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Exciting field for researchers and practitioners 

Three layer architecture: programs, consensus, network 

All of that works by a fascinating combination of game 
theory, probabilistic consensus, cryptography, and 

programming language semantics 
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Motivation
A survey of attacks on Ethereum smart contracts

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli

Università degli Studi di Cagliari, Cagliari, Italy
{atzeinicola,bart,t.cimoli}@unica.it

Abstract. Smart contracts are computer programs that can be cor-
rectly executed by a network of mutually distrusting nodes, without the
need of an external trusted authority. Since smart contracts handle and
transfer assets of considerable value, besides their correct execution it is
also crucial that their implementation is secure against attacks which aim
at stealing or tampering the assets. We study this problem in Ethereum,
the most well-known and used framework for smart contracts so far. We
analyse the security vulnerabilities of Ethereum smart contracts, pro-
viding a taxonomy of common programming pitfalls which may lead to
vulnerabilities. We show a series of attacks which exploit these vulnera-
bilities, allowing an adversary to steal money or cause other damage.

1 Introduction

The success of Bitcoin, a decentralised cryptographic currency that reached a
capitalisation of 10 billions of dollars since its launch in 2009, has raised con-
siderable interest both in industry and in academia. Industries — as well as na-
tional governments [48,55] — are attracted by the “disruptive” potential of the
blockchain, the underlying technology of cryptocurrencies. Basically, a blockchain
is an append-only data structure maintained by the nodes of a peer-to-peer net-
work. Cryptocurrencies use the blockchain as a public ledger where they record
all the transfers of currency, in order to avoid double-spending of money.

Although Bitcoin is the most paradigmatic application of blockchain tech-
nologies, there are other applications far beyond cryptocurrencies: e.g., financial
products and services, tracking the ownership of various kinds of properties, dig-
ital identity verification, voting, etc. A hot topic is how to leverage on blockchain
technologies to implement smart contracts [34, 54]. Very abstractly, smart con-
tracts are agreements between mutually distrusting participants, which are au-
tomatically enforced by the consensus mechanism of the blockchain — without
relying on a trusted authority.

The most prominent framework for smart contracts is Ethereum [32], whose
capitalisation has reached 1 billion dollars since its launch in July 20151. In
Ethereum, smart contracts are rendered as computer programs, written in a
Turing-complete language. The consensus protocol of Ethereum, which specifies
how the nodes of the peer-to-peer network extend the blockchain, has the goal

1
https://coinmarketcap.com/currencies/ethereum



Smart Contracts
• Typically written in Solidity (weird JavaScript variant) 

• New languages are emerging (weird Python variant) 

• Uploaded on the blockchain as EVM bytecode 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caller calleecallercallee  (inp)
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accountthis code is executed

this storage can be 
accessed during 

execution
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Callee’s code can modify the state 
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Contract creation

caller
?

newcaller (        )

old caller:            caller:          (        )
Initialisation code is 
given as argument

new account without  
code is created

while executing initialisation 
code the storage of the newly 

created account can be accessed 
(e.g. global variables can be 

initialised) 

Upon successful execution, the initialisation code 
returns as output a code that will be (from that point 

on) attached to the new account
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We go for a slightly simplified 
setting 

(Only plain calls, simplified gas treatment, etc. ) 

Full treatment in… 

Best paper award at 

ETAPS’18



EVM Semantics 
Formalization

• First complete formalization of EVM bytecode 
semantics, in the F* proof assistant 

• Executable semantics by compilation into OCAML 

• Tested against the official Ethereum test suite 

• While formalizing, we spotted various bugs and 
imprecisions in previous (in)formal descriptions, 
including those used in state-of-the-art static 
analysers (e.g., Oyente)
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Call stacks S 3 S := EXC :: Splain | HALT(�, d, g) :: Splain | Splain
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� ✏ S ! S0
Small step relation 

describes how a call stack S evolves within one step of 
execution under transaction environment 𝚪
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• Control flow instructions: 
JUMP pc, JUMPI pc                    

• Stack modifying instructions:  
PUSH x, POP

• (Local) Memory instructions 
MSTORE, MLOAD         

• (Global) Storage instructions  
SSTORE, SLOAD 

• Environment access  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• Contract Calls: 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• Halting:  
RETURN, STOP
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The instruction at µ.pc of 
code ɩ.code is ADD

preconditions are 
checked: enough gas 
available + enough 

element on the stack 
machine state is updated

in case of a stack 
underflow the execution 

halts exceptionally

µ.gas < 1

� ✏ (µ, ◆,�) :: S ! EXC :: S

if the execution runs out of 
gas, the execution halts 

exceptionally  
(holds for all instructions)
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Memory Access
value on memory 

address a is written to 
the stack

value b is written to 
memory address a

!µ,◆ = MSTORE µ.s = a :: b :: s µ.gas >= 1
µ0 = µ[m ! µ.m[a ! b]][s ! s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S

!µ,◆ = MLOAD µ.gas >= 1 µ.s = a :: s
v = µ.m[a] µ0 = µ[s ! v :: s][pc += 1][gas �= 1]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆,�) :: S



Calling
additional precondition: 
executing account has 

enough balance

recipient 
address

value to be 
transferred

input data address in 
memory to write 

return value

updated 
global state:  
money was 
transferred 
from ɩ.actor 

to to

fresh machine state

!µ,◆ = CALL
µ.s = to :: va :: id :: oa :: s µ.gas >= 1 �(◆.actor).b � va
�0 = �

⌦
to ! �(to)[b += va]

↵⌦
◆.actor ! �(◆.actor)[b �= va]

↵

µ0 = (µ.gas� 1, 0,�x. 0, ✏)
◆0 = ◆[actor ! to][input ! id][code ! �(to).code]

� ✏ (µ, ◆,�) :: S ! (µ0, ◆0,�0) :: (µ, ◆,�) :: S

new execution state 
(representing the 

execution of recipient 
contract) is pushed on 

callstack

execution environment 
for executing recipient 
contract is initialised 
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Common approch  
from the literature

• “the guard should be invalidated before performing 
the call” 

• Syntactic and program specific characterization 

• What is the underlying semantic security property?
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Call integrity 
• Reason for the DAO:  

untrusted contracts could influence the call flow of 
the contract (Call integrity) 

security perspective, the fundamental problem is that the contract behaviour depends
on untrusted code, even though this was not intended by the developer. We capture this
intuition through a hyperproperty, which we name call integrity. The idea is that no
matter how the attacker can schedule c (callstacks S and S

0 in the definition), the calls
of c (traces ⇡, ⇡0) cannot be controlled by the attacker, even if c hands over the control
to the attacker.

Definition 2 (Call Integrity). A contract c 2 C satisfies call integrity for a set of ad-

dresses AC ✓ A if for all reachable configurations (�, sc :: S), (�, s0c :: S0) with s, s
0

differing only in the code with address in AC , it holds that for all t, t
0

� ✏ sc :: S
⇡
�!

⇤
tc :: S ^ final (tc) ^ � ✏ s

0
c :: S

0 ⇡0
�!

⇤
t
0
c :: S

0
^ final (t0c)

=) ⇡ #callsc= ⇡
0
#callsc

4.2 Proof Technique for Call Integrity
We now establish a proof technique for call integrity, based on local properties that are
arguably easier to verify and that we show to imply call integrity. As a first observation,
we identify the different ways in which external contracts can influence the execution
of a smart contract c and introduce corresponding security properties :

Code Dependency The contract c might access (information on) the untrusted con-
tracts code via the EXTCODECOPY or the EXTCODESIZE instructions and
make his behaviour depend on those values;

Effect Dependency The contract c might call the untrusted contract and might depend
on its execution effects and return value;

Re-entrancy The contract c might call the untrusted contract, with the latter influenc-
ing the behaviour of the former by performing changes to the global state itself or
“on behalf” of c by reentering it and thereby potentially decreasing the balance of
c.

The first two of these properties can be seen as value dependencies and therefore
can be formalized as hyperproperties. The first property says that the calls performed
by a contract should not be affected by the effects on the execution state produced
by adversarial contracts. Technically, we consider a contract c calling an adversarial
contract c0 (captured as � ✏ sc :: S ! s

00
c0 :: sc :: S in the premise), which we let

terminate in two arbitrary states s
0
, t

0: we require that c’s continuation code performs
the same calls in both states.

Definition 3 (AC-effect Independence). A contract c 2 C is AC-effect independent of

for a set of addresses AC ✓ A if for all reachable configurations (�, sc :: S) such that

� ✏ sc :: S ! s
00
c0 :: sc :: S for some s

00
and address (c0) 2 AC , it holds that for all

final states s
0
, t

0
whose global state might differ in all components but the code from the

global state of s,

�init ✏ s
0
c0 :: sc :: S

⇡
�!

⇤
s
00
c :: S ^ final (s00)

^ �init ✏ t
0
c0 :: sc :: S

⇡0
�!

⇤
t
00
c :: S ^ final (t00)

=) ⇡ #callsc= ⇡
0
#callsc

Differing only in codes of untrusted addresses  
=> c is called in the same way
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c should produce the same 
calls 

Hyper-Property

Note: we annotate 
execution states 
with the contract 
(pair of address + 

code) they are 
executing: 
s(ɩ.actor,ɩ.code)
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Proof technique for call integrity 

Call Integrity

Single-entrancy
“contract should not 

depend on return value of 
calls to untrusted 

contracts”

“contract should not 
depend on untrusted 

contract’s code (that it 
accesses directly)”

Hyper-Property

Reachability Property Value-Dependency Properties

Hard to verify

Provable by static analysis: EtherTrust
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contract DAO { 
 mapping (address => uint) donations; 
 
 function donate() { 
  donations[msg.sender] += msg.value; 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• Inconsistencies due to unhandled gas exceptions
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Static Analysis of EVM bytecode



Oyente[1]

• Tool for finding common smart contract bugs in 
EVM bytecode  
(re-entrancy, uncaught exceptions, etc.)  
 
 
 
 

• Evaluated on ~19000 real world contracts  
(low false positive rate: 6,4%)

[1] Luu, Loi, et al. "Making smart contracts smarter." Proceedings of the 2016 ACM SIGSAC Conference on Computer and 
Communications Security. ACM, 2016.
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KEVM[2]
• Implementation of EVM bytecode semantics is in 

the 𝕂 framework (rewrite-based executable 
semantic framework) 

• Analysis tools automatically derived from the 
semantics:  

• Semantic Debugger 

• Program Verifier (for reachability claims)  

[2] Hildenbrandt, Everett, et al. Kevm: A complete semantics of the ethereum virtual machine. CSF 2018.
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• Allows for Hoare-style-like reasoning  
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• No domain-specific over-approximations (e.g. for 
calling unknown contracts) 
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Securify[3]
• Static smart contract analyser for EVM bytecode 

based on ‘semantic fact checking’ 

• Evaluated on ~25000 real world contracts
[3] Tsankov, Petar, et al. "Securify: Practical Security Analysis of Smart Contracts." arXiv preprint arXiv:1806.01143 (2018).
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ZEUS[4]
• Static analyser for Solidity code  

• Evaluated on ~22500 real-world contracts  
[4] Kalra, Sukrit, et al. "Zeus: Analyzing safety of smart contracts." NDSS, 2018.

contract DAO { 
 mapping 
(address => uint) 
donations; 
}
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ZEUS
• Pros

• Fast + scalable  

• Cons

• Only works on Solidity code (not on bytecode) 

• Only works for pre-defined properties  

• Does not give soundness guarantees (transformations 
are not semantics preserving + security invariants are 
not proven sound) 

• Based (as Oyente) on flawed semantics  

Fully Automated

No soundness 
guarantees



EtherTrust 

• First provably sound static analyzer for Ethereum smart 
contracts (i.e., it returns security guarantees) 

• previous ones focus on bug finding 

• Outperforms the competitors in precision and performance 

• Reachability analysis: suffices to check various interesting 
security properties  

Specific application domain abstractions: T for 
unknown values, α for address of running contract, 
abstract memory representation, and most notably 
calls to unknown contracts 

https://www.netidee.at/ethertrust
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Static analysis for Ethereum 
smart contracts

• Approach: abstract the EVM small-step semantics 
into Horn clauses that can be analysed using Z3 

set of predicate 
instances describing the 

execution state s

set of horn clauses over 
approximating the 

semantics of the code of 
contract c*

set of predicate 
instances describing the 

call stack S’

derivable (using first 
order logics)

𝚷 is a coarser 
abstraction than 𝚷S’ 



State abstraction 
MStatepc ((size, sa), mem, cd)

predicate parametrised  
by pc (to minimise recursive  
horn clauses)

call depth
stack, represented as  
(unbounded) array + size

memory, represented as array

• Similar predicates for 

• global state  

• execution environment
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Abstract Domain

MStatepc ((size, sa),ma, cd)

represents all 
potential values 

represents the 
address of the 
account under 

analysis 

represents 
concretely known 

values

Abstract domain

Common technique 
from abstract 
interpretation
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Abstracting calls - Intuition 
• For analysing a specific contract all its executions 

need to be approximated
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guard?

invalidate guard
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DAO contract
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Attacker contract

CALL

…
…

tight approximation for  
call depth 0 

coarse approximation for  
call depth y > 0 
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Abstract semantics - Call rule

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ va b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd ) ExEnv (↵,>, cd0)

when reentering the active account at the 
point of calling is (still) the actor

the input to the reentering 
call is unknown

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ v̂a b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd ) MState0 ((0,�x.>),�x.0, cd0)

execution starts at pc 0 in fresh 
machine state: 

empty stack + memory 
initialised to all zeros

preconditions are checked: enough elements on the stack, enough gas

contract might be reentered 
at an arbitrarily higher call 

depth



Abstract semantics - Call rules
MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ v̂a b b̂

^GStatepc (↵, b̂, sta, cd) ^ cd0 > cd ) GState0 (↵,>, sta, cd0)

MStatepc ((size, sa),ma, cd) ^ size > 3 ^ v̂a = sa[size� 2] ^ GStatepc (↵, b̂, sta, cd)

^v̂a b b̂ ^ GStatepc (ȧ, b̂
⇤, sta⇤, cd) ^ ȧ 6= ↵ ^ cd0 > cd ) GState0 (ȧ,>, [>], cd0)

the global storage of the 
active account is preserved

the balance might be 
arbitrarily changed

all addresses different from the actor can have 
arbitrary storage (all positions mapped to T)

This is actually an artefact: the storage of other accounts but the 
active account cannot be accessed anyways given that only plain calls 

are executed 



Checking for single-
entrancy

• How to check for single-entrancy now? 

• Simple example:  
contract Bob { 
 bool sent = false; 
 
 function ping(address c) { 
  if (!sent){ 

c.call.value(2)();  
sent = true; } 

 }  
}  
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Checking for single-
entrancy

• How to check for single-entrancy now? 

• Simple example:  
contract Bob { 
 bool sent = false; 
 
 function ping(address c) { 
  if (!sent){ 

c.call.value(2)();  
sent = true; } 

 }  
}  

Transfers 2 wei to the 
address given as argument

Can it ever happen that we 
execute this call while re-

entering? 
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Reachability query 

Detecting reentrancy



Proving single-entrancy
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Reachability query 



EtherTrust
• Approach scales to full EVM bytecode!  

• We implemented EtherTrust - a tool for static analysing Ethereum bytecode 



EtherTrust
• Approach scales to full EVM bytecode!  

• We implemented EtherTrust - a tool for static analysing Ethereum bytecode 

Average running time: much 
faster than the best state-of-
the art bug finding tool… and 
sound!  

SE: Single entrancy 
MI: Independence of miner controlled state
#X: Number of contracts reported to violate X 
#ter. X: Number of contracts for which the analysis terminates

O: Oyente (state-of-the-art) bug finder 
ET: EtherTrust



Simplifications in this tutorial

• Simplified gas treatment (constant gas cost of 1)  

• Inherent exception propagation (all available gas is given to the 
caller)  

• Simplified memory treatment (only memory cells are accessed, 
never fragments; word indexed memory)  

• computations on logical (instead of bounded) integers  

• No limits on call stack and machine stack  

• Some interesting opcodes are omitted  
(DELEGATECALL, CALLCODE, CREATE, …)



Simplifications in this tutorial

• Simplified gas treatment (constant gas cost of 1)  

• Inherent exception propagation (all available gas is given to the 
caller)  

• Simplified memory treatment (only memory cells are accessed, 
never fragments; word indexed memory)  

• computations on logical (instead of bounded) integers  

• No limits on call stack and machine stack  

• Some interesting opcodes are omitted  
(DELEGATECALL, CALLCODE, CREATE, …)

Open ch
all

enge



We are hiring PhDs and Postdocs!
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Abstract address is 
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is modified
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Handling abstract values 

• Abstract operations:  

• Abstract comparisons: 

n b= m := {n = m}
↵ b= ↵ := {true}
v̂ b= > := {true, false}
> b= v̂ := {true, false}
v̂ b= ↵ := {true, false}
↵ b= v̂ := {true, false}

Abstract address is 
‘supertyped’ once it 

is modified

No constraints are 
collected for 

computations with T  

n b+ m := n+m

v̂ b+ > := >
> b+ v̂ := >
v̂ b+ ↵ := >
↵ b+ v̂ := >

Comparisons 
with unknown 

values evaluate 
to both true and 

false 



Abstract ADD - revisited
MStatepc ((size, sa),ma, cd)

) Exc (cd)

abstract operations are used!

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 1, sa[size� 2 ! x̂ b+ ŷ]),ma, cd)



Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values 
come from the 

abstract domain

Memory positions 
can’t be α 
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Memory positions 
can’t be α MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂
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Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values 
come from the 

abstract domain

Memory positions 
can’t be α 

Instead of writing to α, 
we write to T

writing to T means 
“writing everywhere” 

MSTORE
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^ p̂ = (x̂ = ↵) ?> : x̂
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Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values 
come from the 

abstract domain

Memory positions 
can’t be α 

Instead of writing to α, 
we write to T

writing to T means 
“writing everywhere” 

MSTORE
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Abstract Memory access
ma 2 D̂/{↵} ! D̂

Memory values 
come from the 

abstract domain

Memory positions 
can’t be α 

Instead of writing to α, 
we write to T

writing to T means 
“writing everywhere” 

Instead of “reading from 
everywhere”, we simply 

read T 

MSTORE

MStatepc ((size, sa),ma, cd)

^ size > 1

^ x̂ = sa[size� 1]

^ p̂ = (x̂ = ↵) ?> : x̂

^ ŷ = sa[size� 2]

) MStatepc+1 ((size� 2, sa),ma[p̂ ! ŷ], cd)

MLOAD

MStatepc ((size, sa),ma, cd)

^ size > 0

^ sa[size� 1] 2 {↵,>}
) MStatepc+1 ((size� 2, sa[size� 1 ! >]),ma, cd)



Abstract Memory access - 
continued

MLOAD

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[n]]),ma, cd)

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[>]]),ma, cd)



Abstract Memory access - 
continued

MLOAD When reading the 
memory at a concrete 

position, we 
additionally need to 

read from T, as there we 
can find the values that 

have been written 
everywhere  

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[n]]),ma, cd)

MStatepc ((size, sa),ma, cd)

^ size > 0

^ n = sa[size� 1]

) MStatepc+1 ((size, sa[size� 1 ! ma[>]]),ma, cd)


