
EtherTrust Developer Guide
EtherTrust is created with HoRSt compiler which allow for creating of
analysis tools using high level abstract semantics specifications in
form of Horn clauses. These specifications can employ Java
functions, i.e., selector functions discussed later that are triggered
during the compilation process. It is important to mention that HoRSt
not only compiles the semantics specification into working tool, but
also performs a number of optimizations on Horn clause improving the
analysis results.

HoRSt Glossary

A HoRSt file mainly consists of a collection of named rules.

A rule has a list of parameters, a selector function and list of
clauses.

A clause has a list of universally quantified free variables, a list of
premises consisting of predicate applications and Boolean
expressions and conclusion, which is a single predicate application.

A predicate has a list of parameters and a list of arguments. A
predicate application is the name of a predicate followed by list of
well-typed parameters followed by a list of well-typed arguments.
Before being used, a predicate has to be defined with the pred
keyword.

A free variable is a universally quantified variable that is introduced in
clause definitions. Free variables are prefixed with ?.

A parameter is a Boolean or integer value, that can be calculated at
compile time. Parameters are prefixed with !. They are generated by
selector functions.

A expression can either be an integer or Boolean constant, an
arithmetic operation on integers, a logic operation on Booleans, a
select or store operation on arrays, the construction of a custom
type, a custom operation, the construction of an array from a
constant expression, a reference to a variable, free variable or
parameter, a conditional expression, a match expression or a sum
expression.

A selector function is a Java-defined generator of tuples of integers
and Booleans. It has to be declared with the sel keyword and
provided as Java files to the HoRStCompiler with the -f flag. The
generated values bind to parameters.

A match expression consists of a tuple of expressions that are
compared to a list of tuples of patterns each of which is followed by
an expression called branch. If a pattern matches the expression, the
match expression has the value of the matching branch.

A pattern looks exactly as a tuple of constructions of values with the
additional possibility of using variables that get bound to the matched
values and may be used in the corresponding branch. _ can be used
to ignore matched values. As of now, each match expression has to
end with a _-branch.

A sum expression is a way to generated iterated sums, products,
conjunctions and disjunctions. The collections which are "summed"
are generated by selector functions.

A custom type can be defined by the datatype and eqtype keywords
followed by a name and a list of constructors.

Equality types (defined by eqtype) may only contain other equality
types in their constructors. Integers and Booleans are equality types,
arrays are not.

A constructor is a name (prefixed by @) and a (possibly empty) list of
already defined types.

A custom operation has a name, a list of parameters, a list of
arguments, a return type and an expression that forms the body of an
operation. They have to be declared with the op keyword. An
application of an operation has the value of the body where all
parameters and arguments are substituted by the values given on the
call site.

Build
Before building EtherTrust, build Z3.

Get it from https://github.com/Z3Prover/z3. Build with

python script/mk_make.py --java
cd build; make

Place com.microsoft.z3.jar to %project%/lib.

Then build EtherTrust

mvn -Dmaven.test.skip=true package

Run
Provide paths to Z3 binary bindings in LD_LIBRARY_PATH (Linux) or
DYLD_LIBRARY_PATH (MacOS).

LD_LIBRARY_PATH=. java -cp
com.microsoft.z3.jar:EtherTrust-1.0-SNAPSHOT.jar
secpriv.horst.evm.EvmHorstCompiler $file --json-out-dir
$path_to_results -p -b -s $path_to_grammar/evm-abstract-
semantics-partial-standard-calls.txt $path_to_grammar/
queries-reentrancy.txt

https://github.com/Z3Prover/z3

Selector Functions

What is a selector function

In our specification language HoRSt there are two places where we
want to talk about sets (not necessarily sets in the mathematical
sense) of values which may depend on the analyzed code:

• in SumExpressions, where we can generate sums/products of
sets of integers and conjuctions/disjunctions of sets of booleans

• when generating parameterized rules

These sets are generated by so-called selector functions.

Selector Functions in Horst

Since HoRSt is no general purpose programming language, we can't
specify these sets within HoRSt -- we can just declare a signature and
then implement the code in Java.

Selector functions in HoRSt are declared like this:

sel idsAndPcsForOpcode: int -> [int*int];
//take an integer and generate set of integer-integer-Tuples

Selector Functions in Java

The general way of providing an implementation for a selector function
to HorstCompiler is proving a Java source code file with the -f/ --

selector-function-provider command line option. The given file will
be loaded and every method which fulfills all of the following
requirements will be registered as a selector function:

• the method is public

• the method has a name different from all methods of

java.lang.Object

• the method's name is different from "unit"

• the method's name is different from all previously defined

selector functions names

• all of the method's arguments are either of type BigInteger or

Boolean

• the method's return type is either Iterable<BigInteger>,

Iterable<Boolean> or Iterable<TupleX<T1,T2...TN>> where
T u p l e X i s o n e o f t h e t u p l e t y p e s d e fi n e d i n
secpriv.horst.data.tuples and T1...TN are either BigInteger
or Boolean

Selector functions in Java are implemented like this:

 public Iterable<Tuple2<BigInteger, BigInteger>>
idsAndPcsForOpcode(BigInteger opcode) {
 List<Tuple2<BigInteger, BigInteger>> ret = new
ArrayList<>();
 for(Map.Entry<BigInteger, ContractLexer.ContractInfo>
entry : contractInfos.entrySet()) {

CartesianHelper.product(Collections.singletonList(entry.getKe
y()),

entry.getValue().getProgramCountersForOpcode(opcode)).forEach
(ret::add);
 }
 return ret;
 }

If a Java file is provided in this way, the class defined in it may not be
included in any package (it has to be included in the top level
package).

Since the selector function provider has to interact with the analyzed
byte code, it has to be possible to provide command line arguments
to the selector function provider. Any command line argument which is
given immediately after -f <SelectorFunctionProvider.java> and
does not start with "-" or end with ".java" is forwarded to the
selector function provider. To make use of these arguments, the
selector function provider may implement a constructor taking a
List<String> as argument.

Why is there an --evm option now?

We can't put selector function providers in our source tree without
"polluting" our project with top level classes (because right now, we
can't put the selector function providers that are dynamically compiled
in packages).

But if our providers are not in part of our source tree, we do not get
nice code completion when working on them (bad) and we can't unit
test them easily (worse).

Therefore we moved the EvmSelectorFunctionProvider into the
source tree, in a special package and provided a command line option
to load it from there.

Coding Guide Lines

• the existing code is based on immutable data structures that
avoid null. Look at secpriv.horst.data.Clause to see how we
can implement immutable structures

• these classes do not need getters (and cannot have setters)

• implement complex calculations on these immutable values as

Visitors

• strive to keep the nesting level within functions low by return

early on errors 

• if (x == 1) {
• return Optional.empty();
• }
•
• if (y == 3) {
• return Optional.empty();
• }
•
• return Optional.of(x+y);
•  

is better than 

• if (x !== 1) {
• if (y !== 3) {
• return Optional.of(x+y);
• }
• }
• return Optional.empty();
•
• usually our class hierarchies are implemented in one file (see

Expression or Proposition for an example).

Getters are totally fine if

• the value is computed (like getType() in Expression)

• the value has to be available in all classes implementing an

interface or abstract class(also like getType() in Expression)

• the value is based on a value that may be null (null-lessness

beats getter-lessness) or

• is based on a mutable value, that is not arbitrary modifiable (like

definePredicate /isPredcateDefined /getPredicate in
VisitorState)

• ...maybe some other case I forgot

But since most of our simple data structures (e.g. all objects
secpriv.horst.data) are all immutable and have no behavior except
of holding data (and making sure, that they are constructed in a
somewhat sane fashion), we don't need getters and setters as they
tend to make the code less readable.

How to write selector function
providers?

Since we wrote our first selector function providers in the versions of
HoRSt we got some new capabilities which may motivate changes in
the way we are doing things right now. This is a set of implementation
patterns that may help to choose the right approach or may inspire
some refactorings.

If selector functions have different data
sources, put them in independent selector
function providers

SelectorFunctionHelper::registerProvider can be called on
multiple objects, registering all of their suitable functions in the
SelectorFunctionHelper object.

The way IntervalProvider is used now is actually an example for how it
should not be done. Instead of forwarding the interval-method to an
instance of IntervalProvider, we should just call

s e l e c t o r F u n c t i o n H e l p e r . r e g i s t e r P r o v i d e r (n e w
IntervalProvider());

before registering other providers, whenever the the --evm command
line option is given.

If selector functions have the same data
source, but a different purpose, use
composition and forwarding

Say you have a data source that provides with a byte code and some
metadata. Assume also that there is already a selector function
provider A that provides the methods p, q and r by using the byte
code.

Now you want to make a new selector function provider B that uses
the data source to provide new methods x, y and z in addition.

The recommended way to achieve this is having B hold a instance of A
and forward the calls to p, q and r to this instance. (In short it makes
the code more modular, more arguments in Effective Java item 18).

Optionally, for modularity, B could also hold a instance of a interface
implemented by A. In future, these interfaces could be generated from
HoRSt files.

Alternatively, if the and the data source and selector function provider
in instantiated in Java, you can also use the pattern from above like
this.

DataSource d = new DataSource();
selectorFunctionHelper.registerProvider(new A(d));
selectorFunctionHelper.registerProvider(new B(d)); // B here
only has to implement x, y and z

The relation of EvmSelectorFunctionProvider and ConstantAnalysis
is actually an example for how it should not be done.

Use small selector functions

We can now use compound invocations of selector functions, which
should reduce the number of selector functions we have to define

sel idsAndPcsForOpcode: int -> [int*int]; // the set of (id,
pc) combinations for a given opcode
sel idsAndPcsAndOffsetsForDup: unit -> [int*int*int]; // the
set of (id, pc, os) combinations for DUP opcodes, e.g.
contains (1, 4, 3) if at position 4 in contract 1 there is
the opcode DUP3
sel idsAndPcsAndOffsetsForSwap: unit -> [int*int*int]; // the
set of (id, pc, os) combinations for SWAP opcodes, e.g.

contains (1, 4, 3) if at position 4 in contract 1 there is
the opcode SWAP3

should become

sel ids : unit -> [int];
sel pcsForOpcode : int*int -> [int];
sel offsets : int*int -> [int];
sel dups : unit -> [int];
sel swaps : unit -> [int];

and invocations like

for (!id:int, !pc:int) in idsAndPcsForOpcode(MLOAD)
f o r (! i d : i n t , ! p c : i n t , ! o s : i n t) i n
idsAndPcsAndOffsetsForDup()
f o r (! i d : i n t , ! p c : i n t , ! o s : i n t) i n
idsAndPcsAndOffsetsForSwap()

may become

for (!id:int) in ids(), (!pc:int) in pcsForOpcode(!id, MLOAD)
for (!id:int) in ids(), (!op:int) in dups(), (!pc:int) in
pcsForOpcode(!id,!op), (!os:int) in offsets(!id, !pc)
for (!id:int) in ids(), (!op:int) in swaps(), (!pc:int) in
pcsForOpcode(!id,!op), (!os:int) in offsets(!id, !pc)

A possible future extension for this may be array literals, such that
invocations like this are possible:

for (!id:int) in ids(), (!pc:int) in pcsForOpcode(!id, MLOAD)
for (!id:int) in ids(), (!op:int) in [DUP1, DUP2, DUP3, ...],
(!pc:int) in pcsForOpcode(!id,!op), (!os:int) in offsets(!id,
!pc)
for (!id:int) in ids(), (!op:int) in [SWAP1, SWAP2,
SWAP3, ...], (!pc:int) in pcsForOpcode(!id,!op), (!os:int) in
offsets(!id, !pc)

Web Interface

EtherTrust is available via an online interface.

Framework

Currently, the web interface accepts contracts with size <=100kb. The
web framework works as follows: backend spawns an analysis and
updates the results asynchronously. User is free to comeback and
check the analysis results anytime using the hash of a task identifier
displayed the result is started being processed.

Here is the order of components evoked per each task:

• static web page (backend jar)

• file uploader (backend jar)

• analysis (EtherTrust jar)

• asynchronous results fetcher (backend jar)

Analysis results

Currently analysis results are displayed as a rendered json on a
webpage. Please refer to User Guide for Results interpretation
discussion.

This work is licensed under the Creative Commons Attribution 3.0
Austria License. To view a copy of this license, visit http://
creativecommons.org/licenses/by/3.0/at/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

