
Mail Authorship Verification and
Phishing Recognizing with
Machine Learning on iOS

Master Thesis
submitted in conformity with the requirements for the degree of

Master of Science in Engineering (MSc)
Master’s degree programme IT & Mobile Security

FH JOANNEUM (University of Applied Sciences), Kapfenberg

supervisor: DI Johannes Feiner
submitted by: Christian Finker
personal identifier: 1810419002

May 2020

Formal declaration
I hereby declare that the present master’s thesis was composed by myself and that
the work contained herein is my own. I also confirm that I have only used the
specified resources. All formulations and concepts taken verbatim or in substance
from printed or unprinted material or from the Internet have been cited according
to the rules of good scientific practice and indicated by footnotes or other exact
references to the original source.

The present thesis has not been submitted to another university for the award of
an academic degree in this form. This thesis has been submitted in printed and
electronic form. I hereby confirm that the content of the digital version is the
same as in the printed version.

I understand that the provision of incorrect information may have legal
consequences.

Kapfenberg, May 2020

Christian Finker

Abstract

Social Engineering Attacks are one of the most dangerous threats for the
company’s cybersecurity (cf. Salahdine and Kaabouch, 2019, P. 1). One technique
for performing these attacks are spear-phishing e-mails, which are based on mail
spoofing to pretend to be sent from a trustful person. Existing mechanisms for
preventing mail spoofing and recognizing spoofed e-mails depend mainly on the
configuration of both the sender’s and receiver’s e-mail server to work.

The approach of using machine learning for authorship verification as part of an
e-mail client app for iOS takes the prevention mechanism directly to the end-user,
to use it independently from any server configuration. The developed prototype
learns the language used of the different senders/authors by analyzing already
received e-mails. Prior e-mails are used as training sets for machine learning to
create a model and to be able to match new incoming e-mails with the learned
senders/authors. As a result, the app displays the probability of the sender,
named in the e-mail headers having sent the given e-mail. A low likelihood or
the assignment to another author would indicate that the classified e-mail might
be suspicious.

The performed evaluations for this approach show that authorship verification
with machine learning has some limitations. As an example, the occurrence
of sender names in the trained documents, as well as in the classified e-mails,
influenced the results significantly. To sum up, the results show that the
approaches investigated and attempted with the app developed in this thesis are
not useful to verify the authorships of e-mail in a way that cannot be bypassed
by attackers. The overall accuracy in verifying legitimate authorships is less than
60 percent.

The results imply that the idea of authorship verification based spear-phishing
prevention would need more extensive research to develop an algorithm that
detects and extracts significant linguistic key features of e-mails to perform a
high accurate authorship verification. Meanwhile, existing sender authentication
techniques like SPF (Sender Policy Framework), DKIM (DomainKeys Identified
Mail), or S/MIME (Secure/Multipurpose Internet Mail Extensions) should be
more supported and their usage simplified. These mechanisms are proofed and
increase e-mail security considerably, so the main downside of these techniques is
their limited deployment.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Questions and Aims . 4
1.3 Structure of the Thesis . 7

2 Related Papers and Existing Sender Authentication Mechanisms 9
2.1 Key Results of Scientific Papers 9
2.2 Existing Sender Authentication Techniques 15
2.3 Conclusion . 20

3 Artificial Intelligence Technologies 22
3.1 Core ML . 30
3.2 uClassify . 32
3.3 Conclusion . 35

4 Forensic Linguistics and Authorship Analysis 36

5 Approach 40
5.1 General Concept . 40
5.2 iOS App Prototype . 41
5.3 Authorship Verification and Recognize Phishing with Core ML . . 42
5.4 Authorship Verification and Recognize Phishing with uClassify . . 48
5.5 Evaluating Authorship Verification and Phishing Recognizing . . . 49
5.6 Conclusion . 51

6 Evaluation Results 53
6.1 Authorship Verification using Prepared Dataset 53
6.2 Authorship Verification using German Mails Dataset 55
6.3 Authorship Verification using Dataset of Hillary Clinton Mails . . 56
6.4 Spam and Ham Classification with uClassify and Core ML 56
6.5 Conclusion . 57

7 Conclusions and Outlook 59

i

Contents

A Instructions for Creating Sample E-mail Dataset 69

B All Evaluation Results in Detail 71

Mail Authorship Verification and Phishing Recognizing with ML ii

List of Figures

1.1 Matrix to determine accuracy . 5
1.2 The world’s most popular e-mail clients 7

2.1 Algorithm steps used for finding compromised accounts 12
2.2 Mail agents involved in e-mail communication 15
2.3 Retrieving and using SPF policy process 16
2.4 Measurements which prevent fake e-mail sender information . . . 18
2.5 S/MIME process for sender and receiver 19

3.1 Reinforcement learning . 24
3.2 Steps performed by a node in ANN 25
3.3 Artificial neural network . 26
3.4 Convolutional neural network architecture 27
3.5 Convolutional operation for each color channel 28
3.6 Maximum pooling in CNN . 29
3.7 Visual representation of the k-nearest neighbor algorithm 31
3.8 Example data for the Naive Bayesian classifier 33
3.9 Example calculations for the posterior probability 34
3.10 Determining if a day is suitable for playing golf 35

5.1 Screens of the app prototype . 42
5.2 Visual representation of an example k-d tree 45
5.3 Visual representation of the dataset used to create the k-d tree . . 45
5.4 Visual representation of the first search step in a k-d tree 46
5.5 The real nearest neighbor to the given point is part of node 4 . . 47
5.6 The tightest box of the remaining points 47

iii

Chapter 1
Introduction

Some of the most dangerous threats for the cybersecurity of a company are social
engineering attacks, according to the U.S. Department of Justice (cf. Salahdine
and Kaabouch, 2019, P. 1). In 2016, these attacks caused estimated damage of
more than 121 billion US-dollar in the United States of America. The term social
engineering attack addresses several different approaches and techniques to break
into an IT system by targeting individuals in a first step of the attack. The
most common approach is to use phishing e-mails or calls to acquire private and
confidential information from the receiver of these e-mails or calls. Attackers, for
example, send out fake e-mails (called phishing e-mails), which promise that the
receiver has won a sum of money in a lottery and request private information
in order to pay out the money. Such e-mails are sent out to a broader group
of people without any personalization. In contrast, spear-phishing e-mails are
targeting specific individuals or a limited and defined group of people. One key
aspect of this approach is to fake the sender-information (e-mail address spoofing)
in order to pretend to be someone else (for example, a colleague or a friend). These
spear-phishing e-mails rely on information collected from the public profile of the
victim, which increases the probability that the receiver will open, read the mail
and perform the indicated action, which the attacks wanted that the receiver will
do. (cf. ibid., P. 4f.)

A more concrete example of such an attack is the following scenario, taken from
the lecture "Mobile Network Security" in the IT- and Mobile Security master’s
degree program at the FH JOANNEUM. The underlying assumption implies that
an attacker wants to get access to a secured computer network of a company.
The targeted company provides information about the staff on a public website,

Chapter 1. Introduction

including all names and e-mail addresses. With some research, the attacker finds
out that one employee is interested in balloon rides (e.g by analyzing the social
media profiles of the employees). Having this information, the attacker creates
a fake e-mail with regard to that specific employee including some balloon rides
related content (for example with a link to a (prepared) website about balloon
rides) and fakes the sender information so that it looks like as if the mail comes
from another employee of the company. Finally, the receiver will open the e-
mail and trust it, not least because the content and the whole e-mail do not
bear a resemblance to traditional phishing e-mails. The receiver will click on the
embedded link and this can open a door for the attacker.

1.1 Motivation

Such spear-phishing e-mails, like the example described above, are very efficient as
they can bypass many e-mail filtering and security mechanisms. The development
of spam filters, which include filtering out phishing e-mails, focuses mainly on the
content of e-mails to distinguish between ham (legitimate e-mails) and spam e-
mails. Spam filters recognize spam e-mails, usually, based on learned features
that have been extracted from training data. However, as topics and common
terms used in spam e-mails change over time, the machine learning models have
to be updated frequently. (cf. Bhowmick and Hazarika, 2018, P. 2, 7f.)

Nowadays, spam filters learn new spamming trends in a short time but are still
mainly content based and use historical data to classify e-mails. Therefore,
highly personalized spear-phishing e-mails are hard to detect for spam filters
as these e-mails are not like other phishing e-mails and try to imitate legitimate
communication. Spear-phishing works so well, that even humans do regularly not
recognize such e-mails as phishing and for computer systems it is even harder to
identify these e-mails as phishing e-mails. (cf. ibid., P. 2, 7f.)

Gmail, Outlook.com, and Yahoo Mail use, in addition to the content-based
filtering, mechanisms like satisfactory spam limits (e.g. limit number of e-mails
can be send in a period of time), Sender Policy Frameworks (SPF), whitelists
and blacklists. With this combination of techniques, Google achieves to filter out
spam e-mails with 99.9 percent accuracy. This number implicates that one in a
thousand spam e-mails still bypasses their filters (cf. Dada et al., 2019, P. 2, 5f.).
Starting with 2019, Gmail will also additionally include Tensorflow, an open-
source machine learning library, to improve their spam detection (more details

Mail Authorship Verification and Phishing Recognizing with ML 2

Chapter 1. Introduction

are provided in chapter 2 Related Papers and Existing Sender Authentication
Mechanisms). This fact proves that there is still a demand for improving spam
and phishing recognizing techniques (cf. Weidemann, 2019). Further, the Anti-
Phishing Working Group stated that a continuing development in preventing
phishing e-mails is necessitated (cf. Bhowmick and Hazarika, 2018, P. 7f.). In
2018, a survey of spam filtering methods concluded that existing solutions are
efficient, but the accuracy of these systems can still be improved (cf. Bhuiyan
et al., 2018, P. 25, 27).

However, there are also other techniques to improve e-mail security than spam
filtering. Before explaining these further techniques in detail, it is worth to note
that sender spoofing can be performed in different ways (sender spoofing means to
fake sender-information of an e-mail like it is done with spear-phishing e-mails).
Attackers can configure an own SMTP-server or use an open relay e-mail server
to send out the fake e-mails. Every SMTP-sever which does not authenticate the
domain of e-mail before processing it can be used to send e-mails with spoofed
sender-information. In addition, also several websites offer the possibility to send
e-mails with fake sender-information as a service. As a result, to send out e-
mails with faked sender-information is rather easy. Therefore, some mechanisms
have been developed to verify on receiver-side if the given sender-information
is correct (see for more details to each technology chapter 2.1 Existing Sender
Authentication Techniques). (cf. Gupta et al., 2014, P. 899f.)

One of them is the Sender Policy Framework (SPF), which is a DNS record,
added to the sender’s domain. This record defines which IP address or hostnames
are allowed to send out e-mails with this domain as claimed sender. The e-mail
receiver can use this record to check if the sending IP address was allowed to send
this e-mail. Another mechanism is called Domain Keys Identified Mails (DKIM).
This authentication technique allows the e-mail receiver to confirm that the e-mail
was really sent and authorized by the owner of the domain. For this purpose, the
Mail Transfer Agent (MTA) generates a DKIM signature, which is sent as part
of the e-mail to the receiver. The receiver retrieves the sender’s public key using
DNS and verifies the e-mail’s DKIM signature. On the top of SPF and DKIM,
DMARC (Domain based Message Authentication Reporting and Conference) has
been built. Like SPF, DMARC uses a DNS record to provide a policy, which
defines how to handle an e-mail if the SPF or the DKIM authentication fails
(and it also indicates that e-mails are protected with SPF and DKIM). These
techniques can prevent mail spoofing, but they are not always configured correctly
and some e-mail providers do not follow the given DMARC policies. (cf. ibid., P.

Mail Authorship Verification and Phishing Recognizing with ML 3

Chapter 1. Introduction

899f.)

Despite these mechanisms, there is still a way to bypass DMARC. This approach
is called semi-spoofing whereby an attacker does not spoof an e-mail address but
registers and uses a misleading e-mail address. This can be an e-mail address that
is slightly differently spelled and provides as sender name the faked sender name.
The success of this strategy works well as many e-mail clients do not display the
complete e-mail address but the user-friendly sender name. Additionally, even
if the e-mail client displays the sender’s e-mail address itself, the e-mail address
can include UTF-8 characters from another alphabet to imitate another specific
character. For example, the Cyrillic A has the same appearance as the Latin
A, which may allow registering a domain like apple.com using the Cyrillic A,
even though there is already an apple.com domain registered with a Latin A.
Technically these domains are encoded differently and therefore they are unique.
However, their representation as human-readable letters is the same. Therefore,
the average user cannot determine if an e-mail was spoofed or not and DMARC
does not protect against semi-spoofing. (cf. Sasse et al., 2014, P. 39)

Even though there are techniques to improve e-mail security, (spear) phishing
attacks are still frequent and possible. Therefore, the problem of recognizing
phishing attacks is still unsolved. To address this problem, this thesis will evaluate
if authorship verification represents a meaningful approach that is independent of
the server configuration of the e-mail sender to detect faked sender’s information.

1.2 Research Questions and Aims

This thesis aims to detect phishing e-mails by using an approach based on
authorship verification. In order to be able to evaluate this approach, a prototype
of an iOS app is developed that uses machine learning to verify the authorship of
e-mails and to recognize spam and phishing e-mails. When starting the app for
the first time, the app trains the machine learning model by analyzing already
received e-mails. These prior e-mails are used as training sets for machine learning
to create a model and to be able to match new incoming e-mails with the learned
senders/authors. The aim is to give users a hint if a received e-mail really comes
from the sender stated. This mechanism should help to prevent social engineering
attacks and phishing.

However, in addition to this authorship verification, the e-mails will also be
checked against a training set of typical phishing e-mails to recognize such e-mails

Mail Authorship Verification and Phishing Recognizing with ML 4

Chapter 1. Introduction

reliably. The author of this thesis uses this prototype to perform an evaluation
based on three different data sets to find out if such an approach can help to verify
the authorship of e-mails and to identify social engineering attacks and (spear)
phishing e-mails. Two different machine learning providers will be implemented
in order to compare if one of them returns more accurate results and to find
out if Apple’s machine learning framework Core ML works adequately for this
approach. The used metric for this comparison is the accuracy, which indicates
how reliable the machine learning model classified the given e-mails. The accuracy
calculation is based on the matrix figured below and uses the formula in Figure
1.1 to calculate the accuracy of a model. (cf. Analytics Vidhya, 2019)

(Analytics Vidhya, 2019)

Figure 1.1: Matrix to determine accuracy

Accuracy = TruePositive+TrueNegatives

TruePositive+TrueNegatives+FalsePositives+FalseNegatives
(1.1)

(cf. ibid.)

Beside Core ML, uClassify, a machine learning web service, will be used in the
app. One main challenge for the authorship verification is that the machine
learning models use only five German and five English e-mails of each person for
training (in total 132 e-mails of eleven people). With this very limited dataset
the classifiers should recognize a sixth e-mail of each person correctly. Therefore,
one central question of this thesis is if five e-mails per language provide enough
training data for performing authorship verification. In addition to this limited
dataset, two further datasets are used for evaluating the authorship verification.
The biggest dataset contains more than 6.500 English e-mails (see chapter 5.5
Evaluating Authorship Verification and Phishing Recognizing).

The decision to develop an iOS app for evaluating this approach is a result of the
fact that 43 percent of all e-mails are opened on a smartphone (cf. Richter, 2019).

Mail Authorship Verification and Phishing Recognizing with ML 5

Chapter 1. Introduction

The world’s most popular e-mail client is Apple’s mail app for iPhone, as shown
in Figure 1.2 (cf. Richter, 2019). Therefore, iOS is a relevant platform for mail
clients. Additionally, the development of an iOS app allows us to investigate if
and with which limitations Core ML models can be updated during runtime on
the device. Furthermore, the approach to implement the authorship verification
and the spam recognizing as part of an e-mail client allows being independent
from e-mail providers, which give potential end-users freedom in the choice of
their e-mail provider. However, the used approach is not limited to e-mail clients
but could afterwards also be implemented on the part of e-mail servers. A further
use case would be to employ the approach for other message formats like SMS or
WhatsApp.

In addition to authorship verification and spam recognizing, the app will use
uClassify to detect the gender, age, and sentiment of the author of each mail.
These additional classifications do not improve the security of e-mails but can
give hints about the person sending the e-mail. These classifications are then
compared with the actual authors’ genders and ages. This comparison allows
determining the accuracy of these classifiers, which are predefined by uClassify.

To sum up, the focus of this thesis is on evaluating the authorship verification
approach. The recognizing of spam allows to compare the accuracy of Core ML
and uClassify with a larger dataset than with the authorship verification alone.
The additional classification of author attributes such as gender or age will be
part of the app and be considered in the results chapter.

Mail Authorship Verification and Phishing Recognizing with ML 6

Chapter 1. Introduction

(Richter, 2019)

Figure 1.2: The world’s most popular e-mail clients

In more detail, the following main research questions are answered:

• How reliable does authorship verification recognize a sender if there are more
than 100 mails of this sender (real-world examples) for training the model in
comparison to a case where only five e-mails (custom collection1) are used
for training the machine learning model? How many e-mails (percentage)
are recognized correctly? From a given number of spoofed e-mails, how
many are detected as faked ones using the authorship verification approach
for each data set used while the evaluation?

• What are the limitations of machine learning (e.g. updating model) on iOS
for this purpose? Is there a way to update the Core ML model for each
app instance independently? How can the dynamic learning on the device
of Core ML 3 be used for this?

1.3 Structure of the Thesis

In the chapter two, relevant papers and results from a variety of studies in the
field of authorship verification with the help of machine learning are presented
1Eleven persons write six e-mails (in English and German) for partly predefined scenarios. The
system uses five of them (for each person) as training data, and the sixth one (in English and
German) is used as testing data.

Mail Authorship Verification and Phishing Recognizing with ML 7

Chapter 1. Introduction

and discussed. This chapter also includes a more detailed description of existing
sender authentication mechanisms, such as SPF and DKIM. Subsequently,
chapter three describes the basics of machine learning and both integrated
machine learning providers Core ML and uClassify. Chapter four outlines the
linguistic basics of identifying authors based on writing style and language usage.
In chapter five, the approach of this thesis, the general app architecture, and
implementation details are presented. This chapter also includes descriptions of
the test cases, whose results are part of chapter six. In the final chapter, the most
significant results of this thesis are summed up and discussed.

Mail Authorship Verification and Phishing Recognizing with ML 8

Chapter 2
Related Papers and Existing Sender
Authentication Mechanisms

As around 55 percent of all e-mails worldwide are spam e-mails (cf. Symantec,
2019), e-mail security is in concern of many researchers. The development
of machine learning influenced the spam filter development, and therefore,
authors discussed the usage of machine learning technologies for filtering spam
mails. Besides spam e-mails, research teams investigated the usage of different
algorithms as well as machine learning to verify authorship in different situations.
This chapter presents papers and projects, which covered relevant topics and
touchpoints for the focus of this thesis. The second part of this chapter describes
existing mechanisms to authenticate the sender of e-mails, like SPF, DKIM, and
DMARC, as well as S/MIME and other e-mail encryption techniques.

2.1 Key Results of Scientific Papers

As mentioned above, machine learning is one of several approaches and
technologies which are used to detect and filter spam e-mails. In 2019, the paper
"Machine learning for e-mail spam filtering: review, approaches and open research
problems" (Dada et al., 2019) compared and reviewed different approaches to
detect spam e-mails. As each approach and each machine learning technology
has its advantages and disadvantages, many companies combine some various
approaches to achieve better results. For example, Gmail, Yahoo, and Outlook
developed each highly specialized combination of different machine learning
technologies in its spam filters. Especially, at Gmail, the used models and

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

rules update themselves (i.e., generating new rules) to improve their filtering
and reaction to new spam attacks. At Gmail, the spam detection works with an
accuracy of 99.9 percent (cf. Dada et al., 2019, P. 1-2). Starting in 2019, Gmail
will additionally include Tensorflow1, an open-source machine learning library, to
improve their spam detection even more. This technology should first learn the
interests of a user before this knowledge is further used to detect spam e-mails. As
an example, it is claimed that if a user has an interest in Bitcoins, this approach
should protect this user from spam e-mails that are especially focusing on people
who are interested in crypto-currencies (cf. Weidemann, 2019). According to
Kumaran (cf. Kumaran, 2019), with the usage of Tensorflow, Gmail is blocking
100 million additional spam e-mails every day. These spam e-mails were hard
to detect since they used images of hidden embedded content to bypass spam
filters. Often spammers hid spam e-mails in a huge volume of legitimate e-mails.
With Tensorflow, the machine learning models learn more efficiently, and time is
saved while training and evaluating models due to new tools like TensorBoard2.
Currently, Google experiments in using Tensorflow, especially with regard to
preventing users from phishing and malware (cf. ibid.).

In addition to these developments, another research team around Awad and
Elseuofi, 2011, compared different machine learning technologies for spam filtering
too. Overall, all investigated technologies had an accuracy (the percentage of all
e-mails that are categorized correctly) of more than 96 percent. Moreover, one
of them, the Naïve Bayes classifier, categorized more than 99 percent of all given
documents correctly. This method was invented in 1998, especially for the spam
mail classification (cf. ibid., P. 182). It is based "on the dependent events and
the probability of an event occurring in the future that can be detected from
the previous occurring of the same event" (ibid., P. 175). One used rule for this
technique is the frequency of certain words. Therefore, this semantic/linguistic
perspective utterly determines the process of classification of emails, e.g. by
analyzing if specific words occur more in ham than in spam e-mails (cf. ibid., P.
182).

While spam detection is only one part of this thesis, the other part is about
authorship verification to increase the security of e-mails. The improving of
security was also the main motivation for research about authorship verification
in online social networks. In 2016, a research team led by Barbon developed
an approach to detect online compromised accounts (cf. Barbon, Igawa, and
1https://www.tensorflow.org
2https://www.tensorflow.org/tensorboard

Mail Authorship Verification and Phishing Recognizing with ML 10

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

Bogaz Zarpelão, 2017, P. 3213, 3217–3219). First, the algorithm extracts the
writing style from the user to train a model. These data are the fundamental
data to verify new posts, while new posts as well update the model so that
new trends in the contents are considered in the model. The experiments were
performed on a database of tweets of 1.000 users, and overall, an accuracy of 93
percent was achieved. A noteworthy aspect of this experiment is that per-user
only between two and ten tweets are in the dataset, and each tweet is shorter
than 140 characters. Therefore, the algorithm had only a minimal dataset to
work with. The algorithm implemented includes three steps, which are presented
in Figure 2.1. In step one, the baseline is created by receiving text samples and
transform these into a training dataset and one testing dataset. In step two,
the k-nearest neighbor’s algorithm (explained in detail in chapter 3.1 Core ML)
distinguishes if the account has been compromised. In the last step, the oldest
posts of the given author are removed from the model while the latest posts are
added. (cf. Barbon, Igawa, and Bogaz Zarpelão, 2017, P. 3213, 3217–3219)

Mail Authorship Verification and Phishing Recognizing with ML 11

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

(cf. Barbon, Igawa, and Bogaz Zarpelão, 2017, P. 3220).

Figure 2.1: Algorithm steps used for finding compromised accounts on online
social networks (OSN = Online Social Networks)

All in all, the results show that the accuracy increases with the number of tweets
used for model training. In average, an accuracy of over 93 percent could be
achieved, but if there were only a few posts of a user (less than four posts)
to work with, the accuracy was less than 80 percent. (cf. Barbon, Igawa, and
Bogaz Zarpelão, 2017, P. 3229)

Another research team from Germany focused in their research about authorship
verification on working with different languages (Dutch, English, Greek, Spanish,
and German), different genres, and topics at the same time. In "Authorship
verification for different languages, genres, and topics" (Halvani, Winter, and
Pflug, 2016, P. 33, 36–37), an approach and algorithm were developed, designed
to work independently from languages and topics. Therefore, no natural language
processing tools are part of the algorithm, but only tokenization and simple

Mail Authorship Verification and Phishing Recognizing with ML 12

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

regular expressions were used to extract features from the texts. These features
are used in a particular algorithm (developed as part of this thesis, and no machine
learning technology used) to perform the authorship verification. All in all, a
median accuracy of 75 percent could be achieved (cf. Halvani, Winter, and Pflug,
2016, P. 33, 36–37).

Meanwhile, 2016, in Spain, another research team used machine learning to
analyze the personality of authors to use this aspect for spam filtering. In
more detail, the team used a web service-based machine learning provider called
uClassify3 to determine the personality of each message. For this determination,
the team created a classifier corresponding to the Myers-Briggs personality model.
This personality model considers four different dimensions: Extroversion or
introversion, thinking or feeling, judging or perceiving, and sensing or intuition.
The web service uClassify classified the short messages to each option in each
dimension and this information helped to identify spam messages. All in all, this
approach achieved an accuracy of 98.94 percent. Moreover, this project used the
same machine learning web service uClassify, which is also used in the thesis at
hand, and showed that uClassify offers a reliable web service to classify documents
with a high accuracy (cf. Ezpeleta, Zurutuza, and Hidalgo, 2016, P. 1, 3f.).

The researches and studies mentioned above address authorship verification,
but not in the context of e-mails. In 2014, Canadian researchers investigated
authorship verification also in the context of e-mails, along with tweet messages.
This team led by Brocadro implemented authorship verification as a kind of
continuous authentication. They defined authorship verification as follows:
"Authorship verification consists of checking whether a target document was
written or not by a specific (i.e. known) individual (with some claimed identity)"
(Brocardo, Traore, and Woungang, 2015, P. 1429f.). For their experiments, they
used three different text lengths: 140, 280, and 500 characters. First, in an
"enrollment mode", the machine learning model was trained and profiles for each
user created, while in the second phase, the "verification mode," the messages were
verified/classified. In the end, the results showed that the equal error rate was
between 9.98 percent and 21.45 percent for different text lengths. The best result
achieved a hybrid SVM-LR (Support Vector Machine with Logistic Regression)
classifier, which classified the texts with an equal error rate of 9.98 percent (cf.
ibid., P. 1429f., 1437). In general, a Support Vector Machine is a supervised
algorithm that can model nonlinearity relationships with a high generalization
3https://www.uclassify.com

Mail Authorship Verification and Phishing Recognizing with ML 13

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

level. When speaking of an SVM-LR, it is extended with Logistic Regression,
an empirical modeling technique that selects features based on the present data
instead of using other knowledge (cf. Mustafa et al., 2018, P. 2, 4).

While all the papers mentioned yet discussed mail spam detection or general
authorship verification, no one focused on preventing social engineering via e-
mails. However, Microsoft already uses machine learning for detecting e-mails
which are no regular spam, but potential social engineering attacks. In more
detail, Microsoft scans non-portable executable (non-PE) files in order to find
potentially dangerous ones with the help of machine learning. A concrete scenario
is described as follows: "When opened, the PDF document presents itself as
a “secure document” that requires action – a very common social engineering
technique used in enterprise phishing attacks. To view the supposed “secure
document”, the target victim is instructed to click a link within the PDF, which
opens a malicious website with a sign-in screen that asks for enterprise credentials"
(Ellison and McDonald, 2018). The machine learning used by Microsoft is trained
with the full contents of hundreds of thousands of files for different file formats
to detect potential dangerous files (cf. ibid.).

Another very thesis-specific aspect is to implement a spam filter and an
authorship verification system as part of an iOS app, which allows to use and
to evaluate CoreML for this purpose. Even more, e-mails are mainly opened
on mobile devices, as mentioned in chapter 1.2 Research Questions and Aims.
However, one argument for the lack of investigating CoreML in research might
be the fact that this technology is entirely new. Until fall 2019, no on-device
learning or updating an already created model was possible. Although no paper
does yet cover CoreML, there is at least one blog entry of a developer online
(cf. Sonde, 2017), which demonstrates how to use CoreML as a spam classifier.
In this case, the CoreML is not created and trained with the tools provided by
Apple and delivered with xCode, but with the help of multiple Python-scripts
which create and train a Linear SVC4 model which afterwards converts it to a
CoreML model. This model is finally used for some demonstration on iOS 11
with printing the result as console output (cf. ibid.).
4Linear Support Vector Classifier, which is a machine learning algorithm based on linear
functions

Mail Authorship Verification and Phishing Recognizing with ML 14

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

2.2 Existing Sender Authentication Techniques

As already mentioned in the introduction (see chapter 1 Introduction), DNS-based
techniques like SPF, DKIM, and DMARC allow configuring mail and DNS servers
to offer a possibility to authenticate and verify the given sender-information of
an e-mail. To be precise, the term e-mail server is a general term. When sending
an e-mail from one account to another one, different kinds of servers are involved.
The outbound e-mail is transported via SMTP (Simple Mail Transfer Protocol)
from the e-mail client used by the sender to the first Mail Transport Agent (MTA).
These mail servers are responsible for transporting the e-mail via the internet to
the recipient MTA. During the whole transport from one MTA to another one, the
servers always use SMTP to communicate. Finally, the recipient’s MTA receives
the e-mail and delivers it to the incoming mail server, which is named Mail
Delivery Agent (MDA). This server stores the e-mail until the user accepts and
retrieves it. For retrieving e-mails from the MDA the protocols POP (Post Office
Protocol) and IMAP (Internet Message Access Protocol) are used. The software
used by the receiver to receive and finally read the e-mail is called MUA (Mail
User Agent), which can be a dedicated e-mail client like Mozilla Thunderbird or
Microsoft Outlook or webmail in a browser. Figure 2.2 illustrates the involved
agents when transporting an e-mail via the internet. (cf. Long, 2018)

(My Email Communications Security Assessment (MECSA), 2020)

Figure 2.2: Mail agents involved in e-mail communication

The Sender Policy Framework (SPF) allows the receiver’s MTA (the last one
before the e-mail is transferred to the MDA) to verify that outgoing MTA (the first
MTA in the transport-chain of the e-mail, number 2 in Figure 2.2) is authorized
to send the e-mail with the Mail From address given in the e-mail headers.
Therefore, the receiver’s MTA (number 3 in Figure 2.2) has to send a DNS

Mail Authorship Verification and Phishing Recognizing with ML 15

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

request for the domain of the stated sender e-mail address in order to get the
SPF policy for this domain. The administrator of the domain specifies the SPF
policy for the e-mail address in this domain via a DNS entry, which is also called
e-mail authorization policy. In short, this policy defines which IP addresses are
allowed to be used by the outbound MTA (number 2 in Figure 2.2) when using
an e-mail address of this domain in the Mail From header field. An example
of a valid SPF policy is spf1+IP4:1.2.3.4-all which would only allow outbound
e-mails from an MTA using the IP address 1.2.3.4. The number following the
prefix spf defines the supported SPF version. The qualifier + defines that the
following IP address is an allowed one, while the - qualifier denies (hard-fail) the
usage of the given IP address as outgoing MTA for that domain. In this case,
after the qualifier - no IP address, but all is given, which means that all other IP
addresses, excepting the one allowed with +, are no valid MTA IP addresses for
e-mails sent from that domain. Figure 2.3 demonstrates the process of requesting
and validating an SPF policy for an e-mail from the domain VIC-bank.com. (cf.
Herzberg, 2009, P. 736f.)

(Herzberg, 2009, P. 737)

Figure 2.3: Retrieving and using SPF policy process

Besides the + and - qualifiers SPF support also a soft-fail, denoted by , and a ?
experimental qualifier. While a hard-fail explicitly forbid any other IP address,
the soft-fail qualifier indicates that other IP addresses are suspected and not
authorized but not conclusively forbidding it either. The experimental qualifier
defines that the SPF policy is in an experimental state and should not be relied

Mail Authorship Verification and Phishing Recognizing with ML 16

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

upon. Depending on the result of the SPF validation, the receiver’s MTA (number
3 in Figure 2.2) can mark suspected e-mails and, for example, consider as spam
or phishing. However, it can be observed that the majority of deployed SPF
policies do not use hard-fail rules, which may be motivated by avoiding blocking
legitimate e-mails by a too strict SPF policy. Another aspect of SPF is that it
only validates if the used MTA is authorized for sending e-mails with the given
Mail From address. This address might be not related to the e-mail address
represented by the MUA to the user. The MUA usually uses the information of
the From or Sender field of an e-mail for displaying the sender’s e-mail address.
An extension of SPF, called Sender-ID Framework (SIDF), uses these both fields
to attempt to defend spoofed (phishing) e-mails. To be more specific, it should
prevent unauthorized use of user-visible sender addresses. SIDF introduces a new
identifier, named Purported Responsible Address (PRA), which is no further e-
mail header field, but a result of a function. This function is applied to existing
e-mail message header fields and attempts to identify which party is responsible
for the e-mail. PRA considers the last mailing list or forwarding service, which
forwarded the message as being responsible for that e-mail. If any MTA never
forwarded the e-mail, PRA uses the From or Sender header field. In order to
prevent successful phishing attacks, the idea is to present the PRA address to
the user allowing the reader of the e-mail to identify if it is phishing or not. (cf.
Herzberg, 2009, P. 736f, 739)

Another approach is to use a digital-signature-based e-mail sender authentication
for preventing phishing and e-mail spoofing. One proposal is DomainKeys
Identified Mail (DKIM), which allows the receiver’s MTA as well as the recipient’s
MUA or MDA to verify the e-mail sender information by using a cryptographic
sender signature. This signature is part of the e-mail headers by introducing a new
DKIM-SIGNATURE field. DKIM signatures all e-mail header fields which the
MUA presents to the user as sender information, and especially DKIM enforces to
sign the From header field, which is considered as the most important information
to ensure that an e-mail comes from a trusted source. The receiver’s MTA is
recommended to request the author domain signing practices (ADSP) policy as
to the fact if e-mails from that domain are always signed, in order to mark
unsigned e-mails with a sender e-mail address from that domain as suspicious.
Furthermore, an additional DNS request is required to get the public key from
the senders-domain to validate the provided signature in the e-mail. (cf. ibid., P.
740)

As mentioned in the introduction, DMARC (Domain Based Message

Mail Authorship Verification and Phishing Recognizing with ML 17

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

Authentication Reporting and Conference) is built on top of SPF and DKIM. Like
the other prior described mechanism, DMARC is DNS-based and provides policies
on how an e-mail should be handled if the SPF or the DKIM authentication fails.
Besides, it also indicates that e-mails from the domain of the DNS entry are
protected with SPF and DKIM (cf. Gupta et al., 2014, P. 899f.). One further
aspect to mention about SPF, DKIM, and DMARC is that while SPF is deployed
for a majority of domains, the other two techniques have lower deployment rates,
like the example statistic (see Figure 2.4) of Norway demonstrates.

(Agency for Public Management and eGovernment, 2018)

Figure 2.4: Measurements which prevent fake e-mail sender information in
Norway 2018 by prevalence

As an alternative to DNS-based approaches authenticating senders of e-mails,
e-mail security protocols such as S/MIME (Secure/Multipurpose Internet Mail
Extensions), Privacy-Enhanced Mail (PEM), Pretty Good Privacy (PGP) and
GNU Privacy Guard (GPG) use asymmetric encryption to protect e-mails from
the sender’s source to the receiver’s endpoint. These protocols include additional
digital signatures to authenticate the sender. Since the most used e-mail security
protocol is S/MIME, according to the numbers of Banday and Sheikh, 2014, the
remainder of this chapter focuses on this protocol. In order to use S/MIME, every
participant (e-mail senders and receivers) has to generate a private and public key.
While the public key is shared with everyone, using a Public Key Infrastructure
(PKI), the private one is secret. Both keys can be used to encrypt an e-mail, and

Mail Authorship Verification and Phishing Recognizing with ML 18

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

the other corresponding key can be used to decrypt it. The S/MIME protocol
uses ITU-T5 X.509 digital signature certificates to ensure privacy, authentication,
and message integrity. These certificates are issued by certification authorities
after verifying the e-mail address of a person by sending an e-mail to the e-mail
address for the certificate with a confirmation link (cf. Banday and Sheikh, 2014,
P. 707f.). Each version of the protocol supports several algorithms for encryption
and signing. In the latest version 4, released in 2019, S/MIME supports, for
example, AES-256 Galois/Counter Mode (GCM) and RSA for encryption and
the signature algorithm Elliptic Curve Digital Signature Algorithm (ECDSA).
For calculating digests, for example, the algorithms SHA-256 and SHA-512 are
supported (cf. Schaad, Ramsdell, and Turner, 2019). The process of signing an
e-mail, encrypting it as well as verifying the signature and decrypt it on the
receiver’s site is displayed in the following figure and described in the paragraph
afterward. (cf. Banday and Sheikh, 2014, P. 708)

(Banday and Sheikh, 2014, P. 709)

Figure 2.5: S/MIME process of e-mail signing and encryption as well as signature
verification and decryption

The process on the part of the sender begins with retrieving the certificate for
signing from the secure certificate store, which is followed by checking if the
certificate is still valid. The next step is to compute a message digest with
one of the allowed algorithms, defined in the used S/MIME protocol version.
This digest is encrypted by using the private key of the certification to get
the message signature. The message signature is used in the next step in
5International Telecommunication Union: https://www.itu.int/rec/T-REC-X.509

Mail Authorship Verification and Phishing Recognizing with ML 19

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

combination with the e-mail message and the public key of the sender to derive
a symmetric session key. An encryption algorithm takes the e-mail message, its
signature, and the public key of the receiver’s certificate as input to produce a
signed and encrypted message. Finally, a valid Cryptographic Message Syntax
(CMS) content-info struct is conducted, which is sent to the receiver. When
receiving an S/MIME e-mail, the recipient uses his private key (including a
validity check) after destructing the CMS message to decrypt the session key.
With this session key, the e-mail message, its signature, and the certificate of the
sender are decrypted. The next step is to check the sender certification validity
and, afterward, compute the message digest from the message received by using
the same algorithm as the sender. The signature delivered as part of the e-mail is
decrypted too. If the computed and the decrypted digests are equal, the signature
is verified. (Banday and Sheikh, 2014, P. 709f.)

In "S/MIME with Multiple E-mail Address Certificates: A Usability Study2
(ibid.) the authors conclude that the usability of S/MIME could be considerably
improved. One opposing aspect mentioned is the fact that there are hardly free
S/MIME certificates and the management of these certificates is also complicated,
especially when using multiple e-mail addresses (ibid., P. 713). Additionally, in
Germany, a survey showed that only 31.4 percent of all interviewed persons use
any kind of e-mail security protocols in 2018 (cf. Wagner, 2018).

2.3 Conclusion

To sum up, the presented achievements of several researches show different
approaches for spam filtering and that machine learning is already in usage
for this purpose. However, there are, to the author’s best knowledge, no
implementations and tests with CoreML or the web service uClassify, and spam
filtering is still mostly done by the mail providers on the server-side. Meanwhile,
an implementation within an iOS app offers the advantage of establishing an
e-mail provider independently solution and focusing on evaluating Core ML in
comparison to uClassify, like already described in detail in chapter 1.2 Research
Questions and Aims. Moreover, the fact that even Google, whoses service Gmail
achieves a spam detection rate of more than 99.9 percent, tries to develop new
approaches (cf. Dada et al., 2019, P. 1-2) shows that spam filters are still not
working satisfactorily in all circumstances. Spam filtering is targeting mass spam
and phishing attacks, but not spear phishing and social engineering attacks.
However, Microsoft additionally uses machine learning to scan files to detect

Mail Authorship Verification and Phishing Recognizing with ML 20

Chapter 2. Related Papers and Existing Sender Authentication Mechanisms

malicious documents, but no one uses or investigated an authorship verification
approach to prevent social engineering attacks. The existing techniques to
authenticate sender e-mail addresses and, therefore, to prevent mail spoofing are
SPF, DKIM, DMARC, and S/MIME, which also offers full e-mail encryption.
However, these techniques also come with disadvantages, like depending on
the server configuration of the sender’s mail servers, and all techniques require
advanced knowledge to configure them correctly. These aspects result in a limited
deployment rate of these mechanisms.

Meanwhile, authorship verification is already a topic which was investigated in
different other settings, as well as in particular cases with machine learning, and
achieved promisingly accurate results. All in all, the approach to use CoreML and
uClassify as a kind of additional client-side spam and phishing filter and to use
them for authorship verification to prevent highly sophisticated social engineering
attacks as a part of an iOS app is something which is not covered by any paper
or known project. In addition, it will offer a solution that is independent of any
server configurations and ready to use without any further needed configuration
than clicking on a button for starting the training of the machine learning models.

Mail Authorship Verification and Phishing Recognizing with ML 21

Chapter 3
Artificial Intelligence Technologies

The idea of machine learning emerged in the 1970s (cf. Louridas and Ebert, 2016,
P. 110), while the first usage and definition of the term artificial intelligence
was already discussed at the Dartmouth Conferences in 1956 (cf. Ongsulee,
2017, P. 1). Artificial intelligence in computer science means that machine
mimics human cognitive functions like learning or problem-solving. However,
until 2012, the development of artificial intelligence was impeded by limited
technological resources, but since then, the price decline of GPUs, which make
parallel processing faster, cheaper, and powerful, and the advanced development
of other technologies, led to a faster development in this area. Nowadays,
artificial intelligence includes, for example, successfully understanding human
speech, competing in strategic game systems (i.e., chess) and self-driving cars.
(cf. ibid., P. 1)

To make these invitations possible, researchers developed different strategies
and subfields of artificial intelligence. One of them is machine learning,
which is defined by Arthur Samuel as giving "computers the ability to learn
without being explicitly programmed" (Munoz, 2014, P. 1). There are following
different approaches used to learn the relevant mechanisms to perform a task:
Supervised learning, unsupervised learning and semi-supervised learning as wells
as reinforcement learning, which all are explained specifically in the following
paragraphs. During supervised learning, the training set includes the data, which
should be classified and also the class of each piece of data. Meanwhile, during
unsupervised learning, the training dataset does not include any information on
how to classify the different pieces of data. Unsupervised learning is based on
clustering algorithms that divide the input dataset into different clusters based

Chapter 3. Artificial Intelligence Technologies

on certain criteria (cf. Louridas and Ebert, 2016, P. 110, 113). While supervised
learning is used in about 70 percent, according to Pariwat Ongsulee (cf. Ongsulee,
2017, P. 2), of all machine learning cases, the unsupervised learning accounts
for 10 to 20 percent. Semi-supervised and reinforcement learning are two other
approaches that are used in the remaining 10 to 20 percent. For semi-supervised
learning, the data set for some data deriving from the training set includes class
information, while other data do not include class information. Usually, in such
a case, the share of data with class information is significantly smaller than the
part of data without such a piece of information. The reason for this is that data
without class information is easier to acquire because preparation of the data
with class information involves manual adding this information for every piece of
data. (cf. ibid., P. 2f.)

While supervised, unsupervised, and semi-supervised learning rely on training
data sets, the learning method of reinforcement learning follows a trial and error
approach. Reinforcement learning is typically used in robotics, gaming, and
navigation (cf. ibid., P. 2f.). While learning, the agent (the actor) interacts with
the environment for a sequence of turns. For each turn, the agent has to choose
an action based on a policy, while the environment has a defined state. In the
reaction of the chosen action, the environment responds with a reward and a
new environmental state back to the agent. In the following turn, the agent will
use the next policy, again choose an action and will get some reward and a new
environmental state again. Figure 3.1 illustrates these interactions. The goal of
the agent while learning is to derive a policy which maximizes the rewards return
from the environment. (cf. Anderson et al., 2018, P. 4)

Mail Authorship Verification and Phishing Recognizing with ML 23

Chapter 3. Artificial Intelligence Technologies

(Navlani, 2018)

Figure 3.1: Reinforcement learning

Another subfield of artificial intelligence is predictive analytics, which uses
historical data to make predictions about events in the future. These analytics use
statistical techniques like predictive modeling, data mining, and machine learning
to get a large amount of data and to use it for the calculation of predictions. In
order to perform these predictions, predictive models create as many relationships
among many factors to find out which scenario will be most likely, based on a
particular set of conditions. An example of such predictive analytics is credit
scoring, where customers’ credit history and data about their loan application
and other aspects are used to rank individuals by their likelihood of making
future credit payments on time. (cf. Ongsulee, 2017, P. 3)

Besides machine learning, deep learning is a widely used term when speaking
about artificial intelligence. Deep learning usses representation learning methods
with multiple levels of representation. Representation learning subsumes methods
that allow computer systems to process raw data in order to automatically
discover the features (called representations) needed to perform detection or
classification. Since deep learning methods use multiple levels of representation,
additional modules are needed to transform the representation used at one level
into a representation at a higher, slightly more abstract level. For instance, the
raw data of an image is an array of pixel values. The first layer of representation
extracts the presence or absence of edges, while the next layer can detect motifs
based on the arrangements of the edges, which have been the output of the first
layer. The next upper layer assembles the motifs of the second layer into larger

Mail Authorship Verification and Phishing Recognizing with ML 24

Chapter 3. Artificial Intelligence Technologies

combinations that correspond to parts of familiar objects. One key aspect of
this approach is that humans do not train these layers of features, but they are
learned from the processing data using a general-purpose learning procedure. (cf.
LeCun, Bengio, and Hinton, 2015, P. 1)

One of the most common deep learning methods is the usage of artificial neural
networks (ANN). These use principles of a biological model about the visual
cortex pf humans proposed by Nobel laureates David H. Hubel and Torsten
Wiese in 1959 (cf. Ongsulee, 2017, P. 3f.). This model describes that visual
cortex has a hierarchy structure. In each hemisphere of the human brain exists
a primary visual cortex, which contains 140 million neurons with tens of billions
of connections between them. However, this primary visual cortex is not enough
to process the inputs of the human eyes to make sense of these inputs. There
are four further visual cortices needed (cf. Nielsen, 2019). Like the human visual
cortex, artificial neural networks also consist of multiple layers, where data are
processed. Each layer in an ANN comprises nodes, which is loosely resemble
neurons in the human brain. In the first step (see Figure 3.2), a node takes
the input data and combines it with a set of coefficients (also called weights),
which assigns each input a significance regard to the task the algorithm should
be trained (cf. Nicholson, 2019).

(Nicholson, 2019)

Figure 3.2: Steps performed by a node in artificial neural networks

Those weighted inputs are summed up (Net input function in Figure 3.2) and
passed through an activation function, which determines if the output of this layer
is further used in the model or not. Therefore, the activation function can be,
for example, a threshold-based function, which only activates the node (meaning
that the other nodes should consider its output) when the sum calculated initially

Mail Authorship Verification and Phishing Recognizing with ML 25

Chapter 3. Artificial Intelligence Technologies

is above the defined threshold (cf. Nicholson, 2019). Figure 3.3 shows an ANN
with multiple layers (called hidden layers).

(Bre, Gimenez, and Fachinotti, 2017)

Figure 3.3: Artificial neural network with multiple hidden layers

The first layer consists of multiple nodes and has connections to the input as
each node is connected to all inputs. In each node, the inputs are weighted and
summed up before put in the activation function and they are as well added to a
bias. In ANN, every node has its own bias term. In a case, where the ANN has
five inputs the formulas read as follows (for each input a different weight can be
assumed):

WeightedInputSum = Weight1× Input1+
Weight2× Input2+
Weight3× Input3+
Weight4× Input4+
Weight5× Input5+
BiasNeuron1

(3.1)

(cf. Yiu, 2019)

NeuronActivation = ActivationFunction(WeigthedInputSum) (3.2)

(cf. ibid.)

Mail Authorship Verification and Phishing Recognizing with ML 26

Chapter 3. Artificial Intelligence Technologies

The key element for learning in an ANN is to find the best values for the used set
of weights and biases for the nodes. However, the change of one weight or bias
value does not only affect the directly connected nodes but also all other nodes in
the network as they all are interconnected. The best values for these parameters
are those, which minimize the so-called cost function, which is an approximation
of how wrong the made predictions are relative to the target outcome. (cf. Yiu,
2019)

A specific type of artificial neural networks are convolutional neural networks
(CNN), which are, like ANNs, inspired by the organization of the visual cortex
of the human brain. However, in this case, convolutional neural networks do not
only have multiple layers like the visual cortex but also take care of the fact that
individual neurons respond to stimuli only in a restricted region of the visual
field, which is called the receptive field. Usually, CNNs take images as input
data and via its method of analysis this kind of ANN requires less pre-processing
in comparison to other classification algorithms. Like ANNs and the usual case
in deep learning, CNN learns filters and useful features for classification by itself
without any human interaction. Figure 3.4 shows the processing pipeline of CNN.
(cf. Srivastava, 2018)

(The Learning Machine, 2019)

Figure 3.4: Convolutional neural network architecture

In Figure 3.4, the first and the third step/layer of this sample CNN are called
convolution steps/layer. The objective of such a step is to extract image features.
Since images consist of three two-dimensional matrices (one for each RGB-color),
the extraction can be done by applying filters to these matrices. These filters are

Mail Authorship Verification and Phishing Recognizing with ML 27

Chapter 3. Artificial Intelligence Technologies

also defined as fixed-sized two-dimensional matrices, and therefore, the same filter
will be used for every color channel. In course of the convolution step, a filter is
shifting over the whole image. For each position, an element-wise multiplication
among the two matrices (image pixel values and filter) is performed and the
outputs of multiplications are summed up to obtain the final single element (an
integer) of the output matrix. This matrix is also called activation map. Figure
3.5 shows the application of the filter for each color channel and the calculation
of the activation map.(cf. Srivastava, 2018)

(The Learning Machine, 2019)

Figure 3.5: Convolutional operation for each color channel

After performing a convolution step, the next step is using a pooling layer. This
step reduces the dimensionality of the previously generated activation map and
it is useful for extracting dominant features. Common types of pooling are
maximum pooling, average pooling, and sum pooling. Like in the convolution
step, again a filter is shifting over the matrix, but this time no multiplication is
performed. When using maximum pooling, the maximum value of the portion
of the matrix covered by this filter is selected (see Figure 3.6). The average
pooling calculates and returns the average value of the covered values, and the
sum pooling returns the sum of the covered values. As before, the outputs are
one more time part of a new matrix. Depending on the complexity in the images
and the task to perform, a CNN can include serval convolution layers followed by
pooling layers. In the sample CNN above, two combinations of convolution and
pooling layers are used. (cf. ibid.)

Mail Authorship Verification and Phishing Recognizing with ML 28

Chapter 3. Artificial Intelligence Technologies

(cf. Srivastava, 2018)

Figure 3.6: Maximum pooling in CNN

The last layers in a CNN are fully connected layer termed FC layer, which is
an ANN with several layers that use a softmax activation function. To be more
precise, in between FC layers all nodes are connected to all activations from
the previous layer (cf. Srivastava, 2018). The softmax function is an arg max
function, which means that it returns the position of the largest values from the
input vector. The return value is a vector where each element represents the
probability of any position in the vector being the one with the highest number.
The formula below demonstrates an example: (cf. Mikulski, 2019)

softmax(


13
31
5

) =


1.52299795e−08
9.99999985e−01
5.10908895e−12

 (3.3)

(cf. ibid.)

Figure 3.4 includes also another activation function called ReLu (Rectified linear
unit) activation. This function is based on thresholding values at zero. The ReLU
function formula is: (cf. Agarap, 2018, P. 2)

f(x) = max(0,x) (3.4)

(cf. ibid., P. 2)

Mail Authorship Verification and Phishing Recognizing with ML 29

Chapter 3. Artificial Intelligence Technologies

3.1 Core ML

Artificial intelligence has become a relevant topic on mobile devices since
smartphones are relying on stronger CPUs and have enough power to perform
machine learning right on the device. In September 2017, Apple released the first
version of Core ML, a machine learning framework, optimized for iOS devices.
Before this date, building convolution neural networks was possible by using two
low-level APIs, one using resources of the CPU and the other one using the GPU
for calculations. With Core ML, Apple introduced a new layer of abstraction. In
addition, since then, Core ML has got new features (e.g. additional layer types)
and was optimized to use fewer resources and also to return more accurate results.
With Core ML 2, the size of the models used by the framework was significantly
decreased. In one particular example, the model size with Core ML 2 was 1.5
MB, while with the first version of Core ML the size was 90 MB (cf. ARQgroup,
2018).

Besides performance improvements, the release of Core ML 2 includes the tool
Create ML, which is a graphical interface to create and train new models. This
tool can use datasets of images, text files, or numeric data for training purposes
to create and train a model, and afterward, it can test the accuracy of the
predictions of the model. All this can be done on every Apple computer without
any specialized hardware and without writing one single line of code. However,
it is possible to automate this process by writing a Swift script to interact with
Create ML and to create new models. The advantage of using Create ML for
creating models is that developers do not have to know all underlaying layers and
technologies of Core ML (cf. Luber and Litzel, 2019b). In addition, models cannot
only be created and trained with Create ML, but developers can also import
and convert machine learning models from other frameworks, like TensorFlow1,
Apache MXNet2, or ONNX3 (Open Neural Network Exchange) (cf. Luber and
Litzel, 2019a).

Apple released the third Core ML version, Core ML 3, in the summer of 2019. One
new feature is that models can be directly updated on mobile devices, whereas
previous to Core ML 3 models only could be updated on developer machines
and not on iOS devices themselves. However, it is still not possible to create an
entirely new model on runtime on the iOS device. Moreover, Apple added more
1http://tensorflow.org
2https://mxnet.apache.org
3https://onnx.ai

Mail Authorship Verification and Phishing Recognizing with ML 30

Chapter 3. Artificial Intelligence Technologies

than 100 new layer types (40 layer types had already been in Core ML 2). These
layer types or model types can be used as part of the convolutional neural network
to process data (developers can use these layers to build their own data processing
pipeline). For on-device training, only neural networks and k-Nearest Neighbors
layers can be used. As this algorithm can become inefficient with a large data set,
Core ML supports a K-D tree variant, which promises a better performance (cf.
Hollemans, 2019). More closely, the k-Nearest Neighbors algorithm can be used
with text-based data as well as with visual pattern recognition, and the general
idea is that data in datasets usually exists in the neighborhood of other data
with similar properties. The key step of the algorithm is to calculate all distances
between the given data and the already known data. Since the data are often
represented in the form of vectors, the distance can be calculated as Euclidean
distance or any other vector distance calculation. As soon as all distances are
known, a defined number k of next (meaning with the shortest distance) neighbors
are selected. The determination of the classification of the given data is done by
looking for the most frequent class label of the selected next neighbors (cf. Lam
et al., 2014, P. 368). Figure 3.7 shows an example with two classes and one new
item to classify. Here, it can be seen that the selection of k can influence the
classification result.

(Liao, 2018)

Figure 3.7: Visual representation of the k-nearest neighbors. With K=1 the
resulting class is Class 1, while with K=3 it is Class 2.

Core ML 3 supports on-device training for neural networks, which can be divided
into two different variations with the technical terms NeuralNetworkClassifier and
NeuralNetworkRegressor. The classifier outputs a dictionary with the classes and

Mail Authorship Verification and Phishing Recognizing with ML 31

Chapter 3. Artificial Intelligence Technologies

their predicted probabilities, while the regressor returns a single numeric value
since a regressor uses a mapping function from input values to numeric output
variables. Apart from the output format, both models work the same. A model
that should support on-device training must have set the property isUpdatable to
the value true already before training the model with Create ML (cf. Hollemans,
2019).

3.2 uClassify

Machine learning is additionally available as web services. One of them is
uClassify, which is basically free to use and has been developed by a Swedish team
(cf. Kågström, Karlsson, and Ingridsson, 2019b). On the one hand, this service
offers pre-defined functionalities such as language detection, text gender, and
age recognition of authors based on analyzing texts by using machine learning.
On the other side, the user of uClassify can create, train, and share their own
classifier. Also, developers can interact with the web service via an API in several
data exchange formats, like JSON or XML. The offered services are, for example,
used by the website Genderanalyzer to detect whether a man or a woman has
written a website. Another example is the Wordpress plugin Trollguard, which
uses uClassify to detect spam comments. Moreover, in 2015 a research team led
by Serrano-Guerrero analyzed several different machine learning web services. It
concluded that uClassify presents, in comparison to other web services, adequate
results, especially for working with texts on different topics (cf. Serrano-Guerrero
et al., 2015, P. 26, 36).

As regards technical details, uClassify is hosted in the Amazon cloud and the
classification server is developed in C++ to ensure the performant handling of a
huge amount of data. On one processor core, around 360.000 posts with a size of
2.4 KB on average can be analyzed with five large (a more precise definition
is lacking here) classifiers in one hour. The server uses multiple cores and
all classifiers are thread-safe (Readers/Writers lock). As core machine learning
algorithm, uClassify uses a multinomial Naive Bayesian classifier (cf. Kågström,
Karlsson, and Ingridsson, 2019b). This classifier assigns the most likely class to a
given data described by its feature vector. The key aspect of this algorithm is that
it assumes that all input data are independent of each other. As a consequence,
the change of one data does not influence other data. Although this assumption
might be unrealistic, the Naive Bayesian classifier is remarkably successful in
practice. There are two reasons for its success: Firstly, its results are in general

Mail Authorship Verification and Phishing Recognizing with ML 32

Chapter 3. Artificial Intelligence Technologies

as accurate as results from other, more sophisticated techniques, and second, the
Naive Bayesian classifier can be implemented in a very efficient and performant
way (cf. Rish, 2001, P. 41).

The Naive Bayesian classifier is built upon the Bayes theorem, which is shown
in the formula below. With this theorem, the probability of A happening can be
calculated, given that B has occurred. (cf. Gandhi, 2018)

P (A|B) = P (B|A)P (A)
P (B) (3.5)

(ibid.)

For a better understanding, the following explanation uses an example of playing
golf with the following dataset. The classifier should answer the question if the
day is suitable for playing golf, based on the features of the day. The features are
presented in the following table as columns, while the rows present individual
entries. In this example, one assumption is that all features are completely
independent, and another assumption is that all predictors have an equal effect
on the outcome. (cf. ibid.)

(Gandhi, 2018)

Figure 3.8: Example data for the Naive Bayesian classifier

Mail Authorship Verification and Phishing Recognizing with ML 33

Chapter 3. Artificial Intelligence Technologies

The posterior probability P(A|B) is calculated with the help of a frequency table
for each attribute against the target. In the next step, the frequency tables are
transformed into likelihood tables, and finally, the posterior probability for each
class is calculated based on the Bayes theorem. The final outcome of prediction is
the class with the highest posterior probability. Figure 3.9 demonstrates example
calculations, including frequencies and likelihood tables. (cf. Sayad, 2019)

(Sayad, 2019)

Figure 3.9: Example calculations for the posterior probability

Figure 3.19 shows two detailed calculations based on four predictors for the
question is if the day is suitable for playing golf. In this case, class No has a
higher posterior probability, and therefore, the final prediction will be No. (cf.
ibid.)

Mail Authorship Verification and Phishing Recognizing with ML 34

Chapter 3. Artificial Intelligence Technologies

(Sayad, 2019)

Figure 3.10: Determining if a specific day is suitable for playing golf with a Naive
Bayesian classifier

3.3 Conclusion

The first idea of artificial intelligence is more than 60 years old, but since
computer resources have become cheaper and widely available different kinds
and technologies of artificial intelligence are now in the focus of developers
who want to use these technologies. As a consequence, many different machine
learning and other artificial intelligence frameworks have been developed. Core
ML brings machine learning right on iOS devices and its latest version also
allows developers to update machine learning models on the devices themselves.
However, this feature is not available for all machine learning algorithms and,
therefore, machine learning web services are still necessary to perform predictions
in the cloud with more powerful hardware. Also, in this thesis, the app will not
use machine learning exclusively on the iOS device but work with uClassify to
perform the authorship verification. The implementation of the app and the
performance of the authorship verification tests will show if, with Core ML 3, all
machine learning, for the authorship verification approach can be done without
web services and if the results of Core ML and uClassify display the same accuracy
level.

Mail Authorship Verification and Phishing Recognizing with ML 35

Chapter 4
Forensic Linguistics and Authorship
Analysis

In 1968, Jan Svartik, a linguistic expert, used for the first time the term ’forensic
linguistics’ (cf. Ariani, F. Sajedi, and M. Sajedi, 2014, P. 223). The expert
analyzed the transcript of a police interview with Timothy Evans, who had been
found guilty of murdering his wife and his daughter in 1949. The analysis showed
that some parts of the transcript were considerably different from other ones with
regard to the use of grammar. Based on this finding and other aspects, the courts
concluded that Evans had been wrongly accused and executed in 1950. This case
and Svartik’s work is one of the first major cases in which forensic linguistic was
used in a court of law (cf. Dewdrop, 2016).

Forensic linguistic mainly focuses on authorship analysis, which includes
authorship attribution, authorship profiling, and authorship verification (cf.
Iqbal et al., 2010, P. 1591). While authorship attribution aims at identifying
the authorship of anonymous texts (cf. Yang et al., 2018, P. 133), authorship
verification confirms the true authorship of a person for a given text. Meanwhile,
authorship profiling aims to find out as much as possible about the individual
characteristics of the author of a given document, like the age and gender (cf. Iqbal
et al., 2010, P. 1591). Experts of forensic linguistic analyze different aspects of a
text document to retrieve information about the author. This analysis includes
spelling, sentence construction, vocabulary, punctuation, as well as other aspects.
Even though the dialect of a person does not as strongly influence the written
language as the spoken one, written texts can include regional-specific aspects
which help to identify the author. For example, in German, the difference between

Chapter 4. Forensic Linguistics and Authorship Analysis

’die Trottel’ and ’die Trotteln’ can be an indication that the author is from Bavaria
or not (cf. Krischke, 2013). In English, such a difference can be noticed between
British and American English. Beside regional aspects of the used words and their
spelling, orthographical and grammatical mistakes allow gathering information
about the education level of the writer. All this information that can be extracted
from written texts helps to identify the true author. However, the authorship can
not be fully proved by using forensic linguistic because forensic linguistic experts
can only state probability statements regarding authorship. (cf. ibid.)

In Germany, the Bundeskriminalamt (BKA) does not use computer systems for
the linguistic analysis of a text. The main work is done by human experts
who only use technical systems for storage and documentation. In contrast,
the number of linguistic experts who mainly use computer and machine learning
for analyzing documents increases (primarily in the private sector), according to
Crankshaw (2012, P. 4). Especially for authorship verification, machine learning
is used first to learn the written style of an author and afterward to verify if
this author also wrote a given text. Some experts, like Hsinchun Chen from the
University of Arizona, are sure that every person has a linguistic fingerprint and
that computer systems can identify these fingerprints correctly. In contrast, the
Bundeskriminalamt (BKA) does not support this hypothesis and arguments that
the language of a person can change considerably during the lifetime, while the
biological fingerprint remains the same. For example, studies of literary works
revealed that the language of some poets changed substantially with their ages
(cf. Krischke, 2013). Also, other experts, like Rebecca Crankshaw (cf. Crankshaw,
2012, P. 4), do not support the theory of a linguistic fingerprint and argue, that
the language used by a person changes a lot during the lifetime and depends
a lot on the communication context. Additionally, another problem to form a
linguistic fingerprint is, that it will not be possible to collect such a vast amount
of samples of a person which would represent its idiolect in its entirety (cf. ibid.,
P. 4).

Independently from the question, if a human or software performs an authorship
analysis, the given text has to be analyzed based on defined features (linguistic
aspects of a text that point out and are used for analysis) (cf. Halvani, Steinebach,
and Neitzel, 2014, P. 231). Different studies show that especially when using
technology solutions for such analyses the used features can differ a lot. However,
it is observable that usually several features from different categories are used.
The choice of the features used can influence the accuracy of the performed
analysis (cf. Khedkar, 2018, P. 3900 - 3902) and the (technical) usage of features

Mail Authorship Verification and Phishing Recognizing with ML 37

Chapter 4. Forensic Linguistics and Authorship Analysis

is criticized to not perfectly profile the written style of a text. The reason
for this criticism is that features do not distinguish between content and style.
Therefore, features can not consider humor, and irony and features do not include
any background knowledge or contextual information, like metadata of messages
(i.e., timestamp of an e-mail), as they are usually focused on statistical values
(cf. Halvani, Steinebach, and Neitzel, 2014, P. 231).

In more detail, one category of features groups aspects belonging to the used
vocabulary. The used words in a text can include strong cues with regard to
the identity of the writer. For example, some words indicate a specific region
where the author lives or grew up. Studies revealed that words vary strongly in
their usage in everyday language across space and time. Vocabulary, to mention
another example of analytical units, is relatively easy to fake since it can be
deceived very simply. It is, for instance, easy to use British instead of American
English or vice versa. When speaking about published articles in papers, editors
frequently change the spelling to Standard British or American English to have a
consistent spelling in their publication. In addition to this first problem, specific
words, which would indicate a hint about the author, may not be present in the
text to analyze (cf. Juola, 2006, P. 263f.).

Another approach for text analysis is to consider larger fractions (namely more
than only a single word) of the words in the text. In this category, the analysis
relies on large-scale overall statistics of the given document and its words. Each
word has properties like the number of characters (length) and syllables and
language of origin. One used feature for authorship analysis can be the average
length of sentences or, another one, the estimation of the size of the author’s
vocabulary. For this calculation of the author’s vocabulary size more than fifty
different approaches are known, but these approaches are not considered to be
sufficiently accurate to rely on since no approach is supported by a majority of
linguistic experts. Meanwhile, other features are based on the usage of ’function
words’ (cf. ibid., P. 264). A function word, sometimes called grammatical
morpheme, is a word that designates a grammatical or structural relationship
with other words in a sentence (cf. Nordquist, 2019). The idea of these linguistic
features is to count function words and to perform further analysis based on
these numbers, which performs well as function words are topic-independent.
Moreover, based on function words, it is conceivable to indicate an author’s
preferred syntactic constructions, like active or passive constructions. (cf. Juola,
2006, P. 264f.)

Mail Authorship Verification and Phishing Recognizing with ML 38

Chapter 4. Forensic Linguistics and Authorship Analysis

Besides words, other analytical approaches focus on punctuation or the structure
of a document, which can be very writer specific. Especially for web pages,
presentations, or other documents that are written in WYSIWYG editors, the
structure and formatting can be helpful to identify authors. Such user-friendly
editors allow the user to control the structure of a file and also to edit the layout
of words without having any programming skills. This structural analysis can be
practiced to identify the writer of source codes, as software developers tend to
have a personal style in using idents, spaces, and line breaks. However, such an
approach has to be aware that the structure of different document formats, like
web pages versus presentations, can differ significantly, even though they have
been written by the same person (cf. Juola, 2006, P. 265 - 267).

In addition, metadata like timestamps or the header of e-mails can be considered
as features too. These are not linguistic features like the others mentioned
above but can include helpful information to answer the given research question.
Especially when analyzing posts on social media, timestamps can support to
detect time slots in which an author is usually active. If there is a post which
was created at an unusual daytime, this may be a hint to have a closer look at
this post and to find out if it truly is stemming from the supposed author (cf.
Vorobeva, 2016, P. 297f.).

To sum up, the field of forensic linguistics worked out many different techniques
to identify authors and to confirm authorships for given text documents.
Even though linguistic analysis can only prove the authorship with probability
statements, it has relevance for evidence in a court of law. Therefore, the
assignment of e-mails to known authors only based on the used language and the
writing style is possible. Also, in forensic linguistics, machine learning and other
specific software are used more and more, which shows that computer systems
obtain the potential to analyze texts in terms of forensic linguistics.

Mail Authorship Verification and Phishing Recognizing with ML 39

Chapter 5
Approach

In this chapter, the general conceptual idea of the used approach for this thesis,
as well as the implemented prototype of the iOS app, are described. The last
section of this chapter presents the performed test cases and evaluation of machine
learning.

5.1 General Concept

In order to perform e-mail authorship verification, the core elements of any general
system are those which investigate e-mails as well as the used machine learning.
As a result, one requirement of an e-mail authorship verification system is the
ability to receive e-mails and to parse them to retrieve individual elements of the
e-mail such as subject and body, which can be used for classification. In order
to receive e-mails, the system can use the protocols POP or IMAP. Another
essential component of such a system is a connection to any kind of machine
learning which can classify text documents (assuming that the focus is only on
text-based e-mails). In short, the overall process of any authorship verification
for e-mails is to receive the first bulk of e-mails, to train the machine learning
model with these e-mails, and to receive new e-mails and to classify them with
the previously trained machine learning model. Therefore, one requirement for
the used machine learning is to provide the ability to create new classes and to
train the model during the whole model’s lifetime. This requirement prevents any
usage of the CoreML versions 1 and 2 for an authorship verification system since
these versions do not support any update of the model after its initial creation.

To extend the authorship verification system with spam and phishing recognizing,

Chapter 5. Approach

a second machine learning model, trained for this recognition, is part of the
system. For training this model datasets like the Spambase1 dataset or the
Spamassassin2 dataset can be used. A list and comparison of spam datasets,
which can be used for training machine learning models, can be found in the
paper "Machine learning for email spamfiltering: review, approaches and open
research problems" (Dada et al., 2019). A further extension is to give the users
of the system the possibility to classify e-mails manually as spam or ham and to
use this information to update the machine learning model accordingly.

5.2 iOS App Prototype

The developed prototype is, in general, a simplified e-mail client that is enhanced
for authorship verification and spam and phishing recognizing with machine
learning. The iOS app is built on the framework Postal3, which provides an
implementation for interaction with mail servers using IMAP and for parsing
e-mails. In fact, Postal is a wrapper over some parts of LibEtPan4, which is an e-
mail framework for the programming language C. LibEtPan implements protocols
like IMAP, POP, and SMTP. (cf. Lefèvre, 2016)

The demo project of Postal is an e-mail client that can connect to an e-mail server
and receive a list of e-mails via IMAP. For this thesis, this demo project has been
extended. The connection details and credentials are saved in the keychain of
iOS, which is a securely encrypted storage as part of the iOS operating system.
After connecting to an e-mail server and receiving a list of e-mails, this list is
presented to the user, who can click on one entry to open the detail view of this
e-mail or on a button to turn to the training view for the authorship verification.
This training view lists the senders of the received e-mails and with clicking on
one entry the app uses the received e-mails of this sender to train the machine
learning model. Therefore, it can be necessary to create a new class for this sender
before the training can start (this step is automatically detected and done by the
app without any further user interaction). In the e-mail detail view, the user sees
the sender’s name, the subject, and the body of the e-mail. Additionally, the app
presents the results of the classifications done by the Core ML and uClassify. At
the bottom of this view (see Figure 5.1), the user can update the machine learning
models by marking as classified correctly or not for both authorship verification
1https://archive.ics.uci.edu/ml/datasets/spambase
2https://spamassassin.apache.org/old/publiccorpus/
3https://github.com/snipsco/Postal
4https://github.com/dinhviethoa/libetpan

Mail Authorship Verification and Phishing Recognizing with ML 41

Chapter 5. Approach

and spam recognition.

Figure 5.1: Screen to enter e-mail account details, Screen with list of all
received e-mails and a detail view of one single e-mail with the machine learning
classifications

Since this app is a prototype and also according to the research aims, the app can
only process text-based e-mails and does not render any HTML or any images. A
further reason for this decision is that the spam e-mail datasets used for training
the machine learning models are as well only text-based e-mails. If the app
receives an HTML e-mail, it will not render to HTML correctly, but use the
transferred source code like any other e-mail body for training and classifying.

5.3 Authorship Verification and Recognize
Phishing with Core ML

The developed app uses Core ML 3 since an on-device training of a machine
learning model is not supported in previous versions. In order to be able to use
Core ML 3, the app has to be written in Swift 5 for iOS 13 and also to be created
on macOS Catalina. Updatable Core ML 3 models can only be generated on
macOS Catalina using the Core ML community tools5, which is a toolset for
creating, validating, and editing models for Core ML. Developers can use this
toolset in python scripts. Therefore, the creation of updatable Core ML 3 models
is not possible with Create ML but must be done by writing a python script using
5https://github.com/apple/coremltools

Mail Authorship Verification and Phishing Recognizing with ML 42

Chapter 5. Approach

the Core ML community tools.

For creating an initial machine learning model for the usage for authorship
verification, the used python script is listed in Listing 5.1, and its main parts
are explained in the following paragraph.

1 from coremltools.models.nearest_neighbors import
↪→ KNearestNeighborsClassifierBuilder

2 from coremltools.models import MLModel
3
4 number_of_dimensions = 21
5
6 builder = KNearestNeighborsClassifierBuilder(
7 input_name=’input’,
8 output_name=’output’,
9 number_of_dimensions=number_of_dimensions,
10 default_class_label=’defaultLabel’,
11 number_of_neighbors=3,
12 weighting_scheme=’inverse_distance’,
13 index_type=’linear’)
14
15 builder.author = ’Christian’
16 builder.license = ’MIT’
17 builder.description = ’Classifies {} dimension vector based on 3

↪→ nearest neighbors’.format(number_of_dimensions)
18
19 builder.set_index_type(’kd_tree’, 30)
20
21 mlmodel_updatable_path = ’./UpdatableKNN.mlmodel’
22
23 mlmodel_updatable = MLModel(builder.spec)
24 mlmodel_updatable.save(mlmodel_updatable_path)

Listing 5.1: Python script for creating an updatable Core ML 3 model

The prototype uses the k-Nearest Neighbors (KNN) classifier for the authorship
verification. The Core ML community tools provide a builder for this classifier,
which relies on several parameters. The first parameter (see Listing 5.1, line 7)
defines the name for the model input, while the second one (see Listing 5.1, line
8) is the name of the output. The third parameter (see Listing 5.1, line 9) defines

Mail Authorship Verification and Phishing Recognizing with ML 43

Chapter 5. Approach

the number of dimensions each feature vector has. In this particular case, the
dimension is 21 since the input texts are analyzed based on different linguistic
features and these results are saved as a 21-dimensional vector (more details in the
next paragraph). The next parameter (see Listing 5.1, line 11) defines how many
nearest neighbors should be considered by default during classification. With
weighting_scheme (see Listing 5.1, line 12) it is selected which weight function is
used when classification is performed. Setting this parameter to inverse_distance
influences the k-Nearest Neighbors algorithm to weight closer data points to the
given data higher than data points that are farther afield. The last parameter (see
Listing 5.1, line 13) defines the algorithm used to compute the nearest neighbors.
By setting this parameter to linear, the nearest neighbors are found by using a
brute-force approach by calculating the distances of every possible combination
of two data points. As this approach does not work efficiently (O(n2)) for a larger
amount of data, the model can also use k-d trees (set in line 26 with a leaf-size
of 30, which is the default value). K-d trees use trees to store the data and offer
an efficient way for lookup data. These trees are guaranteed O(log2(n)) depth
where n is the number of data in the set (cf. Hu and Nooshabadi, 2019). Figure
5.2 shows an example k-d tree based on example data (see Figure 5.3), which
are 2-dimensional vectors. In order to create such a tree, the data in the dataset
are split on each dimension. Each node saves the dimension used for the split,
the split value as well as the tightest bounding box which contains all the points
within that node. The root node always uses the x-axis for the first split, and
in this example, the split value was 0.53, because this x-value is the midpoint
between the minimal and maximal x-value in the dataset. The next level in the
tree uses the y-axis for the split, while the next one is again using the x-axis. (cf.
Singh, 2017)

Mail Authorship Verification and Phishing Recognizing with ML 44

Chapter 5. Approach

(Singh, 2017)

Figure 5.2: Visual representation of an example k-d tree

(Singh, 2017)

Figure 5.3: Visual representation of the dataset used to create the example k-d
tree

The generated k-d tree can be used to search for the nearest neighbor of a given
point. However, it must be considered that the nearest neighbor might not be in
the same node as the given point. In the first step, the KNN algorithm uses the
k-d tree to select the nearest neighbor of the given point in the same node as this
point. This step is demonstrated in Figure 5.4. (cf. Singh, 2017)

Mail Authorship Verification and Phishing Recognizing with ML 45

Chapter 5. Approach

(Singh, 2017)

Figure 5.4: Visual representation of the given point and the point found in the
first search step in a k-d tree

A circle with the given point as the center and the nearest neighbor in the same
node as part of the circle defines an area, in which other points might be even
closer to the given point. Therefore, it is also necessary to inspect all points in
node 4 (as well as all nodes covered by the circle), to find the real nearest neighbor
(see Figure 5.5). The distance from these points to the given point are calculated
to determine if any point is closer to the given point than the one which was
already detected in the first step. However, this calculation can be shortened
when the tightest box containing all the points of some nodes (like nodes 5, 7 and
8 in this example) is farther afield than the nearest already found neighbor (see
Figure 5.6). The tightest box containing all the points of the remaining nodes is
farther afield of the given point than the nearest point in node 4, which means
that no one of these points can be a closer neighbor to the given point. (cf. Singh,
2017)

Mail Authorship Verification and Phishing Recognizing with ML 46

Chapter 5. Approach

(Singh, 2017)

Figure 5.5: The real nearest neighbor to the given point is part of node 4

(Singh, 2017)

Figure 5.6: The tightest box of the points of nodes 5, 7 and 8 is far from the
current nearest point

Since the k-Nearest Neighbors classifier model can only operate with vectors
with numeric values, the e-mails have to be transformed into numeric values.
In the app prototype, 21 features (see Table 5.1) are used for representing
the characteristics of a text as a vector. These features are based on the

Mail Authorship Verification and Phishing Recognizing with ML 47

Chapter 5. Approach

Feature group Number of features Example of one feature
Lexical values 13 Relative number of nouns
Token types 4 Relative number of Punctuations
Language 2 Is text written in English?
Sentiment 1 Sentiment score
Sentence length 1 Average sentence length

Table 5.1: Features used to transform e-mail texts into numeric vectors

features used in forensic linguistics and have also be named in chapter 4 Forensic
Linguistics and Authorship Analysis. Each word represents a specific part of
speech, like nouns, verbs, or adjectives. For the first twelve features, the number
of occurrences of these parts of speech are counted and for each part of speech its
relative occurrence (number of occurrence divided by total number of words)
is saved. Another analytical feature used focuses on the number of words,
punctuations, whitespaces, and non-linguistic items, such as symbols. Each
item occurrence is counted again and their relative occurrence is stored. Beside
counting occurrences, the app determines if the e-mail is written in English or
German as well as a score value for the sentiment of the text. The last feature
stored is the average sentence length.

For spam and phishing recognizing another machine learning model was created
with Create ML by using the Spamassassin6 dataset, with 1920 training e-mails
for spam and ham as well as 479 test e-mails. This final model is part of the app
and cannot be updated.

5.4 Authorship Verification and Recognize
Phishing with uClassify

As an alternative to Core ML 3, the prototype uses the web service uClassify as a
second machine learning provider. uClassify offers a ReSTFul API, which allows
exchanging data in JSON formats. This communication channel is secured by
using two API keys, one for reading (i.e. classifying a text) and one for writing
(i.e. creating and training classes) calls. When using the app, it creates a classifier
on uClassify with the e-mail address used to connect to the e-mail server as the
classifier name. Therefore, each app instance and thus each user has its own
classifier. When training the classifier, the class creations for the senders is done
by the app using the API. All classifier and class names are based on e-mail
6https://spamassassin.apache.org/old/publiccorpus/

Mail Authorship Verification and Phishing Recognizing with ML 48

Chapter 5. Approach

addresses, but cleaned from whitespaces and symbols, since uClassify cannot
process whitespaces and symbols for the purpose of classifier or class creation.
When calling the classify endpoint of the API, uClassify returns a JSON with all
classes and their probability values (the probability that the text belongs to this
class).

While each app instance uses its own uClassify classifier for authorship
verification, all instances use the same pre-trained classifier for spam and phishing
recognizing. This classifier has the classes ham and spam and is trained with the
same dataset as used for training the Core ML 3 model. However, this model can
be updated using the API of uClassify. Therefore, the app offers in the detail
view of each mail two buttons to mark the mail as ham or spam and to update
the uClassify model accordingly.

Besides authorship verification and spam/phishing recognizing, uClassify is also
used to classify e-mails to get additional information. The developed prototype
uses three by uClassify defined, trained, and offered classifiers for this purpose.
The Sentiment classifier determines if a text is positive or negative regarding its
tone and is trained with 2.8 million documents from Twitter, Amazon product
reviews, and movie reviews. Another used classifier is called GenderAnalyzer_v5
and predicts if the text is written by a male or female, based on the training
dataset of 11.000 blogs entries (5.500 blogs written by females and 5.500 by
males). The last used classifier detects the language of an e-mail and is called
Language Detector. (cf. Kågström, Karlsson, and Ingridsson, 2019a)

5.5 Evaluating Authorship Verification and
Phishing Recognizing

The evaluation of using machine learning for authorship verification for e-mails
is separated into three main parts. In the first step, e-mails are used which are
specially collected for this purpose. Several people were asked to write e-mails in
English and German to six given scenarios. Four of these scenarios were exactly
given with a short description, like sending an e-mail to a colleague in order to get
website credentials to edit its content. The last two scenarios were not defined,
but the writers should choose scenarios from their daily life. All detailed scenario
descriptions can be found in the appendix. The reason for this approach is to
work with four e-mails from each person in each language with similar content and
only two e-mails which may have more author-specific content. By using e-mails

Mail Authorship Verification and Phishing Recognizing with ML 49

Chapter 5. Approach

with the same aim, it can be observed how these e-mails are differently written
by each person, even though the purposes of the e-mails are the same. While
evaluating the authorship verification implemented in the iOS app prototype,
the first five e-mails of each person and each language are used for creating and
training the machine learning classes of each person. The sixth e-mail in English
and German of each person is afterward used to perform the prediction and to
evaluate if the classification returned the actual author. All in all, e-mails from
eleven persons who wrote twelve e-mails each (six in English, six in German) are
part of this evaluation section. Additionally, the author of the thesis wrote ten
e-mails to some of the previously mentioned scenarios, but with names and sender
information taken from the other persons, whose e-mails have been learned. With
these fake e-mails, it should be evaluated if the authorship verification could give
a hint to the user if these e-mails have been faked. Since all these e-mails include
greetings with the author’s names, a second run with the same procedure is
performed, in which all names have been removed from the e-mail bodies. To
re-run the original procedure without the author’s names allows for figuring out
the influence of the names for authorship verification and fake e-mails detection.

The second evaluating step of using machine learning for authorship verification
is based on more massive datasets for each person. In this part for each person
(in total four persons) 50 e-mails are used for training the machine learning
classes. Further, ten e-mails per person are afterward used for evaluating if the
classification returned the actual author. These e-mails are taken from a real e-
mail account and communication of the author of this thesis. They are on average
short (mainly less than ten words) and several topics are covered by more than
only one person. Therefore, there is no individual assignment between the topic
of content and authors, which could be helpful to verify the authorship of these
e-mails. Totally, in this part, 200 e-mails are used for creating and training four
machine learning classes (one per author), and 40 e-mails are used to evaluate
the classifications. While performing this part, the e-mails learned in the first
part are still part of the machine learning model and the classifier, therefore,
does know not only the four classes trained in this second part but also the ones
created and trained in the first part before. In addition, like in the first step, fake
e-mails are written to evaluate again if the approach of using machine learning
for authorship verification can identify mail-spoofing. However, this time three
e-mails are faked for each person, but every time the essential content is the same
for all persons. Therefore, in the end, twelve fake e-mails are tested. As in the
previous part, also this part is done in one case with all names of the authors and

Mail Authorship Verification and Phishing Recognizing with ML 50

Chapter 5. Approach

once without containing the author’s names.

The last part of the authorship verification evaluation uses real-world e-mails.
For this evaluation, the dataset of the e-mails from Hillary Clinton is used (in
English). This dataset contains more than 6.500 e-mails from more than 80
persons. Each e-mail is assigned to one person, but there are persons with
more than 1.000 e-mails, as well as some with only one or two e-mails in the
dataset. Before training the machine learning models with these e-mails, 200
e-mails are randomly selected (from persons with more than two e-mails in
the dataset), which are used to evaluate the authorship classifications after the
training. Another 50 e-mails are randomly selected to be reused as fake e-mails.
These e-mails are from persons who are not known by the machine learning
models (meaning no e-mails from these persons are trained). In addition to
these 50 e-mails further 30 fake e-mails are created by the author of this thesis.
For this creation, examples from the online phishing examples archive of the
Berkley University of California7 are used as well as knowledge from the degree
programme IT- and Mobile Security. In total, 80 fake e-mails are used to evaluate
with which probability these e-mails are assigned to persons and, if so, to which
ones (although the actual authors of these e-mails are not part of the machine
learning models).

Besides the evaluation of authorship verification, another evaluation is performed
to figure out the accuracy of the trained classifiers for spam and phishing
recognizing. The test e-mails used for the spam or ham classification performed
by Core ML 3 and uClassify are taken from the Enron e-mail dataset8. The
app receives 100 test e-mails from this dataset, with 50 ham and 50 spam e-
mails, which have been taken randomly from the whole Enron dataset. Since
the Spamassassin dataset, used for training the models, only consists of English
e-mails, also this evaluation is performed using only English e-mails.

5.6 Conclusion

While authorship verification itself can be done on the server-side as well as on
the client-side, the comparison of Core ML 3 with another machine learning,
in this particular case uClassify, requires the implementation of the authorship
verification system as a part of an iOS app. Notably, the usage of on-device
training required to use iOS 13 and to use the KNN algorithm since this is one
7https://security.berkeley.edu/education-awareness/phishing/phishing-examples-archive
8https://www.cs.cmu.edu/~enron/

Mail Authorship Verification and Phishing Recognizing with ML 51

Chapter 5. Approach

of the two algorithms which are supported for on-device training. However, an
especially designed conversion of the e-mail texts to a numeric vector has to be
implemented to use the KNN. For this mapping, the features described in forensic
linguistic are used to create a 21-dimensional vector that represents the main
characteristics of the text. The evaluation performed in this thesis is divided into
multiple parts, three for authorship verification and one for spam and phishing
recognizing. The results of these evaluations are described in the next chapter.

Mail Authorship Verification and Phishing Recognizing with ML 52

Chapter 6
Evaluation Results

This chapter presents the collected results of the, in the previous chapter
described, evaluations. First, the results of each evaluation part are described
and then, in the last section of this chapter, conclusions are drawn from these
results. All detailed evaluation results displayed as tables can be found in the
appendix.

6.1 Authorship Verification using Prepared
Dataset

In this part of evaluation, a prepared dataset with an e-mail from eleven persons
is used. After training five e-mails of each person in English and German, a
sixth English and a sixth German e-mail are sent to see if the machine learning
can classify the e-mail correctly. In this case, from 22 e-mails (including author
names) to classify, 20 are labeled correctly by uClassify. This result means an
accuracy of 90.90 percent of uClassify recognizing the authorship correctly. With
the same e-mails, Core ML recognizes 13.63 percent accurately. When it comes
to the used language, uClassify exhibits the same accuracy for English as well as
for German e-mails and Core ML identifies two English and one German e-mail
correctly. However, besides testing the positive case of authorship verification, in
which the given e-mails are really from the given sender, also ten fake e-mails,
written from an additional person using the name of the already known eleven
people, are classified. uClassify assigns nine of ten fake e-mails to these authors
who are named in the e-mails themselves. Therefore, uClassify does not recognize
in these cases that the stated persons did not write these e-mails. In addition

Chapter 6. Evaluation Results

to the authors’ names, uClassify and Core ML also return a probability value of
how likely this labeled author has written the given text. The average probability
of uClassify labeling the authors-matching is 88.58 percent, which also indicates
that it is very likely that these e-mails would be legitimate ones and not that
they are actually faked. Meanwhile, Core ML classifies 3 from 10 fake e-mails to
the stated persons with an average probability of 48.04 percent.

While evaluating the authorship verification, all e-mails used in this part are also
classified in terms of recognizing spam as well as the used language, the sentiment
of the text, and the author’s gender. The spam and ham classification is done
using uClassify as well as Core ML. In this part of evaluation all e-mails should
be classified as ham e-mails. In total, uClassify labels 68.18 percent as ham e-
mails, while Core ML has an accuracy of 31.18 percent. The other classifications
are only performed by uClassify using pre-defined classifiers offered by this web
service. For recognizing the used language, accuracy is 100 percent, while the
sentiment of the text is classified correctly in 72.72 percent of the used e-mails.
The gender of the authors is labeled correctly for 54.54 percent of the classified
messages.

After performing these classifications, all author names are removed from the
e-mails to distinguish how the presence of these names influences the results.
In addition, the machine learning models are reset. This time, the authorship
verification of the sixth German and English e-mail from each person has an
accuracy of 50.00 percent when using uClassify. Core ML labeled 18.18 e-mails
correctly. The average probability that the labeled authors have written the
given e-mails is 71.84 percent for uClassify, while Core ML assigned the authors
with an average probability of 18.18 percent. As before, ten fake e-mails are
also classified. Without containing author-names, uClassify assigned eight of ten
fake e-mails to other persons than the sender information claimed. Therefore,
these e-mails would be labeled with a different name than stated in the sender
information, which indicates that these e-mails are fake ones. Core ML assigned
nine of ten e-mails to other persons than stated in the sender information. This
time the average probability values returned by the machine learning providers
are 60.77 percent using uClassify and 66.33 percent using Core ML.

Mail Authorship Verification and Phishing Recognizing with ML 54

Chapter 6. Evaluation Results

6.2 Authorship Verification using German
Mails Dataset

After evaluating the approach of authorship verification with machine learning
for a rather small and specially designed dataset, this part of the evaluation uses
real-world e-mails, written in German in the context of an IT company in Austria.
In this dataset, 200 e-mails from four persons (50 e-mails per person) are used as
the training dataset, while additional ten e-mails per person are sent as testing
data. When containing the author’s names, the authorship verification performed
by uClassify has an accuracy of 87.50 percent, while Core ML achieves to classify
40.00 percent of the e-mails correctly. The average probability values returned
by uClassify are 96.24 percent when it comes to assigning the given e-mails to
the classified authors. This value is 76.03 percent for Core ML. When it comes to
fake e-mails, this time, twelve fake e-mails are sent in total. uClassify assigns ten
of twelve fake e-mails to the persons whose names are part of the e-mail body.
Core ML assigns eight of twelve e-mails to the named persons.

Like in the first part, the second run with this e-mail dataset is performed after
removing all author names from the e-mail bodies and resetting the machine
learning models. With this modified dataset, uClassify can classify 67.5 percent
of all e-mails correctly. At the same time, Core ML achieves 55.00 percent, which
is an improvement of 15 percent in comparison to the run before, which included
author names. This time, the average probability value calculated by uClassify
is 84.88 percent and 73.49 percent for Core ML. For fake e-mail detection, the
accuracy of both machine learning providers is 75.00 percent, as the fake e-mails
for this part are based on three templates that are used for each person again,
only with the writers’ names changed. However, this time there are no names and
therefore the three e-mails are identical for each person. Therefore, the labeled
authors are always the same independently from the sender’s information. This
behavior shows that it depends all on the actual sender information if a fake
e-mail can be discovered by using authorship verification with machine learning.
In this particular case, an attacker has a chance of 25 percent to select (out of
the four persons) the one who will be assigned to the fake e-mail by the machine
learning algorithm.

Mail Authorship Verification and Phishing Recognizing with ML 55

Chapter 6. Evaluation Results

6.3 Authorship Verification using Dataset of
Hillary Clinton Mails

In order to evaluate authorship verification with machine learning in a bigger
dataset, the available public dataset of the e-mails of Hillary Clinton is used
since each e-mail in this dataset is assigned to a person. After training, 200 e-
mails are used to test the classifications performed by uClassify and Core ML.
uClassify achieves an accuracy of 56.43 percent, while Core ML labeled 20.29
percent of all e-mails correctly. The average probability values in this part of
evaluation are 91.07 percent when using uClassify and 36.51 percent when using
Core ML.

When it comes to fake e-mail detection, this time, it can be observed that some
persons are more often assigned to these fake e-mails than other ones, although
the real authors of all fake e-mails have not been trained before. In this particular
case, the persons with IDs 80, 87, and 194 are labeled the most by uClassify, with
in total 61 assigned e-mails (considering a total of 80 fake e-mails). When using
Core ML, the distribution of assigned persons is wider than with uClassify. Core
ML assigned the person IDs 80, 180, and 194 most often, and these three persons
count together 22 e-mails. These values mean that some persons are, especially
when using uClassify, more likely to be assigned to an e-mail than other ones.
When speaking about fake e-mails, these persons which are more often assigned
are also more endangered to get a fake e-mail allocated. Therefore, a fake e-mail
with the name of a person, who is more likely to be assigned, has more chance
to be legitimate by the machine learning classifications. For instance, in this
dataset, an attacker can use the person ID 80 to increase his/her chance to be
not discovered by the authorship verification. In addition, the average probability
values provided by uClassify (89.72 percent) and Core ML (95.68 percent) do also
not indicate that these e-mails classified are faked.

6.4 Spam and Ham Classification with uClassify
and Core ML

In contrast to the other parts of the evaluation, this section focuses on recognizing
spam e-mails. As mentioned in the previous chapter, both uClassify and Core
ML are trained with the same dataset of spam and ham e-mails. For evaluating
the accuracy of both machine learning providers, 50 ham and 50 spam e-mails

Mail Authorship Verification and Phishing Recognizing with ML 56

Chapter 6. Evaluation Results

are classified as spam or ham. In total, uClassify achieves an accuracy of 77
percent, while Core ML labeled 65 percent of all 100 e-mails correctly. It can be
observed that uClassify is more likely to label e-mails as ham, while Core ML more
frequently tends to mark e-mails as spam. For ham e-mails only, the accuracy
of uClassify is 86 percent, while for spam e-mails it is 66.66 percent. Core ML
labels 38 percent of ham e-mails and 92 percent of spam e-mails correctly.

6.5 Conclusion

To sum up, the results of the evaluations show that authorship verification
with machine learning has some limitations. First of all, the occurrence of
the author names in the trained documents, as well as in the e-mails about to
classify, influenced the classification results significantly. When e-mails include
the author’s names, the machine learning (primary when using uClassify) assigns
the e-mails with high probability to the person named in the given text. This
aspect works well, as long as the e-mail is really from the person named in the
e-mail body. However, when it comes to fake e-mails, this aspect makes it easy
to trick the classification into presenting the fake e-mail as a legitimate one, just
by adding the name of the spoofed person. Therefore, a more bypass-preventing
approach would be more helpful. However, the tests with e-mails without the
author’s names show that the overall accuracy of authorship verification drops
significantly. When only focusing on uClassify, the difference in accuracy between
e-mails with and without author names is between 20 and 40 percent. Without
author names, it is harder to fake e-mails in a way that they are also classified
by the machine learning as wished by the attacker. Even though this faking
of e-mails may be harder, it is a mere question of selecting the right person
to imitate and thus to increase the chance of classifying the fake e-mails as
legitimate ones. The Hillary Clinton dataset and evaluation shows that machine
learning algorithms tend to assign e-mails to some persons more frequently than
to other ones. It can be observed that it is likely that an e-mail is labeled to
be sent from a person, whose greater share of e-mails has been used for training
than e-mails of other persons. The comparison of the classification results by
uClassify and Core ML allows to conclude that the algorithm of uClassify achieved
a significantly better accuracy during all evaluations. The usage of the KNN
algorithm in combination with the selected 21 language features (in order to
transform the texts into numeric vectors) can be considered as an unpromising
approach for performing authorship verifications. Also, the usage of uClassify

Mail Authorship Verification and Phishing Recognizing with ML 57

Chapter 6. Evaluation Results

without further modifications, like in this thesis, offers no authorship verification
with high accuracy for both cases of verifying legitimate authorships as well as
of detecting fake e-mails.

Mail Authorship Verification and Phishing Recognizing with ML 58

Chapter 7
Conclusions and Outlook

The language used by an individual is so strongly related to that single person
that the field of forensic linguistics can extract enough information from given
texts and thus is very likely to identify the actual author. Even though there
exists controversial discussion among forensic experts if a a distinct linguistic
fingerprint exists, authorship verification can be used as evidence in court. In
addition, several scientific papers proofed that also technical systems can identify
authors by first learning and then analyzing given documents. For this learning of
author-specific language usage, these papers relied on different machine learning
algorithms and achieved promising results. Based on these results, the idea of
using authorship verification for e-mails to improve its security against mail
spoofing, a fundamental technique for phishing attacks, was born. Especially
existing mechanisms for sender authentication depend on server configurations,
which usually cannot be influenced by the user who sends and receives e-mails.
Therefore, an app should enable every user to verify the authorships of e-mails.
However, the evaluations performed in this thesis showed that this solution comes
along with some limitations. The first aspect discovered is that the presence of
the author names in the e-mail content as part of the salutation influences the
classifications significantly. With these names, it is easy for attackers to trick
the authorship classifiers by just adding the name of the imitated person to
the e-mail. In order to prevent this simple trick, the names should be removed
from the e-mails before passing them to the machine learning. The side effect of
this approach is that the overall accuracy of the classification drops significantly.
With only between 50 and 60 percent accuracy for legitimate e-mails, from the
author’s perspective, this approach does not help to verify the authorships of
e-mails reliably.

Chapter 7. Conclusions and Outlook

All in all, the results show that the approaches investigated and attempted with
the app developed in this thesis are not useful to verify the authorships of e-mail in
a way that cannot be easily bypassed by attackers. One conclusion of this finding
is that existing sender authentication techniques like SPF, DKIM, or S/MIME
should be more enforced. Primarily, S/MIME would not only authenticate that
an e-mail is sent from an allowed MTA but ensure that only a user who owns the
corresponding certificate can send e-mails from an e-mail address. In order to
enforce more usage of this protocol, free certificates and more comfortable setup
and management in e-mail clients would be a possibility. In the eyes of the author,
Lets Encrypt boosts the usage of SSL/TLS for websites since these certificates
are free to use and also a tool for simple certificate generation and management
is provided. A similar approach for S/MIME may be a chance to increase the
usage of this protocol. When considering the results of this thesis, it may be more
effective to invest time in simplifying S/MIME usage as well as raising awareness
for all existing technical mechanisms to authenticate senders of e-mails than using
authorship verification with machine learning to attempt detecting faked e-mails.
If this approach of authorship verification might be a subject for further research,
it is strongly recommended to involve not only machine learning experts but also
experts in the field of forensic linguistics. With such an interdisciplinary team,
it might be possible to develop a more sophisticated algorithm that detects and
extracts accurate linguistic key features of e-mails to perform a high accurate
authorship verification. One lesson learned from the thesis’ evaluations regarding
feature selection is that names in e-mail salutations should not be considered
as authorship-relevant features. In addition, only using statistic values does not
seem to be an accurate way to represent e-mail texts, like the thesis’ results
suggest. Especially, since e-mails are rather short, statistic values are not author-
specific enough. A more linguistic-aware algorithm needs to be developed to
represent to represent e-mail texts as an accurate set of linguistic features in
order to work with such sets for authorship verification.

Mail Authorship Verification and Phishing Recognizing with ML 60

Bibliography

Agarap, Abien Fred (Mar. 2018). “Deep Learning using Rectified Linear Units
(ReLU)”. In: CoRR.

Agency for Public Management and eGovernment (Oct. 2018). Measures which
prevent fake e-mail senders in Norway in 2018, by prevalence. Available from:
https://www.statista.com/statistics/994337/measures-which-preven
t-fake-e-mail-senders-in-norway-by-prevalence/ [Dec. 21, 2019].

Analytics Vidhya (2019). Glossary of Common Machine Learning, Statistics and
Data Science Terms. Available from: https://www.analyticsvidhya.com/g
lossary-of-common-statistics-and-machine-learning-terms/ [Dec. 21,
2019].

Anderson, Hyrum S., Anant Kharkar, Bobby Filar, David Evans, and Phil Roth
(2018). “Learning to Evade Static PE Machine Learning Malware Models via
Reinforcement Learning”. In: ArXiv.

Ariani, Mohsen Ghasemi, Fatemeh Sajedi, and Mahin Sajedi (2014). “Forensic
Linguistics: A Brief Overview of the Key Elements”. In: Procedia - Social and
Behavioral Sciences 158. 14th Language, Literature and Stylistics Symposium,
pp. 222–225. issn: 1877-0428. doi: 10.1016/j.sbspro.2014.12.078.

ARQgroup (Sept. 2018). Core ML: The Past, Present and Future of Machine
Learning in the Apple Ecosystem. Available from: https://arq.group/insig
hts/core-ml-the-past-present-and-future-of-machine-learning-in-
the-apple-ecosystem [Dec. 21, 2019].

61

https://www.statista.com/statistics/994337/measures-which-prevent-fake-e-mail-senders-in-norway-by-prevalence/
https://www.statista.com/statistics/994337/measures-which-prevent-fake-e-mail-senders-in-norway-by-prevalence/
https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/
https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/
https://doi.org/10.1016/j.sbspro.2014.12.078
https://arq.group/insights/core-ml-the-past-present-and-future-of-machine-learning-in-the-apple-ecosystem
https://arq.group/insights/core-ml-the-past-present-and-future-of-machine-learning-in-the-apple-ecosystem
https://arq.group/insights/core-ml-the-past-present-and-future-of-machine-learning-in-the-apple-ecosystem

Bibliography

Awad, Wael Abou and Sherif Elseuofi (Feb. 2011). “Machine Learning Methods
for Spam E-Mail Classification”. In: International Journal of Computer Science
Information Technology 3. doi: 10.5121/ijcsit.2011.3112.

Banday, M. Tariq and Shafiya Afzal Sheikh (2014). “S/MIME with Multiple
E-mail Address Certificates: A Usability Study”. eng. In: 2014 International
Conference on Contemporary Computing and Informatics (IC3I). IEEE,
pp. 707–712. isbn: 9781479966295.

Barbon, Sylvio, Rodrigo Igawa, and Bruno Bogaz Zarpelão (Sept. 2017).
“Authorship Verification Applied to Detection of Compromised Accounts on
Online Social Networks”. eng. In: Multimedia Tools and Applications 76.3,
pp. 3213–3233. issn: 1380-7501. doi: 10.1007/s11042-016-3899-8.

Bhowmick, Alexy and Shyamanta Hazarika (Jan. 2018). “E-Mail Spam Filtering:
A Review of Techniques and Trends”. In: pp. 583–590. isbn: 978-981-10-4764-0.
doi: 10.1007/978-981-10-4765-7_61.

Bhuiyan, Hanif, Akm Ashiquzzaman, Tamanna Juthi, Suzit Biswas, and
Jinat Ara (Jan. 2018). “A Survey of Existing E-Mail Spam Filtering Methods
Considering Machine Learning Techniques A Survey of Existing E-Mail Spam
Filtering Methods Considering Machine Learning Techniques”. In: Global
Journal of Computer Science and Technology.

Bre, Facundo, Juan Gimenez, and Vıctor Fachinotti (Nov. 2017). “Prediction
of wind pressure coefficients on building surfaces using Artificial Neural
Networks”. In: Energy and Buildings 158. doi: 10.1016/j.enbuild.2017.11.
045.

Brocardo, Marcelo Luiz, Issa Traore, and Isaac Woungang (2015). “Authorship
Verification of E-mail and Tweet Messages applied for Continuous
Authentication”. eng. In: Journal of Computer and System Sciences 81.8,
pp. 1429–1440. issn: 0022-0000. doi: 10.1016/j.jcss.2014.12.019.

Crankshaw, Rebecca (2012). “The Validity of the Linguistic Fingerprint in
Forensic Investigation”. In: Diffusion-The UCLan Journal of Undergraduate
Research 5.2.

Mail Authorship Verification and Phishing Recognizing with ML 62

https://doi.org/10.5121/ijcsit.2011.3112
https://doi.org/10.1007/s11042-016-3899-8
https://doi.org/10.1007/978-981-10-4765-7_61
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1016/j.jcss.2014.12.019

Bibliography

Dada, Emmanuel Gbenga, Joseph Stephen Bassi, Haruna Chiroma,
Shafi’I Muhammad Abdulhamid, Adebayo Olusola Adetunmbi, and
Opeyemi Emmanuel Ajibuwa (June 2019). “Machine Learning for Email Spam
Filtering: Review, Approaches and Open Research Problems”. In: Heliyon 5.6,
pp. 1–23. issn: 2405-8440. doi: 10.1016/j.heliyon.2019.e01802.

Dewdrop (Dec. 2016). What is Forensic Linguistics? Available from: https://
lama.hypotheses.org/70 [Dec. 21, 2019].

Ellison, Gregory and Geoff McDonald (July 2018). Machine Learning vs. Social
Engineering. Available from: https://www.microsoft.com/security/blog/
2018/06/07/machine-learning-vs-social-engineering/ [Dec. 21, 2019].

Ezpeleta, Enaitz, Urko Zurutuza, and Jose Maria Gomez Hidalgo (2016). “Short
Messages Spam Filtering Using Personality Recognition”. In: Proceedings of the
4th Spanish Conference on Information Retrieval. CERI ’16. Granada, Spain:
ACM, 7:1–7:7. isbn: 978-1-4503-4141-7. doi: 10.1145/2934732.2934742.

Gandhi, Rohith (May 2018). Naive Bayes Classifier. Available from: https://to
wardsdatascience.com/naive-bayes-classifier-81d512f50a7c [Dec. 21,
2019].

Gupta, Surekha, Emmanuel S Pilli, Preeti Mishra, Sumit Pundir, and R. C Joshi
(2014). “Forensic Analysis of E-mail Address Spoofing”. eng. In: 2014 5th

International Conference - Confluence The Next Generation Information
Technology Summit (Confluence). IEEE, pp. 898–904. isbn: 9781479942367.

Halvani, Oren, Martin Steinebach, and Svenja Neitzel (2014). “Lässt sich der
Schreibstil verfälschen um die eigene Anonymität in Textdokumenten zu
schützen?” ger. In: Sicherheit 2014 – Sicherheit, Schutz und Zuverlässigkeit.
Bonn: Gesellschaft für Informatik e.V, pp. 229–241.

Halvani, Oren, Christian Winter, and Anika Pflug (Mar. 2016). “Authorship
Verification for Different Languages, Genres and Topics”. eng. In: Digital
Investigation 16.S, S33–S43. issn: 1742-2876. doi: 10.1016/j.diin.2016.
01.006.

Herzberg, Amir (2009). “DNS-based Email Sender Authentication Mechanisms:
A Critical Review”. In: Computers Security 28.8, pp. 731–742. issn: 0167-4048.

Mail Authorship Verification and Phishing Recognizing with ML 63

https://doi.org/10.1016/j.heliyon.2019.e01802
https://lama.hypotheses.org/70
https://lama.hypotheses.org/70
https://www.microsoft.com/security/blog/2018/06/07/machine-learning-vs-social-engineering/
https://www.microsoft.com/security/blog/2018/06/07/machine-learning-vs-social-engineering/
https://doi.org/10.1145/2934732.2934742
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://doi.org/10.1016/j.diin.2016.01.006
https://doi.org/10.1016/j.diin.2016.01.006

Bibliography

Hollemans, Matthijs (June 2019). An In-Depth Look at Core ML 3. Available
from: https://machinethink.net/blog/new-in-coreml3/ [Dec. 21, 2019].

Hu, Linjia and Saeid Nooshabadi (2019). “High-Dimensional Image Descriptor
Matching using Highly Parallel KD-Tree Construction and Approximate
Nearest Neighbor Search”. eng. In: Journal of Parallel and Distributed
Computing 132, pp. 127–140. issn: 0743-7315.

Iqbal, Farkhund, Liaquat Ali Khan, Benjamin Fung, and Mourad Debbabi (Jan.
2010). “E-mail Authorship Verification for Forensic Investigation”. eng. In:
Proceedings of the 2010 ACM Symposium on applied computing. SAC 10. ACM,
pp. 1591–1598. isbn: 9781605586397. doi: 10.1145/1774088.1774428.

Juola, Patrick (Dec. 2006). “Authorship Attribution”. In: Found. Trends Inf. Retr.
1.3, pp. 233–334. issn: 1554-0669. doi: 10.1561/1500000005.

Kågström, Jon, Roger Karlsson, and Emil Ingridsson (2019a). Public Classifiers.
Available from: https://www.uclassify.com/browse [Dec. 21, 2019].

– (2019b). Technical. Available from: https://uclassify.com/docs/technical
[Dec. 21, 2019].

Khedkar, Sujata (Apr. 2018). “Stylometry Based Authorship Identification”.
In: International Journal for Research in Applied Science and Engineering
Technology 6, pp. 3899–3906. doi: 10.22214/ijraset.2018.4640.

Krischke, Wolfgang (July 2013). “Wer wars?” In: Die Zeit 31/2013. Available
from: https://www.zeit.de/2013/31/forensische-linguistik [Dec. 21,
2019].

Kumaran, Neil (Feb. 2019). Spam does not bring us joy—ridding Gmail of 100
million more spam messages with TensorFlow. Available from: https://cloud.
google.com/blog/products/g-suite/ridding-gmail-of-100-million-
more-spam-messages-with-tensorflow [Dec. 21, 2019].

Lam, Hak-Keung, Udeme Ekong, Hongbin Liu, Bo Xiao, Hugo Araujo,
Sai Ho Ling, and Kit Yan Chan (Nov. 2014). “A Study of Neural-Network-based
Classifiers for Material Classification”. In: Neurocomputing 144, pp. 367–377.
issn: 0925-2312. doi: 10.1016/j.neucom.2014.05.019.

Mail Authorship Verification and Phishing Recognizing with ML 64

https://machinethink.net/blog/new-in-coreml3/
https://doi.org/10.1145/1774088.1774428
https://doi.org/10.1561/1500000005
https://www.uclassify.com/browse
https://uclassify.com/docs/technical
https://doi.org/10.22214/ijraset.2018.4640
https://www.zeit.de/2013/31/forensische-linguistik
https://cloud.google.com/blog/products/g-suite/ridding-gmail-of-100-million-more-spam-messages-with-tensorflow
https://cloud.google.com/blog/products/g-suite/ridding-gmail-of-100-million-more-spam-messages-with-tensorflow
https://cloud.google.com/blog/products/g-suite/ridding-gmail-of-100-million-more-spam-messages-with-tensorflow
https://doi.org/10.1016/j.neucom.2014.05.019

Bibliography

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning”. In:
nature 521.7553, pp. 436–444.

Lefèvre, Kevin (Aug. 2016). Technical Notes. Available from: https://github.
com/snipsco/Postal/blob/master/Documentation/TechnicalNotes.md
[Dec. 21, 2019].

Liao, Kevin (Nov. 2018). Prototyping a Recommender System Step by Step Part
1: KNN Item-Based Collaborative Filtering. Available from: https://toward
sdatascience.com/prototyping-a-recommender-system-step-by-step-
part-1-knn-item-based-collaborative-filtering-637969614ea.

Long, Olivia (June 2018). How Email Works (MTA, MDA, MUA). Available from:
https://ccm.net/contents/116-how-email-works-mta-mda-mua [Dec. 21,
2019].

Louridas, Panos and Christof Ebert (Sept. 2016). “Machine Learning”. In: IEEE
Software 33.5, pp. 110–115. doi: 10.1109/MS.2016.114.

Luber, Stefan and Nico Litzel (Mar. 2019a). Was ist Core ML? Available from:
https://www.bigdata-insider.de/was-ist-core-ml-a-810315/ [Dec. 21,
2019].

– (Feb. 2019b). Was ist Create ML? Available from: https://www.bigdata-
insider.de/was-ist-create-ml-a-802091/ [Dec. 21, 2019].

Mikulski, Bartosz (Apr. 2019). Understanding the Softmax Activation Function.
Available from: https://www.mikulskibartosz.name/understanding-the-
softmax-activation-function/ [Dec. 21, 2019].

Munoz, Andres (2014). Machine Learning and Optimization. Available from: htt
ps://cims.nyu.edu/~munoz/files/ml_optimization.pdf [Dec. 21, 2019].

Mustafa, Ahmed, Andreas Rienow, Ismaıl Saadi, Mario Cools, and Jacques Teller
(2018). “Comparing Support Vector Machines with Logistic Regression for
Calibrating Cellular Automata Land use Change Models”. In: European
Journal of Remote Sensing 51.1, pp. 391–401. doi: 10.1080/22797254.2018.
1442179.

Mail Authorship Verification and Phishing Recognizing with ML 65

https://github.com/snipsco/Postal/blob/master/Documentation/TechnicalNotes.md
https://github.com/snipsco/Postal/blob/master/Documentation/TechnicalNotes.md
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-1-knn-item-based-collaborative-filtering-637969614ea
https://ccm.net/contents/116-how-email-works-mta-mda-mua
https://doi.org/10.1109/MS.2016.114
https://www.bigdata-insider.de/was-ist-core-ml-a-810315/
https://www.bigdata-insider.de/was-ist-create-ml-a-802091/
https://www.bigdata-insider.de/was-ist-create-ml-a-802091/
https://www.mikulskibartosz.name/understanding-the-softmax-activation-function/
https://www.mikulskibartosz.name/understanding-the-softmax-activation-function/
https://cims.nyu.edu/~munoz/files/ml_optimization.pdf
https://cims.nyu.edu/~munoz/files/ml_optimization.pdf
https://doi.org/10.1080/22797254.2018.1442179
https://doi.org/10.1080/22797254.2018.1442179

Bibliography

My Email Communications Security Assessment (MECSA) (2020). Über MECSA.
Available from: https://mecsa.jrc.ec.europa.eu/de/about [Jan. 27, 2020].

Navlani, Avinash (Aug. 2018). KNN Classification using Scikit-learn. Available
from: https://www.datacamp.com/community/tutorials/k- nearest-
neighbor-classification-scikit-learn [Dec. 21, 2019].

Nicholson, Chris (2019). A Beginner’s Guide to Neural Networks and Deep
Learning. Available from: https : / / skymind . ai / wiki / neural - network
[Dec. 21, 2019].

Nielsen, Michael (June 2019). Using Neural Nets to Recognize Handwritten Digits.
Available from: http://neuralnetworksanddeeplearning.com/chap1.html
[Dec. 21, 2019].

Nordquist, Richard (July 2019). Definition and Examples of Function Words in
English. Available from: https : / / www . thoughtco . com / function - word -
grammar-1690876 [Dec. 21, 2019].

Ongsulee, Pariwat (Nov. 2017). “Artificial Intelligence, Machine Learning and
Deep Learning”. In: 2017 15th International Conference on ICT and Knowledge
Engineering (ICTKE), pp. 1–6. doi: 10.1109/ICTKE.2017.8259629.

Richter, Felix (Apr. 2019). The World’s Most Popular Email Clients. Available
from: https://www.statista.com/chart/17570/most-popular-email-
clients/ [Dec. 21, 2019].

Rish, Irina (Jan. 2001). “An Empirical Study of the Naıve Bayes Classifier”. In:
IJCAI 2001 Work Empir Methods Artif Intell 3.

Salahdine, Fatima and Naima Kaabouch (2019). “Social Engineering Attacks: A
Survey”. eng. In: Future Internet 11.4, p. 89. issn: 1999-5903.

Sasse, Ma, Cc Palmer, M Jakobsson, S Consolvo, R Wash, and Lj Camp (2014).
“Helping You Protect You”. eng. In: IEEE Security Privacy. Available from:
http://discovery.ucl.ac.uk/1429851/1/Helping%20You%20Protect%
20You.pdf.

Mail Authorship Verification and Phishing Recognizing with ML 66

https://mecsa.jrc.ec.europa.eu/de/about
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
https://skymind.ai/wiki/neural-network
http://neuralnetworksanddeeplearning.com/chap1.html
https://www.thoughtco.com/function-word-grammar-1690876
https://www.thoughtco.com/function-word-grammar-1690876
https://doi.org/10.1109/ICTKE.2017.8259629
https://www.statista.com/chart/17570/most-popular-email-clients/
https://www.statista.com/chart/17570/most-popular-email-clients/
http://discovery.ucl.ac.uk/1429851/1/Helping%20You%20Protect%20You.pdf
http://discovery.ucl.ac.uk/1429851/1/Helping%20You%20Protect%20You.pdf

Bibliography

Sayad, Saed (2019). Naive Bayesian. Available from: https://www.saedsayad.
com/naive_bayesian.htm [Dec. 21, 2019].

Schaad, Jim, Blake Ramsdell, and Sean Turner (Apr. 2019). Secure/Multipurpose
Internet Mail Extensions (S/MIME) Version 4.0 Message Specification.
Available from: https : / / tools . ietf . org / html / rfc8551 # section - 4
[Dec. 21, 2019].

Serrano-Guerrero, Jesus, José A. Olivas, Francisco P. Romero, and Enrique
Herrera-Viedma (2015). “Sentiment analysis: A Review and Comparative
Aanalysis of Web Services”. In: Information Sciences 311, pp. 18–38. issn:
0020-0255. doi: 10.1016/j.ins.2015.03.040.

Singh, Gurchetan (Nov. 2017). Introductory Guide to Information Retrieval using
kNN and KDTree. Available from: https://www.analyticsvidhya.com/blog/
2017/11/information-retrieval-using-kdtree/ [Dec. 21, 2019].

Sonde, Darshan (Oct. 2017). Building Offline iPhone Spam Classifier using
CoreML. Available from: https://medium.com/ymedialabs- innovation/
building - offline - iphone - spam - classifier - using - coreml -
3552c2beb2b2 [Dec. 21, 2019].

Srivastava, Harshita (Apr. 2018). Convolutional Neural Networks Explained.
Available from: https : / / magoosh . com / data - science / convolutional -
neural-networks-explained/ [Dec. 21, 2019].

Symantec (2019). Global E-mail Spam Rate from 2012 to 2018. Available from:
https://www.statista.com/statistics/270899/global-e-mail-spam-
rate/ [Dec. 21, 2019].

The Learning Machine (2019). Convolutional Neural Network (CNN). Available
from: https://www.thelearningmachine.ai/cnn [Dec. 21, 2019].

Vorobeva, Alisa (Apr. 2016). “Forensic Linguistics: Automatic Web Author
Identification”. eng. In: Scientific and Technical Journal of Information
Technologies, Mechanics and Optics 16.2, pp. 295–302. issn: 2226-1494. doi:
10.17586/2226-1494-2016-16-2-295-302.

Mail Authorship Verification and Phishing Recognizing with ML 67

https://www.saedsayad.com/naive_bayesian.htm
https://www.saedsayad.com/naive_bayesian.htm
https://tools.ietf.org/html/rfc8551#section-4
https://doi.org/10.1016/j.ins.2015.03.040
https://www.analyticsvidhya.com/blog/2017/11/information-retrieval-using-kdtree/
https://www.analyticsvidhya.com/blog/2017/11/information-retrieval-using-kdtree/
https://medium.com/ymedialabs-innovation/building-offline-iphone-spam-classifier-using-coreml-3552c2beb2b2
https://medium.com/ymedialabs-innovation/building-offline-iphone-spam-classifier-using-coreml-3552c2beb2b2
https://medium.com/ymedialabs-innovation/building-offline-iphone-spam-classifier-using-coreml-3552c2beb2b2
https://magoosh.com/data-science/convolutional-neural-networks-explained/
https://magoosh.com/data-science/convolutional-neural-networks-explained/
https://www.statista.com/statistics/270899/global-e-mail-spam-rate/
https://www.statista.com/statistics/270899/global-e-mail-spam-rate/
https://www.thelearningmachine.ai/cnn
https://doi.org/10.17586/2226-1494-2016-16-2-295-302

Bibliography

Wagner, Patrick (July 2018). Oft gehört - nie genutzt: Schutzmaßnahmen im
Internet. Available from: https://de.statista.com/infografik/14517/
nutzungs--und-bekanntheitsgrad-digitaler-sicherheitsmassnahmen/
[Dec. 21, 2019].

Weidemann, Tobias (2019). Tensorflow soll die Spam-Erkennung in Gmail
verbessern. Available from: https : / / t3n . de / news / gmail - tensorflow -
spam-erkennung-1142437/ [Dec. 21, 2019].

Yang, Min, Xiaojun Chen, Wenting Tu, Ziyu Lu, Jia Zhu, and Qiang Qu" (2018).
“A Topic Drift Model for Authorship Attribution”. In: Neurocomputing 273,
pp. 133–140. issn: 0925-2312. doi: 10.1016/j.neucom.2017.08.022.

Yiu, Tony (June 2019). Understanding Neural Networks. Available from: https:
/ / towardsdatascience . com / understanding - neural - networks - 19020b
758230 [Dec. 21, 2019].

Mail Authorship Verification and Phishing Recognizing with ML 68

https://de.statista.com/infografik/14517/nutzungs--und-bekanntheitsgrad-digitaler-sicherheitsmassnahmen/
https://de.statista.com/infografik/14517/nutzungs--und-bekanntheitsgrad-digitaler-sicherheitsmassnahmen/
https://t3n.de/news/gmail-tensorflow-spam-erkennung-1142437/
https://t3n.de/news/gmail-tensorflow-spam-erkennung-1142437/
https://doi.org/10.1016/j.neucom.2017.08.022
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/understanding-neural-networks-19020b758230
https://towardsdatascience.com/understanding-neural-networks-19020b758230

Appendix A
Instructions for Creating Sample E-mail
Dataset

The following text was sent to several persons in order to collect e-mails which
are used in the first evaluation part.

One aim of the master thesis is to evaluate if machine learning can be used
to assign e-mail automatically correctly to their real author. Therefore, the
machine learning model will be learned with five e-mails per language (English
and German) for each author. After the training, machine learning should classify
an additional (unknown) e-mail (one in English, one in German) to the correct
author. To test if this experiment works, and if this approach can be used to
prevent phishing attacks, I need some sample e-mails. For this reason, I ask you
to write to each of the following scenarios two short e-mails — one in English,
one in German.

In general, please write the e-mails like every other e-mail, meaning that you
should only use your daily grammar- or spelling-checking tools and no others.
(Mistakes are welcome, as these are essential features to recognize authors). There
are also no limits in terms of the length or the structure of the e-mail. However,
please also include greetings, like in real e-mails. All e-mails should be only plain
text e-mails without any images or other elements. Please provide your e-mails
as some kind of text file (for instance, just use this document).

Scenario 1:
Imagine that you are at your workplace and got the task to update the website
“fh-joanneum.at”. However, you do not have any credentials to be able to login

Appendix A. Instructions for Creating Sample E-mail Dataset

to this website. Therefore, you have to ask a colleague, named Martin, that he
creates an account for you and send the login details. Please write an e-mail (one
in English, one in German) to Martin with the request to create an account for
you.

Scenario 2:
This time, you are in the role of a job candidate and want to send your CV and
letter of appliance to the HR department of the company FH Joanneum. You
know that your contact person is Myriam Muster, and the job title is “Software
Developer”. The aim of this e-mail is just to transfer your application documents.
Nothing more, as the letter of appliance is part of the attachments which you sent
with the e-mail.

Scenario 3:
Another scenario, another role. You are a customer of a web agency called
akaryon and you have a website for your own small business. Black Friday is
coming and you want to update your website to offer some new products and
special offers. However, you have no idea how to edit a website and, therefore,
you write an e-mail to the contact person Christian Finker with the request for
updating the content. The new content is not directly part of the e-mail, as the
new material is contained in a word file attached to this e-mail. The e-mail just
assigns Christian the task to update the website with this attached content.

Scenario 4:
After these work-related scenarios, this one refers to your leisure time. You have
booked a holiday with your best friend for a weekend in London. Now you want
to send him all related documents like booking confirmations for flight and hotel
via e-mail. These documents are again attached to the e-mail. So, the e-mail
body is just some nice text which informs about the attached documents. Maybe
include some hint that you are looking forward to this weekend in London :)

Scenarios 5 and 6:
Please write now two e-mails in English and two e-mails in German without any
further description of a situation. That means, the topics of these e-mails is
entirely up to you and can be everything (it would be nice if these both topics
are very different from each other). However, please cover the same subject more
or less in one English and one German e-mail.

Mail Authorship Verification and Phishing Recognizing with ML 70

Appendix B
All Evaluation Results in Detail

71

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 72

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 73

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 74

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 75

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 76

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 77

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 78

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 79

Appendix B. All Evaluation Results in Detail

Mail Authorship Verification and Phishing Recognizing with ML 80

	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Aims
	1.3 Structure of the Thesis

	2 Related Papers and Existing Sender Authentication Mechanisms
	2.1 Key Results of Scientific Papers
	2.2 Existing Sender Authentication Techniques
	2.3 Conclusion

	3 Artificial Intelligence Technologies
	3.1 Core ML
	3.2 uClassify
	3.3 Conclusion

	4 Forensic Linguistics and Authorship Analysis
	5 Approach
	5.1 General Concept
	5.2 iOS App Prototype
	5.3 Authorship Verification and Recognize Phishing with Core ML
	5.4 Authorship Verification and Recognize Phishing with uClassify
	5.5 Evaluating Authorship Verification and Phishing Recognizing
	5.6 Conclusion

	6 Evaluation Results
	6.1 Authorship Verification using Prepared Dataset
	6.2 Authorship Verification using German Mails Dataset
	6.3 Authorship Verification using Dataset of Hillary Clinton Mails
	6.4 Spam and Ham Classification with uClassify and Core ML
	6.5 Conclusion

	7 Conclusions and Outlook
	A Instructions for Creating Sample E-mail Dataset
	B All Evaluation Results in Detail

