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Faster Parallel Multiterminal Cuts *

Monika Henzinger?

Abstract

We give an improved branch-and-bound solver for the
multiterminal cut problem, based on the recent work of
Henzinger et al. [12]. We contribute new, highly effec-
tive data reduction rules to transform the graph into a
smaller equivalent instance. In addition, we present a
local search algorithm that can significantly improve a
given solution to the multiterminal cut problem. Our
exact algorithm is able to give exact solutions to more
and harder problems compared to the state-of-the-art
algorithm by Henzinger et al. [12]; and give better so-
lutions for more than two third of the problems that
are too large to be solved to optimality. Additionally,
we give an inexact heuristic algorithm that computes
high-quality solutions for very hard instances in reason-
able time.

1 Introduction

The multiterminal cut problem is a fundamental com-
binatorial optimization problem which was first formu-
lated by Dahlhaus et al. [8] and Cunningham [7]. Given
an undirected edge-weighted graph G = (V, E,w) with
edge weights w : E — Nyg and a set T, |T| = k, of
terminals, the multiterminal cut problem is to divide
its set of nodes into k blocks such that each block con-
tains exactly one terminal and the weight sum of the
edges running between the blocks is minimized. There
are many applications of the problem: for example mul-
tiprocessor scheduling [22], clustering [19] and bioinfor-
matics [13, 16, 25].

The problem is known to be NP-hard for k£ > 3 [§].
For k = 2 the problem reduces to the well known mini-
mum s-t-cut problem, which is in P. The minimum s-t-
cut problem aims to find the minimum cut in which the
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vertices s and ¢ are in different blocks. Most algorithms
for the minimum multiterminal cut problem use mini-
mum s-t-cuts as a subroutine. Dahlhaus et al. [8] give
a 2(1 — 1/k) approximation algorithm with polynomial
running time based on the notion of minimum isolating
cuts, i.e. the minimum cut separating a terminal from
all other terminals. The currently best known approx-
imation algorithm due to Buchbinder et al. [4] uses a
linear program relaxation to achieve an approximation
ratio of 1.323. Recently, Henzinger et al. [12] introduced
a branch-and-reduce framework for the problem that is
multiple orders of magnitudes faster than classic ILP
formulations for the problem. This allows researchers
to solve instances to optimality that are significantly
larger than was previously possible and hence enables
the use of multiterminal cut algorithms in practical ap-
plications.

Contribution. We give an improved solver for
the multiterminal cut problem, based on the recent
work of Henzinger et al. [12]. We contribute new,
highly effective reductions to transform the graph into
a smaller equivalent instance. In addition, we present
a local search algorithm that can significantly improve
a given solution to the multiterminal cut problem.
Additionally, we combine the branch-and-reduce solver
with an integer linear program solver to more efficiently
solve subproblems emerging over the course of the
algorithm. With our newly introduced reductions, the
state-of-the-art algorithm by Henzinger et al. [12] is
able to solve significantly harder instances to optimality
and give better solutions to instances that are too
large to solve to optimality. Additionally, we give an
inexact algorithm that gives high-quality solutions to
hard problems in reasonable time.

2 Preliminaries

2.1 Basic Concepts Let G = (V,E,w) be a
weighted undirected graph with vertex set V', edge set
E C V x V and positive edge weights w : E —
Nsg. We extend w to a set of edges B/ C FE by
summing the weights of the edges; that is, w(E’) :=
> e—(upyer w(u,v) and sets of nodes where w(V4, V2)
is the sum of edge weights connecting sets V7 and V5.
Let n = |V] be the number of vertices and m = |E|
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be the number of edges in G. The neighborhood N (v)
of a vertex v is the set of vertices adjacent to v. The
weighted degree of a vertex is the sum of the weights
of its incident edges. For a set of vertices A C V, we
denote by E[A] := {(u,v) € E|u € A,v € V' \ A}; that
is, the set of edges in E that start in A and end in its
complement. A k-cut, or multicut, is a partitioning of V'
into k disjoint non-empty blocks, i.e. Vi1 U--- UV, =V.
The weight of a k-cut is defined as the weight sum of all
edges crossing block boundaries, i.e. w(ENU,; VixVj).
2.2 Multiterminal Cuts A multiterminal cut for
k terminals T = {t1,..,tx} is a multicut with ¢; €
Vi, .t € Vi. Thus, a multiterminal cut pairwisely
separates all terminals from each other. The edge set
of the multiterminal cut with minimum weight of G
is called C(G) and the associated optimal partitioning
of vertices is denoted as V = {Vi,...,V;}. For a
vertex v € V, V, denotes the block affiliation of v
in the optimal partitioning V. C can be seen as the
set of all edges that cross block boundaries in V, i.e.
C(G) = U{e = (u,v) | Vu # Vu}. The weight of
the minimum multiterminal cut is denoted as W(G) =
w(C(G)). At any point in time, the best currently
known upper bound for W(G) is denoted as W(G) and
the best currently known multiterminal cut is denoted
as C(G). If graph G is clear from the context, we omit
it in the notation. Note that the optimal partitioning V
and the corresponding cut C are not necessarily unique,
our aim is to find one minimum multiterminal cut, even
if multiple cuts of equal value exist.

In this paper we use minimum s-T-cuts. For a
vertex s (source) and a non-empty vertex set T (sinks),
the minimum s-T-cut is the smallest cut in which s is
one side of the cut and all vertices in 1" are on the other
side. This is a generalization of minimum s-t-cuts that
allows multiple vertices in 7" and can be easily replaced
by a minimum s-t-cut by connecting every vertex in T'
with a new super-sink by infinite-capacity edges. We
denote the capacity of a minimum-s-T-cut, i.e. the sum
of weights in the smallest cut separating s from 7', by
MG, s, T). This cut is also called the minimum isolating
cut [8] for vertex s and vertex set T and the minimum
isolating cut where the source side is the largest is called
the largest minimum isolating cut for s and T'.

In our algorithm we use graph contraction and
edge deletions. Given an edge e = (u,v) € E, we
define G//e to be the graph after contracting e. In the
contracted graph, we delete vertex v and all incident
edges. For each edge (v,z) € E, we add an edge (u,x)
with w(u,z) = w(v,x) to G or, if the edge already
exists, we give it the edge weight w(u,z) + w(v,z).
For the edge deletion of an edge e, we define G — e

as the graph G in which e has been removed. Other
vertices and edges remain the same. An articulation
point is a vertex whose removal disconnects the graph
G into multiple disconnected components. For a given
multiterminal cut S, the graph G\S splits G into k
connected components, as defined by the cut edges in
S, each containing exactly one terminal.

While the multiterminal cut problem is NP-hard,
it is fired-parameter tractable (FPT), parameterized by
the multiterminal cut weight W(G). A problem is fixed-
parameter tractable with respect to some parameters o
so that there is an algorithm with runtime f(o) - n™®)
and f is a computable function. Marx [15] proved that
the multiterminal cut problem is FPT and Chen et al. [6]
gave the first FPT algorithm with a running time of
4W(E) . Nater improved by Xiao [26] to 2WV(G).pAL)
and by Cao et al. [5] to 1.84W(G) . pAD),

2.3 VieCut-MTC We present an improved solver for
the multiterminal cut problem. Our work is based on
a recent result by Henzinger et al. [12], in the following
named VieCut-MTC. In this section we give a short
summary of their results, for further details we refer
the reader to their original work [12]. The VieCut-MTC
multiterminal cut solver is a shared-memory parallel
solver for the multiterminal cut problem. VieCut-MTC
is a branch-and-reduce algorithm that performs a set
of local contraction routines to transform the graph G
into an instance of smaller size H, where the minimum
multiterminal cut W(G) = W(H), i.e. the minimum
multiterminal cut C(G) can still be found on the smaller
instance H. For this purpose, they use the following
lemmas:

LeEMMA 2.1. [5][12] If an edge e = (u,v) € G is
guaranteed not to be in at least one multiterminal cut
C(GQ) (i.e. Vy =V, ), we can contract e and W(G/e) =
W(Q).

LEMMA 2.2. [5][12] If an edge e = (u,v) € E is
guaranteed to be in a minimum multiterminal cut, i.e.
there is a minimum multiterminal cut C(G) in which
Vi # Vy, we can delete e from G and C(G — e) is still a
valid minimum multiterminal cut.

Lemma 2.1 allows the contraction of edges that are
guaranteed not to be in at least on multiterminal cut
and Lemma 2.2 allows the deletion of edges that are
guaranteed to be in a multiterminal cut. An example
for such an edge is an edge that connects two terminal
vertices.

Largest Minimum Isolating Cut
Dahlhaus et al. [8] show that there exists a
minimum multiterminal cut C(G) for a graph G such
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that for every terminal ¢ € T all vertices on the source
side of the largest minimum isolating cut are in block
t. Thus, according to Lemma 2.1, the source sides can
be contracted into their respective terminals. The cut
value of this problem is equal to the sum of all isolating
cuts minus the heaviest, as any set of ¢ — 1 isolating
cuts pairwisely separates all terminals form each other.
A lower bound for the optimal solution is the sum of
all isolating cuts divided by two [8, 12].

Reductions A variety of reductions in the work of
Henzinger et al. [12] use Lemma 2.1 to contract edges
and effectively reduce the size of the input graph. For
every low degree vertex v with |N(v)] < 2, one can
contract the heaviest edge incident to v as there is at
least one multiterminal cut that does not contain it.
Every heavy edge ¢ = (v,u) with w(e) -2 > w(E[v])
can also be contracted. This condition can be relaxed
to heavy triangles, where an edge e = (v1,v9) that
is part of a triangle (v1,vs,v3) can be contracted if
w(e) + w(vi,vz) - 2 > w(Ev]) and w(e) + w(vg,vs) -
2 > w(F[v]). A more global reduction uses the
CAPFOREST algorithm of Nagamochi et al. [17, 18]
to find a connectivity lower bound of every edge in G
in almost linear time. If an edge e = (u,v) has high
connectivity, i.e. there is no small cut that separates
w and v, and no multiterminal cut that separates its
incident vertices can be better than W(G), the edge
can be contracted according to Lemma 2.1. For full
descriptions and proofs of these reductions we refer the
reader to Section 4 of [12].

Branching When it is not possible to find any
more edges to contract or delete, VieCut-MTC selects
an edge e incident to a terminal and creates two
subproblems: G/e represents the problem in which e
is not part of the multiterminal cut C(G) and G — e
represents the problem in which it is. Both subproblems
are added to a shared-memory parallel problem queue
Q@ and solved independently from each other.

3 Improved Reductions and Branching

We now introduce a set of new reductions to further de-
crease the problem size. Additionally, we give an alter-
native branching rule that allows for faster branching.

3.1 New Reductions VieCut-MTC contracts edges
incident to low degree vertices, edges with high weight
and edges whose incident vertices have a high connec-
tivity. Additionally, VieCut-MTC contracts the largest
minimum isolating cut for each terminal to the remain-
der of the terminal set. We now introduce additional
reductions that are able to further shrink the graph and
thus speed up the algorithm.

3.1.1 Articulation Points Let ¢ € V be an articu-
lation point in G whose removal disconnects the graph
into multiple connected components. For any of these
components that does not contain any terminals, we
show that all vertices in the component can be con-
tracted into ¢.

LEMMA 3.1. For an articulation point ¢ whose removal
disconnects the graph G into multiple connected com-
ponents (G1,...,Gp) and a component G; with i €
{1,...,p} that does not contain any terminals, no edge
in G; or connecting G; with ¢ can be part of C(G).

Proof. Let e be an edge that connects two vertices in
{ViUg}. Assume e € C(G), i.c. e is part of the minimum
multiterminal cut of G. This means that vertices in
{Vi U ¢} are not all in the same block. By changing
the block affiliation of all vertices in {V; U ¢} to Ve
we can remove all edges connecting vertices in {V; U ¢}
from the multiterminal cut, thus decrease the weight
of the multiterminal cut by at least w(e). As ¢ is an
articulation point, G; is only connected to the rest of
G through ¢ and thus no new edges are introduced to
the multiterminal cut. This is a contradiction to the
minimality of C(G), thus no edge e that connects two
vertices in {V;U¢} is in the minimum multiterminal cut

CG). O

Using Lemmas 2.1 and 3.1 we can contract all com-
ponents that contain no terminals into the articula-
tion point ¢. All articulation points of a graph can
be found in linear time using an algorithm by Tarjan
and Vishkin [23] based on depth-first search. The al-
gorithm performs a depth-first search and checks in the
backtracking step whether for a vertex v there exists an
alternative path from the parent of v to every of de-
scendant of v. If there is no alternative path, v is an
articulation point in G.

3.1.2 Equal Neighborhoods In many cases, the
resulting graph of the reductions contains groups of
vertices that are connected to the same neighbors. If
the neighborhood and respective edge weights of two
vertices are equal, we can use Lemmas 2.1 and 3.2 to
contract them into a single vertex.

LEMMA 3.2. For two non-terminal vertices vi and vo
with {N(v1)\ve} = {N(v2)\v1} where for all v €
{N(v1)\va}, w(vi,v) = w(va,v), there is at least one
manimum multiterminal cut where Vy, = V.

Proof. Let C be a partitioning of the vertices in G with

C(v1) # C(vq), let ¢ be the corresponding cut, where
e = (u,v) € ¢, if C(u) # C(v) and let cw(v) be the
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total weight of edges in ( incident to a vertex v € V.
W.lo.g. let va be the vertex with cw(va) > cw(vy).
We analyze this in two steps: We assume that when
moving vy to C(v1) that all edges incident to ve in its
old location are removed from ¢, which drops the weight
of ¢ by cw(v2) and then all edges incident to v9 in its new
location are added to ¢, which is exactly cw(vy) by the
conditions of the lemma. Thus the weight of { changes
by cw(vy)—cw(va) < 0. If the edge e12 = (v1,v2) exists,
both cw(v1) and cw(vy) are furthermore decreased by
w(e12), as the edge connecting them is not a cut edge
anymore. As we only moved the block affiliation of vs,
the only edges newly introduced to ( are edges incident
to vg. Thus, the total weight of the multiterminal cut
was not increased by moving v; and v into the same
block and we showed that for each cut {, in which
C(v1) # C(v2) there exists a cut of equal or better value
in which vy and vy are in the same block. Thus, there
exists at least one multiterminal cut where V,, = V,,.

O

We detect equal neighborhoods for all vertices with
neighborhood size smaller or equal to a constant cy
using two linear time routines. To detect neighboring
vertices v; and vo with equal neighborhood, we sort
the neighborhood vertex IDs including edge weights by
vertex IDs (excluding the respective other vertex) for
both v; and vy and check for equality. To detect non-
neighboring vertices v; and v, with equal neighborhood,
we create a hash of the neighborhood sorted by vertex
ID for each vertex with neighborhood size smaller or
equal to cy. If hashes are equal, we check whether the
condition for contraction is actually fulfilled. As the
neighborhoods to sort only have constant size, they can
be sorted in constant time and thus the procedures can
be performed in linear time. We perform both tests,
as the neighborhoods of neighboring vertices contain
each other and therefore do not result in the same
hash value; and non-neighboring vertices are not in each
others neighborhood and therefore finding them requires
checking the neighborhood of every neighbor, which
results in a large search space. We set ¢y = 5, as in
most cases where we encountered equal neighborhoods
they are in vertices with neighborhood size < 5.

3.1.3 Maximum Flow from Non-terminal Ver-
tices Let v be an arbitrary vertex in V\T, i.e. a non-
terminal vertex of G. Let (V,, V\V,) be the largest min-
imum isolating cut of v and the set of terminal vertices
T. Lemma 3.3 shows that there is at least one minimum
multiterminal cut C(G) so that Vo € V,, : V, =V, and
thus V, can be contracted into a single vertex.

Figure 1: Ilustration of vertex sets in Lemma 3.3

LEMMA 3.3. Let v be a vertex in V\T'. Let (V,,V\V,)
be the largest minimum isolating cut of v and the set
of terminal vertices T and let \(G,v,T') be the weight
of the minimum isolating cut (V,,, V\V,). There exists

at least one minimum multiterminal cut C(G) in which
Ve eV, : Ve =V,.

Proof. As (V,,,V\V,) is a minimum isolating cut with
the terminal set as sinks, we know that no terminal
vertex is in V,. Assume that C(G) cuts V,,, i.e. there is
a non empty vertex set Vo € V,, so that Vo € Vo : V, &
V,. We will show that the existence of such a vertex set
contradicts the minimality of C(G). Figure 1 gives an
illustration of the vertex sets defined here.

Due to the minimality of the minimum isolating cut,
we know that w(Ve, Vu\Ve) = w(Ve, V\V,) (e the
connection of V¢ to the rest of V,, is at least as strong
as the connection of V¢ to (V\V,)), as otherwise we
could remove Vo from V,, and find an isolating cut of
smaller size.

We now show that by changing the block affiliation
of all vertices in Vi to V,, i.e. removing all vertices from
the set Vo, we can construct a multiterminal cut of equal
or better cut value. By changing the block affiliation of
all vertices in Vi to V,, we remove all edges connecting
Ve to (V,\Ve) from C(G) and potentially more, if there
were edges in C(G) that connect two vertices both in V.
At most, the edges connecting Vo and (V\V,,) are newly
added to C(G). As w(Ve, Vi\Ve) > w(Ve, V\V,), the
cut value of C(G) will be equal or better than previously.
Thus, there is at least one multiterminal cut in which
Ve is empty and therefore Vx € V,, : V,, = V,,. 0

We can therefore run a maximum s-T-flow from a
non-terminal vertex to the set of all terminals T and
contract the source side of the largest minimum isolating
cut into a single vertex. These flow problems can be
solved embarrassingly parallel, in which every processor
solves an independent maximum s-7-flow problem for a
different non-terminal vertex v.

While it is possible to run a flow problem from every
vertex in V, this is obviously not feasible as it would
entail excessive running time overheads. Promising
vertices to use for maximum flow computations are
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either high degree vertices or vertices with a high
distance from every terminal. High degree vertices are
promising, as due to their high degree it is more likely
that we can find a minimum isolating cut of size less
than their degree. Vertices that have a high distance to
all terminals are on 'the edge of the graph’, potentially
in a subgraph only weakly connected to the rest of the
graph. Running a maximum flow then allows us to
contract this subgraph. In every iteration, we run 5
flow problems starting from high-distance vertices and
5 flow problems starting from high-degree vertices.

3.2 Vertex Branching When the VieCut-MTC-
algorithm is initialized, it only has a single problem
containing the whole graph G. While independent mini-
mum isolating cuts are computed in parallel, most of the
shared-memory parallelism in VieCut-MTC comes from
the embarrassingly parallel solving of different problems
on separate threads. When branching, VieCut-MTC se-
lects the highest degree vertex that is adjacent to a ter-
minal and branches on the heaviest edge connecting it
to one of the terminals. The algorithm thus creates only
up to two subproblems and is still not able to use the
whole machine.

We propose a new branching rule that overcomes
these limitations by selecting the highest degree vertex
incident to at least one terminal and use it to create
multiple subproblems to allow for faster startup. Let x
be the vertex used for branching, {¢1,...,¢;} for some
i > 1 be the adjacent terminals of x and wjy; be the
weight of the heaviest edge connecting x to a terminal.
We now create up to ¢ + 1 subproblems as follows:

For each terminal ¢; with j € {1,...,i} with
w(z,t;) + w(z, V\T) > wys create a new problem P;
where edge (z,t;) is contracted and all other edges con-
necting x to terminals are deleted. Thus in problem P,
vertex @ belongs to block V. If w(z,t;) +w(x, V\T) <
wpy, i.e. the weight sum of the edges connecting z with
t; and all non-terminal vertices is not heavier than wyy,
the assignment to block V;, cannot be optimal and thus
we do not need to create the problem P;, also called
pruning of the problem. The following Lemma 3.4
proves the correctness of this pruning step.

LEMMA 3.4. Let G = (V,E) be a graph, T C V be
the set of terminal vertices in G, and v € V be a
vertex that is adjacent to at least one terminal and for
an i € {1,...,|T|} be the index of the terminal for
which e; = (x,t;) is the heaviest edge connecting x with
any terminal. Let wy; be the weight of e;. If there
exists a terminal t; adjacent to x with j € {1,...,|T|}
with w(x,t;) + w(x, V\T) > war, there is at least one
minimum maultiterminal cut C(G) so that V, # j, i.e. ©
s not in block j.

Proof. If V, = 1, i.e. x is in the block of the terminal
it has the heaviest edge to, the sum of cut edge weights
incident to x is < E(x) — wyy, as edge e; of weight wyy
is not a cut edge in that case. If V, = j, i.e. x is in
the block of terminal j, the sum of cut edge weights
incident to z is > E(z) — (w(z, V\T) + w(z.t;)), as
all edges connecting = with other terminals than t; are
guaranteed to be cut edges. As w(x,t;) + w(x, V\T) >
wyy, even if all non-terminal neighbors of x are in block
7, the weight sum of incident cut edges is not lower than
when z is placed in block 7. As the block affiliation of x
can only affect its incident edges, the cut value of every
solution that sets V, = j would be improved or remain
the same by setting V, =i. ]

If w(z,V\T) > wy and i < |T|, we also create
problem P;;, in which all edges connecting = to a
terminal are deleted. This problem represents the
assignment of x to a terminal that is not adjacent to
it. We add each subproblem whose lower bound is lower
than the currently best found solution W to the problem
queue Q. As we create up to |T'| subproblems, this
allows for significantly faster startup of the algorithm
and allows us to use the whole parallel machine after
less time than before.

3.3 Integer Linear Programming Integer Linear
Programming can be used as an alternative to branch-
and-reduce [12] and for some problems this is faster than
branch-and-reduce. We integrate the ILP formulation
from the work of [12] and include it directly into
VieCut-MTIC as an alternative to branching. We give
the ILP solver a time limit and if it is unable to find
an optimal solution within the time limit, we instead
perform a branch operation. In Section 5.2 we study
which subproblems to solve with an ILP first.

3.4 Improving Bounds with Greedy Opti-
mization The VieCut-MTC algorithm prunes problems
which cannot result in a solution which is better than
the best solution found so far. Therefore, even though it
is a deterministic algorithm that will output the optimal
result when it terminates, performing greedy optimiza-
tion on intermediate solutions allows for more aggres-
sive pruning of problems that cannot be optimal. Ad-
ditionally, VieCut-MTC has reductions that depend on
the value of W(() and can thus contract more vertices
if the cut value W\(G) is lower.

For a subproblem H = (Vy,Epg) with solution
p, the original graph G = (Vg, Fg) and a mapping
7w : Vg — Vg that maps each vertex in Vg to the vertex
in Vi that encompasses it, we can transfer the solution
p to a solution v of G by setting the block affiliation of
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every vertex v € Vg to y(v) := w(p(v)). The cut value
of the solution w(v) is defined as the sum of weights
of the edges crossing block boundaries, i.e. the sum of
edge weights where the incident vertices are in different
blocks. Let & (Vi) be the set of all vertices v € Vg
where v(v) = 1.

We introduce the following greedy optimization op-
erators that can transform - into a better multiterminal
cut solution yyvp with w(ymvp) < w(7).

3.4.1 Kernighan-Lin Local Search Kernighan
and Lin [14] give a heuristic for the traveling-
salesman problem that has been adapted to many
hard optimization problems [20, 24, 27, 11], where
each vertex v € Vg is assigned a gain g(v) =
max;e i, |T)},izv(0) 2 W0, &(Va)) — w(v, &0 (Va)),
i.e. the improvement in cut value to be gained by mov-
ing v to another block, the best connected other block.
We perform runs where we compute the gain of every
vertex that has at least another neighbor in a different
block and move all vertices with non-negative gain. Ad-
ditionally, if a vertex v has a negative gain, we store its
gain and associated best connected other block. For any
neighbor w of v that also has the same best connected
other block, we check whether g(w)+g(v)+2-w(v,u) >
0, i.e. moving both u and v at the same time is a positive
gain move. If it is, we perform the move.

3.4.2 Pairwise Maximum Flow For any pair of
blocks 1 < i < j < |T| where w(&(Ve),&;(Ve)) > 0,
i.e. there is at least one edge from block ¢ to block j, we
can create a maximum s-t flow problem between them:
we create a graph F;; that contains all vertices in & (V)
and &;(Vg) and all edges that connect these vertices.

Let H be the current problem graph created by
performing reductions and branching on the original
graph G. All vertices that are encompassed in the same
vertex in problem graph H as the terminals ¢ and j
are hereby contracted into the corresponding terminal
vertex. We perform a maximum s-t-flow between the
two terminal vertices and re-assign vertex assignments
in v according to the minimum s-t-cut between them.
As we only model blocks &;(Ve) and &;(Ve), this does
not affect other blocks in . In the first run we perform
a pairwise maximum flow between every pair of blocks ¢
and j where w(&;(Vg), & (Ve)) > 0 in random order. We
continue on all pairs of blocks where w(&;(Ve),&;(Va))
was changed since the end of the previous maximum
flow iteration between them.

We first perform Kernigham-Lin local search until
there is no more improvement, then pairwise maximum
flow until there is no more improvement, followed by
another run of Kernigham-Lin local search. As pairwise

Figure 2: Minimum multiterminal cut for graph uk [21]
and four terminals - on original graph (top) and remain-
ing graph at time of first branch operation (bottom),
visualized using Gephi-0.9.2 [2]

maximum flow has significantly higher running time, we
spawn a new thread to perform the optimization if there
is a CPU core that is not currently utilized.

4 Fast Inexact Solving

VieCut-MTC in an exact algorithm, i.e. when it termi-
nates the output is guaranteed to be optimal. As the
multiterminal cut problem is NP-complete [8], it is not
feasible to expect termination in difficult instances of
the problem. Henzinger et al. [12] report that their al-
gorithm often does not terminate with an optimal result
but runs out of time or memory and returns the best
result found up to that point. Thus, it makes sense
to relax the optimality constraint and aim to find a
high-quality (but not guaranteed to be optimal) solu-
tion faster.

A key observation herefor is that in many problems,
most, if not all vertices that are not already contracted
into a terminal at the time of the first branch, will be
assigned to a few terminals whose weighted degree at
that point is highest. See Figure 2 for an example with
4 terminals (selected with high distance to each other)
on graph uk from the Walshaw Graph Partitioning
Archive [21]. As we can see, at the time of the
first branch (right figure), most vertices that are not
assigned to the pink terminal in the optimal solution
are already contracted into their respective terminals.
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The remainder is mostly assigned to a single terminal.
As we can observe similar behavior in many problems,
we propose the following heuristic speedup operations:
Let 6 € (0,1) be a contraction factor and T be the
set of all terminals that are not yet isolated in graph
H. In each branching operation on an intermediate
graph H, we delete all edges around the [§ - |Tyl]
terminals with lowest degree. Additionally, we contract
all vertices adjacent to the highest degree terminal that
are not adjacent to any other terminal into the highest
degree terminal. This still allows us to find all solutions
in which no more vertices were added to the lowest
degree terminals and the adjacent vertices are in the
same block as the highest degree terminals.
Additionally, in a branch operation on vertex wv,
we set a maximum branching factor 8 and only create
problems where v is contracted into the S adjacent
terminals it has the heaviest edges to and one problem in
which it is not contracted into either adjacent terminal.
This is based on the fact that all other edges connecting
v to other terminals will be part of the multiterminal
cut and the greedy assumption that it is likely that the
optimal solution does not contain at least one of these
heavy edges. By default, we set 6 = 0.1 and 8 = 5.

5 Experiments and Results

We now perform an experimental evaluation of the
proposed work. This is done in the following order:
first we analyze the impact of different reductions
introduced in the work of Henzinger et al. [12] and
in this work. We then analyze which subproblems
to solve using integer linear programming and then
compare the results of VieCut-MTC with our exact and
inexact algorithms on a variety of graphs from different
sources. Here, VieCut-MTC denotes the algorithm of
Henzinger et al. [12], Exact-MTC denotes the exact
version of our algorithm and Inexact-MTC denotes the
heuristic algorithm proposed in Section 4

We implemented the algorithms using C++-17 and
compiled all code using g++ version 7.3.0 with full
optimization (-03). Our experiments are conducted on
two machine types. Machine A is a machine with two
Intel Xeon E5-2643v4 with 3.4 GHz with 6 CPU cores
each and 1.5 TB RAM in total. Machine B is a machine
in the Vienna Scientific Cluster with two Intel Xeon
E5-2650v2 with 2.6GHz with 8 CPU cores each and 64
GB RAM in total. We limit the maximum amount of
memory used for each problem to 32 GB. ILP problems
are solved using Gurobi 8.1.0. When we report a mean
result we give the geometric mean as problems differ

significantly in cut size and time. Our code is freely
available under the permissive MIT license!.

To evaluate the performance of different multiter-
minal cut algorithms, we use a wide varicty of graphs
from different sources. We re-use a large subset of
the map, social and web graphs graphs used by Hen-
zinger et al. [12]. Additionally, we add numerical graphs
from the Walshaw Graph Partitioning Benchmark [21]
and a set of graphs from the 10** DIMACS implemen-
tation challenge [1] and the SuiteSparse Matrix Collec-
tion (formerly UFSparse Matrix Collection) [9]. Table 1
gives an overview over the graphs used in this work.

Table 1: Large Real-world Benchmark Instances

Graph Source n m
Map Graphs
ak2010 [1] 45202 109K
ca2010 1] 710K 1.74M
ct2010 [1] 67578 168K
de2010 [1] 24115 58028
hi2010 [1] 25016 62063
luxembourg.osm 9] 115K 120K
me2010 [1] 69518 168K
netherlands.osm 9] 2.22M 2.44M
nh2010 [1] 48837 117K
nv2010 [1] 84538 208K
ny2010 [1] 350K 855K
ri2010 [1] 25181 62875
sd2010 [1] 88360 205K
vt2010 [1] 32580 77799

Social, Web and Numerical Graphs

598a 21 111K 742K
astro-ph 9] 16706 121K
besstk30 [21] 28924 1.01M
ca-CondMat 9] 23133 93439
caidaRouterLevel [9] 192K 609K
citationCiteseer 9] 268K 1.16K
cit-HepPh 9] 34546 422K
cnr-2000 [9] 326K  2.74M
coAuthorsCiteseer 9] 227K 814K
cond-mat-2005 [9] 40421 176K
coPapersCiteseer 9] 434K 16.0M
csd [21] 22499 43858
eu-2005 3] 862K 16.1M
fe_body [21] 45087 164K
higgs-twitter [9] 457K 14.9M
in-2004 3] 1.38M 13.6M
NACA0015 [0] 1.04M 3.11M
uk-2002 3] 185M  261M
venturiLevel3 9] 4.03M 8.056M
vibrobox [21] 12328 165K

Thttps://github.com/VieCut/VieCut
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Figure 3: Number of vertices in graph after reductions
are finished, normalization by (# vtx with all reductions
/ # vtx in variant), sorted by normalized value.

As the instances generally do not have any termi-
nals, we find random vertices that have a high distance
from each other in the following way: we start with a
random vertex 7, run a breadth-first search starting at
r and select the vertex v encountered last as first ter-
minal. While the number of terminals is smaller than
desired, we add another terminal by running a breadth-
first scarch from all current terminals and adding the
vertex encountered last to the list of terminals. We
then run a bounded-size breadth-first search around
each terminal to create instances where the minimum
multiterminal cut does not have k — 1 blocks consisting
of just a single vertex each. This results in problems
in which well separated clusters of vertices are parti-
tioned and the task consists of finding a partitioning of
the remaining vertices in the boundary regions between
already partitioned blocks. This relates to clustering
tasks, in which well separated clusters are labelled and
the task consists of labelling the remaining vertices in-
between. Additionally, we use a subset of the generated
instances of Henzinger et al. [12] to compare our work to
VieCut-MTC. These graphs have unit-weight edges, how-
ever contracted subproblems often have weighted edges.

5.1 Reductions We first analyze the impact of the
different reductions on the size of the graph at the time
of first branch. For this, we run experiments on all
graphs in Table 1 with & = {4,8,10} terminals and 10%
of all vertices added to the terminals on machine B.
On these instances, we run subsets of all contractions
exhaustively and check which factor of vertices remain
in the graph. A value of 1 thus indicates that the
reductions were unable to find any edges to contract,
a value close to 0 shows that almost no vertices remain
and the resulting problem is far smaller than the original
problem. Figure 3 gives the result with 8 different
variants, starting with a version that only runs isolating
cuts and adding one reduction family per version. For
this, we sorted the reductions by their impact on the

total running time. In Figure 3, we can see that using
all reductions allows us to reduce the number of vertices
by more than a half in about half of all instances and
can find a sizable number of reductions on almost any
instance.

We can see that running the local reductions in
VieCut-MTC are very effective on almost all instances.
In average, IsolatingCuts reduce the number of ver-
tices by 33%, LowDegree reduces the number of vertices
in the remaining graph by 17%, HighDegree by 7% and
Triangles by 8%. In contrast, Connectivity only has
a negligible effect, as it contracts edges whose connec-
tivity is larger than a value related to the difference
of upper bound to total weight of deleted edges. As
there are almost no deleted edges in the beginning, this
value is very high and almost no edge has high enough
connectivity.

In average, ArticulationPoints reduces the num-
ber of vertices on the already contracted graphs by 1.9%,
EqualNeighborhoods reduces the number of vertices
by 7.8% - mostly in sparse regions of the graph, and
NonTerminalFlows reduces the number of vertices by
2.0%. However, there are some instances in which the
newly introduced reductions reduce the number of ver-
tices remaining by more than 99%.

5.2 Integer Linear Programming In order to get
a wide variety of ILP problems, we run the Inexact-MTC
algorithm on all instances in Table 1 with k& = 10
terminals and 10% of vertices added to the terminals
on machine B. As Inexact-MTC removes low-degree
terminals and contracts edges, we have subproblems
with very different sizes and numbers of terminals.
In this experiment, whenever Inexact-MTC chooses
between branching and ILP on graph G, we select a
random integer 7 € (1,200000). We use a random
integer as we want to have problems of varying sizes. We
select 200000 as the maximum, as we did not encounter
any larger instances that were solved in the allotted
time. If |E| < r, the problem is solved with ILP,
otherwise the algorithm branches on a vertex incident
to a terminal. The timeout is set to 60 seconds.

Figure 4 shows the time needed to solve the ILP
problems in relation to the number of edges in the
graph. We can see that there is a strong correlation
between problem size and total running time, but there
are still a large number of outliers that cannot be solved
in the allotted time even though the instances are rather
small. In the following, we set the limit to 50 000 edges
and solve all instances with fewer than 50000 edges
with an integer linear program. If the instance has at
least 50 000 edges, we branch on a vertex incident to a
terminal and create more subproblems.
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Figure 4: Running time of ILP subproblems in relation
to |E.

5.3 Comparison to VieCut-MTC We use the exper-
iment of Section 8.7 in the work of Henzinger et al. [12]
to compare Exact-MTC to VieCut-MTC on the instances
used in their work. The experiment uses a set of large
social and web graphs with pre-defined clusters and
k = {3,4,5,8} terminals, where 10 — 25% of vertices
are marked as terminal vertices initially, a total of 160
instances. We run the experiments on machine A using
all 12 cores and set the time limit to 600 seconds.

Out of 160 instances, VieCut-MTC terminates with
an optimal result in 32 instances, while Exact-MTC
terminates with an optimal result in 46 instances. Out
of the 115 instances that were not solved to optimality
by both algorithms, Exact-MTC gives a better result
on 75 instances and the same result on the other 38
instances. The geometric mean values of results given
by Exact-MTC and Inexact-MTC are both about 1.5%
lower than VieCut-MTC. Note that in the experiments
performed in [12], which uses a larger machine (32 cores)
and has a timeout of 3600 seconds, VieCut-MTC has a
geometric mean of about 0.1% better than VieCut-MTC
in this work. The largest part of the improvement of
Exact-MTC and Inexact-MTC over VieCut-MTC is gained
by the greedy optimization detailed in Section 3.4.

Figure 5a shows the performance profile [10] of this
experiment. We can see that both Exact-MTC and
Inexact-MTC are almost always optimal or very close
to it. In contrast, VieCut-MTC gives noticeably worse
results on about 20% of instances and more than 5%
worse results on 10% of instances.

5.4 Large Multiterminal Cut Problems We
compare VieCut-MTC, Exact-MTC and Inexact-MTC on
all graphs with k = {4,5,8,10} terminals and 10% and
20% of vertices added to the terminal. For each com-
bination of graph, number of terminals and factor of
vertices in terminal, we create three problems with ran-
dom seeds s = {0,1,2}. Thus, we have a total of 816
problems. We set the time limit per algorithm and prob-
lem to 600 seconds. We run the experiment on machine

Table 2: Result overview for large multiterminal cut
problems on graphs from Table 1.

# Terminals VieCut-MTC Exact-MTC Inexact-MTC
4 Best Solution 109 183 175
Mean Solution 161799 159 402 159499
Better Exact 6 94 —
5 Best Solution 81 173 158
Mean Solution 216191 210928 211090
Better Exact 6 121 —
8 Best Solution 42 139 175
Mean Solution 346 509 331112 330856
Better Exact 2 162 —
10 Best Solution 37 129 173
Mean Solution 412138 392561 391 822
Better Exact 1 165 —

A using all 12 CPU cores. If the algorithm does not
terminate in the allotted time or memory limit, we re-
port the best intermediate result. Note that is a soft
limit, in which the algorithm finishes the current opera-
tion and exits afterwards if the time or memory limit is
reached. As many of these are very large instances, most
instances in this section are not solved to optimality.
Table 2 gives an overview of the results. For each al-
gorithm, we give the number of times, where it gives the
best (or shared best) solution over all algorithms; the
geometric mean of the cut value; and for VieCut-MTC
and Exact-MTC the number of instances in which they
have a better result than the respective other. In all
instances, in which VieCut-MTC and Exact-MTC termi-
nate with the optimal result, Inexact-MTC also gives
the optimal result. We can see that in the problems
with 4 and 5 terminals, Exact-MTC slightly outperforms
Inexact-MTC both in number of best results and mean
solution value. In the problems with 8 and 10 termi-
nals, Inexact-MTC has slightly better results in average.
Thus, disregarding the optimality constraint can allow
the algorithm to give better solutions faster especially
in hard problems with a large amount of terminals.
However, both new algorithms outperform
VieCut-MTC on almost all instances where not all
algorithms give the same result. Here, Exact-MTC
gives a better result than VieCut-MTC in 66% of all
instances, while VieCut-MTC gives the better result
in only 2% of all instances. As most problems do
not terminate with an optimal result, we are unable
to say how far the solutions are from the globally
optimal solution. Note that Inexact-MTC gives an
optimal result in all instances in which all algorithms
terminate. Figure 6 shows the progress of the best
solution for the algorithms in a set of problems. For
both Exact-MTC and Inexact-MTC we can see large
improvements to the cut value when the local search
algorithm is finished on the first subproblem. In
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Figure 6: Progression of best result over time.

contrast, VieCut-MTC has more small step-by-step
improvements and generally gives worse results.

Figure 5b shows the performance profile for the in-
stances in this section. Here we can see that VieCut-MTC
has significantly worse results on a large subset of
the instances, with more than 10% of instances where
the result is worse by more than 10%. Also, on a
few instances, the results given by Exact-MTC and
Inexact-MTC differ significantly. In general, both of
them outperform VieCut-MTC on most instances that
are not solved to optimality by every algorithm.

6 Conclusion

In this paper, we give a fast parallel solver that gives
high-quality solutions for large multiterminal cut prob-
lems. We give a set of highly-effective reduction rules
that transform an instance into a smaller equivalent one.
Additionally, we directly integrate an ILP solver into the

Dot at end marks termination of algorithm.

algorithm to solve subproblems well suited to be solved
using an ILP; and develop a flow-based local search al-
gorithm to improve a given optimal solution. These
optimizations significantly increase the number of in-
stances that can be solved to optimality and improve
the cut value of multiterminal cuts in instances that can
not be solved to optimality. Our algorithm gives bet-
ter solutions in more than two thirds of these instances,
often improving the result by more than 5% on hard in-
stances. Additionally, we give an inexact algorithm for
the multiterminal cut problem that aggressively shrinks
the graph instances and is able to even outperform the
exact algorithm on many of the hardest instances that
are too large to be solved to optimality while still giving
the exact solution for most easier instances. Important
future work consists of improving the scalability of the
algorithm by giving a distributed memory version.
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