

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

Developer Documentation

SoniControl is a novel technology for the
recognition and masking of acoustic tracking
information. The technology helps end-users to
protect their privacy. Technologies like Google
Nearby and Silverpush build upon ultrasonic
sounds to exchange information. More and more of
our devices communicate via this inaudible communication channel. Every device with a
microphone and a speaker is able to send and receive ultrasonic information. The user is
usually not aware of this inaudible and hidden data transfer. To overcome this gap SoniControl
detects ultrasonic activity, notifies the user and blocks the information on demand. Thereby,
we want to raise the awareness for this novel technology.

The project SoniControl is funded by Netidee
(www.netidee.at) and is a project at the Media
Computing Group at the Institute for
Creative\Media/Technologies at Sankt Pölten
University of Applied Sciences (mc.fhstp.ac.at).
The project website of the SoniControl project with
all published results and resources can be found here: sonicontrol.fhstp.ac.at. The SoniControl
App can be downloaded on Google Play Store.

License
The code developed in the SoniControl project is licensed under the GNU General Public
License Version 3 - see fsf.org/. This document is released under CC BY-SA 3.0 license.

Source Code
The entire source code can be found on: https://github.com/fhstp/SoniControl

Contributing
Please feel free to open issues, submit pull requests, or just send us feedback at
sonicontrol@fhstp.ac.at

Open topics / Features to add
● Support for other platforms. See iOS Concept

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/
https://www.netidee.at/
https://mc.fhstp.ac.at/
https://sonicontrol.fhstp.ac.at/
https://play.google.com/store/apps/details?id=at.ac.fhstp.sonicontrol
https://fsf.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/fhstp/SoniControl
mailto:sonicontrol@fhstp.ac.at
https://sonicontrol.fhstp.ac.at/wp-content/uploads/documentation/iOS%20concept%20for%20SoniControl.pdf

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

Credits
● Audio by Superpowered (https://www.superpowered.com/)
● Material Icons, which are under Apache License Version 2.0

(www.apache.org/licenses/LICENSE-2.0.txt)
● The project SoniControl is funded by Netidee (www.netidee.at)
● Spectrogram visualization inspired from https://bitbucket.org/galmiza/spectrogram-

android

Installation & Setup
Sonicontrol is an Android application, developed in Java and C++ using Android Studio 3. We
used the library Superpowered (https://superpowered.com/) for the sound processing part.

To compile and run the project you need to:

● download the source code from https://github.com/fhstp/SoniControl,
● import it in Android Studio version 3 or above,
● download the corresponding Android SDK and NDK,
● download the Superpowered SDK (https://www.superpowered.com/),
● link to Superpowered SDK in the local.properties file (at the root of the Android Studio

project)
e.g. : superpowered.dir=[some_path]/SuperpoweredSDK/Superpowered

● click run and build the application for testing

The first version of SoniControl is usable on devices running Android 4.1 and above.

Software Architecture and Implementation Details

User Interface overview
Our application consists of three activities (main activity, settings activity and firewall
rules/detection history activity). The main activity has four buttons to: “start/pause” scanning,
“stop” all processes/release resources, open the “Rules&Detections” activity, open the
“settings” activity.

Start of the app
When tapping on the start-Button, a service and a threadpool are created. We start our scan
process in one thread. We also request location updates in order to have a precise location
when the user detects a signal. This allows the app to remember where the user wants to
block/ignore ultrasonic signals.

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/
https://www.superpowered.com/
https://www.apache.org/licenses/LICENSE-2.0.txt
https://www.netidee.at/
https://bitbucket.org/galmiza/spectrogram-android
https://bitbucket.org/galmiza/spectrogram-android
https://superpowered.com/
https://github.com/fhstp/SoniControl
https://www.superpowered.com/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

SoniControl Detector
The SoniControl Detector is implemented in C++ in “FrequencyDomain.cpp”, and called from
the Java “Scan” class. The underlying concept is that we create a background model of the
surrounding ultrasonic noise and then detect strong changes (signals). For an overview,
please have a look at the flowchart “SoniControl Detector” at the end of this document.

We use Superpowered to get the audio input with low latency and compute the fast Fourier
transform (FFT). This FFT transforms the signal from the time domain to the frequency
domain (namely to a spectrogram), making it possible to evaluate the amplitude of the signal
for each frequency.

The main steps of our processing are for each sample (every ~46ms):

- Filter the audible frequencies. We apply a highpass filter at about 17kHz in order to
analyze only the ultrasounds (some technologies use frequencies at the edge of the
hearable range, which is the reason for this rather low value),

- Normalize the spectrogram,
- Add this normalized spectrogram to the background buffer (which is a list of

spectrograms),
- Check if the background buffer is full (after about 10s), if it is, we can start analyzing

it as follows:
- compute the “current background model”, which contains for each frequency,

the median amplitude value over the last 10s,
- compare this current background model to the current normalized

spectrogram (using the Kullback Leibler Divergence as distance metric),
- If the difference is high, consider it as a “detection”, or rather a sub-detection

as it is calculated on a rather short time (about 46ms),
- We put this “detection” result (0 or 1) in a “median buffer”,
- If this median buffer is full (after 2,5s), we compute its median, if it is 1 we

consider that we detected an ultrasonic communication
(meaning that if over the last 2,5s there was more “detections” than “non-
detections”, we consider there really was an ultrasonic communication)

- If the “extended diagnostics” option is checked, a detection is only
triggered once the signal is over (if the last 10% of the median buffer
have 75% of non-detection). The idea behind it is to capture the whole
signal for analysis and diagnostics purposes.

- If we detected something, we delete the last entries in the background
model to avoid learning the detected signal as being normal.

On signal detection
As soon as a signal is detected, the Preventive blocking option is triggered. If the setting is
checked, the detected signal will be blocked (see “Blocking routine”) even before asking the
user for a decision, and this blocking will be maintained until the user makes a choice in the
alert dialog.

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

When a signal is detected, the second thing to happen is the preprocessing of the audio buffer,
namely converting to mono and applying a high pass filter to remove all audible content. We
then store this buffer for later use by the diagnostics module and the recognition process,
described further in this document. The current location is then retrieved by a java class called
“GPSTracker”, which handles the location methods like “getLongitude” and “getLatitude”, and
caches this data until the user decides what to do with the signal detected.

Detections are then handled following this activity diagram:

Block on each detection?
The first step is to check the setting “Block on each
location”: if it is checked, all signals must be blocked
which leads to the blocking process, described in
Blocking routine.

New sound?
When “Block on each location” is unchecked, we
will loop through the entries in the JSON-file, where
all detections are saved, to check if the location of
the current detection match a previous detection.
The distance between the detection location and
the one from the JSON entry is calculated to check
if it is within the radius. The radius is a separate
entry in the settings activity called “Location radius
(x metres)”.

If there is a match, the process will lead to the
question “Should block?”, which is described in the
next paragraph. If no entry matches the detected location, it is a new signal and will open the
alert asking the user to decide what to do with the signal.

Should block? (in location?)
If there was a match within the JSON-file (so if we already had the same kind of signal here),
we check the blocking-status attribute of the matching JSON-entry. If the status is “Blocked”,
the process will go to the blocking part. If it is “Ask again”, the user will be asked to decide
what to do with the signal. If it is “Allowed”, the firewall will start scanning again.

In all three situations the JSON-entry will get updated with the number of detections.

Detection AlertDialog
When the detection alert dialog opens, an instance of DetectionDialogFragment is created
and a DetectionAsyncTask is started to adapt the UI (hide spectrogram placeholder and replay
button, show a loading symbol) while processing the signal in the background. Once the

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

spectrogram is computed and the ultrasonic wave file created, the spectrogram and replay
button are shown to the user, and the loading symbol is hidden. The user can then use
Sonification to listen to a hearable pitch shifted version of the ultrasonic signal, as described
further in this document.

The dialog offers the user with two main options to deal with the detected signal:

- Block (see Blocking routine further in this document), or
- Allow (making it possible for the user to utilize ultrasound to communicate if they want

to).
Additionally, two checkboxes give “long-term” options regarding the signal for the user to :

- “Make it available to the community” (see Sharing functionality further in this
document), and/or to

- “Save it as a firewall rule (remember)” which stores the detection in the
corresponding JSON array in order to later be able to automatically block or allow the
signal when detecting it at this place again (this decision can then be changed in the
“Rules & Detections” activity).

Blocking routine

Block Microphone or Actively Jam
There are two options for blocking. One is the active part, which will send out white noise in
the ultrasonic frequency area, and the other is to block the microphone, so that no other app
can use it. Indeed, the Android OS only allows one app at the same time to use the
microphone. If “Use the microphone for blocking” setting is checked, the routine checks the
microphone access: if the microphone is available, we start a new Audio Recorder to block
the microphone. No audio will be saved nor processed during this blocking part. If we do not
have access to the microphone, we start actively jamming by sending out white noise. If the
detected signal’s technology could be recognized, we only block its specific frequencies,
otherwise the whole near-ultrasound range is jammed. Both blocking actions update the
notification and status text to inform the user that blocking is ongoing.

Looping system
These two blocking methods would run as long as specified in the setting “Blocking duration”.
The location will then be checked again to verify if we are still in the area of the detected signal.
If we are, we start the routine again. If not, we start the scan and detection process again.

Diagnostics module

Recognition of the signal
The recognition of different ultrasonic communication technologies is mostly based on their
characteristic frequencies. We studied signals from all technologies we knew about and
analysed their spectral characteristics. We stored their frequency signatures in text files and
implemented a recognition algorithm based on these. For each technology, we compute and

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

compare the on-band energy sum and the off-band energy sum. On-band means that this
frequency band is “on”, i.e. it is used for transmission by this technology. Off-band means that
this frequency band is “off”, i.e. it is not used for transmission by this technology. Here is the
algorithm to compute these on and off band energy sums:

- Compute a Fast Fourier Transform (FFT) over the entire signal to get a spectrum
(energy level at each frequency).

- Read the file containing the center frequencies into an array. This also gives you the
number of on-bands and the number of off-bands (nOnBands + 1, as the first off-band
starts from the cutoff frequency: 17kHz, and the last one ends at the maximum
frequency for a standard microphone: 22.5kHz).

- For each band, loop through the spectrum at the corresponding frequencies and store
the maximum energy1.

- An off-band score is computed by averaging the stored maximum values:
offBandScore = sumOffBandEnergy / nOffBands

- Similarly, an on-band score is computed, but it excludes the 25% lowest values as all
frequencies/bands are not necessarily used for every signal.

- We return a score for this technology: the ratio inBandScore/offBandScore
- If the highest score is bigger than 1, the corresponding technology is shown to the user

as “estimated type” detected, otherwise the uncertainty is too high and we declare the
signal’s technology “unknown”.

Visualization
The spectrogram visualization is inspired from the class FrequencyView written by
Guillaume Adam (see https://bitbucket.org/galmiza/spectrogram-android). Our
SpectrogramView class displays a full spectrogram from a two dimensional float array
spectrum. It is possible either to show all frequencies or a range between a lower and upper
cutoff frequency.

The spectrogram computation starts in the DetectionAsyncTask class when the detection
alert dialog creation is requested. During the creation of the DetectionDialogFragment, we
configure the spectrogramView object with sampling rate, FFT resolution, (lower) cutoff
frequency, upper cutoff frequency and the color theme to be used. If the computation is over
already, we display the spectrogram, otherwise we show a loading symbol that will be
hidden as soon as the AsyncTask background processing is done and the spectrogram
shown.

Sonification
We use Pitch Shifting in order to make the detected signals hearable. The PitchShiftPlayer
(SuperpoweredAdvancedAudioPlayer.h) class offers a simple pitch shifting audio player
based on Superpowered library. A PitchShiftPlayer object is created when the button “Make
it audible” is clicked in the detection alert dialog. The MainActivity implements the
PitchShiftPlayerListener interface onPlayCompleted method which resets the button text
once the pitch-shifted replay is over.

1 Using the maximum value strongly decrease the score of other technologies, who get peaks in their
off-frequencies. Taking the average or median would hide this pattern.

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/
https://bitbucket.org/galmiza/spectrogram-android

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

Rules & Detections activity and JSON entries

Every detection will be saved into a JSON-file. The JSON handling is capsuled in the
JSONManager class. Within the JSON-file there are five JSON-arrays. These five are
structured into one for all saved firewall rules, one for all one-time actions (block or allow)
and one for all detections with an unknown location. The remaining two are for all imported
firewall rules and for the history of all detections, where the first three JSON-arrays are
combined into one array, independently of the user decision or location availability. Each
JSON-entry consists of:

● Longitude
● Latitude
● Estimated type/technology of detection
● Spoofing status
● Address
● URL
● ID of estimated type/technology of detection
● Detection counter
● Amplitude

Besides getter, setter and deletion functionality for detections, update functions for the
detection counter, the latest detection date and for the spoofing status are part of the class.
Further, the JSONManager includes a sorting function for retrieving a chronological
ArrayList.

The activity for displaying those detections consist of four fragments: History, My Rules,
Imported Rules and Map. Whereas the first three fragments show the corresponding JSON-
arrays, the Map fragment displays an Open Street Map with marker for all saved rules,
whether imported or personally saved ones.

Sharing functionality

For sharing detections with the community, the library Retrofit was used to communicate via
REST. A RESTController class was implemented to connect to the server written in the
BASE_URL variable, which is located in the local.properties-file. Further, the interface class
SoniControlAPI was created with the REST calls for the endpoints on the server and a
Detection class for the upload/download of detections. The upload functions for the detection
data and the audio data are located in the MainActivity. The detection data is uploaded first
and if this succeeds, the audio data is then also sent to the server.

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/
https://square.github.io/retrofit/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

Server

Now the server can be started! The server is based on Node.js with the extension Express.js
for REST implementation and uses a MongoDB for data storage. It consists of six packages
depicted in the figure below and further described in the listing below.

Packages:

● Starting with the server.ts of the config package, the basic objects get initialized and
a connection to the database will be established. Further, the REST endpoints are
defined here:

○ root (for map)
○ share
○ audioshare
○ getNumberOfImportDetections
○ importDetections
○ technologies

● The controller package includes a controller for detection handling and one for the
technologies. The detectionController has the retrieving of detections implemented as
well as filtering and grouping functionality, whereas the technologyController currently
returns all technologies.

● The connection.ts of the database package includes the connection routine. Besides
that, a dataFactory for the base data like technologies is implemented.

● Two models were created, one for detections and one for technologies.
● The WebSocket connections are located in the socket.ts and work as the interface for

the map visualization.
● The map itself consists then of a html-file, a javascript-file and assets for showing the

shared and uploaded detections on an Open Street Map.

To start the server, either a self-hosted solution is needed, or a free hosting platform like
Heroku. For hosting it on Heroku, a free account has to be created. There the Node.js
application can be deployed via their Heroku CLI. Further, a MongoDB needs to be hosted
somewhere. An example would be the free hosting plan at MongoDB. Next, on the Heroku
dashboard of the created and deployed application, several config vars need to be entered.
Those are also in the repository as dotenv-file. An example is given in the repository. The path

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/

Contact: sonicontrol@fhstp.ac.at
Web: sonicontrol.fhstp.ac.at

to the webfiles needs to be entered, as well as the port, rootpath and the database URL from
MongoDB. All those entries are also needed for letting it run on a local machine. Therefore,
the dotenv file needs to be copied, filled out and saved as '.env'. Last, the fileupload needs a
kind of webspace or space on a server. It is done via sftp and the hostname, password and
the user have to be written in the .env-file/Heroku config vars.

mailto:sonicontrol@fhstp.ac.at
http://sonicontrol.fhstp.ac.at/

Alert

Main Activity

start

end

Settings Activity

Rules & Detections
Activity

delete entry

send to server

JSON

update notification

scan & detect...

Message
Detected?

no

recognize

max → get technology

New Sound?

yes

no yes

Should
block?

(in location?)

no yes

write (new entry in Signal_history and optionally as firewall rule in Signal array if „save as firewall rule“ is checked

read (get all entries)
write (delete entry)

read (search for entry at location of recognized type)

get location

Get Mic
Access?

no yes

jam for
N minutes

block mic for N
minutes

still in location?

get location

yes

no

write „last detected at [date/time] (location must be checked before))“

update notification

SoniControl System Architecture

see user documentation for details on the settings:
https://sonicontrol.fhstp.ac.at/documentation/

{
 Signals: [
 list of detection items: {
 lon/lat
 address
 technology
 technology ID
 last detection
 blocking status
 detection counter
 amplitude
 }
],
 Signal_History: [list of detection items...],
 Imported_Signals: [list of detection items...]
}

Block on each
detection?

no yes

always

Outputs

 technology, e.g. „lisnr“
 lon/lat
 high-pass filtered wav file

yes

store hi-pass
file to disk

Store on external SD card. If the user does
not provide the permission for it, then we
operate without JSON file, i.e. we ask on
each detection to block or not.

block until user makes a decision

or until user made a
decision in „Alert“

Use
microphone for

blocking?

yes

no

playback (pitch
shifted)

SoniControl
Server

compute detection scores (see
recognition diagram)

make available to communtity: checked

start

pause / stop

stop

show settings

close

show rules & detections

close

block

make audible

allow

block /
allow

Detection Parameters

Buffer sizes:
 bufferSize=50; %ms

 backgroundBufferSize = 10; %sec

 medianBufferSize = 2.5; %sec, recommended values between 1s
and 2.5 seconds

Detector parameters
 cutoffFrequency = 16800; %lower limit for prontoly!

 decisionThreshold = 0.5; %this is for Kullback Leibler Divergence

 percentSilenceAfterDetection = 10; % unit=percent of
medianBufferSize

 extendedDiagnostics = 0; % Delays the alert until the detected
message has ended. This produces detections which are more likely
to contain the entire message. Thereby, we can visualize the entire
message and can enable more enhanced diagnostics of the detected
message. Valid values: 0 or 1.

Recognition parameters
 specs.nearby.nBands=64;

 specs.nearby.bw=(20000-18500)./
specs.nearby.nBands/2; %unit Hz

 specs.nearby.centerFreq = 18496:23.6:20000;

 specs.lisnr.centerFreqs = [18750,18895,19051,19196,19500];

 specs.lisnr.bw = 40; %unit Hz

 specs.prontoly.centerFreqs=[16968,17054,17140,17226,1731
2,17398,17486,17571,17918,18430, 18516
,18692,18778,18949,19035, 19379,19466,19724];

 specs.prontoly.bw = 10; %unit Hz, this is the minimum for
prontoly

 specs.shopkick.centerFreqs=[19960,20040,20120,20200,2028
0,20360,20440,20520,20600,20680,20760,20840,20920,21000,21080
,21160,21240,21320,21400,21480,21560,21640];

 specs.shopkick.bw = 4; %unit Hz

 specs.silverpush.centerFreqs=[18000,18075,18150,18225,18
300,18375,18450,18525,18600,18675,18750,18825,18900,18975,190
50,19125,19200,19275,19350,19425,19500,19575,19650,19725,1980
0,19875,19950];

 specs.silverpush.bw = 4; %unit Hz

Main Activity

start

Compute cutoffFrequencyIndex from
cutoffFrequency (see function freq2idx.m)

Compute nFFT = number of expected FFT
coefficients that remain after cutting away all
frequencies below cutoffFrequencyIndex

Initialize all buffers (with zeros)

buffer:
size = bufferSize

backgroundModelBuffer:
size = [nFFT x

backgroundBufferSize]

medianBuffer:
size = medianBufferSize

bufferHistory:
size = bufferSize *
medianBufferSize]

Initialize decision variables:
detection=0; %becomes one, if the current frame

fulfills detection condition
detectionAfterMedian = 0; %becomes one

only if more than the half of the frames in the
medianBuffer fulfill the detection condition

Loop (until we have a detection) OR paused

buffer ← get next buffer

buffer ← convert buffer to mono (average over
both channels)

bufferFFT ← abs(fft(buffer))

buffer_FFT_HiPass_Norm ← remove all
coefficients below cutoffFrequencyIndex

buffer_FFT_HiPass_Norm ←
buffer_FFT_HiPass_Norm/

sum(buffer_FFT_HiPass_Norm)

Is
backgroundModelBuffer

full?

no yes

save current buffer in bufferHistory

a
p
p
e
n
d
 s

a
m

p
le

s
o
f

cu
rr

e
n
t

b
u
ff
e
r

to
 b

u
ff
e
rH

is
to

ry

compute median of
backgroundModelBuffer

g
e
t

m
e
d
ia

n

backgroundDist ← get Kullback
Leibler Divergence between median of

backgroundModelBuffer and
bufferFFT_HiPass_Norm

backgroundDist ← get Kullback
Leibler Divergence between median of

backgroundModelBuffer and
bufferFFT_HiPass_Norm

if backgroundDist >
decisionThreshold

no yes

p
u
sh

detection ← 1detection ← 0

update medianBuffer: medianBuffer ← detection

Is
backgroundModel

Buffer and medianBuffer
full?

no yes

median is 1?
no yes

Do signal
recognition

individial short detections
(outliers) may become
part of the background

model get median from medianBuffer

clean backgroundBuffer: replace
all items captured during the last
medianBufferSize seconds by

the values captured before

update backgroundBuffer
with bufferFFT_HiPass_Norm

to remove potential foreground
sound in the background model)

update

update

get location
store hi-pass

file to disk
detected

technology

this buffer stores
the incoming

audio signal for
the total duration

of the
medianBuffer

(e.g. 1.5s)

We use this
longer signal for
the detection of

the type of
message
detected

This buffer is 1D

SoniControl Detection Process

if
extendedDiagnostics

== 0?

yes
wait un�l message ends, i.e. median

buffer switches to 0 and stays mostly 0
a�er a detec�on. „Mostly 0" means that
at least 75% of the dura�on defined by
percentSilenceAfterDetection

the medianBuffer is zero (this means, a

small amout of outliers (25%) are
tolerated

no

start

pause / stop

store hi-pass filtered file as wav to disk

detected
technology

SoniControl Recognition Process

historySignal ← get entire signal from bufferHistory

frequenciesHistory ← get frequencies for each frequency bin, assuming that
nFFT in this case is the length of historySignal

historySignalFFT ← abs(fft(historySignal))

get maximum score

score[type] ← detectActivity(specs.[type])

detectedTechnology ← {„lisnr“ | „prontoly“ | „shopkick“ | „silverpush“}

cutoff historySignalFFT at cutoffFrequency

reconstruct signal with inverse FFT

Not all frequency bands may be
used. This means we will probably
not have high values in all bands.
Thus rely only on the 75% of the
bands with the highest peak for
computing our inBandScore

detectActivity (see detectActivity.m)

normalize historySignalFFT (divide by its maximum)

get frequency bands of interest

get off-frequency bands (bands between the used frequency bands)

bandEnergy ← get maximum peak in each frequency band

offBandEnergy ← get maximum peak in each off-frequency band

select only values those values in bandEnergy that are higher than the 75%-
percentile of bandEnergy

inBandScore ← compute mean of bandEnergy

outBandScore ← compute mean of offBandEnergy

score ← inBandScore / outBandScore

type = {Prontoly, Lisnr,

Shopkick, Silverpush,

Signal360, Nearby,

SoniTalk, Sonorax}

Do signal recognition

	sonicontrol_developer_doc.pdf
	License
	Source Code
	Contributing
	Open topics / Features to add

	Credits
	Installation & Setup
	Software Architecture and Implementation Details
	User Interface overview
	Start of the app
	SoniControl Detector
	On signal detection
	Block on each detection?
	New sound?
	Should block? (in location?)
	Detection AlertDialog

	Blocking routine
	Block Microphone or Actively Jam
	Looping system

	Diagnostics module
	Recognition of the signal
	Visualization
	Sonification

	Rules & Detections activity and JSON entries
	Sharing functionality
	Server

	Architecture_final.pdf
	1: Gesamtarchitektur
	2: Detection
	3: Recognition

