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Abstract

Mobile interaction describes the interaction of human users with mobile devices
outside of stationary settings like a desktop workstation. Since the introduction
of modern smartphones a decade ago, the interaction with mobile devices has
changed: users more and more communicate while being on the go. Hence, revis-
iting the fundamentals of technology-supported communication becomes necessary.
When interacting with a device in the field, errors increasingly happen, since the
user has to monitor their contextual surroundings, which binds mental resources.
This thesis explores the interplay between the user’s mental state (which results
from limited mental resources), the contexts in the field, and mobile interaction.
A particular focus is put on the occurrence of errors, which are examined on
three levels: knowledge-based mistakes, rule-based mistakes, and skill-based
slips [Rea90]. These errors can disrupt mobile communication.

To explore the interplay as mentioned above, and the occurrence of errors, the
prevalent method of this thesis are field studies. Since existing frameworks do
not suffice to support mobile field studies as required by this thesis, the Open
Source CoConUT field study framework is developed. Overall, in this thesis, two
field studies and two laboratory studies are conducted. The laboratory studies
address aspects that can not be tested in the field.

Knowledge-based mistakes during mobile communication are assessed in a
laboratory study since an extensive qualitative analysis is required. The occur-
rence of rule-based mistakes under stress is also tested in the laboratory since the
probands had to remain seated. Finally, two consecutive field studies investigate
the interplay of context, internal state, and interaction in commute-like situations.
A second study places its focus on skill-based slips.

Findings reveal that at present users do not stop for typing on their smartphones
any more during walking outdoors, despite physical activity and increased stress
leading to a higher typing error slips. Stress also has a negative influence on the
occurrence of rule-based errors. Additionally, erroneous mental models can lead

XV



Acronyms

to disruptedmobile communication due to incomplete or false knowledge. Overall,
the CoConUT framework proves to be reliable to support mobile field studies,
and an overview of the gathered sensor data is given. Consumer wearables like
chest belts are considered to be a robust and affordable solution for measuring
the user’s arousal as an indicator of their internal state.

To conclude, the thesis provides essential contributions to understand mobile
interaction in the field after the widespread adoption of mobile devices and puts a
particular focus on the occurrence of different types of errors.
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Kurzfassung

Mobile Interaktion beschreibt die Interaktion zwischen menschlichen Nutzer_in-
nen und mobilen Geräten außerhalb eines stationären Szenarios wie beispiels-
weise eines klassischen Computerarbeitsplatzes. Seit der Einführung moderner
Smartphones vor rund zehn Jahren hat sich die Interaktion mit mobilen Geräten
maßgeblich geändert: Nutzer_innen kommunizieren mehr und mehr unterwegs.
Folglich ist es notwendig die Grundlagen technologisch gestützter Kommunikation
neu zu beleuchten. Während der Interaktion im Feld geschehen vermehrt Fehler,
da der_die Nutzer_in die Umgebung beobachten muss, was mentale Ressourcen
erfordert. Diese Dissertation untersucht das Zusammenspiel von mentalem Sta-
tus des_der Nutzer_in (welcher sich aus den limitierten mentalen Ressourcen
ergibt), Kontext im Feld und mobiler Interaktion. Ein besonderer Fokus wird auf
das Auftreten von Fehlern gelegt, welche auf drei Ebenen untersucht werden:
wissensbasierte Fehler, regelbasierte Fehler und handwerkliche Flüchtigkeits-
fehlern [Rea90]. All diese Fehlerarten können hierbei mobile Kommunikation
stören.

Um dieses Zusammenspiel und das Auftreten von Fehlern zu erforschen,
greift diese Dissertation auf Feldstudien als vorherrschende Methode zurück.
Da existierende Software-Frameworks zur Durchführung der für diese Arbeit
erforderlichen Feldstudien nicht ausreichen, wird das Open Source Feldstudien-
Framework CoConUT entwickelt. Insgesamt werden im Rahmen dieser Ar-
beit zwei Feldstudien und zwei Laborstudien durchgeführt. Die Laborstudien
adressieren dabei Aspekte, die nicht im Feld realisierbar sind.

Wissensbasierte Fehler, die währendmobiler Kommunikation auftreten können,
werden in einer Laborstudie untersucht, da dies eine umfangreiche qualitative
Analyse erfordert. Das Auftreten von regelbasierten Fehlern unter Stress wird
ebenfalls im Labor getestet, da die Proband_innen sich in einer sitzenden Position
befinden müssen. Anschließend werden zwei Feldstudien durchgeführt, welche
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das Zusammenspiel von Kontext, internem Status und Interaktion in nahtransport-
ähnlichen Situationen untersucht.

Die Ergebnisse zeigen, dass Nutzer_innen unterwegs nicht mehr anhalten um
auf ihren Smartphones zu tippen, obwohl sowohl körperliche Aktivität als auch
ein erhöhtes Stresslevel zu mehr Tippfehlern führen. Des weiteren hat Stress
einen negativen Einfluss auf das Auftreten von regelbasierten Fehlern. Zusätz-
lich können fehlerhafte mentale Modelle aufgrund von unvollständigem oder
falschem Wissen zu einer Störung von mobiler Kommunikation führen. Ebenso
erweist sich das CoConUT-Framework als zuverlässig für die Unterstützung
mobiler Feldstudien. Auch wird ein Überblick über die gesammelten Sensor-
daten gegeben. Handelsübliche Wearables für Endnutzer_innen wie Brustgurte
werden als robuste und leistbare Lösung zum Messen des Arousal-Levels der
Nutzer_innen während Feldstudien eingeführt. Das Arousal-Level dient hierbei
als Indikator für den internen Status.

Zusammenfassend lässt sich sagen, dass die vorliegendeDissertationwesentliche
Beiträge für das Verständnis mobiler Kommunikation im Feld nach der weitreichen-
den Einführung mobiler Geräte leistet, während sie gleichzeitig einen speziellen
Fokus auf das Auftreten verschiedener Fehlerarten legt.
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Introduction

The past 20 years have seen a shift from mainly stationary to increasingly mobile
communication in Information and Communications Technology (ICT). For in-
stance, electronic communication does not only happen on desktop workstations
anymore but increasingly on mobile devices like modern smartphones. Devices
have become smaller and smaller while at the same time becoming more and more
connected. Mark Weiser’s prediction of a ubiquitous future has long become a
reality, and ubiquitous technology integrates into our everyday life [Wei91]. Even
more, in the wake of the Internet of Things, everyday devices become “smart”
and interconnected, as well as aim at creating additional values [AIM10].

With this new ecosystem of mobile devices, thewaywe interact withmobile
devices has changed in the past ten years. As an example, new possibilities and
the following habituation fostered mobile communication to the degree that even
meaningful conversations increasingly happen while being on the move. When
communicating in a mobile setting, users have to allocate some of their mental
resources to monitor their surroundings, especially when moving. Crossing a
busy street requires attention, and solely looking at the smartphone screen could
quickly become a life-threatening idea. The fact that mental resources are limited
forces the user to multitask. Together with contextual characteristics (noise,
manypeople nearby, et cetera), this can influence the user’s internal state
and, for example, induce a stress reaction.

Of course, during mobile communication also errors can happen. These
errors can be simple typing errors when missing buttons on the software key-
board, applying the wrong routines when small-scale decisions are required, or
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even wrong problem-solving strategies due to erroneous knowledge. Thus, from
the most straightforward typing error to a profound misunderstanding of the
underlying mechanisms, communication can be interrupted by errors in multiple
ways. This fact is especially striking when it happens in the field, in situations
which seem casual at first (for example during our daily commute), but can have
a significant impact on our future communication habits. Especially with se-
cure instant messengers like Signal1, mobile communication has outrun email
based communication with regards to security, for example Pretty Good Privacy
(PGP)2. When usage errors happen during communication over dedicatedly se-
cure messengers, users potentially compromise their communication, no matter
how secure the technology design.

The goal of this thesis is to gain a deeper understanding of the inter-
play of context, mental resources, and mobile interaction in the field. A
particular focus is put on the occurrence of several types of errors that
potentially disrupt communication inmobile environments. Furthermore,
the thesis will examine the interplay of contextual influences, the users’ internal
state, and their interaction with the mobile device during mobile interaction in
the field. In order to examine these interrelations, the mobile field study toolkit
CoConUT will be developed and applied.

1.1 Research Questions

To systematically investigate the occurrence of errors and the interplay of con-
text, mental resources and mobile interaction in the field, three major research
questions with respective subquestions have been formulated, ranging from the
methodology, for example the necessary means for assessment in the field, over
the influence of contextual factors and the user’s state on mobile interaction to
the investigation of different types of errors.

1 https://signal.org, last opened on February 9th, 2019
2 https://www.openpgp.org, last opened on February 9th, 2019
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1.1 Research Questions

Research Question 1: Methodology

How can context, the user’s internal state (as an indicator for men-
tal factors) and interaction (especially errors) be assessed in field
studies?

1. Which kind of data can be assessed and how (quantitative or quali-
tative, surroundings, or users themselves)?

2. How accurate is the data?

3. How can the assessed data be visualized and analyzed?

In contrary to the laboratory, where everything is laid out to be as controllable
as possible, field studies happen in the real world and are often unpredictable and
sometimes “messy” as real life [JM+06]. In consequence, not one field study setup
resembles the next, and requirements are diverse. While several frameworks
for data assessment during mobile field studies exist [SHR16], to the best of our
knowledge, none of them meets the requirements for short-term field-studies
assessing context, the internal state of the users, as well as interaction with the
device at the same time. This is astonishing, given the fact that the diversity of field
studies has to be tackled with maximally versatile, customizable, and expandable
solutions. Moreover, a particular focus is put on the usage of Open-Source
software and hardware. This research question also explores which methods are
best to examine the mentioned dimensions, and which operationalizations are
advisable.

Research Question 2: Context

Which kind of contextual factors influence mobile interaction in
the field and to which degree?

1. Which role does the user’s internal state play?

2. In particular, which kind of contexts have an impact on the user’s
primary Human-Computer Interaction (HCI) task?

The second research question aims at systematically exploring the interplay
of this work’s three key dimensions: mobile interaction, context, and the user’s
internal state (as an indicator for mental resources). A critical aspect of this
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research question remains to narrow down, define, and operationalize these
dimensions for scaling purposes.

This research question starts with the assumption of a limited capacity ofmental
resources, which have to be split between monitoring the user’s surroundings and
the mobile task at hand [Oul+05]. Solely focusing on completing the mobile task
at hand could potentially harm the user, for example if they do not pay attention
to the surrounding traffic. While paying attention to traffic is a highly conscious
action, subconscious reactions can also divert attention from the device to the
surroundings, or vice versa. These subconscious reactions might happen due to
sudden changes in the surroundings, notifications, or other types of disruptions.
In this research question, the interplay of context and mobile interaction occurs,
when mental resources have to be split between the two and multitasking ensues.

The third research question focuses on the occurrence of errors during mobile
interaction. Since to err is human [Sen+69], errors may take place during every
stage of conducting an action, be it the planning phase or the execution on the
motoric level. These errors can potentially disrupt or even compromise mobile
communication.

Research Question 3: Errors

When do which kinds of usage errors happen in the field?

1. Which types of errors occur in the field?

2. How can these types of errors be assessed?

3. What is their potential impact on secure communication?

The following section will briefly highlight the contributions made in this work
and summarize the findings which directly address the research questions above.

1.2 Contributions
In this thesis, we present the following key contributions:

As a contribution to Research Question 1, the field study framework CoCo-
nUT has been developed in the course of this work. The framework consists of
several software tools: First of all, the Android app CoConUT assesses contextual
factors over smartphone sensors. The Android app CoCoQuest probes the user
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for quantitative as well as qualitative experience feedback during studies. The
visualization dashboard CoCoVis visualizes the collected data and allows for
exploration. Different smaller additions (CoCoBoard, CoCoBot) fulfill study-
specific purposes. Furthermore, hardware projects have been realized: A chest
belt connected to the CoConUT app assesses the user’s stress level as an indicator
for internal state. The Open-Source wearables CoCoHat and CoCoBand aim at
further supporting mobile field studies (see section 4.9). The Open-Source code
can be found online3.

As a further contribution to Research Question 1, the CoConUT toolkit has
been successfully validated. Overviews over the gathered sensor data by two
field studies are presented and give an impression of the accuracy of current
smartphone sensors (see section 6.1.4 and section 6.2.6).

The last contribution to Research Question 1 finds that consumer devices are
more suitable to assess internal states during mobile field studies than self-built
solutions since they prove to be affordable, robust, and reliable (see section 5.2.6).

Regarding Research Question 2, the work at hand shows that users do not
slow down for typing any more during walking (see section 6.1.4 and 6.2.6). This
contribution has been confirmed in two field studies. Users have constant typing
speed across all potential walking speeds, which indicates strong habituation of
today’s smartphone users.

Regarding Research Question 3, a laboratory study showed that incomplete
mental models could lead to false mitigation strategies and compromised security
after attacks (see section 5.1.7). Surprisingly, users have a false sense of security
while having very high trust in secure apps. Bad usability of high-risk security
features can lead to non-solvable security problems.

A laboratory study suggests that stress plays a role in the occurrence of rule-
based errors: It is assumed that the higher the stress, the higher the error ratio
(see section 5.2.6). A field study also showed the impact of stress, to be specific
that context and the user’s stress level influence typing slips (see section 6.2.6).
The more stressed a user is, the higher the error rate of typing slips. When the
user has to multitask or engages in physical activity due to context in the field,

3 https://github.com/coconut-framework, last visited March 14th 2019
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the error rate increases. These findings contribute to Research Questions 2
and 3.

1.3 Published Work

Parts of this PhD thesis have been published and presented at international peer-
reviewed conferences and workshops:

S. Schröder, M. Huber, D. Wind, and C. Rottermanner.
“When SIGNAL hits the fan: On the usability and security of state-of-the-art
secure mobile messaging”.
In: European Workshop on Usable Security. IEEE. 2016.

S. Schröder, J. Hirschl, and P. Reichl.
“CoConUT: Context Collection for Non-stationary User Testing”.
In: Proceedings of the 18th International Conference on Human-Computer Inter-
action with Mobile Devices and Services Adjunct. MobileHCI ’16. Florence, Italy:
ACM, 2016, pp. 924–929.

S. Schröder, J. Hirschl, and P. Reichl.
“Exploring the Interplay of Context and Interaction in the Field”.
In: 2018 Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2018, pp. 1–6.

S. Schröder, A. Rafetseder, and P. Reichl.
“Errare Mobile Est: Studying the Influence of Mobile Context and Stress on Typing
Errors in the Field”.
In: 2019 Eleventh International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2019.

1.4 Overview

The remainder of this work is structured as follows: chapter 2 outlines relevant
related work about the basic concepts and methods underlying this research,
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followed by chapter 3 about the research approach. The following chapter 4
describes the CoConUT framework and all of its components. This chapter points
out the requirements for such a framework, relevant related apps, and describes
the components of the framework. The subsequent two chapters (chapter 5 and
chapter 6) present the field and laboratory studies that were done in the course of
this project. Following this, chapter 7 offers a discussion of the studies’ results in
the context of relevant related work. Finally, in chapter 8, a conclusion is given,
and future work is laid out.
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Related Work

In this chapter, related work concerning the key aspects of this thesis will be
presented: First, an overview of the concept of context and its relevance for
human-computer interaction in the field and especially field studies will be
described. Afterward, a brief delve into cognitive psychology is given (mental
conditions and attention), leading to a description of stress and how it can be
measured over biophysical signals. This chapter concludes with a definition
of interaction, followed by an explanation of different kinds of errors that can
happen in human-computer interaction, with a particular focus of different kinds
on errors.

One key motivation for this thesis is the work by Oulasvirta, Tamminen, Roto,
and Kuorelahti [Oul+05], which investigates mobile smartphone usage in the
wild while taking into account the users’ mental resources as well as contextual
influences. In this research project, the authors conduct a field study to show how
the different tasks during mobile interaction (for example interaction task or task
to monitor one’s surroundings) compete for attentional mental resources. This
competition eventually leads to a breakdown of fluent interaction. To describe the
allocation of those resources, they created the Resource Competition Framework
(RCF) to explain how multiple psychosocial tasks compete for mental resources
with limited capacity, for example, interaction and mobility tasks in realistic
environments. When the mental capacity limit is reached, resource depletion
happens, which leads to tasks being slowed down, postponed, put on hold or
terminated. Some of their findings include (among others): Attention to the
mobile device reaches from 65% of the time in the laboratory to 20% of the time
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on a long quiet street. Also, participants often had to slow down or stop walking
to resume interaction with the mobile device.

With this in mind, the rest of the literature can be set into perspective.

2.1 Studying Context in the Field
Originally coming from other scientific disciplines like ethnographic research,
field research has become an integral part of computer science research [JD06],
not only as a result of the embedment of technology in our everyday lives. Field
studies allow the experimenter to collect realistic behavior via interviews in real-
life environments, observations, and in-situ assessment. Thus, field studies are
especially interesting for highly specific use cases like health care (assisted living,
hospitals, et cetera) or safety-critical workplaces (firefighters, security monitor-
ing, et cetera). In social sciences, methods of choice encompass participatory
observation or field interviews [JD06].

While testing in the lab certainly makes sense for clearly separable, well-
defined hypotheses, testing in the field opens up a wide array of possibilities for
deeply understanding human behavior in its multi-faceted nature. Very often,
user behavior can only truly be understood by observation or evaluation in the
field [PRS15]. Thus, external validity is higher in the field.

Concluding, field studies enable the researchers to get a good grasp of how
users will ultimately use software systems, or, more generally, a product in their
everyday lives [PRS15].

Depending on the setting, field studies can be more or less biased by the study
setup. For example, the operator effect or clunky testing equipment worn on
the body can create a bias. Biases can be sought to be minimized, but that bears
other implications: Testing or observing participants without consent or releasing
them into potentially dangerous situations poses questions about ethical research
methods. Early field studies in ethnography, for example, sometimes did not ask
for consent for observations, which makes those studies highly questionable with
regards to ethical standards [Bur05].

Robson [Rob11] presents a framework for structuring field observations in
social sciences:

• Space: What is the physical space like and how is it laid out?

• Actors: What are the names and relevant details of the people involved?
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• Activities: What are the actors doing and why?

• Objects: What physical objects are present, such as furniture?

• Acts: What are specific individual actions?

• Events: Is what you observe part of a special event?

• Time: What is the sequence of events?

• Goals: What are the actors trying to accomplish?

• Feelings: What is the mood of the group and of individuals?

This framework already reflects a broad variety of contextual aspects, not only
on actors and conducted activities. As general as it is, this framework could be
modified to be of use to describe field studies in computer science.

There are certain differences in the outcomes of lab and field studies. While
in the field, the outcomes possess a high ecological validity and a low level of
control. In the lab, usually it is vice-versa [KS14]. Thus, for reproducible results
or controlled experiments, one should test in the lab, while the field provides a
highly realistic testing environment with possibilities to gather interesting side
results.

Especially when it comes to research in ubiquitous computing going into the
field is crucial due to the embedded nature of interaction [LFH17]. Sometimes
design explorations or rather qualitative case studies without a focus on evalua-
tion are favored over strictly empirical studies to explore possibilities. Still, field
studies remain relatively expensive and challenging on many levels: starting with
the planning over the conduction to the evaluation, the effort of conducting a
field study is often higher than with laboratory studies, since potential contextual
influences have to be taken into account. Prevalent methods encompass qualita-
tive data like interviews, observations, but also quantitative data over sensors or
logging.

Oneway to achieve a good tradeoff between external validity and controllability
in the field is to work with a quasi-experimental study design since in the field
running a real experiment with full control is usually not manageable [FH02]. In
a quasi-experimental study, the independent variable is not under full control by
the experimenter. Thus outside a laboratory setting the scientific measurement
of cause and effect is difficult.

In 2003, Kjeldskov and Graham did a literature review to examine research
methods in Mobile Human-Computer Interaction (Mobile HCI) [KG03]. They
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found that the majority of methods being applied were tests in laboratory settings.
Consequently, they argued in favor of more realistic testing scenarios like field
studies or case studies to create more user and use case oriented systems. After
the identification of this gap followed a wide-spread debate in the field of Mobile
HCI about whether to test in the laboratory or in the field [Kje+04; KS14; Nie+06;
Rog+07].

According to Kjeldskov and Skov, it is not essential if or why researchers
should do studies in the laboratory or field, but when and how they should do
it [KS14]. These crucial questions are only answerable from study to study.
Kjeldskov, Skov, Als, and Høegh, for example, conducted a usability study of the
same system and the same tasks with six persons in the field and six persons
in the lab. According to their results, evaluating in both settings can bring the
same list of usability issues, and that recreating some contextual features in the
lab suffices. Subsequently, they brought up the question whether field studies
are “worth the hassle” [Kje+04]. Nielsen, Overgaard, Pedersen, Stage, and Stenild
also conducted the same usability study in the field and in the lab. One of their
findings is that field studies are indeed “worth the hassle” : in the field, they
identified more usability problems, as well as cognitive load and interaction
style issues specific to the field [Nie+06]. Hence, testing in the field can bring
benefits compared to the lab. Rogers et al. as well show why in-situ studies are
valuable. They conclude: “Finally, it is impossible, and nor is it desirable, to capture
everything when in situ. The key is to use various methods that reveal both hoped
for and unexpected effects of the context of use. Identifying user experience and
usability goals also provide a good framing reference from which to analyze the
details of certain events” [Rog+07]. Kjeldskov and Skov “suggest moving beyond
usability evaluations, and to engage with field studies that are truly in-the-wild, and
longitudinal” [KS14]. On a concluding note it can be said that while it is possible
to simulate certain contextual factors in the lab, the whole range of context(s) of
usage is only accessible “in the wild” [KS14].

2.1.1 Methods and Best Practices for Field Studies in HCI

Roto, Vätäjä, Jumisko-Pyykkö, and Vänänen-Vainio-Mattila identified 18 best
practices for taking context factors into account during user experience field
studies [Rot+11]. This guideline aims at supporting researchers in conducting
more reliable user experience studies in the field and will be listed and explained
in the following. While some of those guidelines seem to be very basic at first,
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they nonetheless provide a sound basis for a structured approach to plan, conduct,
and evaluate field studies.

Planning phase:
During the planning phase, the most important steps are to get a good feeling

for the contexts to assess and balance the data to gather against expected outcomes.
Running a pilot test is crucial:

• P1. Identify and select realistic contexts for the tasks.

• P2. Recruit realistic participants for the selected contexts.

• P3. Examine selected contexts in advance.

• P4. Identify central context characteristics, and plan how to treat them.

• P5. Combine several methods and instruments to collect context data.

• P6. Consider the cost-benefit ratio of context data richness.

• P7. Prepare for unexpected events and changes in context.

• P8. Run a pilot test in the context to ensure fluent capturing of context
data. [Rot+11]

Data collection phase:
During the data collection phase, it is essential to assess context, usage data, as

well as the participants’ subjective data. This necessity goes hand in hand with
the three factors that affect User Experience (UX) in real life (properties of the
interactive system, the user’s current state and context):

• C1. Minimize the effects of research setup on participants and the context.

• C2. Capture the context with multimedia.

• C3. Respect social norms when recording context.

• C4. Supplement objective context data with subjective data on participants’
context perceptions.

• C5. Record the context during use, but collect participants’ perceptions of it
retrospectively to minimize interference.
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• C6. Support participants on self-reporting context data. [Rot+11]

One way to collect contextual data in the field is to use the broad variety of
available sensors. Many ready-to-use consumer devices exist (inexpensive action
cameras, et cetera), but also Open-Source hardware solutions with inexpensive
parts (Arduino, Raspberry Pi, et cetera) are available [LFH17]. However, this sen-
sor data comes with specific challenges: the data has to be saved on the go (often
on a remote server), while the corpus of data can get enormous. Preprocessing,
filtering, identification of relevant features, classification, and either heuristical or
machine learning driven evaluation are just some of the challenges. Simulation
or mathematical models can also help in gaining insights from these data sources.

Analysis phase:
Finally, in the analysis phase, it is important to carefully consider both UX and

contextual data while paying attention to different context categories:

• A1. Synchronize context data with collected UX data.

• A2. Pay attention to the different context categories when identifying context
characteristics that affected UX.

• A3. Use context categories to understand context effects, surprising results in
particular.

• A4. Communicate the context insights to designers, not only the UX. [Rot+11]

These guidelines are especially helpful for researchers who usually do all their
testing in the lab.

2.1.2 Context

In research, context plays a major role in a variety of disciplines. The first
concepts of context stem from marketing research [JV10; Bel75]. The number
and quality of contexts, in which mobile interaction takes place, is unforeseeable.
However, categorizing and describing context is crucial during the whole software
development cycle for mobile systems: during requirement analysis, different
contexts need to be taken into account. For development, contextual factors can
heavily influence the usage of sensors of a system (for example a smartphone).
Last but not least, testing a mobile system should ideally happen in its natural
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contexts. Those natural contexts need additionally to be taken into account during
the evaluation of a mobile system.

Reichl et al. [Rei+15] define context for mobile ICT research as follows: “Context
refers to anything that can be used to specify or clarify the meaning of an event. In
research settings, context is typically used to illustrate something that complicates a
seemingly neutral situation, such as a research laboratory with as few disturbing
effects as possible. […] There is no context-free situation”.

There are many different definitions of the term “context”, stemming from
different disciplines. Dey, Abowd, and Salber refer to context as “any information
that can be used to characterize the situation of entities (i.e., whether a person, place,
or object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves. Context is typically
the location, identity, and state of people, groups, and computational and physical
objects.” [DAS01]. Another definition describes context as circumstances under
which a (mobile) activity takes place [Rot06]. According to the International
Organization for Standardization (ISO) standard 13407, the context of use is
related to task, user characteristics, as well as physical, technical, and social
environment [Sta99]. Jumisko-Pyykkö and Vainio portray numerous additional
approaches for defining the term “context” [JV10].

Across all disciplines, Belkwas one of the first researchers to describe the impact
of context (or, “situational variables”, as Belk calls them) on consumer behavior
in the field of marketing research [Bel75], since a broader view on realistic
consumer behavior was needed to account for the influence of the environment on
behavior. Belk distinguishes between fivemain factors to systematically describe a
situation: physical surroundings, social surroundings, temporal perspective, task
definition, and antecedent states. While the first four factors are relatively easy
to grasp without further definition, the last factor, “antecedent states”, describes
features that characterize the situation. Antecedent states include all states the
individual brings to the situation, rather than states of the individual that directly
result from the situation.

The impact of the contextual environment on mobile device usage and the
influence of mobile device usage on the context are subject to many studies
[Hua+12; Min+11]. Those studies show that not only context has an impact on
usage behavior. It also affects the perceived quality of experience [LMP+12].
However, mobile device interaction can also lead to neglection of one’s surround-
ings. This behavior can lead to potentially fatal accidents [Smi+13] - even if the
user adapts his/her strategies of dealing with contextual influences during mobile
phone usage [Tim+17].
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A first working model of systematically describing the different dimensions
of context comes from Schmidt, Beigl, and Gellersen [SBG99]. They describe
six potential influence factors, which are again associated with two dimensions:
human factors (information on the user, the user’s tasks, and social environment)
and physical environment (infrastructure, physical conditions, and location).
Another model, directly building on the one by Schmidt, Beigl, and Gellersen,
comes from Reichmuth and Möller: Their model directly refers to mobile devices,
to which they added tiredness and stress as influences [RM14].

Reichl et al. distinguish between two context dimensions relevant for communi-
cation networks and services [Rei+15], which is especially important to research
done in the field of Quality of Experience (QoE): physical environment (home,
office, commuting, other places, indoors, outdoors, etc.) and social environment
(alone, with an important person, with friends, in a public place, etc.). Both of
those dimensions predictably affect behavior and thus have an impact on the
scenario mentioned above. From this starting point, they develop a set of general-
purpose contextual parameters that indirectly describe contextual influence so
that they enable inferring to behavior: opportunity cost, interruption cost, social
attention, time pressure, disruptions and distractions, pressure to be satisfied or
dissatisfied. An overview can be seen in Table 2.1.

Finally, Jumisko-Pyykkö and Vainio present the CoU-HMCI, based on an ex-
tensive literature review of 100+ papers [JV10]. Their model consists of five main
context components (physical, temporal, task, social and technical/information)
and is designed for exploring general forms of contextual influence, thus allowing
to compare specific circumstances of, for example, usage scenarios or field studies
(see Figure 2.1). This model goes hand in hand with the classification of factors
influencing the UX of a system: properties of the interactive system, the user’s
current state and the context [Rot+11].

The CoU-HMCI includes significant context components (physical, social, task,
temporal, technical and informational) and properties (level of magnitude, dy-
namism, pattern and typical combinations), which enable researchers to describe
and define those contextual dimensions in more detail and in a more dynamic way.

Contextual dimensions (after [JV10]):

Physical context Includes spatial location (for example coordinates), func-
tional places and spaces (for example sports gym, pedestrian areas, co-
working space), environmental attributes (for example sensed over sen-

16



2.1 Studying Context in the Field

Parameter Affects… Effect

Other opportuni-
ties

Behavior Security Task as secondary task

Interruptions Behavior Enhances chance for errors
Social attention Experience Enhances chance for errors due to

lack of focus and attentional resources.
Distraction due to potential privacy
and security breach (shoulder surfing,
et cetera)

Time Pressure Experience Enhances chance for errors
Disruptions and
distractions

Experience Enhances chance for errors

Pressure to be sat-
isfied or dissatis-
fied

Experience Not applicable. Mostly those tasks are
not experienced to be satisfying since
they are necessary, hard, and mostly
secondary tasks.

Table 2.1: General-purpose contextual parameters

sors), movement and mobility of the user and artifacts (physical objects
surrounding the human-mobile interaction.

Temporal context Includes duration of the interaction session or event
where the interaction takes place, time of day, week and year, before -
during - after of the user’s interaction, relative temporal tensions like
hurrying or waiting (actions relation to time) and synchronism (for example
asynchronous actions like text messaging or synchronous ones like phone
calls).

Task context Includes multitasking, interruptions, and task domain (work-
related or entertainment-related).

Social context Includes persons present in the situation, interpersonal
interaction (for example turn taking and relations to one another) and
culture (values, norms, and attitudes of a specific culture, like organizational
or work culture).
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Figure 2.1: Unified model of context in human-mobile computer interaction (CoU-HMCI)
by Jumisko-Pyykkö and Vainio [JV10]

Technical and information context Includes other systems and ser-
vices which are related to the users’ system or service (devices, applications,
networks, …), interoperability between and across devices, informational
artifacts and access (relevant information provided by other means) and
mixed reality systems.

Properties (after [JV10]):

Level of magnitude (micro - macro) The specifics of the environment
and contextual dimensions can range from micro (small artifacts near to
the user) or macro (the city district in which the interaction is happening).
Also, interaction can be described on a micro (single clicks on a touch
interface) as well as on a macro scale (interaction types among different
groups in the city).

Level of dynamism (static - dynamic) This, for example, relates to the
contexts in which a task happens. Some tasks happen in rather static
environments (for example always in the evening at home), while others
happen in dynamically changing contexts (for example searching for an
online route while changing transport means).
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Pattern (rhythmic - random) Random patterns are events or interac-
tions that take place only infrequently or once, while rhythmic patterns
are events or interactions that repeatedly happen on a predictable basis.

Typical combinations Those are combinations of contextual characteris-
tics or properties that typically occur together (for example group interac-
tion during team meetings, routing during a commute).

As can be seen, context plays a role in different fields of research, including field
study research methodology and Mobile HCI research. After having illustrated
the most relevant definitions and frameworks for the concept of context in this
section, the next section will deal with relevant psychological concepts stemming
from cognitive psychology.

2.2 MentalConditions andAttention
The work at hand takes into account the internal state of the user during mobile
interaction. Several facts influence the internal state at this point: When the user
is in the field, he/she has to split attention between monitoring of surroundings
and interaction task, due to limited mental resources. This way, multitasking
ensues and potentially induces stress. This section outlines underlying concepts
from cognitive psychology.

As a discipline, psychology has found its way into computer science over
the interdisciplinary HCI. In 1983, Norman suggested to establish a discipline
called “cognitive engineering”, which should provide tools with “well-established
procedures and methods with known benefits and costs, advantages, and disadvan-
tages”, as well as “a set of quantitative modeling aids that can be used to assess the
performance to be expected from a particular design choice” [Nor83]. To achieve
these goals, he suggested three potential starting points: the underlying psy-
chological mechanisms, the users’ mental models, and analyses of the users’
performances. In the following years, Norman continued to emphasize the influ-
ence psychological factors have on the design, usage, and evaluation of electronic
systems [Nor86].

Relevant for this work are concepts from cognitive psychology like mental
resources, attention, resource allocation, situational awareness, and memory.
This chapter will explain central concepts and focus on the interdependencies
of these concepts as well as how they influence each other. A model on the
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relationship between attention and mental workload by Vidulich and Tsang can
be seen in Figure 2.2 [VT12]. Context heavily influences mental workload, which
in turn influences attention and situation awareness. As can be seen, these
dependencies are intertwined and cannot easily be separated. Overall, it can be
said that workload primarily is a result of limited attentional resources, while
perception, memory, and expertise directly influence situation awareness [VT12].

Gopher and Donchin describe workload as a concept “to account for those
aspects of the interaction between a person and a task that cause task demands
to exceed the person’s capacity to deliver” [GD86]. The workload of a task is
described as having the potential to exceed the user’s mental resources. As a
consequence, a high workload can lead to the failure of a task to be fulfilled.
Vidulich and Tsang define mental workload as “supply and demand of attentional
or processing resources” [VT12]. The demand can be exogenous (task difficulty,
task priority, contextual influences, et cetera) or endogenous (decision making,
memory updating, processing, et cetera). The skill level or expertise in the task
field moderate those processes. A task is easier for a user if he or she is an expert
in the field, and thus, this task demands less mental resources.

Measuring mental workload is of importance to researchers since, via the
outcomes, one can make predictions on task performance. For assessing mental
workload, several different methodological approaches are possible [VT12]:

• Subjective experience can be assessed, either via qualitative interviews
or questionnaires, or standardized scales in a quantitative way.

• Performance during task execution can be measured, for instance by the
time it takes to complete a task, by the quality of the outcome or the errors
which are being made during execution.

• Physiological manifestations measure the user’s internal state over bio-
physiological measurements, like an Electroencephalography (EEG) or an
Electrocardiogram (ECG).

Load theory explains distractions and the influence of task load [Lav05; Lav10].
Lavie argues that for tasks with high cognitive load, we need most of our cognitive
processing capacity and tend to be more distracted by irrelevant stimuli. This
means we get distracted more quickly because our ability to discriminate between
relevant and irrelevant stimuli is diminished. With high perceptual load, it is
vice-versa: the more a task binds our perceptual capacities, the less quickly we
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Figure 2.2: Relationship between attention, mental workload and situation awareness
according to Vidulich and Tsang [VT12]

get distracted. These effects on attention are presumably independent of each
other [EK15].

Most of those theories become interesting when having a look at multitask-
ing or divided attention. Interestingly, heavy multitaskers are distributing their
attention on several stimuli at once, while low multitaskers have a better top-
down attentional control. This fact means that a long history of multitasking is
not necessarily beneficial for top-down attentional control. On the other hand,
heavy multitaskers were more efficient at task switching than low multitaskers.
Furthermore, it seems that we can split our attention during multitasking more
effortlessly between tasks in different modalities (auditory, visual, olfactory).
The theory of Wickens also supports this fact, for instance by developing the
Multiple Resource Model for predicting potential breakdowns of mental resources
during divided attention and improving user interfaces based on those predic-
tions [Wic02; WM07]. In this model, multiple dimensions characterize mental
demand (see Figure 2.3). For example, focus on the smartphone uses focal vision,
which is used in the foveal region for discrimination of small details, and the
surroundings are monitored by ambient vision. While no task relies exclusively
on one modality of information processing or another, two tasks can still com-
pete for resources from a common resource-defining channel. The 4-D multiple
resource model can help in predicting the degradation of performance and help
in suggesting improvements in mobile interaction design.

Summarizing, practice is the most crucial factor during multitasking: if a
person practices multitasking between different tasks, he/she is becoming in-
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Figure 2.3: The 4-D Multiple Resource Model by Wickens [Wic08]

creasingly better at handling the multitasking [EK15]. Also, habituation can play
a role [SS12], since habituation lowers the subjective difficulty of the involved
tasks and leads to a decreased workload.

Today’s media enriched world causes a high workload by sensory flooding,
which is why it continuously gets harder to hold the focus of attention for a
longer time, especially for the younger generation. According to Ferscha, it
“become[s] difficult for individuals to allocate attention to the right things at the
right time” [Fer14].

Sternberg and Sternberg say that “attention is the means by which we actively
process a limited amount of information from the enormous amount of informa-
tion available through our senses, our stored memories, and our other cognitive
processes.” [SS12] Attention hence allows us to use our limited mental resources
economically. If we paid attention to everything which surrounds us, we would
remain incapable of action. Additionally, attention steers the memory process,
since recalling memories is easier if the circumstances were in the focus of our
attention [SS12]. The workflow of the allocation of attention is also depicted
in Figure 2.4. Furthermore, Sternberg and Sternberg describe four significant
functions of attention: signal detection and vigilance, active search, selective
attention, and divided attention [SS12].

One particularly illustrative phenomenon regarding selective attention is the
cocktail party problem, which describes the ability to attentively listening to one
conversation, while there aremany other stimuli (other conversations) in the same
room [Che53; SS12]. Three factors govern the ability to tend to one conversation
despite the distractions: the characteristics of the conversational partner’s speech,
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sound intensity, and location of the sound origin [SS12]. This prevalent problem
from modern psychology describes our ability to willfully allocate our attentional
focus despite all distractions and other external influences.

Sensations

       +

Memories

       +

Thought processes

Driving a car It’s cold in the car
You think about your new study 
assignment
You watch the street

Attention:

Controlled processes
(including consciousness)

                 +

Automatic processes

Actions

You notice a child running across
the street in front of you

You brake

Figure 2.4: Workflow of attention by Sternberg and Sternberg [SS12]

In academic literature, attention is being distinguished in several ways: active/-
conscious attention is controlled top-down by a person and is led by goals and
expectations, whereas passive/unconscious attention happens bottom-up and is
guided by external stimuli [EK15]. Attention can also be distinguished between fo-
cused and divided attention. While for the former, a person only focuses on one of
several stimuli, for the latter attention divides between two or more stimuli at the
same time. Finally, there are internal (thoughts, memories, cognitive processing,
et cetera) and external stimuli (sounds, movements, smells, et cetera) [EK15].

Ferscha gives an overview of the concept of attention. Furthermore, he pro-
vides a model to illustrate the different factors that influence the allocation of
attention, which can be seen in Figure 2.5 [Fer14]. Themodel is based onWickens’
Multiple Resource Theory [Wic08] and extends the Salience-Effort-Expectation-
Value (SEEV) model of attention by an effort-awareness model. In the top left
part of the figure, two processes filter external stimuli: the conscious top-down
filtering process, which is mainly influenced by endogenous factors from the
user (for example willful decision of the user to look at a specific object), and
the unconscious bottom-up process, which is influenced by exogenous factors
coming from the environment (for example a loud ambulance car passing by on
the street). Those stimuli are subsequently assigned mental resources from a
limited pool, according to their relevance for the current task. The lower part
of Figure 2.5 extends the SEEV model by an effort component, which adds an
estimation of expected invested attentional resources and potential attention
shifts.
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Figure 2.5: “The SEEV (Salience-Effort-Expectation-Value) attention model - extended
with an effort awareness model” by Ferscha [Fer14]

2.2.1 Stress

The following section gives an overview of the concept of “stress”, its research
history, and potential influences on the human body and mind.

One of the first researchers to extensively explore the phenomenons we today
subsume as “stress” was Hans Selye [CTB07]. In an early article from 1936 he
described experiments on rats which were exposed to “acute non-specific nocuous
agents such as exposure to cold, surgical injury, production of spinal shock ([…]),
excessive muscular exercise, or intoxications with sub-lethal doses of diverse drugs
([…])” (stressors) [Sel+36]. He explained that the observed syndrome, which
he called “general alarm reaction” had three stages: initial alarm, resistance,
and finally exhaustion. The Hypothalamic-Pituitary-Adrenal Axis (HPA) was
activated during those reactions. In his later works, he coined the terms “eustress”
and “distress” and generally defined stress as the “non-specific response of the body
to any demand” [Sel76].

Cannon, whose work influenced Selye, brought a psychological perspective to
the phenomenon later to be known as stress, stating that also emotional stress can
lead to a “fight or flight” response [Can28; CTB07]. Stress, in general, can have
a negative outcome on the occurrence of diseases, most widely backed through
the link between stress and cardiovascular and infectious diseases, as well as
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cancer [CTB07]. Stress can take on chronic and acute forms, where the former
has more potential implications on health. Figure 2.6 shows a simplified model
of stress-related processes by Cacioppo, Tassinary, and Berntson [CTB07], which
could be related to health outcomes.

STRESS 
EXPOSURE 

(Acute, Chronic)
STRESS 

REACTIVITY
STRESS 

RECOVERY
DISEASE 

MORBIDITY

RESTORATIVE 
PROCESSES

DISEASE 
MORTALITY

Figure 2.6: Simplified model of stress related processes which could be related to health
outcomes by Cacioppo et al. [CTB07]

Bali and Jaggi define stress as a “state of threatened homeostasis during which a
variety of adaptive processes are activated to produce physiological and behavioral
changes” [BJ15]. Due to distress and eustress, which can be roughly described as
negative respectively positive stress, merely using the terminus “stress” comes
with some drawbacks. What most people colloquially mean by stress in psychol-
ogy is often referred to as “arousal”.

Sternberg and Sternberg define arousal as “degree of physiological excitation,
responsitivity, and readiness for action, relative to a baseline” [SS12]. Different
psychological models exist, for example the circumplex model of valence and
arousal by Russell [Rus80] (see Figure 2.7). Low as well as high arousal can
therefore be either positively or negatively loaded. Examples would be high
positive arousal during a video game (excitement), high negative arousal during a
frightening experience (distress), low negative arousal during an unemployment
phase (depression) or low positive arousal after a rich and delightful dinner
(contentment).

As mentioned before, stress influences our body. The nerve system of the
human body can be divided into the central nervous system and the peripheral
nervous system. While the central nervous system (or voluntary nervous system)
consists of the brain and the spinal cord, the peripheral nervous system denotes all
other nerve structures in the body. The somatic nervous system, which controls
the sensory and somatosensory system, and the Autonomic Nervous System
(ANS), which contains all systems to regulate the body’s functions involuntarily,
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Figure 2.7: Circumplex model of valence and arousal by Russell [Rus80]

are parts of the peripheral nervous system. The autonomic nervous system
(formerly called vegetative nervous system) regulates stress and stress reactions
in the human body.

The autonomic nervous system contains two antagonists regulating stress
reactions (among other functions): the Sympathetic Nervous System (SNS) and
the Parasympathetic Nervous System (PNS). Both systems are always active at a
certain level to guarantee the body’s equilibrium and homeostasis, but according
to different stimuli, one or the other can overtake for a while. The sympathetic
nervous system responds to external stressors with a “fight or flight” response,
while the parasympathetic nervous system is responsible for “rest and digest”
phases of the body. Activation of the SNS, the interplay of SNS and PNS and
recovery time after high activation of the SNS are indicators for a stress reaction
in the body [PRR06].

The concept of stress and stress research have also found their way into cur-
rent HCI research. Most notably, the field of Affective Computing explores how
human emotions can be sensed, modeled, adapted to, expressed and generally
taken into account by a technological system during human-computer interac-
tion [Pic99; Pic03]. Many studies are dealing with stress detection for affective
computing [GTC16; HKC10; ZB06; SP13]. The section below deals with the
assessment of the users’ internal states (for instance stress) via bio-signals.

Fairclough and Gilleade define “physiological computing” as “any technological
system where human physiology is directly monitored and transformed into a control
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input. It represents the logical endpoint of convergence between the human nervous
system and its silicon-based counterparts.” [FG14]. Originally coming from the
medical field, those measurements aid behavioral researchers in psychology, HCI,
and also QoE [CTB07; Cow+16; Eng+17]. Those systems can deliver represen-
tations of emotions, motivations, and cognition of the user. Recent advances
in sensor technology render those systems increasingly affordable, mobile, and
accurate. This quantified approach can pose a counterpart to qualitative research
in HCI, for example in eHealth applications. The recent customer trend of “Quan-
tified Self”, or “self-tracking”, directly emerged from the increasing number of
available solutions on the market [Swa12; Swa13; Lup16].

Cowley et al. provide an overview of current possibilities and methodology to
capture bio-physiological measurements for HCI research [Cow+16]: “The aim is
to extract quantitative indices of essentially qualitative cognitive or affective states.
[…] there is an issue of establishing ground truth, and the choice of psychological
model becomes important”.

Psychophysiological computing holds many possibilities: Through unobtrusive
monitoring of the users’ internal states systems can automatically adapt to the
users’ needs. Also, automatic assessments of emotions or even quality ratings
of media can replace extensive and potentially biased questionnaires. Relevant
application fields contain workplace related applications (especially high-risk
environments), multimedia systems, or eHealth. The most relevant field for this
work regarding psychophysiological computing is the field of HCI since some
automatic logic in the background can improve the interplay of the system and
the human user. In their work, Cowley et al. concentrate on sensors that are
“lightweight, wearable or remotely operable, and application-ready” [Cow+16].
Concerning signals, they distinguish between internal, external, and combined
signals.

Also, biophysiological measurements have arrived in the field of HCI, mainly
as a source of insight during testing. With sensors becoming increasingly mo-
bile, researchers can incorporate them into their mobile field studies, or even
research in the fields of augmented and virtual reality (Augmented Reality (AR)
respectively Virtual Reality (VR)) [CMF18]. In the best case, these measurements
are unobtrusive, discrete, and - ideally - objective. However, measuring signals
directly from the human body remains challenging, since bodies are not normed,
signals are very small, and moving during testing potentially creates artifacts.
With increasing miniaturization, biophysical sensors can be utilized during field
studies, while so far, the possibilities were limited to a laboratory setting only.
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There are different kinds of signals that can be measured on the human body:
bioelectrical signals, that means signals from muscles and nerves, electrical con-
ductance, e.g. Galvanic Skin Response (GSR) on the skin, bio-acoustic signals,
which are sounds within the body, e.g. heartbeats or air circulation in the lungs,
or bio-optical signals, which are images or videos taken of the human body, e.g.
pupil movements or blood flow beneath the skin. (This list is not exhaustive
and focuses on the application in HCI.) [Sch15]. An overview of different biosig-
nals, which can be measured on the human body, can be seen in the appendix
(see section A.3).

Measuring electrical signals coming from the body became a medical diag-
nostic standard in the past 200 years [CTB07]. Electrostimulation, which means
stimulating the body through electrical signals to, for example, induce muscle
contractions, is frequently used in physiotherapy and rehabilitation [Sch15]. As
mentioned before, electrophysiological research has gotten its place in the field
of HCI, and interfacing with the human body has become an emerging field
of research. “Understanding how to use electrical connections as new interaction
modalities, creating interaction techniques and devices based on biosignals, and
using physiological information as a means of evaluation is all clearly within our
discipline” [Sch15].

One particularly interesting strand of research is biofeedback, which aims at
bringing unconscious physiological body processes to consciousness, for example
by visualizing biophysical signals to the respective user [Yu18]. To accomplish
this process, different signals can be used, for example heart rate or breathing pat-
terns [Yu18; Fre+18]. Application areas tackle several psychological phenomena,
for instance stress management or anti-anxiety training.

Newer research ideates new input as well as output possibilities with the help
of biophysical measurements or signals. One prototype by Lopes and Baudisch,
for example, uses induced muscle contractions as output by a video flight game.
As a result of muscle stimulation on the lower forearm, participants were forced
to tilt the smartphone they played on and had to actively work against this
movement by the help of their other muscles [LB13]. This work is prototypical for
the newest strands of research which envision new input and output modalities
for ubiquitous use cases or gaming, for example.

To evaluate biophysical signals, a supervised classifier can be trained with
pre-labeled data from a psychological model (for instance the circumplex model
of valence and arousal by Russell [Rus80], see Figure 2.7 from earlier) [Cow+16].
Quite a lot of the user’s internal states can be referred through biophysical mea-
surements. For example, Barral, Kosunen, and Jacucci use EEG, Electrodermal
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Activity (EDA), and ECG as sources to infer humor appraisal in a realistic environ-
ment [BKJ18]. They build predictive models to infer the participants’ appraisal of
humor successfully.

The next big step for physiological computing will be to focus more on the
field. As an example, Barral, Kosunen, and Jacucci also conclude in their study
mentioned above that most people view humoristic content on their smartphone
while on the go (for instance webcomics, please refer to the study), and that
mobile sensors and mobile studies should be conducted to assess more realistic
data [BKJ18]. Cassani, Moinnereau, and Falk also describe the use of a novel EEG
measurement technique, mounted on a VR glasses set. It is used for non-intrusive
QoE assessment [CMF18] on the go, which could be used for building highly
immersive VR settings or real-time quality ratings. Hernandez, McDuff, and
Picard measure cardiac and respiratory parameters using only accelerometer
and gyroscope sensors worn as a wristband [HMP15]. This type of measure-
ment is called Ballistocardiography (BCG). In another study, Frey, Grabli, Slyper,
and Cauchard develop a wearable pendant for assessing breathing patterns and
sending biofeedback in real-time. Participants could intentionally modify their
breathing pattern to match the biofeedback as a technique for understanding the
underlying emotion [Fre+18].

As these diverse research projects demonstrate, we can expect a high number
of innovative and efficient use cases and systems to measure biophysical signals
in the field.

Heart Rate Variability

One particularly informative biosignal to measure is the human heart rate vari-
ability:

Heart Rate Variability (HRV) is an umbrella term for several metrics regarding
signal from the heart. It indicates the variability between different heartbeats or
changes in the rhythm of the beating heart [Cow+16]. While Heart Rate (HR) only
indicates the aggregated Beats per Minute (BPM), HRV takes the time intervals
between subsequent heartbeats (often denoted in milliseconds) and indicates
how much variation there is in-between single heartbeats. These intervals are
also called RR intervals. Both the parasympathetic and the sympathetic nervous
system influence the heart, and different HRVmetricsmap different functionalities
of the nervous system [Cow+16]. Summed up, HRV can be seen as an easily
assessable biometric measure that gives an exceptional all-round indicator of
overall health and stress of the body.
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Different measures can indicate the HRV of a user. They can be distinguished
into time-domain, frequency-domain, and non-linear analysis measures. Depend-
ing on the length of the measurement, those measures can be ultra-short term (<
5 minutes), short term (> 5 minutes) and long term (∽ 24 hours).

In the following some time domain measures for HRV are listed [SG17]:

• RMSSD: RMSSD stands for “root mean square of differences between suc-
cessive R-R intervals”. It reflects the variance of successive heartbeats and
is mostly affected by the parasympathetic nervous system. As has been
laid out before, the parasympathetic nervous system (PNS) is responsible
for our “rest and digest” mechanisms. The RMSSD can, therefore, be seen
as an indicator of the ability of the body to recover. Equation 2.1 defines
RMSSD as a measure. It is often used for short-term measurements.

• SDNN: The Standard Deviation of the Inter-Beat Interval of Normal Sinus
Beats (SDNN) is influenced by both the parasympathetic, as well as the
sympathetic, nervous system. It is often used for long term measurements.

• pNN50: The “Percentage of Successive Normalized Sinus (N-N) Intervals that
Differ from Each Other by More Than 50 Milliseconds (pNN50)” is closely
correlated with parasympathetic nervous activity [Mie+02]. It is often used
for long term measurements.

𝑅𝑀𝑆𝑆𝐷 = √∑𝑁−1
𝑖=1 (𝑅𝑅𝑖 − 𝑅𝑅𝑖+1)2

𝑁 − 1 (2.1)

For frequency domain measures, a spectral analysis is performed, usually
by applying a Fast Fourier Transformation (FFT). The outcome can be separated
into Ultra Low Frequency (ULF), Very Low Frequency (LF), Low Frequency (LF),
and High Frequency (HF) power bands. Here, only high and low frequencies are
described [SG17]:

• HF: This measure denotes the high frequencies (0.15 to 0.4 Hz) in the
frequency domain. High frequencies denote parasympathetic activity and
heart rate variations due to the respiratory cycle. A low value in the
high-frequency range indicates stress or anxiety.

• LF: Low frequencies (0.04 Hz to 0.15 Hz) in the power spectrum are mainly
influenced by the sympathetic nervous system and the activity of the
baroreceptors, which are blood vessel sensors to regulate blood pressure.
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• LF/HF ratio: The ratio between the frequency bands as mentioned above
can help to estimate the ratio between sympathetic and parasympathetic
nervous system. It is not an ultimate indicator, however, since the inter-
play between sympathetic and parasympathetic nervous systems is more
complex.

Non-linear measures of HRV also exist but will not be described at this point
since they are not relevant for this work.

The measurement length to calculate short-term HRV depends on the nature
of each experimental or clinical setup. In 1996, Malik et al. pointed out that while
5 minutes of measurements should be taken to ensure a certain comparability,
shorter measurement durations are also possible [Mal+96]. Also, in 1996, The
European Society for Cardiology and the North American Society of Pacing and
Electrophysiology published a paper with standards surrounding HRV [Cam+96].
They provided reference values, which, unfortunately, not all were based on
sufficiently large groups of probands. The task force suggests the usage of RMSSD
and pNN50 due to their robustness in mathematical terms. The quasi-standard of 5
minutes as the shortest measurement interval for short-term HRV measurements
has been followed mostly until today.

However, HRV measurements shorter than 5 minutes recently have proven
to have predictive qualities [HMM04; Bru+99; EF14; MA06; EFN17]. Hamilton,
Mckechnie, and Macfarlane [HMM04] argue that HRV over five minutes (short
term) or 24 hours (long term) is mostly measured to assess autonomic function
and as a reliable predictive indicator in cardiology. Nonetheless, in some settings,
even 5minutes is too long a period. Also, the 5-minute measurements are assumed
to be made under stable conditions, which often cannot be guaranteed. They
conducted a study in which they took standard ECG measurements of 10 seconds
and succeeded in predicting Cardiac Vagal Tone (CVT) [HMM04]. This result
indicates that also measurements of 10 seconds can bear predictive qualities.

Plews, Laursen, Stanley, Kilding, and Buchheit monitor training status in en-
durance sports based on vagal-related indices of HRV [Ple+13]. They prefer the
logarithm of the RMSSD, the Natural Logarithm of the Root Mean Square of Dif-
ferences Between Successive Heartbeat Intervals (LNRMSSD)), as in their eyes it is
the most practical HRVmeasure to apply in this case for several reasons: It proves
to be suitable for ambulatory usage, is not influenced by breathing frequency and
captures parasympathetic activity even over short time spans, which is useful in
cases where probands do not have time for extensive measurements [HMM04]
(athletes in their case).

31



2 Related Work

Other studies also have found the LNRMSSD to be the measure of choice.
Esco and Flatt, for example, compared 5-minute measurements of HRV with
10-, 30- and 60-second long measurements [EF14]. They conclude that “the
utility of ultra-short-term LNRMSSD measures, especially 60 seconds in duration,
within field setting for monitoring athletes at rest and in response to stress appears
promising” [EF14]. McNames and Aboy analyze the accuracy of 11 HRV metrics
with differing time recording spans from 10 seconds to 10 minutes compared to
5-minute measurements [MA06]. They conclude that most of those HRV metrics
are “biased estimates” and that segments of different durations are not comparable.
Esco, Flatt, and Nakamura note that LNRMSSD can be accurately measured in a
timespan of 60 seconds and a following 60 second stabilization period [EFN17].
However, in a mathematical sense, it still is up to debate how accurate HRV
calculations over ultra-short to short timespans are.

Cinaz, Arnrich, Marca, and Tröster demonstrate that RMSSD significantly
decreases when mental workload increases [Cin+13; Fal+16]. Thus, RMSSD
proves to be a reliable indicator for determining mental workload.

Nunan, Sandercock, and Brodie provide a review of short-term HRV data (gath-
ered from healthy individuals) from publications published since 1996 [NSB10].
They review 44 studies with 21438 participants. A set of agreed normative values
for HRV is lacking, which this study seeks to deliver. The cross-study overall
mean and standard deviation for RMSSD across 15 studies was 42 ± 15. Umetani,
Singer, McCraty, and Atkinson show that HRV and HR decrease during the age-
ing process, and that HRV is also gender dependent. The authors show that for
age 20-29 an RMSSD value of 43±19 and for ages 30-39 a value of 35±11 is the
average [Ume+98].

Regarding application areas, first and foremost, HRV is used in medical exami-
nation. Of course, themost apparent application area is cardiac diseases. However,
also in psychotherapeutic settings, HRV can prove very helpful. Tan, Dao, Farmer,
Sutherland, and Gevirtz, for example, examine the usage of HRV with Post-
Traumatic Stress Disorder (PTSD) patients and find that they have significantly
depressed HRV and that biofeedback could help during treatment [Tan+11].

In HCI research, HRV is often used to measure mental workload or negative
and positive valence of an experience [DG11]. For instance, Choi, Kim, Kwon,
Kim, Ryu, and Park examine the validity of HRV as a tool to evaluate emotions
using the International Affective Picture System (IAPS) [Cho+17]. HRV was
evaluated against Self-Assessment Manikin (SAM) ratings. The study suggests
that one can assess strong emotions only with HRV. Valderas, Bolea, Laguna,
Vallverdú, and Bailón aim at assessing human emotions (relax, fear, and joy)
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through HRV and Respiratory Frequency (RF) [Val+15]. Their first results are
promising.

Last but not least, in safety-critical working environments, research can be
supported by using HRV as a measure. Orsila et al., for example, conducted a pilot
study to assess the potential connection of subjectively perceived stress and HRV.
With 30 participants and a 1-item scale of perceived stress, they showed a high
correlation between the scale and HRV differences betweenmorning and workday
measurements [Ors+08]. Despite its severe limitations, the study is interesting
in the fact that the increase in HRV-measured stress could be explainable by
subjectively perceived stress.

Summarizing, it can be said that mental resources, internal state, attention,
stress, and biophysical measurements are broad topics that can only briefly be
broached in the scope of this thesis. The next chapter will deal with mobile inter-
action and particularly different types of errors in human-machine-interaction.

2.3 Mobile Interaction and Errors
Another central concept for this thesis is interaction, especially mobile interac-
tion, and errors during interaction. Oxford University Press defines the term
“interaction” as follows [Oxf18]:

1 Reciprocal action or influence.
1.1 Communication or direct involvement with someone or some-

thing.

Interaction is the primary building block of human-computer interaction (HCI)
since, without interaction, there would be no connection between humans and
computers. As already mentioned, the work at hand mainly focuses on mobile
human-computer interaction, which describes the mobile interaction of humans
and (mainly mobile) computers or devices. Mobile interaction has quickly risen
since modern smartphones were introduced with the first Apple iPhone to the
market in 2007 and have reached wide popularity. Due to the vast array of
possibilities, mobile interaction can happen in a variety of modalities, situations,
and locations [JM+06].

Several large scale studies have explored the way users interact with their
mobile devices naturally or communicate on a daily base. They find that social
communication apps like instant messengers account for the majority of human-
smartphone interaction: Dingler and Pielot investigate how attentive people are
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towards their mobile phone messages in a large scale study [DP15]. They show
that in 75% of the cases, mobile phone users return to their attentive state within
five minutes. They also show that in their sample, WhatsApp is used for 77% of
all sent messages. Henze, Rukzio, and Boll developed a typing game in order to
investigate users’ typing behavior through a large scale study [HRB12]. They
made suggestions on how to improve the typing accuracy onmodern smartphones
by visualizing a small dot on the keyboard, where the user has pressed. In another
study, Sahami Shirazi, Henze, Dingler, Pielot, Weber, and Schmidt have a look
at 200 million notifications from more than 40000 users [Sah+14]. They find
out that 50% of the interaction with notifications happened within the first 30
seconds. WhatsApp dominates the list, which is suggesting that this app is used
most widely and most frequently (notifications per day: mean 19.9, SD 64.5).
Messaging apps also had the shortest click time. In another large scale study,
Böhmer, Hecht, Schöning, Krüger, and Bauer logged detailed usage data of 4100
users with an Android smartphone. [Böh+11]. They show that communication
applications are used heavily during the whole day, and are almost always opened
as first application after logging into the smartphone. Users also approximately
spend about an hour a day using their smartphone.

Of course, errors also happen during mobile interaction. In another large
scale study with observing 136 million keystrokes, Dhakal, Feit, Kristensson, and
Oulasvirta show that fast typers make fewer mistakes during typing [Dha+18].
This fact goes hand in hand with research showing that expertise can help reduce
error rates [VT12]. Practice, in this case, means skills through deliberate practice,
but can also mean acquired domain-specific knowledge.

When humans interact with technology, errors happen unavoidably. Stress
seems to play a role: Ciman, Wac, and Gaggi show that stress affects interaction
and that the way that humans interact with their smartphone. Particularly they
showed that the number of errors made during writing increases with stress,
which they found to be statistically significant [CWG15]. This section will deal
with different types of human errors that can happen during the planning and
execution of action sequences.

Reason points out that there are two types of views on errors: the system
approach and the person approach [Rea00]. While the person approach focuses on
description and explanation of errors caused by individuals, the system approach
describes how the surroundings and circumstances, under which people work,
foster, or prevent errors to happen. He also describes the “the Swiss Cheese
Model of System Accidents”, which means that several layers of defenses should
exist to prevent a single point of failure (for example from the user side).
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The fundamental work done by Reason [Rea90] led to the different layers of
error which this work systematically assesses. In his Generic Error-Modeling
System (GEMS), Reason distinguishes between three main forms of errors: skill-
based slips (and lapses), rule-based mistakes and knowledge-based mis-
takes: There are “slips and lapses, in which actions deviate from current intention
due to execution failures and/or storage failures” and “mistakes, in which the actions
may run according to plan, but where the plan is inadequate to achieve its desired
outcome” [Rea90].

Slips and lapses therefore happen during the execution of an action, due to
execution or memory storage failures. Mistakes, on the other hand, are based
on a flawed plan for action execution, and therefore lead to an unsuccessful
action despite correct execution. In a nutshell, mistakes generally happen during
intentional, controlled processes, while slips often occur during automatic pro-
cesses [SS12]. These types of errors are closely based on Rasmussen and Jensen’s
framework, which describes three levels of cognitive control mechanisms, which
are steering human performance: skill, rule, and knowledge [RJ74]:

Skills represent patterns of preprogrammed instructions that are stored in
memory. When errors happen at the skill level, they mostly happen due to
incorrect force, space, or time coordination.

Rules describe solutions to familiar problems in the form of if (state) then
(diagnosis ‖ remedial action). Errors occur most often when wrong rules
are applied, or incorrect procedures are recalled.

Knowledge is the highest level, which comes into play when novel situations
are met. At this level, Rasmussen and Jensen found eight succeeding stages
of decision making for solving a problem: activation (of the whole process),
observation, identification, interpretation, evaluation, goal selection, procedure
selection and activation (of the action). During the whole process, conscious
analytical processes and previously stored knowledge come into action. Errors
happen due to resource limitations or incomplete or incorrect knowledge.

Particularly interesting with regards to knowledge-based mistakes is the cog-
nitive concept of mental models: Mental models are an internal representation
of concepts and influence cognition, reasoning, and decision-making. Although
being incomplete and inaccurate by nature, mental models can provide predictive
and explanatory powers for understanding interaction [Joh83; SN93; Jon+11].
Knowledge-based mistakes are often based on erroneous mental models. Espe-
cially in the field of software security, this can prove fatal: One possible threat
scenario, for example, is for malicious software to take advantage of gaps in the
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users’ mental models [Was10]. Nevertheless, mental models can help to shed
light on users’ decisions in novel situations [Bra+10].

Coming back to the categorization of errors, historically seen, an early cat-
egorization of errors in HCI discriminates betweenmistakes and slips [Nor83;
RC02]. While the highest level specification of an action is called an intention,
a mistake represents an error in the intention itself, while the slip denotes an
error in carrying out this intention. Intentions can result from conscious decision
making or unconscious processes.

Categorizing errors along the Goals, Operators, Methods, and Selections rules
(GOMS) error modeling system [Rea90] is prevalent until today [Sch16]. The
mechanisms of all levels often go hand in hand and complement each other
(see Table 2.2).

Having a look at potential errors during system usage is crucial when wrong ac-
tions can lead to security or privacy breaches and are potentially non-recoverable.
Think of workplaces with a high risk of potential damage to either the user or
potential other stakeholders (airplane piloting, disaster management, health pro-
fessionals, et cetera). Here, a simple task failure can lead to severe dangers or
even death [Cac13].

In terms of usability evaluation, Albert and Tullis [AT13] found three situations
in which the assessment of errors makes sense, namely when errors could lead
to…

• …significant loss of efficiency during usage.

• …especially high costs to the organization or the end user.

• …task failure.

Usability engineering can reduce error rates, especially for simpler interfaces.
Another possible way to reduce error rates is automation, especially for highly
complex or safety-critical expert systems [PR97].

2.4 Conclusion
This chapter gave an overview of related work concerning the central topics of
this thesis. First, the origins, methodology, and characteristics of field studies
were depicted. A particular focus was put on best practices for conducting mobile
field studies. Context and its various dimensions were outlined. Furthermore,
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Error Types and Dimensions

Dimension Skill-Based
Errors

Rule-Based
Errors

Knowledge-Based
Errors

Type of activity Routine actions Problem-solving activities
Focus of atten-
tion

One something
other than the
task at hand

Directed at problem-related issues

Control mode Mainly by automatic processors
(schemata, respectively stored
rules)

Limited, con-
scious processes

Predictability
of error types

Largely predictable “strong-but-
wrong” errors (actions, respectively
rules)

Variable

Ratio of error
to opportunity
for error

Though absolute numbers may be
high, these constitute a small pro-
portion of the total number of op-
portunities for error

Absolute num-
bers small, but
opportunity ratio
high

Influence of sit-
uational factors

Low to moderate; intrinsic factors
(frequency of prior use) likely to ex-
ert the dominant influence

Extrinsic fac-
tors likely to
dominate

Ease of detec-
tion

Detection usually
fairly rapid and ef-
fective

Difficult, and often only achieved
through external intervention

Relationship to
change

Knowledge of
change not ac-
cessed at proper
time

When and how
anticipated
change will occur
unknown

Changes not pre-
pared for or antic-
ipated

Table 2.2: Summarizing all three error types and their distinctions after Reason [Rea90]
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an outline of fundamental concepts in cognitive psychology led to explanations
of psychological concepts relevant to this thesis, like attention, workload, or the
influence of different types of stimuli. Subsequently, the concept and physiological
fundamentals of stress were explained, followed by a detailed overview of different
physiological signals to measure in physiological computing. Heart rate as a
physiological signal, as well as heart rate variability and its different measures,
are prominently featured. The chapter concludes with a brief introduction of
interaction, followed by a delve into the topic of human errors. Thus, all essential
fundamentals for researching the role of several types of errors that hinder users
from communicating safely in the field are covered.
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Research Approach

This thesis follows the general methodological approach of user testing to tackle
the three research questions raised in section 1.1. Since this work is motivated by
investigating behavior in the field, the prevalent method is field study research.

However, not all the research needed for shedding light on the research ques-
tions can or need to be realized in field studies. Especially when gathering bio-
physical measurements on the human body, or conducting extensive qualitative
research, the quiet setup, immediacy, and recording possibilities of a laboratory
are more appropriate. As we already learned by Kjeldskov and Skov [KS14], the
question is not why or if researchers should do studies in the laboratory or field,
but when and how. Thus, the studies presented in this work have been conducted
in the laboratory or the field, depending on the underlying research question.

Another essential aspect for the studies conducted in this work is their relatively
short duration from around one hour each. Especially when logging user behavior
in the field, many approaches perform long-term studies over days or even
weeks. However, long-term assessment is only feasible when battery drainage
is taken into account, and the data collection is unintrusive and reliable. Since
in this work, a lot of contextual and other sensor data are collected in short
measurement intervals, we chose to run short-term studies, to gain a detailed
insight into human smartphone interaction. To reach a good tradeoff between
controllability and external validity, we mainly chose quasi-experimental study
designs for our field studies, which has proven to be useful when some control
should be retained [FH02].

In the following, methodological approaches and operationalizations concern-
ing central aspects of this thesis will be explained. These explanations will flow
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together into a big picture in the form of a model structuring the conducted
research.

3.1 Development of a Field Study
Framework

Research Question 1 is of methodological nature and directly addresses the
need for a framework to support mobile field studies. For the conduction of field
studies, appropriate software, as well as hardware, has to be chosen in order to
guarantee a successful assessment of the needed data. Frameworks for supporting
field studies exist but are not sufficient for the requirements posed by the underly-
ing research questions [SHR16]. Due to this reason, after extensive requirement
analysis and evaluation, the CoConUT framework for supporting mobile field
studies was developed1. The CoConUT framework consists of several Open-
Source Android apps for supporting mobile field studies, and several hardware
projects complementing these apps. An overview of the most important parts can
be seen in Figure 3.1. The framework makes use of multiple smartphone sensors
since this is an easily accessible and widespread resource most of us carry with
us daily. Also, the framework provides the necessary means for quickly assessing
the gathered data and further analysis.

A particular focus is also put on the development of additional hardware
modules, which section 4.8 will describe.

3.2 Measuring Context and Internal
State

ResearchQuestion 2 aims at exploring the interplay betweenmobile interaction,
contextual characteristics, and the user’s internal state. Contextual characteristics,
as well as the user’s internal state, can be assessed both by quantitative as well
as qualitative means. While qualitative methods work by direct user feedback
in the form of free text questionnaires, interviews, or other forms of feedback,
quantitative methods seek to measure, log, or otherwise assess quantifiable data.
Since the work at hand aims at assessing as unbiased and as realistic behavior in
the field as possible, a focus is put on quantitative measuring.

1 https://coconut.cosy.wien, last visited February 13th, 2019
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3.2 Measuring Context and Internal State

CoCoVis

CoConUT           

CoCoQuest           

 Context
 Context

Interaction

CoCoHat          

CoCoBand

Figure 3.1: The most important parts of the CoConUT framework: sensing app CoCo-
nUT, the study guide app CoCoQuest, the biofeedback wearable CoCoBand,
the qualitative recording wearable CoCoHat and the visualization dashboard
CoCoVis.

Regarding contextual features, the sensor functionalities of modern smart-
phones are used. Since modern smartphones are relatively well-equipped with
all kinds of sensors, nearly everybody today is carrying a highly capable sensing
device in their pocket. Users can use their mobile technology in an infinity of
potential contexts. To tackle this infinite number of mobile contexts, a pre-given
set of contexts is analyzed according to their sensor measurements, not vice-versa.

Measuring mental resources directly is impossible since at most indicators
can be gathered. To estimate their availability or distribution, indicators for
availability or depletion of mental resources for different tasks can be assessed,
like attentional focus, subjective workload, or objective biophysical measure-
ments. This work aims at assessing the user’s internal state mainly by biophysical
measurements of stress, for example the states valence and arousal. While much
research in this area is still to be done (which cannot be covered by this thesis
alone), hardware and evaluation approaches of heart rate variability (HRV) are
already widely used for stress detection. This thesis takes advantage of this fact
and measures the user’s internal stress level by heart rate variability.

By these means, the work at hand aims at creating a way of ubiquitously
assessing context and internal state without disturbing the user in their natural
behavior.
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Mental Models Rules Skills

Knowledge Wrong procedures
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Potentially 
disrupted 

communicationCoordination 
(typing) errors

Figure 3.2: Different errors that can occur during chatting

3.3 DifferentiatingTypes ofErrors in
Communication

One starting point of this thesis was to investigate behavior in the field, or
more narrowed down, interaction. However, since interaction still is a broad
concept, we chose to examine one particular phenomenon during interaction,
namely errors. Research Question 3 focuses on the occurrence of different
types of errors. While errors are potentially fatal for many applications, one
major and particularly interesting use case with implications for errors is mobile
communication. Thus, this thesis chooses to assess the influence of different
kinds of errors on mobile chat communication.

As we already discussed in section 2.3, Reason distinguishes between three
fundamental forms of errors: skill-based slips (and lapses), rule-based mistakes
and knowledge-based mistakes [Rea90]. These three major error types can also
happen during mobile communication (see also Figure 3.2). Users need fitting and
well-built mental models, have to apply the appropriate rule-based actions during
Mobile HCI, and need skills for typing on mobile keyboards to not compromise
their communication.

However, not all kinds of errors mentioned above need to or can be assessed
directly in the field. Especially mistakes based on erroneous knowledge cannot
be measured in the classical sense, but need to be assessed through qualitative
methods. Qualitative methods on a small scale can be cumbersome to assess in
the field. Asking why every single step was taken directly after the action in
the field would be too intrusive and bias the outcome. Luckily, mental models
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can also be assessed in the lab, since the underlying mechanisms are learned and
applied no matter which context. Rule-based decision strategies are based on
internalized knowledge and, therefore, can also be measured in the lab. While
available mental resources do influence the occurrence of mistakes, the influence
is not as high as with slips. Slips are heavily influenced by context and can easily
be measured since they are based on dexterity. Subsequently, measuring slips is
predestined for field studies.

3.4 Model and Research Plan
Figure 3.3 shows an overview of the research depicted in this work. Based on
the considerations outlined in the previous section, we decided on the mixture
of laboratory and field tests. For optimally supporting the planned field studies,
the CoConUT framework was developed. Requirement analysis, conceptual-
ization, and development of this framework are described in Chapter 4, which
tackles Research Question 1. The two subsequent chapters aim at answering
Research Questions 2 and 3 and present two laboratory and two field studies.
The laboratory studies aim at evaluating aspects that cannot be addressed in the
field. In Chapter 5, two laboratory studies about knowledge-based and rule-based
mistakes are presented. The first study explains how flawed mental models dur-
ing secure instant messaging can lead to knowledge-based mistakes. Insights
are based on qualitative data. In the second laboratory study, stress and their
influence on rule-based mistakes are explored. The participants’ heart rate is
assessed while they solve mental arithmetic tasks (MATs). Due to the nature of
the assessment, the study takes place in the laboratory as well. The field studies
are presented in Chapter 6. The first study explores mobile interaction in the
field and aims at giving some first meaningful insights into mobile behavior in
different contexts. The subsequent study builds upon the first and brings together
different contexts, stress measurements, and mobile interaction as skill-based
typing slips. The results of this research are discussed in Chapter 7.

As can be further seen in Figure 3.3, the main application case for assessing mo-
bile interaction, respectively mobile communication are instant messaging apps.
In the studies presented in this thesis, several instant messengers for Android are
drawn on, depending on the use case (Signal2, Zom3, and Telegram4).

2 https://signal.org, last visited February 13th, 2019
3 https://zom.im, last visited February 13th, 2019
4 https://telegram.org, last visited February 13th, 2019
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Figure 3.3: Model and structure of the thesis at hand
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Please note thatmachine learningmechanisms to determine different categories
in context, mental states, and error occurrence are not in the scope of this thesis.
Since such an approach would need a large body of data to train a machine
learning system, and the studies in this thesis are mostly exploratory, machine
learning remains inapplicable. It remains subject to future work. Additionally,
long-term study designs are not part of this thesis, since the planned extensive
sensor measurements would render long-term studies unfeasible due to battery
drainage.

After having laid out the research model for this thesis, the next chapter will
describe the requirement analysis, conceptualization, and development of the
CoConUT framework, including all its modules.
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The CoConUT Framework

The work described in this chapter has partly been published in the following
papers [SHR16; SHR18]:

S. Schröder, J. Hirschl, and P. Reichl.
“CoConUT: Context Collection for Non-stationary User Testing”.
In: Proceedings of the 18th International Conference on Human-Computer Inter-
action with Mobile Devices and Services Adjunct. MobileHCI ’16. Florence, Italy:
ACM, 2016, pp. 924–929.

S. Schröder, J. Hirschl, and P. Reichl.
“Exploring the Interplay of Context and Interaction in the Field”.
In: 2018 Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2018, pp. 1–6.

Furthermore, Jakob Hirschl, Kaspar Lebloch, Sebastian Dumbs, Jan de Wilde,
Christoph Seebacher, Stephan Plank and Christine Julius kindly contributed with
their projects to the framework [Hir16; Leb17; Dum17; de 18; See18; Pla18; Jul19].

Within this chapter, we address the following aspects from the research ques-
tions: How can context, the user’s internal state and interaction (especially
errors) be assessed in field studies? How can the assessed data be visualized and
analyzed? (RQ1)
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In order to do so, the CoConUT framework (“Context Collection for Non-
stationary User Testing”) and all of its components are described1. Since none
of the existing field study frameworks were suitable to match the requirements,
the different modules of the CoConUT framework were conceptualized and
developed.

4.1 Introduction

There are many apps to gather data during mobile field studies, but since every
mobile field study is different, scopes and functionalities of these apps differ
widely. As could be seen in section 2.1, field studies vary in length (short-term vs.
long-term), their prevalent research methodology (quantitative vs. qualitative vs.
mixed) and level of control (observation of naturally occurring behavior vs. field
replica in the lab).

Since the existing apps and frameworks cannot fulfill all requirements for the
work at hand (see section 4.2), the CoConUT framework to support short-term
mobile field studies was built. To foster further collaborations and development,
other researchers’ requirements were incorporated, and it was decided to build
on open hardware and software entirely. In some cases, the usage of solely open
hardware did not make sense, so some consumer devices for measurements are
incorporated into the framework. The lessons which were learned during the
process will be shared later in this thesis. All the apps in this work are developed
for Android2.

Please note that the conceptualization of the CoConUT framework as a whole
started after the development of the CoConUT sensing app (which is described
in detail in [SHR16]). After the app was created, a requirement analysis was
launched to assess the need for a holistic field study framework beyond this app.

The remainder of this chapter is structured as follows: First, related software
frameworks will be described. Then, the requirements gathered from an online
survey and expert interviews are presented, followed by the concept for the
CoConUT framework. Subsequently, all apps and other modules are described,
which in sum form the CoConUT framework. This chapter concludes with a
conclusion and a list of how CoConUT addresses the posed requirements.

1 https://coconut.cosy.wien, last visited March 18th, 2019
2 https://android.com, last visited March 13th 2019
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Figure 4.1: The LiLiPUT prototype, which is a “wearable lab environment” for user tests
in the form of a hat [Rei+07]

4.2 Related Software

Context-aware systems and apps are an essential research field in HCI, Internet
of Things (IoT), and sensing in general [SAW+94]. With modern smartphones,
context-aware systems [HSK09] have gained wide popularity. Since modern apps
can access the smartphones’ sensors and user information, context awareness
surrounds us everywhere and all the time. Hoseini-Tabatabaei, Gluhak, and Tafa-
zolli give a good overview of related context recognition apps and techniques for
context classification [HGT13]. The most prevalent issue with context awareness
through sensors is the energy consumption of the device. The more sensors are
used, the quicker the battery drainage. Additionally, the collected raw sensing
data has to be preprocessed, and contextual characteristics have to be inferred. As
a consequence, the goal of building context-aware systems should be to maximize
the amount of sensed and recognized contextual information through minimum
sensor usage. Sensors can be furthermore classified as inertial, positioning, and
ambient [HGT13]. Building generalizedmodels for the infinite number of contexts
one can be in proves to be impossible, even with sophisticated machine learning
methods [Lan+10]. While there are several frameworks for measuring mobile
context during field studies, most of them are somewhat outdated and cannot be
used on modern systems ([SHR16; Rei+07], see also Figure 4.1). This section will
present a selection of context-aware apps and frameworks for supporting field
studies and sensor collection and will shed some light on the available apps and
frameworks.

Some of the first context-awareness frameworks have been built before the
appearance of modern smartphones. With increasing sensing capabilities and ex-
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Figure 4.2: Screenshots of the app ContextPhone

tensibility, mobile phones of earlier generations have been capable of supporting
context sensing.

For instance, presented by Raento, Oulasvirta, Petit, and Toivonen in 2005,
ContextPhone is a prototyping platform for SymbianOS and Nokia Series 60
Smartphone platform that enables developers to build context-aware applica-
tions [Rae+05]. With ContextPhone, developers can access context as a resource,
incorporate existing applications, and offer fast interaction to their users as well
as unobtrusiveness, among other possibilities (see Figure 4.2).

MyExperience, presented by Froehlich, Chen, Consolvo, Harrison, and Landay
in 2007, is an application developed for Windows Mobile 2005 [Fro+07]. It can
collect subjective and objective in-situ data like user context through sensor
reading, subjective user experience through feedback and objective device usage
through logging in the background (see also Figure 4.3).

Recent research regarding context awareness puts more focus on battery effi-
ciency, data privacy, and combining several resources to gain additional value:

Xu and Zhu present the privacy-aware sensor management framework Se-
maDroid [XZ15]. SemaDroid allows users to restrict sensor usage by apps in
a fine-grained way and provides mock sensor data to apps if necessary. Van
Wissen et al. describe ContextDroid, a framework for context-aware apps on
Android [Van+10]. They lay their focus on energy-saving sensor usage as well
as usability, efficiency, extensibility, and portability. Another app presented by
Rawassizadeh et al. is the long-term lifelogging app UbiqLog [Raw+15]. This app
focuses more on the logging of user-centered data regarding the user. Contextual
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Figure 4.3: The model of the app MyExperience (left) a screenshot of the app (right)

information and context awareness play a secondary role. Thus, sensor infor-
mation is recorded, but also application usage, phone calls, text messages, and
more.

Regarding mobile field studies, there are several frameworks available for mod-
ern smartphones. In the following, three popular frameworks will be presented.

4.2.1 Funf Open Sensing Framework

Unfortunately, the Funf Open Sensing Framework is no longer available3, but
it was one of the first frameworks to explicitly support mobile field studies
(see Figure 4.4) [Aha+11]. Built for Android, it was bought by Google in 2013 and
is still available as Open-Source project, but currently not actively developed. As
a framework, it provides a wide range of functionalities to collect, upload, and
configure data signals accessible on modern smartphones.

3 http://www.funf.org, last accessed January 25th, 2018
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Figure 4.4: Input and output capabilities of the Funf framework (Source: Funf website)

4.2.2 AWARE Framework

One of the most popular frameworks for supporting mobile field studies is the
AWARE framework4, which is an Open-Source app for Android and iOS that
is “dedicated to instrument, infer, log and share mobile context information,
for application developers, researchers and smartphone users”5. It offers the
possibility to record, save, and process data recorded by smartphone sensors and
additional services and plugins to, for example, assess the user’s context (also
see Figure 4.5). Researchers can run studies online and gather their participants’
data over a web service. Experience Sampling Method (ESM) questions can be
triggered remotely. Personal information from the participants’ phones is not
assessed [FKD15]. Figure 4.6 shows several screenshots of the app.

Due to the vast possibilities AWARE offers, it requires many access rights.
Since Android’s developer guidelines permit some of the required access rights,
for Android, the AWARE framework is currently only available directly from
the website. As Open-Source solution, developers can directly develop new
plugins. Unfortunately, AWARE as a framework is quite heavy-weight, and it
does not allow visualization of multiple sensor readings at a time directly on the
smartphone.

4 https://awareframework.com, last visited March 14th 2019
5 http://www.awareframework.com/what-is-aware, last visited March 14th 2019
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Figure 4.5: Input and output capabilities of the AWARE framework (Source: AWARE
website)

Figure 4.6: Screenshots of the AWARE framework in action. The left screen shows the
starting screen with base information regarding the device. The screen in the
middle lists all out-of-the-box available plugins. On the right screen, the feed
shows the current measurements of activated sensor plugins.

53



4 The CoConUT Framework

Figure 4.7: Screenshots of Google’s Science Journal. The left screenshot shows an open
experiment. Science Journal structures the collected data into separate experi-
ment folders, to which sensor measurements can be added. A list of potential
sensors to collect is depicted in the next screenshot. The screenshot on the
right shows a sensor measurement, in this case lux by the built-in light sensor.

4.2.3 Science Journal

Google’s Science Journal6 (which can be seen in Figure 4.7) is an app for Android
and iOS, which allows pupils, students, and other researchers to conduct small
studies using sensor logging, taking notes, and enriching the study notebook
with images and videos. It became Open-Source in 20167 and allows connecting
external devices via Bluetooth, for example Arduino boards8. Functionalities and
an overview can be seen in Figure 4.7. However, when this project was started,
Science Journal was not Open-Source yet and collected data streams could only
be exported in a closed source format.

6 https://sciencejournal.withgoogle.com, last visited March 14th 2019
7 https://github.com/google/science-journal, last visited March 14th 2019
8 https://github.com/google/science-journal-arduino, last visited March 14th 2019
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4.3 Reqirements

In this section, we describe our requirements for a mobile field study framework.

For the work at hand, several requirements have to be met: A potential frame-
work should be Android-based since Android is the platform of choice for modern
smartphone development. Other prerequisites for the development of our field
study framework are Open-Source code and low cost of the required components.
An aim of this work is giving the framework out to a broad variety of poten-
tial field researchers to create additional benefits. Additionally, the framework
will aim at supporting short-term field studies, since extensive sensor measure-
ments on the smartphone drain the smartphone battery and are not feasible for
long-term studies.

To assess general requirements regarding research surrounding field studies,
we additionally did two expert assessments: an online survey, followed by expert
interviews. A particular focus was put on evaluation and visualization of results
since the analysis of related apps has shown that their focus is on sensing and
recording. Quick evaluation and visualization of recorded data are missing so far.

4.3.1 Online Survey

To assess requirements by researchers conducting mobile field studies, we carried
out an online survey and expert interviews with HCI researchers in 2017. The
online questionnaire can be seen in the appendix (see section A.1).

Out of the ten subjects, five were male, four female, and one unspecified. Their
ages ranged from 24 to 38, with a mean of 30.8 and a standard deviation of 4.5.
Seven of them had a Master’s degree, two had a PhD and one a Bachelor’s degree.
Nine worked in research, and one studied in their Master studies. All of them
worked in Computer Science with a focus on HCI.

All of them had at least done a few user studies, most of them conducting them
on a regular base. While only one person did not have any experience with field
studies, the majority had done both short-term as well as long-term field studies.
One person had only done short-term field studies. Their primary motivation
was to test their solutions under realistic conditions. A list of methods used in
field studies is depicted in Table 4.1.
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Regarding the tools used for evaluation, nine persons said they use Microsoft
Excel9, six said they use SPSS10, four use Python11, and three use R12. Respec-
tively one person stated they use Matlab13, atlas.ti14, Java15, the video annotation
software Chronoviz16 or Apple Numbers17 (multiple entries were possible). Fur-
thermore, they indicated that they use two tools at least for evaluation. Regarding
the statistical methods they apply, predominantly ANOVA (4 mentions) and t-test
(4) were mentioned and stated as useful. The variety among single mentions
was wide: descriptive statistics, inferential statistics, significance, linear mixed
models, regression, qualitative methods (“ethnography or discourse analysis”),
classification and “group comparisons”.

Method # (out of 10) of researchers using it

Questionnaires 10
Data collection on the device (logs) 9
Interviews 8
Experience sampling 6
Video and sound recording 5
Screen recording 3
Thinking aloud, focus group 1

Table 4.1: List of methods used in field studies

Regarding features the participants miss in their current evaluation tools, four
said they miss a more straightforward way to create diagrams and visualizations
of their data. Two stated that they do not miss anything so far. Furthermore, one
person mentioned the steep learning curve of existing tools, and another one
wished for data filtering and cleaning possibilities.

9 https://products.office.com/en/excel, last visited March 16th 2019
10 https://www.ibm.com/analytics/spss-statistics-software, last visited March 16th

2019
11 https://python.org, last visited March 16th 2019
12 https://www.r-project.org, last visited March 16th 2019
13 https://www.mathworks.com/products/matlab.html, last visited March 16th 2019
14 https://atlasti.com, last visited March 16th 2019
15 https://www.java.com, last visited March 16th 2019
16 http://chronoviz.com, last visited March 16th 2019
17 https://www.apple.com/lae/numbers, last visited March 16th 2019
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When being asked which studies they recently have conducted, that are proto-
typical for their work, answers were quite diverse:

• “Snoozing notifications”

• “Week-long experience sampling study”

• “Give different types of devices to people, log what they are doing, use experi-
ence sampling”

• “Usage of a specific software in mobile setting”

• “Text input study on smartphones. Researching if haptic feedback influences
the typing performance.”

• “Placed cameras in homes to record participants watching TV. Also logged
devices. The study ran for three nights.”

• “Workshops with experts and potential users within the field testing and idea
gathering; street workshop with passers-by participants.”

• “[…] We install an app on the user’s device; this is being used over several
days/weeks; depending on the study there are daily, weekly or only one ques-
tionnaire at the end or contextual dependent ESM questions over the course of
a day […]”

4.3.2 Expert Interviews

Following the online questionnaire, we recruited experts and conducted inter-
views with them. In the online questionnaire described before, participants could
leave their email address optionally to participate in the expert interviews. Further
experts were recruited over the researcher’s extended network. The interview
guideline can be seen in the appendix (see section A.2). In this subsection, the
outcome of the interviews will be summarized.

Expert 1

This expert has not done field studies on his/her own, but only studies in the
laboratory, comparing touch interactions on smartphones with the users’ usability
ratings. Also, gyroscope and acceleration sensors are logged. In the future,
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expert 1 wants to conduct field studies to assess “how users interact with their
phone at the bus station”. He/she uses statistical methods to have a look at the
data, primarily linear regression, and assesses the users’ states and opinions
by standardizing questionnaires (AttrakDiff Mini, SEA, SAM, NeoFFI, et cetera).
Regarding the preprocessing of data, expert 1 removes outliers, extracts features,
and brings the data in a suitable form for further evaluation. For evaluation,
he/she primarily uses R and applies machine learning methods, but also tests like
ANOVA and t-test. Expert 1 states that “R is great”, but he/shewould like to be able
to “explore the data haptically”, for example to have all the data points mapped to
a 3-dimensional visualization for exploration purposes. R’s ggplot218 is excellent
for visualization and exploration but remains quite static and cumbersome in
terms of quick flexibility. There are many analysis dashboards for mobile apps,
like Amplitude19, Tablytics20, or Optimizely21.

Expert 2

The research group of expert 2 conducts few to no field studies and works more
in the laboratory. They mostly reduce their research questions so that testing
them in the lab becomes possible. If that is not possible, they try to avoid the
studies altogether. They claim that stressors and contextual factors in the field
would increase the complexity of their already complex studies and reduce the
validity. For example, in one study, they work on an AR system, where the
smartphone is a “lens” into an AR world. For the rendering of the AR world on
the smartphone, they have also to measure the user’s head position and not only
the back camera, because otherwise, the image would not scale correctly. This
fundamental research would be hard to realize in the field. Additionally, to the
head tracking measurements, they interview their participants, use the NASA
Task Load Index (NASA-TLX) questionnaire to assess workload, log everything
they can log and record task completion time and errors. All this data is logged so
that it is directly processable, and other data like the questionnaire are transcribed
by the researchers (“human preprocessing”). Evaluation happens in R, where
they only test whether their hypotheses could be verified, for example utilizing
significance tests or distributions. They do not explore their data. Hence, they do

18 https://ggplot2.tidyverse.org, last visited March 16th 2019
19 https://amplitude.zendesk.com, last visited March 16th 2019
20 http://tablyticsmr.com, last visited March 16th 2019
21 https://www.optimizely.com, last visited March 16th 2019
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not need exploration tools and so far could find everything in the tools they use,
which was necessary for evaluation purposes.

Expert 3

The group of expert 3 conducts mobile field studies in several varieties. For
example, they develop Android apps, put them into the Play Store and log the
usage data remotely; or they directly pose tasks for participants and assess error
rates, or trigger ESM questionnaires on the participants’ devices. In mobile
field studies, they always log device data (activity recognition, interaction data,
sensors), use questionnaires (Likert scales) or qualitative interviews. When field
studies are not feasible, they test in the lab. Important are correct timestamps
since the reliability of the data can be tricky, mainly when assessed remotely.
Using self-developed software can drastically increase reliability, however. For
evaluation, they extract the relevant data and preprocess them for evaluation (for
example database → Comma-Separated Values (CSV) → Excel / Python). They
use Excel for preprocessing and SPSS, Python or R for statistics. Excel, Matlab
and R are used for “fancy diagrams”. In this workflow, expert 3 criticizes that the
switching between different tools is cumbersome.

Expert 4

Expert 4 describes her/himself not as a Mobile HCI researcher and only occasion-
ally does Mobile HCI research. He/she is more interested in qualitative data like
interviews, observations, design workshops, or random sampling of participants
on the street. This interest is reflected in the data he/she collects: Logging (over
Flurry22), photos, observation notes, or interviews. Not recorded are metadata
from smartphones, demographics, or sensors. Most valuable are qualitative data
from interviews, he/she finds. For analysis of the quantitative data, he/she uses R,
especially for visual inspection. Outliers are not removed but treated as interest-
ing cases, which should be explored and understood. Preprocessing of raw data
could lead to losing interesting data characteristics. Qualitative data is processed
analogously by hand, with a printer, paper, markers, and pens. The output of such
a process is transcribed summarized data in an Evernote23 note, or a Grounded

22 https://www.flurry.com, last visited March 16th 2019
23 https://www.evernote.com, last visited March 16th 2019
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Theory notebook. Missing in the current evaluation methods is the possibility to
save and reuse workflows, for example, in R.

4.3.3 List of Requirements

The fact that no study resembles the next is one very central conclusion from
the survey as well as the expert interviews. Depending on the research question,
available resources, prevalent methods in the respective research field, established
research group practices as well as personal taste, field study practices vary
heavily. Nonetheless, a list of the most important requirements for a field study
toolkit was extracted from the online survey as well as the expert interviews. It
has to be noted that a lot of current toolkits are designed for long-term studies,
run robustly, and battery efficiently in the background. Of course, in this case, a
fine-grained data collection is not possible. Because this thesis focuses on short-
term studies, only short-term compatible requirements are taken into account.
Extensive qualitative methods that require a face-to-face situation like interviews
and the Thinking Aloud protocol are also not incorporated.

• Predominantly used methods and practices:

– Collection of quantitative data directly on the test device via sensors

– Gathering qualitative data via questionnaires/experience sampling

– Posing tasks for participants

– Video/sound recording

– Screen recording

• Missing in current solutions:

– Easy way to create diagrams and visualizations

– Interactive exploration of the data

– Correct and synchronized timestamps

– All-in-one solution to avoid switching between tools

• Relevant for the work at hand:

– Up-to-date

– Android-based

– Support for short-term field studies
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List of Requirements

Requirement Aware Funf Google Journal

Quantitative data collection √ √ √
Questionnaire / ES √ √ ×24

Conveying tasks √ √25 ×
Video recording × √ ×26

Audio recording × √ ×
Screen recording × √ ×

Easy visualizations √ √27 √
Interactively exploring data × ?28 ×
Correct timestamps √ ?29 ×
All-in-one solution √ √ ×

Up-to-date √ × √
Android-based √ √ √
Support for short-term field studies √ √ √

Table 4.2: Requirements for the CoConUT framework.

As can be seen in Table 4.2, none of the apps presented in section 4.2 fulfill
all the requirements poses by experts to a field study framework. Due to this
shortage, the CoConUT framework was designed and implemented. The concept
of the framework will be presented in the next chapter.

24 It is possible to take textual notes
25 Notifications sent by the operator
26 Photos can be taken, but no videos
27 Data can be uploaded to a back-end and visualized there
28 No data since the app and backend cannot be tested
29 No data since the app and backend cannot be tested
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4.4 Concept
Based on these requirements and as an answer to Research Question 1, the Co-
ConUT framework was conceptualized. Research Question 1 deals with the way
contextual factors, the user’s internal state and interaction (especially errors) can
be assessed in field studies. Especially the kind of data which can be assessed
(quantitative or qualitative, context or users themselves) and its accuracy are of
importance. The last subquestion raises the issue of analyzing and visualizing
the gathered data.

This research question leads to the following conceptualization steps:

• Overview of contextual factors to record during mobile field studies

• Overview which factors of the user’s internal state can be assessed

• Approach to record the user’s interaction and errors during mobile field studies

• Analysis of which quantitative data can be measured

• Analysis of which qualitative data can be assessed

Furthermore, the resulting framework has to prove itself during several field
studies, whose data has to be checked for accuracy and an appropriate way of
visualizing and evaluating the data has to be found. The subsequent paragraphs
describe how the CoConUT framework was conceptualized following those steps.
Afterward, a description of the different modules of the framework ensues.

Regarding contextual factors and quantitative data, the concept of the Co-
ConUT framework closely follows the unified model of context in human-mobile
computer interaction (CoU-HMCI) by Jumisko-Pyykkö and Vainio [JV10], which
can be seen in Figure 2.1 (see section 2.1.2). The model has five major dimensions,
as well as user, mobile system, and their interaction. Figure 4.8 shows how the
CoU-HMCI model dimensions can be mapped to assessable measures.

Since modern smartphones come with a wide variety of built-in sensors, the
decision fell to make the best use of this fact. Additionally, external sensors
can also be connected to a smartphone via Bluetooth, for example. The main
component for recording quantitative data in the field is the CoConUT sensing
app, which will be presented in section 4.5, including a detailed list of which
sensors are being recorded on the smartphone.
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Figure 4.8: Assessable context dimensions according to the CoU-HMCI model by Jumisko-
Pyykkö and Vainio [JV10]. The dimensions of the CoU-HMCI model are
described on the outer boxes with their sensor and external representations
in CoConUT in the inner boxes. Since most dimensions can also be assessed
via qualitative means, a longitudinal box cuts the CoConUT representations.

Since the CoConUT app is supposed to run in the background of the study
smartphone and only be used by the operator, in a next step we conceptualized the
CoCoQuest study guide app, to deliver task descriptions, short questionnaires,
and experience probing via media content to the user. Through the CoCoQuest
app, quantitative data in the form of questionnaires, for example standardized
scales, can be assessed by the user directly in the field. This data can be later
matched with the passively collected data from the CoConUT app.

Furthermore, the CoCoHat wearable records the user’s surroundings and
sound by a camera, and a microphone mounted on the head.

To assess the user’s internal state, the stress level is measured over the user’s
heart rate. This measurement can be easily obtained via a wearable that measures
the user’s heart rate in the field. Since mental resources cannot be measured in the
classical sense and measuring attention is cumbersome (for example through eye-
tracking or gaze recognition, for which specialized hardware would be necessary),
this work relies on the assumption that multitasking in the field leads to higher
workload because mental resources have to be split. This splitting goes hand in
hand with a higher stress level. When in this state, the assumption is that the
user is more likely to produce more errors.
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Of course, workload and stress can also be assessed by standardized question-
naire scales like the NASA-TLX [HS88] or the Perceived Stress Scale with 10
items (PSS-10) [CKM83; CKM+94]. However, the disadvantage remains that those
scales can only be assessed retrospectively back in the laboratory since filling out
questionnaires in the field would disrupt and bias the field experience. Thus, the
unobtrusive measurement of heart rate with wearables was chosen as a method
of choice.

The CoConUT framework allows several possibilities to capture the user’s
internal state: First of all, wearables can be connected to the CoConUT sens-
ing app, enabling the assessment of the user’s heart rate. The CoCoBand can
measure heart rate in beats per minute, on-skin temperature, and galvanic skin
conductance. Additionally, a smartwatch and chest belt can be connected to the
app and measure heart rate by beats per minute and heart rate variability by
successive RR intervals, respectively.

Additionally, the CoCoQuest app delivers short questionnaires to participants
in-situ, which enables the capturing of user-input quantitative data in a limited
form. For example, the users can answer questions about their internal states on
the go, or conclusions over the NASA-TLX questionnaire or other scales can be
drawn.

Interaction can also be assessed in either quantitative as well as qualitative
way. Video recordings of the interaction with the device as well as screencasts
allow operators to observe user interaction in detail and also detect interaction pat-
terns. Qualitative analysis is the most versatile, but also the most time-consuming
way to analyze human mobile interaction.

Another way to measure interaction is quantitatively, for example by logging
touches on the touch screen, including touch location, duration, intensity, or
usage of gestures. Pressing on buttons and the status of the screen (on/off) can
deliver information about the interaction with the device.

Also, the CoConUT app offers the possibility to record the user’s face over
the front camera and simultaneously a screencast of the device. With the help of
this data, it can be easily analyzed when the user is interacting with the device.
Furthermore, CoConUT counts the touches in the touch screen per measuring
interval and logs the screen status. This number of touches gives a quantitative
approach to measuring interaction. Furthermore, concerning communication,
detailed information on typing behavior can be collected over the CoCoBoard
software keyboard. For example, typing slips can easily be measured.

Finally, when it comes to visualizing and evaluating the data, the CoCoVis
dashboard for visualization comes into play. While a first glimpse at the data can
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already be taken right within the CoConUT app, a more elaborate exploration
can be gained by using the CoCoVis dashboard. Of course, data collected by all
CoConUT components can also be exported in a compatible JavaScript Object
Notation (JSON) format and further analyzed in environments like R.

Summarizing, Table 4.3 depicts the way CoConUT addresses the requirements
included in Table 4.2.

4.5 CoConUT Sensing App
As described in [SHR16], CoConUT is an Android app for collecting mobile
context dimensions, metadata about interaction and the user’s stress level during
mobile field studies using sensor data on the test smartphone itself. For evaluation
and exploration, the recorded user session data can be visually explored on the
smartphone. This exploration facilitates an assessment of the user’s behavior,
route, and internal state.

In its first version, the CoConUT app only supported some environmental
sensors [SHR16] and got more features throughout further development cycles,
following the list of requirements. Figure 4.8 shows an overview over the captured
data, which is according to the CoU-HMCI model presented in Table 2.1.2. The
current version of CoConUT (2.1) supports the following sensing and recording
functionality:

• Physical context: Speed and location are measured over the GPS signal.
CoConUT tracks latitude, longitude, and the deduced speed value provided
by Google’s services. Furthermore, GPS signal accuracy is saved to estimate
the quality of the collected values. Lighting conditions are sensed over the
light sensor and saved in Lux. In this case, the smartphone is measuring the
Lux value of the object the sensor is pointing to. The accuracy of the light
sensor is saved as well. The smartphone’s microphone can record ambient
noise (if the ambient soundscape is not recorded as a sound file). To record
ambient noise, the smartphone records small snippets of sound, evaluates
their noise level in decibel and discards the sound snippets afterward. An
API retrieves the current weather and temperature and conditions are
saved.

• Temporal context: The CoConUT app records timestamps of the sensed
data with an accuracy of milliseconds. Also, the day of the week and the
distinction between weekday and weekend was added for convenience.
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• Social context: The level of crowdedness in the surrounding area is esti-
mated through the number of visible Bluetooth devices nearby. Sensing
other devices nearby over Bluetooth has been used in several social intelli-
gence applications [HGT13].

• Task context: Interruptions and multitasking can only be roughly esti-
mated by the number of interactions (touches) on the screen. Also, the
status of the smartphone screen (on/off) can give indications of usage be-
havior. (Android’s security features make it impossible to log access to
other apps from within our app. Otherwise, this could be logged as well.)

• Technical context: The battery status of the phone is saved to indicate
battery consumptions and preconditions for the test. Another variable
indicates whether the user is using headphones or not.

• User: The app measured several metrics regarding the user. First and
foremost, interaction with the devices through touches on the screen is
recorded. The screen status (on/off) is another indicator of interaction. The
sensor data is also sent to Google’s location services to detect the user’s
current activity 31. Finally, to assess the user’s internal state, heart rate (HR
/ HRV) can be measured over either smartwatch or chest belt. The delay
data of the connected devices is saved as well to preprocess the resulting
data more accurately. From the user’s heart rate data, several metrics can
be automatically calculated (RMSSD, LNRMSSD, SDNN, pNN50).

Further essential features are regarding qualitative research: CoConUT allows
to record the user’s face through the front camera and the interaction on the screen
over screen capturing. Audio can additionally be recorded over the smartphone’s
microphone if the ambient noise is not measured (the smartphone’s microphone
can only be used by one resource at a time). Since those recording capabilities
consume a lot of storage space on the device and drain the battery, they are only
feasible for short-term recordings. Also, the users have to be notified that they
are being recorded, and have to consent.

31 https://developers.google.com/android/reference/com/google/android/gms/
location/DetectedActivity, last visited March 18th 2019. Potential activities include the
constants: IN_VEHICLE, ON_BICYCLE, ON_FOOT, RUNNING, STILL, TILTING, UNKNOWN,
WALKING.
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4.5.1 Implementation

The first version of the CoConUT app was built in Android Studio 1.4 with a
minimal Software Development Kit (SDK) 17 (Android 4.2) and Java Version 1.8.0
25, after a requirement-driven prototyping process. This first version was tested
in a preliminary study for technical feasibility [SHR16]. The current version of the
CoConUT app is version 2.1 and can be downloaded from Google’s Play Store32.
A class diagram of the most important classes can be seen in the appendix ( A.4).

4.5.2 Final Prototype

The final prototype of the CoConUT sensing app can be seen in Figure 4.9. For
conducting a study, the app has to be installed on the smartphone. When opening
first, users have to grant a series of access rights, for example for the data storage,
the GPS sensor, the microphone, et cetera. When the rights are not granted, the
app will proactively ask for the rights to be granted again. Afterward, users can
create a new study session, to which they can add new recording sessions (for
example one session per participant).

Over the top menu, the settings can be accessed. Here, sensors and recordings
can be enabled or disabled, depending on the study. The settings menu is divided
into “Session recording”, “Heartrate” and “Advanced”. In “Session recording”,
different sensors and services can be set, as well as the measurement interval.
The measurement frequency is per default set to once per second, but depending
on the study, the frequency can be adapted. For measuring heart rate either a
smartwatch or a chest belt have to be connected over Bluetooth. Devices can be
added under a distinct page accessible from the top menu (“Devices”). Once a
device is added, several measures can be set under on the “Heartrate” settings
page. Under “Advanced”, camera, screen, and audio recording can be set, as well
as a few other more advanced and experimental settings.

Single recording sessions or whole studies can be exported as JSON. Addition-
ally, for each session, there is a little folder icon in the app, which directly grants
access to the smartphone’s storage where recorded videos and audio files are
stored for this session.

When clicking on a single session, the mobile visualization opens and displays
the recorded data in an overview. The mobile visualization is especially helpful to

32 https://play.google.com/store/apps/details?id=at.ac.univie.cosy.coconut,
last visited March 17th 2019
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gain a first overview of the gathered data, for example to quickly check whether
the recording was successful or to ask the participant specific questions about
certain parts of a route. Of course, for further analysis, the data has to be exported
to a more capable evaluation application, but this also requires more time and
more effort. The mobile visualization offers the following screens:

• Normalized overview of all sensors: All recorded sensor data is dis-
played on this overview timeline in a normalized way. For normalizing,
the data points are mapped between zero and one, where one corresponds
to the highest measured value.

• Single sensor: For a regular view, single sensors can be displayed here on
this timeline.

• Ratio: In this graph, two values can be displayed: one on the x-axis and
one on the y-axis.

• Map: Single sensor data can be displayed according to their geolocation
in this map view. Red points display the highest values, where yellow
indicates values of medium value and green of low value.

Last but not least, the app offers the possibility to send feedback to the devel-
opers directly and offers help over a dedicated help page.

4.5.3 External Sensors

As already mentioned before, external sensors can be connected over Bluetooth.
Currently, Huawei’s smartwatch Watch 233 and Polar’s H10 chest belt34 via
Bluetooth Low Energy (BLE) are supported. While the smartwatch can only
measure aggregated heart rate in beats per minute (BPM), the chest belt can sense
single heartbeats and can sample the heart’s activity in milliseconds. With the
later one calculations of different HRV measures are possible. The recording
CoConUT app with a chest belt and smartwatch can be seen in Figure 4.10.

33 https://consumer.huawei.com/en/wearables/watch2, last visited March 18th 2019
34 https://www.polar.com, last visited March 18th 2019
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4.6 CoCoQuest App
Since gathering qualitative and in-situ feedback was also deemed necessary in
our requirement analysis (see section 4.3), we developed CoCoQuest, which is
a study guide app for Android. CoCoQuest was conceptualized as a distinct
app since we wanted to leave CoConUT running in the background untouched
by the participants, who would have to interact with CoCoQuest regularly in
the field. Furthermore, the usage of existing apps was not feasible since they
do not log user feedback with timestamps. For synchronizing data gathered by
CoConUT and CoCoQuest, timestamps from the same Android system are vital.
CoCoQuest was built on the base of the Apache Cordova framework, which
ensures cross-platform compatibility (see Figure 4.11).

The app itself can load pre-generated questionnaires in JSON format. Once
the questionnaire is imported, it can be completed several times, for example
by different participants on the same phone. The idea is that the participants
are guided through the whole study by displaying task descriptions, providing
questionnaire parts and giving the possibility to record images, videos and sound
snippets as qualitative experience sampling while being on the move (for further
information on experience sampling also see [Rob11]). Going back in the ques-
tionnaire is not possible since, for each completed page, timestamps are saved.
After the completion of the study, the operator can see when each task was solved
and when which feedback was given. Furthermore, through recorded images,
videos, and sound the in-situ experience can be better understood. The results
can be exported as JSON. Figure 4.12 shows the CoCoQuest app in action.

CoCoQuest offers the free combination of the following questionnaire parts:

• Likert scale

• Single choice

• Multiple choice

• Free text entry

• Display of text (reading only)

• Taking a photo / video / audio note
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4.7 CoCoVis
While CoConUT offers a first in-built mobile visualization to explore data quickly,
for further analysis, the data has to be exported and evaluated on a device with a
bigger screen. For first exploration purposes and as a design study, the CoCoVis
dashboard was conceptualized in a student project with the help of Tableau35.
Figure 4.13 shows the final version of this CoCoVis prototype. A chart diagram
on the left gives an overview of the single participants and completion time for
the study. Furthermore, a scatterplot matrix gives first insights into possible
correlations between gathered sensor and interaction data. Here, a correlation
coefficient with according p-value is given via mouse overlay. On the right side, a
map shows the routes the participants take36. Finally, sensor plots on the bottom
display the values of the measured data throughout the study.

Since visualizations in Tableau are quite static and cannot easily be enhanced,
an ongoing project aims at realizing CoCoVis in an easily accessible form via
web access and Open-Source code. The first efforts are promising.

An Open-Source version of the dashboard is currently under development as a
web app using R37 and Shiny38.

4.8 Other Components
The CoConUT framework consists of more components, namely the CoCo-
Hat headpiece for qualitative data assessment, the CoCoBand wearable for
measuring biofeedback, the software keyboard CoCoBoard, and the chatbot
CoCoBot. Since most of those components were only used in one study or
specifically designed just for one study, they will be described in this section.

4.8.1 CoCoHat

The CoCoHat enhances the data collected by the CoConUT app by video and
sound recordings of the environment as well as video of the mobile device’s screen.
Its core is a Raspberry Pi 3 Model B V1.2, which is mounted on a stable hat which

35 https://www.tableau.com, last visited March 18th 2019
36 In the study depicted in Figure 4.13 two participants take a detour, shown in brown and beige
37 https://www.r-project.org, last visited May 27th 2019
38 https://shiny.rstudio.com, last visited May 27th 2019
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the participants can wear during the study. It features one native Raspberry Pi
camera (PiCam) for recording user interaction, one USBmicrophone for recording
sound and one USBwebcam for recording a video of the surroundings. Figure 4.14
shows the first prototype of CoCoHat, which is powered by two accumulators.
The goal of the CoCoHat was to create a wearable made out of open hardware
which runs open software.

4.8.2 CoCoBand

The CoCoBand (see Figure 4.15) was built only using Open-Source hardware
according to an Open-Source hardware plan39. Its components approximately
cost 85 Euro in sum. According to the hardware plan, the following three sensors
were incorporated: optical heart rate sensor for measuring heart rate in BPM on
the finger, a thermometer for measuring temperature on-skin and a GSR sensor
using two electrodes applied to distinct fingers on one hand.

Dooren, Janssen, et al. compare several locations on the human body to assess
galvanic skin response [DJ+12]. While unquestionably measuring on two distinct
fingers yields the best results, they find out that the foot sole, the shoulders,
and fingers are optimal for GSR collection, while armpit, back, and arm are
locations that provided the worst results. Electrodes for measuring GSR should
have constant contact with the skin to guarantee a steady measurement [BPS11].

4.8.3 CoCoBoard

CoCoBoard is a modified fork of the Android app Simple Keyboard40, which
itself is a fork of the official Android Open-Source Projekt app LatinIME41. In
order to measure typing errors on a fundamental level, CoCoBoard records every
letter on the soft keyboard with a timestamp. Suggestions for autocorrection of
words remain hidden and mistyped words are not automatically corrected, which
forces the users to correct mistypes with the backspace button. As a result, errors
during typing can easily be referred through the number of backspace taps.

39 https://makezine.com/projects/the-truth-meter-2, last visited March 30th 2019
40 https://github.com/rkkr/simple-keyboard, last visited February 14th 2019
41 https://android.googlesource.com/platform/packages/inputmethods/LatinIME,

last visited February 14th 2019
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4.8.4 CoCoBot

The chatbot CoCoBot is a Python script running on a web server. It is based on
the pip package python_telegram_bot42 which abstracts most of the work the bot
is doing. With these simple means, CoCoBot can simulate online communication
to a certain degree. The messages the chatbot is sending come from a static list
of messages on the server, which are always sent in the same order. The message
delay can be individually specified.

4.9 Conclusion
As can be seen in section 4.4 and Table 4.3, the CoConUT framework successfully
fulfills all the posed requirements both by Research Question 1 as well as by
independent experts. The following contribution summarizes the work presented
in the chapter:

Contribution

Development of the field study framework CoConUT

1. Android app CoConUT assesses contextual factors over smartphone
sensors

2. Android app CoCoQuest probes the user for quantitative as well as
qualitative experience feedback during studies

3. A chest belt connected to the CoConUT app assesses the user’s
stress level as an indicator for internal state

4. CoCoVis visualizes the collected data and allows for exploration

5. The hardware components CoCoHat and CoCoBand

6. Different smaller additions (CoCoBoard, CoCoBot) to fulfill study-
specific purposes

In this section, the conceptualization and development of the CoConUT frame-
work have been described. With the finished framework, the studies addressing

42 https://python-telegram-bot.org/, last visited February 14th 2019
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ResearchQuestions 2 and 3 could be realized. The subsequent two chapters depict
two laboratory respectively two field studies, which have been conducted with
the help of the CoConUT framework.
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Requirement CoConUT Approach

Quantitative data collection Sensor collection with the CoConUT app
Questionnaire data with the CoCoQuest app

Questionnaire / ES Questionnaires and Experience Sampling
methods with the CoCoQuest app

Conveying tasks Study instructions with the CoCoQuest app
Video recording Over the front camera with the CoConUT app

Over the cameras with the CoCoHat wearable
Audio recording Over the microphone with the CoConUT app

Over the microphone with the CoCoHatwear-
able

Screen recording The screen can be recorded with the CoConUT
app
Over the interaction camera with the CoCo-
Hat wearable

Easy visualizations Over the CoCoVis visualization dashboard
Over the mobile visualization in the CoConUT
app

Interactively exploring data Over the CoCoVis visualization dashboard
Correct timestamps In all apps and tools provided by the CoConUT

tools
All-in-one solution Yes

Up-to-date All components up-to-date and mostly pro-
vided as Open-Source code30

Android-based CoConUT was developed for Android
Support for short-term field
studies

CoConUTwas specifically designed to support
short-term field studies

Table 4.3: Requirements and the way CoConUT meets them
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Figure 4.9: CoConUT screenshots, explained from the top left to the bottom right: 1)
top menu of the app, 2) single user recording sessions within a study folder,
3) list of Bluetooth wearables nearby which can be connected, 4) settings
menu where sensors can be activated and deactivated, 5) built-in visualization
with first overview over gathered data of one sensor, 6) map visualization of
gathered data, in this case data speed in km/h
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Figure 4.10: Recording screen of CoConUT, together with a chest belt and a smartwatch

Figure 4.11: The CoCoQuest app with a loaded questionnaire. On the right a task de-
scription is displayed while on the left a question for rating is shown.
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Figure 4.12: The CoCoQuest app in action during a mobile field study.

Charts Diagram
Scatterplot Matrix

Map

Sensor Plots

Figure 4.13: The CoCoVis dashboard visualizing the data gathered in a study.
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USB Front Camera

USB Microphone

PiCam

Pi + Accumulators

Figure 4.14: The CoCoHat with its different components: The core is a Raspberry Pi plus
two accumulators. A PiCam films the user’s interaction on the smartphone
(see left). A USBmicrophone and a USB front camera record the surroundings
(see right).

Figure 4.15: The CoCoBand wearable: optical heart rate sensor and galvanic skin mea-
surement electrodes are applied on the fingers, while microboard and battery
are attached to a sweat band [Leb17]
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Laboratory Studies

After having presented the CoConUT framework, we will outline our research
addressing different types of errors. First, we have a more in-depth look into
two error types based on cognitive processes, namely knowledge-based mistakes
and rule-based mistakes. This chapter presents the outcomes of two laboratory
studies addressing these types of errors.

The first study aims at providing detailed insight into the knowledge-repre-
senting mental models. Getting a grasp of users’ mental models based on their
acquired knowledge is a challenge since there are no easy tests or acquisition
methods for mental models [GS14]. Operators have to work with qualitative data
they carefully assess to understand the underlying mental model to a sufficient
extent. Acquiring this amount of qualitative data in this level of detail poses
questionable in the field since methods like the Think Aloud protocol are only
suitable to a certain extent. Additionally, the impact of stress on memory recall
is not well-researched in cognitive psychology [Men99]. Thus, testing the impact
of the user’s internal state on retrieval of mental models would require further
experiments. Hence, for this study, the impact of context and internal state are
left disregarded.

In the second study, the occurrence of rule-based mistakes was tested under
different levels of stress. Mental arithmetic tasks (MATs) are used as an opera-
tionalization of rule-based decisions since procedural mathematical knowledge
relies on the retrieval of if-then procedures [DD05]. During this study, we worked
with our self-built wearable CoCoBand to retrieve biophysical measurements
of stress indicators. Due to the nature of these measurements, participants were
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not allowed to move their hands and had to remain seated. As a consequence, in
this study, the influence of context is being left out as well.

To sum up, both studies were conducted in the laboratory because the study
setups could not have been realized in this form in the field.

5.1 Erroneous Mental Models
The work described in this section has partly been published in the following
paper [Sch+16]:

S. Schröder, M. Huber, D. Wind, and C. Rottermanner.
“When SIGNAL hits the fan: On the usability and security of state-of-the-art
secure mobile messaging”.
In: European Workshop on Usable Security. IEEE. 2016.

The first laboratory study is described in this chapter and addresses the question
when knowledge-based mistakes happen during mobile communication and how
they can be assessed (RQ3). It furthermore has a more in-depth look at their
impact on secure communication (RQ3).

Mistakes based on faulty knowledge and erroneous mental models are the
most complex form of errors that can happen in human-computer interaction
(HCI). Errors, in general, can have different grades of severity, and while some
are trivial, others are hard to recover from. In the majority of cases, problems
on the level of mental models are hardly recoverable from, since users have to
understand first that they lack essential pieces of information, in order to then be
able to acquire the necessary additional knowledge.

A particularly interesting use case for knowledge-based mistakes is the field
of usable security. Being on the crossroads of human-computer interaction
(HCI) and security engineering, usable security begins at the premise that secure
systems are only as secure as the user can use them well. Merely blaming the
user as the weakest link in the interaction is a too simplified approach [SBW01],
since the user has to be taken into the loop during the development of secure
systems [Cra08].

A large body of research in usable security deals with secure mobile communi-
cation. Especially secure instant messengers like Signal1 are currently in use

1 https://signal.org, last visited May 25th 2019
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by the vast populace. Those end-to-end encrypted instant messengers offer a
feasible tradeoff between security and usability. Such end-to-end encrypted com-
munication technologies have been available for decades. For most of those tools,
poor usability and other obstacles have hindered them from reaching a broad
coverage [Abu+17]. Especially the end-to-end encryption tool par excellence
PGP2 (”Pretty Good Privacy‘‘ ) has been in usage since 1991 but never became a
widely accepted standard due to poor usability [WT99; Gar+05; RVR14; FCS12].
Recent research shows that once trust between two mobile messaging parties is
successfully established, no further steps by the users are necessary to ensure a
secure and private conversation [Ung+15]. This good security drives more and
more users to become convinced adopters of secure instant messaging apps.

For this study, the instant messenger Signal was chosen. Signal [Ope16]
originated from two separate mobile applications [Sys15]: TextSecure (en-
crypted instant messaging) and RedPhone (encrypted phone calls). Due to its
strong encryption protocols and the availability of its source code under an
Open-Source license, Signal has become an important tool for users who face
surveillance [The16b]. In April 2016, the currently most popular messenger app
WhatsApp [Wha16] rolled out end-to-end encrypted messaging, based on Sig-
nal’s protocol, to more than one billion users [The16a]. Signal’s encryption
protocol thus became the de facto standard for end-to-end encrypted mobile
messaging.

In this laboratory study, a simulated Man-in-the-Middle (MITM) attack3 was
launched on a secure communication channel over Signal to find out how par-
ticipants noticed and reacted to the attack and whether they were able to take
countermeasures to ensure their safety. As we know from section 2.3, knowledge
comes especially into play when we have to deal with novel situations. Using
this novel and unusual situation of an unexpected attack, we hoped to gain some
deeper insights into the users’ mental models regarding mobile communication
and to understand potentially ensuing knowledge-based mistakes better.

Findings show that incomplete mental models can lead to fatal knowledge-
based mistakes, in this case, false mitigation strategies after a security-related
attack. Surprisingly, users keep their false sense of security and continue to trust
the compromised app.

2 https://pgp.com, last visited March 19th 2019
3 In a man-in-the-middle attack, an attacker secretly intercepts the communication between two

parties and potentially alters it [Sta11].
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5.1.1 Background

To better understand the study setup, including its technical prerequisites, this
section provides some background on secure instant messengers and particularly
Signal’s underlying security mechanisms.

From a security perspective, state-of-the-art mobile messengers can be split
into two categories: messengers that provide client-to-server encryption and mes-
sengers with end-to-end encryption. The first category of messengers allows
service providers to read exchanged messages, while the second group ensures
that service providers cannot read messages. State-of-the-art end-to-end en-
crypted mobile messengers only require users to authenticate via their mobile
number; the generation and exchange of cryptographic keys are handled trans-
parently by the applications. The transparent end-to-end encryption of messages
makes strong encryption accessible to the masses but also creates new security
challenges. As compared to PGP, state-of-the-art secure mobile messenger ap-
plications rely on centralized services to provide the cryptographic identities of
its users. This modus operandi results in the following security challenge: if the
key-exchange service is tampered with, either willingly or by an attacker, the
overall security of systems is subverted. In order to account for the compromise of
the key-exchange service, mobile messaging apps, therefore, offer the possibility
to verify the cryptographic identities of other users ultimately to establish the
trust of exchanged encryption keys.

Some related work has already dealt with the challenges of and attacks on
different kinds of secure messengers. Unger et al. have published the most com-
prehensive work on secure messaging [Ung+15]. Their survey provides a current
view on challenges for secure messaging, especially regarding technical means
to verify users and the mitigation of MITM attacks. Onwuzurike et al. [OD16]
provide a taxonomy of security features on smartphone messaging apps and
identify several gaps between the claims and reality of their promises. Regard-
ing Signal, Frosch et al. [Fro+16] provide a detailed analysis of the underlying
cryptographic protocol of Signal. Furthermore, Schrittwieser et al. [Sch+12]
discuss the different attack vectors like account hijacking, sender ID spoofing,
enumeration, and several other security issues of early mobile messengers. This
study has been complemented by Rottermanner et al. [Rot+15], who focused on
the unique privacy challenges posed by mobile messengers.

Signal offers forward secrecy at the same time as asynchronous message
exchange. As such, Signal combines the PGP-like asynchronous messaging with
the security properties of the Off-the-Record Messaging (OTR) protocol [BGB04].
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The Signal protocol is divided into three phases (registration, session setup,
and message exchange), while a central service is used to exchange the public
encryption keys. This service is critical for Signal’s security and a potential point
for compromise. Frosch et al. [Fro+16] provide a detailed analysis of Signal’s
protocol.

In the following, the Signal protocol and the establishment of trust between
two clients will be explained: Alice and Bob want to use Signal to exchange
end-to-end encrypted messages. Alice installs Signal and verifies her mobile
number at the Signal Server with either a verification text message via Short
Message Service (SMS) or a voice call. Once verified, Alice creates different
sets of keys: a longtime asymmetric key-pair called Identity Key Pair, 100
ephemeral key pairs called One-Time Pre Keys as well as one Signed Pre
Key which is signed with the Identity Key. Signal automatically uploads
Alice’s Signed Pre Key as well as the 100 One-Time Pre Keys to its server.
Alice attempts to establish a session with Bob and therefore requests a Pre Key
Bundle for Bob and Bob’s Identity Key from Signal’s central service. The Pre
Key Bundle consists of a single public One-Time Pre Key and the Signed Pre
Key of Bob. Based on the One-Time Pre Key and the Signed Pre Key, Alice
derives a symmetric Master Key for future communication, and stores Bob’s
Identity Key. Based on the Pre Key Bundles of each other, both Alice and
Bob derive the same Master Key, which is used to create ephemeral Message
Keys for the actual message exchange.

The unique long-term Identity Key pair remains the same as long as the user
does not delete it by, for example, re-installing the Signal application. These
Identity Keys are essential to verify the identity of communication partners.
The Signal application, therefore, stores the Identity Keys of other users as
soon as a secure session has been successfully established. Signal allows users
to view this Identity Key within the application. In order to make sure that
communicating parties received the correct Identity Keys, both parties have
to verify the public Identity Keys via an out-of-bound channel (for example
meeting in person or via phone). This verification can be done by comparing the
hexadecimal representation of the key byte per byte or by scanning the QR code
of each other’s Identity Keys in person.
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Threat Model

To install security countermeasures, companies and associations often plan ac-
cording to realistic or potential attack scenarios. The threat model for the MITM
attack, which is launched in this study, is described in this subsection.

The threat model chosen for this study accounts for the compromise of Signal’s
central services. This compromise can be the result of targeted attacks on Signal’s
service infrastructure or assistance of Signal’s team to a subpoena request. The
compromise of Signal’s key server results in two different possible attacks:

Attacks on the first session setup do not result in direct user feedback. This
attack can only be detected by manually verifying, for example over the phone
or face-to-face via scanning the QR codes. Consider Bob wants to initialize a
secure session with Alice, and Bob receives the attacker’s Identity Key (Mallory’s
Identity Key) instead of Alice’s Identity Key which is then stored by Signal as
Alice’s identity.

The second possible attack scenario are attacks on established sessions,
where Bob has previously established a secure session with Alice and stored
Alice’s correct Identity Key. An attacker (Mallory) could force both parties to
re-negotiate a new communication session. In this scenario, the compromised
Signal server would respond with the attacker’s Pre Key Bundle including the
Signed Pre Key of the attacker, and thus establishes a man-in-the-middle (MITM)
attack.

Signal accounts for both of the attack scenarios of this study’s threat model.
First, Signal provides a feature to manually verify established Identity Keys,
as outlined in Figure 5.1. Second, Signal warns users when it detects that
long-term keys of users change, see Figure 5.2. In this study, both of these two
countermeasures of Signal are addressed.

Of course, during these countermeasures, numerous knowledge-basedmistakes
can occur, since users need to have suitable mental models during different steps:
they have to understand how a secure instant messenger functions, where attacks
could happen, how to recognize such attacks and which mitigation strategies
could be taken. Ideally, good usability of the security mechanisms would support
users during all steps to prevent knowledge-based mistakes.

5.1.2 Study Setup

The study consisted of two parts: a usability study of the Signal app with a focus
on Signal’s instant messaging and security features, and the execution of an
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Figure 5.1: Verification of identity keys by scanning the each other’s QR codes. On the
left: a successful verification. On the right: warning because identity keys did
not match.

actual MITM attack with a subsequent assessment of the users’ reactions, pri-
marily to assess potential knowledge-based mistakes. The results of the usability
evaluation are moved to the appendix and will not be included in this section.

To gain insights into the participants’ motivations, strategies and goals they
were asked to comment aloud on their actions with the Think Aloud method
constantly [Lew82], which facilitated to understand the users’ mental models.
User interaction and voice were recorded with a camcorder. Participants had to
fill in a consent form before the start of the study, as well as a short questionnaire
including demographics and general attitude towards privacy and security re-
garding smartphones and especially messaging apps. The study took place in the
COSY:Lab at the University of Vienna, which provides two lab rooms for usability
experiments and an operator room. Two tests were conducted in parallel. Thus,
four operators (two in the operator room and two in the respective test rooms)
had to be present to conduct the study in parallel.

At the beginning of the study, participants received a set of instructions, in-
cluding all tasks and questionnaires, as well as an Android device with Signal
pre-installed. Each phone (Alice) had a contact entry for the conversation part-
ner (Bob), handled by an operator. The detailed technical set-up is described in
the next subsection. In the following, we describe the tasks participants had to
complete as part of our study.

The first part of the study focused on Signal’s general usability related to
messaging and security features, which will not be described in detail here. This
part additionally had the function to accustom the participants to the usage of
Signal.
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In the second part, participants had to exchange messages with Bob. Shortly
before this task, the MITM attack of the simulated compromised Signal server
was launched, which triggered an error message about Bob’s mismatching key
(see Figure 5.2). The task description also asked users to verify Bob’s identity
after the message exchange. The study instructions informed participants that
they could ask their chat partner Bob into the room at any time. Bob (simulated
by an operator) was instructed to play a completely passive role and not to reveal
any information on the verification task. Following the verification task, the
participants had to fill in a debriefing questionnaire aiming at assessing the users’
mental model of the MITM attack, as well as possible mitigation strategies, by
using quantitative and qualitative questions.

5.1.3 Technical Setup

In order to conduct the study with two persons in parallel, two identical setups
were used, which were each administered by one operator. One working setup
consists of three smartphones and one computer which was responsible for
intercepting the traffic and for creating a Wireless LAN (WLAN) hotspot for the
smartphone’s internet connectivity. All smartphones were rooted and had Cydia
Substrate [Sau16] and SSLTrustKiller [Bla16] installed in order to eliminate the
Secure Sockets Layer (SSL) certificate pinning protection of Signal. For traffic
interception and manipulation, we used mitmproxy [Cor16] in combination
with a custom script to automatically intercept Signal messages. Two client
smartphones (Android 4.4.4) and one attacker smartphone (Android 4.4.4) were
used. The attacker smartphone (Mallory) was preloaded with a modified version
of Signal to handle intercepted messages and to forward intercepted messages to
the original recipient. The two client smartphones had the latest version of Signal
installed (3.15.2). One client smartphone was given to the study participant (Alice).
The other client smartphone was used by the operator (Bob) in the operator room.
Finally, because all smartphones shared the same network, the smartphones
connected to our attack proxy via a ProxyDroid [Lv16] configuration. For each
study participant, the devices were reset and re-registered with Signal.

5.1.4 Pilot Study

First, a pilot study with six participants from the local COSY research group
was conducted to refine the study design before the actual study. In the pilot
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study, users were being asked to “verify” their communication partner. This
request led to confusion as the participants never reached Signal’s verification
features and had widely diverging understandings of the term “verification”.
Thus no user managed to compare keys successfully. Based on these results, a
brief explanation of Signal was included, to point participants towards Signal’s
technical verification features. Furthermore, the decision fell in favor to include
a “hint”: the instructions told the participants that they could ask for their
communication partner (Bob) to enter the room at any time. Since participants
of the pre-study were unsure whether Bob is a real person or a pre-scripted Bot,
this information was crucial to include.

5.1.5 Results

Participants

Overall, 28 participants took part in our study (7 female, 21 male), which lasted
about 30-45 minutes. All of the participants were computer science students at
the University of Vienna, the majority of whom were enrolled in an HCI course
and recruited via that course. The only requirement for participation in the study
was experience with the Android operating system. The students got a reward in
the form of extra points for the HCI course. Two of the participants were 26 to
35 years old. The remaining people were in the age between 18 and 25.

While 22 participants stated in the questionnaire to actively use the Android
system, ten specified to have iOS devices, followed by two Windows Surface
users and one Blackberry user (multiple choices allowed in the question). Nearly
all of the participants actively use text messaging/SMS (27) and WhatsApp (26)
as instant messaging apps, followed by Telegram (18), Viber (8), Facebook
Messenger (4) and Kakaotalk (2). One participant each used Line, Andchat,
Skype, Signal, Threema, and Tango. Regarding self-assessment of computer
security knowledge, most of the participants said they had no or some knowledge
about privacy and security mechanisms (7 respectively 17), while four stated to
have a lot of knowledge. None of the participants claimed to be an expert in
computer security. Privacy and security on smartphone apps are of importance
to the participants, and they care about third parties reading their messages. Con-
fidentiality of text messages and active security/privacy measures were weighted
to be of average importance.
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Users’ Reactions to the Attack

Shortly before the second part of the study, the MITM attack was launched. After
the launch of the MITM attack, messages sent through Signal were not delivered
since Signal’s protocol needs mutual keys to send messages. As a consequence,
all of the users noticed the attack because of an error notification next to the
undelivered message (see Figure 5.2), and clicked on the notification icon to open
the error dialogue.

At this point, the error dialogue already confronted the users with the task
of verifying Bob. While 24 out of 28 users read the text in the subsequent
dialogue, the remaining four directly chose the “Accept” option while skipping
the text. These participants seemed to follow “the flow” of the dialogue to quickly
reestablish messaging functionality.

Even if the participants were able to access the key comparison page, whether
from the error dialogue or later in the task (eight users never did), the key
verification page of Signal’s Android application did not provide any instructions
on how to perform the actual verification. As Figure 5.3 shows (picture on the
right), Signal displays the Identity Keys of both communication partners, but no
further instructions are provided. The participants of the study, therefore, faced
problems on how to use the displayed keys. One participant, for example, stated:
“Ok, those are keys, but what am I gonna do with them?”.

In total, 13 users asked Bob into the room during this task for verification. How-
ever, less than half of those users managed to to match keys with Bob successfully
(seven users). When they compared keys correctly, a message about verification
failure was raised due to the MITM attack. The error message, however, did
not provide any information on consequences, further mitigation strategies, or
strategy changes. One participant thus said: “Well great, and now what?”, while
another participant stated: “To be honest […] I have no idea what to do now”.

Also, five users made use of the “Reset Secure Session” functionality offered
by Signal, which deletes the saved identity of the chat partner (Bob). The
confirmation message, which appears before the session is reset, did not provide
sufficient information regarding the result of this operation.

Mental Models of the Attack

Preferably, Alice and Bob compare their keys in person for verification purposes
of confirming their mutual identity. If Mallory launched a MITM attack on their
conversation, Alice and Bob ideally recognize this type of attack, stop commu-
nicating over Signal and uninstall the app. As previously stated, successful
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Figure 5.2: Message delivery failure (1), notification about Bob’s new identity (2) and new
identity dialogue (3)

Figure 5.3: “Verify identity” option in the conversation settings (1 & 2). Key comparison
page displaying Bob’s key at the top and Alice’s resp. the user’s key at the
bottom (3)

MITM attacks on Signal result from their central key exchange services being
compromised, Alice and Bob thus need to stop using Signal. In consequence, the
successful verification of Bob with matching keys was at no point possible in the
setup of this study due to the MITM attack. However, 13 participants assumed
that they had successfully verified Bob in the final questionnaire, while they failed
to compare keys with Bob correctly. Therefore, they accepted Bob’s new identity
and would likely have continued to communicate over an insecure connection
since they assumed it to be secure. Those users had different (false) verification
strategies, which we discuss in the following. This type of knowledge-based
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mistake is the worst scenario that can happen after a successful MITM attack and
proves to be especially fatal.

Seven users successfully matched keys with Bob. Only three of those assumed
some sort of attack but did not mention MITM in particular. Two of those users
assumed they were not chatting with Bob, but with the attacker Mallory. Three
other users thought that the app malfunctioned. Thus, matching the keys did
not necessarily lead to the correct assumptions. Participant assumptions are
discussed below.

The rest of the participants (eight users) did not manage to compare keys with
Bob and were unsure about having verified Bob or knew they had not. Five of
those participants explicitly assumed a MITM attack took place. Subsequently,
not all users picked correct mitigation strategies. An overview of strategies that
users would have chosen is outlined below.

Verification Strategies

Out of the 13 participants who thought to have verified Bob, but did not manage
to do so by comparing the keys, 12 came up with different verification strategies.
Six assumed that accepting Bob’s new key in the error dialogue following the
attack successfully verified Bob. Four “verified” Bob by either meeting him in
person or by asking him questions about messages he received and his identity
via chat or via phone calls. One person assumed that the presence of the keys on
the key comparison page proves the authenticity of Bob’s identity, while another
person attempted to verify the authenticity of the chat by asking Bob whether he
thought the chat was secure.

Verification Strategy No.

Accepting key in error message dialogue 6
Proving that Bob is a real person 4
Keys present in the system 1
Asking Bob 1

Table 5.1: False verification strategies (𝑛 = 12)
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Assumptions about the Attack

In order to assess the users’ assumptions about the attack, an open question
about the “unexpected events” was included in the final questionnaire. Spoken
remarks in the Think Aloud protocol were also taken into account. Overall, 14
participants made remarks about possible explanations for the unforeseen events
(multiple mentions could be made). Seven participants speculated or stated that
a MITM attack could have taken place, although only one of those participants
compared keys correctly. As already stated, not all the participants who success-
fully compared keys made the right assumptions about the events during the
MITM attack. Several other incorrect assumptions were drawn: Four participants
stated that an attacker attempted to impersonate Bob. Thus, they assumed that
they had compared keys with Mallory instead of Bob. Furthermore, three par-
ticipants speculated that Bob could have reinstalled Signal as suggested in the
error message. Another three users assumed that the app was malfunctioning.
Two participants finally stated that an attack could have happened, but did not
specify the type of attack.

Assumptions about the Attack No.

MITM attack 7
Malicious conversation partner 4
App reinstalled 3
App malfunctioning 3
Attack (not further specified) 2

Table 5.2: Assumptions about the attack

Participants also had to answer several questions regarding their mental model
of the unforeseen events, as well as perceived security, privacy, and trust of the
Signal app after the attack. The most notable observation was that in most cases,
users did not lose trust in the Signal app after we triggered the attack.

Mitigation Strategies

The final questionnaire contained another open question about participants’ pos-
sible mitigation strategies after the unexpected events. The type of attack was
deliberately not revealed to not bias answers. Also, the users’ actions and remarks
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Question Mean 𝜇 SD 𝜎

I’m having a clear image in my mind of what hap-
pened exactly.

2.79 1.03

I’m feeling extremely insecure regarding the app. 2.36 1.06
I always had the feeling to be completely informed
of what’s happening through the app’s notifica-
tions.

2.71 0.90

The app has damaged my trust in it. 1.71 0.85
I had the feeling that I had full control over the app
the whole time.

2.79 1.03

Table 5.3: Mental model of the app (questions were answered on a Likert scale from 1 to
5 where 1 is completely disagree and 5 is completely agree)

during the last study task were considered. Several possible mitigation strategies
(not necessarily referring to MITM attacks in particular) arose from the answers:
11 participants would simply uninstall the app (the only valid mitigation strategy
against compromise of the server), although it was not clear whether they wanted
to avoid further hassle and would simply use another messaging app, or whether
they knew it was the recommended mitigation strategy. Other strategies aimed
at gathering more information, such as contacting Bob on another channel via
other apps, phone or face-to-face meetings (eight participants), searching for
information on the Internet (six participants) or asking friends (four participants).
Three participants would inform the developers or read license agreements and
policies (three respectively one participants). Another branch of strategies in-
volved problem solving: restarting the app (two participants), disconnecting
the phone from the Internet (two participants) or a virus scan (one participant).
The results of the different mitigation strategies we observed are summarized
in Table 5.4.

While the key page had the purpose of Alice and Bob both reading their keys
aloud, Signal also offers a QR code functionality for comparison. Some of the
users used the barcode functionality, but the resulting error message did not
provide sufficient information for a strategy change.
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Mitigation Strategy No.

Uninstalling the app 11
Contacting Bob on another channel 8
Searching for information on the Internet 6
“Reset Secure Session” 5
Asking friends 4
Informing developers 3
Disconnecting phone from the Internet 2
Reading license agreements and policies / virus scan 1

Table 5.4: Possible mitigation strategies as expressed by the participants

5.1.6 Discussion

To the best of our knowledge, we were the first to study the security, as well
as usability challenges of end-to-end-encrypted messengers up to the point of
the study (2016). The central services used to exchange user keys pose a major
security risk of today’s end-to-end encrypted messengers. Therefore, in the study,
a compromised key service was simulated by performing an active MITM attack.
Hence, the usability of Signal’s security features in the case of active attacks
was assessed.

However, like any user study, this work has some limitations: First, the par-
ticipants recruited for the study were homogeneous since all were students of
computer science and shared the same age group. Similar experiments with dif-
ferent groups of participants might, therefore, lead to different outcomes. Second,
the extent of information provided to participants on Signal’s encryption/verifi-
cation features had to be balanced. We decided to explicitly ask users to verify
each other in order to asses the usability of this core-security feature of Signal.
The initial study design tested in the pilot study showed that none of the six par-
ticipants used the verification feature in the face of the simulated attack. Similar
experiments with participants without a computer science background or a focus
on a security subtask would likely result in even less successful key verifications.

Overall, the outcome of the study is considered surprising, especially given the
fact that the participants had a computer science background. The results suggest
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that the “verification” process and therefore the overall security of end-to-end
encryption on mobile instant messaging faces serious usability obstacles, since
21 of 28 participants failed to compare keys with their conversational partner
accurately. Especially surprising in the study was the high number of participants
who thought they had successfully verified while in reality, they failed to compare
keys.

Signal, as easy-to-use end-to-end encryption enhanced app, should support
struggling users to overcome common knowledge-based mistakes by good design
and achieve security in the sense of increased usable security. Usability problems,
in terms of missing support, can lead to fatal errors and ensuing severe security
breaches, for example aborting the reestablishment of a secure connection after
an attack.

The gaps between self-assessment, mental models of differing correctness
respectively level of detail as well as actual outcome (un/successful defense) could
be explained in several ways: Either participants lacked the required knowledge,
the app failed to support the users, they had a different understanding of what
“verification” meant or the effort for successful defense was too high.

During the MITM attack, Signal was explicitly hinting at the fact that the
connection could have been compromised. The fact that only seven partici-
pants assumed the possibility of a MITM attack and only three thought that
Bob reinstalled the app seem quite surprising. Either those users ignored, or
did not read, the informational error message or excluded the possibility of an
attack/reinstallation while remaining under the false illusion of security.

The different strategies for verification and mitigation hint at flawed mental
models: users seem to lack an understanding of end-to-end encryption in general,
possible attack scenarios and risk potentials. The findings from section 5.1.5 also
indicate a great trust by the users in the app to deal with security issues in the
background, therefore assuming that the app’s dialogues could be trusted.

Based on our findings on the usability of Signal’s error handling of actual
attacks, we found that these features led to more problems than to actual attack
mitigations. Under these circumstances, it is not surprising that WhatsApp has
disabled all encryption-related error messages by default. If users want to get
feedback on mismatching Identity Keys or alike, they explicitly have to enable the
error messages in the preferences. Since reactions to non-comprehensible error
messages (due to the interplay of potentially missing information on the app’s
side and incomplete mental models on the user’s side) range from uninstalling the
app, contacting the developers, or a definitive feeling of insecurity in general, we
assume the developers of WhatsApp made a compromise between usability and
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security due to economic reasons. Since communication via WhatsApp was only
encrypted between the client and the server recently, messages on a changed
Identity Key might lead to confusion, ultimately angry users and eventually
uninstallation.

5.1.7 Conclusion

In this chapter, a user study on the occurrence of knowledge-based mistakes
based on erroneous mental models is presented. In this study, Signal for Android
is used, which is a secure mobile messenger that provides a promising solution for
widely adoptable end-to-end encrypted conversations. First, the unique security
challenges and threats today’s secure mobile messengers face were discussed.
Second, a comprehensive user study on mental models regarding a man-in-the-
middle attack was conducted, and knowledge-based mistakes were assessed. It
was shown that the majority of users failed to detect and deter such attacks.

Our results show that the majority of users made fatal knowledge-based mis-
takes by failing to correctly compare keys with their conversation partner for
verification purposes due to usability problems and incomplete mental models.
Hence, users are very likely to fall for attacks on the essential infrastructure of
today’s secure messaging apps: the central services to exchange cryptographic
keys. Those potential knowledge-based mistakes, fromwhich the users can hardly
recover and lead to compromised security, need to be addressed by the usability
site. Since the users do not notice their erroneous mental models and take the
wrong actions, secure messaging apps need to support the users in making the
right decisions.

A series of studies conducted after the publication of the study at hand ad-
dresses the authentication mechanisms of Signal in more detail. Vaziripour et al.
find several critical usability issues in a study on Signal [Vaz+17]. For example,
they point out that the duration required to find and complete the verification
procedure is too long from a usability standpoint. In a subsequent study, they
successfully implement a call for action (“Action Needed!”) in Signal and prove
that this usability improvement helps the users to find and complete the authenti-
cation process more easily [Vaz+18]. Finally, they integrate various social media
services into the Signal app to establish a social authentication process [Vaz+19].
This procedure leads to good overall usability and user satisfaction, but some
users dislike the usage of social media since they do not deem them to be private
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enough. These studies are promising with their results, but still, much work to
improve secure end-to-end encryption in instant messengers needs to be done.

Summarizing, the following contributions have been made:

Contribution

Incomplete models can lead to false mitigation strategies and com-
promised security after attacks

1. Surprisingly, users have a false sense of security.

2. Users have very high trust in secure apps.

3. Bad usability of high-risk security features can lead to non-solvable
security problems.

The setup of the study at hand has made it clear that this study design could not
have been realized in the field in this level of detail. This necessity for testing in
the laboratory also applies to our second laboratory study on rule-based mistakes
under stress, which will be described in the next section.

5.2 Biophysical Measurements of
Arousal

The study in this section was conducted in close collaboration with the Medical
University of Vienna. Furthermore, Kaspar Lebloch kindly contributed with the
outcomes of his practical programming course.

The study described in this section explores rule-based mistakes, how to assess
them, and their potential impact on secure communication (RQ3). It further
has a look at the role the user’s internal state, particularly stress, plays on the
occurrence of rule-based mistakes (RQ2). Finally, it deals with the question of
how the user’s internal state can be assessed, especially in field studies, and the
accuracy of the gathered data (RQ1).

As could be seen in section 2.3, rule-based mistakes are errors that happen
during the execution steps of a composed action plan. During the different steps
of the action plan, decisions about medium-scale tasks have to be made, and most
of these decisions are made following simple if-then-rules and heuristics. During
these decisions, rule-based mistakes can happen. In this case, mental arithmetic
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tasks function as an operationalization of rule-based decisions, since procedural
mathematical knowledge relies on the retrieval of if-then procedures [DD05].

The main goal of this study was to test the impact of stress on rule-based
decisions and potential errors in the field. Since another aim of this thesis was to
build a field-study framework entirely made out of Open-Source components, the
wrist-worn wearable CoCoBand (see subsection 4.8.2) was built in the course of
this study to retrieve biophysical measurements of stress indicators. During data
assessment with the CoCoBand, participants were not allowed to move their
hands and had to remain seated, because measurements of galvanic skin response
are prone to movement artifacts. In order to test the suitability of the CoCoBand
for field studies and to compare it against heart rate measuring consumer devices
(in this case a chest belt and a smartwatch), the decision fell to hold the study in
a laboratory, namely the COSY:Lab at the University of Vienna.

Our results indicate that stress plays a role in the occurrence of rule-based
errors. While the data acquisition with CoCoBand demonstrated to show accu-
rate results in comparison with the consumer devices, we show that consumer
devices (chest belt and smartwatch) produced the same quality of data while
having a more robust design. GSR measurements proved to be highly influenced
by movement artifacts, which would potentiate in a field setting.

5.2.1 Related Hardware

To find a suitable wearable formeasuring biophysical feedback during field studies,
we had a look at related hardware. Potential choices encompassed wearables
for eHealth, sports-based applications, research and Open-Source hardware in
general.

Cheap and multifunctional eHealth wearables are becoming a trend among
consumers. Fitness, diets, and self-optimization, in general, are reasons why
consumers buy health-related electronic devices and especially wearables.

Consumer devices from vendors like FitBit4, Garmin5, or Polar6 mostly come
with a limited range of sensors, draw conclusions over aggregated data processed
in a cloud and lack the standard of approved medical electronics. Nonetheless,
conclusions can be drawn from the data, and users can track their continuing

4 https://www.fitbit.com, last visited February 22th, 2019
5 https://www.garmin.com, last visited February 22th, 2019
6 https://www.polar.com, last visited February 22th, 2019
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health progresses. It can be said that those devices have a high potential for
general well-being [Bax16].

Devices like the “Meta” sensor series from MBIENTLAB7 or the Empatica E48

offer a variety of functions for researchers and direct data access. Unfortunately,
they are closed source, and additional sensors cannot be added. The E4 is also quite
expensive and not affordable for low tomid-priced field study setups. On the other
hand, existing Open-Source solutions like the HeartyPatch9 or the MobileECG10

either are not available yet or only provide a limited array of sensors.
All of the solutions mentioned above might be suited for usage during mobile

field studies, but all of them have certain drawbacks. While the Open-Source
solutions certainly offer the best access to raw sensor data readings, most of
the time, they are not widely available. Therefore practical experience with and
extensive testing of the hardware are not given. The manufacturers of consumer
devices, on the other hand, seldom grant access to a developer SDK. If access is
given, sometimes only aggregated data from the manufacturer’s cloud is provided
without allowing to access the raw sensor data. This aggregation mostly prohibits
the calculation of self-chosen algorithmic measures and requires an active internet
connection at all times. Also, the acquisition of data from the manufacturer’s
cloud is not real time.

Summarizing, there is a need for an Open-Source, reliable, widely available,
and cheap wearable for assessing all kinds of biophysical signals in the field.

5.2.2 Study Setup

As already described in section 2.2.1, there is a variety of stressors in everyday life,
and what one perceives as a stressor is highly subjective. For clinical testing and
laboratory experiments, ethical and reproducible stress tests have been developed
to work for the majority of test persons under laboratory conditions. Bali and
Jaggi give a good overview and describe different stress induction methods (tests
et cetera) and which factors can be measured to assess stress [BJ15], including bio-
chemical markers, physiological and behavioral changes as well as cardiovascular
changes. Stress can be induced by either physical (environmental or physiologi-
cal) or psychological (cognitive or emotional) stressors. The gold standard Trier

7 https://mbientlab.com, last visited February 22th, 2019
8 https://www.empatica.com/research/e4, last visited February 22th, 2019
9 https://www.crowdsupply.com/protocentral/heartypatch, last visited February 22th,

2019
10 https://github.com/peterisza/mobilecg, last visited February 22th, 2019
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Social Stress Test (TSST), for example, builds on social evaluation pressure and
lets participants speak publicly and calculate MATs in front of present evalua-
tors. In another test protocol called the Cold Pressor Test (CPT), the participants
immerse their hands up to the wrist into ice-cold water (between 0−2 ∘C). Es-
sential factors in standard psychosocial stress tests are social evaluative threats,
uncontrollability, or unpredictability [BJ15].

MATs (mental arithmetic tasks) are a usual task to evoke stress in laboratory
experiments [BJ15; KPH93; KMY12; Jer+91]. Best combined with a social evalua-
tive situation, MATs do not require a complicated setup, are language neutral, and
probands do not have to move much, which is relevant for avoiding movement
artifacts in the sensor data.

In our case, mental arithmetic tasks bear a certain similarity with rule-based
decisions, since for calculating mathematical tasks mentally, stored sets of sep-
arate rules are evoked from long-term memory and applied to get the result.
Research outcomes also underline this: for example, Ryu and Myung find that
MATs engage memory processes for retrieval of arithmetic facts from long-term
memory [RM05].

Based on these prerequisites, a customized stress test to be able to fit each
participant into a time slot of one hour was developed, allowing the participants
to sit still and apply separate measurement devices. Due to the nature of the
measurement, GSR, participants ideally should not move at all. This necessity to
remain seated is the reason why this experiment was conducted in a laboratory
environment.

Participants were recruited from a university course at the University of Vienna.
The students got points that they could use to gain better grades if positively
passing the course. We invited them under the pretense of calculating mathemat-
ical tasks mentally while being connected to different biophysical measurement
devices.

After arriving at the lab, participants were given a very brief introduction with
an overview of the whole experiment, including the duration of the measurement
part. They were not told that their stress level would be assessed, only that they
will have to solve mathematical tasks mentally. They had to fill in a consent form
that data would be recorded (video, audio, biophysical signals). After that, they
had to fill in the first half of a questionnaire, which assessed basic demographics
and base stress level. Additionally, some questions about exercise per week,
and medical conditions were asked to be able to understand variations in the
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MATs
MATs

Figure 5.4: Setup of the experiment. The participant is instructed to sit still in front of
the computer. Both hands are laying flat on the desk. On the left hand, the
smartwatch (orange circle) and the CoCoBand (red circle) are applied. The
chest strap is worn under the clothing (yellow dotted circle). On the screen,
the MATs are displayed (green box), and voice input is given over the headset.

Familiarization Baseline MATs w/o MATs with Relaxation
3 mins 3 mins 3 mins 3 mins 3 mins

3 + 6
3 + 6

24 - 31

24 - 31

235 * 438

Easy MATs for 
getting to know the 

tool
Relaxing video

Easy and medium 
MATs without social 

evaluation

Medium and hard 
MATs with social 

evaluation
Relaxing video

Figure 5.5: Storyboard of the test procedure

recorded biophysical data11. Following the questionnaire, participants were aided
with attaching all required biophysical measurement devices: They had to wear
the Huawei Watch 2 smartwatch on the left wrist, with the CoCoBand being
attached to the fingers of the same hand. The Polar H10 chest belt was worn
under the clothing directly on the skin (also see Figure 5.4). The participants were
instructed to remain seated and to sit still during all times of the experiment, and
to only give input over voice into the microphone. When they moved during the
experiment, they were asked to remain still. After the connection to the devices,
the stress experiment began.

The phases were as following (as can also be seen in Figure 5.5):

11 Nonetheless, it would have been impossible to inquire for all potential interfering influences.
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• Familiarization: Three minutes of MATs (mental arithmetic tasks) for
getting to know how the online tool

• Baseline: Three minutes of a relaxing video

• MATs w/o: Three minutes of MATs with low and medium difficulty

• MATswith: Three minutes of MATs with medium and high difficulty, with
the operator standing behind their back watching to increase stress

• Relaxation: Three minutes of a relaxing video to calm down.

After the phases were completed, participants were relieved from the instru-
ments and had to fill out the second, concluding part of the questionnaire.

5.2.3 Technical Setup

An affordable, ready-to-use Open-Source solution, which could be integrated into
an existing test setup, as well as easily be enhanced by new features, does not
exist up to this point. This lack of a solution is why the self-made wrist-worn
wearable CoCoBand was developed, which was realized with the motivation
of creating an Open-Source wearable for assessing biophysical feedback in field
studies. It is entirely assembled from Open-Source hardware and software and
was built following an instructional manual from the internet. It measures the
user’s surface skin temperature, heart rate (HR/BPM), and skin conductance
(GSR). For the development of the CoCoBand, please refer to subsection 4.8.2.

The consumer devices of our choice were a Huawei Watch 212 and an H10 heart
rate sensor by the brand Polar13, which were both connected to a smartphone
running the CoConUT app. While new wearables like the Apple Watch or An-
droid Smartwatches allow a very rough estimation of the user’s inner state, chest
belts made for training in- as well as outdoors offer the possibility to gain more
insights over heart rate measurements. As already mentioned in subsection 4.5.3,
both devices can be connected to the app.

To minimize movement artifacts, a web application for mental arithmetic tasks
with voice input possibility was developed. The web application was developed

12 https://consumer.huawei.com/en/wearables/watch2, last visited February 22th, 2019
13 https://www.polar.com/en/products/accessories/H10_heart_rate_sensor, last vis-

ited February 22th, 2019
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Figure 5.6: The MATs tool poses an arithmetic task, evaluates it and indicates whether
the solution is correct or wrong

in Python based on flask14. This MATs tool (see Figure 5.6) enabled the operators
to specify a customized MATs test by setting difficulty level and durations for
easy, intermediate, and hard arithmetic tasks. For speech recognition, Google’s
Web Speech API was used15. The software was installed on a local computer in
order to avoid network latencies.

5.2.4 Results

Overall, 31 participants took part in the study between March and June 2018.
Because the experimental setup had to be adapted during the execution of the
trials, 21 participants proceeded with the setup described above. The data sets
comprised galvanic skin response, heart rate in BPM and on-skin temperature
from the CoCoBand, heart rate in BPM from the smartwatch and subsequent
heartbeat intervals in milliseconds (for calculating HRV) from the chest belt.
Since the setup was complex, not all gathered datasets could be gathered in a
sufficient way16. In the end, 19 data sets could be evaluated.

14 http://flask.pocoo.org, last visited April 3rd 2019
15 https://w3c.github.io/speech-api, last visited April 3rd 2019
16 In two cases measurements were not complete since the measurement devices failed to record or

the assessed data was not accurate enough.
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Out of these 19 participants, five were female and 14 male. The mean±SD of
age was 23.37±2.73. Thus, the participants were roughly in the same age group,
according to Umetani, Singer, McCraty, and Atkinson [Ume+98]. All participants
were students at the University of Vienna, most of them studying Computer
Science. According to the questionnaire, none of them had a heart disease, and
two of them were regularly taking psychotropic drugs (anti-depressants, anti-
anxiety medication).

In the following sections, we will focus our evaluation on the heart rate data
and the errors regarding mental arithmetic tasks.

CoCoBand

Overall the CoCoBand worked as intended and successfully gathered sensor
data. However, the CoCoBand had unforeseen hardware issues, which led
to inaccuracy of the produced data. The process of data transmission led to
unequal sampling intervals of the sensors, due to characteristics of a serial USB
connection or the Bluetooth device via BLE. While equidistant measurement
intervals would have been necessary, this underlying hardware problem rendered
the skin conductance readings unusable. Also, this complicated obtaining reliable
heart rate estimates using an inter-beat-interval detection algorithm. A higher
sampling frequency and equidistant measurement intervals would have needed
to be implemented or must be implemented in a future prototype.

Nevertheless, after some data cleaning, the BPM could successfully be extracted
from our recorded data. The intercorrelation between BPM values of each chest
belt, smartwatch, and CoCoBand was very high and ranging between 0.9 and 1.

Heart Rate across Phases and Stress

Among the tested consumer and self-built devices, the chest belt was the most
reliable device regarding heart rate. While CoCoBand and smartwatch both
only measured the aggregated value of beats per minute (BPM), the chest belt
was able to calculate both BPM and subsequent RR intervals, which allows for a
calculation of different HRV measures (for instance RMSSD). In the following,
only the data from the chest belt will be taken into account.

As can be seen in Table 5.5 and Figure 5.7a, the beats per minute (BPM) varied
across the different phases. While during the phases calculating the MATs (“fa-
miliarization”, “MATs without social pressure” and “MATs with social pressure”)
the mean of the BPM is over 80, for the relatively quiet phases (“baseline” and
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“relaxation”) the BPM remains under 80 in the mean. While BPM is a quite vague
measure, some first insights can be drawn from the values.

Since we wanted to compare values on a normalized base, the values of the
relaxation phase were taken as baseline values, and relative changes in percent
were calculated. The relaxation phase was taken as a baseline since it was noticed
that participants were a bit tense during the original baseline phase since they
anticipated the upcoming MATs. Figure 5.7b presents the relative changes
in percent compared to the relaxation values (as baseline). Here the highest
deviations are noticeable during the familiarization and the MATs with pressure
phases.

Phase Familiariz. Base MATs w/o MATs with Relax.
BPM Mean: 87.87 78.52 82.96 83.19 75.15
BPM SD: 22.52 21.21 17.17 15.34 14.98

RMSSD Mean: 39.11 47.37 42.97 44.21 54.09
RMSSD SD: 24.63 30.39 26.36 26.60 35.12

Table 5.5: Heart rate values across phases

The RMSSD values, an indicator for arousal (in this case: stress level), were in
line with the BPM values: for the base and relaxation phase, the mean was clearly
below the other values (see Table 5.5 and Figure 5.8a). Also, for the RMSSD,
in Figure 5.8b, one can see relative changes in percent compared to the relaxation
phase as the baseline.

MAT Errors

As can be seen in Figure 5.9b, for the last MATs phase (medium to hard MATs with
social pressure) the ratio of correct answers drops drastically. During the first two
MATs phases the mean and sd are relatively even (mean±SD of 63.91%±22.64% of
correct answers for the familiarization phase and a mean±SD of 66.30% ±20.95%
for the phase with easy and medium MATs and without social pressure). In
contrast, the mean drops to 32.63%±16.69% correct answers during the last phase
with medium and hard MATs plus social pressure.

When being brought into relation, a medium, but non-significant correlation
can be seen between stress level (in RMSSD) and the percentage of correct answers:
For the Familiarization phase, Pearson’s product-moment correlation yields a
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Figure 5.7: BPM normalized in relation to relaxation phase
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Figure 5.8: Boxplots of RMSSD across phases
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Figure 5.9: RMSSD and errors per participant across phases
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Figure 5.10: Relation of RMSSD to the percentage of correct answers for the different
phases. The x-axis denotes the RMSSD value: The lower the value, the higher
the participant is stressed. The y-axis denotes the percentage of correct
answers. Each line represents a different phase of the MA tasks. It can be
seen that the percentage of correct answers decreases when stress increases

positive correlation of 0.41 with a significance of 𝑝 = 0.09. For the MATs w/o
social pressure phase the correlation is 0.41 with 𝑝 = 0.13 and for MATs with social
pressure a correlation of 0.22 with 𝑝 = 0.47 was calculated. The distribution of
the points can also be seen in Figure 5.10.

5.2.5 Discussion

In summary, it can be said that both self-built and consumer devices measured
the beats per minute to a sufficient degree, as reflected by the high correlations.
However, the characteristics of the CoCoBand make some of its functionalities
unusable in the current version: Connection issues prevent a sufficient sampling
rate and movement artifacts during GSR acquisition on the fingers would require
a new approach. Subsequently, we focused on the heart rate provided by the
chest belt, which proved to be the most reliable and provided the best data quality.

From the measured heart rates, BPM and the HRV measure RMSSD offered
some insights into the stress level of the participants. BPM and RMSSD show
an increased respectively decreased mean during the phases with higher stress
potential. For further insights, more testing would be required.

Regarding error rates, the participants made more errors during phases with
higher stress potential (see section 5.2.4). It can be assumed that stress has an
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impact on the occurrence of rule-based mistakes. On the other hand, of course,
during the last phase of MATs, the mathematical tasks were more difficult and
could have led to a higher error rate. More experiments to assess the impact of
stress on small-scale decisions during mobile interaction have to be conducted.

Of course, our study has some limitations. First of all, we only ran the ex-
periment with university students. While usually a heterogeneous user group
is seen as negative, in this case, the heterogeneity of the user group is useful
regarding the comparison of heart rate values [Ume+98]. Additionally, a custom
stress test protocol was developed, based on the limited study time slots and
additional special requirements like stationary seating. This test protocol has yet
to be tested and verified with a larger user group.

5.2.6 Conclusion

Overall, our results from this exploratory study are quite promising. First of all,
the results indicate that stress could play a potential role in the occurrence of
rule-based errors. Furthermore, consumer devices prove to be more reliable to
assess the internal state of the users during mobile field studies, since they prove
to be more robust, cheaper and yet versatile: While the data acquisition with
CoCoBand worked well, we show that chest belt and smartwatch produced a
better quality of data while having a more robust design. The hardware price of
about 90 euros for the CoCoBand and the higher effort for assembly leave space
for the discussion whether it is worth the effort to prefer the self-built solution
over the consumer devices, even if we would build an enhanced prototype. While
the Open-Source design of the CoCoBand makes it easier to add additional
sensors, most of those sensors could also easily be acquired in a pre-assembled
and ready-to-use form. For assessing GSR though, another location than the
fingers on one hand would have to be chosen, since obviously, participants in the
field would need their hands, which would produce movement artifacts. To our
knowledge, an affordable consumer device for assessing GSR on the go does not
exist.

Summarizing, the following contributions can be concluded from this study:

Contribution

Stress could play a role in the occurrence of rule-based errors: It is
assumed that the higher the stress, the higher the error ratio.
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Contribution

Consumer devices aremore suitable to assess internal states during
mobile field studies than self-built solutions.

1. Consumer devices prove to be affordable, robust, and reliable.

Future work will improve the CoCoBand with regards to hardware and soft-
ware, to ensure a sufficient sampling rate and decrease the effort for incorporating
new sensors. The next experiment will adapt the experimental plan for the stress
test: the baseline phase would happen in another room before the participants
could build up anticipation. Also, each phase will last at least five minutes to
ensure a reliable HRV measurement in the medical sense.

Overall, in this chapter, the outcomes of studies conducted in the laboratory
have been described. While the first study explored the occurrence of knowledge-
based mistakes during secure communication, the second study led to a more
in-depth insight into rule-based mistakes under stress. With the insights gained
in the laboratory studies, a series of field studies could be planned. In the next
chapter, two subsequent field studies conducted in the course of the thesis at
hand will be described.
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Field Studies

After some insights into erroneous mental models causing knowledge-based
mistakes and rule-based mistakes under stress gathered in laboratory settings,
several field studies were planned and conducted. These studies aimed at tackling
the influence of contextual factors on mobile interaction in the field, and the role
mental resources, respectively the internal state of the user play (RQ2). Since
we already covered errors based on cognitive processes in laboratory studies, we
sought to test skill-based slips in the field.

6.1 Exploring the Interplay of Con-
text and Interaction in the Field

The work described in this chapter has partly been published in the following
paper [SHR18]:

S. Schröder, J. Hirschl, and P. Reichl.
“Exploring the Interplay of Context and Interaction in the Field”.
In: 2018 Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2018.

The study described in this section explores which contextual factors do in-
fluence mobile interaction in the field and to which degree, while seeking out
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which kind of contexts have an impact on the user’s primary HCI task (RQ2).
Furthermore, the accuracy of the gathered data is evaluated (RQ1).

To address the aspects mentioned above, we conducted an exploratory study
in the wild with 25 participants to gain first insights into the influence of context
on mobile interaction. We present and discuss the results of this study in this
chapter.

6.1.1 Study Setup

To gain a deeper understanding of communication behavior in the wild, and to
collect sensor data via CoConUT to explore contextual factors, an initial study in
the field was planned. Participants had to fulfill tasks with the secure Android
instant messaging app Zom1. Zom is a free and open-source instant messenger
which is an UX-centered fork of the Extensible Messaging and Presence Protocol
(XMPP) client ChatSecure2. For task descriptions and subsequent questions
about the tasks, the participants had to use the CoCoQuest app.

The field study consisted of two sessions on two different days with predefined
routes to be walked along. Both routes of approximately 1 km were located in the
university district and took approximately 10 minutes to walk. In the first part,
participants were led along the sidewalk on streets with moderate traffic, while
the second part went along sidewalks on streets as well, but partially also through
a relatively quiet area of the university campus without traffic. Participants had
to cross one street with low traffic during the study. Before the start of each
session, an introductory questionnaire assessed demographic data, Zom was set
up, and participants were instructed about the used apps. The route was given
to them in the form of an annotated map image on the smartphone. Meanwhile,
the operator remained in the lab and acted as a chat partner. The CoConUT
app was running in the background of the smartphone to assess contextual and
behavioral data via sensors. It was explicitly stated before the start of the study
that participants should put their safety first and take care not to be harmed in
traffic. Participants had to work on two tasks: A security-relevant task asked
them to set a password for the app, while the second, open-ended task instructed
them to exchange chat messages with the operator for the rest of the route. A
subsequent questionnaire, which was filled out following the field part, asked the
participants about their experiences in the field. Additionally, participants had to

1 http://www.zom.im (accessed January 7th, 2018)
2 https://chatsecure.org (accessed January 7th, 2018)
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wear the CoCoHat (see subsection 4.8.1) to assess qualitative data in the field
(audio recording over the microphone, video recordings of both the street and
the user interaction with the screen).

Participants were recruited from an HCI course at the university and received
credits for the course as compensation.

6.1.2 Results

Participants

The study took part in December 2016 and January 2017. During both parts
of the study, temperatures outside were rather cold and ranging between 1 ∘C
and 7 ∘C in December 2016 and −1 ∘C and −4 ∘C in January 2017. Note that
the CoConUT app failed to record two participants’ data sets due to sensor
malfunctions, but worked reliably in all other cases. CoCoQuest worked in all
cases and successfully guided the participants through the study.

Overall, 25 users participated in the field study (11 in the first and 14 in the
second), which lasted about 45-50 minutes per participant. Eight of the students
were female, while 17 were male. All of the participants owned a smartphone
or tablet and were experienced with chatting on mobile devices. Out of the 25
participants, 23 completed the study. One participant could not go into the field
due to heavy rain, another one due to technical difficulties during the overall
study setup. While two data sets had to be omitted due to recording problems,
the resulting 21 data sets were complete and could be analyzed (nine complete
data sets from December and 13 from January). Out of those 21 participants, two
lost their way during the second study and made significant detours (see Figure
4.13).

Sensor Data

The 21 complete data sets correspond to a total of approximately five hours
of collected data. For a first overview, we examined the data in the CoCoVis
dashboard (see Figure 4.13 for a first impression). Thus, several features of the
collected data were already detected. For example, the scatterplot matrix shows
that brightness varied heavily in-between participants (most probably due to
different times of day the study sessions took place), while the noise level seemed
to be quite even, without allowing to differentiate between soundscapes. Table
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Sensor Data

Value mean 𝜇 sd 𝜎 Min Max

Light (lux) 1516.01 1880.14 0 23360
Noise (dB) 77.93 7.55 43.75 90.31
# Bluetooth Dev. 1.23 1.51 0 7
Interaction 0.77 1.30 0 7
Speed (km/h) 4.02 1.77 0 22.28

Accuracy (m) 12.14 16.04 3 145

Table 6.1: Table with summary about assessed sensor values of the CoConUT app.

6.1 shows some characteristics of the different sensor data as we describe them
in further detail in the following:

Location and Speed: Table 6.1 shows an average speed of 4.02 km/h with a
standard deviation of 1.77 km/h, and an accuracy of the GPS measurements of
12.14 m with a standard deviation of 16.04 m. Remember that, according to a U.S.
government statement, GPS-enabled smartphones typically have an accuracy of
4.9m under a completely open sky, although accuracy decreases near buildings,
trees, and other obstacles3.

Brightness: The mean value of Brightness (measured in lux) was 1516 with a
maximum of 23360. As a comparison: An overcast day typically has a lux value
of about 1000, while full daylight lies around 10000 - 25000 lux4. In the data sets
different maxima of brightness among the individual data sets were observed.

Number of Nearby Bluetooth Devices: On average, around one nearby Bluetooth
device could be detected, with a minimum of 0 and a maximum of 7.

Sound Level: As can be seen in Table 6.1, the standard deviation of the recorded
noise level was (7.55 dB) with a mean of 77.93 dB. Again, for comparison: A very
calm room has a sound pressure of 20-30 dB, while a regular conversation has
40-60 dB and traffic on a busy roadway 80-90 dB5.

Touch Interaction: Touch interaction had a maximum of seven touches per
second. The mean lies at 0.77 with a standard deviation of 1.3, which is averaged

3 https://www.gps.gov/systems/gps/performance/accuracy (accessed January 13th,
2018)

4 http://stjarnhimlen.se/comp/radfaq.html (accessed January 26th, 2018
5 http://www.sengpielaudio.com/TableOfSoundPressureLevels.htm (accessed January 23rd, 2018)
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over input and non-input phases. For reference: The current Guinness World
Record for ’Fastest time to type a text message (SMS) on a touch-screen mobile
phone’ lies at 160 characters in 17 seconds, which makes for a mean of 9.41
touches per second6.

Influence of Context on Interaction

In order to increase data quality, for the following evaluation, all data points
with a GPS accuracy of >10m were discarded. 65,01% of the original data points
remained. To gain a first insight into the diversity of the data and influence of
contextual factors on interaction, correlations between different data dimensions
among the individual data sets were calculated and visualized as violin plot in
order to show the distribution of correlations through the different data sets (see
Figure 6.1). The plot thereby presents the influence of the contextual variables
speed, light, nearby Bluetooth devices and sound level on interaction). For further
analysis, we had a more in-depth look at the joint influence of nearby Bluetooth
devices, and speed on the interaction parameter (see Figure 6.2). In more detail,
Figure 6.3 and Figure 6.4 depict the impact of different typing speeds on walking
speeds and vice versa.

Experiences in the Field

For gaining further insights into the experiences the participants made in the field,
we examined the answers from the accompanying questionnaire. When being
asked whether their attention was more on the surroundings or the smartphone,
participants stated after the study that their attention was more likely on the
smartphone (on a Likert scale from 1 to 7, where 1 meant “almost exclusively
on the smartphone” and 7 meant “almost exclusively on the surroundings”, the
mean was 𝜇 = 2.33, with a standard deviation of 𝜎 = 0.92). Regarding difficult
situations in the surrounding traffic, almost all answered that they had not found
themselves endangered, while one person stated to have been in a dangerous
situation. Later, in an informal conversation, the person indicated that she almost
bumped into a car while crossing the street. Participants were being asked what
distracted them the most outside. Five of them mentioned they had to take care
of pedestrians while walking: “I had to watch out, so I don’t run into other people”.

6 http://www.guinnessworldrecords.com/news/2014/5/fastest-touch-screen-text-
message-record-officially-broken-with-fleksy-keyboard-57380 (accessed January
23rd, 2018)
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Figure 6.1: Violin plot of correlation distribution between different dimensions of context
(speed, light, Bluetooth devices, sound level) and interaction

One person mentioned she had to look out for cars while she crossed the street.
Since the second route did not require to cross a single street, this factor did
not apply there. Finding the right way was a source of distraction that three
participants mentioned. In the chat messages, participants stated that it was quite
cold, and due to low temperatures, it was hard to type on the screen.

Some participants made remarks that the CoCoHat was quite eye-catching
and drew the attention of passers-by. Two persons explicitly stated that the
CoCoHat distracted them and mentioned the funny looks they got for it. One
participant wrote it was “a bit awkward to walk around with the hat”.

6.1.3 Discussion

In our field study, we successfully gathered preliminary insights about the influ-
ence of contextual factors on interaction in the field, and our tools proved their
high reliability.

116



6.1 Exploring the Interplay of Context and Interaction in the Field

Figure 6.2: 3D plot of speed (x-axis), interaction (y-axis) and nearby Bluetooth devices
(z-axis)
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Figure 6.3: Boxplot of different typing behaviors (none, slow and fast)

Figure 6.4: Mean and SD of touch interaction (GPS accuracy ≤ 10m). Labels on the means
indicate the number of data points in this range.
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Sensor Data Reliability

Some contextual data categories seem to allow more profound insights into
context and interaction in the wild, while others seem to have limitations. Hence,
we first discuss the reliability of the sensor data gathered by CoConUT.

Location and Speed: Since the study took place open-air, measuring location
and speed was reliable, although GPS accuracy could have been higher. Except
for a few data points, participants maintained average walking speed, while
the exceptions might either be due to a sprinting participant or a measurement
inaccuracy.

Brightness: The mean value of approximately 1516 does not surprise since
the study took part in winter, and it was mostly cloudy. The different maxima
of brightness among the individuals can be explained by the fact that some
of the users participated in the late afternoon, and due to the season, it was
relatively dark. Also, participants wore clothes of different colors. Comparability
in-between the different individual data sets can, therefore, be regarded as low.

Number of Nearby Bluetooth Devices: The number of Bluetooth devices proved
to be a good indicator for people nearby (also compare to [Min+11]) since on the
university campus the number of measured Bluetooth devices increased near large
lecturing halls and coffee shops. However, a large number of Bluetooth devices
nearby does not necessarily mean that the participants had to walk through
crowds, as the example of closely passing by a coffee shop shows. Also, the
measurements highly depend on whether or not surrounding Bluetooth devices
were configured to be visible. Additionally, discoverable Bluetooth devices must
not necessarily be human-worn.

Sound Level: The relatively low variation in the data set can be explained by
the noise regulating function of the built-in microphone. Given the fact that the
participants walked alongside a road with moderate traffic and on the relatively
quiet university campus, the flatness of the data set seems surprising, but the
average value does not.

Touch Interaction: The maximum of seven indicates a high touch frequency,
probably during text input. Although participants stated that their focus was
mostly on the smartphone, they did not write messages or interacted with the
smartphone the whole time. Generally, a higher value indicates a high focus on
the screen and probably complex input, but the value itself does not say much
about potential gestures and the usage of other input possibilities (buttons, voice,
movement).
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Context and Interaction

As seen in section 6.1.2, interaction and walking speed seem to be vaguely related.
The mean of typing input frequency appears to be relatively steady, while the
standard deviation reaches its peak around 4 km/h (see Figure 6.4). A potential
interpretation could be that during regular walking speed (speed ≤ 5 km/h)
there is a trend among the participants to either type a lot or not type at all,
while participants who had a high degree of interaction walked more steadily
in average walking speed, with fewer outliers (see Figure 6.3). The speed values
for fast-typing data points did not vary as much as the data for the non-typers
or slow-typers. All of these tendencies can be seen in Figure 6.2, in which the
data points center around the plane of 5 km/h walking speed while thinning out
towards the top and the sides of the plot. These results show evidence for different
degrees of typing proficiency among the participants: there seem to be none-
typers, slow typers, and fast typers. This distinction is especially interesting in the
light of related research: smartphone usage is more widespread now than it used
to be a few years ago. Since smartphones are still used mostly for communication,
strong habituation of using them in all kinds of situations seems likely [Böh+11].
Thus, the users probably have developed adaptive strategies [Tim+17], leading to
an increase in automation. The circumstance that the participants’ attention was
mostly on the smartphone also supports this hypothesis. Note that this (slightly
speculative) conclusion is in contrast to [RM14], where only a few years ago it
seemed likely that users stopped for entering text on a smartphone. Having said
that, as a key result, it turns out that the overall impact of contextual variables on
user interaction with the device in the field seems to be surprisingly low according
to our data (see Figure 6.1). Of course, certain changes in the surroundings would
inevitably lead to a change of behavior, for example the extreme case of an
ambulance passing by. However, it is difficult to collect enough data on such
rare events. Hence, more diverse data on varying types of contexts with different
characteristics will be desirable, as related work shows that smartphones are used
differently in different contexts [Min+11; RM14]. The same is valid concerning
the reliability of the data since not all sensors proved to be reliable enough
(while others definitely were). Further potential limitations concern the fact
that nearly all participants were students of computer science at the university
and thus the group was relatively homogenous. However, since smartphone
usage has permeated all layers of society, we assume to have gathered sufficiently
representative data. Finally, the quality and reliability of the sensor data gathered
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6.2 Errors and Stress during Commute

are dependent on the used device and its capabilities - in our study, we consistently
used a Samsung Galaxy Note 4 as a test device across all participants.

6.1.4 Conclusion

Summarizing, in this chapter, we presented the outcomes of our initial exploratory
study examining the interplay of context and interaction. Our findings are
discussed with a particular focus on the gathered data. We show that the CoCo-
nUT toolkit proves to be reliable for supporting field studies and provide initial
evidence for strong habituation of smartphone usage compared to results from
related work conducted only a few years ago.

In the end, the following contributions can be listed:

Contribution (RQ1)

Accuracy of current smartphone sensors

1. CoConUT proves as reliable, and an overview of the gathered sensor
data is presented.

Contribution (RQ2)

Users do not slow down for typing anymore

1. Indicates strong habituation of today’s smartphone users.

In the next chapter, a subsequent field study with a similar setup, but a more
extended scopewill be presented, which directly builds upon the findings gathered
in this study.

6.2 Errors andStress duringCommute
The work described in this chapter has partly been published in the following
paper [SRR19]:

S. Schröder, A. Rafetseder, and P. Reichl.
“Errare Mobile Est: Studying the Influence of Mobile Context and Stress on Typing
Errors in the Field”.
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In: 2019 Eleventh International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2019.

The study described here directly builds on the exploratory study from the
previous section. Its first and foremost goal is to investigate skill-based slips in
the field. In the course of doing so, the study deals with how these slips can be
assessed, when they happen in the field and what their potential impact on secure
communication is (RQ3). It furthermore investigates how the user’s internal state
and which contextual factors influence mobile interaction in general (RQ2) and
has a look at the accuracy of the gathered data (RQ1).

Design, conduction, and findings of this study will be presented in the following
section. The CoConUT toolkit tracks contextual and behavioral variables with
apps and specialized hardware. Prior results are confirmed in detail that people
do not slow down for typing while walking, despite producing more typing slips.
Furthermore, the extent to which increased stress leads to an increase in typing
errors is shown.

6.2.1 Introduction

In this study, we conduct a semi-realistic field study in a commuting setup to
assess typing behavior, indicators for stress, and contextual characteristics. The
CoConUT toolkit allows tracking of contextual variables via smartphone sensors,
indicators for stress via a Bluetooth chest belt, and typing behavior via a modified
software keyboard. We focus on the occurrence of typing errors and provide a
first quantitative description of the influence of context and arousal on typing
behavior in mobile environments.

This field study builds on the results from the previous field study described
in section 6.1. The previous study shows that participants keep their walking
speed constant during interaction with the mobile device. In our study, we use
and extend the CoConUT framework to address Research Question 2 further:
Which kinds of contextual factors do influence the occurrence of mobile typing
errors? Which role does stress play?

The following section is structured as follows: In subsection 6.2.2, we give a
brief overview of relevant literature that has not yet been covered in the previous
chapters. After that, in subsection 6.2.3, the setup used in this study is described,
which also includes additional software that was developed. In subsection 6.2.4,
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6.2 Errors and Stress during Commute

the results of the study are laid out, which are further discussed in subsection 6.2.5.
This section ends with a conclusion in subsection 6.2.6.

6.2.2 Related Work

Previous studies have shown that smartphone behavior in the field has changed
since modern smartphones have been introduced with the first version of Apple’s
iPhone in 2007. As indicated by prior results, people do not slow down for typing
anymore [SHR18], as they did before widespread smartphone coverage [Oul+05].
On the one hand, this can be risky, since not paying attention to one’s surround-
ings can lead to severe accidents [Smi+13]. On the other hand, studies have
shown that users can adapt their strategies according to context while at the
same time using their smartphone [Tim+17]. Not as severe as accidents, but
also potentially dangerous are errors during usage. Reason [Rea90] distinguishes
between three primary types of errors during technology usage: skill-based slips
(and lapses), rule-based mistakes and knowledge-based mistakes. Based on a
large scale observation of 136 million keystrokes, Dhakal et al. show that fast
typers make fewer slips during mobile typing, and that error correction mean in
percent is 6.31 with a standard deviation of 4.48 [Dha+18].

6.2.3 Study Setup

In this subsection, the setup of the field study will be described. First, we will
explain the general study setup, followed by preceding technical developments.
The process of recruiting participants will be covered, as well.

General Setup

In the study presented in section 6.1, participants had to solely walk across
secure sideways and answer chat messages, which brought some interesting
explorative insights into mobile communication behavior. To dig a bit deeper
into mobile behavior and especially errors, we designed this study as a semi-
realistic study, in which we strove to control some factors. Semi-realism, in this
case, fosters reproducibility and comparability, while at the same time enables
realistic behavior in the field. Since field studies can pose an unlimited amount of
contexts, in this study, the contexts were pre-given. Our scenario copies a typical
commute, consisting of walking on sideways, waiting on the station and taking
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the tramway. To assess the users’ stress level, their heart rate was recorded via a
non-intrusive chest belt. To emulate realistic chat communication, participants
received a standardized series of 16 messages over the instant messaging app
Telegram7 sent by the chatbot CoCoBot (see subsection 4.8.4). The messages
were sent in intervals of 90 seconds (after an onset of 240 seconds) under the
pretense of being sent by the operator. Participants did not know beforehand
they would receive messages. To assess errors, a software keyboard was modified
to log every character input. Thus, the number of typing slips and error rate
could easily be calculated.

The route consisted of: waiting on a station (station1), taking a tramway
(tram1), waiting on another station (station2), taking a second tramway (tram2)
and walking back to the lab (walking). The route the participants had to walk
and commute can be seen in Figure 6.58. They only had to wait for the tramways
on the first two stations, since on the last one they only got out to walk back to
the COSY:Lab.

In-between study sessions, the chest belt was disinfected, and the chat history in
Telegram was cleared. The participants used the OnePlus 5 Android smartphone
of the COSY research group.

Technical Setup

To assess context via smartphone sensors, the CoConUT framework9 [SHR16;
SHR18] and an Android-based smartphone were used. The CoConUT (sensor
collection) app was extended to connect to a Polar H10 chest belt10 via Blue-
tooth Low Energy (BLE) to record heart rate. The app measured GPS (location,
speed, accuracy) and subsequent heartbeat intervals in milliseconds (among other
sensors).

For measuring typing slips, the software keyboard app CoCoBoard was used
(see subsection 4.8.3). All single character touches were logged with a timestamp.
Auto-correction, as well as word suggestions, were disabled. Thus, the number
of typed characters, including the usage of the backspace key for corrections of
skill-based typing slips could be calculated.

7 https://telegram.org, last visited March 4th 2019
8 http://maps.stamen.com/toner-lite/#16/48.2188/16.3565, last visited February 14th

2019
9 https://coconut.cosy.wien, last accessed March 4th, 2019

10 https://www.polar.com, last visited March 4th 2019
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6.2 Errors and Stress during Commute

Start / End Point

Station

Walking

Tramway

Figure 6.5: Route the participants had to take. It consisted of walking on secure side-
ways, standing on two stations and waiting for the tramways, and taking two
tramways.

Study Setup

Participants were recruited via university courses and bulletin notes. As compen-
sation, either points for their university course or 10€ were offered. Participants
were invited for a CoConUT (sensor app) feasibility study of one hour. The
COSY:Lab of the COSY research group was the starting point for all participants.
They were invited separately into the lab and given a brief introduction. Also,
they had to fill in a General Data Protection Regulation (GDPR) compliant consent
form about data usage. Subsequently, they were asked to put on a chest belt (an
H10 heart rate sensor by the brand Polar11). The operator then prepared the study
smartphone by starting the CoConUT app, connecting the chest belt and starting
a new recording session. Participants were told to use the CoCoQuest app for
instructions on which way to go. During the route, CoCoQuest delivered short
texts with directions. Additionally, participants could use Google Maps. Shortly
before the participants went outside, the operator started the chatbot, which

11 https://www.polar.com/en/products/accessories/H10_heart_rate_sensor, last vis-
ited February 14th 2019
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6 Field Studies

started delayed by four minutes. Even if the participants took some moments
to get on their way, there was enough time to pretend realistic communication.
After they returned, participants were asked to fill in a subsequent questionnaire.

6.2.4 Results

In this subsection, the results of the study will be described. Data evaluation and
visualization were done by using R12 and RStudio13.

On average participants took about 15 minutes to complete the outdoor part,
with an sd of 1.8 minutes. The single phases had the following durations (indicated
as mean ± sd, rounded to seconds): Station 1 (162 ± 76), Tram 1 (192 ± 35 ),
Station 2 (212 ± 137), Tram 2 (201 ± 41), Walking (520 ± 57).

Participants

Overall, 44 participants (35m / 9f) took part in the study in November and De-
cember 2018. They were between 18 and 38 years old (𝜇 = 26.64 and 𝜎 = 4.91)
and most of them studied computer science at the university, while the rest were
university staff members and externals. All of them were experienced with smart-
phones as well as instant messaging apps and noticed the messages. However,
only about 50% realized they were communicating with a bot. 27.3% were unsure,
and 22.7% did not realize. When being asked how much the chatbot messages
stressed them, the trend was going towards not being stressed (mean 𝜇 = 3.95,
sd 𝜎 = 1.18 on a 5-point Likert scale where 1 meant “very stressed” and 5 “not
stressed at all”).

Participants were tested during the daytime between 9 am and 7 pm. Due to
winter, some of the participants had to commute after sunset. Temperatures were
moderately cold and ranging between 0 ∘C and 12 ∘C.

When being asked whether they stopped for typing on their smartphone, or
also typed during walking, 41 out of 44 said that they also type during walking.
Out of those 41, some indicated limitations: Two participants wrote that they only
walked when it was safe. One person said they typed during walking, but did not
have a look at the screen. Other limitations were: many people nearby, crossing
a street, or if the quality of the typed text or the conversation was important.

12 https://www.r-project.org, last visited February 15th 2019
13 https://www.rstudio.com, last visited February 15th 2019
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6.2 Errors and Stress during Commute

Sensor Data

Value mean 𝜇 sd 𝜎 Min Max

Speed (over GPS) 6.95 9.42 0 52.56
Light (lux) 851.8 1841.26 0 32767
# Bluetooth Dev. 12.56 12.27 0 76
Interaction 0.29 0.89 0 9

GPS Accuracy (m) 7.96 17.86 3 700

Table 6.2: Table with summary about assessed sensor values of the CoConUT app.

Another question asked about if there are any situations in which the par-
ticipants preferred to write text messages via SMS or Instant Messenger. Nine
persons wrote that they like to write text messages in public transportation.
Reasons were increased privacy due to an avoided voice call, the idling time, or
the seated position. A few others said they wrote text messages during waiting
or when they were bored.

Data Collection

Unfortunately, not all 44 data sets recorded in the study were complete. In one
case, CoConUT (sensor app) failed to record. For five participants, the data had
to be excluded since the HR recordings were incomplete or missing. Two other
participants did not use the keyboard at all, and one changed from the modified
keyboard to another software keyboard, so that in three cases typing data is
missing.

The smartphone was measuring sensor data every second. Table 6.2 shows the
mean and standard deviation of some sensors measuring the users’ surroundings.
Other sensor data, like HRV and BPM measurements over the chest belt, will be
described later on.

For reference values, those sensor levels can be compared with section 6.1.
To distinguish between the different categories, data point ranges were allo-

cated manually according to their geospatial location and the speed patterns. The
sensor data had to be split into the three context categories “walking”, “station”,
and “tramway”. To achieve splitting the points, geospatial polygons were laid
over a map and data points were sorted according to their coordinates matching
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the respective polygons. As can be seen in Figure 6.6, there were five polygons
the data points could fall into two tramway paths, two stations, and one walking
route (the original route can be seen in Figure 6.5). Since the calculation of HR
and errors requires ranges of data points, start and end points of the different
categories in the data set were determined manually, referring to the polygon
matches, speed values and knowledge of the route. For example, if the speed
pattern in the data indicated that a participant had passed two stations by tram,
it was likely that he/she reached the destination.

Figure 6.7 shows the differences between specific sensor readings or calcula-
tions in-between the different contexts.

Figure 6.6: The polygons on the map used for sorting the data points into categories.
The orange and green polygons are the parts of the routes to be taken with
tramways, while the yellow and red forms are the two stations the participants
had to wait on. Finally, the purple polygon was the part of the route to be
walked by the participants.

HRV and Stress

The following results base on 37 data sets with HRV measurements from the chest
belt. For evaluation of the HRV, the RR intervals were taken from the CoConUT
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Figure 6.7: Boxplots of sensor measurements across the different categories
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Figure 6.8: RMSSD values and their underlying measurement durations across categories.

file. Due to delays in the connection between the chest belt and the smartphone,
some data points were doubled in the data set. Reproducibly, this only happened
for delays > 1000𝑚𝑠, so the doubled data points had to be deleted. The resulting
list of RR intervals was then analyzed using the RHRV library for R14. As already
has been described in subsection 6.2.4, one outlier had to be removed. The RMSSD
value of this participant was clearly outside the apparent distribution of the data,
having an overall value of 100, whereas all other values had a mean of 𝜇 = 26
and 𝜎 = 11.12.

The chest belt also provided aggregated data about beats per minute (BPM).
Results regarding BPM can be seen in Figure 6.7c.

An overview of the different RMSSD values across the different categories can
be seen in Figure 6.8a. Since measurement lengths are important for the calcula-
tion of the RMSSD, Figure 6.8b depicts the mean and sd of the underlying lengths
of data ranges. For obtaining the best accuracy for calculation, a measurement
duration of five minutes (300 seconds) for the RMSSD is advised. A lower RMSSD
value indicates a higher level of stress. As a reference for the RMSSD, users aged
20 to 29 have an average RMSSD value of approximately 43±19 [Ume+98].

Interaction and Typing Errors

Due to the onset of the bot after four minutes, few participants received their first
message on the first tramway station. Most of the participants started responding
to the bot in the first tramway. Table 6.3 shows statistics about error rates during
the different categories. The mean and sd of interaction (measured as overall

14 http://rhrv.r-forge.r-project.org/, last visited February 20th, 2019
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6.2 Errors and Stress during Commute

Category mean sd median min max

Station 9.13 7.16 6.67 0 29.00
Tramway 12.04 9.30 10.64 0 34.36
Walking 10.55 8.91 11.30 0 30.92

Table 6.3: Mean, sd, median, min and max of error rates in percent for different parts of
the route
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Figure 6.9: Mean and sd of screen touch interactions per second over walking speed for
the Walking phase. The numbers of touches for each speed are specified in
the graph. Only GPS values with a sufficient accuracy of less than 10 meters
were taken into account

touches on the screen) can be seen in Figure 6.9. For calculation, the speed
values obtained through the GPS were summed up according to their rounded
value. There were no statistically significant differences between the means as
determined by a one-way ANOVA (F(2,103) = .899, 𝑝 = .41).

Figure 6.10 finally shows the connection between RMSSD and error ratio
throughout the whole experiment. Pearson’s product-moment correlation yields
a negative correlation of −0.37 with a significance of 𝑝 =0.03.
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Figure 6.10: In this figure the relation between RMSSD and error ratio in % over the whole
span of the experiment is shown.

6.2.5 Discussion

In this chapter, the results from the field study are discussed. Overall, nearly
all participants answered the chat messages, despite not being told to do so
beforehand. Though, after a while, a majority noticed that a bot was sending
the messages. Still, nearly all continued to answer. Thus, semi-realistic chatting
behavior could be assessed.

Interaction and Errors

According to our results, users do not slow down to type on their smartphones
during walking, indicating that interaction frequency is steady across potential
walking speeds (see Figure 6.4), which is in line with a previous study [SHR18].
Also, participants subjectively stated that they rarely stop for typing and instead
type during walking, which indicates a particular typing expertise. Surprisingly,
typing during walking did not significantly raise the error ratio above the other
categories (see Table 6.3). The slightly higher error rates than those presented
in [Dha+18] (6.31% ± 4.48) can be attributed to the unfamiliar test smartphone
the participants had to type with.

Stress

Users that are more stressed tend to cause more typing errors (see Figure 6.10).
This assumption can be explained with a higher overall workload and fewer
mental resources for the typing task. Also, walking seems to cause more stress
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6.2 Errors and Stress during Commute

than the other categories. Although users do not slow down for typing, even on
sidewalks, they still have to pay attention to their surroundings. This multitasking
probably causes a higher level of stress, which can also explain the lower level of
stress during the tramway phases: once users are in the tramway, they do not
have to pay attention to their surroundings anymore, only when approaching a
station. Surprisingly, the error rate during the tramway phase was the highest
(albeit not being statistically significant).

Of course, our results have certain limitations, since our user group was quite
homogeneous. A heterogeneous group might yield different findings. However,
for the calculation of stress levels, user homogeneity is positive [Ume+98]. The
time spans for calculating short-term RMSSD have not always had the suggested
five minutes length, which is required for comparability in medical settings. Also,
ECG segments of differing lengths are usually not comparable [MA06]. Since in
the field, standardized intervals are not always feasible, we put up with slightly
less precise outcomes.

Sensors and Context

As can be seen in subsection 6.2.4 and Figure 6.2.4, the data recordings provided
by CoConUT were reliable in nearly all cases but failed in few. Especially the
chest belt sometimes lost its connection, which is unsurprising due to the field
setting demanding a great deal of the equipment. The data could be used as-is,
with only minor cleaning.

6.2.6 Conclusion

In this section, we presented a semi-realistic field study to assess the influence
of context and stress on typing errors in the field. Our results show that people
do not slow down for typing on their smartphone during walking and to which
extent people are more likely susceptible to typing slips when they are walking.
Finally, the users’ base stress level influences the number of typing errors, which
increases when stress is increasing.
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Contribution (RQ1)

Accuracy of current smartphone sensors

1. An overview of the gathered sensor data is presented in a second
field study.

Contribution (RQ2)

Users do not slow down for typing anymore

1. Results from the previous section have been confirmed.

Contribution (RQ2)

Context and the user’s stress level influence typing slips

1. The more stressed a user, the higher the error rate.

2. When the user has more to multitask or is engaged in physical
activity (for example during walking) due to the context, the error
rate increases.

Overall, in this chapter, the outcomes of two subsequent field studies have
been described. While the first study was exploratory, the second study managed
to take up approaches and findings from the first study and go deeper into the
research subject. While some findings could be reproduced in the second study,
also new insights could be gained.

In the next chapter, the outcomes from all four laboratory and field studies
from chapters 5 and 6 will be discussed with regards to the related work presented
in chapter 2.
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7

Discussion

This thesis addresses three research questions concerning human behavior in
the field regarding mobile human-device interaction (see section 1.1). While
these research questions aim at assessing mobile device interaction in the field
using field studies, some subquestions had to be addressed in the laboratory due
to methodological reasons. However, as a first main result, a framework for
supporting mobile field studies was developed, and several studies in the field as
well as in the lab were conducted.

In this chapter, the conducted research is reflected upon. The discussion runs
along three major strands: lessons that can be learned for mobile field study
researchers and developers, habituation of mobile device usage, and a reflection
on errors in mobile interaction. This chapter concludes with some remarks about
the assessment of biophysical measurements in the field.

7.1 Supporting Mobile Field Studies

This section reflects on the conceptualization and development of the CoConUT
framework. Remember that the CoConUT framework was developed to address
the Research Question 1, which asks how context, the user’s internal state (as an
indicator for mental factors) and interaction (especially errors) can be assessed in
field studies. It puts particular foci on the kinds of data that can be assessed, the
accuracy of data, as well as how the collected data can be visualized and analyzed.
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The CoConUT framework could successfully demonstrate that a combination
of Open-Source software and support of affordable consumer devices designed
for field applications is the ideal support for mobile field studies.

Although some Open-Source frameworks for supporting mobile field studies,
or also for collecting sensor data with the smartphone, exist (for example the
AWARE Framework or Google’s Science Journal, as can be seen in section 4.2),
none of those fully fulfilled the requirements posed by this thesis (as can be seen
in Table 4.2).

In chapter 4, the process of conceptualizing and developing the CoConUT
framework to assess context (mainly by smartphone sensors), the internal state
(by measuring biophysical data and collecting qualitative feedback from the
user) and interaction (by measuring touches on the screen or typing behavior)
during field studies were described. A particular focus was put on the usage of
Open-Source and open hardware.

As has been shown in two field studies (see section 6.1 and section 6.2), the
data collected by our framework demonstrates to be accurate and reproducible
(see Table 6.1 and Table 6.2). With the timestamps collected by all CoConUT
modules, the gathered data from all apps and wearables could retrospectively
be merged for evaluation purposes after a study. When assessed directly on
the smartphone, data collection was very reliable. Measurement problems only
occurred when connecting to external devices via Bluetooth caused problems.

For visualization purposes, data can either be visualized on the small screen
directly during or after a study in the CoConUT sensing app. The CoCoVis
dashboard allows for a more detailed exploration and visualization of the study
data after a study.

Among the range of realized CoConUT modules, two open hardware projects
for making wearables to support mobile field studies were evaluated as not
successful, namely the CoCoHat and the CoCoBand. While the idea of open
hardware powered by open software is intriguing, neither device lived up to the
posed expectations. Self-built devices proved to be less reliable, less accurate,
and even more expensive than their consumer device counterparts. The camera
and microphone recording capabilities of the CoCoHat could easily be realized
with a modern wearable action camera. The interaction with the device itself can
be recorded via screencasting, which the CoConUT sensing app supports. The
biophysical measurements with the CoCoBand also did not prove to live up to
their consumer counterparts. Modern chest belts for athletes even do a better job
in measuring heart rate.
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7.2 Habituation of Mobile Device Usage

Referring back to the best practices mentioned by Roto, Vätäjä, Jumisko-
Pyykkö, and Vänänen-Vainio-Mattila in subsection 2.1.1 [Rot+11], it can be
summarized that the CoConUT framework supports each of the mentioned
steps. Especially during the data collection phase, CoConUT addresses most
of the posed best practices with great care: CoConUT is very unintrusive (best
practice C1) while collecting most of its data directly on the smartphone. It is
possible to record a broad variety of multimedia data about the context (C2), as
well as seamlessly integrating all recorded data into one dataset (C4). Also, using
questionnaires and experience probing, subjective data can easily be assessed
(C4). Collecting subjective data also helps participants to give their feedback
in a rather discreet way directly in the field or shortly after that (C5 and C6).
Best practice C3 is not applicable here, because it can only be addressed by study
design.

The approach by Möller, Westermann, Beyer, and Reichmuth can be fully
confirmed: quantitative data should be augmented with user opinion data to
cover the broadest amount of knowledge that can be gathered in the field [Möl+14].
All in all, it can be said, that the approach of blending rich qualitative with detailed
quantitative data gathered in the field from an all-in-one solution proves to be
reliable and suited for a broad range of field study purposes.

7.2 Habituation of Mobile Device Us-
age

For addressing interaction, context, and internal state in the field, two field
studies were conducted. The underlying Research Question 2 asked, which kinds
of contextual factors influence mobile interaction in the field. Furthermore, a
subquestion referred to the kinds of contexts that have an impact on the user’s
primary interaction task.

Our studies showed that people do not slow down anymore for typing on
their device. Quantitative as well as qualitative data could confirm this finding:
While people did not slow down in their walking speed and kept a steady typing
rate according to the sensor measurements, they also stated explicitly that all of
them type during walking outside of the study (see subsection 6.2.4). This fact
indicates a strong habituation that has happened in the past ten to 15 years since
smartphone usage has become widespread.
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In the studies, contexts were pre-chosen to be able to control the number of
potential contexts. Since mental resources are only indirectly measurable, the
users’ heart rates were assessed to be able to calculate their stress levels in the
field. Since in the field, the users can be in an indefinite amount of contexts, and
every direct inquiry (for example by an in-situ workload questionnaire) can bias
the outcomes, the pre-selection of relevant contexts (here: commute) and the
indirect measurement of heart rate were chosen as operationalizations.

Regarding different contexts in the field, behavior changes depending on the
surroundings, and the available attention for the interaction task. While on empty
sidewalks, only a few disturbances are expected, users still have to walk actively,
which negatively impacts their focus and subsequently rises their typing error
rate. In the tramway, no action has to be taken by the users, which can (almost)
completely concentrate on typing on their smartphone. In the station, all different
kinds of actions have to be taken, and there is a high number of people nearby.
Surprisingly, probands in our second field study had a relatively low rate of errors
in the station setting. Probably multitasking was not possible, and they only
answered when they were in a standing and calm position.

Although users do not slow down anymore, let alone stop completely, it still
stresses them to type during walking (as stress measurements could show by a
higher RMSSD). Apparently, today, people can multitask during their commute,
but it still stresses them out to take other actions during typing. This conclusion
also goes hand in hand with the findings by Vidulich and Tsang, who state that the
workload of the secondary task is more meaningful for assessing overall mental
workload. During multitasking, it is not the primary task that stresses us out, but
the secondary task that keeps sliding into the foreground periodically [VT12].

Of course, typing during walking can be relatively safe, when, for example,
done on a quiet, long sidewalk without much interference. Much research has
been done on more risky use cases like, for instance, driving and aviation [EK15].
However, also everyday situations can be dangerous and remain relevant for
the question at hand, as more people are crossing roads than experts piloting
airplanes.

As could be seen in Figure 2.2, the role of habituation during multitasking has
been well-researched. Persons become increasingly better at handling multitask-
ing as they become better and more habituated in the different tasks [SS12; EK15;
VT12]. This circumstance can directly be applied to our multitasking scenario of
interaction with the device and monitoring of surroundings in the field. It remains
a challenge to “allocate attention to the right things at the right time” [Fer14] due to
sensory flooding in today’s multimedia world, but at the same time, habituation

138
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makes it gradually easier for us to choose the right stimuli to focus our attention
on. With our focused attention breaking up into more and more divided attention,
at the same time, training and expertise in mobile device usage seem to make up
for the more rapid nature of today’s networked world. Training can reduce the
required resources and lead to a reduced mental workload [VT12], but still – the
need for multitasking increases, and it remains cumbersome.

Summarizing our findings, it can be said that in the past 10-15 years a strong
habituation of mobile device usage has happened. In the following, less mental
resources are required nowadays for multitasking in the field during, for example,
textual communication. This contrasts with the findings by Oulasvirta, Tamminen,
Roto, and Kuorelahti, who in 2005 found out that people paid attention to their
mobile device on a long quiet street only 20% of the time, and that they often had
to slow down or completely stop to walking to continue interaction with their
mobile device [Oul+05] (see chapter 2).

7.3 Understanding Errors in Mobile
Interaction

A particular focus in the work at hand was put at the occurrence of errors on
different levels. Research Question 3 asks when errors of different types do
happen in the field and how these types of errors can be assessed. Furthermore,
a subquestion addresses their potential impact on secure communication. The
work at hand can successfully demonstrate the impact of different kinds of errors
on mobile communication.

As noted in the introduction, this research is based on the human error classifi-
cation by Reason [Rea00], who distinguishes between knowledge-based mistakes,
rule-based mistakes, and skill-based slips. All of these errors can happen during
mobile human-device interaction, but not all of them make sense to assess in the
field. Skill-based slips are relatively easy to assess in detail in the field because
they happen on a small scale level. Regarding rule-based mistakes, we also de-
cided to test them in the laboratory, because we wanted to better understand the
impact of stress on rule-based mistakes. While skill-based slips on smartphones
are well-researched in the field (in the form of typing errors on smartphones’
software keyboards), rule-based errors are lacking this broad background. Since
knowledge-based mistakes need a broad extent of qualitative data (interviews,
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detailed video analysis), these large-scale errors are best to be assessed in a
laboratory setting as well.

Knowledge-based mistakes often stem from erroneous mental models. This
circumstance can be especially fatal with regards to system security: While mental
models are incomplete and inaccurate by nature, several attack scenarios exist that
exploit these inaccuracies directly [Was10]. These exploits happen for a reason
since our research showed that even persons with a technical background and
moderate knowledge of security failed to take up the right mitigation strategies,
even after detecting an attack. Those users had high trust in secure software
and, at the same time, a false sense of security. While our attack explicitly aimed
at exploiting a piece of the software (in this case the mutual key verification in
the messaging app Signal), this shows that bad usability of high-risk security
features can lead to the ultimate compromise: users noticing an attack, taking up
mitigation strategies, failing unknowingly and lulling themselves in a false sense
of security.

One level below, our findings indicate that stress could play a role in the
occurrence of rule-based errors. It is assumed that the higher the stress level is,
the higher the error ratio gets. Further research in that direction has yet to be
done. Finally, skill-based slips are influenced by the user’s stress level as well, as
also by the context in the field. This type of error also occurs more frequently
when the stress level rises. Additionally, heavy multitasking and physical activity
seem to increase the error rate. Regarding rule-based errors, we are expecting
the error ratio to rise in straining contexts in the field as well.

As demonstrated above, contextual factors and the user’s internal state (in
this case, stress) influence the occurrence of errors on the go. The impact of the
different errors on the user’s security in this case varies. While of course at first
glance, knowledge-based mistakes seem to have the most impact, very small scale
touch interaction slips can have a considerable impact as well, for example, while
typing a password or clicking the wrong button. This fact is also supported by
literature: stress affects the interaction with the smartphone, and the error rate
rises [CWG15]. A certain level of skill expertise as well as a sufficient knowledge
level can be gained by training and generally reduce error rates [Dha+18], but
under stress the error rate per se increases, no matter which type of error is
involved.

Reason also states that there are the system approach and the person approach
when looking at errors [Rea00] — solely blaming the user as “the weakest link in
the security chain” [SBW01] for making errors has never paid off so far in the
long run. On the other hand, the “system” of human-smartphone interaction
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in the field is extremely diverse and completely unpredictable during software
planning and design, especially when planning which errors could occur. There
is a need for better inclusion of this volatility during mobile system design, for
example using certain security precautions depending on context and the user’s
current activity, while at the same time not restricting the user in their interaction
to prevent errors. This work contributes to a better understanding of errors in
mobile interaction, but more research is urgently needed.

7.4 Assessing Biophysical Signals
in the Field

On a concluding note, the matter of assessing biophysical signals in the field
will be discussed. While this has not been explicitly included in one of the research
questions in section 1.1, measuring signals from the human body to infer the
internal state of a user has been a particularly interesting aspect of this thesis.

Our attempts to build open hardware to measure biophysical signals have
neither proven to be reliable nor accurate. Additionally, the costs of hardware
and development time do not justify the effort in comparison to consumer devices.
While the preferable type of devices for the best accuracy would be medical grade
devices, like those being used in doctor’s practices or hospitals, these devices
remain unattainable with regards to costs and are slightly technically outdated
due to the required certification processes (for example with the Technischer
Überwachungsverein (TÜV)1 in Germany and Austria). Consumer devices, like
the chest belts used in this work for athletes, remain the most affordable and
feasible solution at the moment, especially for low-cost Open-Source projects.

Collecting biophysical signals in the field remains a challenge. First of all,
signals measured from the human body are quite small. Measuring itself is a
challenge with certain signals, and additionally, all kinds of interferences and
biophysical differences from person to person have to be taken into account. Even
assessing those signals in the laboratory can be challenging, despite static contexts
and without the test person moving around. Thus, measuring biophysical signals
in the field is a broad field yet to explore, with many electrophysical and evaluative
challenges to solve. With augmented measuring techniques, which are applicable
in the field, new input and output modalities could become available, stimulating
further applied research in the fields of biofeedback or self-optimization.

1 https://www.vdtuev.de, last visited May 4th, 2019
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7 Discussion

Last but not least, there are certain algorithmic considerations concerning the
work at hand. In the evaluative parts, HRV plays a significant role, particularly
the measure RMSSD, which is defined as the “Root Mean Square of the Successive
Differences”. While all HRV measures are clearly “biased estimates” [MA06], some
seem to be more meaningful for certain bodily functions than others. According
to its formula, the RMSSD is a measure that increases when the time intervals
between successive heartbeats highly deviate. The more homogeneous the time
spans, the lower the RMSSD gets. A certain amount of literature suggests using
the natural logarithm of the RMSSD, namely the LNRMSSD, as ameasure of choice
for ultra short-term HRV calculations, especially in settings with professional
athletes [Ple+13; EF14; MA06; EFN17]. While the application of a natural log
happens to shift the range of potential values to a more easily understandable
range, the conclusion prevails that simply the RMSSD is a meaningful measure for
ultra-short termmeasures as well. Still, the RMSSD remains ameaningful measure
for subjective stress, also in safety-critical working environments [Ors+08].

After having discussed the findings of our research, the next chapter will
conclude this thesis and outline future work.
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Conclusions and Future Work

Themotivation for this thesis was to revisit the fundamentals of mobile interaction
on mobile devices in the field with a particular focus on different kinds of errors.
Since the introduction of modern smartphones nearly a decade ago, the way users
interact with their mobile devices has changed. Even important conversations
are increasingly happening while being on the move, for example during the
commute. In such situations, users cannot solely focus on the mobile task at hand
but have to monitor their surroundings as well. While crossing a busy street, for
example, just exclusively attending to the smartphone would be potentially fatal.
Our limited mental resources force us to multitask, which potentially leads to
the internal state of stress. Summarizing, contextual influences, and the user’s
internal state influence mobile interaction.

For assessing this interplay between mobile interaction, context, and internal
state, field studies have been chosen as the prevalent method. None of the
existing frameworks for supporting mobile field studies could fulfill the posed
requirements, which leads to Research Question 1: How can context, the
user’s internal state (as an indicator for mental factors) and interaction
(especially errors) be assessed in field studies? Particularly, what kind of
data can be assessed and how (quantitative or qualitative, surroundings,
or users themselves)? How accurate is the data? Moreover, how can the
assessed data be visualized and analyzed?

The CoConUT framework, which is described in detail in chapter 4, addresses
this research question. In this chapter, the shortcomings of related software are
listed, requirements for a field study framework are gathered and condensed into
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a concept. At the heart of the framework, the CoConUT sensing app gathers
contextual information through sensors and through the help of connectable
wearables. The CoCoQuest study guide app guides the probands through a
field study and allows assessment of contextual questionnaires and qualitative
experience probing in-situ. The assessed data can be visualized and explored
in the CoCoVis visualization dashboard. Further components have either been
discarded or were solely developed for a single study: The CoCoHat is a wearable
in the form of a hat, offering the possibility to record the surroundings and the
user’s interaction via video and audio. The CoCoBand is a wrist-worn wearable
that measures the user’s heart rate in beats per minute, on-skin temperature,
and galvanic skin response. Finally, the CoCoBot is a chatbot which emulates a
conversation over instant messaging, and the CoCoBoard is a modified software
keyboard, that enables the logging of every keypress on the keyboard.

Furthermore, in section 5.1.7, the self-built hardware for measuring biophysical
signals CoCoBand is compared with consumer devices. The CoCoBand, as well
as the CoCoHat, were both discarded in favor of more affordable, robust, and
reliable consumer wearables. Our studies have shown that in our case consumer
wearables for supporting mobile field studies outperform self-built open hardware.

Overall, the CoConUT framework has been successfully validated in several
studies and proves to be reliable. In this work, two overviews of gathered sensor
data with the CoConUT sensing app give an impression of the data quality and
accuracy (see chapter 6).

Based on this framework, a particular focus is put on the occurrence of errors.
This work examines errors on three levels: knowledge-based mistakes, rule-based
mistakes, and skill-based slips. All of these types of errors can disrupt mobile com-
munication. Research Question 3 addresses the occurrence of errors: When
do which kinds of usage errors happen in the field? In particular, how
can those types of errors be assessed? Moreover, what is their potential
impact on secure communication?

In chapter 5, two laboratory studies are described, which explore the occurrence
of knowledge-based and rule-based mistakes. Both studies address aspects that
cannot be examined in the field. In the first study, the amount of qualitative data
could not have been assessable in the field, while for measurements, participants
had to remain seated in the second study.

In the first laboratory study (section 5.1), knowledge-based mistakes are ex-
plored using an extensive qualitative analysis of man-in-the-middle attack miti-
gation with the Android instant messaging app Signal. Probands were invited
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under the pretense of participating in a usability analysis of Signal, during which
a secret MITM attack was launched. Qualitative analysis revealed erroneous
mental models and therefore, incomplete or merely false knowledge about the
underlying mechanisms so that the majority of users chose false mitigation strate-
gies following the attack. This behavior led to compromised security after the
attack, while the users found themselves in a false sense of security. Apparently,
users have very high trust in secure apps. Coupled with bad usability of high-risk
features, this can lead to non-solvable security problems.

Furthermore, the occurrence of rule-based mistakes under stress is tested in the
laboratory (see section 5.1.7). Here, the goal was to examine how the error-rate
of rule-based mistakes changes under varying degrees of stress. Since several
measurement methods were tested as well in this trial, probands had to remain
seated and ideally not move at all. This necessity is the reason why the study
took place in the laboratory. Probands underwent a customized stress test, in
which they had to mentally calculate easy to hard mathematical tasks, while
partially being monitored by the operator to induce stress. The mental arithmetic
tasks emulated rule-based decisions. The outcomes of the study show signs that
the higher the stress, the higher the error ratio (see subsection 5.2.6). Outcomes
of the comparison of stress measurement devices have already been described
above.

Skill-based slips are examined in section 6.2. Since slips during typing are
relatively easy to assess via quantitative data, a field study was conducted. Addi-
tionally, the results from section 5.1.7 identified consumer devices for biophysical
measurements and heart rate as an efficient means for mobile assessment of stress
indicators. The outcomes of this study are described below in more detail.

Finally, Research Question 2 looks at the interplay of different aspects in the
field: Which kind of contextual factors do influencemobile interaction in
the field and to which degree? Which role does the user’s internal state
play? In particular, which kind of contexts have an impact on the user’s
primary HCI task?

Two consecutive field studies are presented in chapter 6. During both field
studies, participants used a provided smartphone on which the apps CoConUT
and CoCoQuest ran.

In the first, exploratory field study, participants had to walk a pre-given route
and chat with the operator over the Zom instant messenger.

In the second, more extensive field study (see section 6.2), probands had to take
a commute-like, pre-given route (walking, taking the tramway, with a provided
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smartphone. During the route, a chatbot started to chat with them over the
instant messaging app Telegram, which led to semi-realistic chatting behavior.
Stress was measured using a chest belt.

Both studies show that today, users do not slow down for typing during walking
outdoors anymore (see chapter 6). Their typing ratio stays constant irrespective
of their walking speed. This fact indicates that, over the past decade, apparently
a strong habituation with smartphones has happened and the expertise of the
users has increased.

Furthermore, findings of the second field study show that context and the
stress level influence typing slips (see subsection 6.2.6): the more stressed a user
is, the higher the error rate of typing slips. When the user is engaged in physical
activity (for example steady walking) or has to multitask, the error rate rises as
well. Despite the increased error rate, users still keep on moving while typing on
their mobile devices. These outcomes of the second field study contribute to both
Research Questions 2 and 3.

Summarizing, the work at hand provides contributions to gain an insight into
mobile interaction in the field after the widespread adoption of mobile devices in
the past decade. In doing so, it puts a particular focus on the occurrence of different
types of errors and highlights their potential influence on mobile communication.

The findings of the research described so far suggest multiple potential direc-
tions for future work.

First, the CoConUT sensing app will be further developed and enhanced with
several new features. A newmobile visualizationwill provide newways to explore
data on the go visually, and potentially also offer built-in statistical features to aid
the operator. Operators could, for example, gain a more profound overview of
the gathered data and make decisions depending on these insights. Furthermore,
machine learning features could be integrated to enable the system to learn
about specific environmental characteristics. The activity or the state of the user,
and certain contextual features could lead to the automatic provision of in-situ
notifications or triggered questions. Of course, machine learning would require a
large body of gathered and tailored data, which would have to be assessed first.

Concerning errors, integrated studies that investigate the co-occurrence of
different types of errors are necessary, especially in the field. While mental models
lead to task-solving strategies, those strategies are carried out in different steps of
smaller-scale if-then-rules (“if this occurs then do this”), whose execution relies
on skills like typing skills. How these different forms of layers interact during the
occurrence of human-device interaction errors remains yet to be seen. Especially
in the field, under different contextual influences, this has to be investigated.
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Another interesting point for further research is the fact that users do not stop
for typing anymore in the field. While this obviously can lead to fatal outcomes
due to decreased attention on the surroundings, it also denotes the need for
electronic communications means while being on the move. Since texting while
being on the steering wheel is forbidden, being on the phone is possible as long
as both hands can remain at the steering wheel. According to Wickens, attention
can be split when not being in the same attentional dimension [WM07]: hearing a
phone conversation while watching the road is not as risky as splitting visionary
attention between the road and the device screen. For communicating while
walking more effective means could be striven for, like better text-to-speech
recognition, or more usable tools for voice mail recording.

Overall, it can be said that communication has changed drastically over the last
decades, and will continue to change even more in the future. Human-Computer
Interaction as a discipline has to keep up and provide usable and safe tools for
mobile communication to keep humans connected.
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Appendix

A.1 CoConUT Online Survey

Expert Survey about EvaluationMethods inMo-
bile Field Studies
Welcome and thank you for participating in this study

In this questionnaire we want to assess how researchers in the field of Human
Computer Interaction (HCI) evaluate data gathered in mobile field studies.

This study will take approximately 510 minutes. All gathered data will be
handled anonymously and only be used for scientific purposes.

Thank you very much for participating!

If you have any questions concerning this questionnaire, please feel free to
contact:

Svenja Schröder M.Sc.
Email: svenja.schroeder@univie.ac.at
Phone: +431427779422

Demographic Questions
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1. Age
__________

2. Gender
O Male
O Female
O Other: __________

3. What is your highest degree?
O High school (or equivalent)
O Bachelor (or equivalent)
O Master (or equivalent)
O PhD/Doctorate
O Habilitation
O Other: __________

4. I work in…
O Research
O Industry
O Other: __________

5. Which subject(s) is(are) your expertise in?
__________

6. What’s your position?
__________

7. Do you conduct user studies? If yes, how many have you already con-
ducted?
O No
O Yes, I’ve done a handful
O Yes, on a regular basis
O Other: __________

Questions about Mobile Field Studies

1. Do you have experience with short-term or long-term field studies?
O Shortterm (several minutes up to several hours)
O Longterm (several hours up to several weeks)
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O Both
O Other: __________

2. Why do you conduct mobile field studies?
O Gathering bigpicture insights
O User group only accessible in the field
O Testing under realistic conditions
O Ethnographic research in groups
O Other: __________

3. Which methods do you use?
� Questionnaires
� Data collection on the device (Logs)
� Experience Sampling
� Video and sound recording
� Screen Recording
� Interviews
� Other: __________

4. Which tools do you usually use to evaluate your study data?
� SPSS
� R
� Matlab
� atlas.ti
� Mathematica
� Python + Libraries
� SageMath
� Excel
� Other: __________

5. How many tools do you usually use?
O 1
O 2
O 3
O 4
O 5
O 6
O 7
O 8
O more than 8
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6. Which statistical methods are you employing?
____________________
____________________
____________________

7. Which of them do you find extremely insightful?
____________________
____________________
____________________

8. Please describe a prototypical mobile field study you recently conducted
(if applicable, short outline is enough)
____________________
____________________
____________________

Improvements in User Study Evaluation

1. What do you miss in the evaluation software you usually use?
____________________
____________________
____________________

2. Does your workflow include interactive visual analysis, e.g. dashboard
interfaces?
O Yes
O No
Other: __________

3. If yes, which tools do you use that provide such dashboards?
� Your own solution
� Tableau
� Microsoft Power Bi
� Other: __________

Just one final question…

Would you be interested in participating in an iterative design process for a
new evaluation tool regarding mobile field studies? If yes, please leave your email
address here, or directly write an email to the coordinator of the study.
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1. Email address:
____________________

Thank you!

Thank you for participating in this study.

If you have any questions concerning this questionnaire, please feel free to
contact:

Svenja Schröder M.Sc.
Email: svenja.schroeder@univie.ac.at
Phone: +431427779422
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A.2 CoConUTExpert InterviewGuide-
line

• Which kind of mobile field studies do you conduct / are conducted in your
group?

– Which methods do you use?

• Which kind of data do you collect?

– Always / sometimes / never? (Logs, video, audio, user input, sensors,
…)

– How reliable is this data? Is this important?

• Do you preprocess your data before you start your evaluation?

– Which steps are necessary and why?

• With how many and which tools do you perform your evaluation? Which
function does each tool fulfill?

– How do you combine your data? How do you detect correlations?
(Get specific over data and evaluation)

• Which statistical methods are you employing?

– Which do you find insightful?

– ANOVA?

• What do you miss in the evaluation software you usually use?

– Specific needs / wishes?

• Does your workflow include interactive visual analysis, e.g. dashboard
interfaces?
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A.3 OverviewoverdifferentBiophys-
ical Signals to Measure

Cowley et al. define a signal as a “real-time data stream supplied by a sensor” and
differentiate into internal (autonomic nervous system), external (ocular system,
remote) and combined signals to measure [Cow+16]. There are different ways
of measuring these signals [Sch15] and some properties of human bodies can be
measured in multiple ways. For example, the human heart beat can be captured
either by listening on the chest with a stethoscope, by optical signals directly on
the skin or by measuring the electrical signals coming from the heart with an ECG.
Schmidt lists types of biosignals which are relevant in the field of HCI [Sch15]:

Bio-electrical: Signals from muscles and nerves

Electrical conductance: Conductance in or on the body, e.g. on the
skin (e.g. galvaniv skin response)

Bio-impedance: Resistance while applying an harmless, alternating current
to tissue

Bio-acoustic: Sounds that originate in the body (heartbeat, lung ventilation,
etc.)

Bio-optical: Changes to the body that can be captured by special cameras
(blood flow, changes to skin color, etc.)

When it comes to specific biosignals to measure, Cowley et al. describe the
most common biosignals, which are being used in HCI [Cow+16]:

Electrocardiogram (ECG) An ECG measures the electrical signals that
originate from the cardiovascular system, which means the activity of the
human heart. Measurements usually are non-invasive and relatively easy
to obtain.

Galvanic Skin Response (GSR) GSRmeasures electrodermal activity, which
means changes in the skin’s electrical properties. Changes in the autonomic
nervous system cause the sweat glances to be more or less activated which
changes the conductivity of the skin. These changes in conductivity can be
measured.
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Eyetracking Eyetracking, or ocular tracking externally measures move-
ments and dilation of the human pupils. Usually this bio-optical signal
is recorded by a camera and interpreted by software. Eye movements
allow to reconstruct the course of the gaze across for example a website.
Attention and intention can be inferred. Micro-movements, also called
micro-saccades, permit the researchers to draw conclusions about cognitive
activity.

Breathing Breathing or respiration is an interesting biosignal to measure
because it can be either consciously controlled by the central nervous
system, but is also automatically influenced by the autonomous nervous
system. Also speech and movement create artifacts during measurements.
Breathing can be measured either non-invasive with a chest strap (which is
imprecise) or by invasive techniques like breathing through a tube. Some-
times in HCI it is used in biofeedback methods [Fre+18].

Electroencephalography (EEG) EEG denotes the monitoring of brain
activity through non-invasive electrodes connected to the head’s skin. It
measured summarized activity in clusters of neurons. There is a broad
variety of EEG systems, which differ in their scope and quality: from
one-channel customer solutions to high-end medical devices with high
resolution many systems are available. The user’s cognitive processes
and internal states can be assessed relatively reliably with the right tools,
but most high-end systems require a certain set-up time (for example
lubricating and placing the electrodes under the user’s hair on the skin).

Electromyography (EMG) EMG non-invasively measures electronic sig-
nals from the muscles. Electrodes on the skin surface detect contractions
of muscles and deliver an according signal. Since contractions of certain
muscles highly correlate with certain internal states, certain emotions can
be estimated over EMG (for example contracted muscles in the forehead
are a sign for anger).
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Figure A.1: Class diagram of the CoConUT sensing app
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A.5 Usability Evaluation of Signal

The study conducted in section 5.1 also contained a usability evaluation of the
Signal app with focus on Signal’s instant messaging and security features. The
following usability improvements to contribute towards an enhanced usable
security experience for Signal can be suggested:

Awareness on security status of conversations: Conversations can only be
assumed to be properly end-to-end encrypted once Alice’s (the user’s) and Bob’s
(the conversational partner’s) Identity Keys were successfully verified. Signal
does not remember the verification status — only point-in-time verifications
are possible and the user has to remember whom of their partners they already
verified. Signal thus lacks mechanisms to quickly assess the security status of a
conversation. Such a security status should be directly visible in the corresponding
conversation.

Comprehensible instructions for recommended actions: In order to avoid
risky behavior, especially in the verification and attack mitigation process, users
should be provided with clear instructions respectively suggestions for actions.
On the key comparison page users with no exact knowledge of asymmetric en-
cryption mechanisms failed to act on the displayed information. In our opinion,
a brief instructional message combined with optional further information would
have led to a higher verification success rate (e.g. “Please contact your partner
outside the app to compare your Identity Keys. If the Identity Keys do not match,
please consult the FAQ or contact the developers.”). We found that this issue is most
pressing for the Android version of Signal. The iOS version of Signal provides
brief information on how to verify users: “Compare both fingerprints to verify
your contact’s identity and the integrity of the message”. However, no information
is provided on how to proceed in case of failure (fingerprint mismatch).

Clear risk communication: On the other hand Signal should inform users
of the possible consequences of their actions. E.g. during the process of accepting
Bob’s identity after the attack the denomination of the buttons (”Verify” and
”Accept”) was misleading. Under the false assumption that the mitigation process
would lead to a verification of Bob, users failed to have a clear understanding of
the risks.

Easily accessible verification: The verification options should be easily ac-
cessible in the menu. A suggestion would be to add a shortcut for the verification
mechanism directly to the conversation in order to maximize visibility.
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With the implementation of improvements as suggested above, Signal would
instantly gain a huge factor of both usability as well as security.
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