mydomain.io/feeds/<slug-of the-community>.json

The slug of the community can be found in the configuration of the web application.

