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Kurzfassung

Das Fachgebiet der Daten-Provenienz beschäftigt sich mit der Herkunft von Daten. Es
erlaubt uns, Vertrauen in Daten aufzubauen. Dafür müssen die Provenienz-Daten selber
zuverlässig sein und gewisse Sicherheitsstandards erfüllen. Das zu erreichen erweist sich
als schwierig, da Daten-Provenienz oft sehr Domänen-abhängig ist, wodurch eine starke
Fragmentierung des Fachgebietes entstanden ist.

Diese Fragmentierung macht es schwierig, einheitliche Sicherheitsstandards zu implemen-
tieren. Deswegen haben sich auch für die Sicherheitsanforderungen Domänen-spezifische
Lösungen entwickelt. Außerdem erschwert die Fragmentierung die Zusammenarbeit zwi-
schen den verschiedenen Domänen. Dies wiederum erschwert es, die Herkunft von Daten
nachvollziehbar zu machen was das eigentliche Ziel von Daten-Provenienz ist.

In dieser Arbeit stellen wir eine Blockchain-basierte Lösung vor um Domänen-unabhängige
Suchgebiete für Daten-Provenienz zu erstellen. Dies erlaubt es uns, auch Sicherheitsei-
genschaften der Blockchain auf eine einheitliche Art und Weise auf Daten-Provenienz zu
übertragen.

Mithilfe unserer Lösung können wir die Zusammenarbeit zwischem Domänen ermöglichen,
ohne diesen einheitliche Provenienz-Eigenschaften aufzwingen zu müssen. Dies erlaubt es,
die Herkunft von Daten über Domänengrenzen hinaus nachvollziehbar zu machen und
ein vollständigeres Bild der Datenherkunft zu erstellen. Gleichzeitig kreieren wir eine
Platform auf der Domänen-unabhängige Sicherheitsanforderungen einheitlich umgesetzt
werden können.
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Abstract

Data provenance allows to reproduce what has happened to data during its lifecycle, i.e.,
it allows to build trust in data and decisions. To achieve this, provenance data has to be
reliable itself and to fulfill certain security requirements. This proves to be a difficult
problem since data provenance often has many domain-specific properties. Addressing
these domain specificities has led to a fragmentation of the field of data provenance.

This fragmentation is a problem since it makes it hard to implement common solutions for
security requirements. Instead, the field of secure provenance often focuses on providing
domain-specific solutions. Furthermore, this fragmentation makes collaboration between
domains difficult, hindering the overall goal of making the history of data products
reproducible.

In this thesis, we present a blockchain-based approach for creating a domain-independent
search space for data provenance. At the same time, we are able to utilize this search
space to map strong blockchain-based security properties, in a domain-independent way,
to the field of data provenance.

With our solution, we can enable collaboration between domains without enforcing
common provenance properties to the domains. This would allow us to track data
products across domain borders and create more complete provenance views while
providing a platform for common security properties.
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CHAPTER 1
Introduction

In complex, loosely-coupled systems, as depicted in Figure 1.1, it is often hard to reproduce
how a certain decision was made or how certain data was generated. In our example, the
input data depicted in green passes through a hybrid system of human experts and Web
services and produces some output data, depicted in violet. It is hard to build trust into
this output data since it is not easily reproducible what happened to the input data and
what influence the human experts had on it. Neither is the path which the data took
during its lifetime easily traceable. This is a simple example from the domain of Web
services [1]. Another example from the domain of hybrid systems could be, why did a
certain person get the organ donation and not another [2], and a socio-political example
could be the trustful disclosure of decisions for example in automated cars. To solve
these issues, data provenance, i.e., a type of metadata, can be used to provide reliable
information about those processes, decisions, and outcomes (depicted in orange). By
collecting provenance information about the process and the changes that occurred to the
input data, we can build trust in the output data. However, one major disadvantage of
data provenance solutions is that you have to be able to trust the provenance data itself.
This leads back to the initial problem of how to ensure trust in the data that is provided.
To solve this, many solutions fall back to centralized approaches [3] or cryptographic
techniques [4] but even so, there is some third party involved and trusted not to alter
any information.

One way of providing this trust without a trusted third party could come out of the field
of cryptocurrencies, i.e., the usage of blockchain technology. The blockchain is simply put
a distributed ledger [5]. It allows for storing information publicly and distributed in an
unchangeable manner. By utilizing the blockchain, we can move part of the trust issue
away from traditional provenance solutions into a technology which is by design envisioned
to create trust between parties. This would strengthen the trust in the provenance data
which as a consequence would strengthen the trust in the original data product. Finally,
this allows for easy and reliable reproduction of data and decisions.
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1. Introduction

Figure 1.1: An example use case.

1.1 Data Provenance
Many different solutions address the problem of data provenance. They vary in different
important aspects, e.g., the domain, granularity, provenance models. It has to be noted
that there are major differences between collecting provenance of a process being executed
on a personal computer, database queries, or a workflow being executed based on Web
services [6]. Database provenance, on the one hand, aims at providing the ability to
reconstruct how tables and databases as a whole got to exist in the first place and
which other databases or tables are the roots [7]. Provenance in Web services, on the
other hand, tries to provide information about which services were used in a certain
workflow and what they did to the data [2]. For example, Groth et al. [8] identify four
main categories of provenance: fine-granularity provenance, domain-specific provenance,
provenance in databases, and middleware-based provenance. These categories are not
mutually exclusive and also not the only categorization of data provenance as we will see.

Besides the general properties of data provenance, e.g., the chosen provenance model
and granularity, there is also the topic of securing data provenance. When it comes to
the security of data provenance, we can identify five main properties, as presented in the
literature [4]:

Confidentiality: Confidentiality deals with securing sensible information which can be
contained in provenance data.

Integrity: Integrity deals with securing provenance data from alterations during the
entire data lifecycle.

Unforgeability: Unforgeability deals with securing the provenance data against forgery.

Non-Repudiation: Non-Repudiation deals with making provenance data undeniable,
by users who recorded the data.

Availability: Availability deals with the total time that provenance data is accessible.

2
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Figure 1.2: Simplified view of the blockchain.

Securing provenance data proves to be a difficult topic that is often left to be handled
independently of the general challenges provided by data provenance. For example,
the W3C PROV recommendation [9] which defines a provenance model discusses the
topic briefly [10] but does not propose any specific solutions. Other work [4] then again
focuses solely on securing data provenance in a specific domain but does not consider
interoperability between domains.

1.2 Blockchain

The Bitcoin protocol overcomes the need for a centralized trusted store by means of the
blockchain [5]. It operates in a secure manner without the need for a centralized, trusted
entity, e.g., a bank. This opens up the question of how this technology can be used to
provide decentralized security for data provenance.

More formally put, the blockchain is a linked list, as shown in Figure 1.2. Hereby, every
block links to the block before by saving the previous blocks’ hash [11]. Since the link
is created by using the previous blocks’ hash once linked a block cannot be changed
anymore since this would break the chain. Furthermore, every block contains in its body
a set of transactions [11], which can be compared to the single rows in a ledger. The
result can be simplified as a digital ledger in which data can be written but not edited or
deleted.

We mentioned that the blockchain operates in a secure manner without the need of a
trusted entity. More concretely, it uses decentralized proof algorithms to establish a
distributed consensus between all the participants in the network [11]. Put in a very
simplified manner, as shown in Figure 1.3, instead of giving all the important information
to one trusted entity, e.g., a bank, we can give it to everyone and use a consensus
mechanism to achieve a common view of the state of this information. The advantage of
this approach is that no one single entity is now able to manipulate the data anymore.

3



1. Introduction

Figure 1.3: Simplified idea of distributed consensus.

1.3 Solution Approaches

The strong security properties as provided by the blockchain are interesting for the
application with provenance data. Especially integrity and availability are naturally
supported by the blockchain. This is also one of the reasons why a lot of work regarding
the combination of data provenance and the blockchain has started to appear recently.
Many contributions combine the two by using the blockchain as a data store for the
provenance data, e.g., Liang et al. [12]. As we will see in later chapters, this has the
disadvantage of compromising data confidentiality. This disadvantage gets addressed by
some of the related work by employing different kinds of encryption techniques to secure
the provenance data, e.g., Neisse et al. [13]. However, it has also another disadvantage.
Most of the chains are not build for storing huge amounts of data and it can become very
fast, very expensive. As we will see, there are also other possibilities how to reap the
advantages of the blockchain without having to store the data directly on the blockchain,
for example by off-chaining [14].

With our solution we present an approach of utilizing the blockchain to provide a common
search space for different kinds of provenance solutions. We realize that different domains
have different needs towards their provenance solutions and do not try to force them into
one specific solution. Instead, we leave the provenance-related choices open for the specific
domains and focus on creating a non-restricting way of utilizing blockchain properties
across domains. Hereby we also consider the different strategies which can be employed
to integrate blockchain with data provenance. Furthermore, we see the blockchains’
disadvantage not being able to store big amounts of data as a natural enforcement to
provide only functionality necessary for creating the common search space. Meanwhile
leaving complex cross-domain and -model integration issues open to be solved by the
client side. This allows us to provide a robust and flexible blockchain-based backend for
cross-domain provenance data.

4



1.4. Thesis Structure

1.4 Thesis Structure
This thesis is structured in six chapters and one appendix:

Chapter 1: Introduction
The current chapter, the introduction, which has the purpose of introducing the
general topic, the related technologies, and the document structure.

Chapter 2: Background
The background chapter contains a more detailed introduction to data provenance
and blockchains. We present a specific provenance model to ease the introduction
into the topic, talk about different kinds of data provenance, and also about
secure data provenance. In the blockchain part of the chapter, we first introduce
cryptographic tools necessary to understand the technical concepts behind the
blockchain. Then, we introduce the details of the blockchain technology using one
specific chain and in the end, we also present the Ethereum-chain. Furthermore, we
also discuss the concepts of trust networks in the background chapter. At the end of
the chapter, we have a detailed related work discussion presenting related work from
the domain of secure data provenance and from the domain of blockchain-based
data provenance.

Chapter 3: Design
In our design chapter, we present in detail the searchability and the duplication
issue and our approach to solve these two issues. We have a detailed discussion
about how data provenance can be incorporated with the blockchain and how
the huge variety of possible solutions is one of the reasons for the searchability
issue. Afterwards, we present the duplication issue before we introduce provenance
networks as a solution to both issues.

Chapter 4: Implementation
In the implementation chapter, we present our prototype which we implemented to
realize provenance networks. We go into the architectural and technical details of
each of the subprojects we implemented as part of our prototype.

Chapter 5: Evaluation
In the evaluation chapter, we evaluate the concrete costs of using our solution to
store provenance data in the Ethereum chain. Furthermore, we use a scenario-
based evaluation to present the abilities of our solution to search for provenance
and to discover provenance duplication attempts. We then also present a short
evaluation of required search times to search provenance networks of different sizes.
Finally, we have a qualified discussion about how our solution supports general and
security-related properties from the domain of data provenance.

Chapter 6: Conclusion
In the conclusion chapter, we summarize our solution, our findings, and give an
outlook on future research topics.
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1. Introduction

Appendix A: Evaluation Results
In this appendix, we list the detailed outputs of our scenario-based evaluation and
also the contract addresses of our entire provenance test network.
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CHAPTER 2
Background

In this chapter, we start by introducing what data provenance is, then we continue with
discussing blockchain technology. Following this, we introduce trust concepts and finally,
we conclude this chapter by presenting related work.

2.1 Data Provenance

In this section, we will introduce data provenance. We will explain what data provenance
is, talk about different kinds of provenance, security considerations, and introduce the
data provenance model recommended by the W3C.

2.1.1 Introduction

The Collins online dictionary defines provenance [15] as follows:

Definition 2.1. The provenance of something is the place that it comes from or that it
originally came from.

The authors of [6] define data provenance as follows:

Definition 2.2. Data provenance, one kind of meta data, pertains to the derivation
history of a data product starting from its original sources.

The authors of [8] define it as follows:

Definition 2.3. The provenance of a piece of data is the process that led to that piece
of data.

7
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Figure 2.1: Simplified provenance view of a blog article.

All three definitions have one thing in common, they refer to where something originates.
Whether this is a physical object or data is hereby of no importance. In the case of data
provenance, the definitions of both [8] and [6] bring a notion of how into the definition.
This means that when it comes to data, not only lineage is of importance, but also what
alterations were made to the data.

Let us have a look at a simplified example. Given some government data, for example,
a report about the environmental footprint of the country, some blogger picks up this
document and writes a blog article summarizing some aspects of the report. Later, a
reader comments on the blog article that there is a mistake in the summary and the
blogger fixes this mistake. Any reader following this incident will have a blog article
which is correct but will miss on the bigger picture. A natural reaction could be not
to trust the blog entry since the comment states that there are errors in it. Thus these
readers are missing the context on who influenced the data, when the data was influenced,
and how the data was influenced.

An additional aspect to note in this example is that although the report is attributed to
the government as a whole, it was likely created by the department of environment. This
detail will be of interest later on and is not immediately visible for the blogger or the
readers.

Thus, in this example, we have three different agents: the government, the blogger, and
the reader. Our example also contains three different data products: the government
report, the blog article, and the reader’s comment. These three data products are
accompanied by the activities of the different agents, being: publishing, creating, and
editing.

As shown in Figure 2.1, provenance data allows us to understand the timeline and the
dependencies between the different data products. We are able to see when the blogger
created the original blog article and which government report it was based on. We
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Figure 2.2: Core structures of W3C PROV-DM.

furthermore see that a reader created a comment based upon the blog article and the
government data, and finally, we see how the blogger derived a new version of the blog
article based on the old article and the comment of the reader.

As we can observe, in this simplified example, provenance data is metadata which
describes the lineage of some data product regarding the questions who, when, and how.

Since it is rather hard to reason about provenance data without any common tools, we
will introduce a provenance model to help us discuss certain properties of provenance
data. A provenance model is a data model that defines some common ground on how
provenance data is structured, how it describes the provenance of a data product and
how it is represented. In fact, we already use a very simplified version of a model in
Figure 2.1. A more detailed explanation of this model follows in Section 2.1.2.

2.1.2 W3C PROV

As we have seen in Section 2.1.1, we need a provenance model to be able to properly
describe provenance information and to be able to argue about it in a unified and
simplified way. For this, the World Wide Web Consortium (W3C) provides a family of
documents under the umbrella term PROV [9]. This set of documents also includes a
provenance model recommendation, the PROV-DM [16] recommendation.

2.1.2.1 Core Concepts

This provenance model consists, in its core, of three types and seven relations, some of
which we have already met in a simplified form in Section 2.1.1. In Figure 2.2, we see
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the types of the PROV-DM model and their relations to each other. In the following, we
give a brief description of the core types as defined in PROV-DM [16].

• Entity: An entity represents a thing about which we want to record provenance.
This thing can be physical, virtual, conceptual, real or even imaginary. In our
example, the government report, the blog articles, and the blog comment are
entities. In an even broader sense, we can describe all data products we want to
record the provenance of as entities.

• Activity: An activity represents an action that can happen over time and that
interacts with entities in some form. In our example, publishing the report, creating
the blog article and the comment, as well as editing the article are activities. In a
broader sense, actions that create, modify, process, destroy, or otherwise consume
data products are activities.

• Agent: An agent is someone who is in some form responsible for a certain activity
that is taking place. An agent does not have to be a human being, it can also be a
thing, an organization, a code library, etc. In our example, we have three agents of
importance: the government, the blogger, and a reader.

The form of the different core types as seen in Figure 2.2 is recommended by the W3C
PROV document family, however, the graphical visualization is not a defined notation
like the one in the PROV-N document [17] but merely a tool to make reasoning easier.
The PROV documents [16], however, recommend to use graphical elements as described
in the W3C [18]. Next, we will also introduce the basic meaning of the relations between
the types as defined in PROV-DM [16].

• Generation: Generation represents the creation of a new entity by an activity. In
our example, the article entity was generated by the create activity. Generation is
named wasGeneratedBy as shown in Figure 2.2.

• Usage: Usage marks the beginning of utilization of an entity by an activity. In
our example, the edit activity used the first version of the article entity and the
comment entity to achieve the generation of a new article entity. Usage is named
used as shown in Figure 2.2.

• Communication: Communication is when one activity uses an unspecified en-
tity which was generated by another activity. The comment entity, for example,
was generated by a create activity and then used by the edit activity, thus repre-
senting a communication between the create and edit activities. Usage is named
wasInformedBy as shown in Figure 2.2.

• Derivation: Derivation is when one entity gets transformed into another. It can
also denote the influence that using one entity toke upon a newly generated entity.
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In our example, the first version of the article was derived from the government
report, the second version, however, was derived from the first version of the article
and the comment of the reader. Derivation is named wasDerivedFrom as shown in
Figure 2.2.

• Attribution: Attribution refers an entity to an agent, meaning that the entity
can be attributed to the agent. In our example, the report is attributed to the
government, since the government is responsible for creating it. Attribution is
named wasAttributedTo as shown in Figure 2.2.

• Association: Association represents the responsibility of an agent for a certain
activity. In our example, as briefly mentioned, the creation of the report would
be associated with the department of environment, since it is responsible for the
correctness of the government report. Association is named wasAssociatedWith as
shown in Figure 2.2.

• Delegation: Delegation is when one agent assigns another one some responsibility
and authority for a certain activity. In this case, the assigning agent still holds some
of the responsibility for the assigned activity. In our example, the department of
environment created the report on behalf of the government. The government is still
responsible for the report since the report is representing the government’s effort,
however, for the factual correctness, the department of environment is responsible.
Delegation is named actedOnBehalfOf as shown in Figure 2.2.

In Figure 2.3, we show our example from Section 2.1.1 completely modeled using the W3C
PROV model. To make distinguishing between the different relations easier, they have
been modeled in different colors. As we see, although we used a rather simple example to
introduce data provenance, it results in a rather complex model of dependencies between
the different entities, actors and activities. However, this model now allows for complex
deductions about how the data product, ArticleV2, came to be, on which previous data
it was based on, and who influenced it.

Besides the core specification explained above, the W3C PROV document family defines
also a lot of additional concepts, a few of which we will discuss below.

2.1.2.2 Extensibility

Since the PROV-DM model is designed to be domain- and technology-independent [16],
it defines mechanisms to ensure extensibility and to provide for the necessary adaptability
towards specific domains and use cases.

Extended structures: PROV-DM supports sub-typing of core types, expanding
relations, and also optional identification. The first, sub-typing, allows users to
easily create domain-specific versions of the core types. The second, expanding
relations, is a mechanism that allows to open up the core relations in a way so that
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Figure 2.3: Core structures of W3C PROV-DM.

they can be used to express n-ary relations. And the third, optional identification,
allows for introducing ids when there is the need to distinguish between two different
occurrences of the same relation.

Extensibility Points: The extensibility points define three reserved attributes, prov:type,
prov:role and prov:location, which allow for domain-specific adaptation of the model
and facilitate the support of extended structures. Furthermore, PROV-DM does
not prohibit the creation of application-specific attributes which can be used to
further describe the specific domain.

2.1.2.3 Provenance of Provenance

An important concept in PROV [16] is the bundle, which is a named set of provenance
records. The bundle itself is an entity, thus we can simply record provenance about it. We
are now talking about metadata of metadata which may seem like an unnecessary level
of abstraction at first. However, considering our example, the government report is one
entity which is attributed to the government. Given that we have access, we could request
the provenance information of the report. The resulting records may have multiple
entities, representing sub-documents, graphics, statistical analysis, etc. There will also
be a lot of actors, humans, and computers, that performed different activities. All of
these records can be bundled into a provenance bundle attributed to the department of
environment, since it is their provenance data and they were responsible for recording and
maintaining it. The report itself is attributed to the government, however, the provenance
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information about the report would be attributed to the department of environment since
they are responsible for the provenance information itself although not directly for the
report as a whole. This way, bundling helps us to argue about a whole set of provenance
records at once.

2.1.2.4 Accessing Provenance

Accessing provenance is managed by a technical note [10] within the PROV document
family. The technical note contains some important concepts that will help us to reason
about some details in the following chapters.

• Resource: We can think of anything that can be represented by a URI as a
resource. Important to note is that from here on forward, any kind of data product
will be denoted as a resource. Everything that we can record data provenance
about will be called a resource in the following chapters.

• Provenance record: As has already been established, a provenance record is
some provenance information about a resource.

• Provenance query service: A provenance query service is a service that allows
querying for provenance records given some filter criteria.

• Target URI: A target URI denotes any kind of resource. Quite important in case
of provenance is that this URI has not to be dereferenceable.

• Provenance URI: A provenance URI denotes a certain provenance record. It is
not defined how much provenance information will be returned when dereferencing
the provenance URI.

• Service URI: A service URI denotes a provenance query service.

• Pingback URI: A pingback URI denotes a service that can receive references
about additional provenance records for a resource.

The W3C note defines two major ways of accessing provenance. Either by direct access
through dereferencing a provenance URI or indirectly by querying a query service.
Furthermore, the W3C note defines two major ways of how to retrieve the provenance
URI or the query service location. Either by incorporating the link into the resource itself,
for example by a link-element in case of an HTML resource. Or, by adding necessary
metadata during the retrieval of the resource, for example by introducing additional
HTTP headers. This will be of interest later in Chapter 4.
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2.1.3 Kinds of Data Provenance

Now that we have introduced the concept of data provenance and also a data provenance
model, we will talk briefly about different kinds and granularities of provenance. The
authors of [8] distinguish between four different kinds of provenance, fine granularity
provenance, domain-specific provenance, database provenance and middleware-based
provenance. However, the same authors distinguish in [19] between work in the database,
workflow, and semantic web communities. The authors of [20], for example, distinguish
between data provenance, workflow provenance, and cloud provenance, although their
categorization is rather broad.

As we can see, the different authors have slightly different views on the kinds of provenance,
but we can roughly summarize them as follows.

• Database provenance: Database provenance focuses on three major points [19],
how to explain the results of database queries, how to model the evolution of
databases over time, and how to manage and query provenance from other sources
and domains.

• Workflow provenance: Workflow provenance is always based on the execution
of a workflow process by a workflow engine. The two major points [19] are on
provenance about the execution itself and on provenance about the data product
of the execution.

• Distributed provenance: Under distributed provenance, we collect all kinds
of provenance regarding the semantic web community [19], grid provenance [8],
cloud provenance [20] etc. Here, we are talking about systems that are highly
distributed and can contain many different services or parts. Similar to workflow
provenance, we can be either interested in the data product which we are generating
or manipulating in this distributed environment, or in the services that participated
in the fulfillment of a certain task.

A very exhaustive taxonomy is presented by the authors of [6]. Although quite old, many
of the other categorizations can still be broken down to this taxonomy, as shown in
Figure 2.4.

It is out of the scope of this work to go into the complete details of this taxonomy,
however, if we go back to our blog example from Section 2.1.2, we can see in Figure 2.4,
depicted in yellow, the different categorizations that are fulfilled by our example. Our
provenance example qualifies as informational since it gives a broad overview of the
lineage of our articles. It is data-oriented since the provenance information is about the
data products rather than the process of how they came to be. It is annotation-based
because we are using the W3C PROV model in our example and this particular model is
annotation-based [17]. In this case, the provenance information represents overhead data
on top of the data products. Finally, we are providing it in a visual graph, for reasoning.
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Figure 2.4: Provenance Taxonomy as presented in [6].

If we consider the government report from our example, and once again query the
government service for provenance information, it is easy to imagine that the result will
be more process-oriented provenance information, depicted in Figure 2.4 in blue. It would
probably consider the process of how the report was created with the aim to achieve
auditability of the process itself and the used sources. The granularity would be finer to
allow for a more detailed audit of how the input source was manipulated by the report
writers. In our example, we could receive the provenance information through a service
API, which we would query. The rest of the categories depend on the actually used
provenance model. Since in this example we use the W3C PROV model they would stay
the same.

One point that we will need for further argumentation is the granularity of provenance.
The granularity of provenance [6] is very domain- and use case-specific. Take for example
a picture that we want to enhance. On the one hand, if we are working on a new algorithm
for enhancing pictures every single pixel could become a provenance resource, meaning
that we would record provenance information about every single pixel to properly capture
the changes done by us. On the other hand, if we have a simple document cloud it can
be enough to record the provenance about which algorithm was used on which picture.
This means that we can have a few provenance records like in our blog example up to
millions of records describing only a small part of a much bigger data product. This has
a huge impact on how we process and store provenance since it can easily happen that
the provenance information itself is, in the end, bigger than the data product which is
described by the provenance information.
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2.1.4 Securing Data Provenance

Securing data provenance is a quite complex topic. In one of the W3C technical notes [10]
there is a short section discussing some of the main security considerations when it comes
to provenance data. However, the W3C does not provide any suggestions on how to
properly deal with these topics. A few issues mentioned there regard the need to provide
for the integrity of provenance data, that provenance data should be stored securely and
in a tamper-proof way, and that when retrieving the provenance data location from a
source document, it should be ensured that the source is trustable and is indeed the
original document.

These considerations can be generalized into the following five properties [4], as wildly
adopted by the literature:

Confidentiality: Provenance data can contain sensitive information that should not be
accessible by anyone. Confidentiality describes how well the provenance data is
secured against unauthorized access.

Integrity: Since provenance data is used to create trust in other data objects, it is
essential that the provenance data itself cannot be modified. Thus integrity describes
how well provenance data is secured against modifications by adversaries but also
by mistakes. This attribute is not only concerned with how provenance data gets
stored but also how it is secured during transportation and processing. This includes
also querying provenance data.

Unforgeability: This attribute is about how tightly data provenance is coupled with
the original data product. An adversary should not be able to forge data provenance
with an existing data product or forge a data product with existing data provenance
without being detected.

Non-Repudiation: Ideally, data provenance should be undeniable. For example, once
a doctor has taken the decision which patient gets the organ donation and the
provenance about this decision was recorded, the doctor should later not be able to
deny that he took the decision.

Availability: The provenance data should be easily available. This is usually put under
different privacy and security constraints but consider our previous example with
the organ donation. An auditor checking the hospital and its doctors’ decisions
should have access to the provenance data at all time without any problems.

2.2 Blockchain
In this section, we will discuss cryptographic basics before we explain what a cryptocur-
rency is in general. Afterwards, we will explain the concepts of the blockchain based on
the example of Bitcoin, the cryptocurrency that introduced the technology first. Finally,
we will discuss some of the differences between Bitcoin and the Ethereum chain.
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2.2.1 The Basics of Cryptography

Before we can talk in detail about how the blockchain works, we have to talk about a
few necessary cryptographic tools that are used by the blockchain.

2.2.1.1 Cryptographic Hash Function

A hash function [21] is a function that takes some input data of arbitrary length and
returns some data of fixed length as output. More precisely, a generic hash function has
the following three properties [21]:

• The input can be an arbitrary string of arbitrary size.

• The output is a string of fixed size.

• The function can compute the output from the input in a reasonable amount of
time. More precisely, an n-bit input string has an O(n) runtime for computing the
output string.

The issue with generic hash functions is that they are not collision-resistant [21]. This
means that two different input strings could result in the same output string. For instance,
a function that maps any input text to the numbers one to twenty-six based on the first
letter of the text would satisfy all of the properties above [21]. Many of those texts,
however, would get mapped to the same number. As we will see later in this chapter,
collisions are bad for our use case with blockchains. This is why we need cryptographic
hash functions, which have the following additional properties [21]:

Collision resistance: As has already been mentioned above, collisions are when a hash
function returns the same output for different inputs. More formally [21], given two
input values x and y, it is feasible to find two values where x 6= y but H(x) = H(y).
The issue with this is that since the input space is much bigger then the output
space, collisions are in theory possible. However, if it takes an infeasibly long time
to find a collision, then an algorithm is said to be collision-resistant.

Hiding: The second property of cryptographic hash functions is the inability to compute
the input value of the hash function out of the output value. More formally [21], if
we have the output of a cryptographic hash function y = H(x) it is infeasible to
compute the input value x. This is an issue, especially for restricted input spaces.
Take for example a dice, which has six numbers. By simply creating a table where
we list the output value of each possible input value for a hash function, we can
reliably tell which number was hashed by simply looking it up in our table. Such
hash tables are also called rainbow tables. To avoid this problem, the definition
of hiding has to be extended. Given an output value y = H(x ‖ r) and a secret,
randomly chosen value r, it is infeasible to find the input value x.
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Figure 2.5: Merkle tree and verification.

Puzzle friendliness: The third property is about how hard it is to hit a specific output
value. More formally [21], if we have an output value y of an n-bit hash function
and a randomly chosen value k, then it is not feasible to find a value x such that
y = H(x ‖ k) in time much less than 2n. A good example is a search puzzle. Given
are an id, a hash function and a target set Y . A valid solution to the puzzle is each
value x where H(x ‖ id) ∈ Y holds. The difficulty of the puzzle is dictated by the
size of the target set Y and the only way to solve it is by guessing random values x.

Cryptographic hashes have a very interesting side effect, they can be used as pointers [21].
A so-called hash pointer is nothing else then a normal pointer with the additional ability
to protect the integrity of the data it is pointing to. Hash pointers can be used instead
of normal pointers in arbitrary data structures like trees and lists. One form of trees
using hash pointers are Merkle Trees, which we will talk about next, and one form of a
by hash pointers linked list is the blockchain itself as we will see in Section 2.2.3.

2.2.1.2 Merkle Tree

A Merkle tree is a cryptographic data structure that allows for separating content from
verifiability [21]. The data structure is built upon leaf nodes and nodes [22]. For the
sake of simplicity, we assume it is a binary tree. Each leaf node is the hash of some data
and each intermediary node is the hash of its two child nodes [22]. Given some data,
in our case transactions as can be seen in Figure 2.5a, we create leaf nodes by hashing
the transactions. We then create intermediary nodes by hashing over the leaf nodes and
so one until there is a single root node left, also called the Merkle root. If the data in
any node would change or the order of the data would change, the root hash would also
change [22]. This allows us for verifying that some piece of data is or is not in the tree
without having to possess or store the complete data.

In the example shown in Figure 2.5b, we want to verify that two transactions are part of
the block. One of them is a correct transaction, T3, and one is a fake transaction, TF1.
By retrieving the correct Merkle tree and then recomputing the respective branches, we
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can easily see that T3 is indeed part of the tree and that TF1 is not part of the tree
without the need to possess or retrieve all other transactions. Compared to the original
data, T1-T4 as shown in Figure 2.5a, a Merkle tree needs much less space, time to be
distributed over a network, and in case of a cryptographic hash algorithm provides us
with feasible verifiability if some data has been processed or not [21].

2.2.1.3 Asymmetric Cryptography

Asymmetric cryptography, which is also known as public/private-key cryptography, is a
cryptographic approach [23] where you generate a key pair consisting of a public and a
private key. The private key, as the name suggests, has to be guarded by the owner. The
public key, however, can be distributed freely [21]. The basic idea is that everyone can
encrypt messages or data with the public key of some other user and only the intended
user, who owns the private key, will then be able to decrypt that message.

Beside data encryption, asymmetric cryptography has also some other use cases. A
particularly important one, for us, is the use case of digital signatures. A digital signature
is a way to prove that a specific message originated from a specific user. This is done
by encrypting the message that is to be signed with the own private key and attaching
this signature to the message. The receiver then can decrypt the signature with the
public key of the sender and compare it to the message. If it matches, the receiver knows
automatically two things. First, the message is from the expected sender since only this
sender owns the corresponding private key. Second, the message was not tampered with
by a third party. For our use case, as we will see, the first property of a digital signature
is of specific interest [21]. Furthermore, there are two interesting things to note. First,
usually, the message gets hashed [23] before it is encrypted with the private key. This
helps to save space and time during the process of encryption and transfer. Second,
although it is called a digital signature and often compared to a biometric signature, the
concept of the digital signature is much closer to the concept of a seal [24], since the
signature strictly speaking only proofs that you have access to the private key. However,
it does not have any biometric information incorporated to proof that it is indeed you
who is signing.

2.2.2 The Idea Behind Cryptocurrencies

The complete concepts behind the blockchain where first introduced by Satoshi Nakamoto
back in 2008 [11]. The blockchain is the technology behind the cryptocurrency Bitcoin
and allows to have a completely decentralized cryptocurrency. To better understand the
concepts behind the technology, we will first shortly discuss what a cryptocurrency is.
The idea behind a cryptocurrency is to create digital money that does not depend on a
trusted third party. Let us have a look at a simplified example [5].

Imagine Alice wants to give a digital coin of some currency to Bob. To do that, Alice
could write a simple digital contract that states that she gives one coin to Bob, and sign
it. When executed, this digital contract would deduct one coin from Alice’s account and
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add one to Bob’s. The execution of this contract can also be called a transaction. Alice
needs to sign with her digital signature to ensure that nobody can spend her money by
simply writing a contract that gives it away.

So whenever Alice executes this contract, Bob will get one of her coins and Alice cannot
take it back, see Figure 2.6a. This, however, leads to another problem, the so-called
problem of replaying contracts [5]. If Bob starts replaying Alice’s contract, he would be
easily able to steal coins from Alices account, as can be seen in Figure 2.6b.

To avoid this, there are two different possibilities. Either we introduce a third party
that authenticates Alice, for example by a shared secret. Alice would first authenticate
towards the third party and then tell the third party that she wants to transfer funds
to Bob. If Bob tries to replay that transaction, the third party would ignore it since
Bob does not know Alice’s secret and cannot be authenticated as Alice, which is how
banks work today. But we do not want to trust a bank with our funds. Which brings
us to the second possibility, we can make the coins distinguishable. If every coin can
be clearly identified, the contract could also list the identity of the coin. This way, if
Bob replays the contract, he cannot steal coins because he already owns the coin with
that identity. To make this work, we need again a trusted third party that issues the
coins. Otherwise, everybody could create new coins. Let us call this third party a crypto
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bank. This crypto bank would have the task to issue coins with unique identities, see
Figure 2.7a, and verify their existence. The difference to a normal bank is that it does
not have to know which or how many coins Alice owns but only if a coin exists. However,
there is still another problem left. Alice could decide to write two different contracts.
The first stating that Bob gets the coin and the second stating that Clara gets the coin.
Since both get a valid contract, both would think that they have the coin. In this case,
Alice would have successfully double spend the coin, as can be seen in Figure 2.7b.

To avoid this, our crypto bank needs to be further extended to track who owns which
coins. If Alice tries to double spend her coin, the crypto bank would stop the second
transaction from succeeding, see Figure 2.8a. Now the issue is that we have again to trust
a third party to behave correctly and non-maliciously since it is basically controlling the
amount of coins that exist and the ledger that states who owns which coins.

This can also be solved differently by giving the critical information to everyone instead
of to a trusted third party. Everyone would be responsible for keeping a ledger with the
information who owns which coins. When Alice wants to give Bob a coin, she would
give the corresponding contract to everyone, Bob and Clara. Clara would then be able
to confirm to Bob that she has seen his contract and that Alice does not try to double
spend, as can be seen in Figure 2.8b. If later Alice tries to double spend by trying to give
Clara the same coin, Clara could simply decline the payment since she already knows
that the coin has been spent before.

Our cryptocurrency would in theory work, however, we have one issue left: we do not
want coins to be individually identifiable. This would make it a lot harder to split coins.
Prices would need to be always a whole multiple of a coin. So to solve this final issue
we can make the transactions identifiable instead of the coins. If Alice adds a simple
number stating which transaction that is to here contract and increments this number
for each new transaction, we would achieve the same result. Remember we introduced
identifiable coins because of the replay attack. Since Bob cannot change the number
of the transaction he cannot replay it because Clara would not accept the replayed
transaction, since, in her ledger, she already has a transaction from Alice with that
number. At the same time, Clara would check in her ledger if Alice has enough money in
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Figure 2.9: Finalized simple cryptocurrency.

her account to prevent her from double spending it, as can be seen in Figure 2.9a. This
only works because we have now a network of participants who verify transactions and
have a common view on the state of the network.

Furthermore, verifying transactions could also be used to solve issuing new coins. Instead
of having the crypto bank issue coins, it could be defined that whenever one of the
participants verifies a transaction for the others, the participant is allowed to issue new
coins. Clara, for example, who witnessed the transaction between Alice and Bob would
now be allowed to create a new coin and in the process of confirming the transaction, she
would also tell Bob and Alice about this new coin, as can be seen in Figure 2.9b. This
way, the participants would be able to pay themselves for doing the work of verifying
transactions of other participants.

We successfully have created a simplified cryptocurrency which shows us in a simplified
way how Bitcoin operates. To make this work between huge amounts of participants,
Bitcoin uses the blockchain as the underlying technology.

2.2.3 The Basics of Blockchain

In the previous section, we introduced the basic concepts behind the blockchain based on
a simplified example. In this section, we will have a closer look behind the constructs
and mechanisms enabling the blockchain.

2.2.3.1 Transactions

Until now, we did not go into detail what a transaction actually is. We just know from
Section 2.2.2 that transactions are used to transfer funds and to keep track of what is
happening in the network. A transaction is a construct [5] consisting of a transaction
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Figure 2.10: The structure of transactions.

hash which is also called the transaction id, a set of inputs, and a set of outputs. Every
output consists of the following elements.

Value: The amount of coins that are transferred.

Output Script: A script that defines who is allowed to spend this money. A future
transaction that tries to spend the coins in this output has to provide input
parameters for this script so that it evaluates to true. The simplest script is just one
that verifies that a certain user approves the transaction by verifying the signature
of that user which has to be given as an input parameter. But this general approach
of using scripts allows also for more complex scenarios.

Every input has the following values:

Previous Transaction ID: This id is pointing to a previous transaction on the blockchain.

Index: The index is specifying which output of this previous transaction is of interest.
This output has to be an unspent output. Otherwise, the transaction will be
discarded as invalid, since it is an attempt at double spending the same coins.

Arguments: The necessary arguments for the script which is stored in the output we
are pointing to. In case of a simple transfer script, this will be just the signature of
the user owning the coins.

When Alice wants to transfer some funds to Bob, she has to reference as many previous
outputs in her inputs list until she reaches at least the amount she wants to transfer or
more [5]. The unspent transaction outputs, UTXOs [25], that Alice has to gather are
the way how Bitcoin keeps track of a user’s total balance. Then, she has to specify the
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Figure 2.11: Simplified view of the blockchain.

output script. This can also be seen as a contract between Bob and Alice. If Bob is
willing to fulfill the requirements of the script, he can have the funds. We will speak
later more about contracts. Finally, Alice has to specify the target address in her script.
This address has to be one where Bob owns the private key to, otherwise, he will not
be able to retrieve the coins. When referencing an output from a previous transaction,
Alice has to use up all the funds in that output [5] since it is not allowed to reference an
output twice. This means that it can happen that Alice was forced to add more funds
to the inputs than she wants to transfer to Bob. In this case, she can simply create a
second output where she references an address that is controlled by herself. This can be
compared to change in the cash world. Figure 2.10 depicts this example with all of its
aspects.

A user can generate an address from a public key [5]. Respectively behind every
address is a public/private-key pair that can authenticate transactions for that address.
Furthermore, users do not have to manage their addresses and unused transaction outputs
themselves. There are so-called wallet applications that collect the outputs and display
the accumulated value of owned coins to the users. They will also create the necessary
input and output lists for the users.

2.2.3.2 Blocks

In the simplified example in Section 2.2.2, one important point was that every participant
has to be informed about every transaction and also about every creation of new coins.
To make this possible, Bitcoin uses the blockchain, which can be simplified thought of as
a distributed ledger [5]. Everybody can write into that ledger and read from it but no one
can modify or delete content in the ledger. A more technical analogy would be a linked
list [5] as briefly mentioned in Section 2.2.1. This linked list consists of so-called blocks
where each block references the block before and contains a set of transactions, as shown
in Figure 2.11. To be more specific, every block consists of a block header and a block
body [11]. The header contains certain fields needed for managing the blockchain [11] and
the block body contains the set of transactions [11]. This way, a user can verify multiple
transactions at once instead of having to verify each transaction by itself. Remember
how Clara verified the transaction between Alice and Bob in our example. Instead of
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doing this for each transaction separately, Clara can verify a set of transactions, possibly
from different users, at once by putting them into a block.

Below we will explain shortly the different fields contained by the block header:

BlockHash: The block hash is the cryptographic hash generated from the current block
header. In the case of Bitcoin, it is generated by a SHA-256 hash function.

PrevBlockHash: This field contains the block hash of the previous block. This is how
out of the different blocks a linked list is created, as shown in Figure 2.11. This
is also why any block already in the list cannot be changed later on. It would be
necessary to change also every block following. We will discuss the security aspects
also later in this chapter.

Nonce: The nonce is part of the security algorithm used by Bitcoins blockchain. It
basically is a value that helps to make the hash of the current block look in a
specific way. We will explain the details later in this chapter. For now, it is only
important to know that it is part of the block header.

Time: The time field is the current timestamp in seconds since 1970-01-01T00:00 UTC.

MerkleRoot: The Merkle root is the root node of a Merkle tree as described in Sec-
tion 2.2.1. The children of this Merkle tree are the transactions which are stored
in the block body. This way it is not necessary to add all transactions to the
block hash computation. As we have seen in Section 2.2.1, this allows us to verify
that a specific transaction is part of this block without the need to retrieve all
transactions.

2.2.3.3 Mining

The process of confirming transactions is called mining. The parties taking part in mining
are called miners. To be able to confirm a block of transactions, a miner has first to
solve a cryptographic puzzle [11]. This is a necessary step to provide security for the
blockchain. The idea is that each x minutes a new block is created. To achieve this,
miners constantly keep adding new transactions to the block they are currently mining
and try to guess the block nonce so that the block hash is, in the end, lower or equal to
a certain target value. Since the only way of solving this puzzle is by guessing values and
calculating hashes, as discussed in Section 2.2.1.1, the security of the blockchain does not
depend on the number of miners but on their computational power [5]. The difficulty
of the puzzle, the target value, scales with the amount of computational power that is
provided by the miners so that the block production stays roughly at the same rate.
This way of confirming blocks is called proof of work [11] since it requires machines to
perform calculations. By now, there exist also other algorithms by which one can prove
a new block like proof of stake [26]. Proof of work is still used by major blockchains like
Bitcoin [11] and Ethereum [27].
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Once a miner has found a valid nonce that creates a valid block, the block gets distributed
to all other nodes who then append the valid block to their local blockchain and the
process of mining continues with the next block. Since the process of mining itself is
expensive, as it costs real energy, the miners are getting two kinds of rewards for their
troubles.

Coin creation: The first kind of reward is a certain amount of new coins [11]. A miner
who successfully verified a block is allowed to add one special transaction to that
block which transfers a certain amount of newly generated coins to an address
chosen by the miner. This is also the way how many cryptocurrencies manage
how many new coins and in which time frame new coins get introduced into the
network.

Transaction fees: The second kind of reward are transaction fees [11]. Transactions
may have a positive delta between inputs and outputs. This delta is commonly
known as the transaction fee and the miners are allowed to spend these coins as they
wish. Usually, a transaction offering a higher transaction fee has higher chances to
be accepted by the next block compared to a transaction offering lower fees. The
transaction fee gets set by the user who is creating the transaction but the miner
decides which transactions are added to the next block being mined. This way we
get a self-regulating transaction fee market.

2.2.3.4 Blockchain Security

Miners are the backbone of the security [5] of the blockchain. In the process of transaction
verification, they are checking each transaction for correctness and only accept correct
transactions. Furthermore, each miner also has to check the blocks generated by other
miners, meaning that when one miner finds a valid nonce and distributes the block to all
other miners, each of the other miners validates the freshly distributed block and decides
if it is valid or not. Only if the majority of the miners decides that one block is valid it
can be said that this block is now accepted in the blockchain.

Since the whole process of mining and distributing blocks is highly decentralized, it can
of course also happen that for a short time there are multiple blocks concurrently racing
for being accepted as head of the blockchain [5]. This state is averted with the rule of
the longest branch [11]. Given two racing branches, one will have at some point more
miners supporting it than the other branch. This also means that more mining power is
behind one of the branches which ultimately leads to one branch becoming longer than
the other. At this point, all miners who were supporting the losing branch will drop the
losing branch and start supporting the longest branch.

This basically means that you have to have more than 50% honest miners to have a
secure blockchain. This condition is known as the 51% attack [5]. If attackers manage
to control 51% of the computing power behind a blockchain, they are basically able to
rewrite the whole history of that blockchain by simply mining on a discontinued branch.
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They then would eventually overtake the main branch and thereby force also the honest
miners to accept the rewritten history as correct.

Such an attack would quite probably be discovered [5] before succeeding in rewriting
major parts of the history which would lead to massive value drop of the currency behind
the blockchain since the users would pull their investments. In the end, the attackers
would have successfully destroyed the currency but not won any real value. This complex
mix of socio-economic factors [5] behind the blockchain are the main security idea of
the chain itself. The assumption is based upon the idea that as long as there is actual
value in the blockchain, attackers would not be interested in destroying the blockchain
itself [5] since this would destroy the value of the cryptocurrency and they would lose
the ability to capitalize on the attack. Furthermore, there are positive incentives in
place and self-regulating algorithms to incentives miners to behave correctly and continue
confirming valid transactions.

Although the security of the chain as a whole is thereby quite well ensured and the
network is subject of severe auditing to recognize big attacks on it, there still exist a
bunch of smaller attack vectors [5]. Among others, some scientists have proven that
given certain conditions it can be enough to control around one third [5] of the network’s
computational power to make specific transactions pass or not pass. Another group
showed that it is possible to make use of the positive incentives to enforce blacklisting [5]
of certain users. We will not go into further detail about these attacks since it is out of
the scope of this work, however, it is important to know that there are a bunch of attack
vectors besides of destroying the whole cryptocurrency.

2.2.4 Ethereum

In the last few sections, we have explained the idea behind the blockchain and its most
important aspects based on the specific cryptocurrency Bitcoin. However, besides Bitcoin,
there have evolved many other cryptocurrencies focusing on improving specific aspects of
Bitcoin which were not solved by it to the full satisfaction of the community. One of these
other chains is Ethereum [27]. Ethereum focuses on smart contracts. As we have already
briefly mentioned when talking about transactions in Section 2.2.3.1, Bitcoin allows to
specify scripts which again allow for creating more complex rules for receiving the money
than just proofing ownership of a certain key. As mentioned before, we can also view
these scripts as contracts or smart contracts because the code specifies the conditions
under which someone can access the funds and it is not changeable after deployment.
However, Bitcoin has a major limitation, since the language that it supports in those
scripts is not Turing-complete [5]. This limitation is a natural one, since every miner has
to execute the code in every transaction and having loops inside those scripts would make
it impossible for miners to recognize wrong or malicious code. This issue is based upon
the halting problem [28] which basically states given an arbitrary program and an input
it is not possible to state if the program will terminate on that input. To circumvent this
issue, the Bitcoin blockchain does not offer a more complex script language.
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This is where Ethereum builds upon. Ethereum has a Turing-complete script language,
although it is arguable that Ethereum itself is not Turing-complete, we will discuss this
latter in this section in more detail. Furthermore, Ethereum actually aims to be an
application engine build upon a blockchain and not simply a cryptocurrency. In the
following, we will describe a few of the core features and differences [25] of Ethereum
with respect to Bitcoin.

Virtual Machine: As has already been briefly mentioned, the main idea of Ethereum
is to be an application platform. To achieve this, Ethereum implements a virtual
machine (VM) that is capable of working with Ethereum’s own opcodes, the EVM.
Transaction code gets executed by the miners on these EVMs.

Gas and Fees: Like Bitcoin, Ethereum has also to deal with the halting problem.
However, since Ethereum has decided to provide a Turing-complete language, the
developers had to come up with a different approach for solving this. That is why
they introduced the notion of gas [27]. Basically, the user has to pay for each
line of code that gets executed by the miners. Users in Ethereum have to specify
as part of their transaction the upper limit of gas their transaction will use. All
remaining gas will be refunded to the user by the miner and if the transaction
execution exceeds the provided amount of gas, it gets terminated and all changes
are reverted. This way even if somebody submits a faulty program, with an endless
loop, for example, the miners do not have to worry about it since they are getting
paid for each iteration of the loop and once the gas runs out they can stop the
execution of the transaction code. Beside for code execution, users have also to pay
for storage access and for permanent storage on the Ethereum chain. Since every
piece of information that is stored permanently on the chain makes the chain grow
and every miner has to provide physical storage for this information, the fees for
storing big amounts of data have to be covered by the users and can be quite high.
The whole concept of gas prices and storage fees is set up in a way to scale with
market demand and supply, however, it is out of scope to go into further details in
this thesis.

Accounts: As has already been discussed, Bitcoin uses an UTXO approach for managing
the balance of users. Ethereum, on the other hand, has decided to use an account-
based approach. In the case of the account-based approach, the state of the chain
stores a list of user accounts with the corresponding balances. This has some
benefits but also some disadvantages compared to the UTXO approach. One of
the main disadvantages is a lower degree of privacy. One of the main advantages is
that it saves a lot of storage on the miner’s side and it is simpler to reason about
by developers.

Besides these core concepts as presented above, Ethereum has also a few technical
differences that we will not go into further detail. One example is that they are using
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a Merkle Patricia Tree [27] instead of a Merkle Tree allowing for tree operations to be
performed in logarithmic time.

2.2.4.1 Ethereum and Turing-Completness

As we have mentioned earlier, the language that is run by the EVM is Turing-complete [27]
since it allows for arbitrary computations. However, the Ethereum chain itself is not.
The Ethereum chain is designed in a way that transaction do always halt as we have
mentioned above. Besides the transaction gas limit that we have mentioned above, there
is a second mechanism, that restricts execution time namely the block gas limit. The sum
of the gas limits of all transactions in one block is not allowed to surpass the block gas
limit. Thus, a single transaction may at maximum provide gas up to the block gas limit
for its computations. However, this behavior is comparable to any normal computer. A
memory-intensive program will run until it runs out of memory at which point a modern
operating system would kill it with an out-of-memory exception to avoid total machine
failure. To solve the issue, the user of that computer could increase the available memory
and try again to execute the program. We have the same behavior in the EVM itself.
By increasing the provided gas, we can try to run the program again. By increasing the
total allowed block gas limit, we can allow even more complex programs to be executed.
This argument can even be extended. Say we take the EVM code and alter it to not
require any gas to run instructions, without changing the instruction set that it can run.
We then have private EVM which can run the exact same programs that can run on the
Ethereum network without the need for gas. With this altered EVM and the language
provided by Ethereum, we could do anything that we can do on an arbitrary computer.

2.3 Trust Networks and Trust Propagation

The scientific community likes to visualize trust between entities in so-called trust
networks [29] or trust graphs. These are weighted directed graphs (V, E), where the
vertices, V , represent the entities and the edges, E, the trust between two vertices. The
vertices are directed because trust is not bidirectional. Take scientific work, for example,
a blogger may trust a set of papers to write a blog entry, however, scientists writing
papers will not necessarily trust blog entries to write scientific papers.

One example from the semantic web community is the FOAF [30], friend of a friend,
schema. The idea behind this schema is to allow homepages to expose, in a machine-
readable language, information about entities they know in the FOAF universe. This way
a graph is formed which later was enriched [31] by trust assertions with the weights from
one, absolute distrust, to nine, absolute trust. These weights could be given to entities
on that network for different categories allowing, for example, to have full trust into one
skill of this entity while expressing some reservations towards another skill of the same
entity. For example, you could express that you have full trust in your computer science
professor about computer science but only very limited when it comes to language skills.
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If it comes to how trust is propagated from one entity to another, there exist many
different propagation algorithms and metrics. One well-accepted categorization [32] of
the different metrics is the usage of the following three dimensions:

Group vs Scalar: This refers to the way in which trust relations are evaluated. Scalar
metrics, in general, compute trust between two entities while group metrics, in
general, compute the trust for sets of entities.

Centralized vs Distributed: Centralized metrics rely on one machine which needs
access to all trust information to compute the trust for all entities. Distributed
metrics rely on algorithms where every entity in the network helps to compute a
part of the network.

Global vs Local: The difference hereby refers to how many entities of the trust graph
are used to compute the trust of the network or they can take only a part of the
network into the computation, thus taking local bias into account.

In the following, we will describe four basic strategies [33] to propagate trust between
entities:

Atomic propagation: Atomic propagation is the most intuitive one. Given three
entities a, b, c ∈ V , if a trusts b and b trusts c then one can assume that a can trust
c to some degree, see Figure 2.12a.

Transpose trust: The idea here is that given two entities a, b ∈ V where b trusts a,
this should imply some amount of trust from a to b, see Figure 2.12b.

Co-citation: Given four entities a, b, c, d ∈ V where a trusts c, d and b trusts d then
this implies that b can also trust c to a certain degree, see Figure 2.12c.

Trust coupling: Given four entities a, b, c, d ∈ V where a trusts b and the entities b, c
trust d, then this should imply some trust from a towards c, see Figure 2.12d.

2.4 Related Work
In this section, we will first introduce some interesting properties by which we can
categorize related work. Afterwards, we will discuss some of the efforts of the scientific
community towards secure data provenance and blockchain-based data provenance.

2.4.1 Related Work Categorization

To make comparing the related work easier, we will extrapolate some interesting properties
from the different topics involved. Among these properties, we will have some provenance-
based properties influenced by the taxonomy [6] presented in Section 2.1, some blockchain-
based properties, and some secure-data-provenance-based properties from Section 2.1.4.
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Figure 2.12: Trust propagation strategies.

Granularity: We can express granularity as fine- or coarse-grained. With this attribute,
we express which level of granularity the authors envisioned for their contribution.
If the user can choose the granularity, we will denote it as custom.

Chain: We will distinguish for which chain the contribution was developed. Ethereum
based solutions are usually public chains, however, the Ethereum chain can also be
deployed as a private chain. The same goes for BigchainDB. Hyperledger Fabric is
a permissioned chain and Tierion is a third party API that allows access to Bitcoin
and Ethereum.

Model: We will distinguish between existing and self-defined, custom, data models for
expressing data provenance. Furthermore, we will take into account that not all
of the solutions presented in the related work are indeed depending on a specific
provenance model. These solutions will be marked as model-agnostic.

Storage: We will distinguish where the solutions envision storing the actual provenance
data. More specifically, we will distinguish between solutions which store their
provenance in the blockchain, on-chain, solutions that store their provenance in a
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non-blockchain-based data store, off-chain, and solutions that allow for a custom
approach, where data can be on the chain but also off the chain.

Integrity: We will distinguish between high, mediocre, and low integrity. High integrity
will be for solutions that take into account storing as well as transportation of the
provenance data. Mediocre integrity will describe solutions that secure either the
storage or the transportation. And low will be for solutions that have no integrity
considerations.

Confidentiality: For this property, we will distinguish between high, mediocre, and low
confidentiality. Depending on what tradeoffs the different solutions consider and
if they have confidentiality considerations at all. Furthermore, we will have the
value custom for solutions that allow the users to decide which level of security to
enforce.

Availability: Availability will be also measured as high, mediocre, and low for solutions
that have a clear approach to the issue. High availability, for example, is achieved
when a public chain is used to store data since it can be assumed that such a chain
will not have any downtimes. Respectively less downtime-secure designs might get
a lower availability rating. And we will use custom for solutions where availability
is use case-specific.

Non-Repudiation: For non-repudiation, we will distinguish between four different cases:
supported, not available, partial, and custom. Partial will be used for solutions
that provide non-repudiation under some trust assumptions. Custom will be used
for solutions where it depends on the actual key distribution in the use case. For
example, if the keys are held by the actual actors, non-repudiation is supported but
if they are held by any automated auxiliary actors, non-repudiation is not provided.

Unforgeability: For unforgeability, we will have the same options as for non-repudiation
with the same meaning.

2.4.2 Secure Data Provenance

First, we will take a look at blockchain-independent related work from the domain of
secure data provenance. We will do this based on the five security properties we defined
in Section 2.1.4. We are not discussing work from the non-secure data provenance domain
since these contributions often make very simplifying assumptions about security or
simply leave it as an open topic since it would be out of scope for their work. The
W3C PROV [10] recommendation itself is a very good example. Although it mentions
important security issues that have to be taken into account, it does not provide any
suggestions to how to solve them. Another good example is the work of Bower et al. [34]
where the provenance data gets saved as plain text in a file and folder structure on the
user’s computer. Other work, partially even from the domain of secure data provenance
often assumes a trusted infrastructure.
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Many approaches tend to solve confidentiality by using different kinds of state-of-the-art
encryption techniques, like by Asghar et al. [4], Hasan et al. [35], [36], and Lu et al. [3].
The exact cryptographic methods depend on which assumptions the authors took about
which parties should have full access to the provenance data, for example, users and
auditors. There are also solutions that allow for simple querying [4] of the encrypted
data without the need to decrypt it. A different approach is taken by Tan et al. [37].
They consider access control mechanisms to achieve confidentiality, by grouping the
provenance data into different types of information with varying levels of sensitivity and
then applying role-based access control mechanisms to restrict access to the provenance
data. This approach works only with a trusted storage provider.

Cryptographic techniques are also preferred to solve the integrity issue for provenance
data. More concretely, signatures are often used to ensure the integrity of the data, e.g.,
by Hasan et al. [35], [36] and Lu et al. [3]. This is a simple technique where the hash of
the provenance data gets cryptographically signed by the actor. Since it is assumed that
the private key of the actor is secure, anyone can verify with the public key of the actor
that the provenance data is indeed unchanged and as it was created by the actor.

Signatures are also used to achieve non-repudiation. This also works because it is assumed
that the private key of an actor is secure. Thus, when the provenance information of a
certain action is signed with the private key of the actor who performed that action, it
allows us to argue that the actor indeed did perform that specific action. This strategy
is used by Asghar et al. [4] to secure cloud provenance as well as by Lu et al. [3]. The
latter also assumes that the signature will be checked by the cloud service provider (CSP)
before storing the provenance.

To provide availability, much of the related work is proposing the usage of CSP in one
form or another. A major difference is to which degree the CSPs are trusted. Asghar et
al. [4] are proposing a solution where the CSP cannot access the data but only stores it.
Lu et al. [3], on the other hand, work under the assumption of trusted CSPs. Jung et
al. [38] speak of e-Science grids which are available through the Internet, making them
effectively a different kind of CSPs.

Unforgeability is often considered only one-sided. Provenance data that is secured by
a hash with a digital signature is hard to forge since an adversary would need to gain
access to the private key first. However, this does not necessarily mean that the original
data is secured. Asghar et al. [4] themselves define unforgeability into both directions,
however, solve it only by securing the provenance data. Encryption, as used to satisfy
confidentiality, is another factor that strengthens the unforgeability of provenance data
by making it unreadable to adversaries. With this in mind, also the works of Lu et al. [3]
and Jung et al. [38] support unforgeability through signatures and encryption.

As can be seen, encryption combined with digital signatures are commonly used techniques
in the related work to ensure the security of data provenance. The differences are often
subtle and domain- or use case-specific. Very often, it is also assumed that the solution
will operate on a trusted infrastructure, e.g., by Hasan et al. [35], [36] and Jung et al. [38].
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2.4.3 Blockchain-based Data Provenance

In this section, we will have a closer look at related work form the domain of blockchain-
based data provenance.

The authors of DataProv [39] focus on verifying the correctness of the submitted prove-
nance data by utilizing the Ethereum chain. A peer voting mechanism is used to enforce
the correctness of the committed provenance and they combine this with a monetary
incentive towards not submitting wrong records. However, their incentive mechanism also
provides an incentive for reviewing peers to simply reject any change independent of its
correctness. Once accepted, they write the whole provenance record into the blockchain.
In their evaluation, they do show the rough costs of the different operations they provide.
They assume high-level provenance data in their work, however, the cost can stack up
to be a massive issue in a high granularity context. Finally, they make use of the Open
Provenance Model, a direct predecessor of W3C PROV, for recording file provenance
without going into further details of the structure. Their integrity is protected through
the blockchain for stored data and additionally through signatures. Besides integrity, the
signatures also provide non-repudiation. Availability is provided by the blockchain. They
do employ encryption to provide confidentiality, however only against external users.
All users that are stakeholders have full access to the data, also to enable the voting.
Unforgeability is given through the combination of encryption and signatures.

The authors of ProvChain [12] present a framework for capturing and storing provenance
data for cloud applications. In their paper, they evaluate their framework based on
the open source cloud ownCloud. They use file hooks to identify file access and record
the provenance information related to those file operations with the help of Trieion1,
an API for storing data into Bitcoin or Ethereum. The granularity of the provenance
which they record is based on files as a data product and file operations as provenance
activities. The provenance gets also stored into a local provenance store and the integrity
can be verified during auditing by querying transaction receipts. The provenance records
stored to the blockchain are pseudo-anonymized by hashing usernames and not exposing
any file contents. Like general blockchain research, however, shows [5], it is possible to
revert this anonymization to a certain degree. By using a pure transaction data-based
approach, they have some level of independence from the specific blockchain, however,
using a third party for writing transactions to the chain introduces other risks and
dependencies. Integrity is provided through the blockchain. As well as the availability
of the provenance data. Confidentiality is only partially provided since encryption is
introduced on the cloud storage provider side, thus the storage provider is seen as a
trusted entity. Non-repudiation is also only partially given since there are access controls
at the cloud provider side. Unforgeability is also given for the provenance data from the
storage provider onwards.

In his Master’s thesis, Stoffers [40] presents three different approaches to how the W3C
PROV provenance model could be mapped into the blockchain. His first approach is

1https://tierion.com/
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a document-based approach where the whole provenance information gets saved into
one transaction. His other two approaches are a graph-based approach and a role-based
approach. In the document-based approach, all the provenance data gets saved in the
same transaction. In the graph-based approach, there exist accounts, which are basically
public/private key pairs, for each element of the PROV model and relations between
the elements are mapped as transactions between those accounts. The third approach,
the role-based model, maps every agent from the PROV model to an account and all
the other PROV elements, activities and entities, as well as the relations, are stored in
the transactions. All three approaches are not based on the specific capabilities of one
blockchain but can be used with any blockchain that supports a cryptocurrency. The
author uses BigchainDB [41] for his prototype. BigchainDB aims to provide owners of
digital assets with reliable proof of ownership. Integrity and availability are provided
in all three approaches through the underlying blockchain. Confidentiality can only be
provided for the document-based approach given the content has been encrypted before
saving it to the blockchain. Non-repudiation depends on the underlying use case. If
there is a known mapping between users and their public keys, the normal way of signing
transactions provides non-repudiation out of the box. The proposed approaches do not
provide any safeguards towards unforgeability.

Neisse et al. [13] present three models in their paper on how to track GDPR compliance-
related data provenance by utilizing the Ethereum chain. They use the terminology, as
provided by GDPR, of Data Subject, Data Controller and Data Processor, where the
subject is typically a user, a controller is typically a service provider and a processor
is typically some kind of data processing organization used by the controller. All three
models are based on the idea that subject and controller establish a smart contract
between them that holds a set of policies which define what operations are allowed by
the subject to be performed with its data. The controller then has to check first if a
certain operation is allowed with the data of a specific subject before performing it. The
controller then uses a transaction to record the actual usage of the data. The main
difference between the three different models they propose is based around provenance
granularity. They suggest a subject-centric model where the subject defines the police
contract for high granularity and high security scenarios. For low granularity and high
scalability scenarios, they suggest a controller-centric approach where the controller
provides the contract for all users and they can decide to accept it or not. The same
principle is also used between subject and processor. The privacy of the data on the
chain is ensured by using a combination of new contracts and nonces per controller and
processor. The nonce represents a random value that is shared between subject and
controller or processor. This random value is then used to anonymize data that is part
of the provenance records in a way that only the subject can read the entries and map
them across contracts. The authors, however, do not go into details how recording this
provenance can be enforced on the side of controllers and processors. They do not use any
specific data provenance model but they adopt the SecKit [42] approach to model data.
Integrity, availability, and non-repudiation are provided through the native properties of
the blockchain. They have provided an encryption-based obfuscation algorithm so that
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the data is not plain text on the blockchain, which brings confidentiality to some degree.
The obfuscated data together with users’ signatures on transactions provide for some
degree of unforgeability.

The authors of TOVE [43] work towards a traceability ontology for supply chains by
utilizing the Ethereum chain. They build upon a model very similar to the W3C PROV
model with similar elements and even have also the notion of consuming and producing
TRU s, traceable resource units. Activities in their model can consume a TRU to produce a
different TRU. The complete provenance information can then be found in the blockchain
with different transactions representing different activities and recording which TRU
they consumed and which they produced. The resulting provenance trace is generated by
reading the events thrown by the smart contract as a response to the different activities
applied to it. Integrity and availability are provided through the native properties of the
blockchain. Non-repudiation depends on the actual use case. If the use case accounts for
matching users to signatures, then it is given through transaction signing.

The authors of BlockPro [44] focus in their solution solely on the secure integration of
IoT devices into provenance-enabled environments by using PUFs, physical unclonable
functions, and a gateway smart contract. They utilize the Ethereum chain for their
prototype. Furthermore, they ensure that only registered, trusted IoT devices are allowed
to store provenance data. In their setup, only the gatekeeper contract is allowed to
perform a writing operation onto the storage contract itself. They do not go into
details about what data model to use for the provenance data itself and also do not
discuss the issue of high granularity provenance and its consequences for their system.
From a security perspective, they provide data integrity and availability through the
native properties of the blockchain. Integrity is additionally supported through MACs,
message authentication codes, for transportation over the network. Furthermore, since
they authenticate the IoT devices and each IoT device has its own private key, this
solution supports non-repudiation for IoT devices. For the same reasons, unforgeability
is supported in this solution.

Massi et al. [45] take a slightly different approach. They use a permissioned or private
blockchain, the Hyperledger Fabric [46]. A permissioned blockchain [47] is one where
all participating miners are well-known and authenticated. This way, the miners can
enforce trust between each other without opening the blockchain for arbitrary users
and attacks. This also allows for different proof algorithms that are not necessarily as
resource-demanding as proof of work, for example. Furthermore, it allows to leverage the
blockchain technology without necessarily having to create a cryptocurrency. However, a
permissioned blockchain of course brings some administrative effort with it as well as
less trust from outside actors since they may have fewer options to verify that the chain
is properly maintained. Another advantage, which the authors leverage, of permissioned
blockchains is that they can be purpose-driven, meaning that if the intent of the authors
is to save huge amounts of data on it, it is less of a problem since all participating
miners are participating to have access to the specific futures, in this case saving fine-
grained provenance data on the chain. The authors also do extend the W3C PROV [9]
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Table 2.1: Properties of the related work.

Granularity Chain Model Storage
DataProv [39] coarse Ethereum OPM on-chain
ProvChain [12] coarse Tierion custom on-chain
Stoffers [40] custom BigchainDB W3C PROV on-chain
TOVE [43] coarse Ethereum custom on-chain
BlockPro [44] fine Ethereum model agn. on-chain
Neisse et al. [13] custom Ethereum model agn. on-chain
Massi et al. [45] custom Hyp. Fabric W3C PROV on-chain

model as defined in the recommendation to fit their needs for the medical use case and
integrate their solution into an existing medical platform that also provides the necessary
authentication features. Since they are using a permissioned blockchain, integrity and
availability strongly depend on the actual structure of their chain. If the chain is not
sufficiently and evenly distributed among stakeholders, its security will be at stake.
Confidentiality is partially supported by the existing medical platform, however, the
state that moderate data leakage could be possible. Non-repudiation is solely based on
the need for users to authenticate on the platform level. Unforgeability depends, in this
solution, on the overall security of the permissioned blockchain, the degree of encryption
that gets provided by the underlying medical platform, and on the user authentication
on the platform level.

Janowicz et al. [48] are looking for how blockchain-based technologies can help the open
science community. One of the areas they identify is about achieving reproducibility of
scientific results and improved access to scientific data. They briefly talk about how the
blockchain can help to link data sets to scientific workflows and help to generate data
provenance that helps to reproduce the results.

As can be seen, the different solutions have a quite big variety of approaches towards
combining blockchain-based technologies and data provenance approaches. Furthermore,
solutions are often domain- or use case-focused and do not provide an easily generalizable
approach towards combining these two technologies. In Table 2.1, we can see a direct
comparison between the different contributions we discussed with respect to their non-
security-related properties.

If we take a look at Table 2.2 we can see the security-related properties. Although many
of the contributions are not specifically discussing security aspects, by simply using the
blockchain as storage place they can get quite good availability and integrity properties.

In Chapter 5, we will use these two tables to compare and discuss the properties of our
work with respect to the related work.
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Table 2.2: Security properties of the related work.

Integrity Confid. Avail. Non-repud. Unforg.
DataProv [39] high mediocre high supported supported
ProvChain [12] mediocre mediocre high partial partial
Stoffers [40] mediocre low high custom not avail.
TOVE [43] mediocre low high custom custom
BlockPro [44] high low high supported supported
Neisse et al. [13] mediocre high high supported supported
Massi et al. [45] mediocre mediocre mediocre partial partial
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CHAPTER 3
Design

In Chapter 2, we saw that provenance-aware systems can vary a lot depending on their
specific domains and use cases. In this chapter, we will discuss two major issues that
we discovered during our analysis of the background and related work, the searchability
issue, and the duplication issue. Since the two issues are fairly unrelated, however,
commonly solvable, we will split this chapter into three parts. The first part will present
the searchability issue and present some of the reasons for its existence. The second
part will then introduce the duplication issue which, as we will see, is part of the
group of forgeability attacks. And the third part will present provenance networks,
our contribution, to solve both issues and to provide a generalized way to approach
blockchain-based data provenance.

3.1 The Searchability Issue
Especially blockchain-based provenance systems, as were presented in Section 2.4, are
often very use case- and domain-specific and hard to generalize. This issue of generalizing
data provenance systems is the result of the possibility to combine data provenance and
the blockchain technology in a variety of different ways. Those do not only depend on
the classical data provenance design choices which are often influenced by the choice of
model and granularity, by the specific domain, and by the concrete use case. But, also
on the blockchain-based design choices, like how to save data in the blockchain, how
to query data in the blockchain, how to reference data in the blockchain and how to
interpret data in the blockchain.

This leads to many different systems and approaches to solving the provenance issue. With
so many different systems, it becomes hard to keep track which actors have provenance
records about which resources which is mainly due to different ways of modeling and
querying these systems. Consider the Internet, for example, a lot of different actors
publish a lot of information on different websites. It is nearly impossible to keep track
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of all the different sites and their contents. To solve this, search engines were invented.
Those are able to crawl the Internet for all the sites that contain certain information.
With a lot of different provenance systems, we have the same issue of not knowing
who has provenance about what and in which form. Consider our short example from
Section 2.1.1, where the blogger tracks the provenance of the blog articles with the
W3C PROV model. The blogger would also like to write about the reliability of the
government report and tries to query the provenance information. Even assuming the
simplest possible scenario, that the provenance does not contain any critical data that
has to be protected, the least that the blogger has to know is, that provenance exists
in the first place, where to find it and how to query it. After that, the blogger has still
to put up with issues of interpreting that provenance information and finding a way to
merge it with his own model if necessary. The issue of finding the different actors that
hold provenance for a specific resource is what we define as the searchability issue.

In the rest of this section, we will discuss why it is so hard to create a common solution
to blockchain-based data provenance, based upon the design choices that exist when
building such a system.

3.1.1 Storing Provenance Data in the Blockchain

The main choice we have to discuss is how to save the provenance records. Saving all
the provenance records into the blockchain is the easiest approach since it does not
include any third party provenance stores for actually saving the records. All of the
related work, which we discussed in Section 2.4, persists provenance data directly in the
respective blockchain. Stoffers [40] even defines three ways, document-based, graph-based,
and role-based, of how one could go about saving W3C PROV modeled data into the
blockchain. Although he does not use the Ethereum chain in his thesis all three provided
strategies can also be implemented on the Ethereum chain. However, the graph-based
and the role-based approach lack the capabilities to be properly secured, especially with
regards to data confidentiality, as we discussed in Section 2.4. Solutions that use the
Ethereum chain often prefer to use a contract-based strategy to save the provenance
data into the chain. Xu et al. have in their taxonomy for blockchain-based systems [49]
a more detailed comparison between the properties of document-based and contract-
based strategies. Although not named as document-based and contract-based, they do
distinguish between data items embedded in transactions, which is essentially the same
as the document-based strategy, and data items embedded in smart contracts, which is
what we call the contract-based strategy. Furthermore, we will for the rest of this work
not distinguish those two strategies from each other, since they both involve saving all
the data in the blockchain and are for our use case on the same side of the spectrum, the
so-called on-chain strategies.

Xu et al. compare these on-chain strategies also to the as commonly known off-chain
strategies. In their work, they suggest private and third-party clouds, as well as, peer-
to-peer systems as such off-chain options to store data items. Since saving a lot of data
on-chain, or using a lot of computational power on-chain, is very demanding for the
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Figure 3.1: Ways to to link provenance data to chain.

respective blockchain and thus very expensive it is often suggested to use off-chaining
strategies to move big data chunks and computations of the actual blockchain but only
provide security-related properties through the chain [14]. In general, we can say off-
chain strategies are such that use the chain to prove some security properties of data or
computations, but, store the actual data or perform the actual computations, on some
different type of system, for example, a cloud service provider.

We can therefore define the notion of on-chain, off-chain, and mix-chain storage models,
as can be seen in Figure 3.1, as follows:

on-chain
This means that the provenance records are saved in the blockchain itself. This
does not yet define how the records are saved which can vary between the different
blockchain implementations significantly. However, all the provenance information
is saved on the chain and the client does not need to query any other stores. This
is however also the most expensive strategy for saving blockchain-related data, as
we will see in Chapter 5.

off-chain
In the off-chain storage model, the actual data is not stored in the chain itself
but on an external server. How the data is actually stored on this server and if
it is publicly available can vary between different use cases. In the chain, there is
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only a hash pointer, as discussed in Section 2.2.1.1, linking to the actual data on
the external server. Since a non-cryptographic hash pointer would not ensure the
integrity of the linked data, it is highly recommended to use a cryptographic hash
pointer, although our solution allows for both.

mix-chain
We define mix-chain as a mix of the other two storage approaches. In this case,
part of the actual data is stored on the chain but we can have other parts that are
stored on an external server and linked by hash pointers. The complete provenance
data can only be found when querying both the on-chain data and the off-chain
data by following the hash pointers.

Besides the storage model for provenance data in the blockchain, we can further distin-
guish between different storage states. The discussion about secure data provenance in
Section 2.4.2 has shown us that encryption techniques are often used to secure provenance
data towards some security properties. Some of the related work [13] used the approach
of obfuscating the data, meaning only encrypting the critical parts of the data but leaving
some structures un-encrypted. With respect to those approaches in the related work we
will distinguish between the following three storage states:

plain text
This is the simplest storage state. The provenance data is saved exactly as it was
recorded by the provenance-aware system. This is the easiest concept and often
used in the related work, e.g., Stoffers [40] and Javaid et al. [44]. However, this
state is only useful if all provenance data recorded is publicly disclosable or, in the
case of off-chain storage, the storage provider can be trusted.

encrypted
In this state, the data is fully encrypted and confidentiality is ensured by the
strength and strategy of the used encryption. The strategy can vary depending
on the actual use case and the envisioned access privileges. For example, we
can distinguish between encryption where only the recording actor has access to
the decryption keys or encryption where a certain user group has access to the
encryption keys.

obfuscated
Given some provenance data which is partially public and partially private, we can
easily store the public data in plain text and embed the private data in an encrypted
form. The disadvantage of this approach is that the provenance-recording service
has to be well-programmed so that the public data does not unintentionally leak
information about the critical part of the data. Since provenance data, depending
on its granularity, can be highly descriptive about the overall state of a system it
can be difficult to obfuscate the data in a way that no inference is possible.
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Figure 3.2: A comparison of the different properties.

The presented storage models can be freely combined with the different storage states,
resulting in a set of possible combinations that have a different influence on non-functional
properties. Next, we will discuss these non-functional properties. We will put special
focus on how the security properties, from Section 2.1.4, are influenced. Furthermore, we
will discuss the cost property which is also majorly influenced by the storage state.

Confidentiality
If we recall Section 2.1.4, confidentiality is about protecting sensitive data. Data
provenance can not only contain sensitive data but also help to derive sensitive data.
It can help to show up connections and dependencies between actors and data,
which may be sensitive in nature without disclosing the actual data. To protect
the provenance data, encryption and access controls are often employed. Obviously,
this property is mainly influenced by the state of the data, encrypted data has
better confidentiality then plain text data. And under the assumption that storage
providers enforce access controls, off-chain data is slightly better protected than
on-chain data, in the case of public chains. The reasoning behind this is also quite
simple, on-chain data can be accessed by anyone at any time, whereas, off-chain
data only by the pool of people that pass the access controls of the cloud storage
provider. In the case of private chains, it depends on the actual use case. For
example, within a big company many departments may be using the same private
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chain to secure provenance data, however, not every department should be able to
read the data of the payroll department. In this use case, the company could again
employ off-chaining to provide confidentiality based on the roles of the different
users while maintaining only one chain.

Integrity
Integrity is about how well we can protect the data against intended or unintended
manipulation, as discussed in Section 2.1.4. This is necessary to help build trust into
the provenance data which again helps to build trust into the respective resource.
Integrity is for on-chain data always higher than for off-chain data. Although we
still have the hash in the chain to protect the off-chain data, we can only check the
integrity with it, not ensure it. For example, we have a cloud provider who provides
storage for provenance data and that data is secured by a hash on-chain. When we
query the data we can easily confirm the integrity of the data, however, if something
goes wrong at infrastructure level or the cloud service provider maliciously deletes
the provenance data, it is lost and the hash cannot help us retrieve the data. Thus
the integrity of the data would be compromised.

Availability
Availability describes the total amount of time the provenance data can be accessed
when needed. As long as a specific blockchain exists, there is a network of miners
supporting the data on it. Given this highly distributed nature, we can say that
provenance data saved on-chain tends to have a higher availability then off-chain
data relying on local infrastructure.

Unforgeability
As discussed in Section 2.1.4, unforgeability is about how hard it is to forge
provenance records. It plays a huge difference if we consider an external adversary
or an internal one. Methods like encryption and signatures can make it very hard
for an external adversary to forge provenance data, however, not necessarily for an
internal one, as we will see in more detail in Section 3.2. Involving the blockchain
requires transaction signing by a private key, which we assume is well protected
and improves defense against forgery by default. This applies for all storage models
since to forge a signed hash we again require the private key. Furthermore, similar
to confidentiality we argue that off-chain data is slightly better protected than
on-chain data. This argument is based on the additional access control that exists.
We assume that it is easier to forge data which you can read and analyze. If you can
see the required granularity and provenance model it is easier to produce fake data
of the same quality than when you have to guess all of these properties. And finally,
encryption increases forgeability protection further due to preventing unauthorized
access and reading of the data.

Non-Repudiation
As we discussed in Section 2.1.4, non-repudiation is about an actor not being able
to deny his action once it was recorded. Again under the assumption that the
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private key of the respective actor is secure, by signing the transaction to the
blockchain the actor acknowledges the responsibility for the action. However, this
has a precondition that has to hold true. The public key of that actor has to be
mappable to the respective actor. Many public blockchains are pseudo-anonymized
by nature and allow for arbitrary creation of new key pairs. Thus systems involving
a third party, like cloud service providers, are better suited to fulfill this property
since they usually require user authentication and can perform the task of key
mapping. The storage state has no influence on this property.

Cost
Most chains, especially public ones, require users to pay transactions fees to the
miners, who keep the chains alive. These fees are often dependent on the size of the
transaction. In Ethereum, for example, it depends on the amount of code that is
executed and the size of the data that is to be stored or processed. These costs can
get quite high and are usually by magnitude higher than the costs of cloud storage
providers. A more detailed cost evaluation will be provided in Chapter 5. On
private chains, these fees may be nonexisting, however, there are instead the costs
of maintaining a chain. It is very use case- and setup-dependent how high these
maintenance costs will be. They are a mix of hardware and operational costs like
with common cloud infrastructure. Private chains have one advantage regarding
the operational costs compared to public chains, it is easier to switch to a less
resource demanding proof algorithm which can save a lot of operational costs. This
is why we consider only the public chain case in Figure 3.2.

Figure 3.2 shows us the different non-functional properties in comparison to each other
regarding storage model and storage state. There are many possibilities how those
properties can be combined in meaningful ways to fulfill use case- or domain-specific
requirements. This is one of the biggest issues why blockchain-based provenance solutions
are hard to generalize.

3.1.2 Querying Provenance Data from the Blockchain

Let us consider the approach of querying provenance data as recommended in the W3C
PROV documents [10]. We recall that provenance data can be either queried directly or
by pointing to a provenance query server, as discussed in Section 2.1.2.4. In either way,
by following the reference, embedded in the resource itself, we can obtain the provenance
data that belongs to a certain resource and analyze it. Depending on where and how
this data is stored, we can build a certain amount of trust into the provenance data and
then use this trust to build trust into the original resource.

Now, if we consider a similar approach in the blockchain we again, in order to stay conform
with the W3C PROV recommendations, can either reference the provenance information
directly by pointing to the transaction where it is stored or we can reference a smart
contract which acts like a provenance query server. In the W3C PROV recommendations,
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Listing 3.1 EIP 831: URI Format for Ethereum
request = "ethereum" ':' [ prefix '=' ] payload
prefix = STRING
payload = STRING
;STRING is a URL-encoded unicode string of arbitrary length

Listing 3.2 Part of EIP 681: URI Format for Ethereum pay prefix.
payload = targetAddress [ '@' chainID ] [ '/' functionName

] [ '?' parameters ]↪→

chainID = 1*DIGIT
functionName = STRING
parameters = parameter *( "\&" parameter)
parameter = key '=' value

these references are done by using either a provenance-URI or a service-URI. In the
blockchain, however, we identify transactions and smart contracts by addresses. In the
Ethereum community, there is an Ethereum improvement proposal that deals with this
matter, EIP 831 [50]. It proposes a general structure for Ethereum-based URIs, as shown
in Listing 3.1. The prefix is hereby a short identifier that defines the use case, for example
pay for payments, and the payload contains the content for the specified prefix. This
generalized Ethereum URI structure can be extended for specific use cases to carry the
required payload. For example, in EIP 681 [51], the Ethereum community proposes an
extension defining the pay-use case. We will not go into the full details of this extension
but only briefly discuss the interesting parts for our use case, as shown in Listing 3.2.
The targetAddress is simply an Ethereum address, for example, a referenced contract.
The chainID specifies if the address is to be looked upon the main chain or on one of the
test networks. With functionName, users are able to specify which function to call on
the specified contract. Parameters allow specifying the necessary parameters to call this
function on the contract.

This means that we can create URIs that can point to a specific address in the Ethereum
chain and also where we would expect to find provenance records for a certain resource.
However, these URIs have still the issue that they need clients that are able to interpret
them. For example, if you take a standard Web URL to an arbitrary page and execute it,
your operating system will know which client program to use to open that URL, which is
most commonly a Web browser. However, if you open an Ethereum URI in your Web
browser, the browser will not know what to do with it. Thus, to open an Ethereum URI
there will always be the need for some specialized client which is capable of interpreting
that URI. Furthermore, the EIP 831 [50] is purposely kept open and extendable to
allow specific use cases to adopt the URI structure in a way that allows the use cases to
cover their needs. This means that it is likely that different client implementation may
choose different URI specifications to fit their needs. Furthermore, for a client to be able
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to access its data on the chain, it is not necessary to implement any URI standard at
all. This combined with the fact that the EIP 831 [50] was proposed in 2018, leads to
many different solutions simply implementing their own use cases without considering
interoperability, as seen in Section 2.4.

This behavior is further promoted by clients often being required to provide functionality
that processes or enriches the data which is stored in the blockchain. Take a classical
Web page. When the browser requests the page, the server will either process the data as
required and provide only a view or it will deliver a client application that can be run by
the browser, which is able to process the data client side. If we look at the broader picture,
then the Web browser is the actual client. It has to be installed on the local machine and
provides the capabilities the end user needs to be able to load a specific Web page. In case
of blockchain-based applications, we have the same issue. We need client applications
to be installed in order to use the blockchain-based application. However, there is one
huge difference, a blockchain-based application is not able to deliver its client-side code
simply by itself. This is due to the fact that writing data to the blockchain is expensive,
however, querying the data is free and unrestricted. Since the client-side code is simply a
huge amount of data that would need storing in the blockchain, it is better off-chained.
This also holds for complicated computations and data transformations, as in general
discussed by Eberhardt et al. [14].

This lead to the community trying to utilize other existing technologies to create client
applications for the blockchain which not only provide connectivity to the blockchain but
also off-chaining of computation and data. This makes it particularly difficult to write
generalized clients. However, since processing the stored data is a client-side task, every
client application can do it using its own resources. This means how fast a client can
process any given provenance data from the chain solely depends on the client’s own
capabilities, which allows for automatic load balancing.

In the following, we will define the main categories of clients. All clients have one thing
in common for them to be able to communicate with the blockchain they have to connect
to a blockchain node. This can be either a node that is running on the same machine as
the client and synchronizing with the blockchain or by a remote connection to some node
in the chain that allows remote connections. Clients that are connecting to Ethereum
to provide some functionality are commonly known as DApps. DApp is standing for
decentralized application [52] and is commonly associated with clients for Ethereum
smart contracts.

Local Clients
As a local client, we categorize all clients that users have to install on their local
devices to be able to use them. A classical example is the email client Thunderbird
for example, is a local client that connects to a remote email server to provide its
functionality. The same would be done by local blockchain clients. They would
connect to a local or remote blockchain node to access the blockchain and provide
their functionality.
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A special case of a local client is the Mist browser, which is developed by the
Ethereum team. The Mist browser aims to allow users to access different DApps
on their computers. The Mist browser is comparable to a common Web browser
and the DApps to Web pages that can be loaded. Combined with the ability of the
Mist browser to act as an Ethereum wallet, it also allows users not only to query
data in the chain but also to send requests and transactions to smart contracts.
The idea for providing the necessary client-side code is to query external servers
like a normal browser and to load the actual DApp interface from there.

Proxy Clients
As proxy clients, we categorize all clients that are hosted somewhere on the Internet.
They function as clients towards the blockchain and as a server towards their own
clients, which would usually access their functionality through the Web browser.
The necessity for such proxy clients can arise for different reasons.

Caching Depending on the amount of provenance data that is saved or that needs
to be queried, it may be necessary to implement an intermediary server to
allow for faster replies, preprocessing provenance data and indexing. Since
data which is once written to the chain cannot be deleted anymore, it may
be desirable to have such an intermediary server acting as a client to allow
caching of provenance data that is interesting for a specific user. For example,
take the information technologies department of TU Wien. This department
may be only interested in provenance data concerning its own department
so instead of every client having to query through all the provenance data
of TU Wien, each time access is needed it could simply keep a cache of the
relevant information or of the addresses pointing to relevant information and
thus allow clients to query faster.

Low-power clients Such an intermediary server could be needed to provide access
to the data for clients that are not strong enough to run a full wallet application
or which do not possess the processing power to retrieve results in sufficient
time themselves.

Provide API For some use cases, it could be necessary to provide an access API
similar to already existing provenance storage solution to allow for easier
interoperability. In such cases, an intermediary server would again be the
right choice to abstract the blockchain backing it.

Extend functionality A proxy client could also take care of merging data and
authenticating users where necessary. For example, if we have a mix-chain
solution, as discussed in Section 3.1.1, the proxy client could be responsible to
merge the on-chain provenance data with the off-chain data before providing
the complete data for the end user.

A special case of clients are single page applications [53]. Single page applications
describe a special set of Web applications that are self-contained. Once delivered to
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Figure 3.3: Off-Chain storage model.

the client browser, such an application has only to communicate with the server when
it wants to update the database or query additional information, however, not for its
own functionality. A big advantage of such applications is that they can be provided
by static page servers. Furthermore, there exist plugins for modern Web browsers that
allow to connect to Ethereum blockchains and provide this connection to the current
Web page. These plugins combined with such a single page application allows us to
create Ethereum clients that need a remote server only to be delivered to the end user’s
machine but then can provide their functionality as if they were a local client. Such a
single page application combined with the browser plugin that enables the connection to
the Ethereum chain behaves a lot like the Mist browser with the huge difference that
clients already have a browser installed on their devices.

3.1.3 Interpreting Provenance Information

Until now, we have applied a top-down view on how data provenance and the blockchain
can work together. We considered the big picture and talked about how we can save and
query provenance data to and from the blockchain. However, we did not yet concern
ourselves with the bottom-up view. More concretely, we did not think about the details
of the problem, like what the meaning is of the information saved to the blockchain. In
Section 3.1.1, we identified three different ways of how provenance data can be saved
to the blockchain. Take the case of the on-chain model, for example, we receive after
querying the blockchain for a specific resource plain provenance information about that
resource, like with any non-blockchain-based provenance store. However, when querying
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the off-chain model for a resource, the result will be a provenance hash. The issue with
this is, that this provenance hash represents the proof that a certain amount of provenance
records is correct. In other words, this hash is protecting some provenance information
and not the original resource, as shown in Figure 3.3. Since the hash is not provenance
information about the original resource, it can either be provenance information of the
provenance information, or it can be auxiliary metadata for the provenance system which
we are using. In the rest of this section, we will discuss these two interpretations.

3.1.3.1 Provenance Information

If the hash is seen as provenance information it is, as mentioned, not the provenance
of the original recourse but the provenance of the provenance of the resource as shown
in Figure 3.3. In this section, we will discuss the provenance model-based way versus
the provenance model-independent way of handling this second level provenance. The
provenance model-based way works by extending the specifically used provenance model
to be able to handle this additional information, which we will discuss assuming the usage
of the W3C PROV model. The provenance model-independent way works by threating
the original provenance information as a resource and applying the originally used model
on this resource.

Extension: Since an extension-based solution requires a specific model, we will assume
the usage of the W3C PROV model for the sake of this discussion.
The W3C PROV recommendation allows to easily track the provenance of prove-
nance data with the construct of bundles. The construct of bundles is however also
intended to be used for use cases like recording which actor recorded a certain set
of provenance records. This provenance about the recording agent would also need
to be protected by the hash. This could be solved by bundling over the bundle or
by implicitly including this information about the bundle into the hash. Left aside
that bundling a bundle is not allowed in the W3C PROV recommendation, either
way, would make some inference necessary. Either what exactly is covered by the
hash or who the author of the bundling bundle is.
Another construct provided by the W3C PROV recommendation is the document.
A document is a house-keeping tool within the W3C PROV recommendation. It
can carry bundles and provenance expressions. However, it does not have any
notion of identifiers thus we are not able to reliably identify a document with a
certain set of provenance records. This means a query service that gets queried for
one resource two times could return two different documents with the contained
data changing between the query requests.
As you can see, we would need to extend the W3C provenance recommendation by
a new type of housekeeping construct. This construct, we can call it package, needs
to be able to carry provenance records like a document and be identifiable like a
bundle, making it an entity itself. This way, we could properly express provenance
information about provenance information. The obvious disadvantage is that clients
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and stores would need to be able to handle this new provenance extension. This
is not a minor change since existing clients and stores would need to be able to
read and interpret the extended model basically rendering all existing provenance
clients and stores useless for a blockchain-based usage.

Resource: In the case of the resource-based solution, we could handle the provenance
information itself as a resource. To make this possible, we would need stores that
reliably return the same provenance records given a query. This could be done
either by the way the store is constructed or by introducing certain information into
the provenance records that can be used for querying, for example, versioning. This
way, we would not need provenance models to incorporate identifiable structures.
Identifying provenance records would be done implicitly by the provenance store
itself. Once we are able to get for a certain URI always the same set of provenance
records from a provenance store, this set of provenance records, strictly speaking,
becomes a resource that can be identified by a URI and for which we can record
provenance information. This way we can record provenance about provenance
resources without the need to extend any provenance model but by simply using
it. This way we do not need to render all existing provenance clients and stores
useless.

Both cases have the neat advantage that the off-chain provenance contract can behave
like an on-chain provenance contract since it is storing provenance records. That those
provenance records are guarding provenance information and not the original resource
is not important for the provenance contract. However, this is basically keeping meta
information about the meta information which can be misused. More concretely, both
concepts allow for deep provenance hierarchies, in the style of the provenance of the
provenance of provenance and so on.

3.1.3.2 Auxiliary Metadata

Another way of interpreting the hash is as auxiliary metadata, again see Figure 3.3. This
means instead of incorporating the information saved in the blockchain into existing
provenance concepts, we keep them separated and a client in sense of Section 3.1.2 has to
manage how to interpret the hash. For example, the metadata saved in the provenance
contract could contain where the actual provenance records are saved, how to query them
and of course the hash of those records. The client or intermediary server would then
have to resolve this metadata and retrieve the actual provenance information. For the
end user, this would be done seamlessly. The user would only have to point the client to
the according provenance contract and the resource in question and would get provenance
information that has been verified on the fly. The obvious disadvantage is that the user
has to use a client that is capable of interpreting that metadata correctly. Another
disadvantage is that the provenance store has to be able to return multiple times the
same provenance records. Like in the case of handling the provenance records themselves
as a resource we could do this either through storage capabilities or through extending
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the details of the provenance information and thus allowing for exact provenance queries.
The advantages are that we do not need to touch the provenance model definition itself
and that the creation of highly customized solutions is possible. This can, however, be
also a disadvantage, leading to different definitions how this metadata looks and how
clients interpret it.

We have to note that the client being able to process this metadata is a different
disadvantage than the client changes in the case of a provenance model extension as
discussed previously. This is mainly due to not affecting classical provenance clients and
stores but only affecting the specialized clients needed for reading the data from the
blockchain, as described in Section 3.1.2.

3.1.4 Referencing Provenance Information

In Section 3.1.3, we talked a lot about how we can interpret the provenance hash but we
did not discuss how to link the provenance hash to the respective provenance records.
More precisely, when we obtain a provenance hash how do we know where to find the
corresponding provenance records. But, also in the other direction, given we have some
provenance records, how do we know that there is a hash guarding those records.

Consider the provenance data is on-chain, this means we can simply treat the provenance
contract as a provenance store. The only thing we would need to address is how to access
that information. As discussed in Section 3.1.2, we would need specialized clients that
are able to interpret the Ethereum URI. These clients could then simply read out the
provenance information from the provenance contract and return it as plain provenance
information, see Figure 3.4.

As discussed in Section 2.1.2.4, the W3C model, for example, suggests to include this
URI as part of either the resource or the transport protocol which is used to retrieve the
resource. However, this alone would not yet allow anybody to access that information due
to the need of a specialized client. This means someone who wants to query the provenance
information would first need to find out which client to use. The resource could reference
the client that is needed to access that information, instead of the Ethereum URI. This
way by querying that client one would directly receive the provenance information itself.
However, this would mask to a certain part where exactly the provenance information
is saved. For example, in case of a proxy client, one would need to verify explicitly
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Figure 3.6: Referencing off-chain storage model on provenance information side.

that the client indeed queries the chain for the information. A third option would be
to provide both, a link to the provenance contract and suggesting which client to use
for querying this provenance contract. By simply referencing the Ethereum URI, on the
other hand, we leave it open to the end user to decide if the used client is able to handle
that specific provenance information. As you can see all three options have advantages
and disadvantages regarding usability and extendability.

Furthermore, if we consider the off-chain model for example. In the provenance contract,
on-chain is only the hash of the provenance information. The actual provenance is in a
different store off-chain. This means that both the provenance contract and the actual
store need to be referenced. How we solve this depends to a certain part on how we
interpret the provenance hash since different interpretations offer different tools how we
can link the hash to the provenance records it represents. All interpretations have the
idea of referencing both stores in the resource in common, see Figure 3.5.
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Provenance Information: Extension
In case that the provenance hash is interpreted as provenance information, in form
of a model extension, we can simply reference the provenance contract as another
provenance store in the original resource, see Figure 3.5. When a client retrieves
the information from both stores, it will have the complete provenance information
including the provenance hash which is guarding the provenance records.

Another approach is to define attributes for the extension that tell us which contract
holds the hash. In this case, the reference is part of the provenance information
itself and a querying client has to extract it from there, see Figure 3.6. However,
this would only work in combination with smart contracts and not with any other
way of storing provenance in the blockchain. This is mainly due to the need to be
able to point to an address in the blockchain from within the provenance records
before the hash is actually written to the chain. Resulting in a chicken-egg problem
between the address of the transaction and the provenance hash. Smart contracts
do not have this problem since they have already a fixed address in the blockchain
which can be used in the provenance records and thus as part of the provenance
hash.

Provenance Information: Resource
In this case, we see the provenance of the resource as a provenance resource. We
have again two different ways of how we can solve the linking-issue.

The first option is to stay conform to the way the original resource is referencing
its provenance records and to use the same method in the provenance resource,
see Figure 3.6. Again, only having to solve the issue that is also present for the
on-chain provenance, of how to reference the contract in general. However, this
comes at the cost that the respective provenance stores have to be able to publish
reference information as the resource provider does. Note also that although we
have here the same figure as in case of the extension approach the actual link can
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be delivered in two ways. Either as part of the resource, which is, in this case, the
provenance information or as part of the header information.

The second option is again to reference both the provenance store and the provenance
contract in the resource, see Figure 3.5. This reference would need to specify
that it references provenance information for the other provenance store and not
for the original resource. This has the nice advantage that it stays backward
compatible to already existing provenance clients since they can simply ignore
the additional information provided by the custom tags and will still be able to
query the provenance information from the store without the need to be able to
interpret the new tag. Also, the provenance stores will not need to change how
they handle provenance records since the linking information is managed by the
original resource provider.

Auxiliary Metadata
In case the provenance hash is interpreted as metadata, we can simply add the
necessary information about where to find and how to query the actual provenance
records to that metadata, see Figure 3.7. The client querying the provenance
contract would then be responsible for interpreting that metadata and querying
the actual provenance from the provenance store. This is one of the easiest ways to
establish the link between provenance hash and provenance records. It has also
the side effect that it would behave the same way as the on-chain model. By only
having to solve how the resource links to the provenance contract. On the downside,
already existing clients will not be able to find any provenance information since
the query would depend on the metadata. The obvious alternative is once again
referencing both stores in the resource as already seen in Figure 3.5.

As we can see, the issue of linking the provenance contract to the resource stays the
same as discussed for the on-chain model at the beginning of this section. This holds
true independent of where and how we represent the information which is responsible for
linking a provenance hash to the according provenance records.

3.1.5 Mix-Chain Interpretation and Referencing

Until now, we considered mainly on- and off-chain storage models in our discussion. This
is mainly due to the fact that we can use the solutions to those also for the issues around
the mix-chain storage model. Let us recall that the core idea behind mix-chain is that
part of the provenance records are public as in an on-chain model and part of them
are private as in an off-chain model. Now we could either treat the whole provenance
records of a mix-chain model as one set of records which would need careful handling
of the records and linking between the on- and off-chain records by the querying client
application. Or, we could treat the on- and off-chain records as records from two different
provenance stores. In this case, the used provenance model would be responsible for
combining the provenance records to a complete picture since querying different stores
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for additional provenance information should be envisioned by the provenance model, as
for example by the W3C PROV recommendation [10]. Furthermore, it would allow us
to simply reuse the solutions for handling on- and off-chain models without the need of
introducing further concepts.

3.1.6 Summary

In this section, we discussed four important things. First, we discussed how provenance
information can be represented in the blockchain. Second, we discussed how provenance
information can be queried from the blockchain. Third, we discussed how provenance
information in the blockchain can be interpreted. And fourth, we discussed how prove-
nance information in the blockchain can be linked to the original resource. As we saw, all
these issues can be solved in different ways and these different solutions are often freely
combinable. This means it is hard to find a common approach that fits many or even all
imaginable use cases. Thus there will always be new approaches using some different
component or trying to improve a certain aspect. For example, by using a different model
or a different encryption algorithm. Since one of the goals of this thesis is to achieve
searchability through generalization we decided to create a model agnostic solution. As
we will see in Chapter 4 and Chapter 5, our solution can provide searchability while
allowing different use cases to use different models, algorithms, or even storage strategies.
This means we are allowing users to implement on top of our solution, extensions as
required for their own use cases effectively enabling them to implement all the different
strategies as discussed in this section.

The only aspect where we are not model-agnostic is identifying resources by URIs.
This approach is directly related to the W3C PROV recommendation, as discussed in
Section 2.1.2. However, as we will see in Chapter 4, this is mitigated by the architecture
of our solution allowing users to implement a different way of identifying resources.

3.2 The Duplication Issue

In the previous section, we introduced the searchability issue and discussed some of the
reasons responsible for its existence. In this section, we will introduce the duplication
issue. We will introduce the issue by a simple example out of the viewpoint of the
resource producer, then present some scenarios out of the viewpoint of attackers, and
finally introduce some options for solving the issue.

3.2.1 Duplicating Blockchain-backed Provenance

Any information that gets written to the blockchain cannot be deleted or manipulated
later on. Take a scientist for example. Suppose this scientist is doing an experiment and
the software used is provenance-enabled and tracks the provenance of the experiment,
see Figure 3.8. Once this provenance information is in the blockchain, it can not be
manipulated anymore by said scientist. So if any colleague queries this provenance

56



3.2. The Duplication Issue

 
 
 

Block n 

 
 
 

Block n+1 

 
 
 

Block n+2 

Malice

2.1 Data product  
gets created. 

4. Resource points  
to prov data.

2.2 Prov data  
recorded.

3. Chain holds  
prov data.

2.3 Prov data gets  
saved in chain 

1. Runs experiment.

Figure 3.8: Storing provenance data in the blockchain.

information, to build trust in the results produced by the scientist, this colleague can
easily verify the integrity of the provenance information.

In retrospective, the scientist realizes that the results are not what was expected and
wants to twist them just a little bit. However, the provenance data is already in the
blockchain and can therefore not be changed. The easiest solution for the scientist would
be to generate new fake provenance data, by running the experiment again with the
necessary changes and save it also into the blockchain. By then referencing only the newly
generated provenance data in the resource, it would be hard to suspect any manipulation,
see Figure 3.9. Although the correct data is not lost, it would be very hard to find it,
which would essentially mean that one has to scan the entire blockchain to be able to
map this provenance information to the experiment in question.

Although this could be remotely possible with complete, un-encrypted provenance infor-
mation in the blockchain, it would just take time. If one starts considering encrypted,
off-chain, or mixed provenance information as discussed in the previous sections, it can
easily get nearly impossible to prove that any given encrypted provenance information
or hash belongs to this certain experiment in an earlier form. This problem is also
independent of how the provenance information is stored in the blockchain. Since it is
equally easy for the scientist to create a new transaction as it is to create a new smart
contract or a new identity on any given public chain, including Ethereum.
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Figure 3.10 depicts the result of the above-mentioned problem of provenance data
duplication. The original version of the provenance data is stored in some block. The
maliciously modified version of the provenance data is stored in some later block without
any reference to the old provenance information. The generated and manipulated resource
is only pointing to the newly-generated provenance data and not to the old one. This
way, the originally-generated resource gets hidden behind the modified one since there
is no obvious reason to believe there ever was another. This problem can even occur
in a non-malicious scenario. Due to error, it could happen that a new version does not
get correctly linked to the old version, during the recording of the provenance data and
thus part of the provenance information gets lost in the big amount of transactions and
information saved on the chain.

If we take accidents and buggy software aside, the provided example lacks in severity
since it is easily arguable that a malicious scientist could prevent the linking of the
provenance information to the blockchain until the results are satisfying in the first place.
It is obvious that the provenance-recording party is almost always able to manipulate
the recorded provenance before it gets saved in a store of any kind. This is a commonly
accepted assumption in the related work [4], [35] and can easily be supported by a
simple example. Assume you have a provenance recording client with an open protocol,
as we do, it is possible to write a client that uses the same protocol however shows
the provenance information first to the user and waits for approval before saving the
provenance data to the store. What we want to achieve with coupling to the chain is to
make the provenance, once properly recorded, hard to nearly impossible to change. Still,
the previously described scenario is useful as a simple introduction into the problem of
provenance data duplication. In the next example, we will show how this issue can be
used by an attacker who is not the producer of the data.

3.2.2 Attack By Duplication

Let us consider it from the viewpoint of a malicious long-term data storage provider.
Suppose the original creator of the scientific results had to take them offline for some
reason and there exists a secondary source for this data. A non-malicious provider would
now claim that the resource provided is still the same as the original resource by pointing
to the provenance of that resource to prove it. A malicious provider could do the same
with some altered provenance information that backs a slightly manipulated resource.
By carefully comparing both resources and the provenance data, a domain expert could
probably derive which one is the wrong provenance information due to inconsistencies
of timestamps or other metadata. However, this is only possible if a client who queries
this provenance data is aware that there are two different providers for the resource.
What if both providers are malicious or there is only one provider or the client is only
able to locate one of the providers? Then there is no way of being certain that the
provided resources are indeed the same as the original ones. The problem boils down to
the same one as before that someone is hiding the original provenance data by simply not
referencing them but referencing a duplication of them. Like in the last example, this can
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also be done with provenance contracts by simply uploading a new contract. There are a
few possible solutions to this problem which we will discuss next. All of them are based
on the idea of restricting the field of valid provenance information. In general, this means
that like not all provenance data stores are given the same amount of trust, we can say
that not all provenance references in the blockchain are given the same amount of trust.

3.2.3 Towards Solving The Duplication Issue

We will discuss now two simple and straightforward approaches to solving this issue.

Black-listing is one of the approaches possible to this issue. In the domain of blockchains,
this would mean black-listing single identities and thus banning malicious users
from creating provenance information for a certain resource. However, this proves
difficult since especially in public chains it is very easy to create new identities or
smart contracts and start all over with the distribution of false provenance data.
Much more critical is that black-listing does not solve the issue of malicious parties
trying to hide the original provenance information. So, to be able to black-list an
identity on the blockchain, one first would have to identify that the provenance
data provided by this identity is indeed a duplication of some other resource’s
provenance data which as discussed previously can prove to be difficult. Another
issue with black-listing is how to propagate this information to all clients. Since
in any blockchain-based approach the actual querying happens on the client side,
this black-list would have to be distributed in some manner to the clients. One
such possibility would be to use again the blockchain to save a list of black-listed
identities in some smart contract however then we would open another attack
vector for malicious users to start black-listing non-malicious users. We could try
to solve this issue by employing some kind of distributed consensus mechanism, as
used by the blockchain itself. Javaid et al [44] tried to use a consensus mechanism
to accept or decline provenance in their solution however their mechanism has a
tendency of favoring a negative outcome. In the end, the only reliable approach to
black-listing would be to use a per-client approach where every client decides for
each duplication which provenance to trust in the first place. However, this does
not solve the main issue of finding the duplication in the first place.

White-listing seems to be the more promising solution to the problem. Instead of black-
listing identities, we simply declare which identities are trusted to provide correct
provenance information for a certain resource. A major difference comes from the
idea that even if a malicious identity adds itself to the white-listed identities, it can
not hide away the original provenance information since the original provenance
information will be also in the resulting list of white-listed identities. Thus, a user
that queries the provenance data will see that there are two different provenance
information collections arguing for the same resource and will be able by analyzing
the data carefully to find out which of the provenance data is supposed to be
right. In case of two different provenance information collections together with two
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resources which are slightly different but each claiming to be the original again a
person from the domain of that resource should be able to repeat the experiment,
use other means to analyze which resource is malicious, or even determine if these
are on each other dependent versions in case of an honest mistake.

Although white-listing identities would solve the basic issue of hiding provenance data,
this can quickly get out of hand. For instance, let us take the simple provenance
example as provided in Section 2.1.1. Consider the government environmental report.
The government provides provenance for this report and white-lists the identity used
to record the provenance information. However, this report could be the result of a
long collaborative process between different internal and external actors thus resulting
in far more than one identity that has to be white-listed. Similarly, the blogger who
used the report in his blog entries will also have to whitelist his identities. Remember,
the provenance data generated by those different actors is related since ultimately the
blog entries are based on the government report. So, someone who wants to query the
provenance of the blog will ultimately be interested in the provenance of all resources
involved. To acquire this provenance data a user has to go through the transactions of all
white-listed identities of all involved actors. As can be seen, the more actors are involved,
the more identities will need to be white-listed to be able to express and find all of the
provenance data.

Furthermore, there is the issue that white-listing, in this case, is openly announcing
which identities are trusted by some specific actor. In our example, the government
would simply announce its identities on some Web page or through some Web service.
Even if the government is white-listing by using some smart contract, the address of this
smart contract would have to be announced to the public. In case of the government, this
should not be a big issue, since the government usually has some kind of infrastructure at
its disposal. However, the white-listed identities of the blogger could more easily get lost
after some time has passed. As can be seen, white-listing does not entirely solve the issue
of hiding provenance since the list itself could in theory still be forgotten or not found.

We can solve both of these issues in a very convenient way by using only smart contracts
as provenance identities and introducing the notion of contract linking both of which we
will discuss in the next section.

3.3 Provenance Networks

In this section, we will first introduce concretely what a provenance contract is in our
case. Before, we show how we can use linking to create networks of provenance contracts
in the blockchain. We will then discuss how this provenance networks can help us to
solve the searchability issue as well as the duplication issue.
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Figure 3.11: Government saving all provenance data into one contract.

3.3.1 Provenance Contract

We define that a provenance contract is a smart contract which is written to store
provenance information. Actors that have the necessary privileges can add provenance
data concerning certain resources to a provenance contract. The provenance contract
has no influence on the storage model or storage state, as presented in Section 3.1.1.
Provenance contracts are simply the place where the data is stored. More details on the
technical view of provenance contracts are given in Chapter 4. In this section, we will go
into the details of how those contracts work on a conceptual level.

We ended the last section with the claim that white-listing provenance contracts is better
than white-listing identities. Recall the example with the government report and the
blog entry. Now, instead of white-listing the identities used to create the government
provenance data, and the crawling through the respective transactions, the government
could simply save all the relevant provenance data in a provenance contract and white-list
the contract as a whole, as shown in Figure 3.11. It would not matter how many different
identities were used to create this provenance data to the contract since the contract as
a whole is white-listed in the end and contains all the necessary provenance information
for the resource in question, in one single place. This way the contract itself becomes, to
a certain degree, a representation of the government identities. In future figures, we will
omit therefore the real identities and also a lot of the detail around the resource creation.
We will just assume this default workflow as shown in Figure 3.11.

The blogger who is writing an article about the government data could now instead of
white-listing the necessary identities simply add the provenance information about that
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Figure 3.12: Government contract becoming a public provenance contract.

article to the contract of the government directly. Someone who now wants to query the
complete provenance data has simply to read out the one contract that is white-listed
by the different actors. This way the first issue, regarding the flood of identities, can be
solved in a rather convenient way by using open, public provenance contracts as seen in
Figure 3.12. It introduces, however, a few issues on its own. First, the blogger would need
to split up the own provenance data over different contracts. For example, the blogger
would need to write the provenance of different articles into different contracts, since the
provenance of another article that has nothing to do with this government report would
not thematically fit into this provenance contract. Second, the government provenance
contract would become a public contract representing identities from multiple domains.
Finally, everybody could decide that they want to write all their provenance information
into the same contract likely leading to bad query times for clients and much worse no
separation of governance. Separation of governance is simple to explain. Although, the
government contract is technically still owned by the government, by allowing everybody
to use it, it has become a public contract which leads to a few simple issue, for example,
who has to decide which actors are allowed to use it and which are not, and would the
government be allowed to disable the contract or not.

The second issue, regarding hiding of provenance information, has hereby been improved
since now multiple different actors are providing a reference to the same smart contract.
However it has not been entirely solved, yet. There is still a certain likelihood that all of
these actors will stop referencing this smart contract. To solve this, we will now introduce
the concept of contract linking.
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Figure 3.13: Resource-based linking between the provenance contracts.

3.3.2 Contract linking

If the government and the blogger have their own provenance contract saving their part of
the information regarding a specific resource, we would be back at the beginning simply
on a higher abstraction level replacing identities with provenance contracts. However, if
we allow the different contracts to know each other, we are basically letting them behave
as one contract. In other words, the provenance contract of the blogger would announce
to the provenance contract of the government that it has further information regarding
a certain resource. The result would be that each of the contracts would know that
the other contract has additional information about a resource they have provenance
data about, see Figure 3.13. When some client now queries either of the contracts, the
client would find the provenance data saved in that contract and the links to the other
contracts containing provenance data about that resource. It then could query those
contracts and so on. This reassembles pretty accurately the way that the W3C PROV
model allows provenance storages to inform about other provenance storages containing
more data, as shortly mentioned in Section 2.1.2.4. We will call this kind of contract
linking resource-based contract linking, based on the fact that contracts only know of
other contracts that are holding provenance information about the same resource.

Furthermore, we introduce the idea of resource-independent linking or trust-based contract
linking. This way we could allow contracts, in general, to link to each other even if
they do not share provenance information about some resources. Now, we can create a
network of provenance contracts in the blockchain, similar to trust networks as shown
in Section 2.3. For this, consider the following example. Take a provenance contract
that was deployed by TU Wien. We can easily prove by cryptographic means that TU
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Wien owns that contract and we also can see that researchers at TU Wien are using
this contract to store research results on it. Now, TU Wien announces quite openly
that only provenance information retrieved from this contract can be viewed as official
and trusted provenance of TU Wien and to be created by researchers working for TU
Wien. This contract would get quite crowded by default since all the different scientific
departments of TU Wien would write their provenance into this contract. At some point,
some of the departments, for example, the Faculty of Informatics, could decide to create
their own provenance contract to improve query times, see Figure 3.14. Since TU Wien’s
policy, however, allows only provenance information from the main contract, the Faculty
of Informatics could link both contracts with a I trust this contract-policy. This way,
TU Wien itself does not have to do anything else than announcing the main contract
and the different departments could announce their own sub-provenance contracts. Any
query to the main contract would also reference the department contracts and any query
to a department contract would also reference the main contract. As we discussed in
Section 2.3, trust networks are directed graphs. Thus trust will only get propagated
properly if both contracts in question link each other as we will see later in this chapter.
From here on, it would be up to the clients how much of the provenance network to
query. Furthermore, we know from Section 2.3 that trust networks are not only directed
graphs but also weighted. Depending on the trust model that is used, this would also
allow for expressing distrust towards a specific contract.

If we combine both approaches of resource- and trust-based linking, we get a network of
provenance contracts, or simply a provenance network. By combining both examples to
one, as we can see in Figure 3.15, we suddenly are able to see the complete provenance
network of TU Wien. Knowing any of those contracts would reveal the whole TU Wien
provenance network. This makes it rather hard to miss part of the provenance since it
is interlinked in a complex manner spanning over many organizational borders. This
way, even if someone tries to duplicate provenance information, this attacker would need
to compromise the network of TU Wien by linking to it and announcing the malicious
provenance information. This, however, would not hide the original provenance but
just provide a un-hidden duplication which could be dismantled by domain experts as
such. To successfully perform a duplication attack, the attacker would need to succeed
in duplicating the whole network which gets more difficult with a higher amount of
participating domains, contracts, and clients. The whole attack has thus been reduced
to a spamming issue which is naturally restricted in a blockchain-based environment
since malicious users would need to pay for every spam entry real money. The issue gets
further mitigated through access controls as we will see in Section 3.3.4.

3.3.3 Trust Propagation in the Provenance Network

In the last section, we introduced the concept of resource- and trust-linking. Since
we introduced trust-linking, our provenance network becomes comparable to a trust
network. Thus, we are now able to work with trust propagation techniques as discussed
in Section 2.3. Until now, we build provenance networks which could be represented
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Figure 3.14: Trust-based linking between the provenance contracts of TU Wien.

as graphs where the provenance contracts are nodes and the links are edges. What we
did not discuss, yet, is the direction and the weight of such a link. As we can recall
from Section 2.3 trust networks are directed, weighted graphs. In our case, the different
contracts correspond to the vertices of a trust graph and the links between contracts
correspond to the edges in a trust graph. More precisely we define that a directed,
weighted edge as known from trust networks [29] is a unidirectional link between two
provenance contracts. As you can see in Figure 3.15, up to now we used bidirectional
links in all of our examples. In the following, we will define in more detail the difference
between unidirectional and bidirectional links.

Unidirectional Links
Since unidirectional links are directed edges, they have an outgoing side and an
incoming side. In our case on the outgoing side of the link is the contract which
holds the link. On the incoming side is the contract that gets linked. This means
that the linked contract does per definition not know of the contract linking it
unless informed by it. If we look at our example again, see Figure 3.16, a trust link
from the blogger’s contract to the Faculty of Informatics’ contract is saved in the
contract of the blogger. From the viewpoint of the Faculty of Informatics’ contract,
the blogger contract does not exist. Only after adding the bidirectional resource
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link, the Faculty of Informatics becomes aware of the blogger’s contract.

Bidirectional Links
We define a bidirectional link as two opposing, unidirectional links with the same
weight. Meaning, there are two unidirectional links one held by each contract
involved in the link with the same weight. For example, see Figure 3.16, the TU
Wien main contract is hierarchically the more important contract than the contract
from the Faculty of Informatics. A link from the contract of the faculty towards the
contract of TU Wien is saved in the faculty contract and is a perfectly legitimate
link although without a link from the TU Wien contract to the faculty contract
there is no propagation of trust towards the faculty’s contract. Bidirectional links
when possible are to be preferred over unidirectional since they strengthen the
overall provenance network in regards to duplication attacks.

We just defined that bidirectional links are to be preferred, however, not every contract
in the provenance network can necessarily trust any other contract in the network. To
solve this, we have the link weights. Until now we used only one weight, the I trust this
contract-policy. However, in reality, we can have arbitrary link weights. For example,
the blogger can indeed set up a link towards the Faculty of Informatics and trust the
faculty to produce legitimate provenance data, however, the Faculty of Informatics can
not necessarily trust the blogger’s contract. Thus, as shown in Figure 3.17, the faculty
might response with a I know this contract-policy towards the blogger’s contract. This
way the faculty can support a bidirectional link towards the blogger without having to
trust the blogger’s provenance data. Any client querying the network can decide on
its own it the provenance of the blogger should be trusted. The same way, we can use
links to also state distrust towards some other contract. In fact, we can implement any

68



3.3. Provenance Networks

weights-based trust model, for example, the one discussed in Section 2.3. In this figure,
we can see another interesting side effect of having resource- and trust-links. Although
the Faculty of Informatics states that it does not trust the blogger’s provenance, it allows
nevertheless the bidirectional resource link. This way, it allows clients which decide to
trust the blogger to still find all the relevant provenance information when querying.

This is important for understanding how trust gets propagated in such a provenance
network. It depends on the kind of link, trust- or resource-based, and on the weight of
the link to give meaning to the link. And finally, it depends on the direction of the link
to show how this meaning is propagated towards other contracts. This, however, makes
it also important to understand that it depends on which contract you are looking into
the network. From the view of the blogger’s contract, the whole network is trustworthy.
As from the view of TU Wien, there is a part of the network for which we know that it
has additional provenance data but we can not state if this data is reliable.

One last thing we have to talk about are organizational link policies. Organizational link
policies are about how TU Wien, for example, allows its organizational child contracts
to link external contracts. The DSG contract, for example, is part of the TU Wien
organization and can be linked by the faculty contract without hesitation. However, the
blogger’s contract is not part of TU Wien and the rules that the faculty has to follow
when considering how to link this contract are the link policies as defined by TU Wien.
In the following we will describe two very simple policies that can be followed:

Open Policy
This means that the linking contract does not care about the security settings of
the contract which is being linked. If this was the setting in the TU Wien main
contract, this would mean that the contract of the faculty would have the freedom
to set up its own policies and link further contracts any way they like. One would
have first to analyze the policy of the faculty contract to establish what meaning a
link has from the viewpoint of the faculty.

Restrictive Policy
This means that linked contracts have to follow the linking policies as defined by
the parent contract. In the example of the TU Wien, this would mean that the
faculty contract has to have the same linking rules and behavior as the main TU
Wien contract which would automatically propagate the link meaning of the main
contract to the links of the child contracts.

There is a variety of ways how linking policies could be enforced. Access restrictions
are one very simple example. By allowing only a certain group of administrators, for
example, to link new contracts, link policies could be enforced entirely in a non-technical
way. Another option is to provide some mechanism which would automatically check
policies which are set on the corresponding contracts.

69



3. Design

Let us consider the contract of the DSG one more time and let us assume that TU Wien
uses a restrictive security policy. Any user that wants to check if it is trusted by the TU
Wien main contract would need to either follow outgoing links up from the DSG contract
until the main contract is found, bottom-up, or outgoing links down from the TU Wien
main contract until the DSG contract is found, top down. Of course, bottom-up would
only work if TU Wien follows a strict bidirectional linking strategy including the same
weights for contracts within the organizational boundaries of the TU Wien.

3.3.4 Provenance Contract Access Security

Without any access restrictions, the notion of contract linking we introduced would open
the possibility for anyone to link their contract to the official TU Wien contract. This
can be equally good as also bad. In case of another university, on the one hand, which
is cooperating with TU Wien, this would mean that the two universities are creating
among each other trust and automatically strengthen each other’s contracts. Especially
for smaller domains like the blogger, for example, this can be very important since if his
site goes offline also the public announcement of his contract goes offline. But by having
it resource- or trust-linked to other contracts, its contract would not disappear from
the network of provenance contracts. A client which is searching the whole provenance
contract network would ultimately also find the provenance information saved in the
blogger’s contract. In case of a malicious attacker, on the other hand, this openly available
linking of provenance contracts would allow spamming the provenance network with
contracts containing wrong information which would lead to the necessity for users to do
filtering which provenance information is right and which is wrong when querying. Either
way, the problem of duplicating provenance would be solved since the basic assumption
would be that anyone linking his contract to a chain of contracts obviously does not
try to duplicate any other provenance in this chain, since the duplicate would be easily
discovered and domain experts should then be able to identify the original provenance
information.

The issue of writing wrong provenance information into a store is a different thing. In
theory, it is also given in classic implementations of provenance stores. Since anyone who
gets access to a store can also freely add provenance information to this store. However
classic implementations often have some kind of access control mechanism to solve this
issue, as can be commonly seen in related work [12], [37], [44]. Authentication allows
the storage providers to filter out all the provenance added by a malicious user once it
is identified. Something similar could be implemented in a blockchain-based solution
rather easily. Following this is a list of policies that can be used to construct more
complex strategies for establishing access security to provenance contracts. However,
keep in mind that those strategies are always towards write-access restriction. For read
access restriction, the only possibilities are encryption or off-chaining, as we discussed in
Section 3.1.1, since data on the blockchain is always publicly available.
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Not at all.
In this approach, we are allowing the client-side to make expert decisions about
the provenance and determining which provenance is the right one. A domain
expert, given the resource and the provenance data, should be able to identify
which provenance data is the fabricated one by analyzing it. We are mentioning this
approach for the sake of completeness. In practice, it is useless since any resource
could be basically spammed with wrong provenance data until it would take a huge
amount of time to identify the correct provenance information. Furthermore, we
are working on this approach under the assumption that domain experts will be
querying the provenance data.

Restricted contract linking.
By restricting the resource-, trust-based, or both methods of contract linking we
can avoid that a contract gets linked to contracts carrying malicious provenance
information. The restriction could be done in two different ways. One way is that
the contract owner restricts which identities are allowed to link contracts, which
is basically identity white-listing as discussed in Section 3.2.3. The other way is
that every linking request has first to be approved by the contract owner. The
disadvantage of restricting contract linking is that the network around a particular
contract will grow slower making it more vulnerable to the duplication attack.

Restricted write access.
Restricting write access is similar to restricting linking with the difference that in
this case, we are talking about restricting who is allowed to write new provenance
data to the contract instead of who is allowed to link contracts. The way this
can be done is essentially the same as with restricting contract linking, either by
request confirmation or by identity white-listing, as discussed in Section 3.2.3. This
is useful when a domain holder wants to make sure that on his contract there is
truly only legitimate provenance information saved.

3.3.5 Provenance Networks Summery

In this section, we introduced provenance contracts and provenance networks. Provenance
contracts being simply smart contracts that are used by actors to store provenance
information, and provenance networks being trust networks of linked provenance contracts.
We then continued by discussing in more detail how this contract linking is done and
what has to be considered, including link directions, weights, and policies. In the end,
we discussed access restrictions for provenance contracts and how they help to secure the
contracts.

To summarize all properly we will give a final example demonstrating different provenance
contracts for different purposes. We will demonstrate two different strategies which we
will call the Organizational Border- and the Search Contracts-Strategy.
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Organisational Border-Strategy
Looking at the TU Wien example again, it is possible that TU Wien does not want
anyone to be able to trust-link provenance contracts to their provenance network.
To avoid this, they would simply restrict trust-linking. This way, whoever wants
to link a new contract to the original TU Wien contract will have to wait until
they authorize this linking. This would likely result in a contract network around
the main TU Wien contract that represents the organizational structure of TU
Wien since the different faculties would likely provide their own contracts and link
them to the main contract to separate different domains, as shown in Figure 3.14.
This way, the main contract would simply serve as a trust propagator, propagating
its trust to all department contracts and thus authenticating them as trusted TU
Wien provenance contracts. Furthermore, TU Wien could restrict the writing of
provenance to TU Wien personnel by restricting write access. The result of these
two restrictions would be that there are only trust-linked contracts in the TU Wien
provenance network that belong to TU Wien and there is only provenance data
saved in the network that is from TU Wien personnel.
To make scientific collaboration easy, TUWien would allow for unrestricted resource-
linking of contracts to their network. Furthermore, since the trust-linking is
restricted, it is easy to establish for any querying client if a contract is coming from
TU Wien or not and can, therefore, establish the trust in the queried provenance
data.

Search Contract-Strategy
Let us have a look at search engine providers, for example. If one wants to implement
a provenance search engine, this provider would need to allow public trust-linking
so that anybody can add their provenance contracts to the search engine contract.
For the search engine provider, it is not necessary to allow saving provenance on
the contract itself so restricting the resource-linking and the write access to the
contract could be a wise move however not strictly necessary. Of course, in this
case, the trust-link is not weighted as a trusted link but as a known link and thus
representing all the contracts known by the search engine.

In Figure 3.18, we can see a simplified example of the two strategies glued together in a
world view of different domains. In this example, we see how the Faculty of Informatics
and the search engine contract use the link weights to express different trust levels towards
the contracts they link. In case of the search engine, all links are with a lower weight
making the search engine contract simply a place to look up for the contracts holding
the actual provenance information.
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Figure 3.18: A simplified world view.

3.4 Summary
In this chapter, we introduced two major open problems, the searchability issue, and the
duplication issue. We defined the searchability issue as a problem to find provenance
across different models and solution domains. We continued by explaining why there
is such a big variety of different solutions for data provenance especially in regards to
blockchain-based solutions. Then, we introduced the duplication issue and explained how
a malicious user could use this to hide valid provenance data behind forged provenance
data in the blockchain.

Finally, we introduced provenance networks as a valid solution to both issues. Provenance
networks, simplified, are trust networks between provenance contracts in the blockchain,
with provenance contracts being simply smart contracts which store data provenance.
Provenance networks allow us to easily solve the searchability issue by creating a directed,
weighted graph, which does not limit its use to a certain provenance model, granularity,
or kind of integration with the blockchain. Thus, allowing users to search for provenance
across domains, use cases, solutions, and models. Once the data can be found, it becomes
the duty of querying clients to make sure that they can reconstruct the provenance data
from the way it was saved, allowing for broader interoperability between different models
and solutions. Furthermore, provenance networks allow us to solve the duplication issue
by preventing malicious actors from hiding the original provenance information. Although
they are still able to duplicate provenance information, these duplications are now easily
findable and can be discarded by domain experts.

In the next chapter, we will discuss in detail how our prototype is implemented and how
it solves the design issues discussed in this chapter.
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CHAPTER 4
Implementation

In this chapter, we will introduce the general structure of our repository and the most
important architectural decisions we took. Our repository is structured into four different
projects, namely ETH, React-Client, Node-Client, and Eval. Each of them contains one
autonomous part of our solution that provides certain functionality to other projects, to
end users, or our evaluation. The ETH -project contains the backend code, namely all the
smart contracts that need to be deployed to the blockchain, some tests for them, and the
required configuration. The React-Client-project contains a single-page, user interface
client which we have created to allow for visually browsing and managing provenance
contracts and provenance networks. The Node-Client-project is a simple remote client
providing an API for the most important operations. And, the Eval-project contains
a deployment and evaluation helper that is handy when deploying a large provenance
network and also automates our evaluation. Figure 4.1 shows how the different projects
depend on each other, where they are executed, and which of them expose interfaces.

ProvNet-Projects

«React-Client» 
Frontend Client 

«ETH» 
Provenance Contract 

«Node-Client» 
API Client

«Eval» 
Evaluation Client

Figure 4.1: A overview of the different projects and where they run.
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4.1 ETH-Project

4.1.1 Project Structure

We use Truffle1 as a support framework for the Solidity development. It is a very active
community framework that provides automation for necessary default tasks around the
development with Solidity. Truffle provides automated migration, testing, and comes
with local Ethereum chains optimized for development.

Adopting the Truffle default structure is a must to be able to develop with Truffle,
resulting in five main folders:

build: The build directory holds the compiled contracts.

contracts: The contracts directory is where all the contracts are placed in.

migrations: The migrations directory holds the migration java files. These files are
used to tell Truffle how to deploy and link the different contracts. The migration
files are executed in the order given by the initial number of the file and they also
provide information about the target network allowing to distinguish between test
and productive networks.

test: This folder contains the test suites for the contracts. Truffle offers two kinds of tests.
You can either write Javascript-based tests or Solidity-based tests. Solidity-based
test are contracts that get deployed onto your development or test network and
get executed. Every file beginning with T will be interpreted as a test suite and
within that test suite every function starting with test will be interpreted as a test.
Solidity tests are flexible and depending on the exact strategy used by the developer
allow for accessing internal functions and data structures of the contracts under
test. Truffle supports snapshotting and resetting the development networks if the
network itself supports snapshotting. This feature is provided for both Solidity
and Javascript tests. However, it is only applied between test suites leaving it
to the developer to handle clean up between the single tests which can be rather
cumbersome in Solidity. Javascript tests, on the other hand, use the Web3Js script
to access contracts deployed on the development or test network. Those tests are
run as if they where clients for the deployed contracts and can only access public
functions of those contracts. Thus this Javascript tests behave more like integration
tests.

4.1.1.1 Test Mocks

With this basic test structure in mind, to be able to properly test we need to write test
mocks. These are mock contracts that are not intended for publishing on a productive
chain but are only written to be used for testing the Solidity code. These test mocks can

1https://truffleframework.com/
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be used for multiple things. They are an easy way of cleaning the memory after each test
by simply deploying a new mock contract to the test chain. Furthermore, they can be
used to expose internal and private functions to the public making it possible to reach
them from outside the contract which can be useful for unit-testing. Although it is also
possible to reach internal functions from Solidity tests directly, mock contracts are still
necessary for the ability to provide clean and separated environments per test.

These mock contracts are naturally a test matter however historically they had to be
placed within the contracts directory due to Truffle not finding them otherwise2. Due
to this issue, many community projects still keep their mocks in the contracts directory.
Since by now it is possible to keep the mocks in the test directory, we will diverge from
the community’s behavior at the cost of risking to need to refactor in case the Truffle
team introduces breaking changes. The upside is that we clearly separate the mock
contracts which are really only test helpers from the productive code.

Another decision that arises from the need to use mock contracts is that we will keep all
our tests as Javascript tests. Although this is not strictly necessary since all our mock
contracts can be used from either test environment, once deployed, and are written in
a general manner. However, there are some advantages that arise from using the same
environment for all tests:

• We can share test helpers between unit tests and integration tests, which rids us
from the need to write common assertion helpers in two languages.

• It allows us to make use of a more mature test environment.

• All tests have the same demands towards the build environment and deployment
framework.

4.1.1.2 Contract Deplyoment

Truffle offers its own migration process that can take care of contract deployment. This
process can be configured with the help of so-called migration files, which are stored
in the migrations folder as mentioned above. When it comes to deploying contracts,
Truffle does two things. It compiles the contracts to EVM byte code with the help of
the Solidity compiler and it executes the migration scripts. Building contracts, however,
does not necessarily produce deployable byte code. In case of complex contracts which
rely on external libraries or contracts, the compiler can not know the addresses of these
dependencies. So, it leaves placeholders in the byte code which have to be filled by the
actual addresses at a later point. The task of filling the placeholders falls to the linker
which is where the Truffle migration files come into place. The migration files define the
order in which the contracts have to be deployed and they also define which contracts
have to be linked to which other contracts. This way Truffle abstracts and simplifies
the process of linking contracts. The addresses of the deployed contracts also get saved

2https://github.com/trufflesuite/truffle/issues/141
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Figure 4.2: A general overview of the core architecture.

into the Truffle build files. Since we do not want to redeploy our auxiliary contracts
every time we have to redeploy a contract, we keep them in the repository to persist the
addresses of those auxiliary contracts. This general process of migration works fine as
long as Truffle is used to perform this dynamic linking. However, in case of our front
end client, we want to be able to deploy contracts from static byte code. This means
that we need byte code which is already fully linked. To be able to do this, we extended
the Truffle build cycle by a custom task. Our task generates for each known network
static byte code and writes it to a custom build output file. This file contains the API
and statically-linked byte code for each network Truffle knows about. This means that if
users want to be able to deploy from within our clients to custom networks, like local
test networks or private networks, they will have first to build the sources to such a
statically-linked byte code. Otherwise, they will be only able to deploy by using Truffle.

4.1.2 Contract Design Structure

In Figure 4.2, we can see a simplified architectural view of the ProvNet backend. Depicted
in yellow is a hierarchy of smart contracts with each contract adding another layer of
functionality to the final provenance contract. This architecture has been chosen to allow
use cases which need a more complex way of storing provenance data to inherit the rest
of the functionality needed for the provenance network to function. Depicted in grey
are simple auxiliary libraries and basic structs, and depicted with a different color each
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are our core libraries which abstract the main functionality of our solution. To keep
the architecture overseeable, we have abstracted the dependencies of each core library
into a separate diagram. They are only a graphical simplification. Finally, depicted in
dark grey are contracts, libraries, and structs which we imported from existing libraries.
Before we go into more details, a short note on contracts and libraries in Ethereum.

Contracts can hold complex logic, they can receive funds, they can transfer funds, and
they can even call functions on other contracts. Although, in our case, none of the
contracts can receive funds. Every user who is prepared to pay the execution costs can
call any public function on contracts. In contrast, libraries are not directly callable by
users. They must be called by contracts and get executed in the contracts’ context.
Libraries are a design structure to make code easily reusable and more efficient in the
chain and to avoid frequent redeployment of common logic. Libraries work in a way that
they extend a certain base type or struct with additional functionality. This way, they
can behave as if they were written as part of the initial functionality of that type. This is
also the reason why almost every library in our architecture uses at some point a struct
type.

Since any user that connects to the Ethereum chain can call public functions on any
contract, the contracts’ security has to be designed with this in mind. Furthermore, given
the previously explained differences between contracts and libraries, we decided to split
off contract logic into libraries as good as possible but keep security-relevant details in
the contracts. This lead to the main part of our architecture as shown in Figure 4.2.

Next, we will discuss the different contracts that we have:

Superuser: This contract is from a contract library3 that we use and provides important
user management functionality. More specifically, it allows us to manage the contract
owner, to define superusers who have similar power to the contract owner, and it
allows us to define user roles as required.

SwitchableRBACWithSuperuser: This contract is our extension of the superuser
contract that defines some common access security checks that can be used in other
functions. Furthermore, we implement here the functionality to allow administrators
to deactivate access controls for certain user groups if desired. This can be necessary
if an open linking policy is desired, as discussed in Section 3.3.3, or if certain access
restrictions should be disabled, as discussed in Section 3.3.4. Although, we can not
see any practical use case for the latter.

UserAccessControl: This contract is the heart of our access control, as discussed in
Section 3.3.4. Here, administrators can define different user roles, add users with
specific roles, and remove roles from users. This contract also defines role-based
access control functions that can be used by other contracts.

3https://openzeppelin.org/

79



4. Implementation

LinkableContract: This is the base contract that provides the linking functionality for
the provenance network, as discussed in Section 3.3.2. No matter how exactly a
contract is built to store provenance, as long as it derives from this contract, it will
behave exactly as any other contract with respect to linking with the provenance
network.

SimpleProvenanceContract: This contract is our simple implementation of a model-
agnostic provenance contract, as discussed in Section 3.3.1. It allows users to
store successive provenance data for a certain URI. Since the contract does not
enforce any model validation users are free to use any desired combination of
strategies as discussed in Section 3.1. Furthermore, the functionality for managing
the provenance URIs is implemented in this contract. This is because the idea to
identify resources by URIs was taken from the W3C PROV model and is therefore
not necessarily model-agnostic, as discussed in Section 3.1.6. In future other
implementations could decide to use another strategy to identify resources, which
is why we put the functionality for identifying resources into the most concrete
implementation level. This way, we are not disturbing other provenance solutions
or models which want to use the general idea of provenance networks but identify
resources differently.

A provenance network has no specific contract since it is the result of multiple provenance
contracts, in our case SimpleProvenanceContract instances, being linked together, as
presented in Section 3.3. Furthermore, interesting to note is that linking policies and
access restrictions, as discussed in Section 3.3.3 and Section 3.3.4, are set to restrictive
by default and have to be relaxed by administrators as required.

Next, we will give a general overview of the libraries we created:

LinkedList-Library Collection: The linked list library collection, as shown in Fig-
ure 4.3, is a collection of auxiliary libraries which extend the functionality of the
LinkedListLib-Library4 which we imported. Since we have to store a lot of data into
lists, it is of utter importance that we can access these lists in an efficient manner.
In our case, this means that all altering operations like, writes, deletes, and edits
must be efficient without the need to iterate over the whole list. Read operations
are not tragical and are allowed to require iterating over the list. This is due to the
fact that we can use read operations for free on the Ethereum chain, however, have
to pay for operations that manipulate the state [27]. This means in order to save
cost it is important to have no loops of growing complexity in our list-manipulating
functions. We found a library that provides the basic structure of such a list, the
LinkedListLib-Library. All the other libraries we added in this collection are for
code reuse or to make certain operations, mainly read functionality, easier to use.

4https://github.com/Modular-Network/ethereum-libraries
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Figure 4.3: An overview of the linked list library collection.
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Figure 4.4: An overview of the tag library architecture.
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Figure 4.5: An overview of the provenance link library architecture.
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Figure 4.6: An overview of the provenance link list library.
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Figure 4.7: An overview of the url library architecture.
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TagLib: The most important library after the linked list library collection is the tag
library, as shown in Figure 4.4. This library allows us to create tags and tag lists.
Those can be used by contracts to tag arbitrary other struct types. As we will see
below, this is the core idea behind our linking implementation.

ProvLinkLib: This library introduces the struct required to represent links in the
provenance network, as shown in Figure 4.5.

ProvLinkListLib: This library maps the general linked list library to a specific one
capable of listing ProvLink-structures, as shown in Figure 4.6.

UrlLib: Similar to the ProvLinkListLib-library, this library maps the general linked
list library to the more specific type of URIs, as shown in Figure 4.7. URIs are
internally represented by simple string base types.

Auxiliary Libs: The rest of the libraries are auxiliary libraries which add helper func-
tions to basic types.

Now that we have a basic overview of what the different components of our architecture
do, we will shortly discuss the most important idea behind how linking and access control
are implemented. Both of these functionalities are accomplished by using tagging. More
specifically, we do not define what kind of links exist, but we define that every link
can have a list of tags. These tags then represent the weights of this link, as discussed
in Section 3.3.3. This way, one link can have multiple weights, representing different
metrics of trust propagation. This helps us to stay easily extendable by allowing different
solutions to employ custom trust metrics without having the need to design custom
networks. More generically, with this functionality we allow our users to create use
case-specific network overlays. For example, if the lowest level of a network is a tag
suggesting no trust but interlinking the whole network, then users can use additional
links to create overlay networks that contain only the parts interesting for their use cases.
Besides the ability to use different trust metrics for different use cases, this functionality
gives the users also a very powerful filtering tool without restricting or breaking network
connectivity. As we will see in Chapter 5, this filtering tool is a huge help for solving the
searchability issue in a model agnostic way, as discussed in Section 3.1. To make quick
and simple interlinking of contracts possible, we introduce four different default tags.
These four default tags are directly derived from the weights used in the examples in
Section 3.3. All of them can be observed in the world view example in Section 3.3.5.

Trusted: A trusted link from contract A to contract B means that contract A trusts
contact B. This link is for expressing organizational borders and other kinds of
strong contract cooperation.

Known: A known link is for linking contracts that have weak dependencies on each
other. They are in different organizational domains however store provenance on

83



4. Implementation

the same resource or build upon each other to express a completer provenance
picture about some resource.

Pingback: The pingback is beside URIs the second thing that is directly inspired by
the W3C PROV model. The idea is to give contracts the tools to inform other
contracts that they have provenance about a certain resource that may interest the
other contract. It is a way of informing other contracts and their users about the
own contract and its provenance which could be of interest for them. We integrated
this approach into our solution since it extends the abilities to interconnect the
network which increases the overall network strength, as we will see in Chapter 5.

Linkback: Inspired by the pingback strategy for provenance data, we introduce the
linkback link. This link is automatically applied on the other side of the link. This
way, contracts that get linked, get informed about being linked and our network
gets stronger by making the default link type a two-sided connection instead of a
one-sided. This link type does not infer any trust at all. It merely expresses the
existence of a contract.

A similar strategy was used for user access control, as discussed in Section 3.3.4. Instead
of creating a complex rights management system that would never be able to cover all
the use cases, we decided to create the simplest possible and make it extendable. The
simplest operations that exist are adding links, adding provenance data, adding users,
and managing users. To solve access control easily and extendable, we have to manage
access to these operations. We use tagging to solve also this issue. More specifically, we
split the different operations into linking operations and administrative operations. Thus,
we have user roles regarding linking and user roles regarding administrative operations.
Linking roles are basically every link type which gets created by users, meaning that if an
administrator creates a tag trusted for linking contracts and gives a user the linking role
trusted, then this user is able to link arbitrary contracts with a trusted tag to the current
contract. The administrative branch of roles is more difficult to extend, however, it also
works based on tags. The two most powerful tags are the owner and the superuser tags
which are defined by the UserAccessControl-contract. Those roles have administrative
rights by default. Another role that exists is the role of the editor, allowing users to push
provenance data to the current contract. To extend administrative roles, inheritance has
to be used and a new contract has to be created, for the time being.

4.2 React-Client

The React-Client project is our graphical user interface client. This client is built as a
single-page application, as discussed in Section 3.1.2. Thus it is especially suited for our
use case since we only need a static server for content delivery and can afterwards connect
directly to the Ethereum chain. This connection is established from the user’s browser
without the need for further communication with any backend server. The client is built
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with a standard ReactJS5 stack. ReactJS is hereby the frontend framework. Additionally,
we are using the Redux6 framework for state management and we are using the redux-
observable7 framework to manage side effects. To connect to the Ethereum chain, we
are using the Metamask8 browser plugin. Metamask is a browser plugin that allows for
key management and transaction signing directly from the browser. Furthermore, it
provides the necessary functionality to connect to the blockchain for apps running in the
browser. This way, users do not necessarily need a local Ethereum node to connect to
the Ethereum chain.

Our Ethereum client was built with browsing and administrating provenance networks
in mind. Thus, it does not support writing provenance data to the network. At the
time being, it also does not support searching the provenance network other than by
exact provenance contract address. For these two operations, users will have to use the
Node-Client which we will discuss later in this chapter.

The React-Client follows, to the best of our knowledge, common architectural guidelines
and development standards. In general, we implement the principle of splitting view and
connected components, meaning that a view component only knows of how to display
certain content while a connected component is responsible for populating that view
component with the required content. However, we do not want to go into too many
details about the standard ReactJS development patterns in this thesis. Instead, we will
focus on some design challenges that we had in context with provenance networks and
when working with a blockchain.

In general, our client, as shown in Figure 4.8, consists of three main parts. The action
bar in the top of the page, as shown in Figure 4.9, the selected contract details in the
middle of the page, as shown in Figure 4.10, and the complex content section at the
bottom, as shown in Figure 4.11. The action bar consists of a set of standard operations
that can be performed on a loaded contract, an operation for deploying new contracts,
and a search bar. Given a contract address of an existing provenance contract, the search
bar will load this contract, and the newly loaded contract will be selected for display.
Once a contract is loaded, you can use the four contract operations in the action bar
to change the details of the loaded contract, to add new tags to the contract, to add
new users to the contract, or to add new links to the contract. The leftmost operation
is a special one, it allows to deploy new contracts to the currently selected chain. For
this to work, however, the currently deployed version of the React-Client has to have
the binary file for this specific network. Otherwise, an error message will be displayed
that the selected network cannot be served. Currently, the Github-deployed version has
only binary files for the Ropsten9 test network. The middle section, the selected contract
details section, is responsible for showing the details of the currently selected contract.

5https://reactjs.org/
6https://redux.js.org/
7https://redux-observable.js.org/
8https://metamask.io/
9https://github.com/ethereum/ropsten
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Figure 4.8: The React-Client view.

Figure 4.9: The action bar of the React-Client.

Figure 4.10: The details part of the React-Client.
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Figure 4.11: The complex content part of the React-Client.

Figure 4.12: The link navigation view.

This includes the title of the contract, the address of the contract, the description of the
contract, and if loadable also the picture of the contract. Furthermore, on the right side
is a box showing the currently existing link tags in this contract. The bottom section,
the complex content section, is for displaying the links, provenance, and users of the
currently selected contract.

There where two particular challenges when we were designing the user interface for
our solution. The first one was how to represent a directed cyclic graph easily and
understandable in the user interface, and the second was how to properly handle the
asynchronicity in a simple and understandable way.

The first issue was about how do we represent a complex graph without trying to draw
the graph. The problem hereby is that we did not want to draw the graph to avoid
complexity when working with big provenance networks. We however still wanted to
allow users to easily browse the network by simply being able to follow links from contract
to contract. The initial idea then was to use a tree view similar to file explorers. However,
such a tree view has the disadvantage that it could get very deep and since we have a
graph which allows for cycles we also would need a strategy to handle those. The main
reason not to go with a tree view, however, was the depth issue. A very deep tree view
would get difficult to display properly in the user interface since at some point it would
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Figure 4.13: View of some dialog while transaction is being processed.

simply reach the end of the monitor and could not display the link properties without
introducing horizontal scrolling, which is naturally more difficult for users than vertical
scrolling. As such, we decided to use simple tables to display links. And for the purpose
of orientation, we introduced a navigational overview to display the depth of browsing
from the initially loaded contract forward. As you can see in Figure 4.11, the links table
initially displays the links of the currently selected contract. However, if you use the
links-button on any one of the links, the table will display the links of that contract, as
shown in Figure 4.12. Meanwhile, the navigational overview will show us which path we
took from the currently selected contract to be able to see the links that are currently
displayed. The navigational overview can also be used to jump back to a certain earlier
contract. Once we find what we were looking for, we can use the select-button to load a
specific contract and make it the newly selected contract, meaning that we will be able
to see the details of that contract in the middle section of our view.

The second issue was about how to handle the asynchronous requests to the blockchain
in an easily displayable way. Even more so that in case of changes users have to sign the
transactions in the Metamask extension before it can be submitted to the blockchain and
handled there. And then, the transaction still has to be added to a block and accepted
into the blockchain before we can see and query the data. Since this can, in general, take
a while, we wanted to have a way to visualize for users that a transaction is running,
or in what state a transaction finished even if the users leave the contract and come
later back to it. Furthermore, we wanted to be able to use the same pattern with all
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Figure 4.14: View of a failed transaction.

Figure 4.15: Message after successful contract deployment.
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Figure 4.16: Main view transaction state information.

the different elements that we display in the user interface to avoid confusion. So, in
order to not block a user after submitting a transaction to the blockchain, we came up
with an element-based notification and visualization pattern. Once a user submits a
transaction, for example, to change the description of a contract, the description dialog
for this contract gets looked in a in transaction state and displays a load screen, as shown
in Figure 4.13. Once the transaction gets executed successfully or fails with an error,
the user interface will adapt to show this state until the users actively inspect what
has happened, as shown in Figure 4.14. Only after that, the user will be able to use
that same dialog again. We are using also the same behavior in the main view to keep
users informed, as exemplarily shown in Figure 4.16. This way, we can force users to
get important messages for certain transactions while allowing for it to happen when it
is convenient for the users. A good example of this is the contract deployment. After
successful deployment, the user has to write down the contract address since we have
nowhere to save it, as shown in Figure 4.15. It also does not make sense to allow a user
to edit the same field again while the last edit is still being processed. Since both of the
user’s transactions will eventually get processed, however, due to the distributed nature
of the blockchain we are not able to influence the order in which they will be processed.
Meaning, that we can not guarantee which value will be written into that field in the
end. This is of particular importance for fields that contain a certain value, like titles
and descriptions. Lists are not influenced by this behavior since multiple transactions
creating new entries are treated as creating different entries. However, when editing or
deleting single elements, we again have to ensure processing of the previous transaction
before allowing the next.
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4.3 Node-Client
The Node-Client is a simple NodeJS10-based application which exposes an API that can
be used for programmatically accessing certain functionalities of the provenance network.
It is a typical example of a proxy client, as discussed in Section 3.1.2. Besides some
of the administrative functions which are also provided by the React-Client, the node
client also offers functionality for writing provenance data to the blockchain and also for
searching the provenance network. The general idea was that users will want to integrate
the functionality of recording provenance data into existing, automated solutions instead
of doing it manually. With a lightweight simple server component like this, it can be set
up in various ways and simply used with HTTP calls. It does not matter if the node
service is set up locally on a host or on a server as part of a more complex application
landscape where multiple different applications can use it.

A Node-Client will look in the current directory for a .keys-folder. In this folder it will
look for a configuration of the type config.<network>.json where the network-part is
a placeholder for the Ethereum network to connect to, for example, the main net or
Ropsten. However, this is simply a way of identifying the correct configuration file and
users may enter any string they want at this point. The network, the URL where a
blockchain node can be found, and the port on which the Node-Client will expose its API
can be specified by flags when starting the application. If the Node-Client cannot find
any configuration file for the chosen network it will generate a new key pair and create the
respective configuration file. After the startup has been successful, the node client will
give a brief overview of which node URL, which private key, and which address are used
for the current instance. This way, administrators can give node clients custom rights if
necessary and users do not have to share their keys with automated clients, although,
they can if required or wanted. This entirely depends on the internal organizational
structure and the use case in question.

Once the node client is set up and the used key has the required editor rights, the
client can be used to simply push provenance information to the respective provenance
contracts. As a response to a push provenance-request, the requestor will receive a UUID.
This UUID can later be used to check the state of the transaction. This means that
clients which use the node client to write provenance data to the chain have to poll the
node client for the results. This is necessary since the actual transaction can take some
time to be processed by the blockchain network and REST request should be fast and
stateless. Actually, most of the API calls which require a transaction work in a similar
fashion, although, not all of them provide a UUID for polling the state of the transaction.
Some use natural UIDs to achieve the same behavior. One such example is the contract
address since it is unique by nature.

The node client provides at the time being a simple search API which also relies on the
clients to poll for results. Although it does not require any transactions, the search can
take up a lot of time which might lead for some HTTP frameworks to automatically

10https://nodejs.org/en/
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close the server connection. Again, to avoid this, we return a UUID identifying the
respective search request and expect the clients to poll for the results. The search API
allows searching for a resource URI with a set of weights which should be considered
while traversing the network. The search algorithm will not make any inference about
the set of weights but will match them exactly. For example, if a search request specifies
the known-links to be considered, the search algorithm will consider only known-links. If
a user wants to consider all weights with a trust of at least known, the user will have
to specify this in the search request. In our case, the search request would then include
known, and trusted weights. Once completed, the search will return a complex JSON
object listing all contracts containing provenance data for the searched resource URI and
also a list of all contracts that were searched during this request. Finally, our search
algorithm uses a dead-end strategy, meaning it does not traverse the entire network.
Instead, it continues to search for as long as it can find links that have the required
weights. A contract, which has links, however, where none of the links has a required
link weight will be regarded as a dead-end and the contracts linked will not be searched.

4.4 Eval-Project

For the evaluation of our solution, we had to deploy a quite large provenance network
from scratch. This means deploying contracts, giving users the correct rights, and linking
contracts before we can even start evaluating network behavior. Deploying the entire
network takes a lot of time, and consumes a lot of resources. Furthermore, the different
steps can fail due to a multitude of reasons, including network timeouts, disconnects,
errors at node providers, and framework errors. Given these circumstances, we decided
to create an evaluation helper project which allows us to deploy the entire network
automated and supports failure recovery during arbitrary steps of the deployment process.
Meaning if an error occurs during the deployment process, the evaluation project will
be able the determine where the error has occurred and if the last executed transaction
passed or not. Afterwards, it will continue at the point where it failed during the last
execution. This allows us to recover quickly and cost-efficiently from failures without
losing the already achieved progress. Furthermore, we automated most of the actual
measurements in the evaluation projects allowing users to simply rerun those operations
on the already deployed provenance network for easy result reproduction.

To make this possible, the evaluation project uses the Node-Client and acts as a client to
the Node-Client. All the actions that the evaluation project has to perform are ultimately
sent as requests to the Node-Client, processed there, and the results are then processed
by the evaluation project, including logging and simple statistical evaluations. All in all,
the evaluation project offers automated functionality for deployment, cost measurement,
time measurement, and scenario-based evaluation.

The failure recovery process works for contract deployment by logging the addresses of
successfully executed transactions. In case of a failure, all correctly logged contracts will
be skipped. This means that it can happen that single contracts are deployed twice if the
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error happens before the evaluation client was able to log the successful deployment of
some contract. However, single cases of redeployment do not hurt the time and resources
required as severely as redeploying all contracts would. This is because only after the
successful deployment of all required contracts the evaluation client will start adding user
rights and linking contracts. This way, single, accidentally duplicated contracts due to
errors while deploying can be simply ignored since they will not be added to the final
provenance network. All the following operations, like adding user rights and contract
linking, are also logged, however, the state for failure recovery is not inferred from the
logs but from the actual state on-chain. This allows knowing exactly which operations
have to be skipped and which have to be retried.

4.5 Summary
In this chapter, we introduced the general contract architecture of our deployed contracts.
Furthermore, we presented two example clients of different natures with different focus
groups, covering in total all the required tools to successfully build provenance networks
and record provenance data. Finally, we introduced an evaluation helper project, which
automates the deployment of our test network and of measurements required for the
evaluation.

The ETH -project, as presented in Section 4.1, is mainly based on the design discussion,
as discussed in Section 3.3. The two client projects, as presented in Section 4.2 and Sec-
tion 4.3, are good examples how different use cases can impose a superset of functionality,
as discussed in Section 3.1, on top of our general idea of provenance networks. In our
case, the clients offer a different set of access functions with the search behavior being the
most prominent difference. The same way the clients could use different storage methods,
as discussed in Section 3.1.1, or different provenance models on top of our provenance
network.

Finally, our architecture allows users to extend our contracts if they require model
validation on-chain. They then can create model specific versions of the provenance
contract without having to give up the general access control or linking capabilities of
our solution.
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CHAPTER 5
Evaluation

In this chapter, we will evaluate the main contributions and claims from the design
chapter. We extensively discussed the different ways how provenance data can be saved in
or linked to the blockchain. We also discussed the different advantages and disadvantages
of saving and linking the data. Especially interesting was the issue of cost. Given that the
granularity of the provenance data may vary a lot between different use cases, it can lead
to very high cost. The broad spectrum of use cases and the implications to the cost lead
us to keep the prototype, model- and use case-agnostic allowing for the different users to
decide based on their specific needs in which form and granularity to write provenance
data to the blockchain. In the first part of this chapter, we will, therefore, evaluate the
cost of the most important operations of our prototype and especially show the cost of
saving provenance data to the blockchain.

We contributed the provenance network to improve searchability and security of prove-
nance data. Therefore, we will provide in the second part of this chapter a scenario-based
evaluation of our suggested model, the provenance network. These scenarios will aim to
show how our provenance network improves the searchability of provenance data and
which limitations it has. Furthermore, the scenarios will discuss how the provenance
network improves security with respect to the duplication issue. In the final part of
this section, we will discuss the non-functional properties which we have identified in
Section 2.4. We will discuss how our solution behaves in regard to those properties and
compare our solution to the solutions presented in the related work.

5.1 Cost of the Blockchain
In the first part of this section, we will dive deeper into the cost of storing provenance
data. Therefore, we will measure the cost of storing different amounts of provenance data
within a single transaction and compare those to the cost of storing the same amount
of data by utilizing multiple transactions with small chunks of data. In the second
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Figure 5.1: A comparison of the cost to store provenance data (logarithmic scale).

part of this section, we will talk about the cost of the most important operations our
prototype provides. This will include a brief discussion about the deployment cost of new
provenance contracts. We will measure the results in gas cost which is a unit stating how
much gas was used by the EVM to run a certain operation. Gas cost is a more stable
indicator of the cost of operations since the gas price can vary and is market dependent.

5.1.1 Provenance Cost

In our previous chapters, we claimed on multiple occasions that granularity and provenance
data size play a major role in the cost of storing provenance. In Figure 5.1 we can see
multiple interesting cost comparisons. The data size is calculated in bytes and the
cost is depicted in gas. Later in this section, we will map some of the relative gas-cost
to monetary cost. First of all, we can see, depicted with blue dots, the cost of big
transactions. These are in our case transactions that hold the actual provenance data in
them and are representative for the on-chain model, as presented in Section 3.1.1. The
biggest transaction that we are showing holds 8KiB of provenance data in it and has
a cost of 5.8MGas. This has a specific reason, as of the time of writing the maximum
allowed gas per block in the Ethereum chain is 8MGas. The next step in our graph,
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Figure 5.2: Interpolated cost to store provenance data.

16KiB, would already require a gas amount higher than the maximum allowed block gas
amount and would thus not be accepted by the network. This means for storing more
than 8KiB of data we would need to split this data into multiple transactions.

Furthermore, we can see depicted with red and green dots, two constant lines. Those are
representative for off-chain data. Unlike on-chain data, in the case of off-chained data,
we are using hashing algorithms to link the real data to the chain. As we learned in
Section 2.2.1.1, hash functions have always an output of the same size no matter how big
the input. Since the Ethereum network is designed to use the same gas amount for equal
operations [27] and we are always calling the same function on the provenance contract
with the same amount of data, the cost stays constant. The two algorithm categories
we decided to present the cost for are 256- and 512-bit algorithms. The number of bits
stands for the output size. A 256-bit hash has 32 bytes. To represent such a hash as
a hex string on-chain we need 64 bytes. The 512-bit hashes behave identically with a
required space of 128 bytes, on-chain.

For comparison, we can see, depicted with red and green crosses, two measurements of
how the cost evolves if we use a lot of tiny transactions to store the same amount of data.
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Figure 5.3: Zoomed in, interpolated cost to store provenance data.

As can be seen, the cost grows linearly with the amount of data, however, a lot faster
compared to a single transaction with the same amount of data. For instance, if we take
again the 8KiB point, in the case of the 128B curve we have at this point already a
total cost of 10.5MGas. The linear growth has the same explanation as in case of the
constant functions. Since we are calling the same function with the same amount of data,
the single calls will always produce the same cost. However, since we are actually storing
the data on-chain, in comparison to only hashing it, we get a linear cost growth with the
amount of stored data. This also allows us to interpolate any measured transaction cost
with regard to the cost of multiple transactions of the same kind and size, as shown in
Figure 5.2. These interpolations show us how the storage cost would grow for repeated
transactions of the different measured sizes.

Another interesting detail that can be seen in Figure 5.2, is that transactions with sizes of
2KiB to 8KiB have no significant difference in their cost development. Even if we scale
them up to 1TiB as can be seen in Figure 5.3. This is interesting for system designs that
tend to save more data into the blockchain since smaller transactions have better chances
to be accepted quicker than bigger transactions. This is a direct consequence of the total
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Figure 5.4: A comparison of the interpolated cost per transaction count (logarithmic
scale).

block gas limit and can be easily explained. A miner who is currently building a block
adds new transactions to the block as they keep arriving, as discussed in Section 2.2.3.3.
With each added transaction, the left totally allowed gas size for the current block gets
smaller, thus it is easier to fit smaller transactions than bigger transactions. If we cross
reference this with Figure 5.1, we can say that the probably best-suited transaction size
for storing bigger amounts of data is between 2KiB and 4KiB.

Finally, we also take a look at the cost development depending on the amount of
transactions. As can be seen in Figure 5.4, when it comes to the total number of used
transactions, smaller transactions are significantly cheaper than bigger transactions, as
expected. Use cases that have a high throughput and need to write very often to the
blockchain should, therefore, aim for solutions that keep the transaction size as small
as possible. If we compare the most-suited three transaction size which we measured,
as shown in Figure 5.5, we can see that there exists a difference of around factor two
between the 64Byte and the 256Byte sizes.
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5.1.2 Monetary Cost

In our cost evaluation up to now, we measured the cost in used gas. This is due to
the fluctuating gas price. As with the gas price for cars, the gas price for Ethereum
fluctuates. At the time of writing, February 2019, the suggested gas price was between
2GWei and 3GWei. The Ethereum price was around € 92 for 1ETH as listed by the
Kraken exchange and 1ETH is 1018Wei [27], which are 109GWei. We can use these
numbers to have a look at some interesting values. For example, the cost for one 64 Byte
transaction would be € 0.033. On the other hand, to store a total of 1GiB of provenance
data on-chain split in transactions of 4KiB would cost € 211,519.962. And, storing
10k of transactions each 64KiB in size would cost € 330.206. As can be seen, there
is a huge cost gap between storing provenance data on-chain versus storing the data
off-chain and just storing the hash on-chain. This is one of the main reasons why it is of
utter importance to use a common way of handling data provenance on the blockchain
side. This allows us to work towards interoperability without losing the flexibility of
customizing solutions towards specific use cases.
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5.1.3 Operational Cost

Since besides storing provenance data, creating a well-connected provenance network is the
main goal of our solution, we will now have a short look on the cost of the most important
operations beside the operation for storing provenance data. To create a provenance
network, two operations are of particular importance, deploying a provenance contract,
and linking provenance contracts. Furthermore, to be able to achieve organizational
requirements configuring proper access control is a very important operation. For those
three operations, we measured the required cost and came up with the following results.

Deploying a Contract: Deploying a contract cost us 5.3MGas. This cost are rather
high considering the block size limit and mean that we should consider for our future
work a redesign of our internal contract structure to allow for cheaper deployment
cost of provenance contracts.

Linking Contracts: We measured over 500 linking operations with an average cost
of 166kGas, with a low of 58kGas and a high of 231kGas. The exact amount
of required gas depends on how many operations have to be performed in the
blockchain and also if for the specific link a linkback already exists or not. This
means that linking a contract cost in fiat on average € 0.046 at the time of writing.

Adding Users: We added one user with three roles to 256 contracts and measured
the following cost. For the initial creation of the user at a contract, we required
96kGas. For adding additional roles to that user once added to the contract we
required around 52kGas. It slightly changes depending on the length of the role
name. This is in fiat € 0.026 for creation and respectively € 0.014 for adding roles
at the time of writing.

5.2 Searching Provenance Data

In this section of the evaluation, we will use a scenario-based approach showing different
scenarios that were taken into account during the design of our solution. Based on
these scenarios, we will present that we are able to find all the relevant provenance
for a given resource in our network and that it is not possible to hide provenance in
the network. More concretely, we will show that a malicious user is not able to infer
trust from a trusted contract while hiding some provenance at the same time. After the
scenario-based part of this section, we will also show and compare different search times
based on different network sizes.

5.2.1 The Evaluation Network

For this evaluation, we built a provenance network with a total of 256 contracts, as shown
in Figure 5.6. Each circle represents one contract and each background color represents
one domain, for example, all contracts which are part of the TU Wien domain have a blue
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background color. Each contract with a number is a place holder for the exact amount
of contracts as expressed by the number, where each of these contracts has the exact
same characteristics. For example, a green contract with a six inside means that there
are six green contracts each with the same connection from the same parent contract.
The green arrows represent links with a trusted-weight and orange arrows represent links
with a known-weight. Each unidirectional link in our figure has a counterpart with a
linkback-weight making the network on the lowest trust level completely bidirectionally
connected.

The network was designed with a few interesting characteristics in mind. If we start
at the contract labeled as Proj-Cloud and follow the path up to the contract labeled
as Search256 we will realize that each step represents a power of two, with Proj-Cloud
being 20 and Search256 being 28. This will be of particular interest when measuring
search times in this network. Furthermore, we have defined five so-called search contracts,
as demonstrated in Section 3.3.5. Each search contract plus the contracts it links to,
results in the number of contracts state in the search contracts name, for example,
Search16 denotes that if searched from this contract downwards we will search a total of
16 contracts.

One last note on the network size. Since we have to deploy each of these contracts and
the corresponding links to the blockchain, the deployment process is very time- and
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Figure 5.7: Sub-network interesting for Scenario 1.

ether-consuming. We can get free ETH for the Ropsten test network from a faucet,
however, this faucet only grants about 15ETH per address, since it assumes this should
be enough for any kind of evaluation. This is one of our main restrictions why we did
not use a bigger network for our evaluations. The on-chain address of every contract in
our test network can be found in Appendix A.6.

Finally, our solution builds upon the idea that contracts propagate certain trust properties
towards other contracts, as discussed in Section 3.3.3. Although our solution provides
only a very simplified model with four tags, it is completely extensible. The four tags
that we provide merely serve as proof of concept and users can build custom trust models
by adding their own tags to the provenance network. It is even possible to use different
trust models on the same links to satisfy different scenarios.

5.2.2 Scenario 1: Searching for Provenance Data

Our first scenario is the most basic one that there is. The Distributed Systems Group,
DSG, works on some new project, Proj-Cloud. Provenance data for that project gets saved
into the Proj-Cloud contract. After publishing some papers about that project some
reviewers decide to query for the provenance data. To make sure that the provenance
stored in the Proj-Cloud contract is indeed the official provenance data that is trusted
by TU Wien they query from the TU Wien contract and they include only trusted links
in their query. An overview of the scenario can be seen in Figure 5.7.

Query: We query the TU Wien contract for the resource http://thesis.eval/scenario1
considering all trusted links.

Expected Outcome: As a result, we expect to search a total of eight contracts
and find one contract holding provenance about this resource, namely the
Proj-Cloud contract.

Actual Outcome: Since in our provenance network TU Wien uses trusted links
only for contracts within the organizational border, a search as described
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above returns all contracts which get trust propagated by TU Wien. This are
exactly eight contracts including the Proj-Cloud contract. The search output
can be seen in the Appendix A.1.

5.2.3 Scenario 2: Searching between Domains

In our second scenario, we will consider two universities working together on a project.
In this case after some contributions on Proj-Cloud by TU Wien and some conferences
some scientists from the University of 16, in short, Uni16, decide to collaborate with TU
Wien on some future work. Together, the two research groups advance their work and
produce the resource http://thesis.eval/scenario2, which is a derivation of the resource
http://thesis.eval/scenario1. Since each university has their own parts on which they work,
each university writes their respective provenance into their own contracts. Reviewers
who want to query for the complete provenance have to query either both of the domains
or since TU Wien and Uni16 have a bidirectional known link they can simply query
any of the domains for the resource while including both trusted and known links. An
overview of the scenario can be seen in Figure 5.8.

Query: We query the TU Wien contract for the resource http://thesis.eval/scenario2
considering all trusted and known links.

Expected Outcome: We expect to find two contracts holding provenance infor-
mation, one from TU Wien and one from Uni16. Furthermore, we expect to
search a total of fifteen contracts, those of the blue and orange domains as
shown in Figure 5.8.

Actual Outcome: The search results match our expectations. As can bee seen
in Appendix A.2, we searched a total of fifteen contracts and found two
contracts with provenance information about the searched resource. The
Proj-Cloud contract which is a contract from the TU Wien domain, and the
Uni16-Inst0-Group0 contract which is a contract from the Uni16 domain.
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5.2.4 Scenario 3: Malicious User within the Domain

This scenario will be the first of three scenarios that try to duplicate and hide provenance
data. The DSG produced the resource http://thesis.eval/scenario3 during some previous
contributions. The provenance data for this resource is saved in the DSG contract and
thus trusted by TU Wien. A malicious user manages to gain write access to one of
the provenance contracts, trusted by TU Wien. Maybe by an honest mistake of an
administrator at TU Wien. This malicious user knows that in order to successfully
tricking other users to trust into the forged provenance data, this forged provenance data
has to be linked to TU Wien’s main contract. Thus, after gaining access to one of the TU
Wien contracts, the malicious user posts forged provenance data regarding the resource,
http://thesis.eval/scenario3. When users want to check the correctness of the provenance
data, they will query the TU Wien domain for provenance about this resource. They
will expect to find one source of provenance information but will suddenly be presented
with two different contracts containing provenance. The real and the fake provenance.
Domain experts are now able to determine that one set of provenance information is
indeed malicious, inform the administrator, and then the administrator can revoke access
of the malicious user to the provenance network. An overview of the scenario can be seen
in Figure 5.9, marked in red the contract with fake provenance data and respectively in
green the one with the correct provenance data.

Query: We query the TU Wien contract for the resource http://thesis.eval/scenario3
considering all trusted links.

Expected Outcome: We expect to find two contracts containing provenance infor-
mation about this resource and search a total of eight contracts. Furthermore,
we expect both contracts to be from the TU Wien domain.

Actual Outcome: As can bee seen in Appendix A.3, we found both contracts
which are holding provenance information about the resource. Both contracts,
DSG and InstX-Group0, are within the domain of TU Wien. Furthermore, a
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Figure 5.10: Sub-network interesting for Scenario 4.

total of eight contracts were searched. This results show us that a malicious
actor can not hide provenance information within a trusted part of the network.

In this scenario, the malicious user managed indeed to publish provenance information to
the InstX-Group0 contract which is formally trusted by TU Wien. However, the malicious
user was not able to hide the original provenance information which is a necessary step
in order to convince other users. Even if the original resource does not exist anymore,
users who query for the provenance will always see that there is a duplication and will
know that the resource they were given does not fit the original provenance.

5.2.5 Scenario 4: Hiding Provenance in the Network

Similar to our last scenario, a malicious user could try to duplicate provenance by
hiding it in another domain. In this case, the target of the attack is the befriended
university, Uni16. The malicious user again tries to duplicate some old provenance of
the DSG, http://thesis.eval/scenario4. As we know from earlier, these two universities
are cooperating on certain projects and have therefore some kind of trust relationship.
This means that the duplicated provenance information that was pushed to one of the
contracts trusted by Uni16 has the same trust relationship from TU Wien. In this
scenario, users can search in three different ways for provenance information. First, users
that have only the original resource and therefore a link to TU Wien’s provenance domain
might search only the TU Wien domain leading to them only finding the original and
correct provenance information. Second, users who have a fake resource pointing to the
modified provenance information may decide to query only the domain of Uni16 which
would allow them to find only the fake provenance information. However, by doing so,
this provenance information, strictly speaking, has no trust assurance by TU Wien. And
third, by extending the search of Uni16 ’s domain to include TU Wien’s domain and
thus have the trust assurance from TU Wien. This way, users would automatically also
find the original provenance information and therefore be able to determine that there
might be an attempt of duplication going on. An overview of the scenario can be seen in
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Figure 5.10, marked in red the contract with fake provenance data and respectively in
green the one with the correct provenance data.

In this scenario, we will perform all three of the described queries:

Query 1: We query the TU Wien contract for the resource http://thesis.eval/scenario4
considering all trusted links.

Expected Outcome: We expect to find only the original provenance data and
to have queried a total of eight contracts.

Actual Outcome: As can be seen in Appendix A.4.1, we searched exactly eight
contracts and found only the DSG contract with provenance information, as
expected.

Query 2: We query the Uni16 contract for the resource http://thesis.eval/scenario4
considering all trusted links.

Expected Outcome: We expect to find only the fake provenance and to have
queried seven contracts. Furthermore, we expect that the TU Wien main
contract is not part of the searched contracts.

Actual Outcome: As can be seen in Appendix A.4.2, we found only the fake
provenance information stored in the Uni16-Inst0-Group0 contract. Further-
more, also as expected, we searched seven contracts in total which did not
include the TU Wien contract.

Query 3: We query the Uni16 contract for the resource http://thesis.eval/scenario4
considering all trusted and known links.

Expected Outcome: We expect to find the original and the fake provenance
information and to have queried fifteen contracts in total.

Actual Outcome: As can be seen in Appendix A.4.3, we found, as expected, both
contracts containing the real and fake provenance information. Furthermore,
we searched a total of fifteen contracts.

This scenario has a special case when the malicious user is a scientist in Uni16, who tries
to claim a certain resource originally produced by TU Wien was produced by Uni16.
Since in this case the fake resource would claim to be originally by Uni16, users might be
inclined not to search more than the Uni16 domain for provenance which would produce
the same results as by Query 2. In this special case, we have to distinguish two different
possibilities. First, the malicious user changed the URI of the resource, which makes the
resource from a provenance viewpoint a different resource than the one at TU Wien. In
this case, it is up to other mechanisms to identify the resource as a duplication attempt.
Second, the resource URI stays the same. In this case, the fake resource would need to
be faked in such rigorous detail that it is not possible to connect it to TU Wien so that

107



5. Evaluation

6

InfoSys

Search128 Search64

Search16

Search32

DSG

Proj-Cloud

Uni16

Search256

TU Wien

InstX

Uni32

5

Uni32-Inst0 Uni32-Inst0-Group0

Uni32-Inst1

Uni64

Uni128
Uni256

Figure 5.11: Sub-network interesting for Scenario 5.

users are not inclined to search the TU Wien domain. Even if this is successfully done,
any user with domain knowledge of the resource who has seen both resources will likely
figure out that one of them must be a duplication and will be able to find all the relevant
provenance information.

As can be seen, our mechanism is limited to preventing the duplication of provenance
data as discussed in Section 3.2, however, not necessarily the duplication of the resource
itself. In this case, our solution still provides a reliable way of searching for related
provenance and proving that some resource is a duplication attempt of another.

5.2.6 Scenario 5: Duplicating an entire Domain

In this scenario, a malicious user could try, by utilization of enormous amounts of capital,
to duplicate the entire TU Wien domain. For this scenario, we assume that the attacker
is not capable of changing the officially announced address of TU Wien. Users who query
this fake provenance network will then realize that the real address of the TU Wien main
contract is not part of the searched addresses. Furthermore, the attack can not stop any
search contract provider from linking to this fake network which decreases the chances of
deceiving anyone further. This is due to the fact that once added to a network which
also references the real TU Wien network, any user who performs a general search on a
very low trust level, as for example the linkback level will find the original as well as the
fake provenance information. An overview of the scenario can be seen in Figure 5.11,
marked in red the fake domain and respectively in green the contract with the correct
provenance data.
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In this scenario, we will, therefore, perform three different queries:

Query 1: We query the TU Wien contract for the resource http://thesis.eval/scenario5
considering all trusted links.

Expected Outcome: We expect to find only the original provenance data and
to have searched a total of eight contracts.

Actual Outcome: As expected, we searched a total of eight contracts and found
only provenance information in the DSG contract. The results ca be seen
in Appendix A.5.1. This results show us that a network replication will not
disturb users which already know the real address of the TU Wien domain.

Query 2: We query the Uni32 contract for the resource http://thesis.eval/scenario5
considering all trusted links. The Uni32 contract herby represents the main contract
of the fake domain.

Expected Outcome: We expect to find only the fake provenance data, to have
queried a total of fifteen contracts, and not to find the TU Wien contract
among the searched contracts.

Actual Outcome: As expected, we searched a total of fifteen contracts. We
found one contract holding provenance information, the Uni32-Inst0-Group0
contract which is affiliated with the fake domain but not with the domain of
TU Wien. Most importantly our searched-contracts result list did not include
the TU Wien contract, as can be seen in Appendix A.5.2. This results show
us that a network replication can attempt to fool only users who do not take
the time to verify affiliation to announced contracts.

Query 3: We query the Uni32 contract for the resource http://thesis.eval/scenario5
considering all trusted and linkback links.

Expected Outcome: We expect to find the real and the fake provenance contract
and to query a total of 256 contracts.

Actual Outcome: As expected, we found exactly two contracts holding prove-
nance for this resource, the DSG contract and the Uni32-Inst0-Group0 contract.
Furthermore, as can be seen in Appendix A.5.3, we searched a total of 256
contracts which is in our case the whole provenance network. This results
show us that hiding provenance in a connected network is not possible once
the whole network gets searched.

To be really successful with this attack, the malicious user would need to hack into TU
Wien and change the address of the announced main contract. This is not an easy task
in the first place and would be reversed once discovered by the TU Wien administration.
Furthermore, the real TU Wien provenance contract has at this point already some
prestige, meaning, that the attacker would need not only to hack into TU Wien and
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Figure 5.12: Measured average time to search graph based on graph size (logarithmic
scale).

change the announcement without anyone realizing but also manage to change it in all
the other places where it is referenced, for example, Uni16, and any published resources
by TU Wien. Finally, additional security is provided by the contracts in the TU Wien
domain themselves, since anyone who uses already a correct contract, for example, the
DSG contract to query or store data will not simply decide to switch to a new unknown
contract in a fake network.

5.2.7 Search Times

For this evaluation, we use two different connections to the blockchain and we run every
query multiple times, taking the average value of all measurements. We decide to take
the average and not the median to purposely include extreme times as needed when
caches are populated for the first time to make sure that one time and first time searches
are not surprisingly slow. Furthermore, we perform the measurement with two different
ways of being connected to the Ethereum chain. In the first case, we connect with a
locally running node in light mode, meaning that the node is only synchronizing block
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Table 5.1: The measured average times and the corresponding variances.

Average Time Unbiased Variance
Local-16 348.25 ms 178.23 ms
Local-32 658.22 ms 271.31 ms
Local-64 1.23 s 378.22 ms
Local-128 2.48 s 615.19 ms
Local-256 4.98 s 941.86 ms
Infura-16 33.23 s 8.07 s
Infura-32 67.33 s 11.82 s
Infura-64 141.98 s 19.74 s
Infura-128 249.45 s 34.14 s
Infura-256 473.22 s 35.24 s

headers and contacts to an archive node when validation or extra data is required. In
the second case, we connect to the Infura public nodes. Both connections are done by
HTTP and we perform each local query 100 times and each Infura-based query 10 times.
The second was performed fewer times since it takes significantly longer and we did not
want to put any unnecessary load onto the Infura nodes.

As can be seen in Figure 5.12, the network can be searched quite fast when connecting to
a local node. In case of the locally running light client we are achieving times of around
5s to search the entire network of 256 nodes. The absolute worst case for a 256-nodes
network was 10s and with an average around 5s we are able to perform search queries
which will not disturb auditors in their work. This is probably mainly due to the light
node running locally and allowing us to query the network only for specific information
when needed. We expect search times to become even better if we deploy a full node
on premise since then we would not have to leave our local network at all, since the full
node would be in sync with the chain and able to answer our queries immediately. A
full node on the same machine as used to query the provenance network would, even
further, improve the search time since all the data needed would be literally on the same
machine. As we can see by using the Infura public nodes to connect to the blockchain,
our query time receives a penalty of around a factor of 100. This is probably mainly due
to the network communication and to higher load on the Infura nodes which are used by
a lot of applications. If we look at the sample variances, as shown in Table 5.1, we can
see that especially in the case of the local measurements they are quite high. Meaning
that our results have a high dispersion which is in general not good. However, if we
consider the time frames about which we are talking, in case of the local node, we have
to assume that this behavior is mainly due to caching strategies and implementation
details of the local node. After all, the smallest network we measure is searched in under
350ms. If we look at the Infura-based results the variance is in general smaller. We
assume this is mainly due to the network access times which are significantly bigger in
this case and have a smoothing effect on the measured times. In both scenarios, local-

111



5. Evaluation

and Infura-based, we experience a relative improvement of the variance with the size of
the searched network. This is probably due to the fact that once a certain network size
is reached the necessary work to search the network begins to outweigh the side effects
like implementation details, caching strategies, and network access times.

Besides the obvious cost advantages of having the search algorithm not run on the
blockchain, we get a few other advantages. First of all, maintainability. Since the search
algorithm is running in the local code, errors in complex search algorithms can be easily
fixed without the need to redeploy contracts to the chain. Second, extensibility, since the
search algorithms are running locally it is easy to experiment with new search algorithms
on the network without incurring new cost. And finally, having the search locally means
that we have a natural distribution of the computational needs. Although the blockchain
is distributed in nature, the single nodes have still to perform the required computations
on reading requests, also in case of connections over Infura, we would be offloading all the
computational requirements to one node. By having the search client side, every client
itself has to provide the necessary computational power to be able to deal with the search
requests and organizations are able to provide more powerful machines to improve the
search times of their clients where necessary. This provides a natural load distribution
not only across nodes in the blockchain but also across the blockchain-utilizing clients.
One disadvantage of this approach is of course that the search time is dependent on the
local client and thus can vary from client to client.

5.3 Non-Functional Evaluation

In this section, we will discuss how our solution satisfies the non-functional requirements
which we have identified in Section 2.4.

5.3.1 Confidentiality

Our solution does not provide a specific approach to solve confidentiality. The commonly
used approach of encrypting the data as discussed in Section 2.4.2 can be used together
with our solution since we do not limit the users to a specific model or strategy. This
also has the advantage that in case of solutions where the data is off-chained we do not
add complexity to both the code as well as to the data. This is particularly interesting
when it comes to keeping the cost low as we saw in Section 5.1. However, this has, of
course, the disadvantage that if the users do not take care of securing the confidentiality
we will not do it for them which can lead to unintentional plain text provenance in the
blockchain.

5.3.2 Integrity

On this property, we have to consider two different aspects, since integrity can be enforced
by the utilized transport protocols and furthermore it needs to consider storage properties
disallowing manipulation of stored data. Regarding the first property, transport integrity,
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we are not providing any specific solution, however, we are supporting any integrity
strategy that is ultimately encoded into the stored data. For example, if we consider a
solution that uses HMACs, then the integrity verifying part will be attached to the end
of the provenance data. Once stored in the blockchain, we can easily verify that the data
was correctly stored by simply reading it and verifying the HMAC. This allows users of
our solution to utilize different integrity strategies without the need to specifically support
them in the backend, being in our case the blockchain. This is a direct result from the
second property, the integrity of stored data. Since once stored into our provenance
contract, the provenance data cannot be manipulated anymore, we are providing long-
time data integrity by utilizing the natural properties of the blockchain itself. This means,
for example, in the case of off-chained data that the hash verifying the data is saved for
as long as the blockchain exists and can extend the property of integrity onto the original
data. The same security is provided for on-chain data. And finally, this is the reason why
we can perform integrity validation also on the client side. Since once the data is written
it cannot be changed anymore, this also means that to make sure that the data was not
damaged by the transport we can simply write it to the blockchain and then validate it
by reading it out again. In case our integrity validation strategy discovers a mistake, we
can simply rewrite the data again since the first attempt will also be discarded as invalid
data by any other client utilizing our integrity strategy.

5.3.3 Availability

Availability is in our case somewhat design-dependent. In case of on-chain data, we
provide very high availability since one would need to take down the entire blockchain
network to take down our provenance data. However, as we saw in Section 5.1, saving all
the provenance data in the blockchain is rather expensive, which brings us to off-chain
solutions. For those, we provide on our end still a very high availability. Meaning, that
the hashes will have the availability assurance by the blockchain, however, we can not
say anything about the actual provenance data since this would highly depend on the
actual solution and where this data is saved. It opens, however, interesting possibilities
for security uncritical data. This provenance data could then be freely replicated by
interested users and whenever a party needs to verify that the provenance data presented
are an unmodified copy of the original, they could crosscheck with the blockchain. For
example, public provenance data could simply be stored into git repositories, which allow
for easy duplication and distribution. Whenever users clone a repository the provenance
data could be verified by checking the hash on-chain.

5.3.4 Non-Repudiation

As has already been discussed in Section 3.1.1, non-repudiation depends on the ability of
the provenance providers to map private keys to certain users. Otherwise, especially in
the blockchain environment, anybody could create new keys and claim that a previously
used key was not theirs. We improve this state by implementing out of the box a rather
strict access control. Users who want to write provenance data to a certain contract
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must first contact an administrator of this contract and request write permissions for the
contract. The administrators are then able to fulfill any kind of internal requirements
of the respective organization to map that key to the real persona without exposing
sensitive data of that person to the whole world. This way, when a certain user requests
that a key gets renewed, two things happen. First, an administrator can inquire why the
key has to be renewed. Second, the administrator can keep, when necessary, a complete
history of which keys belonged to which persons. An interesting extension would be
to solve this problem of matching users to keys in an on-chain way without necessarily
exposing user data.

5.3.5 Unforgeability

The main property we aimed to improve with the work in this thesis is unforgeability, more
specifically provenance duplication. As we have already discussed, provenance duplication
is part of the forgeability attacks since a malicious actor uses a second set of forged
provenance data to hide the original provenance data behind, as discussed in Section 3.2.
As we have shown in Section 5.2, with help of a scenario-based evaluation, hiding
provenance data in a fully-connected provenance network is not possible. Furthermore,
we have shown that hiding provenance in a provenance network is only possible in
exchange for the loss of trust propagation, meaning an attacker can only hide provenance
from another contract if the trust level is set in a way that a search will not regard the
malicious contract as relevant. However, this also means that this malicious contract does
not get any trust propagated by other important contracts and should be disregarded.
Equally, if a contract claims to have provenance about some resource which is known to
be part of a bigger organization but the contract is not part of any provenance network,
it again cannot be trusted and should, therefore, be disregarded. This makes it effectively
impossible to hide provenance information and retain trust propagations in a provenance
network. Combined with the natural integrity properties provided by the blockchain,
it becomes to the best of our knowledge impossible to forge the provenance data given
they were properly recorded. The unforgeability of the resource itself is dependent on
the actual solution and how the provenance data interacts with the resource data.

5.3.6 Granularity, Model and Storage

We will discuss these three properties together since they have a very simple common
answer: Our solution is granularity, model, and storage agnostic. As discussed in
Section 3.1, one of our major goals was to provide a common place where provenance
can be searched and found on a design-independent level. To achieve this, we decided
purposely to stay model-agnostic. Storage-agnostic was another decision to allow us to
cover a broader set of provenance solutions and to enable off-chaining which is certainly
necessary as seen in Section 5.1 and discussed by Eberhardt et al [14]. These two decisions
brought granularity automatically with them since granularity is often model- and use
case-dependent. Furthermore, in the case of off-chained data, it does not affect us at all.
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5.3.7 Chain

We implemented our solution with the Ethereum chain. This is mainly due to the fact
that it is one of the most-commonly adopted chains that provides a higher programming
language. Furthermore, it is a public chain and thus does not require any special pre-
requirements from users to use it. This said, in theory, our solution should be mappable
to other chains that support a complex enough script language and smart contracts. Our
solution does not make use of any special Ethereum features aside from smart contracts.
In case of mapping to another chain, it would also be of interest how cross-chain linking
could be established to allow for provenance networks across chains to be linked to each
other and improve the overall security of both networks.

5.3.8 Comparison

After discussing the different non-functional properties of our solution, we will compare
our solution to other solutions as presented in the related work Section 2.4. For this we
extended the tables to contain our solution, as can be seen in Table 5.2 and Table 5.3.
The non-security related properties can be seen in Table 5.2. As can be see, we offer full
flexibility by being granularity-, model-, and storage-agnostic. This allows implementing
all the solutions presented in the related work on top of our provenance network architec-
ture. Doing so allows us to search for provenance information in a domain-independent
way. As can be seen in Table 5.3, the decision to be model-agnostic has also consequences
for the security properties. We are able to support all the relevant security properties
given that the chosen use case implements them on top of our solution. This can be easily
done by extending our contract architecture and implementing specialized provenance
contracts which have stricter security enforcement at the cost of higher gas usage. An-
other way would be by building clients which fulfill the special needs of the different use
cases. At the same time, we do not enforce certain security patterns onto use cases using
our solution. This allows for public use cases to stay that way and furthermore, does
not impose any unnecessary cost for functionality which might not be needed by every
single use case. This flexibility allows us to propose provenance networks as a common
ground solution for solving the duplication issue and for solving the searchability issue, as
presented in Chapter 3, without restricting use cases in their model- or security-related
choices.

5.4 Code Quality

During the evaluation of our solution, we had to realize that there are still some bugs in
our code which we track on Github1 for future development. None of the bugs discovered
did affect our evaluation or the concepts which we are demonstrating in this work. All but
one of the bugs are in the React-Client and therefore not critical at all. This is because
client-side bugs can be easily fixed without consequences for the deployed contracts. Most

1https://github.com/vauvenal5/ProvNet
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Table 5.2: Properties of the related work compared to our solution.

Granularity Chain Model Storage
DataProv [39] coarse Ethereum OPM on-chain
ProvChain [12] coarse Tierion custom on-chain
Stoffers2017 [40] custom BigchainDB W3C PROV on-chain
TOVE [43] coarse Ethereum custom on-chain
BlockPro [44] fine Ethereum model agn. on-chain
Neisse2017 [13] custom Ethereum model agn. on-chain
Massi2018 [45] custom Hyp. Fabric W3C PROV on-chain
ProvNet custom Ethereum model agn. custom

Table 5.3: Security properties of the related work compared to our solution.

Integrity Confid. Avail. Non-repud. Unforg.
DataProv [39] high mediocre high supported supported
ProvChain [12] mediocre mediocre high partial partial
Stoffers2017 [40] mediocre low high custom not avail.
TOVE [43] mediocre low high custom custom
BlockPro [44] high low high supported supported
Neisse2017 [13] mediocre high high supported supported
Massi2018 [45] mediocre mediocre mediocre partial partial
ProvNet high custom custom supported supported

notable is the one bug which we found in the backend. This bug prevents us from deleting
links between provenance contracts. This bug does not affect the results presented in
this work in any way. However, it is of high importance to fix it as soon as possible since
it affects the long-term maintainability of the contracts. Furthermore, we discovered
that deploying our provenance contract has become quite expensive. This combined
with new architectural guidelines for the development of Ethereum-based contracts will
make a restructuring of our backend architecture necessary. However, this restructuring
will be only from a technical viewpoint to align the backend with new architectural
recommendations. It will not affect the overall functionality or the discussed concepts of
our solution in any way.

5.5 Summary
As can be seen, our solution has a few clear limitations. First of all, the strength of our
solution grows with the size of the network allowing more and more provenance to be
properly audited. For example, if we have only one contract which is not interlinked
with any other contract, our solution cannot help to improve the trust into this contract.
Only after linking this contract to others and making it visible to the world, we can
infer that this contract does not try to hide anything. Second, our solution can not
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help when a malicious user tries to completely forge a resource. For example, if one
scientist tries to steal the results of another, we are not able to identify this since from a
provenance viewpoint these are two different resources and it is up to domain experts to
identify that there are two resources claiming the same. However, once the resources in
question are identified, we provide an easily searchable solution to finding the respective
provenance data and thus support the process of dismantling the forgery, even if the
resources originate in different domains or use cases. Third and final, in case that a user
has to search regularly the entire provenance network, this user should deploy a local
Ethereum node to improve query times.

These limitations aside, our solution provides a real model-, domain-, and use case-
independent solution for finding and mapping provenance. And with no model-dependent
parts in the backend, namely the smart contracts, a user can build front end clients
as required to establish collaboration between models, domains, and use cases. Thus
allowing every solution to use the methods best fitting its domain without restricting its
ability to collaborate with other solutions. For provenance auditors, a complex image
about provenance data can be created and investigations into resource forgery can be
supported by an easily searchable network. Ideally, this can pave the way to extend this
simple search to a cross-domain provenance analysis tool.

On the security side, we are providing a solution that does not limit individual users and
domains to a certain model but as security algorithms and practices evolve so can the
used methods evolve without the need to change the smart contracts in the backend.
Every use case can choose the required level of confidentiality and integrity checks as
required. Furthermore, every use case has the availability assurance as provided by the
blockchain. And most importantly, we are making it a lot harder to fake provenance data
once recorded, or to fake a resource by duplicating and hiding its original provenance data.
Simple, initial access controls allow us to confirm the authenticity of private keys and
thus to harden the non-repudiation property of any provenance data in the chain. And
last but not least, by introducing an easily customizable solution through link weights,
we allow for the use of different trust propagation models on top of the same network, so
that use cases can propagate trust as they see fit.
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CHAPTER 6
Conclusion

In the introduction, we motivated our work with a simple Web service-based workflow
example, where some input data passes a complex flow of Web services and human actors
resulting in some output data. To be able to build trust in this output data and to be
able to reproduce the process involved in creating this output data, we employed data
provenance. Data provenance is a type of metadata which helps us to make deductions
about a data product and how it came to be. To be able to provide trust for the original
data product, this provenance data has, in turn, to be protected. As we saw, this combines
the already complex domain of data provenance with the domain of security. Many
different solutions exist which provide domain- and use case-based approaches towards
solving the issue of securing provenance data in their specific context. Furthermore,
different approaches of combining the blockchain as a trust-provider with data provenance
started to appear in recent years. The blockchain provides by design some strong security
assurances towards some of the security properties as required by secure data provenance.

The huge amount of different approaches towards data provenance without any common
basis to work with led us to one of the problems which we identified as the searchability
issue. The other issue which we identified is the duplication issue. Although the blockchain
provides strong security for the integrity of data, it does not natively solve the issue
of simply duplicating records and hiding original records behind these duplications. In
order to address both of these issues, we introduced the concept of provenance networks.
A provenance network is a network of linked provenance contracts, i.e., smart contracts,
which are designed for storing provenance data. These provenance contracts allow each
other to be linked in form of cyclic, directed, weighted graphs, as commonly used by
trust networks. This way, a provenance network provides a searchable space where
provenance data can be searched for. By introducing the notion of trust on top of this
search space, we are able to create a generalized approach for solving the duplication
issue. Furthermore, our provenance network concept is model-agnostic, which makes it
possible for different other solutions to solve their specialized requirements on top of our
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provenance networks. This allows us to extend the usability of our search space beyond
the duplication issue to also solve the searchability issue. Thus providing a search space
across different domains, use cases, provenance models, granularities, and storage models.
One major factor that makes all of this possible is, the fact that for utilizing our solution,
no single server has to exist since the backend of every provenance network is in the
blockchain. The blockchain is highly distributed by nature and thus a perfect choice for
supporting provenance networks.

With a scenario-based evaluation, we showed that our concept of provenance networks can
support a variety of different scenarios and most importantly allows for finding duplication
attempts within the same network. At the same time, it fosters collaboration between
different domains by allowing them to query a more complete provenance picture across
different domains. Collaboration is further supported by our model-agnostic approach
and our light backend allowing for domains to build their use case specific clients and
even works across different provenance models. Furthermore, we showed during our
evaluation, how important off-chaining is with respect to keeping the provenance system
cheap and useable. This is an aspect that many other solutions neglect by saving their
provenance directly into the chain. We also showed that even big provenance networks
can be queried rather quickly by using local nodes, which can be of huge importance for
auditors. At the same time, we built small and simple clients which allow to use and
create provenance contracts without the need for a complex setup. Finally, we discussed
non-functional properties – most prominently security properties – and showed that our
solution is arbitrarily extendable to supports complex provenance scenarios also with
respect to security properties.

6.1 Future Work
This thesis merely introduced the very basic concept of provenance networks. Now
that there exists a basic framework to work with, it would be interesting to evaluate
how different trust propagation strategies behave in combination with data provenance.
Another interesting point is how we can extend our solution to be able to link provenance
networks across different chains. Since the idea of provenance networks is in general
independent of the used chain, as long as the chain provides smart contracts. Beside
cross-chain linking, we should investigate provenance migration. This is interesting
for different use cases. One is a technical use case since the current prototype has no
evolution strategy implemented. Meaning when the backend contracts get extended with
new functionality, we should have a strategy how to link or to migrate the provenance in
the old contracts to the new provenance contracts without invalidating any of the security
assurances. Another is cross-chain migrations. The next generation of blockchains could
have even better properties as the current one and we should think of ways how we could
migrate provenance across chains without losing the security assurances. Finally, we
have to make some improvements to the current backend to be even more flexible and
customizable, which would be an ideal moment to include an evolution strategy at least
for the Ethereum-based solution.
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APPENDIX A
Evaluation Results

A.1 Results Scenario 1
Listing A.1: Scenario 1 results for finding provenance in the TU domain.

{
"search": {

"Search16": "0x330c2646ea6be38625ce3b15957738820b31370a",
"Search64": "0x7487d90e1faff5c569ae99b1453adceaabd87c8a",
"Search32": "0x1747bae0546a80818e974eb81e99c7846099dd12",
"Search128": "0x82a6f0217348ce9af9ea6d7d54aa41ddda06de3e",
"Search256": "0x239249e1bb5859cb5214555e06dfb08260ee64ae"

},
"domains": {

"TU": "0x55526b860d8fc67bef7440e236c02231acb12d90",
"Uni16": "0x75735b7a532108ea0760ba4b4841d399e16f1fd7",
"Uni32": "0x78Af41B30Bd48d94965A8fc3fA563FE2950fD638",
"Uni64": "0xfd840eca0bdf85a350f0cea0f5b5a9ecd0322793",
"Uni128": "0x9fa8d22001c79d4c0d2607c97541ef46cfc0ee15",
"Uni256": "0x188b3f7579695501dddb5e155dcae3d187e73cb7"

},
"blue_domain": {

"InfoSys": "0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e",
"DSG": "0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196",
"Proj-Cloud": "0xb54cb4313f6fa7bf51d7250209b324efe26b8984",
"InfoSys-Group0": "0x45374493b34fce298bfcd8f53074dc7798e9ed1d",
"InstX": "0x1d1d28c13a0816948dc64fa3184b845cd80aa49e",
"InstX-Group0": "0x93ba312f68a08c9d7be0ac603baf4123f6c99827",
"InstX-Group1": "0x385134ff0e51505f7f109ce170b8763c76ed845c"

},
"orange_domain": {

"Uni16-Inst0": "0x36c0322cc017dad799bbfd10968f91b1e52591b4",
"Uni16-Inst1": "0xcfcca9d7cf921787874100739be986488ce0ec9c",
"Uni16-Inst0-Group0": "0x07c431f898ec376cb51348092eda10a5f4d21159",
"Uni16-Inst0-Group1": "0xef12512047eb269fa69a8aaffe888e7ded12ea5f",
"Uni16-Inst1-Group0": "0x8358f3f2b3a975c3f772b0c5f5abd784ca1fd98f",
"Uni16-Inst1-Group1": "0x936738f2daad1ecbd823ca550429439972c128ad"

},
"green_domain": {

"Uni32-Inst0": "0xa5631e23a8215b4dedc660052146a8146cd4a55a",
"Uni32-Inst1": "0x2f53d70e1ba5cd94fa98ed97ccae3bfde8c0b4e4",
"Uni32-Inst0-Group0": "0xdc6ecb9bf091304b5dbd2e57d8e9d082a0bbeb79",
"Uni32-Inst0-Group1": "0x08604c0b0dce181fe9764d8bccb4324ad6704a23",
"Uni32-Inst0-Group2": "0xe71bdff910c73a8436704cb697be429ce2f87d3b",
"Uni32-Inst0-Group3": "0x886634923f31c128cd9084155331a70ea5eec806",
"Uni32-Inst0-Group4": "0x82babd4a986951dee21ca53c41643cbf20a33de7",
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"Uni32-Inst0-Group5": "0x329d47434a7041885a81e026165dc87b4fccb7a8",
"Uni32-Inst1-Group0": "0xfa2e2390039595fbc1cb7d9ffc51924aeac6fb04",
"Uni32-Inst1-Group1": "0x31dfd5b73628338b67fd7421a49ad8c45525d87b",
"Uni32-Inst1-Group2": "0x902dd87cdd4037b5209ad4fd4f69464fbc194d0e",
"Uni32-Inst1-Group3": "0xf91fca430f60a30bc4f4378caf925da2bef8875f",
"Uni32-Inst1-Group4": "0x9382a3f6083650ebada45292b65dce9762175caf",
"Uni32-Inst1-Group5": "0x6a24294d3279fdb0250fb06068d1869be1a27441"

},
"violet_domain": {

"Uni64-Inst0": "0x31e91fb905d8fbf32b7491c21640c57a14dc0372",
"Uni64-Inst1": "0x8ce0daf8512027337b4b895533602c658ba07e0f",
"Uni64-Inst0-Group0": "0x6aa348c583e47635672c1829098d5eeef10b692b",
"Uni64-Inst0-Group1": "0x3b6cf5ebf16dccfbc6272aad9242e9ed48dc57ae",
"Uni64-Inst0-Group2": "0x4e4fa3829cb9b08d33a194bfc5eb46c0c542b43a",
"Uni64-Inst0-Group3": "0x4f01e833272911a2b2ce8e048866169fb736a0ae",
"Uni64-Inst0-Group4": "0x9fc19ea263313dc7373107a5919831b08395151e",
"Uni64-Inst0-Group5": "0x42d32e19aecea1b8c7ba8dd6e4469f5dcbeb5ab7",
"Uni64-Inst0-Group6": "0xe5f5b23fc365aeaa3ae99d1fecda0a29b5216f68",
"Uni64-Inst0-Group7": "0xda4957e502e621630cca0ca883e26d26bc74d716",
"Uni64-Inst0-Group8": "0x06f2f06ab8ee1489277091c3f5f94920a6926ed1",
"Uni64-Inst0-Group9": "0x35e2043e609490304909D1883BAbb2a577a8313F",
"Uni64-Inst0-Group10": "0x61f5c4b8614bd892771149da2da10d911295bbb2",
"Uni64-Inst0-Group11": "0x324a039343fa5028e7aabce7abab27dbcf5c8c3c",
"Uni64-Inst0-Group12": "0x70a0e88f73f1444d7f0c7aafda53aec9ead04f48",
"Uni64-Inst0-Group13": "0xa19c556bae1298026417ca84142ba3fbff4714e3",
"Uni64-Inst1-Group0": "0xa14283052c33fe4658eff5f3e2b176daff66bb0f",
"Uni64-Inst1-Group1": "0x8ac22fee88b6c1abb6c360e38b63d3a959f2cb44",
"Uni64-Inst1-Group2": "0x43d6988b0910938c260249f383b2dd22773119cb",
"Uni64-Inst1-Group3": "0xf0f761ecdcb7faad212a11eb421572774f0f0b5c",
"Uni64-Inst1-Group4": "0x7c3ace277b70107c1947aaeee1ff40a1e7393f31",
"Uni64-Inst1-Group5": "0x847e07e202cfd278c7eed8cd51eb58df14c0cff0",
"Uni64-Inst1-Group6": "0x29413f5768f194d5a7d6680cbb44d0ff0d44230d",
"Uni64-Inst1-Group7": "0x1f6d920b5ac13b9c9f0ed57b98edda65839bb72a",
"Uni64-Inst1-Group8": "0x05ee15dacc9c55b2dbafd6b8260a867567ab85ce",
"Uni64-Inst1-Group9": "0xe44a17530dc897f713259dd35ce2d60b0e6f22fe",
"Uni64-Inst1-Group10": "0x7be66ed3dc4e0b50aad410583f6e11e23e935894",
"Uni64-Inst1-Group11": "0xa9fd8e06619c7a6bc83852ba24ff9b5f28da84ed",
"Uni64-Inst1-Group12": "0x17d825146cbb9eb895b8fb10630e30eb47626307",
"Uni64-Inst1-Group13": "0x36699f19d77d77401062982ce7bfe8ee9dc58fcb"

},
"yellow_domain": {

"Uni128-Inst0": "0x7b7fb11557807db7256c75917e60e9892e95ce2c",
"Uni128-Inst1": "0x0fd380ba625edc8b86ae09d8e8fdf50e823124ea",
"Uni128-Inst0-Group0": "0x8eade39e64cb0d1035966a2147de7971aa08571f",
"Uni128-Inst0-Group1": "0x287ce5250cda9fdb22925d97601b5b4d7b6ceecf",
"Uni128-Inst0-Group2": "0xdd59d748a33e8897aad6f7f3212a31993479ec9f",
"Uni128-Inst0-Group4": "0xafab4d841d86fd5d029ca2f3b6a41c56002d7ad4",
"Uni128-Inst0-Group3": "0x0933f168829653ed4a62c258834073c5d53ac8db",
"Uni128-Inst0-Group5": "0x495e745fb593f4501c603c2299d15b9e45287081",
"Uni128-Inst0-Group6": "0xd0aa3e92bdd4b9e1f6de13f4c4f4b7adff5f52af",
"Uni128-Inst0-Group8": "0x207d0461c60e8a4c8fb7cc7b7ed1b0623d546f97",
"Uni128-Inst0-Group7": "0x56b6cca90d73f479998707658b8dc88533835ab8",
"Uni128-Inst0-Group9": "0x2c884ccb2a021920bfeabf614fb75416d60b8b23",
"Uni128-Inst0-Group10": "0x4470351a92d89cc511447c8bf230f7315658bfba",
"Uni128-Inst0-Group11": "0x11e9970b812dae51c40b49da87d88a5a45cab922",
"Uni128-Inst0-Group12": "0x267930f5946361aaa37e885a48ce8057bde10cff",
"Uni128-Inst0-Group13": "0xdd07a0f63a3dff728846d03eb1a856e68ec1ac96",
"Uni128-Inst0-Group14": "0x6c4b79e49de3711d76e8437b81aeb4cfe39601c0",
"Uni128-Inst0-Group15": "0x86a881bc06ec6b50cae968e6090109d6b420015b",
"Uni128-Inst0-Group16": "0x406d0e1e36a93ff9bf48a8c59ea7ebae0c85b08d",
"Uni128-Inst0-Group17": "0xfe9d2bbaacd094d6bb015ac6d6e8ae334e4db002",
"Uni128-Inst0-Group18": "0x5fa9c80aed795f2ce0f3adee45fa91246675b260",
"Uni128-Inst0-Group19": "0xbbded04817d6b68b12face06be24c95e7bfd3c73",
"Uni128-Inst0-Group20": "0xa68b82ddc9fcff23ab6ed614a5618634cc55d1ca",
"Uni128-Inst0-Group21": "0xdd9edc44a6b86c358456dcf802059479cd681f9d",
"Uni128-Inst0-Group22": "0x082de57050b743c47bc18407588aa214b590f943",
"Uni128-Inst0-Group23": "0xc72e9480e074ab13f65cfbab01dc25d5bf37cf1f",
"Uni128-Inst0-Group24": "0x410fc16dca2f43682f75417b6553be8e444c603b",
"Uni128-Inst0-Group25": "0x9a70400c5b1111d5ae6b0628054ce74aade6db5c",
"Uni128-Inst0-Group27": "0x7f525c4a675b8f4fed86c29beabdce111cc67862",
"Uni128-Inst0-Group26": "0xba61bd1df7259903149ef527ab2684a1a83422e0",
"Uni128-Inst0-Group29": "0xd84e1b19889859f524bc66f0c229da6f073722c5",
"Uni128-Inst1-Group0": "0xe17bd3cbbb84703081895255b8b236a0398f6dd1",
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"Uni128-Inst0-Group28": "0x26ed854c81bd29ee8561ccced0236402dc2556a3",
"Uni128-Inst1-Group1": "0xd13fed33a1f045b84abfc6dac0c6fe6a38c0b7f6",
"Uni128-Inst1-Group2": "0xc74d7d1aa727ce06a14a7411dbfdf494eea73913",
"Uni128-Inst1-Group3": "0x13bf7a6c0118d7876e02f2c4bb53a73908d1aa67",
"Uni128-Inst1-Group4": "0xf679f574dd0152b549012f9c6b0c3d2774f8ddb8",
"Uni128-Inst1-Group5": "0x8e0ac3fd05ea5f15e79872e94e5f103a6395e796",
"Uni128-Inst1-Group6": "0x9aa390c2d99b1a6ee5f2960953a0ff43413820d0",
"Uni128-Inst1-Group7": "0x683209f17595e0ca9c7187d5cea059a303e127bc",
"Uni128-Inst1-Group8": "0xb5655b305c3ea686cfb858a2b9e91e753e0a158c",
"Uni128-Inst1-Group9": "0x06ed06a891f016a59e70dc5e80c6956f07697b56",
"Uni128-Inst1-Group10": "0x3ffbec35e78edc69cbc0f4f495d9f98d01dab896",
"Uni128-Inst1-Group11": "0x60311e2536bcd519ff8a2a41096700e234d4ea73",
"Uni128-Inst1-Group13": "0x2703ceea40eac29ad79752dcd349b89e7a0508e8",
"Uni128-Inst1-Group12": "0x963afa09720ff83de7f37d671f45bb38a5a8c7cd",
"Uni128-Inst1-Group14": "0x0373ed67ef4900a8649667d3c7aee23990835f1a",
"Uni128-Inst1-Group16": "0x11454be244ef25bf1827925c825fbe682e999e13",
"Uni128-Inst1-Group15": "0xd477ec19000f07dd440de69c6a41db5f967fb91f",
"Uni128-Inst1-Group17": "0x9e260be7b0e33bd4f785aff653754e93b23ccee6",
"Uni128-Inst1-Group18": "0x8ea8859836badf7181f74e5457142d6e812050d9",
"Uni128-Inst1-Group19": "0x1bab39f4ca6df73d1f70cefe5c23dee16505da4e",
"Uni128-Inst1-Group20": "0xab8731d18a939113dc985ad59fa3422e4b3de91b",
"Uni128-Inst1-Group21": "0xf9d56c665d4932a9e6eb114de239214bd89db504",
"Uni128-Inst1-Group22": "0xa662eb5a762e1688acc4f047d90e4b8e34ae15f4",
"Uni128-Inst1-Group23": "0x70dbac85f49091837c65fd8bc7de291e1556b17c",
"Uni128-Inst1-Group24": "0x01f3db8abcf093f00330b51dcc30a0e6fc4262fa",
"Uni128-Inst1-Group25": "0x13f338a5eafcea936458d0bc68607a88c16e53a4",
"Uni128-Inst1-Group26": "0xf2b4ad25aa8ccbfe4c5bda8f2ace10c57131316e",
"Uni128-Inst1-Group27": "0x933ca788bc21644d073c7f77199903d6744d044e",
"Uni128-Inst1-Group28": "0xc63348398f5f9283abd1b635a853313fa106f71b",
"Uni128-Inst1-Group29": "0xa828f7d62fed20ffad2672bf1a0e9a9aee7d9ca4"

},
"red_domain": {

"Uni256-Inst0": "0x34cec3eca25b6f4d13c964684f2d9c87de37fae1",
"Uni256-Inst1": "0x4E2002A194073147f7ee1024B31b857BCDDA3Db8",
"Uni256-Inst0-Group0": "0x01ed11f0224eb67151e6cb3036e30cf317269342",
"Uni256-Inst0-Group1": "0x0300d2d88dff0e5803284e85beed5a2c84582719",
"Uni256-Inst0-Group2": "0x9e15460a7b7e7fac9f5b3e55ea0639a6afcb9d69",
"Uni256-Inst0-Group3": "0x66eb7e1f29e65ab8ebf3ba8187bec352e798a280",
"Uni256-Inst0-Group5": "0x596fbd88c3617321dddf541f8a6b51ba6836888c",
"Uni256-Inst0-Group6": "0x6d419eb35e7e7dbbe7b6b1108f8347fbdea15592",
"Uni256-Inst0-Group7": "0xf24dae763dfa882ce87567e714d382fcc585bae2",
"Uni256-Inst0-Group8": "0x54f130c49d2e2fb68f518c0b2341f7e6e4feaded",
"Uni256-Inst0-Group4": "0x4d5053d72f19d7b22b61283edcdd0e643b9998ea",
"Uni256-Inst0-Group9": "0x960b739d013b504675e2ab327a628444b4602f48",
"Uni256-Inst0-Group10": "0xff1f0ecc46b3145fcbfc004ba0384a381c1fcd09",
"Uni256-Inst0-Group11": "0x2f64c6e356771800de92d7edfa1c4ef21bf4db30",
"Uni256-Inst0-Group12": "0xf1e070e473c01b8e4259d770c12ab1844669439f",
"Uni256-Inst0-Group13": "0x30c553115ae4bb2cd699e4717c90661262acc04f",
"Uni256-Inst0-Group14": "0xdf229f4e358869baaedcd158fa1c2fe74fa531d0",
"Uni256-Inst0-Group15": "0xbe485620d444bfbae9f7569be17db39055817b19",
"Uni256-Inst0-Group16": "0x2bbbc043322f1d29a8d257a2d28f26723efa9797",
"Uni256-Inst0-Group17": "0xcf36238c22327c67ee0aab0840dbb242074264b8",
"Uni256-Inst0-Group18": "0xdbc4140e67ff116e434cc437798595a77fd07264",
"Uni256-Inst0-Group19": "0x1cd821635b5df9064f15b6508850ea0820a807f4",
"Uni256-Inst0-Group20": "0xb78b0618572b5cc2bd90bb9c7a33b894d6022ccc",
"Uni256-Inst0-Group21": "0x05e4625fce32dc28b1b00662035a65dc429b1e68",
"Uni256-Inst0-Group22": "0x25a08c5193a3de0e7cc135cd44b46d505a5fdbbc",
"Uni256-Inst0-Group23": "0x137a3bb878798004dc73a945ffa5ebf199f473f9",
"Uni256-Inst0-Group24": "0x189fc3fac39640fa18e5624a18786a726c7a515a",
"Uni256-Inst0-Group25": "0x9f7bada170a9a9150a276c670d96eab64ab72fd2",
"Uni256-Inst0-Group26": "0x078e3b56a203b1875cb695ed951776abf3667b16",
"Uni256-Inst0-Group27": "0xeb40269fafe526cf41ff7365a676038809eda85d",
"Uni256-Inst0-Group28": "0xe18d87f8ade2e6e1c64a2a74371a89037ae28b00",
"Uni256-Inst0-Group30": "0x633b6d4f49eea3d44c686bff6b83e63d91f65856",
"Uni256-Inst0-Group31": "0xd43efe6c69f7c3fbe905b360a3a3a35963c875ca",
"Uni256-Inst0-Group29": "0xd77fc789b61e7d33bc4259ab37944ac924b31e64",
"Uni256-Inst0-Group32": "0x32a66d122d17fd77ac6e7e4052069afa2d5094b6",
"Uni256-Inst0-Group33": "0xc57383ee38dda7b964875e81f54a0a79234c471f",
"Uni256-Inst0-Group34": "0xb2e994ebf8dfa765435899586d5423d505ab3e71",
"Uni256-Inst0-Group35": "0x33e8b1a4a1881d3f83da59b72516df4344b2771a",
"Uni256-Inst0-Group37": "0x0d870eb48ad25d963674086e9e5d5c7c8bc8eb4d",
"Uni256-Inst0-Group36": "0x1f7bfc57418bf8685bc7f8de308d9ac6b04ad5e4",
"Uni256-Inst0-Group38": "0x771e0f1e95eb45fc55199476d77b5945c2b0932b",
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"Uni256-Inst0-Group39": "0xe459af55ed5b40f17ab79cd75e448c942ba8fc22",
"Uni256-Inst0-Group40": "0x9b59abe3e4f34348e428223b2455844c6f2531a9",
"Uni256-Inst0-Group42": "0xf35a3cbfc3fbc23c3aff187f6eb5f95b3623e85b",
"Uni256-Inst0-Group43": "0x160eff84290bb657374a707e4c14f1978c8ef924",
"Uni256-Inst0-Group44": "0x62f7ca0f59c97d22de6454f85deda598c7a3b415",
"Uni256-Inst0-Group45": "0x70f8c52909541485f378fc058af9fe498c6ca757",
"Uni256-Inst0-Group41": "0x367a0c29587adb9a8067daf4959325fb956a04eb",
"Uni256-Inst0-Group46": "0xb8852c4ee359102ec10ecbcaf76727b5796d227e",
"Uni256-Inst0-Group47": "0xdd92a4452fe51e0bd2d1ddeb2c80fc9ef90d60a7",
"Uni256-Inst0-Group48": "0xc22bd979d8e01230a48f6bf5c8d2182ca2183449",
"Uni256-Inst0-Group49": "0x9b7cf85ee7d5d488d1f33ca74f7571c286500cd3",
"Uni256-Inst0-Group51": "0xd40218d98974e24720dcb84c0988d4a288324808",
"Uni256-Inst0-Group52": "0x7265e9e196f39f8a3ad31b75dbf2dbc4fd7d4564",
"Uni256-Inst0-Group53": "0x082e0e4764568261a41dbaae46310f8d371d8adc",
"Uni256-Inst0-Group54": "0x1825eb8690c810281e0e435e6b69ceb794b70e3c",
"Uni256-Inst0-Group55": "0x354e51493e4adb69d837bf050cdc5dc1f88e2ef7",
"Uni256-Inst0-Group50": "0xe6afe932bfea01f7e48a87a8230f17327af6fcad",
"Uni256-Inst0-Group56": "0x071868db6313a955e284665c1fe7cca48843af76",
"Uni256-Inst0-Group57": "0xdb351c23fc091e98eef75a186e959c12ad8b6478",
"Uni256-Inst0-Group58": "0x56a0d557822946a3583d4fae54f357e6cdb44197",
"Uni256-Inst0-Group59": "0x10ef26128a08a707b0f3b1b7166d4d3fcac29249",
"Uni256-Inst0-Group60": "0x6df0e59d5eefd7093cb9a2da2889417808773698",
"Uni256-Inst0-Group61": "0xb6a78b82f91a784a18c91e7ef07e3dc672712e4a",
"Uni256-Inst1-Group0": "0xacd6600f0cebccbbf3106eae87542f515c7b9133",
"Uni256-Inst1-Group1": "0x549c80201869aaff1982bb9a2e7fb2274c3174ab",
"Uni256-Inst1-Group2": "0xcc2f8e363a4ff31681a0b0075fc524e73aae14b6",
"Uni256-Inst1-Group3": "0x5ea9a3ced2f1a94f73cdcdf37d49ba1fd576847c",
"Uni256-Inst1-Group4": "0x3884614eff95d621f457906d2004e5ae8545c7f3",
"Uni256-Inst1-Group5": "0x188d2a2516cff3b4f63f418fcd963ab37d3981c8",
"Uni256-Inst1-Group6": "0x585ce873ee5b4466fcb6e2e190b1a55847a87d36",
"Uni256-Inst1-Group7": "0x76a91e8063b886f61af98c339b62347bcb4f2428",
"Uni256-Inst1-Group8": "0xf38ffb54f6b9169560196aac653ca13cf2fcc4b8",
"Uni256-Inst1-Group9": "0x4ed6e5127e2c102a363b4bce8682cc0991fef76a",
"Uni256-Inst1-Group10": "0xaa0e454897cabb67c44b4a7139f9615b2c58b7b1",
"Uni256-Inst1-Group11": "0x63564df7cad0a26afae866d836b34ac5e77dde0d",
"Uni256-Inst1-Group12": "0x1c75c5c6b3cf86577a8d96c82053390bb8a5c3fa",
"Uni256-Inst1-Group13": "0xe4fde86d7cf326f298defcb427fd688e9976d612",
"Uni256-Inst1-Group14": "0xdb899f467de80b77434f23981ceed5f4836bd55f",
"Uni256-Inst1-Group15": "0x647f2809223397490cbb735bf2b866766cc02641",
"Uni256-Inst1-Group16": "0x381665c716e97899e91915c1d3edeae5ffe2b7f7",
"Uni256-Inst1-Group17": "0xfe1102b243d30dd61e4373444f9c768a475150e9",
"Uni256-Inst1-Group18": "0x772b1ee841875be672a63f2c9e971e49e622ddd1",
"Uni256-Inst1-Group19": "0xf24a6f589e03f28a542d9dfccb88d65fae629198",
"Uni256-Inst1-Group20": "0x40b0383381ea9c7afbe148b59e96a51b9792408f",
"Uni256-Inst1-Group21": "0x3722f18b1df20d6975c88bbfeded4d89b4c04afc",
"Uni256-Inst1-Group22": "0x8f2a7e64420b9c6b15c5e7a037e88dfbacc9b3b8",
"Uni256-Inst1-Group23": "0x861cb1df3444db34d880d3d75d5cd2a99888d949",
"Uni256-Inst1-Group24": "0x9fbc46f6020478bdb40687234781391c7bdc6c04",
"Uni256-Inst1-Group25": "0x970886684e9fc6de2da2b17b9dc70c3e12b7e75b",
"Uni256-Inst1-Group26": "0xd7a7e46f62eb31f1c9199bdd5036440e82a769ac",
"Uni256-Inst1-Group27": "0x3248b93e9a628baad3f298b97f94bed77e1c46f1",
"Uni256-Inst1-Group28": "0xfb7c344fb259e400de1dad9973ef40cb314d88b4",
"Uni256-Inst1-Group29": "0xd9e2ad281ea0a3f6f3ed2a7987400035c719b321",
"Uni256-Inst1-Group30": "0x4b49ddaf97a86ce74f5cfbcab8ce1c01b8c9f318",
"Uni256-Inst1-Group31": "0xbad998eaa527fbce4cb79f0eff6eb5f5833f2032",
"Uni256-Inst1-Group32": "0x3d1fe3afe0b87be611f89b097d722a44eabfcbc7",
"Uni256-Inst1-Group33": "0xad21f674f9f4b600116a02bdf2cdd152b13bb378",
"Uni256-Inst1-Group34": "0xa41ce67044e1f4ceb4b5d7d4e03b53ffcd461d4a",
"Uni256-Inst1-Group35": "0xb3648dae389cc3cb2581b606bea4433ea1ab5aff",
"Uni256-Inst1-Group37": "0x352a62a0280fa90adc9a7cfc03bb269d9e90bce8",
"Uni256-Inst1-Group36": "0x3b551af684f2c0162626126b54ce55daf6ec60d9",
"Uni256-Inst1-Group38": "0x5d853391d607139597b1950921ddf0046f49eef3",
"Uni256-Inst1-Group39": "0xae8d32bf9e248bc18d5c339a7eb97a1cf726d9ab",
"Uni256-Inst1-Group40": "0x344ef1c5e75c3431a96804a79cc30c18661a283b",
"Uni256-Inst1-Group41": "0x62ce4cc95a76c1540a2afd81e066fe34b3038036",
"Uni256-Inst1-Group42": "0xf281d5de991bd993046f6583d0bcd272e25f29e6",
"Uni256-Inst1-Group43": "0x4b31d5c541f3c058a282b096e7ddef729edaf9d5",
"Uni256-Inst1-Group44": "0xf950503b3616bb1be9b17232e652bdda431ef0a3",
"Uni256-Inst1-Group45": "0xD3E0d52c33E1d58b5090cdC9be3Df3a67F42C2d9",
"Uni256-Inst1-Group46": "0xef7445143555c89c320ad536e75e8c89c8a51bc8",
"Uni256-Inst1-Group47": "0x6f0ac011b89d16fe59a8246dc43ca385d5e197c4",
"Uni256-Inst1-Group48": "0x7dce6107ee23f2f5535b9e87cc61fe454a8d9287",
"Uni256-Inst1-Group49": "0xfb06490ca2855ef0adb9c89b04c73e066f6ba5bf",
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"Uni256-Inst1-Group50": "0x734e6d82680df7186030df23403f4d100bebc29f",
"Uni256-Inst1-Group51": "0x03a62e0c246421ef1b6c998bc62885a2478aa72a",
"Uni256-Inst1-Group52": "0xf999c4c3773a7d2b3f359cda6314f96925d77c91",
"Uni256-Inst1-Group53": "0xc504adf1e7e27823c7a4259c511ca06215f2b834",
"Uni256-Inst1-Group54": "0x73616c014343ef8a4677058dbda259cda2647f2b",
"Uni256-Inst1-Group55": "0x3f41d9c7bc7df615ab9645d3ccf90aeeb93a1bde",
"Uni256-Inst1-Group56": "0xc1df435825853e66c5e1ab66f25ae32bfb26f9a1",
"Uni256-Inst1-Group57": "0xe1099153f18baea6a9b8bcc2a2e2f82736a115d2",
"Uni256-Inst1-Group58": "0x3e9290692dbbf7377b261eb30f275c814ee8b96e",
"Uni256-Inst1-Group59": "0xc6e060ac7167082b91734e1a493681a4a9d23153",
"Uni256-Inst1-Group60": "0x4d66a4b14f05c5836b10a4b2ca9115f1aefe1b8e",
"Uni256-Inst1-Group61": "0x7cffb51e4f6205b9980354b6ae76a6bb079af0d7"

}
}

A.2 Results Scenario 2
Listing A.2: Scenario 2 results for cooperating domains.

{
"request": {

"url": "http://localhost:3001/contracts/0x55526b860d8fc67bef7440e236c02231acb12d90/search",
"body": {

"target": "http://thesis.eval/scenario1",
"links": [

"trusted"
]

}
},
"results": {

"count": 1,
"time": 1350,
"list": {

"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud"
}

},
"searched": {

"count": 8,
"list": {

"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud"

}
}

}

A.3 Results Scenario 3
Listing A.3: Scenario 3 results for malicious provenance in TU domain.

{
"request": {

"url": "http://localhost:3001/contracts/0x55526b860d8fc67bef7440e236c02231acb12d90/search",
"body": {

"target": "http://thesis.eval/scenario2",
"links": [

"trusted",
"known"

]
}

},
"results": {

"count": 2,
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"time": 757,
"list": {

"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud"

}
},
"searched": {

"count": 15,
"list": {

"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0x75735b7a532108ea0760ba4b4841d399e16f1fd7": "Uni16",
"0x36c0322cc017dad799bbfd10968f91b1e52591b4": "Uni16-Inst0",
"0xef12512047eb269fa69a8aaffe888e7ded12ea5f": "Uni16-Inst0-Group1",
"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0",
"0xcfcca9d7cf921787874100739be986488ce0ec9c": "Uni16-Inst1",
"0x936738f2daad1ecbd823ca550429439972c128ad": "Uni16-Inst1-Group1",
"0x8358f3f2b3a975c3f772b0c5f5abd784ca1fd98f": "Uni16-Inst1-Group0",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud"

}
}

}

A.4 Results Scenario 4

A.4.1 Query 1
Listing A.4: Scenario 4 results for TU domain.

{
"request": {

"url": "http://localhost:3001/contracts/0x55526b860d8fc67bef7440e236c02231acb12d90/search",
"body": {

"target": "http://thesis.eval/scenario3",
"links": [

"trusted"
]

}
},
"results": {

"count": 2,
"time": 904,
"list": {

"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0"

}
},
"searched": {

"count": 8,
"list": {

"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1"

}
}

}
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A.4.2 Query 2

Listing A.5: Scenario 4 results for Uni16 domain without propagating trust from TU
domain.
{

"request": {
"url": "http://localhost:3001/contracts/0x55526b860d8fc67bef7440e236c02231acb12d90/search",
"body": {

"target": "http://thesis.eval/scenario4",
"links": [

"trusted"
]

}
},
"results": {

"count": 1,
"time": 672,
"list": {

"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG"
}

},
"searched": {

"count": 8,
"list": {

"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0"

}
}

}

A.4.3 Query 3

Listing A.6: Scenario 4 results for Uni16 domain with propagated trust from TU domain.
{

"request": {
"url": "http://localhost:3001/contracts/0x75735b7a532108ea0760ba4b4841d399e16f1fd7/search",
"body": {

"target": "http://thesis.eval/scenario4",
"links": [

"trusted"
]

}
},
"results": {

"count": 1,
"time": 1280,
"list": {

"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0"
}

},
"searched": {

"count": 7,
"list": {

"0x75735b7a532108ea0760ba4b4841d399e16f1fd7": "Uni16",
"0x36c0322cc017dad799bbfd10968f91b1e52591b4": "Uni16-Inst0",
"0xef12512047eb269fa69a8aaffe888e7ded12ea5f": "Uni16-Inst0-Group1",
"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0",
"0xcfcca9d7cf921787874100739be986488ce0ec9c": "Uni16-Inst1",
"0x936738f2daad1ecbd823ca550429439972c128ad": "Uni16-Inst1-Group1",
"0x8358f3f2b3a975c3f772b0c5f5abd784ca1fd98f": "Uni16-Inst1-Group0"

}
}
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}

A.5 Results Scenario 5

A.5.1 Query 1

Listing A.7: Scenario 5 results for TU domain.
{

"request": {
"url": "http://localhost:3001/contracts/0x75735b7a532108ea0760ba4b4841d399e16f1fd7/search",
"body": {

"target": "http://thesis.eval/scenario4",
"links": [

"trusted",
"known"

]
}

},
"results": {

"count": 2,
"time": 4114,
"list": {

"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0"

}
},
"searched": {

"count": 15,
"list": {

"0x75735b7a532108ea0760ba4b4841d399e16f1fd7": "Uni16",
"0xcfcca9d7cf921787874100739be986488ce0ec9c": "Uni16-Inst1",
"0x936738f2daad1ecbd823ca550429439972c128ad": "Uni16-Inst1-Group1",
"0x8358f3f2b3a975c3f772b0c5f5abd784ca1fd98f": "Uni16-Inst1-Group0",
"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x36c0322cc017dad799bbfd10968f91b1e52591b4": "Uni16-Inst0",
"0xef12512047eb269fa69a8aaffe888e7ded12ea5f": "Uni16-Inst0-Group1",
"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0"

}
}

}

A.5.2 Query 2

Listing A.8: Scenario 5 results for fake domain without propagation of trust by TU main
contract.
{

"request": {
"url": "http://localhost:3001/contracts/0x55526b860d8fc67bef7440e236c02231acb12d90/search",
"body": {

"target": "http://thesis.eval/scenario5",
"links": [

"trusted"
]

}
},
"results": {

"count": 1,
"time": 728,
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"list": {
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG"

}
},
"searched": {

"count": 8,
"list": {

"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud"

}
}

}

A.5.3 Query 3

Listing A.9: Scenario 5 results when scanning entire network.
{

"request": {
"url": "http://localhost:3001/contracts/0x78Af41B30Bd48d94965A8fc3fA563FE2950fD638/search",
"body": {

"target": "http://thesis.eval/scenario5",
"links": [

"trusted"
]

}
},
"results": {

"count": 1,
"time": 2127,
"list": {

"0xdc6ecb9bf091304b5dbd2e57d8e9d082a0bbeb79": "Uni32-Inst0-Group0"
}

},
"searched": {

"count": 15,
"list": {

"0x78af41b30bd48d94965a8fc3fa563fe2950fd638": "Uni32",
"0x2f53d70e1ba5cd94fa98ed97ccae3bfde8c0b4e4": "Uni32-Inst1",
"0x31dfd5b73628338b67fd7421a49ad8c45525d87b": "Uni32-Inst1-Group1",
"0x902dd87cdd4037b5209ad4fd4f69464fbc194d0e": "Uni32-Inst1-Group2",
"0xf91fca430f60a30bc4f4378caf925da2bef8875f": "Uni32-Inst1-Group3",
"0xfa2e2390039595fbc1cb7d9ffc51924aeac6fb04": "Uni32-Inst1-Group0",
"0x6a24294d3279fdb0250fb06068d1869be1a27441": "Uni32-Inst1-Group5",
"0x9382a3f6083650ebada45292b65dce9762175caf": "Uni32-Inst1-Group4",
"0xa5631e23a8215b4dedc660052146a8146cd4a55a": "Uni32-Inst0",
"0x82babd4a986951dee21ca53c41643cbf20a33de7": "Uni32-Inst0-Group4",
"0xe71bdff910c73a8436704cb697be429ce2f87d3b": "Uni32-Inst0-Group2",
"0x886634923f31c128cd9084155331a70ea5eec806": "Uni32-Inst0-Group3",
"0x329d47434a7041885a81e026165dc87b4fccb7a8": "Uni32-Inst0-Group5",
"0x08604c0b0dce181fe9764d8bccb4324ad6704a23": "Uni32-Inst0-Group1",
"0xdc6ecb9bf091304b5dbd2e57d8e9d082a0bbeb79": "Uni32-Inst0-Group0"

}
}

}
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A.6 Provenance Network

Listing A.10: Deployed contracts on test network Ropsten.
{

"request": {
"url": "http://localhost:3001/contracts/0x78Af41B30Bd48d94965A8fc3fA563FE2950fD638/search",
"body": {

"target": "http://thesis.eval/scenario5",
"links": [

"trusted",
"linkback"

]
}

},
"results": {

"count": 2,
"time": 9921,
"list": {

"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xdc6ecb9bf091304b5dbd2e57d8e9d082a0bbeb79": "Uni32-Inst0-Group0"

}
},
"searched": {

"count": 256,
"list": {

"0x78af41b30bd48d94965a8fc3fa563fe2950fd638": "Uni32",
"0x1747bae0546a80818e974eb81e99c7846099dd12": "Search32",
"0x330c2646ea6be38625ce3b15957738820b31370a": "Search16",
"0x55526b860d8fc67bef7440e236c02231acb12d90": "TU",
"0x75735b7a532108ea0760ba4b4841d399e16f1fd7": "Uni16",
"0x36c0322cc017dad799bbfd10968f91b1e52591b4": "Uni16-Inst0",
"0x07c431f898ec376cb51348092eda10a5f4d21159": "Uni16-Inst0-Group0",
"0xef12512047eb269fa69a8aaffe888e7ded12ea5f": "Uni16-Inst0-Group1",
"0xcfcca9d7cf921787874100739be986488ce0ec9c": "Uni16-Inst1",
"0x936738f2daad1ecbd823ca550429439972c128ad": "Uni16-Inst1-Group1",
"0x8358f3f2b3a975c3f772b0c5f5abd784ca1fd98f": "Uni16-Inst1-Group0",
"0xcf9efa13aa7b5600fe263676bf7d6d19e7bda56e": "InfoSys",
"0x45374493b34fce298bfcd8f53074dc7798e9ed1d": "InfoSys-Group0",
"0xb0ab80a55113eeb9c5ee65fb332ed8b57c191196": "DSG",
"0xb54cb4313f6fa7bf51d7250209b324efe26b8984": "Proj-Cloud",
"0x1d1d28c13a0816948dc64fa3184b845cd80aa49e": "InstX",
"0x385134ff0e51505f7f109ce170b8763c76ed845c": "InstX-Group1",
"0x93ba312f68a08c9d7be0ac603baf4123f6c99827": "InstX-Group0",
"0x7487d90e1faff5c569ae99b1453adceaabd87c8a": "Search64",
"0xfd840eca0bdf85a350f0cea0f5b5a9ecd0322793": "Uni64",
"0x31e91fb905d8fbf32b7491c21640c57a14dc0372": "Uni64-Inst0",
"0x70a0e88f73f1444d7f0c7aafda53aec9ead04f48": "Uni64-Inst0-Group12",
"0x35e2043e609490304909d1883babb2a577a8313f": "Uni64-Inst0-Group9",
"0x3b6cf5ebf16dccfbc6272aad9242e9ed48dc57ae": "Uni64-Inst0-Group1",
"0xa19c556bae1298026417ca84142ba3fbff4714e3": "Uni64-Inst0-Group13",
"0x06f2f06ab8ee1489277091c3f5f94920a6926ed1": "Uni64-Inst0-Group8",
"0xe5f5b23fc365aeaa3ae99d1fecda0a29b5216f68": "Uni64-Inst0-Group6",
"0x9fc19ea263313dc7373107a5919831b08395151e": "Uni64-Inst0-Group4",
"0x6aa348c583e47635672c1829098d5eeef10b692b": "Uni64-Inst0-Group0",
"0x324a039343fa5028e7aabce7abab27dbcf5c8c3c": "Uni64-Inst0-Group11",
"0x4f01e833272911a2b2ce8e048866169fb736a0ae": "Uni64-Inst0-Group3",
"0x61f5c4b8614bd892771149da2da10d911295bbb2": "Uni64-Inst0-Group10",
"0xda4957e502e621630cca0ca883e26d26bc74d716": "Uni64-Inst0-Group7",
"0x4e4fa3829cb9b08d33a194bfc5eb46c0c542b43a": "Uni64-Inst0-Group2",
"0x42d32e19aecea1b8c7ba8dd6e4469f5dcbeb5ab7": "Uni64-Inst0-Group5",
"0x8ce0daf8512027337b4b895533602c658ba07e0f": "Uni64-Inst1",
"0x8ac22fee88b6c1abb6c360e38b63d3a959f2cb44": "Uni64-Inst1-Group1",
"0xf0f761ecdcb7faad212a11eb421572774f0f0b5c": "Uni64-Inst1-Group3",
"0xa14283052c33fe4658eff5f3e2b176daff66bb0f": "Uni64-Inst1-Group0",
"0x43d6988b0910938c260249f383b2dd22773119cb": "Uni64-Inst1-Group2",
"0x36699f19d77d77401062982ce7bfe8ee9dc58fcb": "Uni64-Inst1-Group13",
"0x7be66ed3dc4e0b50aad410583f6e11e23e935894": "Uni64-Inst1-Group10",
"0xe44a17530dc897f713259dd35ce2d60b0e6f22fe": "Uni64-Inst1-Group9",
"0x29413f5768f194d5a7d6680cbb44d0ff0d44230d": "Uni64-Inst1-Group6",
"0x17d825146cbb9eb895b8fb10630e30eb47626307": "Uni64-Inst1-Group12",
"0x05ee15dacc9c55b2dbafd6b8260a867567ab85ce": "Uni64-Inst1-Group8",
"0x1f6d920b5ac13b9c9f0ed57b98edda65839bb72a": "Uni64-Inst1-Group7",
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"0x7c3ace277b70107c1947aaeee1ff40a1e7393f31": "Uni64-Inst1-Group4",
"0xa9fd8e06619c7a6bc83852ba24ff9b5f28da84ed": "Uni64-Inst1-Group11",
"0x847e07e202cfd278c7eed8cd51eb58df14c0cff0": "Uni64-Inst1-Group5",
"0x82a6f0217348ce9af9ea6d7d54aa41ddda06de3e": "Search128",
"0x9fa8d22001c79d4c0d2607c97541ef46cfc0ee15": "Uni128",
"0x7b7fb11557807db7256c75917e60e9892e95ce2c": "Uni128-Inst0",
"0xdd9edc44a6b86c358456dcf802059479cd681f9d": "Uni128-Inst0-Group21",
"0x495e745fb593f4501c603c2299d15b9e45287081": "Uni128-Inst0-Group5",
"0xa68b82ddc9fcff23ab6ed614a5618634cc55d1ca": "Uni128-Inst0-Group20",
"0x7f525c4a675b8f4fed86c29beabdce111cc67862": "Uni128-Inst0-Group27",
"0xafab4d841d86fd5d029ca2f3b6a41c56002d7ad4": "Uni128-Inst0-Group4",
"0xba61bd1df7259903149ef527ab2684a1a83422e0": "Uni128-Inst0-Group26",
"0x9a70400c5b1111d5ae6b0628054ce74aade6db5c": "Uni128-Inst0-Group25",
"0x86a881bc06ec6b50cae968e6090109d6b420015b": "Uni128-Inst0-Group15",
"0x8eade39e64cb0d1035966a2147de7971aa08571f": "Uni128-Inst0-Group0",
"0x267930f5946361aaa37e885a48ce8057bde10cff": "Uni128-Inst0-Group12",
"0x11e9970b812dae51c40b49da87d88a5a45cab922": "Uni128-Inst0-Group11",
"0x287ce5250cda9fdb22925d97601b5b4d7b6ceecf": "Uni128-Inst0-Group1",
"0xd0aa3e92bdd4b9e1f6de13f4c4f4b7adff5f52af": "Uni128-Inst0-Group6",
"0xc72e9480e074ab13f65cfbab01dc25d5bf37cf1f": "Uni128-Inst0-Group23",
"0xd84e1b19889859f524bc66f0c229da6f073722c5": "Uni128-Inst0-Group29",
"0xbbded04817d6b68b12face06be24c95e7bfd3c73": "Uni128-Inst0-Group19",
"0x082de57050b743c47bc18407588aa214b590f943": "Uni128-Inst0-Group22",
"0x5fa9c80aed795f2ce0f3adee45fa91246675b260": "Uni128-Inst0-Group18",
"0x406d0e1e36a93ff9bf48a8c59ea7ebae0c85b08d": "Uni128-Inst0-Group16",
"0xfe9d2bbaacd094d6bb015ac6d6e8ae334e4db002": "Uni128-Inst0-Group17",
"0xdd59d748a33e8897aad6f7f3212a31993479ec9f": "Uni128-Inst0-Group2",
"0x2c884ccb2a021920bfeabf614fb75416d60b8b23": "Uni128-Inst0-Group9",
"0x56b6cca90d73f479998707658b8dc88533835ab8": "Uni128-Inst0-Group7",
"0x4470351a92d89cc511447c8bf230f7315658bfba": "Uni128-Inst0-Group10",
"0x207d0461c60e8a4c8fb7cc7b7ed1b0623d546f97": "Uni128-Inst0-Group8",
"0x26ed854c81bd29ee8561ccced0236402dc2556a3": "Uni128-Inst0-Group28",
"0x0933f168829653ed4a62c258834073c5d53ac8db": "Uni128-Inst0-Group3",
"0x6c4b79e49de3711d76e8437b81aeb4cfe39601c0": "Uni128-Inst0-Group14",
"0x410fc16dca2f43682f75417b6553be8e444c603b": "Uni128-Inst0-Group24",
"0xdd07a0f63a3dff728846d03eb1a856e68ec1ac96": "Uni128-Inst0-Group13",
"0x0fd380ba625edc8b86ae09d8e8fdf50e823124ea": "Uni128-Inst1",
"0xc63348398f5f9283abd1b635a853313fa106f71b": "Uni128-Inst1-Group28",
"0x11454be244ef25bf1827925c825fbe682e999e13": "Uni128-Inst1-Group16",
"0xab8731d18a939113dc985ad59fa3422e4b3de91b": "Uni128-Inst1-Group20",
"0xa828f7d62fed20ffad2672bf1a0e9a9aee7d9ca4": "Uni128-Inst1-Group29",
"0x60311e2536bcd519ff8a2a41096700e234d4ea73": "Uni128-Inst1-Group11",
"0x683209f17595e0ca9c7187d5cea059a303e127bc": "Uni128-Inst1-Group7",
"0x70dbac85f49091837c65fd8bc7de291e1556b17c": "Uni128-Inst1-Group23",
"0x13bf7a6c0118d7876e02f2c4bb53a73908d1aa67": "Uni128-Inst1-Group3",
"0x9e260be7b0e33bd4f785aff653754e93b23ccee6": "Uni128-Inst1-Group17",
"0xe17bd3cbbb84703081895255b8b236a0398f6dd1": "Uni128-Inst1-Group0",
"0x963afa09720ff83de7f37d671f45bb38a5a8c7cd": "Uni128-Inst1-Group12",
"0xd477ec19000f07dd440de69c6a41db5f967fb91f": "Uni128-Inst1-Group15",
"0x1bab39f4ca6df73d1f70cefe5c23dee16505da4e": "Uni128-Inst1-Group19",
"0x2703ceea40eac29ad79752dcd349b89e7a0508e8": "Uni128-Inst1-Group13",
"0x06ed06a891f016a59e70dc5e80c6956f07697b56": "Uni128-Inst1-Group9",
"0x8ea8859836badf7181f74e5457142d6e812050d9": "Uni128-Inst1-Group18",
"0xf679f574dd0152b549012f9c6b0c3d2774f8ddb8": "Uni128-Inst1-Group4",
"0xd13fed33a1f045b84abfc6dac0c6fe6a38c0b7f6": "Uni128-Inst1-Group1",
"0xa662eb5a762e1688acc4f047d90e4b8e34ae15f4": "Uni128-Inst1-Group22",
"0xf9d56c665d4932a9e6eb114de239214bd89db504": "Uni128-Inst1-Group21",
"0xf2b4ad25aa8ccbfe4c5bda8f2ace10c57131316e": "Uni128-Inst1-Group26",
"0x933ca788bc21644d073c7f77199903d6744d044e": "Uni128-Inst1-Group27",
"0x3ffbec35e78edc69cbc0f4f495d9f98d01dab896": "Uni128-Inst1-Group10",
"0x13f338a5eafcea936458d0bc68607a88c16e53a4": "Uni128-Inst1-Group25",
"0x0373ed67ef4900a8649667d3c7aee23990835f1a": "Uni128-Inst1-Group14",
"0xb5655b305c3ea686cfb858a2b9e91e753e0a158c": "Uni128-Inst1-Group8",
"0x01f3db8abcf093f00330b51dcc30a0e6fc4262fa": "Uni128-Inst1-Group24",
"0x9aa390c2d99b1a6ee5f2960953a0ff43413820d0": "Uni128-Inst1-Group6",
"0xc74d7d1aa727ce06a14a7411dbfdf494eea73913": "Uni128-Inst1-Group2",
"0x8e0ac3fd05ea5f15e79872e94e5f103a6395e796": "Uni128-Inst1-Group5",
"0x239249e1bb5859cb5214555e06dfb08260ee64ae": "Search256",
"0x188b3f7579695501dddb5e155dcae3d187e73cb7": "Uni256",
"0x4e2002a194073147f7ee1024b31b857bcdda3db8": "Uni256-Inst1",
"0x772b1ee841875be672a63f2c9e971e49e622ddd1": "Uni256-Inst1-Group18",
"0x970886684e9fc6de2da2b17b9dc70c3e12b7e75b": "Uni256-Inst1-Group25",
"0xdb899f467de80b77434f23981ceed5f4836bd55f": "Uni256-Inst1-Group14",

131



A. Evaluation Results

"0x1c75c5c6b3cf86577a8d96c82053390bb8a5c3fa": "Uni256-Inst1-Group12",
"0xbad998eaa527fbce4cb79f0eff6eb5f5833f2032": "Uni256-Inst1-Group31",
"0x4b49ddaf97a86ce74f5cfbcab8ce1c01b8c9f318": "Uni256-Inst1-Group30",
"0x381665c716e97899e91915c1d3edeae5ffe2b7f7": "Uni256-Inst1-Group16",
"0x9fbc46f6020478bdb40687234781391c7bdc6c04": "Uni256-Inst1-Group24",
"0xaa0e454897cabb67c44b4a7139f9615b2c58b7b1": "Uni256-Inst1-Group10",
"0xd9e2ad281ea0a3f6f3ed2a7987400035c719b321": "Uni256-Inst1-Group29",
"0xfb7c344fb259e400de1dad9973ef40cb314d88b4": "Uni256-Inst1-Group28",
"0x585ce873ee5b4466fcb6e2e190b1a55847a87d36": "Uni256-Inst1-Group6",
"0x188d2a2516cff3b4f63f418fcd963ab37d3981c8": "Uni256-Inst1-Group5",
"0x3e9290692dbbf7377b261eb30f275c814ee8b96e": "Uni256-Inst1-Group58",
"0xc504adf1e7e27823c7a4259c511ca06215f2b834": "Uni256-Inst1-Group53",
"0x3d1fe3afe0b87be611f89b097d722a44eabfcbc7": "Uni256-Inst1-Group32",
"0xe1099153f18baea6a9b8bcc2a2e2f82736a115d2": "Uni256-Inst1-Group57",
"0xc1df435825853e66c5e1ab66f25ae32bfb26f9a1": "Uni256-Inst1-Group56",
"0xf999c4c3773a7d2b3f359cda6314f96925d77c91": "Uni256-Inst1-Group52",
"0xcc2f8e363a4ff31681a0b0075fc524e73aae14b6": "Uni256-Inst1-Group2",
"0x03a62e0c246421ef1b6c998bc62885a2478aa72a": "Uni256-Inst1-Group51",
"0x4b31d5c541f3c058a282b096e7ddef729edaf9d5": "Uni256-Inst1-Group43",
"0x7dce6107ee23f2f5535b9e87cc61fe454a8d9287": "Uni256-Inst1-Group48",
"0x734e6d82680df7186030df23403f4d100bebc29f": "Uni256-Inst1-Group50",
"0x344ef1c5e75c3431a96804a79cc30c18661a283b": "Uni256-Inst1-Group40",
"0x3b551af684f2c0162626126b54ce55daf6ec60d9": "Uni256-Inst1-Group36",
"0xacd6600f0cebccbbf3106eae87542f515c7b9133": "Uni256-Inst1-Group0",
"0x352a62a0280fa90adc9a7cfc03bb269d9e90bce8": "Uni256-Inst1-Group37",
"0xd3e0d52c33e1d58b5090cdc9be3df3a67f42c2d9": "Uni256-Inst1-Group45",
"0xb3648dae389cc3cb2581b606bea4433ea1ab5aff": "Uni256-Inst1-Group35",
"0xd7a7e46f62eb31f1c9199bdd5036440e82a769ac": "Uni256-Inst1-Group26",
"0xf24a6f589e03f28a542d9dfccb88d65fae629198": "Uni256-Inst1-Group19",
"0xe4fde86d7cf326f298defcb427fd688e9976d612": "Uni256-Inst1-Group13",
"0xa41ce67044e1f4ceb4b5d7d4e03b53ffcd461d4a": "Uni256-Inst1-Group34",
"0x63564df7cad0a26afae866d836b34ac5e77dde0d": "Uni256-Inst1-Group11",
"0xfe1102b243d30dd61e4373444f9c768a475150e9": "Uni256-Inst1-Group17",
"0x861cb1df3444db34d880d3d75d5cd2a99888d949": "Uni256-Inst1-Group23",
"0x549c80201869aaff1982bb9a2e7fb2274c3174ab": "Uni256-Inst1-Group1",
"0x8f2a7e64420b9c6b15c5e7a037e88dfbacc9b3b8": "Uni256-Inst1-Group22",
"0x3248b93e9a628baad3f298b97f94bed77e1c46f1": "Uni256-Inst1-Group27",
"0x76a91e8063b886f61af98c339b62347bcb4f2428": "Uni256-Inst1-Group7",
"0x7cffb51e4f6205b9980354b6ae76a6bb079af0d7": "Uni256-Inst1-Group61",
"0xc6e060ac7167082b91734e1a493681a4a9d23153": "Uni256-Inst1-Group59",
"0x73616c014343ef8a4677058dbda259cda2647f2b": "Uni256-Inst1-Group54",
"0x3f41d9c7bc7df615ab9645d3ccf90aeeb93a1bde": "Uni256-Inst1-Group55",
"0xfb06490ca2855ef0adb9c89b04c73e066f6ba5bf": "Uni256-Inst1-Group49",
"0x40b0383381ea9c7afbe148b59e96a51b9792408f": "Uni256-Inst1-Group20",
"0xf950503b3616bb1be9b17232e652bdda431ef0a3": "Uni256-Inst1-Group44",
"0x3884614eff95d621f457906d2004e5ae8545c7f3": "Uni256-Inst1-Group4",
"0x62ce4cc95a76c1540a2afd81e066fe34b3038036": "Uni256-Inst1-Group41",
"0xae8d32bf9e248bc18d5c339a7eb97a1cf726d9ab": "Uni256-Inst1-Group39",
"0xf281d5de991bd993046f6583d0bcd272e25f29e6": "Uni256-Inst1-Group42",
"0xad21f674f9f4b600116a02bdf2cdd152b13bb378": "Uni256-Inst1-Group33",
"0x647f2809223397490cbb735bf2b866766cc02641": "Uni256-Inst1-Group15",
"0x4ed6e5127e2c102a363b4bce8682cc0991fef76a": "Uni256-Inst1-Group9",
"0x3722f18b1df20d6975c88bbfeded4d89b4c04afc": "Uni256-Inst1-Group21",
"0xf38ffb54f6b9169560196aac653ca13cf2fcc4b8": "Uni256-Inst1-Group8",
"0x5ea9a3ced2f1a94f73cdcdf37d49ba1fd576847c": "Uni256-Inst1-Group3",
"0x6f0ac011b89d16fe59a8246dc43ca385d5e197c4": "Uni256-Inst1-Group47",
"0x5d853391d607139597b1950921ddf0046f49eef3": "Uni256-Inst1-Group38",
"0xef7445143555c89c320ad536e75e8c89c8a51bc8": "Uni256-Inst1-Group46",
"0x4d66a4b14f05c5836b10a4b2ca9115f1aefe1b8e": "Uni256-Inst1-Group60",
"0x34cec3eca25b6f4d13c964684f2d9c87de37fae1": "Uni256-Inst0",
"0x960b739d013b504675e2ab327a628444b4602f48": "Uni256-Inst0-Group9",
"0x6d419eb35e7e7dbbe7b6b1108f8347fbdea15592": "Uni256-Inst0-Group6",
"0x56a0d557822946a3583d4fae54f357e6cdb44197": "Uni256-Inst0-Group58",
"0x596fbd88c3617321dddf541f8a6b51ba6836888c": "Uni256-Inst0-Group5",
"0x62f7ca0f59c97d22de6454f85deda598c7a3b415": "Uni256-Inst0-Group44",
"0xdb351c23fc091e98eef75a186e959c12ad8b6478": "Uni256-Inst0-Group57",
"0x160eff84290bb657374a707e4c14f1978c8ef924": "Uni256-Inst0-Group43",
"0x367a0c29587adb9a8067daf4959325fb956a04eb": "Uni256-Inst0-Group41",
"0x33e8b1a4a1881d3f83da59b72516df4344b2771a": "Uni256-Inst0-Group35",
"0xb6a78b82f91a784a18c91e7ef07e3dc672712e4a": "Uni256-Inst0-Group61",
"0xb2e994ebf8dfa765435899586d5423d505ab3e71": "Uni256-Inst0-Group34",
"0xdd92a4452fe51e0bd2d1ddeb2c80fc9ef90d60a7": "Uni256-Inst0-Group47",
"0xc57383ee38dda7b964875e81f54a0a79234c471f": "Uni256-Inst0-Group33",
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"0x6df0e59d5eefd7093cb9a2da2889417808773698": "Uni256-Inst0-Group60",
"0xe459af55ed5b40f17ab79cd75e448c942ba8fc22": "Uni256-Inst0-Group39",
"0x10ef26128a08a707b0f3b1b7166d4d3fcac29249": "Uni256-Inst0-Group59",
"0xb8852c4ee359102ec10ecbcaf76727b5796d227e": "Uni256-Inst0-Group46",
"0x633b6d4f49eea3d44c686bff6b83e63d91f65856": "Uni256-Inst0-Group30",
"0xd77fc789b61e7d33bc4259ab37944ac924b31e64": "Uni256-Inst0-Group29",
"0x078e3b56a203b1875cb695ed951776abf3667b16": "Uni256-Inst0-Group26",
"0xd43efe6c69f7c3fbe905b360a3a3a35963c875ca": "Uni256-Inst0-Group31",
"0xcf36238c22327c67ee0aab0840dbb242074264b8": "Uni256-Inst0-Group17",
"0x9f7bada170a9a9150a276c670d96eab64ab72fd2": "Uni256-Inst0-Group25",
"0xd40218d98974e24720dcb84c0988d4a288324808": "Uni256-Inst0-Group51",
"0x137a3bb878798004dc73a945ffa5ebf199f473f9": "Uni256-Inst0-Group23",
"0x30c553115ae4bb2cd699e4717c90661262acc04f": "Uni256-Inst0-Group13",
"0x0300d2d88dff0e5803284e85beed5a2c84582719": "Uni256-Inst0-Group1",
"0xe6afe932bfea01f7e48a87a8230f17327af6fcad": "Uni256-Inst0-Group50",
"0x4d5053d72f19d7b22b61283edcdd0e643b9998ea": "Uni256-Inst0-Group4",
"0x54f130c49d2e2fb68f518c0b2341f7e6e4feaded": "Uni256-Inst0-Group8",
"0x66eb7e1f29e65ab8ebf3ba8187bec352e798a280": "Uni256-Inst0-Group3",
"0xf24dae763dfa882ce87567e714d382fcc585bae2": "Uni256-Inst0-Group7",
"0x9b7cf85ee7d5d488d1f33ca74f7571c286500cd3": "Uni256-Inst0-Group49",
"0x082e0e4764568261a41dbaae46310f8d371d8adc": "Uni256-Inst0-Group53",
"0x189fc3fac39640fa18e5624a18786a726c7a515a": "Uni256-Inst0-Group24",
"0x071868db6313a955e284665c1fe7cca48843af76": "Uni256-Inst0-Group56",
"0x70f8c52909541485f378fc058af9fe498c6ca757": "Uni256-Inst0-Group45",
"0x9e15460a7b7e7fac9f5b3e55ea0639a6afcb9d69": "Uni256-Inst0-Group2",
"0x354e51493e4adb69d837bf050cdc5dc1f88e2ef7": "Uni256-Inst0-Group55",
"0x01ed11f0224eb67151e6cb3036e30cf317269342": "Uni256-Inst0-Group0",
"0x1825eb8690c810281e0e435e6b69ceb794b70e3c": "Uni256-Inst0-Group54",
"0xc22bd979d8e01230a48f6bf5c8d2182ca2183449": "Uni256-Inst0-Group48",
"0x32a66d122d17fd77ac6e7e4052069afa2d5094b6": "Uni256-Inst0-Group32",
"0x25a08c5193a3de0e7cc135cd44b46d505a5fdbbc": "Uni256-Inst0-Group22",
"0xe18d87f8ade2e6e1c64a2a74371a89037ae28b00": "Uni256-Inst0-Group28",
"0xb78b0618572b5cc2bd90bb9c7a33b894d6022ccc": "Uni256-Inst0-Group20",
"0xff1f0ecc46b3145fcbfc004ba0384a381c1fcd09": "Uni256-Inst0-Group10",
"0xbe485620d444bfbae9f7569be17db39055817b19": "Uni256-Inst0-Group15",
"0xdf229f4e358869baaedcd158fa1c2fe74fa531d0": "Uni256-Inst0-Group14",
"0xf1e070e473c01b8e4259d770c12ab1844669439f": "Uni256-Inst0-Group12",
"0x2f64c6e356771800de92d7edfa1c4ef21bf4db30": "Uni256-Inst0-Group11",
"0x771e0f1e95eb45fc55199476d77b5945c2b0932b": "Uni256-Inst0-Group38",
"0x0d870eb48ad25d963674086e9e5d5c7c8bc8eb4d": "Uni256-Inst0-Group37",
"0xf35a3cbfc3fbc23c3aff187f6eb5f95b3623e85b": "Uni256-Inst0-Group42",
"0x1f7bfc57418bf8685bc7f8de308d9ac6b04ad5e4": "Uni256-Inst0-Group36",
"0x05e4625fce32dc28b1b00662035a65dc429b1e68": "Uni256-Inst0-Group21",
"0x9b59abe3e4f34348e428223b2455844c6f2531a9": "Uni256-Inst0-Group40",
"0xeb40269fafe526cf41ff7365a676038809eda85d": "Uni256-Inst0-Group27",
"0xdbc4140e67ff116e434cc437798595a77fd07264": "Uni256-Inst0-Group18",
"0x7265e9e196f39f8a3ad31b75dbf2dbc4fd7d4564": "Uni256-Inst0-Group52",
"0x1cd821635b5df9064f15b6508850ea0820a807f4": "Uni256-Inst0-Group19",
"0x2bbbc043322f1d29a8d257a2d28f26723efa9797": "Uni256-Inst0-Group16",
"0x2f53d70e1ba5cd94fa98ed97ccae3bfde8c0b4e4": "Uni32-Inst1",
"0xfa2e2390039595fbc1cb7d9ffc51924aeac6fb04": "Uni32-Inst1-Group0",
"0x31dfd5b73628338b67fd7421a49ad8c45525d87b": "Uni32-Inst1-Group1",
"0x6a24294d3279fdb0250fb06068d1869be1a27441": "Uni32-Inst1-Group5",
"0x902dd87cdd4037b5209ad4fd4f69464fbc194d0e": "Uni32-Inst1-Group2",
"0x9382a3f6083650ebada45292b65dce9762175caf": "Uni32-Inst1-Group4",
"0xf91fca430f60a30bc4f4378caf925da2bef8875f": "Uni32-Inst1-Group3",
"0xa5631e23a8215b4dedc660052146a8146cd4a55a": "Uni32-Inst0",
"0xdc6ecb9bf091304b5dbd2e57d8e9d082a0bbeb79": "Uni32-Inst0-Group0",
"0x82babd4a986951dee21ca53c41643cbf20a33de7": "Uni32-Inst0-Group4",
"0x329d47434a7041885a81e026165dc87b4fccb7a8": "Uni32-Inst0-Group5",
"0xe71bdff910c73a8436704cb697be429ce2f87d3b": "Uni32-Inst0-Group2",
"0x08604c0b0dce181fe9764d8bccb4324ad6704a23": "Uni32-Inst0-Group1",
"0x886634923f31c128cd9084155331a70ea5eec806": "Uni32-Inst0-Group3"

}
}

}
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