
FAKULTÄT FÜR
!NFORMATIK

Faculty of Informatics

S&P SECURITY &
PRIVACY
GROUP

Foundations and tools for
the static analysis of

Ethereum smart contracts

Matteo Maffei and Clara Schneidewind

Outline

Introduction to Ethereum

Semantics of EVM bytecode

Static Analysis of EVM bytecode

 3

Blockchain - an overview

 3

Blockchain - an overview

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

 3

Blockchain - an overview

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

create a contract X
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

create a contract X
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

create a contract X
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

create a contract X
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

 3

Blockchain - an overview

transfer money to Alice
Bob

call the contract of Bob
Alice

create a contract X
Bob

transaction1

transaction2

transaction3

transaction4

sig

sig

sig

sig

Alice

Bob

Contract

Exciting field for researchers and practitioners

Three layer architecture: programs, consensus, network

All of that works by a fascinating combination of game
theory, probabilistic consensus, cryptography, and

programming language semantics

Motivation

Motivation

Motivation

Motivation
A survey of attacks on Ethereum smart contracts

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli

Università degli Studi di Cagliari, Cagliari, Italy
{atzeinicola,bart,t.cimoli}@unica.it

Abstract. Smart contracts are computer programs that can be cor-
rectly executed by a network of mutually distrusting nodes, without the
need of an external trusted authority. Since smart contracts handle and
transfer assets of considerable value, besides their correct execution it is
also crucial that their implementation is secure against attacks which aim
at stealing or tampering the assets. We study this problem in Ethereum,
the most well-known and used framework for smart contracts so far. We
analyse the security vulnerabilities of Ethereum smart contracts, pro-
viding a taxonomy of common programming pitfalls which may lead to
vulnerabilities. We show a series of attacks which exploit these vulnera-
bilities, allowing an adversary to steal money or cause other damage.

1 Introduction

The success of Bitcoin, a decentralised cryptographic currency that reached a
capitalisation of 10 billions of dollars since its launch in 2009, has raised con-
siderable interest both in industry and in academia. Industries — as well as na-
tional governments [48,55] — are attracted by the “disruptive” potential of the
blockchain, the underlying technology of cryptocurrencies. Basically, a blockchain
is an append-only data structure maintained by the nodes of a peer-to-peer net-
work. Cryptocurrencies use the blockchain as a public ledger where they record
all the transfers of currency, in order to avoid double-spending of money.

Although Bitcoin is the most paradigmatic application of blockchain tech-
nologies, there are other applications far beyond cryptocurrencies: e.g., financial
products and services, tracking the ownership of various kinds of properties, dig-
ital identity verification, voting, etc. A hot topic is how to leverage on blockchain
technologies to implement smart contracts [34, 54]. Very abstractly, smart con-
tracts are agreements between mutually distrusting participants, which are au-
tomatically enforced by the consensus mechanism of the blockchain — without
relying on a trusted authority.

The most prominent framework for smart contracts is Ethereum [32], whose
capitalisation has reached 1 billion dollars since its launch in July 20151. In
Ethereum, smart contracts are rendered as computer programs, written in a
Turing-complete language. The consensus protocol of Ethereum, which specifies
how the nodes of the peer-to-peer network extend the blockchain, has the goal

1
https://coinmarketcap.com/currencies/ethereum

Smart Contracts
• Typically written in Solidity (weird JavaScript variant)

• New languages are emerging (weird Python variant)

• Uploaded on the blockchain as EVM bytecode 
 
 
 
 
 

Overview on Ethereum

Overview on Ethereum
0xdc0…
External Account

Balance: 1 Eth 

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

Balance: 1 Eth 

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Balance: 1 Eth 

0xa30…
External Account

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

Balance: 1 Eth 

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Transfer
1Eth

Balance: 4 Eth 

Balance: 2 Eth 

0xa30…
External Account

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

0xfe0…
Contract Account

Balance: 1 Eth 

Balance: 3 Eth 

0x60606040526000357c01
0000000000000000000000
0000000000000000000000
000000000000900480630e
d5e0c01461006457806327

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Transfer
1Eth

Create new
contract

0x606060405236156100f45
76000357c01000000000000
00000000000000000000000
00000000000000000000090

3Eth
Balance: 1 Eth 

Balance: 2 Eth 

0xa30…
External Account

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

0xfe0…
Contract Account

Balance: 3 Eth 

0x60606040526000357c01
0000000000000000000000
0000000000000000000000
000000000000900480630e
d5e0c01461006457806327

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Transfer
1Eth

Call contract
1Eth

Create new
contract

0x606060405236156100f45
76000357c01000000000000
00000000000000000000000
00000000000000000000090

3Eth
Balance: 0 Eth 

Balance: 2 Eth 

Balance: 2 Eth 

0xa30…
External Account

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

0xfe0…
Contract Account

Balance: 3 Eth 

0x60606040526000357c01
0000000000000000000000
0000000000000000000000
000000000000900480630e
d5e0c01461006457806327

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Transfer
1Eth

Call contract
1Eth

Create new
contract

0x606060405236156100f45
76000357c01000000000000
00000000000000000000000
00000000000000000000090

3Eth

Call Contract

Balance: 0 Eth 

Balance: 2 Eth 

Balance: 2 Eth 

0xa30…
External Account

Overview on Ethereum
0xdc0…
External Account

0xde2…
Contract Account

0xfe0…
Contract Account

Balance: 3 Eth 

0x60606040526000357c01
0000000000000000000000
0000000000000000000000
000000000000900480630e
d5e0c01461006457806327

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

Transfer
1Eth

Call contract
1Eth

Create new
contract

0x606060405236156100f45
76000357c01000000000000
00000000000000000000000
00000000000000000000090

3Eth

Call Contract

Balance: 0 Eth 

Balance: 2 Eth 

Balance: 2 Eth 

Call flavours

caller calleecallercallee (inp)

old caller: caller:

storage

code

balance

accountthis code is executed

this storage can be
accessed during

execution

Call flavours

caller calleecallercallee (inp)

old caller: caller:

storage

code

balance

accountthis code is executed

this storage can be
accessed during

execution

Call flavours

caller calleecallercallee (inp)

old caller: caller:

storage

code

balance

accountthis code is executed

this storage can be
accessed during

execution

caller calleecallercallee (inp)

old caller: caller:

Call flavours

caller calleecallercallee (inp)

old caller: caller:

storage

code

balance

accountthis code is executed

this storage can be
accessed during

execution

caller calleecallercallee (inp)

old caller: caller:

Callee’s code can modify the state
of the caller!

Contract creation

caller
?

newcaller ()

old caller: caller: ()
Initialisation code is
given as argument

new account without
code is created

while executing initialisation
code the storage of the newly

created account can be accessed
(e.g. global variables can be

initialised)

Upon successful execution, the initialisation code
returns as output a code that will be (from that point

on) attached to the new account

Outline

Introduction to Ethereum

Semantics of EVM bytecode

Static Analysis of EVM bytecode

We go for a slightly simplified
setting

(Only plain calls, simplified gas treatment, etc.)

Full treatment in…

Best paper award at

ETAPS’18

EVM Semantics
Formalization

• First complete formalization of EVM bytecode
semantics, in the F* proof assistant

• Executable semantics by compilation into OCAML

• Tested against the official Ethereum test suite

• While formalizing, we spotted various bugs and
imprecisions in previous (in)formal descriptions,
including those used in state-of-the-art static
analysers (e.g., Oyente)

EVM - Layout
Bytecode

PUSH 2

PUSH 3

ADD

pc

10

7

2

Stack
…

…

gas

EVM - Layout
Bytecode

PUSH 2

PUSH 3

ADD

pc

10

7

2

Stack
…

…

3

gas

EVM - Layout
Bytecode

PUSH 2

PUSH 3

ADD

pc

10

7

2

Stack

0

1

2

3

2

0

5

0
…

Memory
…

…

3

gas

EVM - Layout
Bytecode

PUSH 2

PUSH 3

ADD

pc

10

7

2

Stack

0

1

2

3

2

0

5

0
…

Memory

0x035f8h2ga…

Balance: 2 Ether

Storage

Code

0x6f7a9g1231..

Balance: 7

Storage

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

0x67a7b7f5f..

Balance: 1

Storage

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

0x6060604052361561006c5760e060020a600035046305b34
410811461006e5780630b5ab3d51461007c57806313af4035
146100895780632b20e397146100af5780638da5cb5b14610
0c6578063bbe42771146100dd578063faab9d391461010357

Code Code
…

…
…

3

gas

EVM - Layout
Bytecode

PUSH 2

PUSH 3

ADD

pc

10

7

2

Stack

0

1

2

3

2

0

5

0
…

Memory

Input Active account

0x035f8h2ga…

0x035f8h2ga…

Balance: 2 Ether

Storage

Code

0x6f7a9g1231..

Balance: 7

Storage

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

0x67a7b7f5f..

Balance: 1

Storage

0x6060604052361561006c
5760e060020a6000350463
05b34410811461006e5780
630b5ab3d51461007c5780
6313af4035146100895780

0x6060604052361561006c5760e060020a600035046305b34
410811461006e5780630b5ab3d51461007c57806313af4035
146100895780632b20e397146100af5780638da5cb5b14610
0c6578063bbe42771146100dd578063faab9d391461010357

Code Code
…

…
…

3

gas

Execution states

Execution states

(µ, ◆,�)

machine state execution environment global state

Execution states

(µ, ◆,�)

machine state execution environment global state

(gas, pc,m, s)

remaining gas

program counter

memory

stack

Execution states

(µ, ◆,�)

machine state execution environment global state

(gas, pc,m, s)

remaining gas

program counter

memory

stack

(actor, input, code)

active account’s 
address

input to call

executed code

Execution states

(µ, ◆,�)

machine state execution environment global state

(gas, pc,m, s)

remaining gas

program counter

memory

stack

(actor, input, code)

active account’s 
address

input to call

executed code

�(a) = (b, stor, code)

balance

storage

account code

account address

Small-step semantics

Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ◆,�) :: Splain | ✏
Transaction environments Tenv 3 � := T

Small-step semantics

Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ◆,�) :: Splain | ✏
Transaction environments Tenv 3 � := T

exceptional halting
state

(might be entered e.g. as
execution ran out of gas)

Small-step semantics

Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ◆,�) :: Splain | ✏
Transaction environments Tenv 3 � := T

exceptional halting
state

(might be entered e.g. as
execution ran out of gas)

regular halting state
(holds resulting global state

σ, return value d and
remaining gas g)

Small-step semantics

Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ◆,�) :: Splain | ✏
Transaction environments Tenv 3 � := T

exceptional halting
state

(might be entered e.g. as
execution ran out of gas)

regular halting state
(holds resulting global state

σ, return value d and
remaining gas g)

block timestamp

Small-step semantics

Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain

Plain call stacks Splain 3 Splain := (µ, ◆,�) :: Splain | ✏
Transaction environments Tenv 3 � := T

exceptional halting
state

(might be entered e.g. as
execution ran out of gas)

regular halting state
(holds resulting global state

σ, return value d and
remaining gas g)

block timestamp

� ✏ S ! S0
Small step relation

describes how a call stack S evolves within one step of
execution under transaction environment 𝚪

Simplified EVM bytecode

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD

• (Global) Storage instructions  
SSTORE, SLOAD

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD

• (Global) Storage instructions  
SSTORE, SLOAD

• Environment access  
(global state + execution environment + transaction environment)  
BALANCE, TIMESTAMP, INPUT, ADDRESS

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD

• (Global) Storage instructions  
SSTORE, SLOAD

• Environment access  
(global state + execution environment + transaction environment)  
BALANCE, TIMESTAMP, INPUT, ADDRESS

• Contract Calls: 
CALL

Simplified EVM bytecode
• Arithmetic, Logical & Comparison instructions:  
ADD, MUL, LEQ, NOT, AND, OR

• Control flow instructions: 
JUMP pc, JUMPI pc

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD

• (Global) Storage instructions  
SSTORE, SLOAD

• Environment access  
(global state + execution environment + transaction environment)  
BALANCE, TIMESTAMP, INPUT, ADDRESS

• Contract Calls: 
CALL

• Halting:  
RETURN, STOP

Simple stack operations
!µ,◆ = ADD

µ.gas >= 1 µ.s = a :: b :: s µ0 = µ[s ! (a+ b) :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

The instruction at µ.pc of
code ɩ.code is ADD

preconditions are
checked: enough gas
available + enough

element on the stack
machine state is updated

Simple stack operations
!µ,◆ = ADD

µ.gas >= 1 µ.s = a :: b :: s µ0 = µ[s ! (a+ b) :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

!µ,◆ = ADD |µ.s| < 2

� ✏ (µ, ◆,�) :: S ! EXC :: S

The instruction at µ.pc of
code ɩ.code is ADD

preconditions are
checked: enough gas
available + enough

element on the stack
machine state is updated

in case of a stack
underflow the execution

halts exceptionally

Simple stack operations
!µ,◆ = ADD

µ.gas >= 1 µ.s = a :: b :: s µ0 = µ[s ! (a+ b) :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

!µ,◆ = ADD |µ.s| < 2

� ✏ (µ, ◆,�) :: S ! EXC :: S

The instruction at µ.pc of
code ɩ.code is ADD

preconditions are
checked: enough gas
available + enough

element on the stack
machine state is updated

in case of a stack
underflow the execution

halts exceptionally

µ.gas < 1

� ✏ (µ, ◆,�) :: S ! EXC :: S

if the execution runs out of
gas, the execution halts

exceptionally  
(holds for all instructions)

Memory Access
value on memory

address a is written to
the stack

!µ,◆ = MLOAD µ.gas >= 1 µ.s = a :: s
v = µ.m[a] µ0 = µ[s ! v :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

Memory Access
value on memory

address a is written to
the stack

value b is written to
memory address a

!µ,◆ = MSTORE µ.s = a :: b :: s µ.gas >= 1
µ0 = µ[m ! µ.m[a ! b]][s ! s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

!µ,◆ = MLOAD µ.gas >= 1 µ.s = a :: s
v = µ.m[a] µ0 = µ[s ! v :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

Calling
additional precondition:
executing account has

enough balance

recipient
address

value to be
transferred

input data address in
memory to write

return value

updated
global state:
money was
transferred
from ɩ.actor

to to

fresh machine state

!µ,◆ = CALL
µ.s = to :: va :: id :: oa :: s µ.gas >= 1 �(◆.actor).b � va
�0 = �

⌦
to ! �(to)[b += va]

↵⌦
◆.actor ! �(◆.actor)[b �= va]

↵

µ0 = (µ.gas� 1, 0,�x. 0, ✏)
◆0 = ◆[actor ! to][input ! id][code ! �(to).code]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆0,�0) :: (µ, ◆,�) :: S

new execution state
(representing the

execution of recipient
contract) is pushed on

callstack

execution environment
for executing recipient
contract is initialised

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL

…
…

9

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL

…
…

0xde2…
Donating contract

29

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL

…
…

1 Eth (donate)
0xde2…

Donating contract

2910 1

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL

…
…

1 Eth (donate)

(withdraw)

0xde2…
Donating contract

2910 1

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth

0xde2…
Donating contract

2910 19 2

The DAO
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }  
}

{mapping keeping track of the
donations made by different
addresses{

function for performing donations

function for
withdrawing  
donations{

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

1 Eth (donate)

(withdraw)

1 Eth

0xde2…
Donating contract

2910 19 2

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

10

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

10 1

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)
10 10

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)
10 1

guard: true

011

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)
10 1

guard: true

011

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)
10 1

guard: true

011

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth

10 1

guard: true

01110 1

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth
(withdraw)

10 1

guard: true

01110 1

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth
(withdraw)

10 1

guard: true

01110 1

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth
(withdraw)

10 1

guard: true

01110 19 2

Attack on the DAO

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 if (donations[msg.sender] > 0) 
 { msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 } 
 }

0xfc2…
Attacker contract

CALL

…
…

1 Eth (donate)

(withdraw)

1 Eth
(withdraw)

10 1

guard: true

01110 19 2

So, what did go wrong here?

Common approch
from the literature

• “the guard should be invalidated before performing
the call”

• Syntactic and program specific characterization

• What is the underlying semantic security property?

Call integrity
• Reason for the DAO:  

untrusted contracts could influence the call flow of
the contract (Call integrity)

Call integrity
• Reason for the DAO:  

untrusted contracts could influence the call flow of
the contract (Call integrity)

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

untrusted address

xxx

Call integrity
• Reason for the DAO:  

untrusted contracts could influence the call flow of
the contract (Call integrity)

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

untrusted address

yyy⇡

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

untrusted address

xxx

Call integrity
• Reason for the DAO:  

untrusted contracts could influence the call flow of
the contract (Call integrity)

security perspective, the fundamental problem is that the contract behaviour depends
on untrusted code, even though this was not intended by the developer. We capture this
intuition through a hyperproperty, which we name call integrity. The idea is that no
matter how the attacker can schedule c (callstacks S and S

0 in the definition), the calls
of c (traces ⇡, ⇡0) cannot be controlled by the attacker, even if c hands over the control
to the attacker.

Definition 2 (Call Integrity). A contract c 2 C satisfies call integrity for a set of ad-

dresses AC ✓ A if for all reachable configurations (�, sc :: S), (�, s0c :: S0) with s, s
0

differing only in the code with address in AC , it holds that for all t, t
0

� ✏ sc :: S
⇡
�!

⇤
tc :: S ^ final (tc) ^ � ✏ s

0
c :: S

0 ⇡0
�!

⇤
t
0
c :: S

0
^ final (t0c)

=) ⇡ #callsc= ⇡
0
#callsc

4.2 Proof Technique for Call Integrity
We now establish a proof technique for call integrity, based on local properties that are
arguably easier to verify and that we show to imply call integrity. As a first observation,
we identify the different ways in which external contracts can influence the execution
of a smart contract c and introduce corresponding security properties :

Code Dependency The contract c might access (information on) the untrusted con-
tracts code via the EXTCODECOPY or the EXTCODESIZE instructions and
make his behaviour depend on those values;

Effect Dependency The contract c might call the untrusted contract and might depend
on its execution effects and return value;

Re-entrancy The contract c might call the untrusted contract, with the latter influenc-
ing the behaviour of the former by performing changes to the global state itself or
“on behalf” of c by reentering it and thereby potentially decreasing the balance of
c.

The first two of these properties can be seen as value dependencies and therefore
can be formalized as hyperproperties. The first property says that the calls performed
by a contract should not be affected by the effects on the execution state produced
by adversarial contracts. Technically, we consider a contract c calling an adversarial
contract c0 (captured as � ✏ sc :: S ! s

00
c0 :: sc :: S in the premise), which we let

terminate in two arbitrary states s
0
, t

0: we require that c’s continuation code performs
the same calls in both states.

Definition 3 (AC-effect Independence). A contract c 2 C is AC-effect independent of

for a set of addresses AC ✓ A if for all reachable configurations (�, sc :: S) such that

� ✏ sc :: S ! s
00
c0 :: sc :: S for some s

00
and address (c0) 2 AC , it holds that for all

final states s
0
, t

0
whose global state might differ in all components but the code from the

global state of s,

�init ✏ s
0
c0 :: sc :: S

⇡
�!

⇤
s
00
c :: S ^ final (s00)

^ �init ✏ t
0
c0 :: sc :: S

⇡0
�!

⇤
t
00
c :: S ^ final (t00)

=) ⇡ #callsc= ⇡
0
#callsc

Differing only in codes of untrusted addresses
=> c is called in the same way

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

untrusted address

yyy⇡

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

untrusted address

xxx

c should produce the same
calls

Hyper-Property

Note: we annotate
execution states
with the contract
(pair of address +

code) they are
executing:
s(ɩ.actor,ɩ.code)

Single-entrancy
• Single-entrancy for c:  

“After being re-entered, contract c should perform
no more calls”

0xfc2…
Attacker contract

CALL

…
…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

Reachability property

¬9s00, c0.� ` sc :: S !⇤ s00c0 :: s
0
c :: S

0 ++sc :: S

Single-entrancy
• Single-entrancy for c:  

“After being re-entered, contract c should perform
no more calls”

0xfc2…
Attacker contract

CALL

…
…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

(withdraw)sc

Reachability property

¬9s00, c0.� ` sc :: S !⇤ s00c0 :: s
0
c :: S

0 ++sc :: S

Single-entrancy
• Single-entrancy for c:  

“After being re-entered, contract c should perform
no more calls”

0xfc2…
Attacker contract

CALL

…
…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

(withdraw)sc

1 Eth

Reachability property

¬9s00, c0.� ` sc :: S !⇤ s00c0 :: s
0
c :: S

0 ++sc :: S

Single-entrancy
• Single-entrancy for c:  

“After being re-entered, contract c should perform
no more calls”

0xfc2…
Attacker contract

CALL

…
…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

(withdraw)

1 Eth

s0c

Reachability property

¬9s00, c0.� ` sc :: S !⇤ s00c0 :: s
0
c :: S

0 ++sc :: S

Single-entrancy
• Single-entrancy for c:  

“After being re-entered, contract c should perform
no more calls”

0xfc2…
Attacker contract

CALL

…
…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…
…

(withdraw)

1 Eth

s0c

s00c01 Eth

Reachability property

¬9s00, c0.� ` sc :: S !⇤ s00c0 :: s
0
c :: S

0 ++sc :: S

Proof technique for call integrity

Call Integrity

Single-entrancy
“contract should not

depend on return value of
calls to untrusted

contracts”

“contract should not
depend on untrusted

contract’s code (that it
accesses directly)”

Proof technique for call integrity

Call Integrity

Single-entrancy
“contract should not

depend on return value of
calls to untrusted

contracts”

“contract should not
depend on untrusted

contract’s code (that it
accesses directly)”

Hyper-Property
Hard to verify

Proof technique for call integrity

Call Integrity

Single-entrancy
“contract should not

depend on return value of
calls to untrusted

contracts”

“contract should not
depend on untrusted

contract’s code (that it
accesses directly)”

Hyper-Property

Reachability Property Value-Dependency Properties

Hard to verify

Proof technique for call integrity

Call Integrity

Single-entrancy
“contract should not

depend on return value of
calls to untrusted

contracts”

“contract should not
depend on untrusted

contract’s code (that it
accesses directly)”

Hyper-Property

Reachability Property Value-Dependency Properties

Hard to verify

Provable by static analysis: EtherTrust

Atomicity
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

• Inconsistencies due to unhandled gas exceptions

Atomicity
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

representation

0xde2…

CALL
update representation

…
…

~

• Inconsistencies due to unhandled gas exceptions

Atomicity
contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

representation

0xde2…

CALL
update representation

…
…

~

• Inconsistencies due to unhandled gas exceptions

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0~

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

0 1

0xfc2… -> 0 Eth

~

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)
0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

1

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

1

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

1

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

10

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

10

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

10

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

10

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

101

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth

101

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth0xfc2… -> 0 Eth

101

Contract inconsistencies

0xde2…
DAO contract

CALL
update representation

…
…

contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
 donations[msg.sender] += msg.value; 
 }

 function withdraw(){  
 msg.sender.call.value(donations[msg.sender])();  
 donations[msg.sender] = 0; 
 }  
}

0xfc2…

…

1 Eth (donate)

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0~

0xfc2… -> 1 Eth0xfc2… -> 0 Eth

101

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

0 1

0xfc2… -> 0 Eth
~

t0c

s0.� t0.�

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth 0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

1

t0c

s0.� t0.�

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

1

t0c

s0.� t0.�

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

1

t0c

s0.� t0.�

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�
1

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�
1

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�
1

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�
1

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�

0xfc2… -> 0 Eth

1

sc tc

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�

0xfc2… -> 0 Eth

1

sc tc

s0c

…

s.� = t.� ~1
0xfc2… -> 1 Eth

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

Atomicity

� |= sc :: S !⇤ s0c :: S ^ final(s0) ^ � |= tc :: S !⇤ t0c :: S ^ final(t0)

) s0.� = t0.� _ s.� = s0.� _ t.� = t0.�

0xde2…
DAO contract

CALL
update representation

…

0xfc2…

…

1 Eth

(withdraw)
1 Eth

0xfc2… ->

0

~

0xfc2… -> 0xfc2… -> 0 Eth

1

0xde2…
DAO contract

CALL
update representation

…
0xfc2…

…

1 Eth

(withdraw)
1 Eth

0 1

0xfc2… -> 0 Eth

0

~
0xfc2… -> 1 Eth

10

t0c

s0.� t0.�

0xfc2… -> 0 Eth

1

sc tc

s0c

…

s.� = t.� ~1
0xfc2… -> 1 Eth

6=

• Reason for inconsistency: the (effects of) a
contract’s execution should not depend on the
amount of gas given for execution

Initial states only
differing in gas

How can all of that be
checked automatically?

Outline

Introduction to Ethereum

Semantics of EVM bytecode

Static Analysis of EVM bytecode

Oyente[1]

• Tool for finding common smart contract bugs in
EVM bytecode  
(re-entrancy, uncaught exceptions, etc.)  
 
 
 
 

• Evaluated on ~19000 real world contracts  
(low false positive rate: 6,4%)

[1] Luu, Loi, et al. "Making smart contracts smarter." Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.

Bounded
symbolic
execution

0x606060405234
1561000c57fe5b
60405160208061
085b8339810160
40528080519060
20019091905050
5b336000600061
01000a81548173
ffffffffffffffffffffffffffffff

𝜋1

𝜋3 𝜋n…

symbolic execution
traces

𝜋1

𝜋3 𝜋n…
𝜋2

feasible symbolic
execution traces

P?

likely

buggy

likely

safe

e.g. can path
condition before a
CALL be satisfied

again?

Oyente
• Pros

• Fast + scalable

• Cons

• Only works for pre-defined properties

• Produces false positives + false negatives

• Based on flawed semantics:  
 

hS,�i ! hS0,�0i

global state is assumed to be monotonically
updated (never reverted) during execution

Oyente
• Pros

• Fast + scalable

• Cons

• Only works for pre-defined properties

• Produces false positives + false negatives

• Based on flawed semantics:  
 

hS,�i ! hS0,�0i

global state is assumed to be monotonically
updated (never reverted) during execution

Fully Automated

Oyente
• Pros

• Fast + scalable

• Cons

• Only works for pre-defined properties

• Produces false positives + false negatives

• Based on flawed semantics:  
 

hS,�i ! hS0,�0i

global state is assumed to be monotonically
updated (never reverted) during execution

Fully Automated

Not sound

KEVM[2]
• Implementation of EVM bytecode semantics is in

the 𝕂 framework (rewrite-based executable
semantic framework)

• Analysis tools automatically derived from the
semantics:

• Semantic Debugger

• Program Verifier (for reachability claims)

[2] Hildenbrandt, Everett, et al. Kevm: A complete semantics of the ethereum virtual machine. CSF 2018.

KEVM
• Pros

• Based on fully fledged (and tested) semantics of EVM
bytecode

• Allows for Hoare-style-like reasoning

• Cons

• Analysis tool requires the user to specify invariants
(semi-automated)

• No domain-specific over-approximations (e.g. for
calling unknown contracts)

KEVM
• Pros

• Based on fully fledged (and tested) semantics of EVM
bytecode

• Allows for Hoare-style-like reasoning

• Cons

• Analysis tool requires the user to specify invariants
(semi-automated)

• No domain-specific over-approximations (e.g. for
calling unknown contracts)

Provably sound

KEVM
• Pros

• Based on fully fledged (and tested) semantics of EVM
bytecode

• Allows for Hoare-style-like reasoning

• Cons

• Analysis tool requires the user to specify invariants
(semi-automated)

• No domain-specific over-approximations (e.g. for
calling unknown contracts)

Provably sound

Only semi-automated

KEVM
• Pros

• Based on fully fledged (and tested) semantics of EVM
bytecode

• Allows for Hoare-style-like reasoning

• Cons

• Analysis tool requires the user to specify invariants
(semi-automated)

• No domain-specific over-approximations (e.g. for
calling unknown contracts)

Provably sound

Only semi-automated

Sound by construction

Securify[3]
• Static smart contract analyser for EVM bytecode

based on ‘semantic fact checking’

• Evaluated on ~25000 real world contracts
[3] Tsankov, Petar, et al. "Securify: Practical Security Analysis of Smart Contracts." arXiv preprint arXiv:1806.01143 (2018).

0x606060405234
1561000c57fe5b
60405160208061
085b8339810160
40528080519060
20019091905050
5b336000600061
01000a81548173
ffffffffffffffffffffffffffffff

Stackless
representation

in SSA form

Decompilation
CFG

partial
evaluation encoding

semantic facts
(control flow

and data
dependencies)

violation/
satisfaction

patterns

matched

not matched

violation/satisfaction
of security property

unknown

datalog
solver

inference rules  
(in stratified

datalog)

Securify
• Pros

• Fast + scalable

• Shows good accuracy thanks to classification
into (confirmed) violations and compliances

• Cons

• Decompilation is not guaranteed to succeed

• No soundness proof (neither for the dependency
analysis nor for the security patterns)

Securify
• Pros

• Fast + scalable

• Shows good accuracy thanks to classification
into (confirmed) violations and compliances

• Cons

• Decompilation is not guaranteed to succeed

• No soundness proof (neither for the dependency
analysis nor for the security patterns)

Fully Automated

Securify
• Pros

• Fast + scalable

• Shows good accuracy thanks to classification
into (confirmed) violations and compliances

• Cons

• Decompilation is not guaranteed to succeed

• No soundness proof (neither for the dependency
analysis nor for the security patterns)

Fully Automated

No soundness proof

ZEUS[4]
• Static analyser for Solidity code

• Evaluated on ~22500 real-world contracts
[4] Kalra, Sukrit, et al. "Zeus: Analyzing safety of smart contracts." NDSS, 2018.

contract DAO { 
 mapping
(address => uint)
donations;
}

Intermediate
language Property

specific
program

transformation
and assertions

Translation
LLVM Bitcode

Seahorn

Intermediate
language

with
assertions

P Translation

safe

likely
buggy

ZEUS
• Pros

• Fast + scalable

• Cons

• Only works on Solidity code (not on bytecode)

• Only works for pre-defined properties

• Does not give soundness guarantees (transformations
are not semantics preserving + security invariants are
not proven sound)

• Based (as Oyente) on flawed semantics

ZEUS
• Pros

• Fast + scalable

• Cons

• Only works on Solidity code (not on bytecode)

• Only works for pre-defined properties

• Does not give soundness guarantees (transformations
are not semantics preserving + security invariants are
not proven sound)

• Based (as Oyente) on flawed semantics

Fully Automated

ZEUS
• Pros

• Fast + scalable

• Cons

• Only works on Solidity code (not on bytecode)

• Only works for pre-defined properties

• Does not give soundness guarantees (transformations
are not semantics preserving + security invariants are
not proven sound)

• Based (as Oyente) on flawed semantics

Fully Automated

No soundness
guarantees

EtherTrust

• First provably sound static analyzer for Ethereum smart
contracts (i.e., it returns security guarantees)

• previous ones focus on bug finding

• Outperforms the competitors in precision and performance

• Reachability analysis: suffices to check various interesting
security properties

Specific application domain abstractions: T for
unknown values, α for address of running contract,
abstract memory representation, and most notably
calls to unknown contracts

https://www.netidee.at/ethertrust

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

set of horn clauses over
approximating the

semantics of the code of
contract c*

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

set of predicate
instances describing the

execution state s

set of horn clauses over
approximating the

semantics of the code of
contract c*

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

set of predicate
instances describing the

execution state s

set of horn clauses over
approximating the

semantics of the code of
contract c*

derivable (using first
order logics)

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

set of predicate
instances describing the

execution state s

set of horn clauses over
approximating the

semantics of the code of
contract c*

set of predicate
instances describing the

call stack S’

derivable (using first
order logics)

Static analysis for Ethereum
smart contracts

• Approach: abstract the EVM small-step semantics
into Horn clauses that can be analysed using Z3

set of predicate
instances describing the

execution state s

set of horn clauses over
approximating the

semantics of the code of
contract c*

set of predicate
instances describing the

call stack S’

derivable (using first
order logics)

𝚷 is a coarser
abstraction than 𝚷S’

State abstraction
MStatepc ((size, sa), mem, cd)

predicate parametrised
by pc (to minimise recursive  
horn clauses)

call depth
stack, represented as
(unbounded) array + size

memory, represented as array

• Similar predicates for

• global state

• execution environment

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

MStatepc((size, sa), aw, cd)  
∧ size >= 2  
∧ x = sa[size-1] 
∧ y = sa[size-2]  
⇒ MStatepc+1((size-1, sa[size-2 → x+y]), mem, cd)

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

MStatepc((size, sa), aw, cd)  
∧ size >= 2  
∧ x = sa[size-1] 
∧ y = sa[size-2]  
⇒ MStatepc+1((size-1, sa[size-2 → x+y]), mem, cd)

simple range check

stack is updated
state predicate for
next pc is implied

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

MStatepc((size, sa), aw, cd)  
∧ size >= 2  
∧ x = sa[size-1] 
∧ y = sa[size-2]  
⇒ MStatepc+1((size-1, sa[size-2 → x+y]), mem, cd)

simple range check

stack is updated
state predicate for
next pc is implied

MStatepc((size, sa), mem, cd)  
⇒ Exc(cd)

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

MStatepc((size, sa), aw, cd)  
∧ size >= 2  
∧ x = sa[size-1] 
∧ y = sa[size-2]  
⇒ MStatepc+1((size-1, sa[size-2 → x+y]), mem, cd)

simple range check

stack is updated
state predicate for
next pc is implied

MStatepc((size, sa), mem, cd)  
⇒ Exc(cd)

as we do not track gas
explicitly, we assume the
execution to stop in every
step as it runs out of gas

Horn clause encoding
• Execution steps modelled as Horn clauses

• Horn clauses are generated according to the opcodes
located at each pc

• Example: Machine state rule for pc with opcode ADD

MStatepc((size, sa), aw, cd)  
∧ size >= 2  
∧ x = sa[size-1] 
∧ y = sa[size-2]  
⇒ MStatepc+1((size-1, sa[size-2 → x+y]), mem, cd)

simple range check

stack is updated
state predicate for
next pc is implied

MStatepc((size, sa), mem, cd)  
⇒ Exc(cd)

as we do not track gas
explicitly, we assume the
execution to stop in every
step as it runs out of gasIt’s

 a
bit m

ore co
mplica

ted

than
 th

at

Abstract Domain

MStatepc ((size, sa),ma, cd)

represents all
potential values

represents the
address of the
account under

analysis

represents
concretely known

values

Abstract domain

2 N ! D̂

D̂ = Z [{↵} [{>}

Abstract Domain

MStatepc ((size, sa),ma, cd)

represents all
potential values

represents the
address of the
account under

analysis

represents
concretely known

values

Abstract domain

Common technique
from abstract
interpretation

2 N ! D̂

D̂ = Z [{↵} [{>}

Why using an abstract
domain?

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

TIMESTAMP,PUSH 2,ADD?

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

T T

2

T
⇒ ⇒

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

• Sometimes we still want to be precise:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

T T

2

T
⇒ ⇒

ADDRESS,BALANCE

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

• Sometimes we still want to be precise:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

T T

2

T
⇒ ⇒

ADDRESS,BALANCE
only known

after contract
is published on

blockchain

takes address as argument
and returns the balance of
the corresponding account

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

• Sometimes we still want to be precise:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

T T

2

T
⇒ ⇒

ADDRESS,BALANCE
only known

after contract
is published on

blockchain

takes address as argument
and returns the balance of
the corresponding account

always results in pushing the balance
of the executing account

Why using an abstract
domain?

• There are a lot of values that we do not know statically:

• Sometimes we still want to be precise:

TIMESTAMP,PUSH 2,ADD?only known when
contract is called

on blockchain

T T

2

T
⇒ ⇒

ADDRESS,BALANCE
only known

after contract
is published on

blockchain

takes address as argument
and returns the balance of
the corresponding account

always results in pushing the balance
of the executing account α v

⇒

Abstracting calls - Intuition
• For analysing a specific contract all its executions

need to be approximated

…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…

0xde2…
DAO contract

CALL
guard?

invalidate guard

…

… …

0xfc2…

Attacker contract

CALL

…
…

tight approximation for  
call depth 0

coarse approximation for  
call depth y > 0

? ?

?

x x+2 2n

Abstract semantics - Call
rule

?

?

?

?

...

...

?

?

...

...

...

...

...

Abstract semantics - Call rule

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ va b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd) ExEnv (↵,>, cd0)

when reentering the active account at the
point of calling is (still) the actor

the input to the reentering
call is unknown

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ v̂a b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd) MState0 ((0,�x.>),�x.0, cd0)

execution starts at pc 0 in fresh
machine state:

empty stack + memory
initialised to all zeros

preconditions are checked: enough elements on the stack, enough gas

contract might be reentered
at an arbitrarily higher call

depth

Abstract semantics - Call rules
MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ v̂a b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd) GState0 (↵,>, sta, cd0)

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ GStatepc (↵, b̂, sta, cd)

^v̂a b b̂ ^ GStatepc (ȧ, b̂
⇤, sta⇤, cd) ^ ȧ 6= ↵ ^ cd0 > cd) GState0 (ȧ,>, [>], cd0)

the global storage of the
active account is preserved

the balance might be
arbitrarily changed

all addresses different from the actor can have
arbitrary storage (all positions mapped to T)

This is actually an artefact: the storage of other accounts but the
active account cannot be accessed anyways given that only plain calls

are executed

Checking for single-
entrancy

• How to check for single-entrancy now?

• Simple example:
contract Bob { 
 bool sent = false; 
 
 function ping(address c) { 
 if (!sent){

c.call.value(2)();
sent = true; }

 }  
}

Checking for single-
entrancy

• How to check for single-entrancy now?

• Simple example:
contract Bob { 
 bool sent = false; 
 
 function ping(address c) { 
 if (!sent){

c.call.value(2)();
sent = true; }

 }  
}

Transfers 2 wei to the
address given as argument

Checking for single-
entrancy

• How to check for single-entrancy now?

• Simple example:
contract Bob { 
 bool sent = false; 
 
 function ping(address c) { 
 if (!sent){

c.call.value(2)();
sent = true; }

 }  
}

Transfers 2 wei to the
address given as argument

Can it ever happen that we
execute this call while re-

entering?

...

...

...

...

...

...

...

...

...

...

Reachability query

Detecting reentrancy

Proving single-entrancy

...

...

...

...

...

...

...

...

...

...

Reachability query

EtherTrust
• Approach scales to full EVM bytecode!

• We implemented EtherTrust - a tool for static analysing Ethereum bytecode

EtherTrust
• Approach scales to full EVM bytecode!

• We implemented EtherTrust - a tool for static analysing Ethereum bytecode

Average running time: much
faster than the best state-of-
the art bug finding tool… and
sound!

SE: Single entrancy
MI: Independence of miner controlled state
#X: Number of contracts reported to violate X
#ter. X: Number of contracts for which the analysis terminates

O: Oyente (state-of-the-art) bug finder
ET: EtherTrust

Simplifications in this tutorial

• Simplified gas treatment (constant gas cost of 1)

• Inherent exception propagation (all available gas is given to the
caller)

• Simplified memory treatment (only memory cells are accessed,
never fragments; word indexed memory)

• computations on logical (instead of bounded) integers

• No limits on call stack and machine stack

• Some interesting opcodes are omitted  
(DELEGATECALL, CALLCODE, CREATE, …)

Simplifications in this tutorial

• Simplified gas treatment (constant gas cost of 1)

• Inherent exception propagation (all available gas is given to the
caller)

• Simplified memory treatment (only memory cells are accessed,
never fragments; word indexed memory)

• computations on logical (instead of bounded) integers

• No limits on call stack and machine stack

• Some interesting opcodes are omitted  
(DELEGATECALL, CALLCODE, CREATE, …)

Open ch
all

enge

We are hiring PhDs and Postdocs!

Handling abstract values

• Abstract operations:

• Abstract comparisons:

Handling abstract values

• Abstract operations:

• Abstract comparisons:

n b+ m := n+m

v̂ b+ > := >
> b+ v̂ := >
v̂ b+ ↵ := >
↵ b+ v̂ := >

Handling abstract values

• Abstract operations:

• Abstract comparisons:

Abstract address is
‘supertyped’ once it

is modified

No constraints are
collected for

computations with T

n b+ m := n+m

v̂ b+ > := >
> b+ v̂ := >
v̂ b+ ↵ := >
↵ b+ v̂ := >

Handling abstract values

• Abstract operations:

• Abstract comparisons:

n b= m := {n = m}
↵ b= ↵ := {true}
v̂ b= > := {true, false}
> b= v̂ := {true, false}
v̂ b= ↵ := {true, false}
↵ b= v̂ := {true, false}

Abstract address is
‘supertyped’ once it

is modified

No constraints are
collected for

computations with T

n b+ m := n+m

v̂ b+ > := >
> b+ v̂ := >
v̂ b+ ↵ := >
↵ b+ v̂ := >

Handling abstract values

• Abstract operations:

• Abstract comparisons:

n b= m := {n = m}
↵ b= ↵ := {true}
v̂ b= > := {true, false}
> b= v̂ := {true, false}
v̂ b= ↵ := {true, false}
↵ b= v̂ := {true, false}

Abstract address is
‘supertyped’ once it

is modified

No constraints are
collected for

computations with T

n b+ m := n+m

v̂ b+ > := >
> b+ v̂ := >
v̂ b+ ↵ := >
↵ b+ v̂ := >

Comparisons
with unknown

values evaluate
to both true and

false

Abstract ADD - revisited
MStatepc ((size, sa),ma, cd)

) Exc (cd)

abstract operations are used!

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 1, sa[size� 2 ! x̂ b+ ŷ]),ma, cd)

Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values
come from the

abstract domain

Memory positions
can’t be α

Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values
come from the

abstract domain

Memory positions
can’t be α MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 2, sa),ma[p̂ ! ŷ], cd)

Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values
come from the

abstract domain

Memory positions
can’t be α

Instead of writing to α,
we write to T

writing to T means
“writing everywhere”

MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 2, sa),ma[p̂ ! ŷ], cd)

Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values
come from the

abstract domain

Memory positions
can’t be α

Instead of writing to α,
we write to T

writing to T means
“writing everywhere”

MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 2, sa),ma[p̂ ! ŷ], cd)

MLOAD

MStatepc ((size, sa),ma, cd)

^ size > 0

^ sa[size� 1] 2 {↵,>}
) MStatepc+1 ((size� 2, sa[size� 1 ! >]),ma, cd)

Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values
come from the

abstract domain

Memory positions
can’t be α

Instead of writing to α,
we write to T

writing to T means
“writing everywhere”

Instead of “reading from
everywhere”, we simply

read T

MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 2, sa),ma[p̂ ! ŷ], cd)

MLOAD

MStatepc ((size, sa),ma, cd)

^ size > 0

^ sa[size� 1] 2 {↵,>}
) MStatepc+1 ((size� 2, sa[size� 1 ! >]),ma, cd)

Abstract Memory access -
continued

MLOAD

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[n]]),ma, cd)

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[>]]),ma, cd)

Abstract Memory access -
continued

MLOAD When reading the
memory at a concrete

position, we
additionally need to

read from T, as there we
can find the values that

have been written
everywhere

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[n]]),ma, cd)

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[>]]),ma, cd)

