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ABSTRACT
Ethereum has emerged as the most popular smart contract development platform, with hundreds of thousands of contracts stored on the
blockchain and covering a variety of application scenarios, such as auctions, trading platforms, and so on. Given their financial nature, the
security of these contracts is of paramount importance, as exemplified by recent attacks exploiting programming mistakes to freeze or steal
millions of dollars (e.g., the DAO and Parity attacks). An automated security analysis of these contracts is thus of utmost interest, but it is
challenging due to the EVM bytecode format in which contracts are uploaded on the blockchain, which exposes very little static information,
and due to the specific transaction-oriented programming mechanisms, which feature a subtle semantics.

In this work, we present the first sound and automated static analysis for EVM bytecode, which is practical and scales to large contracts.
In particular, our static analysis supports reachability properties, which we show to be sufficient for capturing the most important security
properties for smart contracts (e.g., single-entrancy and transaction environment dependency). The soundness of our analysis is proven against a
complete and mechanized semantics of EVM bytecode. We implemented our analysis and tested our tool – EtherTrust – on real-world contracts
from the Ethereum blockchain, comparing it with Oyente, the state-of-the-art bug finding tool for smart contracts: EtherTrust analyses real-life
contracts in a few seconds, outperforming Oyente in efficiency and coverage by one order of magnitude. Furthermore, EtherTrust shows better
precision on a benchmark, all of that despite being the first tool in the literature to provide formal security guarantees for EVM bytecode.

1 INTRODUCTION
Smart contracts introduced a paradigm shift in distributed computation, promising security in an adversarial setting for arbitrary distributed
programs. Software developers can implement sophisticated distributed, transaction-based computations by leveraging the scripting language
offered by the underlying cryptocurrency. While many of these cryptocurrencies have an intentionally limited scripting language (e.g.,
Bitcoin [27]), Ethereum was designed from the ground up with a quasi Turing-complete language1. Ethereum smart contracts have thus
found a variety of appealing use cases, such as auctions [19], data management systems [8], financial contracts [13], elections [26], trading
platforms [25, 29], permission management [11] and verifiable cloud computing [17], just to mention a few. Given their financial nature, bugs
and vulnerabilities in smart contracts may lead to catastrophic consequences. For instance, the infamous DAO vulnerability [1] recently led to a
60M$ financial loss and similar vulnerabilities occur on a regular basis [2, 3]. Furthermore, many smart contracts in the wild are intentionally
fraudulent, as highlighted in a recent survey [10].

A rigorous security analysis of smart contracts is thus crucial for the trust of the society in blockchain technologies and their widespread
deployment. Unfortunately, this task is a quite challenging for various reasons. First, Ethereum smart contracts are developed in an ad-hoc
language, called Solidity, which resembles JavaScript but features non-standard semantic behaviours and transaction-oriented mechanisms,
which complicate smart contract development and verification. Second, smart contracts are uploaded on the blockchain in the form of Ethereum
Virtual Machine (EVM) bytecode, a stack-based low-level code featuring dynamic code creation and invocation and, in general, very little
static information, which makes it extremely difficult to analyze. Finally, some of the contracts interacting with the one under analysis may not
be known statically. As a result, despite the increasing attention and progress in smart contract verification, there exists at present no automated
security analysis for EVM bytecode that provides formal security guarantees (i.e., that is sound with respect to a formal semantics of EVM
bytecode), as further detailed below.

1.1 State-of-the-art in Security Analysis of Smart Contracts
We categorize the existing approaches to smart contract static analysis along the following dimensions: target language (bytecode vs source
code), provided guarantees (bug finding vs. formal soundness), checked properties (generic properties vs. contract-specific properties), degree
of automation (automated verification vs. assisted analysis).

Static analysis tools for automated bug-finding. Oyente [24] is a state-of-the-art static analysis tool for EVM bytecode that relies on
symbolic execution. Oyente supports a variety of generic security properties, such as transaction order dependency, timestamp dependency, and
reentrancy that can be checked automatically. However, Oyente is not striving for soundness nor completeness. In fact, it has been shown that

1While the language itself is Turing complete, computations are associated with a bounded computational budget (called gas), which gets consumed by each instruction thereby
enforcing termination.



the underlying semantics is incorrect and the tool has false negatives [18]. On the other hand, the security properties are rather syntactic and are
lacking a semantic characterization. Similar reasoning applies to tools extending Oyente [28, 35].

Static analysis tools for automated verification of generic properties. ZEUS [22] analyses smart contracts written in Solidity using symbolic
model checking. The analysis proceeds by translating Solidity code first into an abstract intermediate language and then into LLVM bitcode, in
order to leverage off-the-shelf symbolic model checking tools for LLVM bitcode. Hence ZEUS can only analyze contracts whose Solidity
source code is made available. In addition, while the analysis is claimed to be sound, we identified several problems in the statement and in
the proof, which are discussed in detail in Appendix D. Most importantly, the LLVM bitcode obtained by translation does not preserve the
semantics of the EVM bytecode obtained by compiling the Solidity source code. In a nutshell, this is due to two fundamental reasons. First, the
semantics of the intermediate language does not allow for the revocation of the global system state in the case of a failed call, which however is
fundamental feature of Ethereum smart contract execution. Second, the compilation into LLVM bitcode introduces artifacts that, as reported by
the authors themselves, require manual adjustments of the code. Finally, the security analysis requires the modification of the Solidity source
code, which is not covered by the soundness result. Hence, ZEUS does not provide formal security guarantees for EVM bytecode. Since the
tool is not publicly available, we could not experimentally assess the impact of these theoretical flaws on the analysis results in practice. Other
static analysis tools are available online (e.g., Securify [14], Mythril [6] and Manticore [30] for EVM bytecode and SmartCheck [32] and
Solgraph [7] for Solidity code), but they are not accompanied by any academic paper so that the concrete goals and scope of the analysis stay
unspecified.

Frameworks for semi-automated proofs for contract specific properties. A few works [9, 21] have focused on the usage of proof assistants
for the formalization and mechanization of security proofs for EVM bytecode. While sound, this approach is not automated and, in fact,
requires manual intervention and a significant expertise.

Hildebrandt et al. [20] define the EVM semantics in the K framework [31] – a language independent verification framework based on
reachability logics. The authors leverage the power of the K framework in order to automatically derive analysis tools for the specified
semantics, presenting as an example a gas analysis tool, a semantic debugger, and a program verifier based on reachability logics. The derived
program verifier, however, still requires the user to manually specify loop invariants on the bytecode level.

Bhargavan et al. [12] introduce a framework to analyze Ethereum contracts by translation into F*, a functional programming language aimed
at program verification and equipped with an interactive proof assistant. The translation supports only a fragment of the EVM bytecode and
does not come with a justifying semantic argument.

1.2 Our Contributions
We present the first sound and automated static analysis technique for EVM bytecode, which is practical and scales to large contracts.
Specifically, our contributions can be summarized as follows:

• We design a static reachability analysis technique for EVM bytecode, which is based on Horn-clause resolution. Designing a static
analysis technique that handles the complexity of EVM bytecode and scales to large contracts is challenging and requires careful
abstractions of various EVM components (e.g., the stack-based memory layout, the gas used to bound the smart contract execution, and
the data format) as well as the semantic import of contracts unknown at analysis time;
• We prove the soundness of our static analysis technique against the semantics proposed by Grischenko et al. [18], which is complete,

formalized in a proof assistant, and tested against the official EVM testsuite;
• We show that a reachability analysis suffices to cover all security properties for smart contracts introduced by Grischenko et al. [18],

such as single entrancy and independence of miner-controlled parameters. The former is a safety property ruling out vulnerabilities due
to unintended callbacks, like the DAO vulnerability [1]. The latter is a class of hyperproperties imposing that the semantic behaviour
of contracts does not depend on data stored on the blockchain and possibly controlled by miners. In particular, we introduce a new
reachability property, called call unreachability, that overapproximates single entrancy, and we further show that a simple dependency
analysis suffices to overappoximate the other hyperproperties.
• We develop EtherTrust, a static analyzer that internally relies on the Z3 theorem prover for discharging proof obligations. We tested

EtherTrust on a benchmark suite collecting code snippets from the literature as well as on real-life contracts stored on the blockchain,
comparing its performance against Oyente. EtherTrust analyzes large contracts in a few seconds, outperforming Oyente in coverage and
efficiency by one order of magnitude. Furthermore, it also offers better precision in our benchmark, all of that despite being the first tool
in the literature to provide formal security guarantees for EVM bytecode.

1.3 Outline
The remainder of this paper is organized as follows. § 2 and § 3 review Ethereum and the semantics of EVM bytecode, respectively. § 4
summarizes the salient security properties for smart contracts. § 5 introduces our static analysis technique for reachability properties. § 6 states
the formal results. § 7 describes EtherTrust and presents our experimental evaluation. § 8 concludes by highlighting interesting future research
directions.
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2 BACKGROUND
Ethereum. Ethereum is a cryptographic currency system built on top of a blockchain. Similar to Bitcoin, network participants publish
transactions to the network that are then grouped into blocks by distinct nodes (the so called miners) and appended to the blockchain using a
proof of work (PoW) consensus mechanism. The state of the system – that we will also refer to as global state – consists of the state of the
different accounts populating it. An account can either be an external account (belonging to a user of the system) that carries information on its
current balance or it can be a contract account that additionally obtains persistent storage and the contract’s code. The account’s balances are
given in the subunit wei of the virtual currency Ether.2

Transactions can alter the state of the system by either creating new contract accounts or by calling an existing account. Calls to external
accounts can only transfer Ether to this account, but calls to contract accounts additionally execute the code associated to the contract. The
contract execution might alter the storage of the account or might again perform transactions – in this case we talk about internal transactions.

The execution model underlying the execution of contract code is described by a virtual state machine, the Ethereum Virtual Machine (EVM).
This is quasi Turing complete as the otherwise Turing complete execution is restricted by the upfront defined resource gas that effectively limits
the number of execution steps. The originator of the transaction can specify the maximal gas that should be spent for the contract execution and
also determines the gas price (the amount of wei to pay for a unit of gas). Upfront, the originator pays for the gas limit according to the gas
price and in case of successful contract execution that did not spend the whole amount of gas dedicated to it, the originator gets reimbursed
with the gas that is left. The remaining wei paid for the used gas are given as a fee to a beneficiary address specified by the miner.

EVM bytecode. Contracts are delivered and executed in EVM bytecode format – an Assembler like bytecode language. As the core of the EVM
is a stack-based machine, the set of instructions in EVM bytecode largely consists of standard instructions for stack operations, arithmetics,
jumps and local memory access. The classical set of instructions is enriched with an opcode for the SHA3 hash and several opcodes for
accessing the environment that the contract was called in. In addition, there are opcodes for accessing and modifying the storage of the account
currently running the code and distinct opcodes for performing internal transactions. Another instruction particular to the blockchain setting is
the SELFDESTRUCT code that deletes the currently executed contract - but only after the successful execution of the external transaction.

The execution of each instruction consumes a positive amount of gas. The sender of the transaction specifies a gas limit and exceeding it
results in an exception that reverts the effects of the current transaction on the global state. In the case of nested transactions, the occurrence of
an exception only reverts its own effects, but not those of the calling transaction. Instead, the failure of an internal transaction is only indicated
by writing zero to the caller’s stack.

3 CONCRETE SMALL-STEP SEMANTICS
Our static analysis targets a recently introduced small-step semantics for EVM bytecode [18], which we shortly review below, highlighting the
most interesting semantic features of EVM bytecode.

3.1 Execution Configurations
Global State. The global state of the Ethereum blockchain is represented as a (partial) mapping from account addresses to accounts. In the case
that an account does not exist, we assume it to map to ⊥. Accounts are composed of a nonce n that is incremented with every other account that
the account creates, a balance b, a persistent unbounded storage stor, and the account’s code. External accounts carry an empty code which
makes their storage inaccessible and hence irrelevant.

Small-step Relation. The semantics is formalized by a small-step relation Γ ⊨ S → S ′ that specifies how a call stack S representing the state
of the execution evolves within one step under the transaction environment Γ. We write Γ ⊨ S →∗ S ′ for the reflexive transitive closure of the
relation and call the pair (Γ, S ) a configuration.

Transaction Environments. The transaction environment represents the static information of the block that the transaction is executed in and
the immutable parameters of the transaction, e.g., the gas price or limit. These parameters can be accessed by distinct bytecode instructions and
consequently influence the transaction execution.

Call stacks. A call stack S is a stack of execution states which represents the overall state of the initial external transaction. The individual
execution states of the stack represent the states of the uncompleted internal transactions performed during the execution. Formally, a call stack
is a stack of regular execution states of the form (µ, ι,σ ) that can optionally be topped with a halting state HALT(σ , gas,d ) or an exception state
EXC. Semantically, halting states indicate regular halting of an internal transaction, exception states indicate exceptional halting, and regular
execution states describe the state of internal transactions in progress. Halting and exception states can only occur as top elements of the call
stack as they represent terminated internal transactions. Halting states carry the information affecting the callee state such as the global state σ
that the internal execution halted in, the unspent gas gas from the internal transaction execution, and the return data d.

The state of a non-terminated internal transaction is described by a regular execution state of the form (µ, ι,σ ). The state is determined by
the current global state σ of the system as well as the execution environment ι that specifies the parameters of the current internal transaction
(including inputs and the code to be executed) and the local state µ of the stack machine.

2One Ether is equivalent to 1018 wei.

3



Table 1: Selected Semantic Rules

ADD
ι .code [µ .pc] = ADD µ .s = a :: b :: s µ .gas ≥ 3 µ′ = µ[s→ (a + b ) :: s][pc += 1][gas −= 3]

Γ ⊨ (µ, ι, σ ) :: S → (µ′, ι, σ ) :: S

ADD-FAIL
ι .code [µ .pc] = ADD ( |µ .s | < 2 ∨ µ .gas < 3)

Γ ⊨ (µ, ι, σ ) :: S → EXC :: S

Execution Environment. The execution environment ι of an internal transaction is a tuple of static parameters (actor, input, sender, value, code)
to the transaction that, among others, determine the code to be executed and the account in whose context the code will be executed. The
execution environment incorporates the following components: the active account actor that is the account that is currently executing and
whose account will be affected when instructions for storage modification or money transfer are executed; the input data input given to the
transaction; the address sender of the account that initiated the transaction; the amount of wei value transferred with the transaction; the code
code that is executed by the transaction. The execution environment is determined upon initialization of an internal transaction execution and it
can be accessed, but not altered during the execution.

Machine State. The local machine state µ represents the state of the underlying stack machine used for execution. Formally it is represented by
a tuple (gas, pc,m, i, s) holding the amount of gas gas available for execution, the program counter pc, the local memory m, the number of
active words in memory i, and the machine stack s.

The execution of each internal transaction starts in a fresh machine state, with an empty stack, memory initialized to all zeros, and program
counter and active words in memory set to zero. Only the gas is instantiated with the gas value available for the execution. We call execution
states of this form initial.

3.2 Small-step Rules
In the following, we will present a selection of interesting small-step rules (cf. Table 1) in order to illustrate the most important features of
EVM bytecode.

Local Instructions. For demonstrating the overall design of the semantics, we start with the example of the arithmetic expression ADD
performing addition of two values on the machine stack. We use a dot notation, in order to access components of the different state parameters.
We name the components with the variable names introduced for these components in the last section written in sans-serif-style. In addition, we
use the usual notation for updating components: t[c → v] denotes that the component c of tuple t is updated with value v. For expressing
incremental updates in a simpler way, we additionally use the notation t[c += v] to denote that the (numerical) component of c is incremented
by v and similarly t[c −= v] for decrementing a component c of t .

The execution of the arithmetic instruction ADD only performs local changes in the machine state affecting the local stack, the program
counter, and the gas budget. For deciding upon the correct instruction to execute, the currently executed code (that is part of the execution
environment) is accessed at the position of the current program counter. The cost of an ADD instruction consists always of three units of gas
that get subtracted from the gas budget in the machine state. As every other instruction, ADD can fail due to lacking gas or due to underflows
on the machine stack. In this case, the exception state is entered and the execution of the current internal transaction is terminated.

Transaction Initiating Instructions. A class of instructions with a more involved semantics are those instructions initiating internal transactions.
This class incorporates instructions for calling another contract (CALL, CALLCODE and DELEGATECALL) and for creating a new contract
(CREATE). Intuitively, CALL executes the callee’s code in its own environment, CALLCODE executes the callee’s code in the caller’s
environment, which might be useful to call libraries implemented in a separate contract, and DELEGATECALL takes a step further by
preserving not only the caller’s environment but even part of the environment of the previous call (e.g., the sender information), which
effectively treats the calle’s code as an internal function of the caller’s code. Finally, the CREATE instruction initiates an internal transaction
that creates a new account. For more detail, we refer to Appendix C.

Instructions from this set are particularly difficult to analyze, since their arguments are dynamically evaluated and the execution environment
has to be tracked and properly modified across different calls. Furthermore, it can well be that the code of a called function is not accessible at
analysis time, e.g., because the contract transfers money back to the caller (like in the DAO contract).

4 SECURITY PROPERTIES
Grishchenko et al. [18] propose generic security definitions for smart contracts that rule out certain classes of potentially harmful contract
behavior. We will show in § 6.2 how they can be over-approximated as pure reachability properties. Due to space constraints, we focus on
the properties that characterize the absence of those vulnerabilities that have already been targeted by other analysis approaches such as [22]
and [24].

4



1 contract Bob{

2 bool sent = false;
3 function ping( address c){

4 if (!sent) { c.call.value(2)();

5 sent = true; }}}

(a) Smart contract with reentrancy bug
1 contract Mallory{

2 function(){
3 Bob(msg.sender).ping(this);}}

(b) Smart contract exploiting reentrancy bug

Figure 1: Reentrancy Attack

4.1 Preliminary Notations
Formally, we represent a contract as a tuple of form (a, code) where a and code denote the contract’s address and code, respectively.

In order to give concise security definitions, we further introduce, and assume throughout the paper, an annotation to the small step semantics
in order to highlight the contract c that is currently executed. In the case of initialization code being executed, we use ⊥. Finally, for arguing
about EVM bytecode executions, we are only interested in those initial configurations that might result from a valid external transaction in a
valid block. We call these configurations reachable and refer to [18] for a detailed definition.

Next, we introduce the notion of execution trace for smart contract execution. Intuitively, a trace is a sequence of actions. In our setting, the
actions to be recorded are composed of an opcode, the address of the executing contract, and a sequence of arguments to the opcode. We denote
the set of actions with Act. Accordingly, every small step produces a trace consisting of a single action. Lifting the resulting trace semantics to
multiple execution steps consequently results in sequences of actions π ∈ L (Act). We will write π ↓callsc to denote the projection of π to calls
performed by contract c, i.e., actions with opcodes CALL, DELEGATECALL, CALLCODE or CREATE.

4.2 Single-entrancy
For motivating the definition of single-entrancy, we introduce a class of bugs in Ethereum smart contracts called reentrancy bugs [10, 24].

The most famous representative of this class is the so called DAO bug that led to a loss of 60 million dollars in June 2016 [1]. In an attack
exploiting this bug, the affected contract was drained out of money by subsequently reentering it and performing transactions to the attacker on
behalf of the contract. The cause of such bugs mostly roots in the developer’s misunderstanding of the semantics of Solidity’s call primitives. In
general, calling a contract can invoke two kinds of actions: Transferring Ether to the contract’s account or executing (parts of) a contract’s code.
In particular, Solidity’s call construct (being translated to a CALL instruction in EVM bytecode) invokes the execution of a fraction of the
callee’s code – specified in the so called fallback function. In Solidity, a contract’s fallback function is written as a function without names or
argument as depicted in the Mallory contract in Figure 1b. Consequently, when using the call construct the developer may expect an atomic
value transfer where potentially another contract’s code is executed. For illustrating how to exploit this sort of bug, we consider the contracts in
Figure 1. The function ping of contract Bob sends an amount of 2 wei to the address specified in the argument. However, this should only be
possible once, which is potentially ensured by the sent variable that is set after the successful money transfer. Instead, it turns out that invoking
the call.value function on a contract’s address invokes the contract’s fallback function as well.

Given a second contract Mallory, it is possible to transfer more money than the intended 2 wei to the account of Mallory. By invoking Bob’s
function ping with the address of Mallory’s account, 2 wei are transferred to Mallory’s account and additionally the fallback function of Mallory is
invoked. As the fallback function again calls the ping function with Mallory’s address another 2 wei are transferred before the variable sent of
contract Bob was set. This looping goes on until all gas of the initial call is consumed or the callstack limit is reached. In this case, only the last
transfer of wei is reverted and the effects of all former calls stay in place. Consequently the intended restriction on contract Bob’s ping function
(namely to transfer 2 wei only once) is circumvented.

The security property ruling out these attacks is called single-entrancy and is formalized below. Intuitively, a contract is single-entrant if it
cannot perform any more calls once it has been reentered.

Definition 4.1 (Single-entrancy [18]). A contract c is single-entrant if for all reachable configurations (Γ, sc :: S ), for all s ′, s ′′, S ′

Γ ⊨ sc :: S →∗ s ′c :: S ′ + +sc :: S

=⇒ ¬∃s ′′ ∈ S, c ′ ∈ C⊥.

Γ ⊨ s ′c :: S ′ + +sc :: S →∗ s ′′c ′ :: s ′c :: S ′ + +sc :: S

where ++ denotes concatenation of call stacks.
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Figure 2: Simplified soundness statement

4.3 Independence of Miner controlled Parameters
A particularity of the distributed blockchain environment is that users while performing transactions cannot make assumptions on large parts of
the context their transaction will be executed in. This is due to the inherently asynchronous nature of the system as well as to the fact that
miners heavily influence the execution context of transactions. They can decide upon the transaction order in a block (and also sneak their own
transactions in first) and in addition they can even control some parameters as the block timestamp within a certain range.

Consequently, contracts whose (outgoing) money flows depend either on miner controlled block information or on state information (as the
state of their storage or their balance) that might be changed by other transactions are prone to manipulations by miners. To illustrate, we report
below the notion of independence of the transaction environment, which is formalized as a hyperproperty, comparing two runs of the smart
contract.

To this end, we assume CΓ to be the set of components of the transaction environment and write Γ =/cΓ Γ′ to denote that the transaction
environments Γ, Γ′ are equal up to component cΓ .

Definition 4.2 (Independence of the Transaction Environment [18]). A contract c ∈ C is independent of a subset I ⊆ CΓ of components of
the transaction environment if for all cΓ ∈ I and all reachable configurations (Γ, sc :: S ) it holds for all Γ′ that

cΓ (Γ) , cΓ (Γ
′) ∧ Γ =/cΓ Γ′ ∧ Γ ⊨ sc :: S

π
−→
∗
s ′c :: S ∧ final (s ′)

∧ Γ′ ⊨ sc :: S
π ′
−−→
∗

s ′′c :: S ∧ final (s ′′) =⇒ π ↓callsc= π ′ ↓callsc

The notion of independence of the account state is defined analogously.

5 ABSTRACT SEMANTICS
We developed a static analysis framework for automatically analyzing reachability properties of EVM smart contracts. The analysis relies on an
abstract semantics for EVM bytecode soundly over-approximating the semantics presented in Section 3.

Figure 2 gives an overview on the relation between the small-step and the abstract semantics. For the analysis, we will consider a particular
contract c∗ under analysis as well as a set Ck ∋ c∗ of known contracts that might be called during the execution of c∗. An over-approximation of
the behavior of these known smart contracts is encoded in terms of Horn clauses (∆). These describe how an abstract configuration Π evolves
within the execution of the contracts’ instructions. Abstract configurations are obtained by translating small-step configurations to a set Π of
facts over state predicates that characterize (an over-approximation of) the original configuration. Finally, we will show that no matter how
the contract c∗ is called (so for every arbitrary reachable configuration Γ, sc∗ :: S), every sequence of execution steps that is performed while
executing it can be mimicked by a logical derivation from the abstract configuration Πs (obtained from translating the execution state s) using
the Horn clauses ∆ (that model the abstract semantics of the contracts in Ck ). More precisely, this means that from the set of facts Πs ∪ ∆, a set
Π can be derived that is a coarser abstraction (:>) than ΠS ′ , which is the translation of the execution’s intermediate callstack S ′.

5.1 Abstract Configurations
Table 2 shows the analysis facts used for describing the abstract semantics. These consist of (instances of) state predicates that represent partial
abstract configurations. Accordingly, abstract configurations are sets of closed facts. Finally, abstract contracts are characterized as sets of Horn
clauses over the state predicates (facts) that describe the state changes induced by the instructions at the different program positions.

The state predicates model the execution states sc of contracts c ∈ Ck . For linking these contracts with the corresponding analysis facts, we
introduce artificial contract identifiers and (uniquely) label the contracts in Ck with them so that formally elements from Ck are of the form
(id,a, code) with identifiers id and addresses a being unique in the set. The state predicates are then parametrized by either a program point pp
or a contract identifier id where a program point again is a pair of the form (id, pc) with id ∈ N being a contract identifier and pc ∈ N being the
program counter at which the abstract state holds.3

In addition, all state predicates but Codeid carry the relative call depth cd ∈ N as argument. The relative call depth is the size of the call
stack built up on the execution of c∗ (cf. callstack S ′ in Figure 2) and serves as abstraction for the (relative) callstack that contract c∗ is currently
3Making the program counter a parameter instead of an argument is a design choice made in order to minimize the number of recursive horn clauses and to hence simply automated
verification.
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Table 2: Analysis Facts. All arguments in the analysis facts marked with a hat ( ·̂) range over D̂ ∪ Vars where D̂ is the abstract domain and Vars is the set of
variables. Arguments marked with a dot ( ·̇) range over N ∪ {α } ∪ Vars. All other arguments of analysis facts range over N with exception of sa that ranges over
(N→ D̂ ) ∪ Vars. Closed facts cf are assumed to be facts with arguments not coming from Vars.

Facts f :=
Abs. machine state | MStatepp ((size, sa), âw, ˆgas, cd)
Abs. memory | Mempp ( ˆpos, v̂a, cd)
Abs. execution environment | ExEnvid (ȧ, î, v̂a, ˆinputsize, cd)
Abs. input data | Inputdataid (pos, v̂, cd)
Abs. global state | GStatepp (ȧ, n̂, b̂, cd)
Abs. persistent account storage | Storpp (ȧ, ˆpos, v̂, cd)
Abs. successful halting state | Returnid ( ˆreturndatasize, ˆgas, cd)
Abs. return value | Resid (pos, v̂, cd)
Abs. global state at return | ResGStateid (ȧ, n̂, b̂, cd)
Abs. persistent storage at return | ResStorid (ȧ, ˆpos, v̂, cd)
Abs. exception state | Excid (cd)
Abs. contract code | Codeid (pc, com)
Abs. configurations Π := {cf1, . . . , cfn }
Horn clauses H := ∀x ∗ .

∧
i fi =⇒ f

Abs. contracts ∆ := {H1, . . . , Hn }

executed on. The relative call depth helps to distinguish different recursive executions of contracts c ∈ Ck and thereby improves the precision
of the analysis.

The Codeid predicate that represents the code of the contracts in Ck does not need to carry this argument as contract code is immutable
during the execution.

Abstract Domain. The predicate’s arguments range over an abstract domain D̂ or over a subdomain thereof. The abstract domain serves as a
means of over-approximating computations performed on concrete values (such as stack values) and also allows for abstracting the semantics
of instructions that depend on such values (such as memory accesses or calls). Concretely, we define the abstract domain D̂ to be the set
{⊥,⊤,α } ∪ N which constitutes a bounded lattice (D̂,⊑,⊔,⊓,⊤,⊥) satisfying ⊥ ⊏ α ⊏ ⊤ and ⊥ ⊏ n ⊏ ⊤ for all n ∈ N. Intuitively, in our
analysis ⊤ will represent unknown (symbolic) values and α will represent the unknown (symbolic) address of contract c∗.

Treating the address of the contract under analysis in a symbolic fashion is crucial for obtaining a meaningful analysis, as the address of
this account on the blockchain can not easily be assumed to be known upfront. This is as we consider a contract to be analyzed before being
deployed on the blockchain, but addresses get only assigned when creating the contract on the blockchain and depend on the creator’s account
state at the time of creation. Still, a contract can dynamically access its own address during execution and use it as a reference for accessing e.g,
its balance or performing a self call. Consequently, we aim at tracking the address of contract c∗ as long as it stays unmodified for using it in an
accurate manner when it is used for global state accesses or calls, but treat the address as arbitrary value when being used for other purposes
(such as arithmetics or memory accesses).

In particular, we will assume versions of the unary, binary and comparison operators on the values of the abstract domain whose semantics
follows this intuition. We will mark abstract operators with a hat ( ·̂ ) and, e.g., write +̂ for abstract addition.

As we assume the stack values to range over the full abstract domain, most of the other fact’s arguments do so too (marked by a hat over the
corresponding arguments) as they will in some rules of the abstract semantics get instantiated or accessed by stack values. An exception is
given by the arguments of the global state and execution environment predicates that represent addresses. These arguments are not assumed to
ever take the value ⊤ as we will always be aiming at keeping a distinction between the account state of contract c∗ with symbolic address α and
the ones of other contracts.

As, however, all arguments come from subdomains of D̂, we can lift the order ⊑ on abstract values to closed analysis facts by writing
cf ⊑ cf′ whenever cf and cf′ are instances of the same predicate and for every argument position i it holds for arguments vi ,v ′i that vi ⊑ v ′i . So
intuitively, cf ⊑ cf′ means that cf is a more precise abstraction than cf′. This order again is lifted to abstract configurations by having Π <: Π′ if
and only if ∀cf ∈ Π. ∃cf′ ∈ Π′. cf ⊑ cf′.

State predicates. In the following, we will discuss the intuitive meaning of the analysis facts. We start by discussing the predicates for
abstracting regular execution states of the form (µ, ι,σ ).

The local machine state µ is modeled by the predicates MStatepp and Mempp . The fact MStatepp ((size, sa), âw, ˆgas, cd) says that, at
program point pp and relative call depth cd, the machine stack is of size size and its current configuration is abstracted by the mapping sa
which maps stack positions to abstract values. In addition the number of active words in memory is over-approximated by âw and the gas
is over-approximated by ˆgas. Similarly, the fact Mempp ( ˆpos, v̂, cd) states that, at program point pp and relative call depth cd, the value at
abstract memory address ˆpos is abstracted by v̂.

The execution environment ι is modeled by the predicates ExEnvid and Inputdataid . In contrast to the machine state predicates, these
predicates are parameterized only by the contract identifier and not by the program counter. The reason is that the execution environment
remains unchanged during the execution of a contract call. The predicate ExEnvid (ȧ, î, v̂a, ˆinputsize, cd) states that when the contract with
identifier id is executed on relative call level cd the address of the executing account is over-approximated by ȧ, the address of the initiator is
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abstracted as î, the value transferred by the calling transaction is over-approximated by v̂a, and the size of the input given to this transaction is
over-approximated by ˆinputsize. As for the local memory, the abstraction of input data is realized as an own predicate Inputdataid .

The abstraction of the global state σ is given by the predicates GState(id, pc) and Stor(id, pc). The fact GState(id, pc) (ȧ, n̂, b̂, cd) states that
when the contract with identifier id is executed at program counter pc and on relative call level cd, the account with abstract address ȧ has
nonce over-approximated as n̂ and balance over-approximated as b̂. For modeling the persistent account storage, as for the local memory, we
use an own predicate Stor(id, pc).

Next, we explain the predicates modeling exception and halting states. While exception states can be described by a single predicate, the
different components of halting states (namely, the return data and the resulting global state) need to be represented by distinct predicates.
The fact Excid (cd) states that an exception occurred when executing the contract with the identifier id on relative call level cd. Similarly, the
fact Returnid ( ˆreturndatasize, ˆgas, cd) states that the execution of the contract with identifier id halted regularly on relative call level cd with
remaining gas over-approximated by ˆgas and returned a byte array of size over-approximated by ˆreturndatasize. The array of return data itself
is then specified by an own predicate Resid similar to Inputdataid . The new global state that resulted from the successful call is written to
predicates ResGStateid and ResStorid that resemble those of the global state with the only difference that they are parametrized only by the
account that finished the execution and not additionally by the program counter.

As the account code is immutable during execution, we do not model it with respect to the program point or the call depth, but simply
initialize the static predicate Codeid for the contracts c ∈ Ck with the corresponding integer representations of the account’s bytecode.
More precisely, the fact Codeid (pc, com) states that at program counter pc the contract with identifier id holds the bytecode with integer
representation com. The use of such a static predicate allows for dynamically accessing certain code fractions during execution (as it is required
for the CODECOPY instruction).

HALT( , g, d)σ4 :: ( , , )μ0 ι0 σ0( , , )μ2 ι2 σ2

c

:: ( , , )μ1 ι1 σ1( , , )μ3 ι3 σ3
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Figure 3: Illustration of the translation of abstract call stacks. Translated execution states are depicted in green, non-translated in red.
Accordingly, the contract annotations for c∗ are depicted in green, annotations for c ∈ Ck/{c∗} in yellow, and annotations for c? < Ck in red.

Abstraction function. Formally, we establish the relation between a configuration of the small-step semantics and its abstraction by an
abstraction function that translates call stacks to a set of analysis facts.4 Figure 3 gives an overview on how callstacks are mapped into sets of
analysis facts. The translation proceeds by translating all execution states on the callstack bottom up: When encountering an execution state of
c∗, its components get translated to the corresponding predicates (with identifier id∗) as shown for the right most contract in Figure 3. As long
as only contracts c ∈ Ck are encountered, they are translated in the same fashion, but when encountering a contract c? < Ck the translation of
this contract as well as of all following contracts c ∈ Ck/{c∗} is omitted. Only on appearance of an execution state of contract c∗, the translation
proceeds. Intuitively, this translation models that we are only over-approximating all executions of contract c∗. The contracts Ck increase the
precision of this over-approximation and are faithfully simulated when being part of a ’known’ call chain from c∗, but not all of their executions
are over-approximated (cf. contract at call depth cd in Figure 3).

The precise definition of the abstraction function is given in Table 3. The function αS for callstacks proceeds by translating selected execution
states to a set of instances of the state predicates as described above. The whole translation of the callstack is performed with respect to the
relative call depth cd. This is as for our analysis we will consider the execution of contract c∗ on an arbitrary callstack as depicted in Figure 2.
The argument cd of function αS can be therefore thought of as the size of S in Figure 2.

The function αs for translating executions states gets the identifier id of the contract whose execution state gets translated as additional
argument and a mapping ·̊ that maps the value of c∗’s address to α . This mapping needs to be applied to all potentially abstract arguments
of state predicates during the translation to ensure that values potentially representing c∗’s address are consistently renamed. Otherwise, the
translation proceeds in a straight-forward manner: Exception and execution states are directly translated to the corresponding predicates.
Regular execution states (µ, ι,σ ) are component-wise translated. As machine state and global states are parametrized by the program counter,
this information is extracted from the machine state and given as argument to the translation function ασ for global states. We discuss two
particularities of the translations in more detail, that is, the translation of mappings that represent memory or storage and the translation of the
machine stack: The local machine stack is translated to an abstract array representation by the function stackToArray. This representation is a
pair of the stack’s (concrete) size and a mapping from (concrete) stack positions to the stack’s abstracted elements. Keeping size and positions

4Note that we don’t translate the transaction environments Γ as all accesses to it will be directly over-approximated in the abstract execution rules of the corresponding instructions.
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of the stack precise is necessary as otherwise it would not be possible to extract the (potentially abstract) arguments to the instructions from
the stack in a meaningful way. Memory and storage mappings (such as the memory of the machine state, the storage of the global state, the
input data of the execution environment or return data of the regular halting state) instead are for technical reasons5 not translated to array
representations, but to own predicates mapping abstract locations to abstract values.

Table 3: Abstraction function for small-step configurations

αS (S ′, Ck , id∗, cd) := let (H, flag) = αS−help (S ′, Ck , id∗, cd) in H

αS−help (ϵ, Ck , id∗, cd) := (∅, ⊤)

αS−help (sc :: S ′, Ck , id∗, cd) := let (H, flag) = αS−help (S ′, Ck , id∗, cd) in

let id = getID (Ck , c ), ·̊ = (λa .if (id∗, a, ·) ∈ Ck then α else a) in

if (id∗ = id) then (H ∪ αs (s, id∗, |S ′ | + cd, ·̊), ⊤)

else if (flag = ⊤ ∧ id , ⊥) then (H ∪ αs (s, id, |S ′ | + cd, ·̊), ⊤) else (H, ⊥)

αs ((µ, ι, σ ), id, cd, ·̊) := αµ (µ, id, cd, ·̊) ∪ αι (ι, id, cd, ·̊) ∪ ασ (σ , id, µ .pc, cd, ·̊)

αs (EXC, id, cd, ·̊) := {Excid (cd) }

αs (HALT(σ , gas, data), id, cd, ·̊) := {Returnid ( ˚|data |, ˚gas, cd) ∪ {Resid (pos, v̊, cd) | data [pos] = v ∧ pos ∈ N}

∪ {ResGStateid (å, n̊, b̊, cd) | ∃stor, code. σ (a) = (n, b, stor, code) }

∪ {ResStorid (å, ˚pos, v̊, cd) | ∃n, b, stor, code. σ (a) = (n, b, stor, code) ∧ stor [pos] = v ∧ pos ≤ 2256 }

αµ ((gas, pc, m, i, s), id, cd, ·̊) := {MState(id, pc) (stackToArray (s, ·̊), i̊, ˚gas, cd) } ∪ {Mem(id, pc) ( ˚pos, v̊, cd) | m [pos] = v ∧ pos ≤ 2256 }

αι ((actor, input, sender, va, code), id, cd, ·̊) := {ExEnvid ( ˚actor, ˚sender, v̊a, ˚|input |, cd) ∪ {Inputdataid (pos, v̊, cd) | input [pos] = v ∧ pos ∈ N}

ασ (σ , id, pc, cd, ·̊) := {GState(id, pc) (å, n̊, b̊, cd) | ∃stor, code. σ (a) = (n, b, stor, code) }

∪ {Stor(id, pc) (å, ˚pos, v̊, cd) | ∃n, b, stor, code.σ (a) = (n, b, stor, code) ∧ stor [pos] = v ∧ pos ≤ 2256 }

stackToArray (ϵ, ·̊) := (0, λx . 0)

stackToArray (x :: s, ·̊) := let (size, sa) = stackToArray (s, ·̊) in (size + 1, sasize
x̊ )

5.2 Abstract Execution Rules
As the state predicates are parametrized by their program points or contract identifiers, the abstract semantics needs to be formulated with
respect to program points as well. More precisely, this means that for each program counter of a contract c ∈ Ck a set of Horn clauses is created
that describes the semantics of the instruction of the corresponding contract at this program counter. Formally, a function L·Mid∗,Ck

(id,pc) is defined
that creates the required set of rules given that the instruction inst is at position pc of contract’s c (with identifier id) code. The translation is
parametrized by the contract c∗ (more precisely its identifier id∗) under analysis and the set of known contracts Ck . As we will discuss later,
this information will be exploited when creating the abstract rules for call instructions.

Table 4 shows the formal translation of the semantics of the contracts in Ck : The abstract semantics for a contract c is translated by applying
the function L·Mid∗,Ck

(id,pc) to all its instructions with the corresponding identifier and program counters as argument. In addition the Codeid
predicates are initialized with (the integer representation of) the code of the contracts.

Table 5 shows the definition of L·Mid∗,Ck
pp for the ADD instruction. The main functionality of the rule is described by the Horn clause 1 that

describes how the machine stack and the gas evolve when executing ADD. First the precondition checks whether or not sufficient amount of gas
and stack elements are available. Then the two (abstract) top elements x̂ and ŷ are extracted from the stack and their sum is written to the top of
the stack while reducing the overall stack size by 1. In addition, the local gas value is reduced by 3 in an abstract fashion. In the memory rule

5 Given that memory is represented as an array, modeling memory usage would require a rich set of array operations that are however not supported by the fixed point engines of
modern SMT solvers.

Table 4: Abstraction function for small-step rules

αC (Ck , id∗ ) :=
⋃

(id,a,code)∈Ck ∧code [pc]=inst∧0≤pc< |code|

LinstM
Ck , id

∗

(id,pc)

∪ {Codeid (pc, v ) | ∃a, code. (id, a, code) ∈ Ck
∧ code [pc] = v ∧ 0 ≤ pc < |code | }
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Table 5: Abstract execution rules for ADD

LADDM
Ck , id

∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ ˆgas ≥̂ 3 ∧ x̂ = sa[size − 1] ∧ ŷ = sa[size − 2]⇒ MState(id, pc+1) ((size − 1, sasize−2
x̂ +̂ ŷ

), âw, ˆgas −̂ 3, cd), (1)

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd), (2)

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd), (3)

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd), (4)

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd), (5)

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 3⇒ Excid (cd) } (6)

(Horn clause 2), again the preconditions are checked and then (as memory is not affected by the ADD instruction) the memory is propagated.
This propagation is needed due to the memory predicate’s parametrization with the program counter: for making the memory accessible in the
next execution step, its values need to be written into the corresponding predicate for the next program counter. Similar rules are created for
propagating the global state and persistent storage (cf. Horn clauses 3 and 4). Finally, Horn clauses 5 and 6 characterize the exception cases: an
exception while executing the ADD instruction can occur either because of a stack underflow or as the execution runs out of gas. In both cases
the exception state is entered which is indicated by recording the relative call depth of the exception in the predicate Excid (cd).

By allowing gas values to come from the abstract domain, we enable a symbolic treatment of gas. In particular this means that when starting
the analysis with gas value ⊤, all gas calculations will directly result in ⊤ again (and could therefore be omitted) and in particular all checks
on the gas will result in true and consequently always both paths (regular execution via Horn clauses 1 and 2 and exception via 6) will be
triggered in the analysis. 6

For over-approximating the semantics of calls, more involved abstractions are needed. We will illustrate these abstractions in the following
in an intuitive way and refer to Appendix E for technical details.

When calling another contract with a CALL instruction, the recipient of the internal transaction is specified by an abstract value t̂o on the
machine stack. In this case two different situations can be faced: Either the recipient t̂o corresponds to a known contract (t̂o < {a | (id,a, code) ∈
Ck ∧ id , id∗} ∪ {α }) or the recipient cannot be matched to a contract in Ck as t̂o is either ⊤ or a concrete address that is not known. In the
first case, the execution of the known contract can be faithfully mimicked by implying the corresponding contract’s predicates at program
counter 0. In the second case (which we consider more interesting) potentially every contract on the blockchain could be called. For this reason
we perform in this case an abstraction that ensures all potential future executions of contract c∗ are correctly over-approximated. For this
over-approximation we use the following observations:

(1) The instructions DELEGATECALL and CALLCODE should never be used for calling unknown code.
(2) The persistent storage of an account can only be altered by the executing account.
(3) Contracts have a single entry point.

Due to observation (1), we stop our analysis in case that DELEGATECALL or CALLCODE instructions are used for calling unknown
addresses. Assuming that we only deal with CALL instructions, we can conclude from observation (2) that when calling an unknown contract,
the persistent storage of the original contract c∗ can not be altered till re-entering c∗. As we aim at over-approximating all executions of c∗, we
will assume c∗ to be re-entered at an arbitrary higher call depth with its persistent storage unchanged at this point.

Figure 4 illustrates the over-approximation performed for a CALL instruction transferring x wei to a potentially unknown contract. The
abstract execution states c∗ are depicted in blue, while the abstract execution states of unknown contracts (that are only known not to be
equal to c∗) which are called in between are colored in red. The picture highlights that an arbitrary number of contracts might be called (and
executed) before contract c∗ is re-entered again. As those contracts, by observation (2), cannot change the persistent storage of c∗ (modeled by
Stor(id*, j) (α , ˆpos, v̂, cd) with α being the address and id∗ being the identifier of c∗), the persistent storage of c∗ is unchanged when re-entering.
As contracts are always entered at program counter 0 (see observation (3)), the values of the global storage can be copied to the corresponding
state predicate at Stor(id*, 0) at a higher call depth. In contrast, the balance of contract c∗ might be changed when re-entering as a contract’s
balance can be affected by other contracts once the control is handed over.

A more formal description of the rules illustrated in Figure 4 is given in Table 6. This table shows an excerpt of (simplified) rules generated
from program points holding a CALL instructions. Equation 7 gives the rule for initializing the global state (nonce and balance) of contract
c∗ when re-entering. In this case, first the preconditions for the call (sufficient elements on the stack and sufficient balance for performing
the call) are checked. For the sake of presentation, we omit here the abstract gas treatment. Finally, the nonce n∗ of the abstract address α is
propagated to predicate GStateid*,0 (at a higher relative call depth) of the re-entered contract c∗ and the balance in this state is initialized
to be ⊤. This models that the nonce n∗ is assumed not to be affected by executions of other contracts than c∗ while the balance at the point
of re-entering is unknown and therefore over-approximated as ⊤. Note that the contract c with identifier id that performs the call does not
necessarily need to be c∗, but might be another contract from Ck performing a call to the unknown. Still, only the future executions of c∗

are over-approximated which means that the view of contract c on the global state of c∗ is propagated to the point where c∗ is re-entered.

6For performance reasons, we omit gas completely in the abstract analysis instead of treating it symbolically. These two options are however equivalent.
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Figure 4: Illustration of the call abstractions

Table 6: Excerpt of the abstract execution rules for CALL

LCALLM
Ck , id

∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 6 ∧ t̂o = sa[size − 2] ∧ va = sa[size − 3] ∧ t̂o < {a | (id, a, code) ∈ Ck ∧ id , id∗ } ∪ {α } (7)

∧ ExEnvid (ȧ, î, v̂, ˆinputsize, cd) ∧GState(id, pc) (ȧ, n̂, b̂, cd) ∧ va ≤̂ b̂ ∧ . . . ∧ cd′ > cd + 1 ∧GState(id, pc) (α, n̂
∗, b̂∗, cd) ⇒ GState(id*, 0) (α, n̂

∗, ⊤, cd′),

∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 6 ∧ . . . ∧ v̂a ≤̂ b̂ ∧ ȧ′ , α ∧ cd′ > cd + 1⇒ GState(id*, 0) (ȧ
′, ⊤, ⊤, cd′), (8)

∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 6 ∧ . . . ∧ v̂a ≤̂ b̂ ∧ Stor(id*, pc) (α, ˆpos, v̂, cd) ∧ cd′ > cd + 1⇒ Stor(id*, 0) (α, ˆpos, v̂, cd′), . . . (9)

∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 6 ∧ . . . ∧ v̂a ≤̂ b̂ ∧ ȧ′ , α ∧ cd′ > cd + 1⇒ Stor(id*, 0) (ȧ
′, ⊤, ⊤, cd′), . . . } (10)

Equation 8 shows the initialization of the global state for addresses different from α . We do not spell out all checks for the preconditions here
as those are the same as in Equation 7. In contrast to the previous rules, also the nonces of the other contracts might be changed in arbitrary
fashions and therefore they are over-approximated as ⊤ when re-entering c∗.

Finally, Equation 9 shows how the persistent storage of contract c∗ (with address α) is preserved when re-entering at a higher call depth. In
contrast, the persistent storage of all other addresses is set to be ⊤ at this point (cf. Equation 10).

We focused here on the over-approximations for the global state when performing a call. In addition, we need to perform several other
over-approximations for the other parts of the execution state:

• Similar to the global state, the execution environment for the executions of c∗ in the different call depths is considered to be arbitrary
and therefore initialized to ⊤ (with the only exception being that it contains α as active account address).
• For returning it is always assumed that potentially the call failed or returned with arbitrary return values.
• After returning the global state is assumed to be altered arbitrarily by the call and therefore its components set to ⊤.

For a complete account of the performed over-approximations we refer to the full specification of the abstract semantics spelled out
in Appendix E.

5.3 Limitations
As mentioned before, our analysis will not be able to handle the execution of DELEGATECALL and CALLCODE instructions when they are
performed to unknown recipients. We do not consider this limitation a major drawback, because in practice these instructions are mainly used
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for calling library functionalities whose bytecode should already be published on the blockchain. In addition, using DELEGATECALL or
CALLCODE for calling an unknown contract should always be considered a harmful behavior as handing the control flow over to another
contract using one of these instructions implies that this contract is in full power over spending money on the original contract’s behalf.

In addition to DELEGATECALL and CALLCODE, we exclude the CREATE instruction from our analysis. The semantics of the CREATE
instruction is inherently unsuited to static analysis as when creating new contracts, dynamically generated code (that might depend on the state
of blockchain) gets executed. For this reason we omit the treatment of CREATE and leave it as a future challenge.

6 FORMAL RESULTS
We now formally define the scope of our analysis and the formal guarantees that it provides. As we discussed in § 5.3, we exclude contract
executions that either perform a CALLCODE or DELEGATECALL to an unknown contract c? < Ck or that execute a CREATE instruction
from our analysis. In the following, we will call contract executions not showing this behavior safety compliant for Ck and write Γ ⊨ S →̇∗S ′

for denoting a safety compliant execution.
For the sake of presentation, we will only present the most important definitions and theorems here. For proofs and technical details we refer

the reader to Appendix A and Appendix F.

6.1 Expressiveness of the analysis
The previously discussed analysis enables the verification of reachability properties. More precisely, the analysis allows to capture reachability
properties for the executions of c∗ of the form:

P (Ψ, c∗,SI ) :=

∀S, Γ,∀s ∈ SI .¬∃s
′, S ′.

Γ ⊨ si c∗ :: S →̇∗s ′c∗ :: S ′ + +S ∧ Ψ (s ′, |S ′ |)

(11)

where Ψ (·, ·) : S × N→ B is a predicate on execution states and relative call depths and SI ⊆ {sc∗ | ∃Γ.(Γ, s ) is reachable} is a set of potential
initial states that the execution of contract c∗ may start in.

Intuitively, given a contract c∗ to be analyzed, a characterization SI of the states that the execution of c∗ might start in, as well as a property
Ψ characterizing undesired states, our analysis allows us to check whether an execution of c∗ started in one of the specified initial states can
ever reach a state satisfying Ψ. The property Ψ thereby does not range over whole callstacks, but over individual execution states. Still, it
additionally considers the relative call depth of the execution which adds expressiveness to the analysis compared to considering execution
states exclusively. We demonstrate in § 6.2 how this feature helps us to analyze the single-entrancy property.

Note that we focus on properties of execution states sc∗ that execute the contract c∗ and that we do not aim at showing properties for
execution states sc with c , c∗.
Soundness. For the previously discussed properties, our analysis provides soundness guarantees. This means that whenever the analysis
reports a property of the form specified in Equation 11 to hold, then this property holds true in the concrete execution. Formally, this result is a
consequence of the following soundness theorem:

THEOREM 6.1 (SOUNDNESS). Let Ck be a set of contracts with unique identifiers and addresses and let c∗ ∈ Ck be the contract with
identifier id∗ and ·̊ be a function defined as å = if (id∗,a, ·) ∈ Ck then α else a. Additionally, let S ′ be an annotated callstack such that |S ′ | > 0.
Let s be an execution state that is consistent with Ck and sc∗ be well-formed. Then the following property holds for all callstacks S:

Γ ⊨ sc∗ :: S →̇∗S ′ + +S
=⇒ ∀∆I . αs (s, id∗, 0, ·̊) <: ∆I =⇒ ∃∆S .

∆I ∪ αC (Ck , id
∗) ⊢ ∆S ∧ αS (S ′,Ck , id

∗, 0) <: ∆S

Where the requirement of sc∗ being consistent with Ck and well-formed ensures that the code in the execution environment is the code of
contract c∗ and the contracts in the global state of s with addresses from Ck also carry the codes as specified in Ck .

The soundness theorem establishes a relation between the small-step executions of a contract and the abstract execution of its abstraction.
Intuitively it describes that every concrete execution step in the small-step can be mimicked by an abstract one in the abstract semantics. More
precisely, it states that from every over-approximation ∆I of the abstraction of execution state sc∗ one can – given the abstract execution rules
αC (Ck , id∗) obtained from translating the contracts in Ck – derive an over-approximation ∆S of any abstracted intermediate call stack S ′

reachable from sc∗ .

6.2 Verification of Security Properties
In order to make the security properties from § 4 accessible to our analysis, we over-approximate them as reachability properties.
Over-approximating single-entrancy. We introduce a reachability property called call unreachability that implies single-entrancy. Intuitively,
a contract c is call unreachable if when being executed in a fresh machine state starting, it is not possible to reach a call instruction of the very
same contract c on a higher call level.
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Definition 6.2 (call unreachability). A contract c ∈ C is call unreachable if for all regular execution states (µ, ι,σ ) such that (µ, ι,σ )c is well
formed and µ = (д, 0, λx . 0, 0, ϵ ) for some д ∈ N, it holds that for all transaction environments Γ and all call stacks S

¬∃s ∈ S, S ′ ∈ Sn . Γ ⊨ (µ, ι,σ )c :: S →∗ sc :: S ′ + +S

∧ |S ′ | > 0 ∧ code (c ) [s .µ .pc] ∈ Instcall

Where the set Instcall of call instructions is defined as

Instcall = {CALL,CALLCODE,DELEGATECALL,CREATE}

Formally, we state the relation between single-entrancy and call unreachability in the following theorem:

THEOREM 6.3. Call unreachability implies single-entrancy.

Intuitively, this theorem holds as an internal transaction can only be initiated by the execution of a call instruction. Consequently, for
excluding that an internal transaction was initiated after re-entering, it is sufficient to ensure that no call instruction is reachable at this point.
In addition, as all contracts start their executions in a fresh machine state (program counter and active words set to 0, empty stack, memory
initialized to 0) when being initially called, it is sufficient to check all executions of contract c that started in such a state. Appendix B describes
in detail how to express single entrancy in terms of a reachability query.
Over-approximating dependency properties. All other properties presented in [18], and in particular those discussed in § 4.3, constitute
simple value independency properties. Inspired by [33], we over-approximate those kinds of properties through a dependency analysis, which
we encoded as a reachability property in EtherTrust. In a nutshell, we propagate dependency labels along explicit flows in the expected fashion
and capture implicit flows by labeling whole abstract execution states in the case when labeled values affect the control flow. E.g., whenever
encountering a conditional jump instruction with a labeled condition, we label all states reachable from this point. In this fashion we can check
whether some value influences the call behavior of a contract c∗ by checking whether it is ever possible to reach a state of c∗ at a program point
with a call instruction that is labeled or where labeled values are arguments to the call instruction.

7 EXPERIMENTAL EVALUATION
Based on the abstract semantics discussed in § 5, we developed EtherTrust – a static analyzer for EVM bytecode. EtherTrust verifies reachability
and value dependency in a fully automated fashion, even assuming an entirely unknown blockchain environment. The sources of EtherTrust, a
cross platform build, as well as all datasets used for evaluation are made available online7.

7.1 Mode of Operation
EtherTrust proceeds by translating contract code provided in the bytecode format into an internal Horn clause represenation, as specified in § 5.
This Horn clause representation, together with a representation facts over-approximating all potential initial configurations that the contract
execution might start in, is handed to the SMT solver Z3 [16] via an API. Thanks to our separate internal representation, we can easily extend
the tool to interface with other SMT solvers and therefore to benefit from their specific strengths. EtherTrust automatically generates the queries
for verifying single-entrancy and independence of the transaction environment and can be easily extended to also support other reachability
properties. For showing that the analyzed contract satisfies a reachability property, the unsatisfiability of the corresponding analysis queries
needs to be verified using Z3’s fixed point engine SPACER [23]. If all analysis queries are deemed unsatisfiable then the contract under analysis
is guaranteed to satisfy the original reachability query according to the soundness Theorem 6.1 presented in § 5. Note that we terminate the
analysis without result in case that a contract contains an unsupported instruction such as CREATE and thereby ensure that the preconditions
of the soundness theorem are met. Additionally, for now the tool only supports the analysis of single contracts and does not allow for specifying
an additional set of known contracts. For this reason, the analysis is also directly aborted in case that a contract contains a CALLCODE or a
DELEGATECALL instruction.

7.2 Evaluation
For the performance evaluation, we focus on the verification of single-entrancy (SE) and independence of miner controlled state (MI). For the
latter, we consider only the information potentially influenced by the miner and that can directly be accessed by a contract, i.e., the transaction
environment and the accounts’ balances. The reason for considering these two properties is that variations of them are also supported by the
state-of-the-art EVM bytecode analysis tool Oyente [24], which allows us to run a comparative performance evaluation. More precisely, Oyente
supports re-entrancy (the dual of single-entrancy (SE)) and timestamp dependency (a special case of the dual (MI) of MI)8. We performed
experiments on a server with an 8 core Intel Xeon E5-2690 CPU at 2.60GHz, and 8 GB of RAM, running 64-bit Debian GNU/Linux 8 (jessie).
Benchmark. For illustrating how EtherTrust and Oyente generally compare in terms of recall and precision, we run the two tools on a small
benchmark that we assembled by crawling all code snippets from the literature that are meant to enforce MI or SE [4, 10, 15, 18, 24, 34], which
were designed by the authors to include interesting corner cases. It shows that besides being sound, EtherTrust is more precise than Oyente on
the test cases from the benchmark. The results are summarized in Table 7 reporting precision and soundness metrics. While EtherTrust (as
7https://sites.google.com/site/ethertrustweb
8We could not compare with ZEUS [22], another state-of-the-art smart contract analysis tool, since it supports only Solidity source code and is unfortunately not publicly available.
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Table 7: Results of the evaluation of Oyente (O) and EtherTrust (ET) on the benchmark. The table shows the overall numbers of true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for the evaluation of Oyente and EtherTrust for both SE and
MI. We consider a result a positive (negative), if it labels a contracts a vulnerable (secure). In addition the table shows precision and recall on
the benchmark for the two tools.

TP TN FP FN Precision Recall
O 6 0 3 2 0.67 0.75
ET 8 1 2 0 0.8 1

Table 8: Evaluation of Oyente (O) and EtherTrust(ET) on the top 10k contracts from the blockchain and the full blockchain, respec-
tively. Column

∑
holds the overall number of extracted contracts after cleaning. Columns # ter. SE (# ter. MI) denote the number of contracts

on which the analysis terminated for SE (MI). Note that Oyente performs checks for both properties in parallel wherefore the numbers for them
agree. Columns # SE (# MI) hold the number of contracts reported to violate SE (MI). The columns ∅t hold the average running time for the
analysis of the corresponding property in seconds.

10k
∑

# ter. SE # SE # ter. MI # MI ∅t
O

148
18 12 (18) 3 26,5

ET 100 4 107 2 2,8

being sound) has a recall of 1, Oyente reports two false negatives on the benchmark and therefore ends up with a recall of 0.75. Furthermore,
with precision 0.8, EtherTrust is more precise than Oyente which shows a precision of 0.67 on the benchmark.
Blockchain. For comparing the performance of EtherTrust and Oyente on a more representative set of contracts, we ran the tools on contracts
from the Ethereum blockchain (status May the 4th, 2018).

We extracted the top 10000 contracts from the blockchain ranked by their account’s balance. We eliminated all duplicates (by MD5 hash
over the contract code) and additionally removed all contracts that can trivially be deemed safe for SE and MI as they do not contain any CALL
instructions. Interestingly, this cleaning step left us with only 148 different contracts. Out of these, EtherTrust terminated on 100 contracts
(with a 2-minute-timeout) for SE, while Oyente only terminated on 18 contracts for the same property and timeout. Table 8 reports the results
for both SE and MI. Note, however, that the results for MI are not directly comparable, as Oyente only checks for independence from the block
timestamp while EtherTrust checks for the independence from the whole transaction environment and the account’s balances.

Overall, EtherTrust proves 96 of the contracts that it terminated on for SE to be secure and flags 4 as potentially vulnerable. We could
observe that EtherTrust missed 13 of the contracts that Oyente managed to analyze while Oyente failed on 95 contracts of those that EtherTrust
could analyze within the same time limit for SE. Out of the 5 contracts that both of them terminated on, for 2 contracts Oyente and EtherTrust
report different results (with EtherTrust labeling contracts vulnerable that are considered secure by Oyente). Consequently, we can not easily
tell apart, whether this divergence is caused by an imprecision of EtherTrust or the unsoundness of Oyente. Originally, we were striving for
exploring the reasons for these different behaviors by manual investigation, but it turned out that, for the contracts in question, no source code
is available and manually validating properties on contracts that consist of several hundreds bytecodes is hardly possible. In general, the poor
performance of Oyente in terms of coverage together with the lack of ground truth made it difficult to gain deeper insights on how Oyente and
EtherTrust compare in terms of precision on real-life contracts and how badly Oyente is affected in practice by unsoundness. Still, we can
observe that EtherTrust outperforms Oyente by one order of magniture in efficiency (3s vs 26,5s average execution time) and coverage (100 vs
18 analyzed contracts).

8 CONCLUSION
We presented Ethertrust, the first sound static analyzer for EVM bytecode. The semantics of smart contracts is abstracted into a set of Horn
clauses and security properties are expressed as queries, which are solved using Z3. In particular, Ethertrust supports reachability properties,
which we show to suffice to capture the most interesting security properties for smart contracts, such as single entrancy and independence of
the transaction environment. The analysis of contracts stored on the blockchain typically takes a few seconds and outperforms Oyente in terms
of efficiency and coverage by one order of magnitude on real-life contracts and turns out to be more precise on our benchmark too, despite
being the first one in the literature to provide formal security guarantees.

This work opens up several interesting research directions. For instance, we plan to extend our analysis to hyperproperties in order to directly
verify those introduced by Grischchenko et al. [18]. Furthermore, we intend to leverage Ethertrust for the verification of contract-specific
properties, such as the security of cryptographic libraries used in smart contracts. Finally, we would like to investigate how the ideas underlying
our static analysis can be generalized in order to support other emerging contract development platforms [4, 5].
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A OVER-APPROXIMATING SINGLE ENTRANCY
We start introducing some notions and general properties of the small-step semantics that facilitates the understanding of the abstractions that
are performed later on.

As the goal analysis is to show properties of specific contracts, we further introduce, and assume throughout the paper, an annotation to the
small step semantics in order to highlight the contract c that is currently executed. To this end we assume contracts to be tuples of the form
(a, code) where a ∈ A denotes the address of the contract and code ∈ [B] denotes the contract’s code. We denote the set of contracts by C and
assume functions address (·) and code (·) that extract the contract address and code respectively.

The contract annotations allow for arguing easily about the execution of one contract. We can state the property that the execution of EVM
bytecode always starts at an initial state. Or more precisely: An execution of a contract c leading to a reachable execution state must have
passed an initial state of c before.

LEMMA A.1. Let (Γ, sc :: S ) be a reachable configuration. Then there exists an initial execution state si such that (Γ, si c :: S ) is a reachable
configuration and

Γ ⊨ si c :: S →∗ sc :: S

In order to approximate the set of reachable execution states, we introduce the notion of well-formation for annotated execution states. An
annotated execution state sc is well-formed if it holds the code of c as active code in the execution environment.
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Definition A.2 (Well-formation of annotated execution state). An annotated execution state sc is well-formed if one of the following holds:
• s = EXC
• s = HALT(σ ,gas,d )
• s = (µ, ι,σ ) and ι.code = code (c )

In addition we define consistency of an execution state with respect to a set of contracts. Intuitively, an annotated execution state sc is
consistent with a set of contracts CC ⊆ C if the global state of s maps the addresses in CC to the same codes as CC does.

Definition A.3 (Consistency of execution state). An execution state s ∈ S is consistent with a set of contracts CC ⊆ C if one of the following
holds:
• s = EXC
• s = HALT(σ ,gas,d )
• s = (µ, ι,σ ) and for all (a, code) ∈ CC it holds that σ (a) = (n,b, stor, code) for some n,b ∈ N and stor ∈ N256 → N256

In order to justify the decision to take well-formed states that are consistent with their annotated contract {c} as an over-approximation of
reachable states, we observe that each reachable execution state satisfies these properties.

LEMMA A.4 (WELL-FORMATION OF REACHABLE STATES). Let (Γ, sc :: S ) be a reachable configuration. Then sc is well-formed and s is
consistent with {c}.

In addition, we can show that well-formation and consistency with the contract annotation are preserved during execution and hence this
property serves as a suitable invariant for execution state.

LEMMA A.5 (PRESERVATION OF WELL-FORMATION). Let sc be a well-formed execution state such that s is consistent with {c}. Let Γ ∈ Γ
be a transaction environment and S, S ′ ∈ Sn such that Γ ⊨ sc :: S →∗ S ′ + +S . Then for all s ′c ′ ∈ S ′ it holds that s ′c ′ is well-formed and s ′ is
consistent with {c ′}.

In general, we can show that consistency with respect to an arbitrary subset of contracts is preserved during execution as well. This
is as the contract code of an account cannot be altered and contracts cannot be deleted during transaction execution. The effects of the
SELFDESTRUCT instruction whose execution schedules the executing contract for deletion only apply after the successful completion of the
transaction and consequently are not visible during the small-step execution.

LEMMA A.6 (PRESERVATION OF CONSISTENCY). Let s be a well-formed execution state and CC ⊆ C be set of contracts such that CC is
consistent with s. Let Γ ∈ Γ be a transaction environment and S, S ′ ∈ S such that Γ ⊨ s :: S →∗ S ′ + +S . Then for all s ′c ′ ∈ S ′ it holds that s ′ is
consistent with CC .

PROOF. Proof by induction on the number of small steps. □

Another observation is that the influence of the call stack on the contract’s execution is limited to the size of the callstack. Depending on the
callstack size, an error in the top-level execution might occur due to exceeding the callstack limit.

Formally, we capture this property in the following lemma:

LEMMA A.7 (CALL STACK INDIFFERENCE UP TO SIZE). Let s be an execution state, c a contract, Γ a transaction environment and let S ,
S ′ and U be call stacks such that |S | = |U |. Then it holds that

Γ ⊨ sc :: S →∗ S ′ + +S ⇔ Γ ⊨ sc :: U →∗ S ′ + +U

Recall the definition of call unreachability:

Definition A.8 (call unreachability). A contract c ∈ C is call unreachable if for all regular execution states (µ, ι,σ ) such that (µ, ι,σ )c is well
formed and µ = (д, 0, λx . 0, 0, ϵ ) for some д ∈ N, it holds that for all transaction environments Γ and all call stacks S

¬∃s ∈ S, S ′ ∈ Sn . Γ ⊨ (µ, ι,σ )c :: S →∗ sc :: S ′ + +S

∧ |S ′ | > 0 ∧ code (c ) [s .µ .pc] ∈ Instcall

Where the set Instcall of call instructions is defined as

Instcall = {CALL,CALLCODE,DELEGATECALL,CREATE}

We need to show that call unreachability is a sufficient criterion for showing single-entrancy. To this end, we first state some properties of
smart contract execution.

First, we formalize that every valid contract execution in each call level starts in a fresh machine state.

LEMMA A.9 (CONTRACT EXECUTION FROM FRESH MACHINE STATE). Let (Γ, sc :: S ) be a reachable configuration. Then there exist gas
value д ∈ N, execution environment ι and global state σ such that (Γ, ((д, 0, λx . 0, 0, ϵ ), ι,σ )c :: S ) is a reachable configuration and

Γ ⊨ ((д, 0, λx . 0, 0, ϵ ), ι,σ )c :: S →∗ sc :: S
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PROOF. Proof by induction on the number of small steps. □

We state two general properties that relate contract code and the call stacks during execution. First, if an element is added to the callstack,
then this happened due to the execution of a call instruction. Second, if an element is added to the call stack during execution and the previous
calling state stayed unchanged, then adding the new call stack element was the first execution step of the sequence.

LEMMA A.10 (CALLSTACK GROWTH). Let (Γ, sc :: S ) be a configuration and Γ ⊨ sc :: S → S ′ such that |S | + 1 < |S ′ |. Then
S ′ = s ′c ′ :: sc :: S for some s ′ ∈ S, c ′ ∈ C and s .ι.code [s .µ .pc] ∈ Instcall.

LEMMA A.11 (PRESERVATION OF CALLER STATE). Let (Γ, S ) be a configuration and Γ ⊨ S →∗ S ′ + +S for some S ′ ∈ Sn/{ϵ }. Then there
is a state s ∈ S and a contract c ∈ C such that Γ ⊨ S → sc :: S and Γ ⊨ sc :: S →∗ S ′ + +S .

THEOREM A.12. If a contract c ∈ C is call unreachable then c is also single-entrant.

PROOF. Assume c not to be single-entrant. Then there exists a reachable configuration (Γ, sc :: S ) and states s, s ′ and a callstack S ′ such
that Γ ⊨ sc :: S →∗ s ′c :: S ′ + +sc :: S (*) and a state s ′′ and a contract c ′′ such that Γ ⊨ s ′c :: S ′ + +sc :: S →∗ s ′′c ′ :: s ′c :: S ′ + +sc :: S (**).
We show that that there is an initial machine state µ = (д, 0, λx . 0, 0, ϵ ), an execution environment ι and a global state σ such that (µ, ι,σ )
is well formed and that Γ ⊨ (µ, ι,σ )c :: S →∗ s ′c :: (S ′ + +[sc ]) + +S . By Lemma A.9 we conclude that there exists fitting µ, ι,σ such that
(Γ, (µ, ι,σ )c :: S ) is a reachable configuration and consequently (µ, ι,σ )c is well-formed (by Lemma A.4) and Γ ⊨ (µ, ι,σ )c :: S →∗ sc :: S . By
(*) we can conclude that Γ ⊨ (µ, ι,σ )c :: S →∗ s ′c :: S ′ + +sc :: S . It is left to show that code (c )[s ′.µ .pc] ∈ Instcall. By (**) and Lemma A.11,
we can conclude that there is a state s∗ and a contract c∗ such that Γ ⊨ s ′c :: S ′ + +sc :: S → s∗c∗ :: s ′c :: S ′ + +sc :: S . This gives us with
Lemma A.10 that s ′.ι.code [s ′.µ .pc] ∈ Instcall. As (Γ, s ′c :: S ′ + +sc :: S ) is a reachable configuration, s ′c is well-formed and consequently
s ′.ι.code = code (c ) so the claim follows. □

B SINGLE ENTRANCY AS A REACHABILITY QUERY
The call unreachability property falls exactly in the spectrum of properties that can be checked by our analysis (as discussed in Section 6.1).
More concretely, we can check this property for a contract c∗ with code code and (unknown and therefore symbolic) address α using the
following steps:

1) We model the execution state (µ, ι,σ )c∗ by initializing the state predicates at program point (id∗, 0) (where id∗ is a freely chosen identifier)
at relative call depth 0 with ⊤ for all values that are not further specified and only initializing the stack and local memory precisely as well as
setting abstract address α as actor in ExEnvid* at call depth 0. For the resulting abstract configuration it holds that Π :> αs ((µ, ι,σ )c , id

∗, 0, ·̊)
for all possible execution states (µ, ι,σ ) with a fresh machine state µ.

2) We translate the code of contract c∗ and of all other contracts that we want to incorporate in our analysis to Horn clauses. This is done by
first picking unique identifiers (different from id∗) for the contract to be analyzed so that formally we can represent them as a set Ck . Note that
for all contracts but c∗, which carries symbolic address α , we need to give a concrete address on the blockchain. This is necessary as a contract
can only be considered known when it is already deployed on the blockchain. Finally we perform the translation as defined in Table 4 to obtain
an abstract contract ∆.

3) We generate reachability queries for checking whether a program point of c∗ containing a call instruction can ever be reached at a higher
call level. Note that due to CALLCODE and DELEGATECALL this might also happen when c∗ executes code of another contract in Ck . More
precisely, we will query for the derivability of the elements of the following set of queries (where queries are assumed to be conjunctions of
facts):

{MState(id, pc) ((size, sa), aw, gas, cd) ∧ ExEnvid (α , î, v̂a, ˆsize, cd) |

cd > 0 ∧ (id, ·, code) ∈ Ck ∧ code [pc] ∈ Instcall}

For checking pure reachability of a program point it is sufficient to check for the reachability of any fact that is indexed by the program point as
it holds that, without putting any constraints on their arguments, all of those facts are reachable if and only if the others are. If none of those
facts can be derived then contract c∗ is by the soundness property (Theorem 6.1) guaranteed not to be single-entrant.

C SEMANTICS OF CALL AND CREATE FUNCTIONS
We will explain the semantics of those instructions in an intuitive way omitting technical details.

The call instructions initiate a new internal call transaction whose parameters are specified on the machine stack – including the recipient
(callee) and the amount of money to be transferred (in the case of CALL and CALLCODE). In addition, the input to the call is specified by
providing the corresponding local memory fragment and analogously a memory fragment for the return value.

When executing a call instruction, the specified amount of wei is transferred to the callee and the code of the callee is executed. The different
call types differ in the environment that the callee code is executed in. In the case of a CALL instruction, while executing the callee code (only)
the account of the callee can be accessed and modified. So intuitively, the control is completely handed to the callee as its code is executed in
its own context. In contrast, in the case of CALLCODE, the executed callee code can (only) access and modify the account of the caller. So
the callee’s code is executed in the caller’s context which might be useful for using library functionalities implemented in a separate library
contract that e.g., transfers money on behalf on the caller.
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Figure 5: Illustration of of the semantics of different call types

This idea is pushed even further in the DELEGATECALL instruction. This call type does not allow for transferring money and executes the
callee’s code not only in the caller’s context, but even preserves part of the execution environment of the previous call (in particular the call
value and the sender information). Intuitively, this instruction resembles adding the callee’s code to the caller as an internal function so that
calling it does not cause a new internal transaction (even though it formally does).

Figure 5 summarizes the behavior of the different call instructions in EVM bytecode. The executed code of the respective account is
highlighted in orange while the accessible account state is depicted in green. The remaining internal transaction information (as specified in
the execution environment) on the sender of the internal transaction and the transferred value are marked in violet. In addition, the picture
relates the corresponding changes to the small-step semantics: the execution of a call transaction adds a new execution state to the call stack
while preserving the old one. The new global state σ ′ records the changes in the accounts balances, while the new execution environment ι′

determines the accessible account (by setting the actor of the internal transaction correspondingly), the code to be executed (by setting code)
and further accessible transaction information as the sender, value and input (by setting sender, value and input respectively).

The CREATE instruction initiates an internal transaction that creates a new account. The semantics of this instruction is similar to the one
of CALL, with the exception that a fresh account is created, which gets the specified value transferred, and that the input provided to this
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Figure 6: Semantics of the CREATE instruction

internal transaction, which is again specified in the local memory, is interpreted as the initialization code to be executed in order to produce the
newly created account’s code as output. Figure 6 depicts the semantics of the CREATE instruction in a similar fashion as done for the call
instructions before. It is notable that the input to the CREATE instruction is interpreted as code and executed (therefore highlighted in orange)
in the context of the newly created contract (highlighted in green). During this execution the newly created contract does not have any contract
code itself (therefore depicted in gray), but only after completing the internal transaction the return value of the transaction will be set as the
code for the freshly created contract.

D ZEUS
A recently published work is the analysis tool ZEUS [22] that analyses smart contracts written in Solidity using symbolic model checking.
The analysis proceeds by translating Solidity code to an abstract intermediate language that again is translated to LLVM bitcode. Finally,
existing symbolic model checking tools for LLVM bitcode are leveraged for performing the analysis. The security properties are defined in
terms of XACML style policies that are translated to state reachability assertions in the intermediate language (and finally to assertions in
LLVM bitcode). The authors evaluate their tool for generic security properties (such as reentrancy) which are however not expressed in terms
of policies (which are contract specific), but by an informal description of how to add specific assertions to contracts of interest. In addition,
the insertion of assertions is not sufficient for checking, e.g., for reentrancy but additional program modifications are applied to the original
contracts. The authors claim their tool to be sound which they support by a proof sketch and empirical results. This claim however has several
short comings:

• There is no formal soundness statement made. In particular, there is no formal relation between the policy compliance of Solidity
contracts and the analysis results established and also not covered in the proof sketch.
• The proof is more than sketchy and has several holes and at least two flaws: While there is an intuitive argument why given the translation

from Solidity to the abstract intermediate language are correct and adding assertions does not influence semantics, there is no proof
provided for the statement that the translation from the intermediate language to LLVM bitcode preserves soundness. That this property
does not hold is (indirectly) admitted by the authors as they discuss that the compiler optimizations on LLVM bitcode remove relevant
contract behavior. Consquently assuming that compiler optimizations on LLVM bitcode are semantics preserving this clearly contradict
that the translation from the intermediate language preserves semantics. For one particular optimization, a fix is hard coded, but there is
no formal argument given that this particular fix is sufficient for establishing soundness. Also the claim that the the provided translation
from Solidity to the intermediate language is faithful can be clearly contradicted. This is due to a clear deviation in the call semantics of
the intermediate language from the Solidity semantics. The mechanism underlying Solidity’s call functionalities is the one of the CALL
instructions in EVM bytecode. In particular, this mechanism determines that the failing of a contract call causes the revocation of the
global state to the point of calling. The proposed semantics of the intermediate language however does not allow for such a revocation
(even by design). Grishchenko et al. [18] spotted a similar issue in the semantics used in Oyente [24].
• The final results for the predefined properties (such as reentrancy) are not covered by the soundness claim at all as there is no (formal)

argument made that the performed program modifications are sound.
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E ABSTRACT RULES
E.1 Abstract domain and Abstract operations
Abstract domain. The values of our analysis range over the abstract domain D̂ = {⊤,⊥,α } ∪N. Formally, each element of the abstract domain
can be mapped to a subset of N by the concretisation function γ : D̂ → P (N). More precisely it holds:

γ (⊤) := N
γ (⊥) := ∅
γ (α ) := N
γ (n) := {n} n ∈ N

Accordingly, we can define a corresponding abstraction function β : P (N) → D̂ mapping subsets of N to abstract values as follows:

β ({n}) := n n ∈ N

β (∅) := ⊥
β (N) := ⊤
β (N ) := ⊤ N < {N, ∅} ∪ {{n} | n ∈ N}

Abstract operations. Using the function β , we can easily characterize abstract arithmetic operations as follows:

Eopbin (â, b̂) := β ({opbin (a,b) | a ∈ γ (â) ∧ b ∈ γ (b̂)})

More precisely this means that only if both operands were unique values, also the abstract operation on those values will result in an abstract
value again. This way of defining abstract operations also illustrates well the nature of α : This element only exists in the abstract domain as
long as it stays untouched. Otherwise it gets immediately declassified to ⊤.

In the same spirit we can characterize unary operations.:

ôpun (â) := β ({opun (a) | a ∈ γ (â)})

Using this kind of instructions we can easily show the soundness of abstract operations:

LEMMA E.1. Let â, â′, b̂, b̂ ′ ∈ D̂ such that â ⊑ â′ and b̂ ⊑ b̂ ′. Then

Eopbin (â, b̂) ⊑ Eopbin (â′, b̂ ′)

Note that in particular this means that

opbin (a,b) ⊑ Eopbin (â, b̂)

for a,b ∈ N and â, b̂ ∈ D̂ such that a ⊑ â and b ⊑ b̂ as the abstract operations agree with with concrete ones given concrete inputs.
A similar property holds for unary operations:

LEMMA E.2. Let â, â′ ∈ D̂ such that â ⊑ â′. Then

ôpun (â) ⊑ ôpun (â′)

Note on the kind of operations transformed. In the small-step semantics presented by Grishchenko et al. [18], arithmetic and logical
operations are performed on words of size 256. Here we chose to use the natural number (N) for representing concrete numbers in the abstract
domain and hence values on the stack. This however just serves as means of representation and when performing the corresponding arithmetic
operations, we make sure to respect the bounds of the corresponding values (by performing all operations modulo 2256) and also to consider
whether the corresponding operations are performed on signed or unsigned integers. More precisely, we convert the functions as defined by
funbin in [18] to their corresponding abstract versions. For the sake of representation, we will just use the usual operation symbols (such as +̂ )
for denoting e.g. abstract addition modulo 2256.

Abstract comparison operators opcomp can be seen as logical propositions parametrized by D̂ × D̂ and are formally defined as
follows:

Fopcomp (â, b̂) :⇔ {(a,b) | a ∈ γ (â) ∧ b ∈ γ (b̂) ∧ opcomp (a,b)} , ∅

Note that the semantics of the negated versions of the operators differs from the one of negation of the corresponding positive proposition.
Accordingly, we define the semantics of an abstract conditional operator as follows:

opcomp (â, b̂) ?̂ ŝ :̂ t̂ := β ({ŝ | opcomp (â, b̂)} ∪ {t̂ | opcomp (â, b̂)})

where â, b̂, ŝ and t̂ are terms over abstract values and operations and opcomp is the negation of the operator opcomp.
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E.2 Arithmetic, logical and comparison operations
We define the abstract semantics for binary stack operations. To this end, we recap the definitions from [18]: We define

Instbin := {ADD,SUB,LT,GT,EQ,AND,OR,XOR,SLT,SGT,MUL,DIV,SDIV,

MOD,SMOD,SIGNEXTEND,BYTE}

and

costbin (ibin) =



3 ibin ∈ {ADD,SUB,LT,GT,SLT,SGT,EQ,AND,OR,XOR,BYTE}
5 ibin ∈ {MUL,DIV,SDIV,MOD,SMOD,SIGNEXTEND}

and

funbin (ibin) =




λ(a,b). a + b mod 2256 ibin = ADD
λ(a,b). a − b mod 2256 ibin = SUB
λ(a,b). a < b ? 1 : 0 ibin = LT
λ(a,b). a > b ? 1 : 0 ibin = GT
λ(a,b). a− < b− ? 1 : 0 ibin = SLT
λ(a,b). a− > b− ? 1 : 0 ibin = SGT
λ(a,b). a = b ? 1 : 0 ibin = EQ
λ(a,b). a&b ibin = AND
λ(a,b). a∥b ibin = OR
λ(a,b). a ⊕ b ibin = XOR
λ(a,b). a · b mod 2256 ibin = MUL
λ(a,b). (b = 0) ? 0 : ⌊a ÷ b⌋ ibin = DIV
λ(a,b). (b = 0) ? 0 : a mod b ibin = MOD
λ(a,b). (b = 0)? 0 : (a = 2255 ∧ b− = −1)? 2256 :
let x = a− ÷ b− in (sign(x ) · ⌊|x |⌋)+ ibin = SDIV
λ(a,b). (b = 0) ? 0 : (sign(a) · |a | mod |b |)+ ibin = SMOD
λ(o,b). (o ≥ 32) ? 0 : b[8 · o, 8 · o + 7] · 0248 ibin = BYTE
λ(a,b). let x = 256 − 8(a + 1) in
let s = b [x] in sx · b[x , 255] ibin = SIGNEXTEND

where sign(·) : Intx → {−1, 1} is defined as

sign(x ) =



1 x ≥ 0
0 otherwise

and &, ∥ and ⊕ are bitwise and, or and xor, respectively. We let in the following Ffunbin (·) denote the function that maps binary operations
to their corresponding abstract versions as defined in Section E.1.

Then we can compactly define the abstract semantics of binary stack operations ibin ∈ Instbin as follows:

LibinM
Ck , id∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ ˆgas ≥̂ costbin (ibin) ∧ x̂ = sa[size − 1] ∧ ŷ = sa[size − 2]

⇒ MState(id, pc+1) ((size − 1, sasize−2
Efunbin (ibin ) (x̂,ŷ )

, âw, ˆgas −̂ costbin (ibin), cd),

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ costbin (ibin) ⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ costbin (ibin) ⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 1 ∧ ˆgas ≥̂ costbin (ibin) ⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ costbin (ibin) ⇒ Excid (cd)

}
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Next we define the abstract rules for exponentiation EXP. To this end, we first define a macro that summarizes the common precondition of
the abstract rules (in case of successful execution):

CheckPremsEXP :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1x̂ = sa [size − 1]ŷ = sa [size − 2]ĉ = (ŷ =̂ 0) ?̂ 10 :̂ 10 +̂ 10 ∗ (1 +̂Flog256 (ŷ)) ∧ ˆgas ≥̂ ĉ

where Flog256 =
Gλx . ⌊log256 (x )⌋ .

LEXPMCk , id
∗

(id,pc) =

{CheckPremsEXP ⇒ MState(id, pc+1) ((size − 1, sasize−2
êxp (x̂,ŷ ) , âw, ˆgas −̂ ĉ, cd),

CheckPremsEXP ∧Mem(id, pc) ( ˆpos, v̂a, cd) ⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

CheckPremsEXP ∧GState(id, pc) (ȧ, n̂, b̂, cd) ⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

CheckPremsEXP ∧ Stor(id, pc) (ȧ, ˆpos, v̂, cd) ⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1ŷ = sa [size − 2]ĉ = (ŷ =̂ 0) ?̂ 10 :̂ 10 +̂ 10 ·̂ (1 +̂Flog256 (ŷ)) ∧ ˆgas <̂ ĉ ⇒ Excid (cd)

}

where êxp = Gλ(x ,y). (xy ) mod 2256

Another non-standard arithmetic operation is the SHA3 instruction that computes the hash of a provided number. As this is out of scope of
our analysis, we directly over-approximate this value as ⊤.

For summarizing the more involved gas check, we again introduce a macro:

CheckPremsSHA3 :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1îo = sa [size − 1]îs = sa [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, îo, îs)

∧ ĉ = ECmem (âw, ˆaw′) +̂ 30 +̂ 6 ·̂Fdivceil (îs, 32) ∧ ˆgas ≥̂ ĉ

where Fdivceil =
Gλ(x ,y). ⌈ xy ⌉

LSHA3MCk , id
∗

(id,pc) =

{CheckPremsSHA3 ⇒ MState(id, pc+1) ((size − 1, sasize−2
⊤ , ˆaw′, ˆgas −̂ ĉ, cd),

CheckPremsSHA3 ∧Mem(id, pc) ( ˆpos, v̂a, cd) ⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

CheckPremsSHA3 ∧GState(id, pc) (ȧ, n̂, b̂, cd) ⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

CheckPremsSHA3 ∧ Stor(id, pc) (ȧ, ˆpos, v̂, cd) ⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1îo = sa [size − 1]îs = sa [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, îo, îs)

∧ ĉ = ECmem (âw, ˆaw′) +̂ 30 +̂ 6 ·̂Fdivceil (îs, 32) ∧ ˆgas <̂ ĉ ⇒ Excid (cd)

}

Next, we define the unary stack operations ISZERO and NOT:

LISZEROMCk , id
∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ x̂ = sa[size − 1] ∧ x̂ =̂ 0⇒ MState(id, pc+1) ((size, sasize−1
1 ), âw, ˆgas −̂ 3, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ x̂ = sa[size − 1] ∧ x̂ ,̂ 0⇒ MState(id, pc+1) ((size, sasize−1
0 ), âw, ˆgas −̂ 3, cd),

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 1⇒ Excid (cd),
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MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 3⇒ Excid (cd)

}

LNOTMCk , id
∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ x̂ = sa[size − 1]⇒ MState(id, pc+1) ((size, sasize−1
¬̂ x̂ ), âw, ˆgas −̂ 3, cd),

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 1⇒ Excid (cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 3⇒ Excid (cd)

}

Finally, we define the abstract semantics for the ternary stack operations ADDMOD and MULMOD:

LADDMODMCk , id
∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8 ∧ x̂ = sa[size − 1] ∧ ŷ = sa[size − 2] ∧ ẑ = sa[size − 3]

⇒ MState(id, pc+1) ((size − 2, sasize−3
Gaddmod (x̂,ŷ, ẑ )

), âw, ˆgas −̂ 8, cd),

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 8⇒ Excid (cd)}

where Gaddmod = Gλ(x ,y, z). z = 0 ? 0 : (x + y) mod z

LMULMODMCk , id
∗

(id,pc) =

{MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8 ∧ x̂ = sa[size − 1] ∧ ŷ = sa[size − 2] ∧ ẑ = sa[size − 3]

⇒ MState(id, pc+1) ((size − 2, sasize−3
Gmulmod (x̂,ŷ, ẑ )

), âw, ˆgas −̂ 8, cd),

Mem(id, pc) ( ˆpos, v̂a, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ Mem(id, pc+1) ( ˆpos, v̂a, cd),

GState(id, pc) (ȧ, n̂, b̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ GState(id, pc+1) (ȧ, n̂, b̂, cd),

Stor(id, pc) (ȧ, ˆpos, v̂, cd) ∧MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size > 2 ∧ ˆgas ≥̂ 8⇒ Stor(id, pc+1) (ȧ, ˆpos, v̂, cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), ˆgas, âw, cd) ∧ ˆgas <̂ 8⇒ Excid (cd)}

where Gmulmod = Gλ(x ,y, z). z = 0 ? 0 : (x · y) mod z

E.3 Accessing the execution environment

LADDRESSMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2 ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

⇒ MState(id, pc+1) ((size + 1, sasize
ȧ′ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),
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MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LCALLERMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2 ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

⇒ MState(id, pc+1) ((size + 1, sasize
î

), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LCALLVALUEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2 ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

⇒ MState(id, pc+1) ((size + 1, sasize
v̂a ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LCALLDATASIZEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2 ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

⇒ MState(id, pc+1) ((size + 1, sasize
ˆinputsize

), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LCODESIZEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
|getCode (id,Ck ) |

), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),
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MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LCALLDATALOADMCk , id
∗

(id,pc) = {

//Case 1: the input data size and position are concrete

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ pos′ = sa [size − 1] ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

∧ ˆinputsize, pos′ ∈ N ∧ Inputdataid (pos′, v̂1, cd) · · · ∧ Inputdataid (pos′ + k − 1, v̂k , cd)

∧ k = ( ˆinputsize − pos′ < 0) ? 0 : min ( ˆinputsize − pos′, 32) ∧ v̂ ′′ = (v̂1 | |k−1 (. . . | |1 v̂k )) | |31−k 031−k

⇒ MState(id, pc+1) ((size, sasize−1
v̂ ′′ ), âw, ˆдas −̂ 3, cd),

//Case 2: the input data size is abstract

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd) ∧ ˆinputsize ∈ {⊤,α }

⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 3, cd),

//Case 3: position is abstract

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3 ∧ pos′ = sa [size − 1] ∧ pos′ ∈ {⊤,α }

⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 3, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 3⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

| k ∈ [1, 32]
}

E.4 Accessing the transaction environment
As we do not model the transaction environment explicitly, we over-approximate all accesses to it.

LORIGINMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LGASPRICEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}
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LCOINBASEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LTIMESTAMPMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LNUMBERMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LDIFFICULTYMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LGASLIMITMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
⊤ ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),
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GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LBLOCKHASHMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 20⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 20, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 20⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 20⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 20⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 20⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

}

E.5 Accessing the global state

LBALANCEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400 ∧ ȧ′ = sa [size − 1] ∧ ȧ′ ∈ Aknown ∧GState(id, pc) (ȧ
′,n′,b

′
, cd)

⇒ MState(id, pc+1) ((size, sasize−1
b
′ ), âw, ˆдas −̂ 400, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400 ∧ ȧ′ = sa [size − 1] ∧ ȧ′ < Aknown

⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 400, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 400⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

| Aknown = {a | (id,a, code) ∈ Ck ∧ id , id∗} ∪ {α }

}

The instruction EXTCODESIZE writes the size of code of the specified address to the stack if the address is known (in the set Ck ).
Otherwise ⊤ is written to the stack.

LEXTCODESIZEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400 ∧ ȧ′ = sa [size − 1] ∧ ȧ′ ∈ Aknown

⇒ MState(id, pc+1) ((size, sasize−1
|code | ), âw, ˆдas −̂ 400, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400 ∧ ȧ′ = sa [size − 1] ∧ ȧ′ < Aknown

⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 400, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 400⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 400⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

| code ∈ {code | (id,a, code) ∈ Ck ∧ a = ȧ′ ∧ id , id∗} ∪ {code | (id∗,a, code) ∈ Ck }
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}

E.6 Stack operations
Instead of defining one Horn clause, we provide a template for the different PUSHx commands that should be used for defining own Horn
clauses for each of the PUSH commands. Note that the rules also depend on the size of the accounts code.

Throughout the definition of the abstract rules, we will need to make use of operations that operate on machine words which are
technically integers. As our analysis however works on naturals, we define these bit vector specific operations (as extracting a sub bit vector
and concatenation two bit vectors) to operate on naturals. Note. The positions and length given as arguments to the function refer to the
corresponding byte positions (length in bytes). As the rules require the operations only on a byte level, this improves the readability of the rules
using the extraction and concatenation function.

v[left, right] :=
⌊ v

2(31−right) ·8

⌋
mod 2(right−left) ·8 left, right ∈ [0, 31] ∧ left ≤ right

v1 | |l2 v2 := v1 · 2l2 ·8 +v2

Note. In the definition of concatenation, the length of the second vector is needed in order to know how much the values of v1 need to be
lifted.

In the following, we additionally assume k to be defined as follows:

k = min (pc + x , |code|)

where

(c,a, code) ∈ Ck

Instead of using the Code· (·, ·) predicate one could as well directly extract the needed values from the code (which might be easier) and
precalculate the v value.

LPUSHxMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 3 ∧ Codec (pc + 1,v1) · · · ∧ Codeid (pc + x ,vk )

∧v = (v1 | |31−(x−k ) (. . . | |1 vk )) | |x−k 0x−k ⇒ MState(id, pc+(1 + x)) ((size + 1, sasize
v ), âw, ˆдas −̂ 3, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+ (1 + x)) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+ (1 + x)) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+ (1 + x)) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 3⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LPOPMCk , id
∗

(id,pc) = {

MState(c, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 2⇒ MState(c, pc+ 1) ( ˆgas −̂ 2, (size − 1, sa), âw, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd)

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd)

}

We provide templates for abstract execution rules of the DUP and the SWAP instructions. The following definitions hold for all n ∈ [1, 16]:

LDUPnMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ size > n − 1 ∧ v̂ ′ = sa [size − n] ∧ ˆgas ≥̂ 3

⇒ MState(id, pc+1) ((size + 1, sasize
v̂ ′ ), âw, ˆдas −̂ 3, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ size > n − 1 ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+ 1) (pos, v̂, cd),
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GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ size > n − 1 ∧ ˆgas ≥̂ 3⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ size > n − 1 ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 3⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < n ⇒ Excid (cd)

}

LSWAPnMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > n ∧ v̂ = sa [size − 1] ∧ v̂ ′ = sa [size − (n + 1)] ∧ ˆgas ≥̂ 3

⇒ MState(id, pc+1) ((size + 1, (sasize−1
v̂ ′ )

size−(n+1)
v̂ ), âw, ˆдas −̂ 3, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > n ∧ ˆgas ≥̂ 3⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > n ∧ ˆgas ≥̂ 3⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > n ∧ ˆgas ≥̂ 3⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 3⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < n + 1⇒ Excid (cd)

}

E.7 Jumps
Next we introduce rules for JUMPI. For determining validity of a JUMPI instruction we need to decide whether the code jumps to a valid
destination. To this end we use the function D (·) defined in [18] for determining those program counters with a JUMPDEST instruction. As
this information is known statically, the corresponding check for membership can be easily encoded.

We first define again a macro for checking preconditions:

CheckPremsJUMPI :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ ˆgas ≥̂ 10 ∧ î = sa[size − 1] ∧ ˆcond = sa[size − 2] ∧ î ∈ D (getCode (id,Ck )) ∪ {⊤,α }

where getCode (·, ·) extracts the code of the contract with id from Ck
We need to consider that in the case that the jump destination specified on the stack is an abstract value it needs to be considered that this

might be potentially both a valid and an invalid jump destination.

LJUMPIMCk , id
∗

(id,pc) = {

CheckPremsJUMPI ∧ ˆcond =̂ 0⇒ MState(id, pc+1) ((size − 2, sa), âw, ˆgas −̂ 10, cd),

CheckPremsJUMPI ∧ ˆcond ,̂ 0 ∧ j =̂ î ⇒ MState(id, j) ((size − 2, sa), âw, ˆgas −̂ 10, cd),

CheckPremsJUMPI ∧ ˆcond =̂ 0 ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsJUMPI ∧ ˆcond ,̂ 0 ∧ j =̂ î ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, j) (pos, v̂, cd),

CheckPremsJUMPI ∧ ˆcond =̂ 0 ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsJUMPI ∧ ˆcond ,̂ 0 ∧ j =̂ î ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, j) (ȧ,n,b, cd),

CheckPremsJUMPI ∧ ˆcond =̂ 0 ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+1) (ȧ, pos, v̂, cd),

CheckPremsJUMPI ∧ ˆcond ,̂ 0 ∧ j =̂ î ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, j) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 10⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ î = sa[size − 1] ∧ î < D (getCode (id,Ck )) ⇒ Excid (cd)

| j ∈ D (getCode (id,Ck ))

}
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In a similar fashion, unconditional jumps can be defined. First, we define a macro:

CheckPremsJUMP :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 8 ∧ î = sa[size − 1] ∧ î ∈ D (getCode (id,Ck )) ∪ {⊤,α }

Next, we define the abstract execution rules:

LJUMPMCk , id
∗

(id,pc) = {

CheckPremsJUMP ∧ j =̂ î ⇒ MState(id, j) ((size − 1, sa), âw, ˆgas −̂ 8, cd),

CheckPremsJUMP ∧ j =̂ î ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, j) (pos, v̂, cd),

CheckPremsJUMP ∧ j =̂ î ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, j) (ȧ,n,b, cd),

CheckPremsJUMP ∧ j =̂ î ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, j) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 8⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ î = sa[size − 1] ∧ î < D (getCode (id,Ck )) ⇒ Excid (cd)

| j ∈ D (getCode (id,Ck ))

}

Finally, we define the abstract semantics for the JUMPDEST instruction:

LJUMPDESTMCk , id
∗

(id,pc) = {

MState(c, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 1⇒ MState(c, pc+ 1) ( ˆgas −̂ 1, (size, sa), âw, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 1⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 1⇒ GState(id, pc+ 1) (ȧ,n,b, cd)

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas ≥̂ 1⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 1⇒ Excid (cd)

}

E.8 Memory operations
For defining the abstract semantics of MLOAD, we need to lift some of the concrete functions used for calculating memory extension and gas
calculation to the abstract setting as described in E.1. More precisely, we have the functions M̂ (âw, ô, ŝ ) for abstract memory extension, and
the function ECmem (âw, ˆaw′) for abstractly calculating the cost for memory extension.

In addition, we lift the previously defined extract and concatenation functions to the abstract setting. More specifically, we write v̂ [̂left, right]̂
for extracting (concrete) positions left to right of abstract value v̂, and v̂1 |̂ | l2v̂2 to concatenate the abstract values v̂1 and v̂2 (assuming v̂2
having the concrete size l2).

Next, we define a macro for the checks that need to be performed for all of the abstract execution rules for MLOAD.

CheckPremsMLOAD :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ pos′ = sa [size − 1] ∧ ˆaw′ = M̂ ( ˆaw′, pos′, 32) ∧ ĉ = ECmem (âw, ˆaw′) +̂ 3 ∧ ˆgas ≥̂ ĉ

LMLOADMCk , id
∗

(id,pc) = {

//Case1: the read position is concrete and all read values are

CheckPremsMLOAD ∧ pos′ ∈ N ∧Mem(id, pc) (pos′, v̂1, cd) · · · ∧Mem(id, pc) (pos′ + 31, v̂32, cd)

∧ v̂ = (v̂1 |̂ | 31 (. . . |̂ | 2v̂31)) |̂ | 1v̂32 ⇒ MState(id, pc+1) ((size, sasize−1
v̂ ), ˆaw′, ˆдas −̂ ĉ, cd),

//Case2: there is something written at ⊤

CheckPremsMLOAD ∧Mem(id, pc) (⊤, v̂, cd) ⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), ˆaw′, ˆдas −̂ ĉ, cd),

//Case3: the read position is abstract

CheckPremsMLOAD ∧ pos′ ∈ {⊤,α } ⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), ˆaw′, ˆдas −̂ ĉ, cd),
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CheckPremsMLOAD ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsMLOAD ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsMLOAD ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ pos = sa [size − 1] ∧ ˆaw′ = M̂ ( ˆaw′, pos, 32) ∧ ĉ = ECmem (âw, ˆaw′) +̂ 3 ∧ ˆgas <̂ ĉ

⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

}

Note that the MLOAD rules causes in practice quite some performance issues. The main issue is that the Mem (·, ·, ·) predicate needs to be
queried at 32 different positions only for that in the end when one of the derived values is ⊤ the whole compound value collapse to ⊤. For
this reason we slightly tweaked the memory representation in the practical implementation not to be byte-wise indexed, but word-wise. This
ensures that in the case of MLOAD the memory predicate needs to be queried at most 2 times. This change in the representation introduces
quite an overhead of rules as a lot of different corner cases need to be considered and also reduces the precision of the memory analysis (as a
whole memory word is declassified to ⊤ once one of its bytes has this abstract value. For the sake of highlighting the general abstractions
performed for reading and writing in a more concise fashion, we present the abstract rules in the more intuitive memory model.

As for MLOAD, we first define a macro for checking the preconditions for the MSTORE instruction:

CheckPremsMSTORE :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ pos′ = sa [size − 1] ∧ v̂ ′ = sa [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, pos′, 32) +̂ 3

∧ ĉ = ECmem (âw, ˆaw′) ∧ ˆgas ≥̂ ĉ

LMSTOREMCk , id
∗

(id,pc) = {

//Case1: the write position is concrete

CheckPremsMSTORE ∧ pos′ ∈ N ∧ 0 ≤ i < 32⇒ Mem(id, pc+1) (pos′ + i, v̂ [̂i, i + 1]̂, cd),

//Case2: the write position is abstract

CheckPremsMSTORE ∧ pos′ ∈ {⊤,α } ⇒ Mem(id, pc+1) (⊤, v̂
′, cd),

//Case3: Propagation

CheckPremsMSTORE ∧Mem(id, pc) (pos, v̂, cd) ∧ pos <̂ pos′ ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsMSTORE ∧Mem(id, pc) (pos, v̂, cd) ∧ pos ≥̂ (pos′ +̂ 32) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsMSTORE ⇒ MState(id, pc+1) ((size − 2, sa), ˆaw′, ˆдas −̂ ĉ, cd),

CheckPremsMSTORE ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsMSTORE ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ pos = sa [size − 1] ∧ ˆaw′ = M̂ ( ˆaw′, pos, 32) ∧ ĉ = ECmem (âw, ˆaw′) +̂ 3 ∧ ˆgas <̂ ĉ ⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2⇒ Excid (cd)

}

Finally, we define the abstract semantics for the MSTORE8 instruction.

CheckPremsMSTORE8 :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ pos′ = sa [size − 1] ∧ v̂ ′ = sa [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, pos′, 1) +̂ 3

∧ ĉ = ECmem (âw, ˆaw′) ∧ ˆgas ≥̂ ĉ

LMSTORE8MCk , id
∗

(id,pc) = {

//Case1: the write position is concrete

CheckPremsMSTORE8 ∧ pos′ ∈ N⇒ Mem(id, pc+1) (pos′, v̂ ′ Gmod 256, cd),

//Case2: the write position is abstract

CheckPremsMSTORE8 ∧ pos′ ∈ {⊤,α } ⇒ Mem(id, pc+1) (⊤, v̂
′ Gmod 256, cd),
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//Case3: Propagation

CheckPremsMSTORE8 ∧Mem(id, pc) (pos, v̂, cd) ∧ pos <̂ pos′ ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsMSTORE8 ∧Mem(id, pc) (pos, v̂, cd) ∧ pos ≥̂ pos′ ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsMSTORE8 ⇒ MState(id, pc+1) ((size − 2, sa), ˆaw′, ˆдas −̂ ĉ, cd),

CheckPremsMSTORE8 ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsMSTORE8 ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ pos = sa [size − 1] ∧ ˆaw′ = M̂ ( ˆaw′, pos, 1) ∧ ĉ = ECmem (âw, ˆaw′) +̂ 3 ∧ ˆgas <̂ ĉ ⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2⇒ Excid (cd)

}

E.9 Storage operations
First, we define a macro for the checks that need to be performed for all of the abstract execution rules for SLOAD.

CheckPremsSLOAD :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ˆgas ≥̂ 200

LSLOADMCk , id
∗

(id,pc) = {

//Case1: the read position is concrete

CheckPremsSLOAD ∧ pos′ = sa [size − 1] ∧ pos′ ∈ N ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd) ∧ Stor(id, pc) (ȧ
′, pos′, v̂ ′, cd)

⇒ MState(id, pc+1) ((size, sasize−1
v̂ ′ ), âw, ˆдas −̂ 200, cd),

//Case2: there is something written at ⊤

CheckPremsSLOAD ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd) ∧ Stor(id, pc) (ȧ
′,⊤, v̂ ′, cd) ⇒ MState(id, pc+1) ((size, sasize−1

v̂ ′ ), âw, ˆдas −̂ 200, cd),

//Case3: the read position is abstract

CheckPremsSLOAD ∧ pos′ = sa [size − 1] ∧ pos′ ∈ {⊤,α } ⇒ MState(id, pc+1) ((size, sasize−1
⊤ ), âw, ˆдas −̂ 200, cd),

CheckPremsSLOAD ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsSLOAD ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsSLOAD ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 200⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

}

As for SLOAD, we first define a macro for checking the preconditions for the SSTORE instruction:

CheckPremsSSTORE :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ pos′ = stackarray [size − 1] ∧ v̂ ′ = stackarray [size − 2] ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

∧ Stor(id, pc) (ȧ
′, pos′, v̂ ′′, cd) ∧ ĉ = (v̂ ′ ,̂ 0∧̂v̂ ′′ =̂ 0) ?̂ 20000 :̂ 5000 ∧ ˆgas ≥̂ ĉ

LSSTOREMCk , id
∗

(id,pc) = {

//Case1: the write position is concrete

CheckPremsSSTORE ∧ pos′ ∈ N⇒ Stor(id, pc+ 1) (ȧ
′, pos′, v̂ ′, cd)

//Case2: the write position is abstract

CheckPremsSSTORE ∧ pos′ ∈ {⊤,α } ⇒ Stor(id, pc+ 1) (ȧ
′,⊤, v̂ ′, cd),

//Propagation of the remaining storage

CheckPremsSSTORE ∧ pos <̂ pos′ ∧ Stor(id, pc) (ȧ
′, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ

′, pos, v̂, cd),

CheckPremsSSTORE ∧ Stor(id, pc) (ȧ
′, pos, v̂, cd) ∧ pos ≥̂ pos′ ⇒ Stor(id, pc+ 1) (ȧ

′, pos, v̂, cd),
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//Storage propagation for all but the active account

CheckPremsSSTORE ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ∧ ȧ , ȧ′ ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

CheckPremsSSTORE ⇒ MState(id, pc+1) ((size − 2, sa), âw, ˆдas −̂ ĉ, cd),

CheckPremsSSTORE ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsSSTORE ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ pos′ = stackarray [size − 1] ∧ v̂ ′ = stackarray [size − 2] ∧ ExEnvid (ȧ′, î, v̂a, ˆinputsize, cd)

∧ Stor(id, pc) (ȧ
′, pos′, v̂ ′′, cd) ∧ ĉ = (v̂ ′ ,̂ 0∧̂v̂ ′′ =̂ 0) ?̂ 20000 :̂ 5000 ∧ ˆgas <̂ ĉ ⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2⇒ Excid (cd)

}

E.10 Accessing the machine state

LPCMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
pc ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LMSIZEMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
âw ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

LGASMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ MState(id, pc+1) ((size + 1, sasize
ˆgas ), âw, ˆдas −̂ 2, cd),

Mem(id, pc) (pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Mem(id, pc+ 1) (pos, v̂, cd),

GState(id, pc) (ȧ,n,b, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

Stor(id, pc) (ȧ, pos, v̂, cd) ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1024 ∧ ˆgas ≥̂ 2⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size ≥ 1024⇒ Excid (cd)

}

E.11 Logging instructions
We provide a template for the abstract execution rules for LOG instructions. The following definitions hold for all n ∈ {1, 2, 3, 4}:

First, we define a macro for the precondition checks:

CheckPremsLOGn :=
33



MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 + n ∧ îo = sa [size − 1] ∧ îs = sa [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, îo, îs)

∧ ĉ = ECmem (âw, ˆaw′) +̂ 375 +̂ 8 ·̂ îs + n ·̂375 ∧ ˆgas ≥̂ ĉ

Next we define the abstract execution rules for LOG instructions

LLOGnMCk , id
∗

(id,pc) = {

CheckPremsLOGn ⇒ MState(id, pc+1) ((size − (2 + n), sa), ˆaw′, ˆдas −̂ ĉ, cd),

CheckPremsLOGn ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd),

CheckPremsLOGn ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id, pc+ 1) (ȧ,n,b, cd),

CheckPremsLOGn ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ ĉ ⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2 + n ⇒ Excid (cd)

}

Note that the main effects of the LOG instructions are only applied after the transaction execution and therefore are not considered in the
analysis. The analysis only tracks the impact on the parts of the state that can affect the execution.

E.12 Halting instructions
First we present the rules for STOP:

LSTOPMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ⇒ Returnid (0, ˆgas, cd)

GState(id, pc) (ȧ,n,b, cd) ⇒ ResGStateid (ȧ,n,b, cd)

Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ ResStorid (ȧ, pos, v̂, cd)

}

Next we define the abstract semantics for the RETURN instruction. To this end, we first define a macro that contains the checks for common
preconditions:

CheckPremsRETURN :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ îo = stackarray [size − 1] ∧ îs = stackarray [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, îo, îs)

∧ ĉ = ECmem (âw, ˆaw′) ∧ ˆgas ≥̂ ĉ

Finally, we can give the abstract semantics for RETURN:

LRETURNMCk , id
∗

(id,pc) = {

CheckPremsRETURN îs′ = îs = α ?⊤ : îs⇒ Returnid (îs
′
, ˆgas −̂ ĉ, cd),

//The return data predicate is only initialized if the size is concrete

CheckPremsRETURN ∧ îo, îs ∈ N ∧ i < îs ∧Mem(id, pc) (îo + i, v̂
′, cd),⇒ Resid (i, v̂ ′, cd),

CheckPremsRETURN ∧ îo ∈ {⊤,α } ∧ îs ∈ N ∧ i < îs⇒ Resid (i,⊤, cd),

CheckPremsRETURN ∧GState(id, pc) (ȧ,n,b, cd) ⇒ ResGStateid (ȧ,n,b, cd),

CheckPremsRETURN ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ ResStorid (ȧ, pos, v̂, cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 2⇒ Excid (cd),

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 1 ∧ îo = stackarray [size − 1] ∧ îs = stackarray [size − 2] ∧ ˆaw′ = M̂ ( ˆaw′, îo, îs)

∧ ĉ = ECmem (âw, ˆaw′) ∧ ˆgas <̂ ĉ ⇒ Excid (cd)

}

Next, we consider the SELFDESTRUCT instruction. As most of the effects of this instruction are only applied after the transaction
execution has finished, the abstract semantics of this instructions is fairly simple to describe. The only difficulty is that the two cases of
whether the beneficiary is known needs to be handled distinctly as these cases result in different costs for the execution of SELFDESTRUCT.
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We define again a macro for the preconditions that we this time parametrize by a flag that indicates which cost should be used for the gas
calculation.

CheckPremsSELFDESTRUCT (b) :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ȧ′ = sa [size − 1] ∧ ĉ = b = 1 ? 5000 : 37000 ∧ ˆgas ≥̂ ĉ

LSELFDESTRUCTMCk , id
∗

(id,pc) = {

CheckPremsSELFDESTRUCT (1) ∧ ȧ
′ ∈ Aknown ⇒ Returnid (0, ˆgas −̂ ĉ, cd),

CheckPremsSELFDESTRUCT (1) ∧ ȧ
′ ∈ Aknown ∧ ExEnvid (ȧ′′, î, v̂a, ˆinputsize, cd) ∧GState(id, pc) (ȧ

′,n′,b
′
, cd)

∧GState(id, pc) (ȧ
′′,n′′,b

′′
, cd) ⇒ ResGStateid (ȧ′,n,b

′
+̂ b
′′
, cd)

CheckPremsSELFDESTRUCT (1) ∧ ȧ
′ ∈ Aknown ∧ ExEnvid (ȧ′′, î, v̂a, ˆinputsize, cd) ∧GState(id, pc) (ȧ

′′,n′′,b
′′
, cd)

⇒ ResGStateid (ȧ′′,n′′, 0, cd)

CheckPremsSELFDESTRUCT (1) ∧ ȧ
′ ∈ Aknown ∧ ExEnvid (ȧ′′, î, v̂a, ˆinputsize, cd) ∧ ȧ , ȧ′ ∧ ȧ , ȧ′′

∧GState(id, pc) (ȧ,n,b, cd) ⇒ ResGStateid (ȧ,n,b, cd)

CheckPremsSELFDESTRUCT (1) ∧ ȧ
′ ∈ Aknown ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ ResStorid (ȧ, pos, v̂, cd)

CheckPremsSELFDESTRUCT (b) ∧ ȧ
′ < Aknown ⇒ Returnid (0, ˆgas −̂ ĉ, cd),

CheckPremsSELFDESTRUCT (b) ∧ ȧ
′ < Aknown ∧ ExEnvid (ȧ′′, î, v̂a, ˆinputsize, cd) ∧GState(id, pc) (ȧ

′′,n′′,b
′′
, cd)

⇒ ResGStateid (ȧ′′,n′′, 0, cd)

CheckPremsSELFDESTRUCT (b) ∧ ȧ
′ < Aknown ∧ ExEnvid (ȧ′′, î, v̂a, ˆinputsize, cd) ∧ ȧ , ȧ′ ∧ ȧ , ȧ′′

∧GState(id, pc) (ȧ,n,b, cd) ⇒ ResGStateid (ȧ,n,b, cd)

CheckPremsSELFDESTRUCT (b) ∧ ȧ
′ < Aknown ∧ Stor(id, pc) (ȧ, pos, v̂, cd) ⇒ ResStorid (ȧ, pos, v̂, cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size < 1⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgas <̂ 5000⇒ Excid (cd)

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ size > 0 ∧ ȧ′ = sa [size − 1] ∧ ȧ′ < Aknown ∧ ˆgas <̂ 37000⇒ Excid (cd)

| b ∈ {0, 1} ∧ Aknown = {a | (id,a, code) ∈ Ck ∧ id , id∗} ∪ {α }

}

Finally, we specify the abstract semantics of the designated INVALID instruction that directly fails:

LINVALIDMCk , id
∗

(id,pc) = {

MState(id, pc) ((size, sa), âw, ˆgas, cd) ⇒ Excid (cd)

}

E.13 Contract calls
Next we consider the Horn clauses for calling. We will present rules for calling known contracts (those contracts from the set Ck ) as well as for
calling unknown contracts. While in the case of known contracts, the execution of those contracts will be over-approximated in a fashion that is
similarly precise to the analysis of contract c∗. Instead, in the case when an unknown contract is called, a more coarse abstraction is applied.

(1) A known contract is called. The known contracts can be determined from the set Ck that is given as argument to the L·MCk , ·
( ·, ·)

function. By
the definition of the representation function, the semantics of the codes of all of these contracts is translated to Horn clauses using the
state predicates parametrized by the corresponding ids as given in Ck . Consequently the abstract execution of these contracts can be
triggered by implying instances of these contract’s state predicates. Note that when another contract code is called the address of the
contract to be called is specified on the stack. This means that it is not known upfront to the code of which contract the rules need to link.
We make use the same trick used for JUMP commands. For the whole set of contracts that can possibly be called, we generate rules and
then incorporate a check inside the rules that make sure that only the correct rule can be applied. Consequently the abstract rules for
calling a known contract need to be generated for all ids id_to of contracts that are callable according to Ck .
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(2) An unknown contract is called. If the address of the contract called is not a concrete address contained in Ck or equal to the abstract
address α , then we do not try to mimick the execution of the called contract faithfully, but just over-approximate the effects that such a
contract execution might have on the execution (an potential future executions of) the contract c∗.

Most of the call rules share a common bunch of preconditions that need to be satisfied for calling. For the sake of better readability, we will
summarize these preconditions with some macros that will be defined in the following. More precisely, for both of the scenarios of the CALL
(calling known and unknown contracts) we distinguish two different cases that have different preconditions.

(1) The conditions for calling are satisfied at call time. These conditions include that the call stack limit is not reached yet and the executing
account’s balance suffices to transfer the specified amount of money to the callee. In this case the specified account’s code is called.

(2) The conditions for the call are not satisfied at call time (as the calling contract’s balance is not sufficient or as the call stack limit is
reached. In this case the maximal fee for the call is charged and the execution proceeds.

We will define two different macros for more conveniently differentiating these cases. The precondition checks for both cases include the
check for the sufficient number of arguments (and extracts them from the stack), calculates the updated number of active words in memory
and also performs the gas calculation and checks whether the amount of gas is sufficient to perform the call. If the contract t̂o is known (so:
t̂o ∈ {a | (id,a, code) ∈ Ck ∧ id , id∗} ∪ {α }) then the gas can be calculated accordingly. If the contract t̂o is not known then the gas needs to
be calculated according to both cases. This would result in two potential valid pre-computations. We distinguish these to cases by adding a flag
in the pre-computation macro, indicating how the gas was calculated.

For handling abstract gas computation, we need to define some abstract auxiliary functions. These functions are simply lifting those described
in [18] to the abstract setting. More precisely we end up with the functions GCgascap (·, ·, ·, ·), ECbase (·, ·).

With all these auxiliary functions in place, we can define the macros for the preconditions of successful calls and calls that fail at call time.
The first macro CheckPremsCALL () that we define just checks for the sufficient number of elements on the stack and for a sufficient amount of
gas:

CheckPremsCALL (b) :=

MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ ˆgasto = sa[size − 1] ∧ t̂o = sa[size − 2] ∧ v̂a = sa[size − 3] ∧ îo = sa[size − 4] ∧ îs = sa[size − 5]

∧ ôo = sa[size − 6] ∧ ôs = sa[size − 7] ∧ ˆaw′ = M̂ ( M̂ (âw, îo, îs), ôo, ôs) ∧ size > 6 ∧ ˆccall = GCgascap (v̂a,b, ˆgasto, ˆgas)

∧ ĉ = ˆccall +̂ECbase (v̂a,b) +̂ ECmem (âw, ˆaw′) ∧ ˆgas ≤̂ ĉ

The second macro CheckPremsCALL−succ () additionally checks whether also the call time check that the balance of the executing account is
sufficient is passed:

CheckPremsCALL−succ (b) :=

CheckPremsCALL (b) ∧ ExEnvid (ȧ, î, v̂a′, ˆinputsize, cd) ∧GState(id, pc) (ȧ,n,b, cd) ∧ v̂a ≤̂ b

As we are not tracking the size of the callstack explicitly, we always need to assume that the call fails at call time given that the other
preconditions for calling are satisfied. For this reason, we will formulate the rules for failing at call time assuming that only the preconditions
of CheckPremsCALL (b) are satisfied.

Next we can use the macros to formally specify the abstract execution rules for the CALL instruction:

LCALLMCk , id
∗

(id,pc) = {

//Case 1: the call does not fail at call time

//The execution environment of the callee is initiated

CheckPremsCALL−succ (1) ∧ ExEnvid (ȧ, î, v̂a, ˆinputsize, cd) ∧ t̂o = ato ⇒ ExEnvid_to (t̂o, ȧ, v̂a, îs, cd + 1)

//Writing the input to the corresponding input predicate

//Case a: position and size values are concrete

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ îs, îo ∈ N ∧ 0 ≤ i < îs ∧Mem(id, pc) (îo + i, v̂, cd′)

⇒ Inputdataid_to (i, v̂, cd′)

//Case b: position value is concrete, but size value is not

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ îo ∈ {⊤,α } ∧ îs ∈ N ∧ 0 ≤ i < îs⇒ Inputdataid_to (i,⊤, cd′)

//Note that we do not consider the cases where the size is abstract, as in this case this is recorded in the execution environment

//and it will never be read from the input
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//Abstract machine state of callee is initialized

CheckPremsCALL−succ (1) ∧ t̂o = ato ⇒ MState(id_to, 0) ((0, sa′), 0, ˆccall, cd + 1)

checkPremsCALL
(id,pc) (ȧ, t̂o, v̂a, îo, îs, ˆaw′, cd, ˆccall, ĉ,b) ∧ t̂o = ato ⇒ Mem(id_to, 0) (pos, 0, cd + 1)

//Global state is altered according to the call

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧GState(id, pc) (ȧ,n,b, cd) ⇒ GState(id_to, 0) (ȧ,n,b −̂ v̂a, cd + 1)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧GState(id, pc) (t̂o,n
′,b
′
, cd) ⇒ GState(id_to, 0) (t̂o,n

′,b
′
+̂ v̂a, cd + 1)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧GState(id, pc) (ȧ
′,n′,b

′
, cd) ∧ ȧ , ȧ′ ⇒ GState(id_to, 0) (ȧ

′,n′,b
′
, cd + 1)

//Rules for returning successfully

CheckPremsCALL−succ (1) ∧MState(id, pc) (sa, âw, ˆgas, cd) ∧ ˆgas′ = ˆgas +̂ ( ˆgasr −̂ ĉ ) ∧ t̂o = ato ∧ Returnid_to ( ˆreturndatasize, ˆgasr , cd + 1)

⇒ MState(id, pc+1) ((size − 6, sasize−7
1 ), ˆaw′, ˆgas′, cd)

//The result value is written to specified fraction in memory.

//Case a: offset and size are concrete

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Returnid_to ( ˆreturndatasize, ˆgasr , cd + 1) ∧ Resid_to (i, v̂, cd + 1) ∧ k̂ = m̂in (ôs, ˆreturndatasize)

∧ ôo, k̂ ∈ N ∧ 0 ≤ i < k̂ ⇒ Memid, pc+1 (ôo + i, v̂, cd)

//Case b: size is abstract

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Returnid_to ( ˆreturndatasize, ˆgasr , cd + 1) ∧ k̂ = m̂in (ôs, ˆreturndatasize) ∧ k̂ ∈ {⊤,α }

⇒ Memid, pc+1 (⊤,⊤, cd)

//Case c: offset is abstract

CheckPremsCALL−succ (1) ∧ ôo ∈ {⊤,α } ⇒ Memid, pc+1 (⊤,⊤, cd)

//The remaining memory is propagated.

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Returnid_to ( ˆreturndatasize, ˆgasr , cd + 1) ∧ k̂ = m̂in (ôs, ˆreturndatasize) ∧Memid, pc (pos, v̂, cd)

∧ pos <̂ ôo ⇒ Memid, pc+1 (pos, v̂, cd)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Returnid_to ( ˆreturndatasize, ˆgasr , cd + 1) ∧ k̂ = m̂in (ôs, ˆreturndatasize) ∧Memid, pc (pos, v̂, cd)

∧ pos ≥̂ ôo +̂ k̂ ⇒ Memid, pc+1 (pos, v̂, cd)

//The global state at returning is propagated (in case of succesful execution)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ ResGStateid_to (ȧ′,n′,b
′
, cd + 1) ⇒ GState(id, pc+1) (ȧ

′,n′,b
′
, cd)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ ResStorid_to (ȧ′, pos, v̂, cd + 1) ⇒ Stor(id, pc+1) (ȧ
′, pos, v̂, cd)

//Exceptional returning

//0 is written on the stack and all gas for the call is lost

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧MState(id, pc) ((size, sa), âw, ˆgas, cd) ∧ Excid_to (cd + 1)

⇒ MState(id, pc+1) ((size − 6, sasize−7
0 ), ˆaw′, ˆgas −̂ ĉ, cd)

//Memory and global state are propagated

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Excid_to (cd + 1) ∧Memid, pc (pos, v̂, cd) ⇒ Memid, pc+1 (pos, v̂, cd)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Excid_to (cd + 1) ∧GState(id, pc) (ȧ
′,n′,b

′
, cd) ⇒ GState(id, pc+1) (ȧ

′,n′,b
′
, cd)

CheckPremsCALL−succ (1) ∧ t̂o = ato ∧ Excid_to (cd + 1) ∧ Stor(id, pc) (ȧ
′, pos, v̂, cd) ⇒ Stor(id, pc+1) (ȧ

′, pos, v̂, cd)

| (id_to,ato, code) ∈ {(id,a, code) | ((id,a, code) ∈ Ck ∧ id , id∗) ∨ (id = id∗ ∧ a = α ∧ ∃a′.(id∗,a′, code) ∈ Ck }
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}

The rules for failing at call time (calculating the gas assuming that the called contract exists) apply for both cases that the callee is know or
unknown:

∪{

//Case 2: call fails at call time

CheckPremsCALL (1) ⇒ MState(id, pc+ 1) ((size − 6, sasize−7
0 ), ˆaw′, ˆgas −̂ ĉ, cd)

CheckPremsCALL (1) ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd)

CheckPremsCALL (1) ∧GState(id, pc) (ȧ
′,n′,b

′
, cd) ⇒ GState(id, pc+ 1) (ȧ

′,n′,b
′
, cd)

CheckPremsCALL (1) ∧ Stor(id, pc) (ȧ
′, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ

′, pos, v̂, cd)

//Case 3: runtime exception

MState(id, pc) ((size, sa), aw, ˆgas, cd) ∧ size < 7⇒ Excid (cd)

MState(id, pc) ((size, sa), aw, ˆgas, cd) ∧ ˆgasto = sa[size − 1] ∧ v̂a = sa[size − 3] ∧ îo = sa[size − 4] ∧ îs = sa[size − 5] ∧ ôo = sa[size − 6]

∧ ôs = sa[size − 7] ∧ ˆaw′ = M̂ ( M̂ (âw, îo, îs), ôo, ôs) ∧ ˆccall = GCgascap (v̂a, 1, ˆgasto, ˆgas) ∧ ĉ = ˆccall +̂ECbase (v̂a,b) +̂ ECmem (âw, ˆaw′)

∧ ˆgas <̂ ĉ ⇒ Excid (cd)

}

In addition to the rules presented before, we also consider an over-approximated behavior for the case that the callee is not known. As all
possible executions of the contract under analysis should be captured, we need to consider two facets:

(1) Calling an unknown contract might change overall state of the contract after returning. It is unclear whether the contract exists at all. It
cannot be determined whether the execution failed or was successful and if so which value it returned. In addition, executing unknown
code might change the global state in an arbitrary way.

(2) Calling unknown code might cause the contract code to be retriggered in an arbitrary way (on a higher call depth).

∪

{

//Case 1: unknown code is executed and it does not fail at call time

//Both zero or one can be written to the stack

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ⇒ MState(id, pc+ 1) ((size − 6, sa[size − 7→ 1], ˆaw′,⊤, cd)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ⇒ MState(id, pc+ 1) ((size − 6, sasize−7
0 , ˆaw′,⊤, cd)

//Arbitrary values can be written to memory in the specified fragment

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ ôo, ôs ∈ N ∧ i ≥̂ oo ∧ i < ôo + ôs⇒ Mem(id, pc+ 1) (i,⊤, cd)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ ôo ∈ {⊤,α } ⇒ Mem(id, pc+ 1) (⊤,⊤, cd)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ ôs ∈ {⊤,α } ⇒ Mem(id, pc+ 1) (⊤,⊤, cd)

//All values are propagated (as we don’t know the returndata size)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd)

//After execution the global storage of all accounts can be arbitrary

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ⇒ Stor(id, pc+ 1) (ȧ
′,⊤,⊤, cd)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ⇒ GState(id, pc+ 1) (ȧ
′,⊤,⊤, cd)

//The execution of the contract might be reentered at an arbitrary (higer) call level (in an arbitrary execution environment)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1⇒ MState(id*, 0) ((0, sa′), 0,⊤, cd′)
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CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1 ∧ i ∈ N⇒ Mem(id*, 0) (i, 0, cd
′)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1⇒ ExEnvid* (α ,⊤,⊤,⊤, cd′)

//The input data does not need to be initialized as its size is anyway unknown

//The global state of all accounts but a* might be arbitrary

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1 ∧GState(id, pc) (α ,n
′,b
′
, cd) ⇒ GState(id*, 0) (α ,n

′,⊤, cd′)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1 ∧ ȧ′ ∈ N⇒ GState(id*, 0) (ȧ
′,⊤,⊤, cd′)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1 ∧ Stor(id, pc) (α , pos, v̂, cd) ⇒ Stor(id*, 0) (α , pos, v̂, cd′)

CheckPremsCALL−succ (b) ∧ t̂o < Aknown ∧ cd′ > cd + 1 ∧ ȧ′ ∈ N⇒ Stor(id*, 0) (ȧ
′,⊤,⊤, cd′)

//Additional failure cases (for the case that a new account was created)

CheckPremsCALL (2) ∧ t̂o < Aknown ⇒ MState(id, pc+ 1) ((size − 6, sasize−7
0 ), ˆaw′, ˆgas −̂ ĉ, cd)

CheckPremsCALL (2) ∧ t̂o < Aknown ∧Mem(id, pc) (pos, v̂, cd) ⇒ Mem(id, pc+ 1) (pos, v̂, cd)

CheckPremsCALL (2) ∧ t̂o < Aknown ∧GState(id, pc) (ȧ
′,n′,b

′
, cd) ⇒ GState(id, pc+ 1) (ȧ

′,n′,b
′
, cd)

CheckPremsCALL (2) ∧ t̂o < Aknown ∧ Stor(id, pc) (ȧ
′, pos, v̂, cd) ⇒ Stor(id, pc+ 1) (ȧ

′, pos, v̂, cd)

MState(id, pc) ((size, sa), aw, ˆgas, cd) ∧ t̂o < Aknown ∧ ˆgasto = sa[size − 1] ∧ v̂a = sa[size − 3] ∧ îo = sa[size − 4]

∧ îs = sa[size − 5] ∧ ôo = sa[size − 6] ∧ ôs = sa[size − 7] ∧ ˆaw′ = M̂ ( M̂ (âw, îo, îs), ôo, ôs) ∧ ˆccall = GCgascap (v̂a, 2, ˆgasto, ˆgas)

∧ ĉ = ˆccall +̂ECbase (v̂a,b) +̂ ECmem (âw, ˆaw′) ∧ ˆgas <̂ ĉ ⇒ Excid (cd)

| b ∈ {0, 1} ∧ Aknown = {a | (id,a, code) ∈ Ck ∧ id , id∗} ∪ {α }}

F SOUNDNESS PROOF
We first state some auxiliary lemmas that will come in handy in the soundness proof. We omit the proofs for these lemmas as those are mostly
straight-forward case distinctions and simple inductions.

LEMMA F.1 (CALLSTACK PRESERVATION DURING EXECUTION). Let (Γ, S ) be a configuration such that Γ ⊨ U + +S →∗ U ′ + +S . Then
the following properties hold:
• if U ′ = ϵ then U = ϵ
• if U = ϵ and U ′ , ϵ then there are s ∈ S, c ∈ C such that Γ ⊨ S → sc :: S and Γ ⊨ sc :: S →∗ U ′ + +S .
• if U ′ , ϵ and Γ ⊨ U + +S →∗ S ′ and Γ ⊨ S ′ →∗ U ′ + +S then exists U ′′ such that |U ′′ | > 0 and S ′ = U ′′ + +S

We formally state a useful property for decomposing the results of αS :

LEMMA F.2. Let sc :: S ∈ Sn , Ck ⊆ N × N160 × [B8], id∗ ∈ N and cd ∈ N. And let c∗ ∈ {(a∗, code∗) | (id∗,a∗, code∗) ∈ Ck }. Then we can
distinguish the following cases:

(1) (c = c∗ ∨ c ∈ {(a, code) | (id,a, code) ∈ Ck | ∧ id , id∗} ∧ ∃s∗c∗ , S ′, S ′′.S = S ′ + +s∗c∗ :: S ′′ ∧ ∀s ′c ′ ∈ S ′.c ′ ∈ Ck )
⇒ αS (sc :: S,Ck , id∗, cd) = αS (S,Ck , id∗, cd) ∪ αs (s, id∗, |S | + cd, ·̊)

(2) (c < {(a, code) | (id,a, code) ∈ Ck | ∧ id , id∗} ∨ c ∈ {(a, code) | (id,a, code) ∈ Ck | ∧ id , id∗} ∧ ∃s?
c? , S ′, S ′′.S = S ′ ++s?

c? :: S ′′ ∧
∀s ′c ′ ∈ S

′.c ′ , c∗) ⇒ αS (sc :: S,Ck , id∗, cd) = αS (S,Ck , id∗, cd)

Intuitively, this lemma allows us to distinguish the cases in which the topmost call stack element is translated and where it is not.
More generally, we can observe, that abstract representation of a callstack is a superset of the abstract representations of its sub-callstacks.

LEMMA F.3. Let S, S ′, be annotated callstacks. Furthermore let id∗, cd ∈ N and Ck ⊆ N × A × [B8]. If there is a callstack S ′′ such that
S = S ′′ + +S ′ then

αS (S ′,Ck , id
∗, cd) ⊆ αS (S,Ck , id

∗, cd)

The representation functions for abstracting the execution environment αι and the global state ασ do not translate the contract codes encoded
in there. This is as requiring the initial execution state s being consistent with Ck ensures that the active code in the execution environment and
the relevant parts of the global states agree with the information in Ck . This property is preserved during the execution (Lemma A.6).

As contracts cannot be deleted during the execution (the SELFDESTRUCT instruction that allows to delete existing contracts only applies
its effects after successful transaction execution and hence does not affect the execution of the transaction itself).
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In addition to these Lemmas, we also establish a new notion of well-formation on callstacks. To this end, we first introduce the notion of a
call state.

Definition F.4 (Call states). A regular execution state (µ, ι,σ ) is a call state if the following conditions hold:

• ωµ, ι = CALL
• µ .s = д :: to :: va :: io :: is :: oo :: os :: s
• σ (to mod 2160 , ⊥
• |A| + 1 ≤ 1024
• σ (ι.actor).b ≥ va
• aw = M (M (µ .i, io, is), oo, os)
• ccall = Cgascap (va, 1,д, µ .gas)
• c = Cbase (va, 1) +Cmem (µ .i, aw) + ccall
• c ≤ µ .gas

So intuitively, a regular execution state is a call state if it satisfies all of the preconditions for executing a CALL instruction. Note that we
define here a very restricted version of call states (requiring the executed instruction to be a plain CALL instruction, not considering other
variants of calling). For the given setting this is however totally sufficient as we impose the condition for our soundness theorem that the
considered execution should be safety compliant and hence should not execute CREATE,CALLCODE and DELEGATECALL instructions.

Definition F.5 (Well-formation of callstacks). An annotated callstack S ∈ Sn is well-formed if the following conditions hold:

• S , ϵ
• all execution states sc in S are well-formed
• for all execution states sc in S it holds that s is consistent with {c}
• all execution states sc in pref(S ) are consistent with {(a, code) | last(S ).σ (a) = (a,n,b, code)}

(where last(·) extracts the bottom element from a stack and pref(·) the corresponding prefix)
• all execution states sc in S , but the top element are call states

LEMMA F.6 (WELL-FORMATION OF REACHABLE CALLSTACKS). Let (Γ, S ) be a configuration that is reachable via a safety-compliant
execution. Then S is well-formed.

LEMMA F.7 (PRESERVATION OF WELL-FORMATION FOR SAFETY COMPLIANT EXECUTIONS). Let S, S ′ be callstacks and Γ a transaction
environment such that Γ ⊨ S →̇∗S . Then if S is well-formed, S ′ is well-formed.

The invariant of well-formation that we impose on callstacks is required for proving soundness, as we will need to argue that in lower
call-levels already the over-approximations for the re-entering of contract c∗ have been introduced.

We give the proof of the soundness theorem.

THEOREM F.8 (SOUNDNESS). Let Ck be a set of contracts with unique identifiers and addresses and let c∗ ∈ Ck be the contract with
identifier id∗ and ·̊ be a function defined as å = if (id∗,a, ·) ∈ Ck then α else a. Additionally, let S ′ be an annotated callstack such that |S ′ | > 0.
Let s be an execution state that is consistent with Ck and sc∗ be well-formed. Then the following property holds for all callstacks S:

Γ ⊨ sc∗ :: S →̇∗S ′ + +S
=⇒ ∀∆I . αs (s, id∗, 0, ·̊) <: ∆I =⇒ ∃∆S .

∆I ∪ αC (Ck , id
∗) ⊢ ∆S ∧ αS (S ′,Ck , id

∗, 0) <: ∆S

PROOF. (sketch) By induction on the number n of small-steps.

• Case n = 0. In the case of the empty reduction sequence, we have that S ′ = [sc∗ ] and consequently αS (S ′,Ck , id∗, 0) = αs (s, id∗, 0, ·̊)
(as id∗ = getID (Ck , c

∗)). So the claim follows trivially as each configuration ∆I that is a coarser abstraction than αs (s, id∗, 0, ·̊) is also a
coarser abstraction than αS (S ′,Ck , id∗, 0).
• Case n > 0. Let Γ ⊨ sc∗ :: S →n−1 S ′′ and Γ ⊨ S ′′ → S ′ + +S . By Lemma F.1, it holds that S ′′ = S∗ ++S for some S∗ with |S∗ | > 0. By

the inductive hypothesis we know that for all ∆I :> αs (s, id′, 0,) there is ∆S∗ :> αS (S∗,Ck , id∗, 0) ·̊ such that ∆I ∪ αC (Ck , id∗) ⊢ ∆S∗ .
Consequently for proving the claim it is sufficient to show that there is some ∆S ′ :> αS (S ′,Ck , id∗, 0) such that ∆S∗ ∪αC (Ck , id∗) ⊢ ∆S ′
As |S∗ | > 0, we know that S∗ = s ′c ′ :: S∗∗ for some s ′ ∈ S, c ′ ∈ C, S∗∗ ∈ Sn . The proof is by case analysis on the rule applied in the last
reduction step. We show here exemplarily the cases for arithmetic operations as well as the rule for calling.

ADD (non exception case). Then s ′ = (µ, ι,σ ), ι.code [µ .pc] = ADD and S ′ = (µ ′, ι,σ )c ′ :: S∗∗. We distinguish the two cases on whether
the top stack element s ′c ′ is translated or not:
∗ If s ′c ′ is not translated then it holds that αS (s ′c ′ :: S∗∗,Ck , id∗, cd) = αS (S∗∗,Ck , id∗, cd). As the executed contract is not changed,

it also holds that αS (S ′,Ck , id∗, cd) = αS (S∗∗,Ck , id∗, cd). Consequently as ∆S∗ :> αS (s ′c ′ :: S∗∗,Ck , id∗, cd), it also holds that
∆S∗ :> αS (S ′,Ck , id∗, cd).
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∗ If s ′c ′ is translated, then it holds that αS (S ′,Ck , id∗, cd) = αS (S∗∗,Ck , id∗, cd) ∪ αs (s ′, id∗, |S∗∗ | + cd, ·̊). As by F.2, c ′ ∈ Ck and s ′

is consistent with Ck (by Lemma A.6) αC (Ck , id∗) contains LADDMCk , id
∗

(id′,µ .pc) (where id′ = getID (Ck , c
′)). The claim then directly

follows from the definition of LADDMCk , id
∗

(id′, ·) and the soundness of abstract operations E.1. The same argumentation applies to all
other arithmetic and logical operations.

CALL (all preconditions satisfied, called account exists). Then s ′ = (µ, ι,σ ), ι.code [µ .pc] = CALL and S ′ = (µ ′, ι′,σ ′)ċ :: S∗.
Again we distinguish the cases whether the newly pushed callstack element (µ ′, ι′,σ ′)ċ is translated or not.
∗ If (µ ′, ι′,σ ′)ċ is not translated then αS (S∗,Ck , id∗, cd) = αS (S ′,Ck , id∗, cd) and the claim trivially holds.
∗ If (µ ′, ι′,σ ′)ċ is translated then we again make a case distinction on whether s ′c ′ is translated or not
· If s ′c ′ is translated then it holds that αS (S ′,Ck , id∗, cd) = αS (S∗∗,Ck , id∗, cd) ∪ αs (s

′, id∗, |S∗∗ | + cd, ·̊). As by Lemma F.2,
c ′ ∈ Ck and s ′ is consistent with Ck (by Lemma A.6), αC (Ck , id∗) contains LCALLMCk , id

∗

(id′,µ .pc) (where id′ = getID (Ck , c
′)).

As (µ ′, ι′,σ ′)ċ is translated we know by Lemma F.2 that ċ ∈ Ck and consequently by the definition of LCALLMCk , id
∗

(id′, ·) an over-

approximation of the state predicates representing ṡ (parametrized by ˙id = getID (Ck , ċ )) are implied by the Horn clauses in
LCALLMCk , id

∗

(id′,s ′ .µ .pc) .

· If s ′c ′ is not translated then we can conclude that 1) ċ = c∗ and 2) there must be execution states s?
c? , s†c† and callstacks S+, S++

such that S∗ = S+ ++s?
c? :: s†c† :: S++ and c? < Ck and c† ∈ Ck and s†c† is translated. This is as the bottom element of S∗ needs

to be an execution state annotated with c∗ and so at some point in the call chain an unknown contract must have been called
in order to break the translation chain (by definition of αS ). We know αS (s†c† :: S++,Ck , id∗, cd) ⊆ αS (S∗,Ck , id∗, cd) (by
Lemma F.3), and additionally we know that s† = (µ†, ι†,σ†) and ι†.code [µ†.pc] = CALL and all other preconditions for calling
are satisfied (by Lemmas F.6 and F.7). As by Lemma F.2, c† ∈ Ck and s† is consistent with Ck (by Lemma A.6), αC (Ck , id∗)
contains LCALLMCk , id

∗

(id†,µ† .pc)
(where id† = getID (Ck , c

†)). Consequently, by the definition of LCALLMCk , id
∗

(id†, ·)
, Horn clauses for

implying an over-approximation of the state predicates representing ṡ (which is an execution of c∗) are included in αC (Ck , id∗).
□

Note. Formally, we need to require that all of the contract codes in Ck end with a STOP instruction. This is as in the small-step semantics
whenever a program counter runs out of its bounds, a STOP instruction is executed. This problem does not apply to the case of JUMP
instructions as in this case the check for valid jump destinations is a precondition for the execution of the instruction. Consequently, the
semantics of a smart contract bytecode is preserved when appending a STOP instruction and imposing this restriction does not limit the
expressiveness of the analysis technique.
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