
1

Smaller Cuts, Higher Lower Bounds

AMIR ABBOUD, Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Israel∗

KEREN CENSOR-HILLEL, Department of Computer Science, Technion, Israel
SERI KHOURY, University of California, Berkeley, USA
AMI PAZ, Faculty of Computer Science, University of Vienna, Austria

This paper proves strong lower bounds for distributed computing in the congest model, by presenting the
bit-gadget: a new technique for constructing graphs with small cuts.

The contribution of bit-gadgets is twofold. First, developing careful sparse graph constructions with small
cuts extends known techniques to show a near-linear lower bound for computing the diameter, a result
previously known only for dense graphs. Moreover, the sparseness of the construction plays a crucial role in
applying it to approximations of various distance computation problems, drastically improving over what can
be obtained when using dense graphs.

Second, small cuts are essential for proving super-linear lower bounds, none of which were known prior
to this work. In fact, they allow us to show near-quadratic lower bounds for several problems, such as exact
minimum vertex cover or maximum independent set, as well as for coloring a graph with its chromatic number.
Such strong lower bounds are not limited to NP-hard problems, as given by two simple graph problems in P
which are shown to require a quadratic and near-quadratic number of rounds. All of the above are optimal up
to logarithmic factors. In addition, in this context, the complexity of the all-pairs-shortest-paths problem is
discussed.

Finally, it is shown that graph constructions for congest lower bounds translate to lower bounds for the
semi-streaming model, despite being very different in its nature.

CCS Concepts: • Theory of computation→ Distributed computing models.

Additional Key Words and Phrases: lower bounds, distributed algorithms

ACM Reference Format:
Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2021. Smaller Cuts, Higher Lower Bounds.
ACM Trans. Algor. 1, 1, Article 1 (January 2021), 41 pages. https://doi.org/10.1145/3469834

This paper is based on two conference papers, from DISC’16 [1] and DISC’17 [32] and contains
additional, new results.

* This work was partly done when Amir Abboud was at IBM Almaden Research Center and at
Stanford University.

Authors’ addresses: Amir Abboud, amir.abboud@weizmann.ac.il, Department of Computer Science and AppliedMathematics,
Weizmann Institute of Science, Israel ; Keren Censor-Hillel, ckeren@cs.technion.ac.il, Department of Computer Science,
Technion, Israel; Seri Khoury, serikhourry@gmail.com, University of California, Berkeley, USA; Ami Paz, ami.paz@univie.
ac.at, Faculty of Computer Science, University of Vienna, Austria.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1549-6325/2021/1-ART1 $15.00
https://doi.org/10.1145/3469834

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3469834
https://doi.org/10.1145/3469834

1:2 Abboud, Censor-Hillel, Khoury, Paz

Contents

Abstract 1
Contents 2
1 Introduction 2
1.1 Contributions 4
1.2 Additional Related Work 7
2 Preliminaries 9
2.1 Computational Models 9
2.2 Graph Parameters 9
2.3 Communication Complexity 9
2.4 Lower Bound Graphs 10
3 The Bit-Gadget Construction 11
4 Near-Linear Lower Bounds for Sparse Graphs 12
4.1 Exact Diameter 12
4.2 (3/2 − 𝜀)-Approximation of the Diameter 14
4.3 Radius 16
5 Near-Quadratic Lower Bounds for General Graphs 17
5.1 Minimum Vertex Cover 17
5.2 Graph Coloring 20
6 Quadratic and Near-Quadratic Lower Bounds for Problems in P 25
6.1 Weighted Cycle Detection 25
6.2 Identical Subgraphs Detection 26
7 Weighted APSP 29
7.1 A Linear Lower Bound for Weighted APSP 30
7.2 The Alice-Bob Framework Cannot Give a Super-Linear Lower Bound for Weighted

APSP 30
8 Streaming Lower Bounds 33
9 Discussion 36
Acknowledgments 37
References 37

1 INTRODUCTION
This paper studies inherent limitations of distributed graph algorithms with bounded bandwidth,
and shows new and strong lower bounds for some classical graph problems. A fundamental
computational model for distributed networks is the congestmodel [92], where the network graph
represents 𝑛 nodes that communicate in synchronous rounds in which 𝑂 (log𝑛)-bit messages are
exchanged among neighbors.

Many lower bounds for the congest model rely on reductions from two-party communication
problems (see, e.g., [11, 31, 43, 44, 53, 66, 88, 89, 94, 99]). In this setting, two players, Alice and Bob,
are given inputs of 𝐾 bits and need to compute a single output bit according to some predefined
function of their inputs.
The standard framework for reducing a two-party communication problem of computing a

function 𝑓 to deciding a graph predicate 𝑃 in the congest model is as follows. Given an instance
(𝑥,𝑦) of the two-party problem 𝑓 , a graph is constructed such that the value of 𝑃 on it can be
used to determine the value of 𝑓 on (𝑥,𝑦). Some of the graph edges are fixed, while the existence

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:3

of some other edges depends on the inputs of Alice and Bob. Then, given an algorithm 𝐴𝐿𝐺 for
solving 𝑃 in the congest model, the vertices of the graph are split into two sets, 𝑉𝐴 and 𝑉𝐵 , and
Alice simulates 𝐴𝐿𝐺 over 𝑉𝐴 while Bob simulates 𝐴𝐿𝐺 over 𝑉𝐵 . The only communication required
between Alice and Bob in order to carry out this simulation is the content of messages sent in each
direction over the edges of the cut 𝐶 = 𝐸 (𝑉𝐴,𝑉𝐵). Using this technique for a two-party problem
𝑓 on 𝐾 bits with communication complexity CC(𝑓 , 𝐾) and a graph with a cut 𝐶 , it can be proven
that the complexity of 𝐴𝐿𝐺 is in Ω(CC(𝑓 , 𝐾)/|𝐶 | log𝑛).1
Thus, the lower bound achieved using the reduction depends on two parameters of the graph

construction: (i) the size of the input, 𝐾 , and (ii) the size of the cut, |𝐶 |. All previous constructions
are both dense and have large cuts, which causes them to suffer from two limitations.

The first limitation is that lower bounds for global approximation tasks, such as approximating
the diameter of the graph, which are typically obtained through stretching edges in the construction
into paths by adding new nodes, must pay a significant decrease in the size of the input compared
to the number of nodes because of their density. Together with their large cuts, this causes such
lower bounds to stay well below linear. For example, the graph construction for the lower bound
for computing the diameter [53] has 𝐾 = Θ(𝑛2) and |𝐶 | = Θ(𝑛), which gives an almost linear
lower bound of Ω(𝑛/log𝑛) using the set-disjointness problem whose communication complexity is
known to be Θ(𝐾) [76]. However, because the construction is dense, although the resulting graph
construction for computing a (3/2 − 𝜖)-approximation of the diameter [53] has a smaller cut of
|𝐶 | = Θ(

√
𝑛), this comes at the price of supporting a smaller input size, of 𝐾 = Θ(𝑛), which gives a

lower bound that is roughly a square-root of 𝑛.
The second limitation is that large, say, linear cuts, can inherently give only linear lower bounds

at best. However, tasks such as computing an exact minimum vertex cover seem to be much harder
for the congest model, despite the inability of previous constructions to prove this.
In this paper, we present the bit-gadget technique for constructing graphs with small cuts,

using which we prove strong lower bounds for the congest model. Bit-gadgets allow us to have
logarithmic-size cut, and are inspired by constructions that are used for proving conditional lower
bounds in the field of fine-grained complexity for the sequential setting [3, 4, 30, 35, 98]. This novel
connection between the two fields relies on the following intuition, which was made more formal
in a follow-up paper [28]: many reductions in fine-grained complexity reduce from a problem (the
Orthogonal Vectors problem) that happens to be of high communication complexity and therefore
also serve to prove that the communication complexity of the end problems is high, which can lead
to lower bounds in the congest model.
Our constructions allow bringing lower bounds for approximate diameter and radius up to a

near-optimal near-linear complexity. Furthermore, they allow us to obtain the first near-quadratic
lower bounds for natural graph problems, such as computing a minimum vertex cover or a coloring
with a minimal number of colors. These are near-optimal since all of these problems admit simple
𝑂 (𝑚) solutions in the congest model. Notably, these are the first super-linear lower bounds for
this model.

In addition, this paper discusses the complexity of the weighted all-pairs-shortest-paths problem.
This is one of the most-studied problems in the congest model, yet its complexity remains elusive.
This problem was known to have at least almost-linear complexity; we improve this by presenting
a linear lower bound, and also prove that the Alice-Bob technique discussed cannot achieve a
super-linear lower bound for the problem.
1In this paper, and in many others, the nodes are partitioned into disjoint sets, and this partition remains fixed over time.
We remark that in earlier work, the partition of the graph nodes between Alice and Bob is not fixed, and their nodes are
not disjoint: there are many nodes they both simulate, and in each round each player simulates less nodes. This technique
requires a more involved analysis, and we do not discuss it further.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Abboud, Censor-Hillel, Khoury, Paz

Finally, we show that graph constructions for lower bounds for the congest model can be used
directly to obtain lower bounds for the streaming model of computation in a black-box manner,
and so we prove the lower bounds for problems such as computing a minimum vertex cover or a
coloring with minimal number of colors.

1.1 Contributions
1.1.1 Distance Computation. Frischknecht et al. [53] showed that the diameter is surprisingly hard
to compute: Ω̃(𝑛) rounds are needed even in networks with constant diameter2. This lower bound
is nearly tight, due to an 𝑂 (𝑛) upper bound [66, 79, 93]. Naturally, approximate solutions are a
desired relaxation, and were indeed addressed in several cornerstone studies [53, 64, 66, 79, 93],
bringing us even closer to a satisfactory understanding of the time complexity of computing the
diameter in the congest model. Here we answer several central questions that remained elusive.

Sparse Graphs. The graphs constructed by Frischknecht et al. [53] have Θ(𝑛2) edges and constant
diameter, and require any distributed algorithm for computing their diameter to spend Ω̃(𝑛) rounds.
Almost all large networks of practical interest are very sparse [81], e.g., the Internet in 2012 had
roughly 4 billion nodes and 128 billion edges [85]. The only known lower bound for computing
the diameter of a sparse network is obtained by a simple modification to the construction of [53]
which yields a much weaker bound of Ω̃(

√
𝑛). Our first result is to rule out the possibility that the

Ω̃(𝑛) bound can be beaten significantly in sparse networks.

Theorem 1. Any algorithm for computing the exact diameter requires Ω
(

𝑛

log2 𝑛

)
rounds, even in

networks of Θ(𝑛 log𝑛) edges.

We remark that, as in [53], our lower bound holds even for networks with constant diameter and
even against randomized algorithms. Due to simple transformations, e.g., adding a dummy node on
each edge, our lower bound for computing the diameter also holds for the more strict definition of
sparse graphs as having 𝑂 (𝑛) edges, up to a loss of a log factor in the round complexity. Our lower
bound against approximating the diameter, which we discuss next, holds for networks of 𝑂 (𝑛)
edges as well. Subsequent works have shown that the Ω̃(𝑛) lower bound holds in planar graphs
with edge weights [2] but not without them [82].

Approximation Algorithms. An important question is whether one can bypass this near-linear
barrier by settling for an approximation to the diameter. An 𝛼-approximation algorithm to the
diameter returns a value �̂� such that 𝐷 ≤ �̂� ≤ 𝛼 · 𝐷 , where 𝐷 is the true diameter of the network.
From [53] we know that Ω̃(

√
𝑛+𝐷) rounds are needed, even for computing a (3/2−𝜀)-approximation

to the diameter, for any constant 𝜀 > 0, while from [64] we know that a 3/2-approximation can be
computed in𝑂 (

√
𝑛 log𝑛 +𝐷) rounds. This raises the question of whether there is a sharp threshold

at a 3/2-approximation factor, or whether a (3/2 − 𝜖)-approximation can also be obtained in a
sub-linear number of rounds.

Progress towards answering this question was made by Holzer andWattenhofer [66] who showed
that any algorithm that needs to decide whether the diameter is 2 or 3 has to spend Ω̃(𝑛) rounds.
However, as the authors point out, their lower bound is not robust and does not rule out the
possibility of a (3/2 − 𝜀)-approximation when the diameter is larger than 2, or an algorithm that is
allowed an additive +1 error in addition to a multiplicative (3/2 − 𝜀) error.

As mentioned earlier, perhaps the main difficulty in extending the lower bound constructions of
Frischknecht et al. [53] and Holzer and Wattenhofer [66] in order to resolve these gaps was that

2The notations Ω̃ and𝑂 hide factors that are polylogarithmic in 𝑛.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:5

their original graphs are dense. A natural way to go from a lower bound construction for exact
algorithms to a lower bound for approximations is to subdivide each edge into a path; however, in
dense graphs this dramatically blows up the number of nodes, resulting in much weaker bounds.
The sparseness of our new construction allows us to tighten the bounds and negatively resolve
the above question: we show a Ω̃(𝑛) lower bound for computing a (3/2 − 𝜀)-approximation to the
diameter, even if a constant additive approximation factor is also allowed.

Theorem 2. For any constant 0 < 𝜀 < 1/2, any algorithm for computing a (3/2−𝜀)-approximation

of the diameter requires Ω
(

𝑛

log3 𝑛

)
rounds, even in networks of Θ(𝑛) edges.

Radius. In many scenarios we want one special node to be able to efficiently send information to
all other nodes. In this case, we would like this node to be the one that is closest to every other
node, i.e., the center of the graph. The radius of the graph is the largest distance from the center, and
it captures the number of rounds needed for the center node to transfer a message to all another
node in the network. While radius and diameter are closely related, the previous lower bounds
for diameter do not transfer to radius and it was conceivable that the radius of the graph could be
computed much faster. Obtaining a non-trivial lower bound for radius is stated as an open problem
in [66]. Another advantage of our technique is that it extends to computing the radius, for which
we show that the same strong near-linear barriers above hold.

Theorem 3. Any algorithm for computing the radius requires Ω
(

𝑛

log2 𝑛

)
rounds, even in networks

of Θ(𝑛 log𝑛) edges.
Our techniques can also be used for proving lower bounds for approximating the network’s

radius, computing its eccentricities, and for verifying that a given subgraph is a spanner, even on
sparse networks with a constant degree. The interested reader can find the details in [1].

1.1.2 Near-Quadratic Lower Bounds. High lower bounds for the congest model can be obtained
rather artificially, by forcing large inputs and outputs that must be exchanged, e.g., by having large
edge weights, or by requiring a node to output its 𝑡-neighborhood for some value of 𝑡 . However,
until this work no super-linear lower bound for a natural problem was known, let alone near-
quadratic bound. We remedy this state of affairs by showing quadratic and near-quadratic lower
bound for several natural decision problems on graphs, where each input can be represented by
𝑂 (log𝑛) bits, and each output value consists of a single bit, or 𝑂 (log𝑛) bits. Specifically, using the
bit-gadget we obtain graph constructions with small cuts that lead to the following lower bounds.

Theorem 4. Any algorithm for computing a minimum vertex cover of the network or deciding

whether there is a vertex cover of a given size requires Ω(𝑛2/log2 𝑛) rounds.
This directly applies also to computing an exact maximum independent set, as the latter is the

complement of an exact minimum vertex cover. This lower bound is in stark contrast to the recent
𝑂 (logΔ/log logΔ)-round algorithm of [13] for obtaining a (2 + 𝜖)-approximation to the minimum
vertex cover.

An additional lower bound that we obtain using the bit-gadget is for coloring, as follows.

Theorem 5. Any algorithm for coloring a 𝜒-colorable network in 𝜒 colors, or for deciding if it is

𝑐-colorable for a given 𝑐 , requires Ω(𝑛2/log2 𝑛) rounds.
We further show that certain approximations of 𝜒 are hard, and we believe that such a lower

bound should hold even for looser approximations. All these lower bounds hold for randomized
algorithms which succeed with high probability.3

3An event occurs with high probability (w.h.p) if it occurs with probability 1
𝑛𝑐

, for some constant 𝑐 > 0.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Abboud, Censor-Hillel, Khoury, Paz

We then show that not only NP-hard problems are near-quadratically hard in the congest
model, by presenting two simple problems that admit polynomial-time sequential algorithms,
but require quadratic or near-quadratic time in the congest model. The weighted cycle detection
problem requires Ω(𝑛2/log𝑛) rounds, even when using randomized algorithms. The identical

subgraph detection problem requires Ω(𝑛2) rounds deterministically, while we present an 𝑂 (𝐷)-
round randomized algorithm for it, yielding the strongest possible separation between deterministic
and randomized complexities for global problems in the congest model. A slight variant of this
problem gives even stronger separation, for general problems: we prove an Ω(𝑛2) rounds lower
bound for it, and give a constant-time randomized algorithm.

1.1.3 All Pairs Shortest Paths. An intriguing question in the congest model is the complexity of
computing exact weighted all-pairs-shortest-paths (APSP). The complexity of unweighted APSP
is known to be Θ(𝑛/log𝑛) [53, 67], both for deterministic and randomized algorithms. Several
recent works study the complexity of computing weighted APSP [6, 7, 24, 46, 68], and the most
recent results are a randomized �̃� (𝑛)-round algorithm [24], and a deterministic �̃� (𝑛3/2)-round
algorithm [7].

We provide an extremely simple linear lower bound of Ω(𝑛) rounds for weighted APSP, extending
a construction of Nanongkai [88], which separates its complexity from that of the unweighted
case. Moreover, we formally prove that the commonly used framework of reducing a two-party
communication complexity problem to a problem in the congest model, using a fixed-partition
simulation, cannot provide a super-linear lower bound for weighted APSP, regardless of the function
and the graph construction used. We then extend this claim for 𝑡-party communication complexity
with a shared blackboard. For the randomized case, this is not surprising in light of the recent
randomized �̃� (𝑛) algorithm [24]; however, it shows that closing the gap for the deterministic case
might require a new technique, unless the true complexity will turn out to be 𝑂 (𝑛).

1.1.4 Streaming Algorithms. The semi-streaming model of computation [49] is an important model
for processing massive graphs. Here, a single processing unit with a bounded amount of memory
obtains information of the graph edges one-by-one and is required to process them and return
an output based on the graph properties. Usually, the memory is assumed to be of 𝑂 (𝑛 poly log𝑛)
bits for an 𝑛-node graph, and the number of allowed passes over the edges is one, constant, or
logarithmic in 𝑛.

In the standard model, called the edge arrival model, the order of the edges is adversarial. In the
node arrival model, the adversary is restricted in that edges must arrive grouped by nodes—all the
edges connecting a node to the previous nodes arrive together; in the adjacency streaming model,
all the edges adjacent to a node arrive together, regardless of the previous nodes; specifically, each
edge appears twice, once for each of its endpoints. For simplicity, we prove our bounds for the
edge arrival model, but it is immediate to check that they also apply to the node arrival and the
adjacency streaming models.

We prove that constructions for lower bounds for the congest model translate directly to give
lower bounds for the semi-streaming model, and, with the standard parameters, impossibility
results. Specifically, for the problems for which we obtain near-quadratic lower bounds in the
congest model, we establish that the product of the memory size and the number of passes in the
streaming model must be quadratic in 𝑛.
The mentioned lower bound applies to vertex cover, maximum independent set, coloring and

other problem in the semi-streaming model. Our construction for maximum independent set also
easily translates to give the same lower bound for the maximum clique problem. Some bounds close
to ours are known in the literature, as discussed next, but our work has several advantages: we

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:7

give a unified framework, using simple lower bound graphs and simple communication complexity
problems, and these bounds are robust to multiple-pass algorithms and to variants of the model.
For vertex cover, there is a known lower bound of Ω(𝑘2) for deciding the existence of a cover

of size 𝑘 in one pass, and an algorithm for the problem using �̃� (𝑘2) memory [37]. Our work
matches the lower bound for one-pass, and extends it to multiple-pass algorithms. The maximum
independent set and maximum clique problems were also previously studied [27, 40, 58]; the known
lower bounds also apply to these problems with a gap promise, so our construction is weaker in that
sense. On the other hand, we improve upon the best results for maximum independent set [58] by a
poly-logarithmic factor and in the simplicity of our construction, and on the results for maximum
clique [27] in that we handle multiple-pass algorithms.
Note that the bounds we present are not only for problems with a linear output size, such as

finding a maximum independent set or a coloring, but even for decision and computation problems,
e.g., computing the size of a maximum independent set or approximating the chromatic number.
For these problems, it is not even trivial that a linear memory is necessary.

Roadmap. In the following section we describe additional related work about the problems
discussed in this paper. Section 2 contains our preliminaries. In Section 3 we define the bit gadget
and discuss some of its properties. Sections 4, 5, and 6 contains our near-linear lower bounds,
near-quadratic lower bounds for NP hard problems, and near-quadratic lower bounds for problems
in P, respectively. Section 7 contains our results for computing APSP. Finally, in Section 8, we show
how our results imply new lower bounds for the streaming model.

1.2 Additional Related Work
Vertex Coloring, Minimum Vertex Cover, and Maximum Independent Set: One of the most central

problems in graph theory is vertex coloring, which has been extensively studied in the context
of distributed computing (see, e.g., [15–20, 33, 38, 39, 48, 51, 52, 61, 83, 86, 95, 100] and references
therein). The special case of finding a (Δ + 1)-coloring, where Δ is the maximum degree of a node
in the network, has been the focus of many of these studies, but is a local problem, and can be
solved in a much less than linear number of rounds. Much less attention was given to the problem
of distributively coloring a graph with the minimal number of colors possible: it was discussed for
rings [83], for planar graphs [5, 36], and for general graphs with a number of colors depending on
minimal number of colors possible [100].
Our paper suggests a reason for this state of affairs: coloring with a minimal number of colors

requires studying almost all the graph edges, so it is very likely that no nontrivial algorithms for
this problem exist.
Another classical problem in graph theory is finding a minimum vertex cover (MVC). In dis-

tributed computing, the time complexity of approximating MVC has been addressed in several
cornerstone studies [9, 10, 13, 20, 54, 55, 60, 72–75, 90, 96].

Finding a minimum size vertex cover is equivalent to finding a maximum size independent set, as
mentioned above, but this equivalence is not approximation preserving. Distributed approximation
algorithms for maximum independent set were studied in [12, 25, 41, 80]. Finally, finding amaximum
independent set and finding maximum clique are equivalent in the sequential setting, but not in
distributed or streaming settings. Nevertheless, our lower bounds for maximum independent set in
the streaming model do translate to lower bounds for maximum clique.

Distance Computation: Computing a 2-approximation of the diameter 𝐷 can be easily done by
constructing a single BFS tree, in𝑂 (𝐷) rounds. Getting close to 3/2-approximation for the diameter
can be done in a sublinear number of rounds: A value �̂� satisfying ⌊2𝐷/3⌋ ≤ �̂� ≤ 𝐷 can be computed

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Abboud, Censor-Hillel, Khoury, Paz

in 𝑂 (𝑛3/4 + 𝐷) rounds [66] or in (incomparable) 𝑂 (𝐷
√
𝑛 log𝑛) rounds [93]. These bounds were

later improved to𝑂 (
√
𝑛 log𝑛 +𝐷) rounds [79], and finally reduced to𝑂 (

√
𝑛 log𝑛 +𝐷) rounds [64].

Using communication complexity techniques similar to the ones discussed in the current paper, it
was recently shown that an exact computation of a (3/2)-approximation of the diameter cannot be
done in sublinear time as it requires Ω̃(𝑛) rounds, and achieving an approximation factor smaller
that 11/6 requires at least time polynomial in 𝑛 — specifically, Ω̃(𝑛1/6) rounds are necessary [56].
Additional distance computation problems have been widely studied in the congest model

for both weighted and unweighted networks [1, 22, 53, 62, 64–67, 78, 79, 88, 93]. One of the
most fundamental problems of distance computation is computing all pairs shortest paths. For
unweighted networks, an upper bound of𝑂 (𝑛/log𝑛) was recently shown [67], matching an earlier
lower bound [53]. Moreover, the possibility of bypassing this near-linear barrier for any constant
approximation factor was ruled out [88]. For weighted APSP, the possibility of extending the lower
bound from the unweighted case [88] was previously observed by Lenzen (see the second remark
after Corollary 8.4 in his lecture notes [77]); for completeness, we provide a formal proof of this
claim. For randomized weighted APSP, an �̃� (𝑛5/3)-round algorithm was shown [46], improved by
an �̃� (𝑛5/4)-round algorithm [68], and finally by an �̃� (𝑛)-round algorithm [24]. For the deterministic
case, an 𝑂 (𝑛3/2)-round algorithm was recently presented [6, 7].

All the aforementioned lower bounds are proved using reductions to two-party communication
complexity problems. The first lower bounds were proved using a simulation argument, where the
nodes are partitioned between Alice and Bob, and the partition dynamically changes during the
course of the simulation [99]. In contrast, recent work uses a simpler simulation argument with a
fixed partition [66]. In Section 7.2, we show that the fixed partition approach cannot be used to
prove a super-linear lower bound for weighted APSP; however, this does not rule out the possibility
to prove such a bound using the dynamic partition approach (recent work shows a randomized
algorithm for the problem [24], but the deterministic case is still open [6]).

Streaming Algorithms: Streaming algorithms [63, 87] are a way to process massive information
streams that cannot fit into the memory of a single machine. In this paper we focus on streaming
algorithms for graph problems, and mainly on the semi-streaming algorithms [49], where the
memory is assume to be in Θ(𝑛 poly log𝑛).

Some problems solvable in the semi-streaming model include deciding connectivity and bipartite-
ness, building a minimum spanning tree, finding a 2-approximate maximum cardinality matching
(all discussed in [49]), (1 + 𝜖) (Δ + 1)-coloring [23], finding a (2 + 𝜖)-approximate maximum weight
matching [91], building cut sparsifiers [8], spectral sparsifiers [71], spanners [21, 45, 47, 50], and
counting subgraphs such as triangles [14], unweighted cycles [84], full bipartite graphs[29], and
small graph minors [26]. A (1 + 𝜖)-approximation to the single-source-shortest-paths problem can
be found when 𝑂 (1/𝜖2) passes are allowed [22].

On the lower bounds side, maximum matching cannot be approximated better than 𝑒/(𝑒 − 1) ≈
1.58 factor [69] in the semi-streaming model. Deciding (𝑠, 𝑡)-connectivity requires Ω(𝑛) bits of
memory, and Ω(𝑛/𝑅) bits if 𝑅 passes on the input are allowed, and so does computing the connected
components, testing planarity and more (see [63]). Maximum cut approximation was studied both
for upper and lower bounds [70]. The mentioned lower bounds are achieved using reductions to
communication complexity problems, andwe essentially follow their footsteps in term of techniques,
while achieving new lower bounds for different problems.

The Caro-Wei bound is a degree-sequence based lower bound on the size of a maximum in-
dependent set in a graph. Finding an independent set matching this bound was studied in [58],
and evaluating the value of the bound was recently studied in [40]; note that such a set might not
be a maximum independent set. There is a variety of upper and lower bounds for the maximum

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:9

independent set and maximum clique problems, under a gap assumption: either the graph contains
a large independent set (clique), or only a very small one [27, 59].

2 PRELIMINARIES
2.1 Computational Models
The congest model: In the congest model [92], the nodes of an undirected connected graph

𝐺 = (𝑉 , 𝐸) on |𝑉 | = 𝑛 nodes communicate over the graph edges in synchronous rounds. In each
round, each node can send a message of 𝑂 (log𝑛) bits to each of its neighbors. The complexity
measure of a distributed algorithm in this model is the number of rounds it needs in order to
complete. A weighted graph 𝐺 = (𝑉 , 𝐸,𝑤) is a graph augmented with an edge weight function
𝑤 : 𝐸 → {1, . . . ,𝑊 }. We assume that the maximum edge weight𝑊 is polynomial in 𝑛, and thus an
edge weight, or a sum of 𝑂 (𝑛) edge weights, can be sent in a single message.
Each node is assumed to have a unique id in {1, . . . , 𝑛}. At the beginning of an execution of an

algorithm, each node knows its own id and, if the graph is weighted, also the weights of the edges
adjacent to it. If the algorithm computes a graph parameter, it terminates when all nodes know the
value of this parameter. If it outputs a labeling (e.g., a coloring or an indication of membership in a
set) then each node should know its label.

The semi-streaming model: In the semi-streaming model [49], a single computational unit ex-
ecutes a centralized algorithm in order to process a large graph. The graph nodes are given in
advance to the algorithm, and the edges are read one-by-one (with their weights), in an adversarial
order. The algorithm is allowed to keep only𝑀 bits of memory, where usually𝑀 = 𝑂 (𝑛 poly log𝑛),
and to make only 𝑅 passes over the input edges, where usually 𝑅 = 𝑂 (1) or 𝑅 = 𝑂 (log𝑛).

2.2 Graph Parameters
We are interested in several classical graph problems. The distance between two nodes 𝑢, 𝑣 in the
graph, denoted d(𝑢, 𝑣), is the minimum number of hops in a path between them in an unweighted
graph, or the minimum weight of a path between them in a weighted graph. The diameter 𝐷

of the graph is the maximum distance between two nodes in it. The eccentricity of a node 𝑢 is
𝑒 (𝑢) = max𝑣 {d(𝑢, 𝑣)}, and the radius of the graph is min𝑢 {𝑒 (𝑢)}. For a given integer 𝑖 , an 𝑖-path
in 𝐺 is a simple path of 𝑖 hops.
A vertex cover of a graph is a set 𝑈 ⊆ 𝑉 such that for each edge 𝑒 ∈ 𝐸 we have 𝑒 ∩𝑈 ≠ ∅. A

minimum vertex cover is a vertex cover of minimum cardinality. An independent set is a set 𝑈 ⊆ 𝑉
for which 𝑢, 𝑣 ∈ 𝑈 =⇒ (𝑢, 𝑣) ∉ 𝐸, and a clique is a set𝑈 ⊆ 𝑉 for which 𝑢, 𝑣 ∈ 𝑈 =⇒ (𝑢, 𝑣) ∈ 𝐸.
A maximum independent set is an independent set of maximum cardinality, and a maximum clique

is a clique of maximum cardinality. A (proper) 𝑐-coloring of a graph is a function 𝑓 : 𝑉 → {1, . . . , 𝑐}
such that (𝑢, 𝑣) ∈ 𝐸 =⇒ 𝑓 (𝑢) ≠ 𝑓 (𝑣). The chromatic number 𝜒 of a graph is the minimum 𝑐 such
that a 𝑐-coloring of the graph exists.

2.3 Communication Complexity
In the two-party communication setting [76, 101], two players, Alice and Bob, are given two input
strings, 𝑥,𝑦 ∈ {0, 1}𝐾 , respectively, and need to jointly compute a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 →
{TRUE, FALSE} on their inputs. The communication complexity of a protocol 𝜋 for computing 𝑓 ,
denoted CC(𝜋), is the maximal number of bits Alice and Bob exchange in 𝜋 , taken over all values
of the pair (𝑥,𝑦). The deterministic communication complexity of 𝑓 , denoted CC(𝑓), is the minimum
over CC(𝜋), taken over all deterministic protocols 𝜋 that compute 𝑓 .
In a randomized protocol 𝜋 , Alice and Bob may each use a random bit string. A randomized

protocol 𝜋 computes 𝑓 if the probability, over all possible bit strings, that 𝜋 outputs 𝑓 (𝑥,𝑦) is at

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Abboud, Censor-Hillel, Khoury, Paz

least 2/3. The randomized communication complexity of 𝑓 , CC𝑅 (𝑓), is the minimum over CC(𝜋),
taken over all randomized protocols 𝜋 that compute 𝑓 .
For a vector 𝑥 , let 𝑥 [𝑖] be the 𝑖-th bit in the string 𝑥 . In the set-disjointness problem (DISJ𝐾),

the function 𝑓 is DISJ𝐾 (𝑥,𝑦), whose value is FALSE if there is an index 𝑖 ∈ {0, . . . , 𝐾 − 1} such that
𝑥 [𝑖] = 𝑦 [𝑖] = 1, and TRUE otherwise. We say that 𝑥 and 𝑦 are disjoint if DISJ𝐾 (𝑥,𝑦) = TRUE, and not
disjoint otherwise. In the Equality problem (EQ𝐾), the function 𝑓 is EQ𝐾 (𝑥,𝑦), whose output is
TRUE if 𝑥 = 𝑦, and FALSE otherwise. When 𝐾 is clear from the context, or is determined in a later
stage, we omit it from the notation.
Both the deterministic and randomized communication complexities of the DISJ𝐾 problem are

known to be Ω(𝐾) [76, Example 3.22]. The deterministic communication complexity of EQ𝐾 is in
Ω(𝐾) [76, Example 1.21], while its randomized communication complexity is in Θ(log𝐾) [97] (see
also [76, Example 3.9]).

Remark: For some of our constructions which use the DISJ function, we need to exclude the
all-0 or all-1 input vectors, in order to guarantee that the graphs are connected, as otherwise
proving impossibility is trivial. However, this restriction does not change the asymptotic bounds
for DISJ, since computing this function while excluding, e.g. the all-1 input vector, can be reduced
to computing this function for inputs that are shorter by one bit (by having the last bit fixed to 0 or
to 1).

2.4 Lower Bound Graphs
To prove lower bounds on the number of rounds necessary in order to solve a distributed problem
in the congest model, we use reductions from two-party communication complexity problems.
The reductions are defined as follows.

Definition 1. (Family of Lower Bound Graphs)

Fix an integer 𝐾 , a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 → {TRUE, FALSE} and a graph predicate 𝑃 . A family

of graphs

{
𝐺𝑥,𝑦 = (𝑉 , 𝐸𝑥,𝑦) | 𝑥,𝑦 ∈ {0, 1}𝐾

}
with a partition 𝑉 = 𝑉𝐴 ¤∪𝑉𝐵 is said to be a family of

lower bound graphs for the congest model w.r.t. 𝑓 and 𝑃 if the following properties hold:

(1) Only the existence or the weight of edges in 𝑉𝐴 ×𝑉𝐴 may depend on 𝑥 ;

(2) Only the existence or the weight of edges in 𝑉𝐵 ×𝑉𝐵 may depend on 𝑦;

(3) 𝐺𝑥,𝑦 satisfies the predicate 𝑃 iff 𝑓 (𝑥,𝑦) = TRUE.

We use the following theorem, which is standard in the context of communication complexity-
based lower bounds for the congest model (see, e.g. [1, 43, 53, 65]). Its proof is by a standard
simulation argument.

Theorem 6. Fix a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 → {TRUE, FALSE} and a predicate 𝑃 . If there is a

family {𝐺𝑥,𝑦} of lower bound graphs for the congestmodel w.r.t. 𝑓 and 𝑃 with𝐶 = 𝐸 (𝑉𝐴,𝑉𝐵) then any
deterministic algorithm for deciding 𝑃 in the congest model requires Ω(CC(𝑓)/(|𝐶 | log𝑛)) rounds,
and any randomized algorithm for deciding 𝑃 in the congest model requires Ω(CC𝑅 (𝑓)/(|𝐶 | log𝑛))
rounds.

Proof. Let 𝐴𝐿𝐺 be a distributed algorithm in the congest model that decides 𝑃 in 𝑇 rounds.
Given inputs 𝑥,𝑦 ∈ {0, 1}𝐾 to Alice and Bob, respectively, Alice constructs the part of 𝐺𝑥,𝑦 for the
nodes in 𝑉𝐴 and Bob does so for the nodes in 𝑉𝐵 . This can be done by items 1 and 2 in Definition 1,
and since 𝑉𝐴 and 𝑉𝐵 are disjoint. Alice and Bob simulate 𝐴𝐿𝐺 by exchanging the messages that
are sent during the algorithm between nodes of 𝑉𝐴 and nodes of 𝑉𝐵 in either direction, while the
messages within each set of nodes are simulated locally by the corresponding player without any
communication. Since item 3 in Definition 1 also holds, we have that Alice and Bob correctly output

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:11

a0 a1 a2 ak−1

f 0
A

b0 b1 b2 bk−1

f 1
A

t1
A

t0
A

f 1
B

f 0
B

t1
B

t0
B

A B

FA TA FB TB

Fig. 1. The bit-gadget construction

𝑓 (𝑥,𝑦) based on the output of 𝐴𝐿𝐺 . For each edge in the cut, Alice and Bob exchange𝑂 (log𝑛) bits
per round. Since there are 𝑇 rounds and |𝐶 | edges in the cut, the number of bits exchanged in this
protocol for computing 𝑓 is 𝑂 (𝑇 |𝐶 | log𝑛). The lower bounds for 𝑇 now follows directly from the
lower bounds for CC(𝑓) and CC𝑅 (𝑓), where in the randomized case we note that an algorithm that
succeeds with high probability definitely succeeds with probability at least 2/3. □

In what follows, for each decision problem addressed, we describe a fixed graph construc-
tion 𝐺 = (𝑉 , 𝐸) with a partition 𝑉 = 𝑉𝐴 ¤∪𝑉𝐵 , which we then generalize to a family of graphs{
𝐺𝑥,𝑦 = (𝑉 , 𝐸𝑥,𝑦) | 𝑥,𝑦 ∈ {0, 1}𝐾

}
. We then show that

{
𝐺𝑥,𝑦

}
is a family lower bound graphs w.r.t.

to some communication complexity problem 𝑓 and the required predicate 𝑃 . By Theorem 6 and the
known lower bounds for the two-party communication problem 𝑓 , we deduce a lower bound for
any algorithm for deciding 𝑃 in the congest model.

We use 𝑛 for the number of nodes, 𝐾 for the size of the input strings, and a third parameter 𝑘 as
an auxiliary parameter, usually for the size of the node-set that touches the edges that depend on
the input. The number of nodes 𝑛 determines 𝑘 and 𝐾 , and we usually only show the asymptotic
relation between the three parameters and leave the exact values implicit.

3 THE BIT-GADGET CONSTRUCTION
The main technical novelty in our lower bounds comes from the ability to encode large communica-
tion complexity problems in graphs with small cuts. To this end, we use the following construction
(see Figure 1).

Fix an integer 𝑘 which is a power of 2, and start with two sets of 𝑘 nodes each, 𝐴 = {𝑎𝑖 | 𝑖 ∈
{0, . . . , 𝑘 − 1}} and 𝐵 = {𝑏𝑖 | 𝑖 ∈ {0, . . . , 𝑘 − 1}}. For each set 𝑆 ∈ {𝐴, 𝐵}, add two corresponding sets
of log𝑘 nodes each, denoted 𝐹𝑆 = {𝑓 ℎ

𝑆
| ℎ ∈ {0 . . . , log𝑘 − 1}} and𝑇𝑆 = {𝑡ℎ

𝑆
| ℎ ∈ {0, . . . , log𝑘 − 1}}.

The latter are called the bit-nodes and they constitute the bit-gadget. Connect the nodes of each set
𝑆 ∈ {𝐴, 𝐵} to their corresponding bit-nodes according to their indices, as follows. Let 𝑠𝑖 be a node
in a set 𝑆 ∈ {𝐴, 𝐵}, i.e., 𝑠 ∈ {𝑎, 𝑏} and 𝑖 ∈ {0, . . . , 𝑘 − 1}, and let 𝑖ℎ denote the ℎ-th bit in the binary
representation of 𝑖 . For such 𝑠𝑖 , define bin(𝑠𝑖) =

{
𝑓 ℎ
𝑆

| 𝑖ℎ = 0
}
∪
{
𝑡ℎ
𝑆
| 𝑖ℎ = 1

}
, and connect 𝑠𝑖 by an

edge to each of the nodes in bin(𝑠𝑖). Finally, connect the bit-nodes: for each ℎ ∈ {0, . . . , log𝑘 − 1}
connect 𝑓 ℎ

𝐴
to 𝑡ℎ

𝐵
and 𝑡ℎ

𝐴
to 𝑓 ℎ

𝐵
. Set 𝑉𝐴 = 𝐴 ∪ 𝐹𝐴 ∪𝑇𝐴 and 𝑉𝐵 = 𝑉 \𝑉𝐴.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Abboud, Censor-Hillel, Khoury, Paz

a0

f 0
A

bk−1

t0
A f 0

B t0
B

A B

FA TA FB TB

cA c̄A cBc̄B

Fig. 2. Diameter lower bound construction. The dashed edges represent edges whose existence depends on 𝑥
or 𝑦.

For example, consider the node 𝑎3 ∈ 𝐴. The binary representation of the index 𝑖 = 3 is 3ℎ = 0 for
all ℎ ≥ 2, and 30 = 31 = 1. Hence, bin(𝑎3) =

{
𝑓 ℎ
𝐴

| ℎ ≥ 2
}
∪
{
𝑡0
𝐴
, 𝑡1
𝐴

}
, and these are the nodes 𝑎3 is

connected to.
In the next sections, we augment the above construction with fixed nodes and edges, and then

add some more edges according to the input strings, in order to create a family of graphs with some
desired properties. The next claim exemplifies one of the basic properties of this construction.

Claim 1. For every 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}, if 𝑖 ≠ 𝑗 then d(𝑎𝑖 , 𝑏 𝑗) ≤ 3.

Proof. Since 𝑖 ≠ 𝑗 , there is ℎ ∈ {0, . . . , log𝑘 − 1} such that 𝑖ℎ ≠ 𝑗ℎ . If 𝑖ℎ = 1 and 𝑗ℎ = 0, then
the 3-path (𝑎𝑖 , 𝑡ℎ

𝐴
, 𝑓 ℎ
𝐵
, 𝑏 𝑗) connects the desired nodes; otherwise, 𝑖ℎ = 0 and 𝑗ℎ = 1, and the 3-path

(𝑎𝑖 , 𝑓 ℎ
𝐴
, 𝑡ℎ
𝐵
, 𝑏 𝑗) connects the nodes. □

It is not hard to also show that d(𝑎𝑖 , 𝑏 𝑗) ≥ 3 and that d(𝑎𝑖 , 𝑏𝑖) = 5, and we indeed prove similar
claims in Section 4. In Section 5.1 we discuss the size and structure of a minimum vertex cover for
this gadget.

4 NEAR-LINEAR LOWER BOUNDS FOR SPARSE GRAPHS
In this section we present our near-linear lower bounds for sparse networks. Sections 4.1 and 4.2
contain our lower bounds for computing the exact or approximate diameter, and Section 4.3 contains
our lower bound for computing the radius.

4.1 Exact Diameter
Our goal in this section is to prove the following theorem.

Theorem 1 Any algorithm for computing the exact diameter requires Ω
(

𝑛

log2 𝑛

)
rounds, even in

networks of Θ(𝑛 log𝑛) edges.
In order to prove Theorem 1, we describe a family of lower bound graphs with respect to the

set-disjointness function and the predicate 𝑃 that says that the graph has diameter at least 5. We

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:13

start by describing the fixed graph construction and then define the family of lower bound graphs
and analyze its relevant properties.

The fixed graph construction: Start with the graph𝐺 and partition (𝑉𝐴,𝑉𝐵) described in Section 3,
and add two nodes 𝑐𝐴, 𝑐𝐴 to 𝑉𝐴, and another two nodes 𝑐𝐵, 𝑐𝐵 to 𝑉𝐵 (see Figure 2). For each set
𝑆 ∈ {𝐴, 𝐵}, connect all nodes in 𝑆 to the center 𝑐𝑆 , all the bit-nodes 𝐹𝑆 ∪ 𝑇𝑆 to 𝑐𝑆 , and the two
centers 𝑐𝑆 , 𝑐𝑆 to each other. Finally, connect 𝑐𝐴 to 𝑐𝐵 .

Adding edges corresponding to the strings 𝑥 and𝑦: Given two binary strings 𝑥,𝑦 ∈ {0, 1}𝑘 , augment
the graph defined above with additional edges, which defines 𝐺𝑥,𝑦 . For each 𝑖 ∈ {0, . . . , 𝑘 − 1}, if
𝑥 [𝑖] = 0 then add an edge between the nodes 𝑎𝑖 and 𝑐𝐴, and if 𝑦 [𝑖] = 0 then add an edge between
𝑏𝑖 and 𝑐𝐵 .

Claim 2. For every 𝑢, 𝑣 such that (𝑢, 𝑣) ∉ (𝐴 × 𝐵) ∪ (𝐵 ×𝐴), it holds that d(𝑢, 𝑣) ≤ 4.

Proof. Observe that every node in 𝑉 \ (𝐴 ∪ 𝐵) is connected to 𝑐𝐴 or to 𝑐𝐵 , and these two nodes
are neighbors. Thus, the distance between every two nodes in 𝑉 \ (𝐴 ∪ 𝐵) is at most 3. The claim
follows from this, and from the fact that any node in 𝐴 and any node in 𝐵 are connected to a node
in 𝑉 \ (𝐴 ∪ 𝐵). □

The following lemma is the main ingredient in proving that
{
𝐺𝑥,𝑦

}
is a family of lower bound

graphs.

Lemma 1. The diameter of 𝐺𝑥,𝑦 is at least 5 if and only if 𝑥 and 𝑦 are not disjoint.

Proof. Assume that the sets are disjoint, i.e., for every 𝑖 ∈ {0, . . . , 𝑘 − 1} either 𝑥 [𝑖] = 0 or
𝑦 [𝑖] = 0. We show that for every 𝑢, 𝑣 ∈ 𝑉 it holds that d(𝑢, 𝑣) ≤ 4. Consider the following cases:

(1) (𝑢, 𝑣) ∉ (𝐴 × 𝐵) ∪ (𝐵 ×𝐴): By Claim 2, d(𝑢, 𝑣) ≤ 4.
(2) 𝑢 = 𝑎𝑖 ∈ 𝐴 and 𝑣 = 𝑏 𝑗 ∈ 𝐵 (or vice versa) for 𝑖 ≠ 𝑗 : Claim 1 implies d(𝑢, 𝑣) ≤ 3.
(3) 𝑢 = 𝑎𝑖 , 𝑣 = 𝑏𝑖 (or vice versa) for some 𝑖: By the assumption, either 𝑥 [𝑖] = 0 or 𝑦 [𝑖] = 0, and

assume the former without loss of generality, implying that 𝑎𝑖 is connected by an edge to 𝑐𝐴.
Thus, the path (𝑎𝑖 , 𝑐𝐴, 𝑐𝐵, 𝑐𝐵, 𝑏𝑖) exists in the graph, and d(𝑎𝑖 , 𝑏𝑖) ≤ 4.

For the other direction, assume that the two sets are not disjoint, i.e., there is some 𝑖 ∈ {0, . . . , 𝑘 − 1}
for which 𝑥 [𝑖] = 𝑦 [𝑖] = 1. In this case, 𝑎𝑖 is not connected by an edge to 𝑐𝐴 and 𝑏𝑖 is not connected
by an edge to 𝑐𝐵 . Note that 𝑉𝐴,𝑉𝐵 are disjoint, 𝑎𝑖 belongs to 𝑉𝐴 and 𝑏𝑖 to 𝑉𝐵 , so any path between
𝑎𝑖 and 𝑏𝑖 must go through an edge connecting a node from 𝑉𝐴 and a node from 𝑉𝐵 . Recall that
bin(𝑎𝑖) =

{
𝑓 ℎ
𝐴

| 𝑖ℎ = 0
}
∪
{
𝑡ℎ
𝐴
| 𝑖ℎ = 1

}
, and bin(𝑏𝑖) is similarly defined, with 𝐵 instead of 𝐴. Fix a

shortest path from 𝑎𝑖 to 𝑏𝑖 , and consider the following cases, distinguished by the first edge in the
path crossing from 𝑉𝐴 to 𝑉𝐵 :
(1) The path uses the edge (𝑐𝐴, 𝑐𝐵): Since 𝑎𝑖 is not connected by an edge to 𝑐𝐴, and 𝑏𝑖 is not

connected to 𝑐𝐵 , we have d(𝑎𝑖 , 𝑐𝐴) ≥ 2 and d(𝑏𝑖 , 𝑐𝐵) ≥ 2, so the length of the path is at least
5.

(2) The path uses an edge (𝑓 ℎ
𝐴
, 𝑡ℎ
𝐵
) with 𝑓 ℎ

𝐴
∉ bin(𝑎𝑖), or an edge (𝑡ℎ

𝐴
, 𝑓 ℎ
𝐵
) with 𝑡ℎ

𝐴
∉ bin(𝑎𝑖):

For the first case, note that 𝑎𝑖 and 𝑡ℎ
𝐴
are not connected by an edge, and they do not even

have a common neighbor. Thus, d(𝑎𝑖 , 𝑡ℎ
𝐴
) ≥ 3, and d(𝑎𝑖 , 𝑏𝑖) ≥ 5. The case of (𝑡ℎ

𝐴
, 𝑓 ℎ
𝐵
) with

𝑡ℎ
𝐴
∉ bin(𝑎𝑖) is analogous.

(3) The path uses an edge (𝑓 ℎ
𝐴
, 𝑡ℎ
𝐵
) with 𝑓 ℎ

𝐴
∈ bin(𝑎𝑖), or an edge (𝑡ℎ

𝐴
, 𝑓 ℎ
𝐵
) with 𝑡ℎ

𝐴
∈ bin(𝑎𝑖):

The definitions of bin(𝑎𝑖) and bin(𝑏𝑖) immediately imply 𝑡ℎ
𝐵
∉ bin(𝑏𝑖) for the first case, or

𝑓 ℎ
𝐵
∉ bin(𝑏𝑖) for the second. The rest of the argument is the same as the previous: d(𝑡ℎ

𝐵
, 𝑏𝑖) ≥ 3

or d(𝑓 ℎ
𝐵
, 𝑏𝑖) ≥ 3, both implying d(𝑎𝑖 , 𝑏𝑖) ≥ 5.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Abboud, Censor-Hillel, Khoury, Paz

b̄
0

b̄
1

b̄
2

b̄
k−1

a0

f 0
A

bk−1

t0
A f 0

B t0
B

A B

FA TA FB TB

cA c̄A cBc̄B

Ā
ā0 ā1 ā2 āk−1

B̄

Fig. 3. Diameter approximation lower bound construction. Bold (blue) edges represent 𝑞-paths.

Thus, any path between 𝑎𝑖 and 𝑏𝑖 must have length at least 5. □

Having constructed a family of lower bound graphs, we are now ready to prove Theorem 1.
Proof of Theorem 1: To complete the proof of Theorem 1, note that 𝑛 ∈ Θ(𝑘), and thus 𝐾 =

|𝑥 | = |𝑦 | = Θ(𝑛). Furthermore, the only edges in the cut 𝐸 (𝑉𝐴,𝑉𝐵) are the edges between nodes in
𝐹𝐴 ∪𝑇𝐴 and nodes in 𝐹𝐵 ∪𝑇𝐵 , and the edge (𝑐𝐴, 𝑐𝐵). Thus, in total, there are Θ(log𝑛) edges in the
cut 𝐸 (𝑉𝐴,𝑉𝐵). Since Lemma 1 shows that {𝐺𝑥,𝑦} is a family of lower bound graphs, we can apply
Theorem 6 and deduce that any algorithm in the congest model for deciding whether a given
graph has a diameter at least 5 requires at least Ω(𝑘/log2 𝑛) = Ω(𝑛/log2 𝑛) rounds. Finally, observe
that the number of edges in the construction is 𝑂 (𝑛 log𝑛). □

4.2 (3/2 − 𝜀)-Approximation of the Diameter
In this section we show how to modify our sparse construction presented in the previous section
in order to achieve a near-linear lower bound even for computing a (3/2 − 𝜀)-approximation of the
diameter.
Theorem 2 For any constant 0 < 𝜀 < 1/2, any algorithm for computing a (3/2 − 𝜀)-approximation

of the diameter requires Ω
(

𝑛

log3 𝑛

)
rounds, even in networks of Θ(𝑛) edges.

As in the proof of Theorem 1, we show that there is a family of lower bound graphs with respect
to the set-disjointness function and the predicate 𝑃 that says that the graph has a diameter of length
at least 𝐷 , where 𝐷 is an integer that may depend on 𝑛. Note that, unlike the case of proving a
lower bound for computing the exact diameter, here we need to construct a family of lower bound
graphs for which even an algorithm that computes a (3/2 − 𝜖)-approximation to the diameter can
be used to determine whether 𝑃 holds.

The fixed graph construction: Start with our graph construction from the previous section and
stretch it by replacing some edges by paths of length 𝑞, an integer that is chosen later. Apply the
following changes to the construction described in the previous section (see Figure 3):
(1) Replace all the edges inside𝑉𝐴 and all the edges inside𝑉𝐵 by paths of length 𝑞. The cut edges

and the edges that depend on the inputs remain intact.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:15

(2) Add two additional sets of nodes 𝐴 = {𝑎𝑖 | 𝑖 ∈ {0, . . . , 𝑘 − 1}}, 𝐵 = {𝑏𝑖 | 𝑖 ∈ {0, . . . , 𝑘 − 1}},
each of size 𝑘 . For each 𝑖 ∈ {0, . . . , 𝑘 − 1}, connect 𝑎𝑖 to 𝑎𝑖 and 𝑏𝑖 to 𝑏𝑖 , by paths of length 𝑞.

The partition of nodes into 𝑉𝐴 and 𝑉𝐵 is similar to the previous: 𝑉𝐴 is composed of the nodes in
𝑉𝐴 in the previous construction, the set𝐴, and the nodes in the paths between them.𝑉𝐵 is composed
of the rest of the nodes.

Adding edges corresponding to the strings 𝑥 and 𝑦: Given two binary strings 𝑥,𝑦 ∈ {0, 1}𝑘 , define
𝐺𝑥,𝑦 by adding edges to the graph in a way similar to the one described in the previous section.
That is, if 𝑥 [𝑖] = 0 then add an edge between the nodes 𝑎𝑖 and 𝑐𝐴, and if 𝑦 [𝑖] = 0 then add an edge
between 𝑏𝑖 and 𝑐𝐵 .
In this construction, the nodes 𝐴 ∪ 𝐵 ∪ {𝑐𝐴, 𝑐𝐵} serve as hubs, in the sense that any node is at

distance at most 𝑞 from one of the hubs and the hubs are at distance at most 2𝑞+2 from one another,
implying 𝐷 ≤ 4𝑞 + 2. The only exception to this is if the input strings are not disjoint, in which
case there are 𝑎𝑖 , 𝑏𝑖 with d(𝑎𝑖 , 𝑏𝑖) ≥ 4𝑞 + 1, implying 𝐷 ≥ d(𝑎𝑖 , 𝑏𝑖) ≥ 6𝑞 + 1. Let us formalize these
arguments.

Claim 3. For every 𝑢, 𝑣 ∈ 𝐴 ∪ 𝐵 ∪ {𝑐𝐴, 𝑐𝐵}, if there is no index 𝑖 ∈ {0, . . . , 𝑘 − 1} such that 𝑢 = 𝑎𝑖

and 𝑣 = 𝑏𝑖 , then d(𝑢, 𝑣) ≤ 2𝑞 + 1.

Proof. For each 𝑖 there is a path from 𝑎𝑖 to 𝑐𝐵 of length 2𝑞+1, which passes through 𝑐𝐴 and 𝑐𝐴, so
d(𝑎𝑖 , 𝑐𝐵) ≤ 2𝑞+1, and also d(𝑎𝑖 , 𝑐𝐴) ≤ 2𝑞+1. Similarly, d(𝑏𝑖 , 𝑐𝐴) ≤ 2𝑞+1, and also d(𝑏𝑖 , 𝑐𝐵) ≤ 2𝑞+1.
For every 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}, there is a 2𝑞-path from 𝑎𝑖 to 𝑎 𝑗 through 𝑐𝐴, so d(𝑎𝑖 , 𝑎 𝑗) ≤ 2𝑞, and
similarly d(𝑏𝑖 , 𝑏 𝑗) ≤ 2𝑞 using 𝑐𝐵 .

We are left with the case of 𝑎𝑖 and 𝑏 𝑗 where 𝑖 ≠ 𝑗 , which is a simple extension of Claim 1. In this
case, there must be some ℎ such that 𝑖ℎ ≠ 𝑗ℎ , and assume without loss of generality that 𝑖ℎ = 1 and
𝑗ℎ = 0. Hence, 𝑎𝑖 is connected to 𝑡ℎ

𝐴
by a 𝑞-path, and 𝑏 𝑗 is similarly connected to 𝑓 ℎ

𝐵
. Since 𝑡ℎ

𝐴
and

𝑓 ℎ
𝐵
are connected by an edge, we have d(𝑎𝑖 , 𝑏 𝑗) ≤ 2𝑞 + 1, as desired. □

The next lemma proves that
{
𝐺𝑥,𝑦

}
is a family of lower bound graphs.

Lemma 2. If 𝑥 and 𝑦 are disjoint then the diameter of 𝐺𝑥,𝑦 is at most 4𝑞 + 2, and otherwise it is at
least 6𝑞 + 1.

Proof. Assume that the sets are disjoint, so for every 𝑖 ∈ {0, . . . , 𝑘 − 1} either 𝑥 [𝑖] = 0 or
𝑦 [𝑖] = 0. Hence, for every 𝑖 there is a (2𝑞 + 2)-path from 𝑎𝑖 to 𝑏𝑖 , whether through 𝑐𝐴, 𝑐𝐵, 𝑐𝐵 or
through 𝑐𝐴, 𝑐𝐴, 𝑐𝐵 . Hence, d(𝑎𝑖 , 𝑏𝑖) ≤ 2𝑞 + 2, and together with Claim 2, we can conclude that for
every 𝑢 ′, 𝑣 ′ ∈ (𝐴 ∪ 𝐵 ∪ {𝑐𝐴, 𝑐𝐵}) we have d(𝑢, 𝑣) ≤ 2𝑞 + 2.

For each node 𝑣 ∈ 𝑉 , there exists a node 𝑣 ′ ∈ (𝐴 ∪ 𝐵 ∪ {𝑐𝐴, 𝑐𝐵}) such that d(𝑣, 𝑣 ′) ≤ 𝑞. Consider
any two nodes 𝑢, 𝑣 ∈ 𝑉 , and the nodes 𝑢 ′, 𝑣 ′ ∈ (𝐴 ∪ 𝐵 ∪ {𝑐𝐴, 𝑐𝐵}) closest to them. By the triangle
inequality, d(𝑢, 𝑣) ≤ d(𝑢,𝑢 ′) + d(𝑢 ′, 𝑣 ′) + d(𝑣 ′, 𝑣) ≤ 𝑞 + 2𝑞 + 2 + 𝑞 = 4𝑞 + 2, as desired.
Assume that the two sets are not disjoint, i.e., there is some 𝑖 ∈ {0, . . . , 𝑘 − 1} such that 𝑥 [𝑖] =

𝑦 [𝑖] = 1. Hence, 𝑎𝑖 is not connected directly to 𝑐𝐴 and 𝑏𝑖 is not connected directly to 𝑐𝐵 . We show
that d(𝑎𝑖 , 𝑏𝑖) ≥ 6𝑞 + 1.
First, note that any path connecting 𝑎𝑖 and 𝑏𝑖 must go through the 𝑞-paths connecting 𝑎𝑖 to 𝑎𝑖

and 𝑏𝑖 to 𝑏𝑖 , hence it suffices to prove d(𝑎𝑖 , 𝑏𝑖) ≥ 4𝑞 + 1. Observe that no shortest path from 𝑎𝑖

to 𝑏𝑖 uses an edge (𝑎 𝑗 , 𝑐𝐴) for 𝑗 ≠ 𝑖: using such an edge requires at least a (2𝑞)-path from 𝑎𝑖 to
𝑎 𝑗 or to 𝑐𝐴, plus the edge (𝑎 𝑗 , 𝑐𝐴) itself, while there is a path of length merely 2𝑞 from 𝑎𝑖 directly
to 𝑎 𝑗 or to 𝑐𝐴. A similar claim holds for 𝑏𝑖 and edges of the form (𝑏 𝑗 , 𝑐𝐵). Thus, a shortest path
connecting 𝑎𝑖 and 𝑏𝑖 only uses 𝑞-paths that replace edges of the graph from the previous section,
and cut edges. The proof of Lemma 1 shows that any such path must go through at least 4 edges

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Abboud, Censor-Hillel, Khoury, Paz

a0

f 0
A

bk−1

t0
A f 0

B t0
B

A B

FA TA FB TB

cA c̄A cBc̄B

w0

w1

w2

Fig. 4. Radius lower bound

which are internal to 𝑉𝐴 or 𝑉𝐵 , and one cut edge. In the current construction, this translates into 4
𝑞-paths and an edge, which implies d(𝑎𝑖 , 𝑏𝑖) ≥ 4𝑞 + 1, as desired. □

Using this family of lower bound graphs, we prove Theorem 2.
Proof of Theorem 2: To complete the proof of Theorem 2, consider the predicate 𝑃 of the diam-
eter of the graph being at least 6𝑞 + 1. In order to make

{
𝐺𝑥,𝑦

}
a family of lower bound graphs

for which even a (3/2 − 𝜖)-approximation algorithm decides 𝑃 , we choose a constant 𝑞 such that
(3
2
− 𝜀) · (4𝑞 + 2) < (6𝑞 + 1), which holds for any 𝑞 > 1

2𝜀
− 1

2
. Observe that 𝑘 ∈ Θ(𝑛/log𝑛) for

any constant 𝜀, and thus 𝐾 = |𝑥 | = |𝑦 | ∈ Θ(𝑛/log𝑛). Furthermore, the number of edges in the
cut is |𝐸 (𝑉𝐴,𝑉𝐵) | ∈ Θ(log𝑛). By applying Theorem 6 to the above construction, we deduce that
any algorithm in the congest model for computing a (3/2 − 𝜖)-approximation for the diameter
requires at least Ω

(
𝑛/log3 (𝑛)

)
rounds. Finally, observe that we replaced most of the edges from

the previous construction by a path of a constant number of nodes, so the total number of edges is
linear in the number nodes, as desired. □

4.3 Radius
In this section we extend our sparse construction and show that computing the radius requires a
near-linear number of rounds in the congest model, even on sparse graphs.

Theorem 3 Any algorithm for computing the radius requires Ω
(

𝑛

log2 𝑛

)
rounds, even in networks of

Θ(𝑛 log𝑛) edges.

The fixed graph construction: The graph construction for the radius is very similar to the one
described in Section 4.1, with the following changes (see also Figure 4).
(1) For each ℎ ∈ {0, . . . , log𝑘 − 1}, add the edge (𝑓 ℎ

𝐴
, 𝑡ℎ
𝐴
).

(2) Add a 2-path (𝑤0,𝑤1,𝑤2), and connect𝑤0 to all the nodes in 𝐴. Add the nodes𝑤0,𝑤1,𝑤2

to 𝑉𝐴.

Adding edges corresponding to the strings 𝑥 and 𝑦: Given two binary strings 𝑥,𝑦 ∈ {0, 1}𝑘 , we
define 𝐺𝑥,𝑦 as follows. If 𝑥 [𝑖] = 1, we add an edge between 𝑎𝑖 and 𝑐𝐴, and if 𝑦 [𝑖] = 1 we add an

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:17

edge between 𝑏𝑖 and 𝑐𝐵 . Note that unlike the reduction from the previous section, here we add an
edge if the corresponding bit is 1 rather than 0. Recall that the eccentricity of a node 𝑢 is defined by
𝑒 (𝑢) = max𝑣 {d(𝑢, 𝑣)}.

Claim 4. The graph family {𝐺𝑥,𝑦} defined above has the following properties:
(1) For every node 𝑢 ∈ 𝑉 \𝐴, it holds that 𝑒 (𝑢) ≥ 4.

(2) For every 𝑎𝑖 ∈ 𝐴 and 𝑢 ∈ 𝑉 \
{
𝑏𝑖 , 𝑐𝐵

}
, it holds that d(𝑎𝑖 , 𝑢) ≤ 3.

Proof. For 𝑢 ∉ 𝐴 ∪
{
𝑤0,𝑤1,𝑤2

}
, any path from 𝑢 to𝑤2 must go through a node 𝑎𝑖 ∈ 𝐴. Since

d(𝑤2, 𝑎𝑖) = 3 for every such 𝑎𝑖 ∈ 𝐴, we get d(𝑤2, 𝑢) > 3. For 𝑢 ∈
{
𝑤0,𝑤1,𝑤2

}
, note that no 𝑎𝑖 has

a common neighbor with 𝑐𝐵 , so d(𝑎𝑖 , 𝑐𝐵) ≥ 3 for all 𝑎𝑖 , so d(𝑢, 𝑐𝐵) > 3, proving 1.
For 2, if 𝑢 ∈

{
𝑤0,𝑤1,𝑤2

}
then d(𝑎𝑖 , 𝑢) ≤ 3 by construction. If 𝑢 ∈ {𝑐𝐴, 𝑐𝐴, 𝑐𝐵} then the path

(𝑎0, 𝑐𝐴, 𝑐𝐴, 𝑐𝐵) proves the claim. Every 𝑣 ∈ 𝐹𝐴 ∪𝑇𝐴 is in bin(𝑎𝑖) or a neighbor of a node in bin(𝑎𝑖),
so d(𝑎𝑖 , 𝑣) ≤ 2, and every 𝑢 ∈ 𝐹𝐵 ∪ 𝑇𝐵 is a neighbor of some 𝑣 ∈ 𝐹𝐴 ∪ 𝑇𝐴, implying d(𝑎𝑖 , 𝑢) ≤ 3.
Finally, if 𝑢 = 𝑏𝑖 for 𝑖 ≠ 𝑗 then d(𝑎𝑖 , 𝑢) ≤ 3 an argument that is analogous to Claim 1. □

Lemma 3. The strings 𝑥 and 𝑦 are disjoint if and only if the radius of 𝐺 is at least 4.

Proof. If the strings are not disjoint, i.e., there exists an 𝑖 ∈ {0, . . . , 𝑘 − 1} such that 𝑥 [𝑖] = 𝑦 [𝑖] =
1, then the edges (𝑎𝑖 , 𝑐𝐴), (𝑏𝑖 , 𝑐𝐵) exist in the graph. The 3-path (𝑎𝑖 , 𝑐𝐴, 𝑐𝐵, 𝑏𝑖) implies d(𝑎𝑖 , 𝑏𝑖) ≤ 3,
and the 3-path (𝑎𝑖 , 𝑐𝐴, 𝑐𝐵, 𝑐𝐵) implies d(𝑎𝑖 , 𝑐𝐵) ≤ 3. The rest of the proof is analogous to Claim 4(2):
d(𝑎𝑖 , 𝑢) ≤ 3 for every 𝑢 ∈ 𝑉 , and 𝑒 (𝑎𝑖) ≤ 3 as desired.

If the radius is at most 3, then by Claim 4(1) there must be a node 𝑎𝑖 ∈ 𝐴 with 𝑒 (𝑎𝑖) ≤ 3, which
implies d(𝑎𝑖 , 𝑏𝑖) ≤ 3. Since the nodes of bin(𝑎𝑖) and bin(𝑏𝑖) are not neighbors, there must be a
3-path connecting 𝑎𝑖 and 𝑏𝑖 that goes through the cut edge (𝑐𝐴, 𝑐𝐵). Hence, the edges (𝑎𝑖 , 𝑐𝐴) and
(𝑏𝑖 , 𝑐𝐵) exist in 𝐺 {𝑥,𝑦 } , so 𝑥 [𝑖] = 𝑦 [𝑖] = 1 and the strings are not disjoint. □

Proof of Theorem 3: Note that the number of edges on the cut is |𝐸 (𝑉𝐴,𝑉𝐵) | = Θ(log𝑛), and that
𝐾 = 𝑘 = Θ(𝑛). By Lemma 3, {𝐺𝑥,𝑦} is a family of lower bound graphs, so we can apply Theorem 6
to the above construction to deduce that any algorithm in the congest model for computing the
radius of a sparse network requires at least Ω(𝑛/log2 (𝑛)) rounds. □

5 NEAR-QUADRATIC LOWER BOUNDS FOR GENERAL GRAPHS
In this section we present the first super-linear lower bounds for natural graph problems in the
congest model. Section 5.1 introduces a relatively simple lower bound for the minimum vertex
cover and maximum independent set algorithms, and Section 5.2 presents lower bounds for 𝜒-
coloring algorithms.

5.1 Minimum Vertex Cover
The first near-quadratic lower bound we present is for computing a minimum vertex cover, as
stated in the following theorem.
Theorem 4 Any algorithm for computing a minimum vertex cover of the network or deciding whether

there is a vertex cover of a given size requires Ω(𝑛2/log2 𝑛) rounds.
A set of nodes is a vertex cover if and only if its complement is an independent set, which implies

that finding the minimum size of a vertex cover is equivalent to finding the maximum size of an
independent set. Thus, the following theorem is a direct corollary of Theorem 4.

Theorem 7. Any distributed algorithm for computing a maximum independent set or for deciding

whether there is an independent set of a given size requires Ω(𝑛2/log2 𝑛) rounds.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Abboud, Censor-Hillel, Khoury, Paz

a0
1

f 0
A1

bk−1
1

t0
A1

f 0
B1

t0
B1

A1 B1

FA1 TA1 FB1 TB1

a0
2

f k−1
A2

bk−1
2

tk−1
A2

f k−1
B2

tk−1
B2

A2 B2

FA2 TA2 FB2 TB2

Fig. 5. Lower bound graph for minimum vertex cover. The dashed edges represent edges whose existence
depends on 𝑥 or 𝑦.

Observe that a lower bound for deciding whether there is a vertex cover of some given size or
not implies a lower bound for computing a minimum vertex cover. This is because computing the
size of a given subset of nodes can be easily done in 𝑂 (𝐷) rounds using standard tools. Therefore,
to prove Theorem 4 it is sufficient to prove its second part. We do so by describing a family of lower
bound graphs with respect to the set-disjointness function and the predicate 𝑃 that says that the
graph has a vertex cover of size𝑀 , where𝑀 = 𝑀 (𝑛) is chosen later. We begin with describing the
fixed graph construction 𝐺 = (𝑉 , 𝐸) and then define the family of lower bound graphs and analyze
its relevant properties.

The fixed graph construction: Start with two copies of the gadget described in Section 3. That is,
the fixed graph (Figure 5) consists of four sets of size 𝑘 :𝐴1 = {𝑎𝑖1 | 𝑖 ∈ {0, . . . , 𝑘 − 1}},𝐴2 = {𝑎𝑖2 | 𝑖 ∈
{0, . . . , 𝑘 − 1}}, 𝐵1 = {𝑏𝑖1 | 𝑖 ∈ {0, . . . , 𝑘 − 1}} and 𝐵2 = {𝑏𝑖2 | 𝑖 ∈ {0, . . . , 𝑘 − 1}}. Each such set 𝑆 is
connected to 2 log𝑘 nodes: 𝐹𝑆 = {𝑓 ℎ

𝑆
| ℎ ∈ {0 . . . , log𝑘 − 1}} and 𝑇𝑆 = {𝑡ℎ

𝑆
| ℎ ∈ {0, . . . , log𝑘 − 1}},

where 𝐹𝐴1
,𝑇𝐴1

, 𝐹𝐵1 ,𝑇𝐵1 constitute one bit-gadget, and 𝐹𝐴2
,𝑇𝐴2

, 𝐹𝐵2 ,𝑇𝐵2 constitute another. Partition
the nodes into 𝑉𝐴 = 𝐴1 ∪𝐴2 ∪ 𝐹𝐴1

∪𝑇𝐴1
∪ 𝐹𝐴2

∪𝑇𝐴2
and 𝑉𝐵 = 𝑉 \𝑉𝐴.

Let 𝑠𝑖ℓ be a node in a set 𝑆 ∈ {𝐴1, 𝐴2, 𝐵1, 𝐵2}, i.e., 𝑠 ∈ {𝑎, 𝑏}, ℓ ∈ {1, 2} and 𝑖 ∈ {0, . . . , 𝑘 − 1}.
As before, connect 𝑠𝑖ℓ to bin(𝑠𝑖ℓ) =

{
𝑓 ℎ
𝑆

| 𝑖ℎ = 0
}
∪
{
𝑡ℎ
𝑆
| 𝑖ℎ = 1

}
. In addition, in each of the sets

𝐴1, 𝐴2, 𝐵1, 𝐵2, connect all the nodes to one another, forming a clique. Also, connect the nodes of

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:19

the bit-gadgets to form 4-cycles: for each ℎ ∈ {0, . . . , log𝑘 − 1} and ℓ ∈ {1, 2}, connect the 4-cycle
(𝑓 ℎ
𝐴ℓ
, 𝑡ℎ
𝐴ℓ
, 𝑓 ℎ
𝐵ℓ
, 𝑡ℎ
𝐵ℓ
).

The following two claims address the basic properties of vertex covers of 𝐺 .

Claim 5. Any vertex cover of 𝐺 must contain at least 𝑘 − 1 nodes from each of the cliques in

𝐴1, 𝐴2, 𝐵1 and 𝐵2, and at least 4 log𝑘 bit-nodes.

Proof. In order to cover all the edges of each of the cliques in 𝐴1, 𝐴2, 𝐵1 and 𝐵2, any vertex
cover must contain at least 𝑘 − 1 nodes of each clique. For each ℎ ∈ {0, . . . , log𝑘 − 1} and ℓ ∈ {1, 2},
in order to cover the edges of the 4-cycle (𝑓 ℎ

𝐴ℓ
, 𝑡ℎ
𝐴ℓ
, 𝑓 ℎ
𝐵ℓ
, 𝑡ℎ
𝐵ℓ
), any vertex cover must contain at least

two of the cycle nodes. □

Claim 6. If 𝑈 ⊆ 𝑉 is a vertex cover of 𝐺 of size 4(𝑘 − 1) + 4 log𝑘 , then there are two indices

𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1} such that all four nodes 𝑎𝑖1, 𝑎
𝑗

2
, 𝑏𝑖1, 𝑏

𝑗

2
are not in𝑈 .

Proof. By Claim 5,𝑈 must contain 𝑘 − 1 nodes from each clique 𝐴1, 𝐴2, 𝐵1 and 𝐵2, and 4 log𝑘
bit-nodes, so in each clique there is a node that is not in 𝑈 . Let 𝑎𝑖1, 𝑎

𝑗

2
, 𝑏𝑖

′
1 , 𝑏

𝑗 ′

2
be the nodes in

𝐴1, 𝐴2, 𝐵1, 𝐵2 which are not in𝑈 , respectively. To cover the edges connecting 𝑎𝑖1 to bin(𝑎𝑖1),𝑈 must
contain all the nodes of bin(𝑎𝑖1), and similarly,𝑈 must contain all the nodes of bin(𝑏𝑖′1). If 𝑖 ≠ 𝑖 ′ then
there is an index ℎ ∈ {0, . . . , log𝑘 − 1} such that 𝑖ℎ ≠ 𝑖 ′

ℎ
, so one of the edges (𝑓 ℎ

𝐴1
, 𝑡ℎ
𝐵1
) or (𝑡ℎ

𝐴1
, 𝑓 ℎ
𝐵1
)

is not covered by𝑈 . Thus, it must hold that 𝑖 = 𝑖 ′. A similar argument shows 𝑗 = 𝑗 ′. □

Adding edges corresponding to the strings 𝑥 and𝑦: Given two binary strings 𝑥,𝑦 ∈ {0, 1}𝑘2 , assume
they are indexed by pairs of the form (𝑖, 𝑗) ∈ {0, . . . , 𝑘 − 1}2. To define 𝐺𝑥,𝑦 , augment the graph
𝐺 defined above with edges as following. For each such pair (𝑖, 𝑗), if 𝑥 [𝑖, 𝑗] = 0, then add an edge
between 𝑎𝑖1 and 𝑎

𝑗

2
, and if 𝑦 [𝑖, 𝑗] = 0 then we add an edge between 𝑏𝑖1 and 𝑏

𝑗

2
. To prove that

{
𝐺𝑥𝑦

}
is a family of lower bound graphs, it remains to prove the following lemma.

Lemma 4. The graph 𝐺𝑥,𝑦 has a vertex cover of cardinality𝑀 = 4(𝑘 − 1) + 4 log𝑘 iff 𝑥 and 𝑦 are

not disjoint.

Proof. For the first implication, assume that 𝑥 and 𝑦 are not disjoint, and let 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}
be such that 𝑥 [𝑖, 𝑗] = 𝑦 [𝑖, 𝑗] = 1. Note that in this case 𝑎𝑖1 is not connected to 𝑎 𝑗

2
, and 𝑏𝑖1 is not

connected to 𝑏 𝑗
2
. Define a set𝑈 ⊆ 𝑉 as

𝑈 :=(𝐴1 \ {𝑎𝑖1}) ∪ (𝐴2 \ {𝑎 𝑗2}) ∪ (𝐵1 \ {𝑏𝑖1}) ∪ (𝐵2 \ {𝑏 𝑗2})
∪ bin(𝑎𝑖1) ∪ bin(𝑎 𝑗

2
) ∪ bin(𝑏𝑖1) ∪ bin(𝑏 𝑗

2
)

and show that𝑈 is a vertex cover of 𝐺𝑥,𝑦 , as follows.
First,𝑈 covers all the edges inside the cliques 𝐴1, 𝐴2, 𝐵1 and 𝐵2, as it contains 𝑘 − 1 nodes from

each clique. These nodes also cover all the edges connecting nodes in 𝐴1 to nodes in 𝐴2 and all the
edges connecting nodes in 𝐵1 to nodes in 𝐵2, since the edges (𝑎𝑖1, 𝑎

𝑗

2
) and (𝑏𝑖1, 𝑏

𝑗

2
) do not exist in𝐺𝑥,𝑦 .

Furthermore,𝑈 covers any edge connecting nodes (𝐴1\{𝑎𝑖1})∪(𝐴2\{𝑎 𝑗2})∪(𝐵1\{𝑏𝑖1})∪(𝐵2\{𝑏 𝑗2})
to the bit-gadgets. For each node 𝑠 ∈

{
𝑎𝑖1, 𝑎

𝑗

2
, 𝑏𝑖1, 𝑏

𝑗

2

}
, the nodes bin(𝑠) are in 𝑈 , so 𝑈 also covers

the edges connecting 𝑠 to the bit-gadget. Finally,𝑈 covers all the edges inside the bit-gadgets, as
from each 4-cycle (𝑓 ℎ

𝐴ℓ
, 𝑡ℎ
𝐴ℓ
, 𝑓 ℎ
𝐵ℓ
, 𝑡ℎ
𝐵ℓ
) it contains two non-adjacent nodes: if 𝑖ℎ = 0 then 𝑓 ℎ

𝐴1
, 𝑓 ℎ
𝐵1

∈ 𝑈
and otherwise 𝑡ℎ

𝐴1
, 𝑡ℎ
𝐵1

∈ 𝑈 , and if 𝑗ℎ = 0 then 𝑓 ℎ
𝐴2
, 𝑓 ℎ
𝐵2

∈ 𝑈 and otherwise 𝑡ℎ
𝐴2
, 𝑡ℎ
𝐵2

∈ 𝑈 . Thus, 𝑈 is a
vertex cover of size 4(𝑘 − 1) + 4 log𝑘 , as claimed.

For the other implication, let 𝑈 ⊆ 𝑉 be a vertex cover of 𝐺𝑥,𝑦 of size 4(𝑘 − 1) + 4 log𝑘 . Since
all the edges of 𝐺 are also edges of 𝐺𝑥,𝑦 , 𝑈 is also a cover of 𝐺 , so Claim 6 implies that there are

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Abboud, Censor-Hillel, Khoury, Paz

A2

A1 B1

FA1 TA1 FB1 TB1

B2

FA2 TA2 FB2 TB2

c2
b

c1
bc1

a

c0
a

c2
a

c0
b

Ā̄1

Ā2

Ā1

B̄2

B̄̄2

B̄1

B̄̄1

Ā̄2

Fig. 6. Lower bound graph for 3-coloring. Heavy edges represent a set of edges connecting a node to a set of
nodes. Edges connecting 𝑐1

𝑏
and 𝑐2

𝑏
to other nodes in 𝑉𝐵 are omitted.

indices 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1} such that 𝑎𝑖1, 𝑎
𝑗

2
, 𝑏𝑖1, 𝑏

𝑗

2
are not in 𝑈 . Since 𝑈 is a cover, the graph does

not contain the edges (𝑎𝑖1, 𝑎
𝑗

2
) and (𝑏𝑖1, 𝑏

𝑗

2
), so we conclude that 𝑥 [𝑖, 𝑗] = 𝑦 [𝑖, 𝑗] = 1, which implies

that 𝑥 and 𝑦 are not disjoint. □

Having constructed the family of lower bound graphs, we are now ready to prove Theorem 4.
Proof of Theorem 4: Note that 𝑛 ∈ Θ(𝑘), and thus 𝐾 = |𝑥 | = |𝑦 | = Θ(𝑛2), and furthermore, the
only edges in the cut 𝐸 (𝑉𝐴,𝑉𝐵) are the edges between nodes in 𝐹𝐴1

∪𝑇𝐴1
∪ 𝐹𝐴2

∪𝑇𝐴2
and nodes

in 𝐹𝐵1 ∪𝑇𝐵1 ∪ 𝐹𝐵2 ∪𝑇𝐵2 , which are in total Θ(log𝑛) edges. Since Lemma 4 shows that {𝐺𝑥,𝑦} is
a family of lower bound graphs, we can apply Theorem 6 to deduce that any algorithm in the
congestmodel for deciding whether a given graph has a cover of cardinality𝑀 = 4(𝑘 − 1) + 4 log𝑘
requires at least Ω(𝐾/log2 (𝑛)) = Ω(𝑛2/log2 (𝑛)) rounds. □

5.2 Graph Coloring
In this section we consider the problems of coloring a graph with 𝜒 colors, computing 𝜒 and
approximating it. We prove the following theorem.
Theorem 5 Any algorithm for coloring a 𝜒-colorable network in 𝜒 colors, or for deciding if it is

𝑐-colorable for a given 𝑐 , requires Ω(𝑛2/log2 𝑛) rounds.

The fixed graph construction: Define 𝐺 = (𝑉 , 𝐸) as follows (see Figure 6 for the general construc-
tion, and Figure 9 for an example with specific 𝑘 and inputs).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:21

A1

c1
a

c0
a

c2
a

Ā̄1

Ā1

ā̄
1
3

(a) A failed attempt to color𝐴1 without using 𝑐0. The
path 𝑎0

1
, . . . , ¯̄𝑎1

3
(marked by a double line) must be

colored alternately with 𝑐0 and 𝑐2, and so the edge
(¯̄𝑎1
3
, 𝑐1𝑎) is violated.

A1

c1
a

c0
a

c2
a

Ā̄1

Ā1

a1
1

(b) A coloring of 𝐴1 with 𝑎11 colored 𝑐0

Fig. 7. Part of the 3-coloring lower bound graph for 𝑘 = 4, which assures that at least one node in 𝐴1 is
colored by 𝑐0 (Proof of Claim 7)

Start with the family of graphs defined in Section 5.1, omitting the clique edges inside the four
sets 𝐴1, 𝐴2, 𝐵1, 𝐵2. Add the following two gadgets to the graph.
(1) Add three nodes 𝑐0𝑎, 𝑐1𝑎, 𝑐2𝑎 connected as a triangle, another three nodes 𝑐0

𝑏
, 𝑐1
𝑏
, 𝑐2
𝑏
connected as

a triangle, and edges connecting 𝑐𝑖𝑎 to 𝑐
𝑗

𝑏
for each 𝑖 ≠ 𝑗 ∈ {0, 1, 2}.

(2) For each set 𝑆 ∈ {𝐴1, 𝐴2, 𝐵1, 𝐵2}, add two sets of nodes, 𝑆 =
{
𝑠𝑖ℓ | 𝑠𝑖ℓ ∈ 𝑆

}
and ¯̄𝑆 =

{¯̄𝑠𝑖ℓ | 𝑠𝑖ℓ ∈ 𝑆
}
.

For each ℓ ∈ {1, 2} and 𝑖 ∈ {0, . . . , 𝑘 − 1} connect a path (𝑠𝑖ℓ , 𝑠𝑖ℓ , ¯̄𝑠𝑖ℓ), and for each ℓ ∈ {1, 2}
and 𝑖 ∈ {0, . . . , 𝑛 − 2}, connect ¯̄𝑠𝑖ℓ to 𝑠

𝑖+1
ℓ .

In addition, connect the gadgets by the following edges:
(a) (𝑐1𝑎, 𝑓 ℎ𝐴1

), (𝑐1𝑎, 𝑡ℎ𝐴1
), (𝑐1

𝑏
, 𝑓 ℎ
𝐵1
) and (𝑐1

𝑏
, 𝑡ℎ
𝐵1
), for each ℎ ∈ {0, . . . , log𝑘 − 1}.

(b) (𝑐2𝑎, 𝑓 ℎ𝐴2
), (𝑐2𝑎, 𝑡ℎ𝐴2

), (𝑐2
𝑏
, 𝑓 ℎ
𝐵2
) and (𝑐2

𝑏
, 𝑡ℎ
𝐵2
), for each ℎ ∈ {0, . . . , log𝑘 − 1}.

(c) (𝑐2𝑎, 𝑎𝑖1) and (𝑐1𝑎, ¯̄𝑎𝑖1), for each 𝑖 ∈ {0, . . . , 𝑘 − 1}; (𝑐2𝑎, 𝑎01) and (𝑐2𝑎, ¯̄𝑎𝑘−11).
(d) (𝑐2

𝑏
, 𝑏𝑖1) and (𝑐1

𝑏
, ¯̄𝑏𝑖1), for each 𝑖 ∈ {0, . . . , 𝑘 − 1}; (𝑐2

𝑏
, 𝑏01) and (𝑐2

𝑏
, ¯̄𝑏𝑘−11).

(e) (𝑐1𝑎, 𝑎𝑖2) and (𝑐2𝑎, ¯̄𝑎𝑖2), for each 𝑖 ∈ {0, . . . , 𝑘 − 1}; (𝑐1𝑎, 𝑎02) and (𝑐1𝑎, ¯̄𝑎𝑘−12).
(f) (𝑐1

𝑏
, 𝑏𝑖2) and (𝑐2

𝑏
, ¯̄𝑏𝑖2), for each 𝑖 ∈ {0, . . . , 𝑘 − 1}; (𝑐1

𝑏
, 𝑏02) and (𝑐1

𝑏
, ¯̄𝑏𝑘−12).

Assume there is a proper 3-coloring of 𝐺 . Denote by 𝑐0, 𝑐1 and 𝑐2 the colors of 𝑐0𝑎, 𝑐1𝑎 and 𝑐2𝑎
respectively. By construction, these are also the colors of 𝑐0

𝑏
, 𝑐1
𝑏
and 𝑐2

𝑏
, respectively. In Section 5.1

we present a specific vertex cover, and mention that its complement is an independent set. In the
current section, this independent set is colored by 𝑐0, and the part of the graph that did not appear
in the previous section is used in order to guarantee that coloring this independent set by 𝑐0 is the
only valid option. The following claims are thus very similar to those appearing in the previous
section.

Claim 7. In each set 𝑆 ∈ {𝐴1, 𝐴2, 𝐵1, 𝐵2}, at least one node is colored by 𝑐0.

Proof. We start by proving the claim for 𝑆 = 𝐴1 (see figure 7). Assume, towards a contradiction,
that none of the nodes of 𝐴1 is colored by 𝑐0. All these nodes are connected to 𝑐2𝑎 , so they are not
colored by 𝑐2 either, i.e., they all must be colored 𝑐1. Hence, all the nodes 𝐴1 are colored by 𝑐0 and
𝑐2. The nodes of ¯̄𝐴1 are connected to 𝑐1𝑎 , so they are colored by 𝑐0 and 𝑐2 as well.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Abboud, Censor-Hillel, Khoury, Paz

A1 B1

FA1 TA1 FB1 TB1

c2
b

c1
a

c0
a

c2
a

c0
b

c1
b

a0
1 b1

1

f 0
A1

t0
B1

(a) A failed attempt to color only 𝑎0
1
and 𝑏1

1
by 𝑐0 leads to the violation of the edge (𝑓 0

𝐴1
, 𝑡0
𝐵1
)

A1 B1

FA1 TA1 FB1 TB1

c2
b

c1
a

c0
a

c2
a

c0
b

c1
b

a1
1 b1

1

(b) A valid coloring with 𝑎1
1
and 𝑏1

1
colored 𝑐0

Fig. 8. Part of the 3-coloring lower bound graph for 𝑘 = 4, which assures that if 𝑎𝑖
1
is colored 𝑐0 then so

does 𝑏𝑖
1
(proof of Claim 8)

Hence, we have a path (𝑎01, ¯̄𝑎01, 𝑎
1
1,

¯̄𝑎11, . . . 𝑎
𝑘−1
1 , ¯̄𝑎𝑘−11) with an even number of nodes, starting in 𝑎01

and ending in ¯̄𝑎𝑘−11 . The colors of this path must alternate between 𝑐0 and 𝑐2, but both its endpoint
are connected to 𝑐2𝑎 , so they must both be colored 𝑐0, a contradiction.
A similar proof shows the claim for 𝑆 = 𝐵1. For 𝑆 ∈ {𝐴2, 𝐵2}, we use a similar argument but

change the roles of 𝑐1 and 𝑐2. □

Claim 8. For all 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}, the node 𝑎𝑖1 is colored by 𝑐0 iff 𝑏𝑖1 is colored by 𝑐0 and the node
𝑎
𝑗

2
is colored by 𝑐0 iff 𝑏

𝑗

2
is colored by 𝑐0.

Proof. Assume 𝑎𝑖1 is colored by 𝑐0, so all of its adjacent nodes bin(𝑎𝑖1) can only be colored by
𝑐1 or 𝑐2 (see Figure 8). As all of these nodes are connected to 𝑐1𝑎 , they must be colored by 𝑐2. By
Claim 7, there is a node in 𝑏𝑖′1 ∈ 𝐵1 that is colored by 𝑐0, and by a similar argument the nodes
bin(𝑏𝑖′1) must also be colored by 𝑐2.
If 𝑖 ≠ 𝑖 ′ then there is a bit ℎ such that 𝑖ℎ ≠ 𝑖 ′

ℎ
, and there must be a pair of neighboring nodes

(𝑓 ℎ
𝐴1
, 𝑡ℎ
𝐵1
) or (𝑡ℎ

𝐴1
, 𝑓 ℎ
𝐵1
) which are both colored by 𝑐2, a contradiction. Thus, the only option is 𝑖 = 𝑖 ′.

An analogous argument shows that if 𝑏𝑖1 is colored by 𝑐0, then so does 𝑎𝑖1. For 𝑎
𝑗

2
and 𝑏 𝑗

2
, similar

arguments apply, where 𝑐1 plays the role of 𝑐2. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:23

A2

A1 B1

FA1 TA1 FB1 TB1

B2

FA2 TA2 FB2 TB2

c2
b

c1
bc1

a

c0
a

c2
a

c0
b

Ā̄1

Ā2

Ā1

B̄2

B̄̄2

B̄1

B̄̄1

Ā̄2

Fig. 9. A coloring of a lower bound graph (proof of Lemma 5). In this example 𝑘 = 4, and the inputs are
𝑥 [𝑖, 𝑗] = 1 for 𝑗 = 3 (and all 𝑖), 𝑦 [𝑖, 𝑗] = 1 for |𝑖 − 𝑗 | even. Note that 𝑥 [1, 3] = 𝑦 [1, 3] = 1.

Adding edges corresponding to the strings 𝑥 and 𝑦: To get𝐺𝑥,𝑦 from𝐺 , add edges exactly as in the
previous section: if 𝑥 [𝑖, 𝑗] = 0 then add (𝑎𝑖1, 𝑎

𝑗

2
), and if 𝑦 [𝑖, 𝑗] = 0 then add (𝑏𝑖1, 𝑏

𝑗

2
). The following

lemma proves that
{
𝐺𝑥,𝑦

}
is a family of lower bound graphs.

Lemma 5. The graph 𝐺𝑥,𝑦 is 3-colorable iff 𝑥 and 𝑦 are not disjoint.

Proof. Assume 𝐺𝑥,𝑦 is 3-colorable, and denote the colors of 𝑐0𝑎, 𝑐1𝑎 and 𝑐2𝑎 by 𝑐0, 𝑐1 and 𝑐2 respec-
tively, as before. By Claim 7, there are nodes 𝑎𝑖1 ∈ 𝐴1 and 𝑎 𝑗2 ∈ 𝐴2 that are both colored by 𝑐0.
Hence, the edge (𝑎𝑖1, 𝑎

𝑗

2
) does not exist in 𝐺𝑥,𝑦 , implying 𝑥 [𝑖, 𝑗] = 1. By Claim 8, the nodes 𝑏𝑖1 and

𝑏
𝑗

2
are also colored 𝑐0, so 𝑦 [𝑖, 𝑗] = 1 as well, implying that 𝑥 and 𝑦 are not disjoint.
For the other direction, assume𝑥 and𝑦 are not disjoint, i.e., there is an index (𝑖, 𝑗) ∈ {0, . . . , 𝑘 − 1}2

such that 𝑥 [𝑖, 𝑗] = 𝑦 [𝑖, 𝑗] = 1. Consider the following coloring (see Figure 9).

(1) Color 𝑐𝑖𝑎 and 𝑐𝑖𝑏 by 𝑐𝑖 , for 𝑖 ∈ {0, 1, 2}.
(2) Color the nodes 𝑎𝑖1, 𝑏

𝑖
1, 𝑎

𝑗

2
and 𝑏 𝑗

2
by 𝑐0. Color the nodes 𝑎𝑖

′
1 and 𝑏

𝑖′
1 , for 𝑖

′ ≠ 𝑖 , by 𝑐1, and the
nodes 𝑎 𝑗

′

2
and 𝑏 𝑗

′

1
, for 𝑗 ′ ≠ 𝑗 , by 𝑐2.

(3) Color the nodes of bin(𝑎𝑖1) by 𝑐2, and similarly color the nodes of bin(𝑏𝑖1) by 𝑐2. Color the
rest of the nodes in this gadget, i.e., bin(𝑎𝑘−𝑖1) and bin(𝑏𝑘−𝑖1), by 𝑐0. Similarly, color bin(𝑎 𝑗

2
)

and bin(𝑏 𝑗
2
) by 𝑐0 and bin(𝑎𝑘−𝑗

2
) and bin(𝑏𝑘−𝑗

2
) by 𝑐1.

(4) Finally, color the nodes of the forms 𝑠𝑖ℓ and ¯̄𝑠𝑖ℓ as follows.
(a) Color 𝑎𝑖1 and 𝑏

𝑖
1 by 𝑐1, all nodes 𝑎

𝑖′
1 and 𝑏𝑖′1 with 𝑖 ′ < 𝑖 by 𝑐0, and all nodes 𝑎𝑖′1 and 𝑏𝑖′1 with

𝑖 ′ > 𝑖 by 𝑐2.
(b) Similarly, color 𝑎𝑖2 and 𝑏

𝑖
2 by 𝑐2, all nodes 𝑎

𝑖′
2 and 𝑏𝑖′2 with 𝑖 ′ < 𝑖 by 𝑐0, and all nodes 𝑎𝑖′2 and

𝑏𝑖
′
2 with 𝑖 ′ > 𝑖 by 𝑐1.

(c) Color all nodes ¯̄𝑎𝑖′1 and ¯̄𝑏𝑖′1 with 𝑖 ′ < 𝑖 by 𝑐2, and all nodes ¯̄𝑎𝑖′1 and ¯̄𝑏𝑖′1 with 𝑖 ′ ≥ 𝑖 by 𝑐0.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Abboud, Censor-Hillel, Khoury, Paz

c2
b

c1
bc1

a

c0
a

c2
a

c0
b

c3
a

c4
a

c8
a

c5
a

c6
a

c7
a

c3
b

c4
b

c8
b c7

b

c6
b

c5
b

Fig. 10. A schematic figure of the lower bound graph for 𝑐-coloring, 𝑐 = 9 (proof of Claim 9). Bold lines
between sets represent the existence of all the edges between the two sets. The squares represent the previous
graph, except for the color nodes which are explicitly indicated.

(d) Similarly, color all nodes ¯̄𝑎𝑖′2 and
¯̄𝑏𝑖′2 with 𝑖 ′ < 𝑖 by 𝑐1, and all nodes ¯̄𝑎𝑖′2 and

¯̄𝑏𝑖′2 with 𝑖 ′ ≥ 𝑖
by 𝑐0.

Checking all edges gives that the above coloring is indeed a proper 3-coloring of 𝐺𝑥,𝑦 , which
completes the proof. □

Having constructed the family of lower bound graphs, we are now ready to prove Theorem 5.
Proof of Theorem 5: The edges in the cut 𝐸 (𝑉𝐴,𝑉𝐵) are the 6 edges connecting

{
𝑐0𝑎, 𝑐

1
𝑎, 𝑐

2
𝑎

}
and{

𝑐0
𝑏
, 𝑐1
𝑏
, 𝑐2
𝑏

}
, and 2 edges from every 4-cycle of the nodes of 𝐹𝐴1

∪𝑇𝐴1
∪𝐹𝐵1∪𝑇𝐵1 and 𝐹𝐴2

∪𝑇𝐴2
∪𝐹𝐵2∪𝑇𝐵2 ,

for a total of Θ(log𝑛) edges. Note that 𝑛 ∈ Θ(𝑘) and 𝐾 = 𝑘2 ∈ Θ(𝑛2). Lemma 5 shows that {𝐺𝑥,𝑦}
is a family of lower bound graphs with respect to DISJ𝐾 and the predicate 𝜒 > 3, so by applying
Theorem 6 on the above partition we deduce that any algorithm in the congest model for deciding
whether a given graph is 3-colorable requires Ω(𝑛2/log2 𝑛) rounds.

Any algorithm that computes 𝜒 of the input graph, or produces a 𝜒-coloring of it, may be used
to deciding whether 𝜒 ≤ 3, in 𝑂 (𝐷) additional rounds. Thus, the lower bound applies to these
problems as well. □

A lower bound for 𝑐-coloring: Our construction and proof naturally extend to handle 𝑐-coloring,
for any 𝑐 ≥ 3. We prove the next theorem.

Claim 9. Any algorithm that decides if 𝜒 (𝐺) ≤ 𝑐 , for an integer 3 ≤ 𝑐 < 𝑛 that may depend on 𝑛,

requires Ω((𝑛 − 𝑐)2/(𝑐 log𝑛 + log2 𝑛)) rounds.

The proof of this claim is an extension of the proof of Theorem 5. Start with the graph 𝐺𝑥,𝑦
defined above, add new nodes denoted 𝑐𝑖𝑎 , 𝑖 ∈ {3, . . . , 𝑐 − 1}, and connect them to all of 𝑉𝐴, and
new nodes denoted 𝑐𝑖

𝑏
, 𝑖 ∈ {3, . . . , 𝑐 − 1}, and connect them to all of𝑉𝐵 and also to 𝑐0𝑎, 𝑐1𝑎 and 𝑐2𝑎 (see

Figure 10). The nodes 𝑐𝑖𝑎 are added to 𝑉𝑎 , and the rest are added to 𝑉𝑏 , which increases the cut size
by Θ(𝑐) edges.

Assume the extended graph is colorable by 𝑐 colors, and denote by 𝑐𝑖 the color of the node 𝑐𝑖𝑎 (these
nodes are connected by a clique, so their colors must be distinct). The nodes 𝑐𝑖

𝑏
, 𝑖 ∈ {2, . . . , 𝑐 − 1}

form a clique, and they are all connected to the nodes 𝑐0𝑎, 𝑐1𝑎 and 𝑐2𝑎 , so they are colored by the

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:25

colors {𝑐3, . . . , 𝑐𝑐−1}, in some arbitrary order. All the original nodes of 𝑉𝐴 are connected to 𝑐𝑖𝑎 ,
𝑖 ∈ {3, . . . , 𝑐 − 1}, and all the original nodes of 𝑉𝐵 are connected to 𝑐𝑖

𝑏
, 𝑖 ∈ {3, . . . , 𝑐 − 1}, so the

original graph must be colored by 3 colors, which we know is possible iff 𝑥 and 𝑦 are not disjoint.
Thus, the newly defined family

{
𝐺𝑥,𝑦

}
is a family of lower bound graphs, and we can easily prove

the claim.
Proof of Claim 9: To construct 𝐺𝑥,𝑦 , we added 2𝑐 − 6 nodes to the graph, so now 𝐾 = 𝑘2 =

Θ((𝑛 − 𝑐)2). Thus, the new graphs constitute a family of lower bound graphs with respect to DISJ𝐾
and the predicate 𝜒 > 𝑐 , the communication complexity of DISJ𝐾 is in Ω(𝐾2) = Ω((𝑛 − 𝑐)2), the
cut size is Θ(𝑐 + log𝑛), and Theorem 6 completes the proof. □

6 QUADRATIC AND NEAR-QUADRATIC LOWER BOUNDS FOR PROBLEMS IN P
In this section we support our claim that what makes problems hard for the congest model is not
necessarily them being NP-hard problems. First, we address a class of subgraph detection problems,
which requires detecting cycles of length 8 and a given weight, and show a near-quadratic lower
bound on the number of rounds required for solving it, although its sequential complexity is
polynomial. Then, we define a problem which we call the Identical Subgraphs Detection problem, in
which the goal is to decide whether two given subgraphs are identical. While this last problem is
rather artificial, it allows us to obtain a strictly quadratic lower bound for the congest model.

6.1 Weighted Cycle Detection
In this section we show a lower bound on the number of rounds needed in order to decide if the
graph contains a simple cycle of length 8 and weight𝑊 , such that𝑊 is a polylog(𝑛)-bit value
given as an input. Note that this problem can be solved easily in polynomial time in the sequential
setting by simply checking all the

(
𝑛
8

)
· 7! potential cycles of length 8.

Theorem 8. Any distributed algorithm that decides if a weighted graph contains a simple cycle of

length 8 and a given weight requires Ω(𝑛2/log𝑛) rounds.

Similarly to the previous sections, to prove Theorem 8 we describe a family of lower bound
graphs with respect to the set-disjointness function and the predicate 𝑃 that says that the graph
contains a simple cycle of length 8 and weight𝑊 .

The fixed graph construction: The fixed graph construction 𝐺 = (𝑉 , 𝐸) is defined as follows (see
Figure 11). The set of nodes contains four sets 𝐴1, 𝐴2, 𝐵1 and 𝐵2, each of size 𝑘 ≥ 3. For each set
𝑆 ∈ {𝐴1, 𝐴2, 𝐵1, 𝐵2} there is a node 𝑐𝑆 , which is connected to each of the nodes in 𝑆 by an edge of
weight 0. In addition there is an edge between 𝑐𝐴1

and 𝑐𝐵1 of weight 0 and an edge between 𝑐𝐴2

and 𝑐𝐵2 of weight 0. We set 𝑉𝐴 = 𝐴1 ∪𝐴2 ∪
{
𝑐𝐴1

, 𝑐𝐴2

}
and 𝑉𝐵 = 𝑉 \𝑉𝐴.

Adding edges corresponding to the strings 𝑥 and 𝑦: Given two binary strings 𝑥,𝑦 ∈ {0, 1}𝑘2 , we
augment the fixed graph 𝐺 defined above with additional edges, which defines 𝐺𝑥,𝑦 . If 𝑥 [𝑖, 𝑗] = 1,
then we add an edge of weight 𝑘3 + 𝑘𝑖 + 𝑗 between the nodes 𝑎𝑖1 and 𝑎

𝑗

2
. If 𝑦 [𝑖, 𝑗] = 1, then we add

an edge of weight 𝑘3 − (𝑘𝑖 + 𝑗) between the nodes 𝑏𝑖1 and 𝑏
𝑗

2
. We denote by InputEdges the set of

edges depending on the input, i.e. the edges in (𝐴1 ×𝐴2) ∪ (𝐵1 × 𝐵2).

Claim 10. Any simple cycle of weight 2𝑘3 contains exactly two edges from InputEdges, one from
𝐴1 ×𝐴2 and one from 𝐵1 × 𝐵2.

Proof. The weight of each edge in InputEdges is in
{
𝑘3 − 𝑘2 + 1, . . . , 𝑘3 + 𝑘2 − 1

}
(the extremes

are𝑤 (𝑏𝑘−11 , 𝑏𝑘−12) and𝑤 (𝑎𝑘−11 , 𝑎𝑘−12), if those edges exist), and all other edges weigh 0. A cycle of

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Abboud, Censor-Hillel, Khoury, Paz

A1

A2

B1

B2

cB1cA1

cB2cA2

0

0

0

0

+
−

1
k

3
k

2

−
+

1
k

3
k

2

k
3

0

0

0

0

0

0

k
3

Fig. 11. Lower bound graph for weighted cycle detection

weight 2𝑘3 must contain at least two edges from InputEdges since 𝑘3 + 𝑘2 − 1 < 2𝑘3, and cannot
contain three or more of these since 2𝑘3 < 3(𝑘3 − 𝑘2 + 1).
Since the edges of 𝐴1 ×𝐴2 weigh at least 𝑘3, and all but one of them weighs strictly more than

that, two of these weigh more than 2𝑘3. Similarly, two edges of 𝐵1 × 𝐵2 weigh less than 2𝑘3. □

To prove that
{
𝐺𝑥,𝑦

}
is a family of lower bound graphs, we prove the following lemma.

Lemma 6. The graph 𝐺𝑥,𝑦 contains a simple cycle of length 8 and weight𝑊 = 2𝑘3 if and only if 𝑥

and 𝑦 are not disjoint.

Proof. For the first direction, assume that 𝑥 and 𝑦 are not disjoint, and let 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}
be such that 𝑥 [𝑖, 𝑗] = 𝑦 [𝑖, 𝑗] = 1. The 8-cycle (𝑎𝑖1, 𝑐𝐴1

, 𝑐𝐵1 , 𝑏
𝑖
1, 𝑏

𝑗

2
, 𝑐𝐵2 , 𝑐𝐴2

, 𝑎
𝑗

2
) has weight𝑤 (𝑎 𝑗

1
, 𝑎𝑖2) +

𝑤 (𝑏𝑖1, 𝑏
𝑗

2
) = 𝑘3 + 𝑘𝑖 + 𝑗 + 𝑘3 − 𝑘𝑖 − 𝑗 = 2𝑘3, as needed.

For the other direction, assume that the graph contains a simple cycle 𝐶 of length 8 and weight
2𝑘3. By Claim 10,𝐶 contains two edges of the form (𝑎𝑖1, 𝑎

𝑗

2
) ∈ 𝐴1×𝐴2 and (𝑏𝑖

′
1 , 𝑏

𝑗 ′

2
) ∈ 𝐵1×𝐵2. Since all

other edge weights in𝐶 are 0, we conclude𝑤 (𝑎𝑖1, 𝑎
𝑗

2
)+𝑤 (𝑏𝑖′1 , 𝑏

𝑗 ′

2
) = 2𝑘3, i.e.𝑘3+𝑘𝑖+ 𝑗+𝑘3−(𝑘𝑖 ′+ 𝑗 ′) =

2𝑘3, or 𝑘 (𝑖 − 𝑖 ′) = (𝑗 ′ − 𝑗). The fact that | 𝑗 ′ − 𝑗 | < 𝑘 implies 𝑖 = 𝑖 ′ and 𝑗 = 𝑗 ′, completing the
proof. □

Having constructed a family of lower bound graphs, we are now ready to prove Theorem 8.
Proof of Theorem 8: Note that 𝑛 ∈ Θ(𝑘), and thus 𝐾 = |𝑥 | = |𝑦 | = Θ(𝑛2). Furthermore, the only
edges in the cut 𝐸 (𝑉𝐴,𝑉𝐵) are the edges (𝑐𝐴1

, 𝑐𝐵1) and (𝑐𝐴2
, 𝑐𝐵2). Since Lemma 6 shows that {𝐺𝑥,𝑦}

is a family of lower bound graphs, we apply Theorem 6 on the above partition to deduce that any
algorithm in the congest model for deciding whether a given graph contains a simple cycle of
length 8 and weight𝑊 = 2𝑘3 requires at least Ω(𝐾/log𝑛) = Ω(𝑛2/log𝑛) rounds. □

6.2 Identical Subgraphs Detection
In this section we show the strongest possible, quadratic lower bound, for a global decision problem
which can be solved in polynomial time in the sequential setting.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:27

bk−1

b1
b2

b3

ak−1

a3

a2 a1

a0 b0

…
…

Fig. 12. Lower bound graph for the identical subgraphs detection problem

Consider the following graph problem.

Definition 2. (The Identical Subgraphs Detection Problem)

Given a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤), a partition 𝑉 = 𝑉𝐴 ¤∪𝑉𝐵 , |𝑉𝐴 | = |𝑉𝐵 |, and node labeling

𝑉𝐴 = {𝑎0, ..., 𝑎𝑘−1} and𝑉𝐵 = {𝑏0, ..., 𝑏𝑘−1}, the Identical Subgraphs Detection problem is to determine

whether the subgraph induced by 𝑉𝐴 is identical to the subgraph induced by 𝑉𝐵 , in the sense that for

each 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1} it holds that (𝑎𝑖 , 𝑎 𝑗) ∈ 𝐸 if and only if (𝑏𝑖 , 𝑏 𝑗) ∈ 𝐸 and𝑤 (𝑎𝑖 , 𝑎 𝑗) = 𝑤 (𝑏𝑖 , 𝑏 𝑗)
if these edges exist.

The identical subgraphs detection problem can be solved easily in linear time in the sequential
setting by a single pass over the set of edges. However, as we prove next, it requires a quadratic
number of rounds in the congest model, for any deterministic solution (note that this restriction
did not apply in the previous sections). We emphasize that in the distributed setting, the input to
each node in 𝐴 or 𝐵 in this problem includes its enumeration as 𝑎𝑖 or 𝑏𝑖 , and the weights of its
edges. The outputs of all nodes should be TRUE if the subgraphs are identical, and FALSE otherwise.

Theorem 9. Any deterministic algorithm for solving the identical subgraphs detection problem

requires Ω(𝑛2) rounds.

To prove Theorem 9 we describe a family of lower bound graphs.

The fixed graph construction: The fixed graph𝐺 = (𝑉 , 𝐸) is composed of two disjoint cliques on
sets of 𝑘-nodes each, denoted𝑉𝐴 = {𝑎0, ..., 𝑎𝑘−1} and𝑉𝐵 = {𝑏0, ..., 𝑏𝑘−1}, and one extra edge (𝑎0, 𝑏0)
(see Figure 12).

Adding edge weights corresponding to the strings 𝑥 and 𝑦: Given two binary strings 𝑥 and 𝑦, each
of 𝐾 =

(
𝑘
2

)
log𝑛 bits, augment the graph 𝐺 with additional edge weights as follows, to define 𝐺𝑥,𝑦 .

For simplicity, assume that 𝑥 and 𝑦 are vectors of (log𝑛)-bit numbers, each having
(
𝑘
2

)
entries

enumerated as 𝑥 [𝑖, 𝑗] and 𝑦 [𝑖, 𝑗], with 𝑖 < 𝑗 , 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1}. For each such 𝑖 and 𝑗 set the
weights 𝑤 (𝑎𝑖 , 𝑎 𝑗) = 𝑥 [𝑖, 𝑗] and 𝑤 (𝑏𝑖 , 𝑏 𝑗) = 𝑦 [𝑖, 𝑗], and set 𝑤 (𝑎0, 𝑏0) = 0. Note that

{
𝐺𝑥,𝑦

}
is a

family of lower bound graphs with respect to EQ𝐾 and the predicate 𝑃 that says that the subgraphs
are identical in the aforementioned sense.
Proof of Theorem 9: Note that 𝑛 ∈ Θ(𝑘), and thus 𝐾 = |𝑥 | = |𝑦 | = Θ(𝑛2 log𝑛). Furthermore, the
only edge in the cut 𝐸 (𝑉𝐴,𝑉𝐵) is the edge (𝑎0, 𝑏0). Since

{
𝐺𝑥,𝑦

}
is a family of lower bound graphs,

we can apply Theorem 6 on the above partition to deduce that because of the lower bound for EQ𝐾 ,
any deterministic algorithm in the congest model for solving the identical subgraphs detection
problem requires at least Ω(𝐾/log𝑛) = Ω(𝑛2) rounds. □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Abboud, Censor-Hillel, Khoury, Paz

In a deterministic distributed algorithm for the identical subgraphs detection problem running
on our family of lower bound graphs, information about essentially all the edges and weights in
the subgraphs induced on 𝑉𝐴 or 𝑉𝐵 needs to be sent across the edge (𝑎0, 𝑏0). This might raise the
suspicion that this problem is reducible to learning the entire graph, making the lower bound
trivial. To argue that this is far from being the case, we present a randomized algorithm that
solves the identical subgraphs detection problem in 𝑂 (𝐷) rounds and succeeds w.h.p. This has
the additional benefit of providing the strongest possible separation between deterministic and
randomized complexities for global decision problems in the congestmodel, as the former is Ω(𝑛2)
and the latter is at most 𝑂 (𝐷).

Theorem 10. There is a randomized algorithm that solves the identical subgraphs detection problem

with probability at least 1 −𝑂 (1/𝑛2) in 𝑂 (𝐷) rounds.

Proof. Our starting point is the following randomized algorithm for the EQ𝐾 problem, presented,
e.g., in [76, Exersise 3.6]. Alice chooses a prime number 𝑝 among the first 𝐾2 primes uniformly at
random. She treats her input string 𝑥 as a binary representation of an integer 𝑥 =

∑𝐾−1
ℓ=0 2

ℓ𝑥ℓ , and
sends 𝑝 and 𝑥 (mod 𝑝) to Bob. Bob similarly computes 𝑦, compares 𝑥 mod 𝑝 with 𝑦 mod 𝑝 , and
returns TRUE if they are equal and false otherwise. The error probability of this protocol is at most
1/𝐾 .
We present a simple adaptation of this algorithm for the identical subgraph detection problem.

Consider the following encoding of a weighted induced subgraph on𝑉𝐴: for each pair 𝑖, 𝑗 of indices,
we have ⌈log𝑊 ⌉ + 1 bits, indicating the existence of the edge and its weight (recall that𝑊 ∈ poly𝑛
is the upper bound on the edge weights). This weighted induced subgraph is thus represented by
a 𝐾 ∈ 𝑂 (𝑛2 log𝑛) bit-string, denoted 𝑥 = 𝑥0, . . . , 𝑥𝐾−1, and each pair (𝑖, 𝑗) has a set 𝑆𝑖, 𝑗 of indices
representing the edge (𝑎𝑖 , 𝑎 𝑗) and its weight. The bits

{
𝑥ℓ | ℓ ∈ 𝑠𝑖, 𝑗

}
are known to both 𝑎𝑖 and 𝑎 𝑗 ,

and in the algorithm we use the node with smaller index in order to encode these bits. Similarly, a
𝐾 ∈ 𝑂 (𝑛2 log𝑛) bit-string, denoted 𝑦 = 𝑦0, . . . , 𝑦𝐾−1 encodes a weighted induced subgraph on 𝑉𝐵 .

The Algorithm. Given a graph with nodes enumerated as in Definition 2, the algorithm starts
with an arbitrary node, say 𝑎0, and constructs a BFS tree from it, which completes in 𝑂 (𝐷) rounds.
Then, 𝑎0 chooses a prime number 𝑝 among the first 𝐾2 primes uniformly at random and sends 𝑝 to
all the nodes over the tree, in another 𝑂 (𝐷) rounds.
Each node 𝑎𝑖 computes the sum

∑
𝑗>𝑖

∑
ℓ∈𝑆𝑖,𝑗 𝑥ℓ2

ℓ mod 𝑝 , and the nodes then aggregate these
local sums modulo 𝑝 up the tree, until 𝑎0 computes the sum 𝑥 mod 𝑝 =

∑
𝑗≠𝑖

∑
ℓ∈𝑆𝑖,𝑗 𝑥ℓ2

ℓ mod 𝑝 .
A similar procedure is then invoked by 𝑎0 (not by 𝑏0) w.r.t. 𝑦. Finally, 𝑎0 compares 𝑥 mod 𝑝 and 𝑦
mod 𝑝 , and downcasts over the BFS tree its output, which is TRUE if these values are equal and is
FALSE otherwise.
If the subgraphs are identical, 𝑎0 always returns TRUE, while otherwise their encoding differs

in at least one bit, and as in the case of EQ𝐾 , 𝑎0 returns TRUE falsely with probability at most
1/𝐾 ∈ 𝑂 (1/𝑛2). □

A more artificial problem can give even a larger gap: given the labeled graph 𝐺 defined in
our lower bound construction with a weight function satisfying 𝑤 (𝑎0, 𝑎 𝑗) = 0 and 𝑤 (𝑏0, 𝑏 𝑗) = 0
for all 𝑗 , the balanced hourglass problem is to determine whether 𝑤 (𝑎𝑖 , 𝑎 𝑗) = 𝑤 (𝑏𝑖 , 𝑏 𝑗) for all
𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1} (see Figure 13) The same lower and upper bounds hold: for the lower bound,
the inputs are of

(
𝑘−1
2

)
log𝑛 bits, which is asymptotically the same; for the upper bound, we get

𝑂 (𝐷) = 𝑂 (1). Thus, this problem gives asymptotically the maximal possible gap for any decision
in the congest model.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:29

bk−1

b1
b2

b3

ak−1

a3

a2 a1

a0 b0

…
…

Fig. 13. Lower bound graph for the balanced hourglass problem

7 WEIGHTED APSP
In this section we use the following, natural extension of Definition 1, in order to address more
general 2-party functions, as well as distributed problems that are not decision problems. For a
non-decision graph problem 𝑃 , it is useful to think about 𝑃 as a multi-output problem that takes
as input a graph 𝐺 = (𝑉 , 𝐸) and gives an output to each of the nodes in 𝑉 . For example, in the
all-pairs-shortest-paths problem, the output of each node is the list of its distances to all other
nodes in the graph.
Consider a function 𝑓 : {0, 1}𝐾1 × {0, 1}𝐾2 → {0, 1}𝐿1 × {0, 1}𝐿2 , and denote 𝑓 = (𝑓1, 𝑓2), where

𝑓1 : {0, 1}𝐾1 × {0, 1}𝐾2 → {0, 1}𝐿1 represents the left hand side of 𝑓 , and 𝑓2 : {0, 1}𝐾1 × {0, 1}𝐾2 →
{0, 1}𝐿2 represents the right hand side. We define a family of lower bound graphs in a similar way
as Definition 1, except that instead of a predicate, we have a multi-output graph problem, and we
replace item 3 in the definition with a generalized requirement that says that for 𝐺𝑥,𝑦 , the outputs
of the nodes (given by the multi-output problem) in𝑉𝐴 uniquely determine 𝑓1 (𝑥,𝑦), and the outputs
of the nodes in 𝑉𝐵 uniquely determine 𝑓2 (𝑥,𝑦). Let G be the set of all possible weighted graphs of
size 𝑛 and let D be the output domain of the nodes (i.e., the set of all possible outputs) for a specific
graph problem 𝑃 . The new definition is as follows.

Definition 3. (Family of Lower Bound Graphs)

Fix an integer 𝐾 , a function 𝑓 : {0, 1}𝐾1 × {0, 1}𝐾2 → {0, 1}𝐿1 × {0, 1}𝐿2 and a multi-output graph

problem 𝑃 : G → D𝑛
. A family of graphs

{
𝐺𝑥,𝑦 = (𝑉 , 𝐸𝑥,𝑦) | 𝑥,𝑦 ∈ {0, 1}𝐾

}
with a partition 𝑉 =

𝑉𝐴 ¤∪𝑉𝐵 is said to be a family of lower bound graphs for the congest model w.r.t. 𝑓 and 𝑃 if the

following properties hold:

(1) Only the existence or the weight of edges in 𝑉𝐴 ×𝑉𝐴 may depend on 𝑥 ;

(2) Only the existence or the weight of edges in 𝑉𝐵 ×𝑉𝐵 may depend on 𝑦;

(3) 𝑓 (𝑥,𝑦) = (𝑓1 (𝑥,𝑦), 𝑓2 (𝑥,𝑦)), where 𝑓1 (𝑥,𝑦) can be determined by the outputs of the nodes in

𝑉𝐴 in 𝑃 (𝐺𝑥,𝑦), and 𝑓2 (𝑥,𝑦) can be determined by the outputs of 𝑉𝐵 .

Next, we argue that theorem similar to Theorem 6 holds for non-decision graph problems.

Theorem 11. Fix a function 𝑓 : {0, 1}𝐾1 × {0, 1}𝐾2 → {0, 1}𝐿1 × {0, 1}𝐿2 and a graph problem 𝑃 .

If there is a family

{
𝐺𝑥,𝑦

}
of lower bound graphs that satisfies Definition 3 with 𝐶 = 𝐸 (𝑉𝐴,𝑉𝐵) then

any deterministic algorithm for solving 𝑃 requires Ω(CC(𝑓)/|𝐶 | log𝑛) rounds, and any randomized

algorithm for deciding 𝑃 requires Ω(CC𝑅 (𝑓)/|𝐶 | log𝑛) rounds.

The proof is by the same simulation argument as used in the proof of of Theorem 6. Notice that
the only difference between the theorems, apart from the sizes of the inputs and outputs of 𝑓 , are

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Abboud, Censor-Hillel, Khoury, Paz

with respect to item 3 in the definition of a family of lower bound graphs. However, the essence
of this condition remains the same and this is all that is required for the proof: the outputs of the
nodes in𝑉𝐴 determine the output of Alice for 𝑓 (𝑥,𝑦), and outputs of the nodes in𝑉𝐵 determine the
output of Bob.

7.1 A Linear Lower Bound for Weighted APSP
Nanongkai [88] showed that any algorithm in the congest model for computing a poly(𝑛)-
approximation for weighted all pairs shortest paths (APSP) requires at least Ω(𝑛/log𝑛) rounds. A
similar result was also proved independently by Lenzen and Patt-Shamir [79]. Nanongkai also gave
a Ω(𝑛/log𝑛) lower bound for exactly computing unweighted APSP, and Lenzen [77] observed that
this can be extended into an Ω(𝑛) lower bound for weighted APSP. Here, we give a full proof of it,
for completeness and future reference.
In this section we show that a slight modification to this construction yields an Ω(𝑛) lower

bound for computing exact weighted APSP. As explained in the introduction, this gives a separation
between the complexities of the weighted and unweighted versions of APSP. At a high level, while
we use the same simple topology for our lower bound as in [88], the reason that we are able to
shave off the extra logarithmic factor is because our construction uses 𝑂 (log𝑛) bits for encoding
the weight of each edge out of many optional weights, while in [88] only a single bit is used per
edge for encoding one of only two options for its weight.

Theorem 12. Any algorithm for computing weighted all pairs shortest paths requires at least Ω(𝑛)
rounds.

The reduction is from the following, perhaps simplest, two-party communication problem. Alice
has an input string 𝑥 of size 𝐾 and Bob needs to learn the string of Alice. In terms of the above
definition, this problem is computing the function 𝑓 : {0, 1}𝐾 × {0, 1}0 → {0, 1}0 × {0, 1}𝐾 defined
by 𝑓 (𝑥,⊥) = (⊥, 𝑥). Any algorithm (possibly randomized) for solving this problem requires at least
Ω(𝐾) bits of communication, by a trivial information theoretic argument.
Notice that the problem of having Bob learn Alice’s input is not a binary function as addressed

in Section 2. Similarly, computing weighted APSP is not a decision problem, but rather a problem
whose solution assigns a value to each node (which is its vector of distances from all other nodes).
We therefore use the extended Theorem 11 stated above.

The fixed graph construction: The fixed graph 𝐺 = (𝑉 , 𝐸) is composed of 𝑛 − 2 nodes, 𝐴 =

{𝑎0, ..., 𝑎𝑛−3}, all connected to an additional node 𝑎, which is connected to another node 𝑏. Set
𝑉𝐴 = 𝐴 ∪ {𝑎} and 𝑉𝐵 = {𝑏}.

Adding edge weights corresponding to the string 𝑥 : Given a binary string 𝑥 of size 𝐾 = (𝑛−2) log𝑛,
assume for simplicity that 𝑥 is a vector of 𝑛 − 2 numbers, each represented by 𝑂 (log𝑛) bits. To
define 𝐺𝑥 , add to 𝐺 the edge weights 𝑤 (𝑎𝑖 , 𝑎) = 𝑥 [𝑖] for 𝑖 ∈ {0, . . . , 𝑛 − 3}, and 𝑤 (𝑎, 𝑏) = 0. It is
straightforward to see that 𝐺𝑥 is a family of lower bound graphs for the function 𝑓 .
Proof of Theorem 12: To prove Theorem 12, note that 𝐾 = |𝑥 | = Θ(𝑛 log𝑛), and that the cut
𝐸 (𝑉𝐴,𝑉𝐵) has a single edge, (𝑎, 𝑏). Since {𝐺𝑥 } is a family of lower bound graphs with respect to 𝑓
on 𝐾 bits, Theorem 11 implies that any algorithm in the congest model for computing weighted
APSP requires Ω(𝐾/log𝑛) = Ω(𝑛) rounds. □

7.2 The Alice-Bob Framework Cannot Give a Super-Linear Lower Bound for
Weighted APSP

In this section we argue that a reduction from any 2-party function with a fixed partition of the
graph into Alice and Bob’s sides is incapable of providing a super-linear lower bound for computing

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:31

GA GB

5

DistanceAlg-A https://www.draw.io/#G1ZDx...

1 of 2 7/24/18, 4:45 PM

(a) A graph split into𝐺𝐴 and 𝐺𝐵 .
The shaded nodes are 𝐶 : light-
shaded are 𝐶𝐴 and dark-shaded
are 𝐶𝐵

7

G′
A

6

Copy of DistanceAlg-B https://www.draw.io/#G1xqnn...

1 of 2 7/24/18, 4:46 PM

(b) The virtual graph 𝐺 ′
𝐴

con-
structed by Alice

7

G′
A

6

GB

5

DistanceAlg-C https://www.draw.io/#G1Tqx-...

1 of 2 7/24/18, 4:48 PM

(c) Using 𝐺 ′
𝐴

and distances in
𝐺𝐵 , Alice computes the distances
from 𝑉𝐴 to all the graph node

Fig. 14. Lemma 7 and its proof applied to a specific graph. All unmarked edges weight 1

weighted all pairs shortest paths in the congest model. A more detailed inspection of our analysis
shows a stronger claim: our claim also holds for algorithms for the congest-broadcast model,
where in each round each node must send the same 𝑂 (log𝑛)-bit message to all of its neighbors.
The following theorem states our claim.

Theorem 13. Let 𝑓 : {0, 1}𝐾1 ×{0, 1}𝐾2 → {0, 1}𝐿1 ×{0, 1}𝐿2 be a function and let𝐺𝑥,𝑦 be a family

of lower bound graphs w.r.t. 𝑓 and the weighted APSP problem. When applying Theorem 11 to 𝑓 and

𝐺𝑥,𝑦 , the lower bound obtained for the number of rounds for computing weighted APSP is at most

linear in 𝑛.

Roughly speaking, we show that given an input graph 𝐺 = (𝑉 , 𝐸) with a partition 𝑉 = 𝑉𝐴 ¤∪𝑉𝐵 ,
such that the graph induced by the nodes in 𝑉𝐴 is simulated by Alice and the graph induced by
nodes in 𝑉𝐵 is simulated by Bob, Alice and Bob can compute weighted all pairs shortest paths
by communicating 𝑂 (𝑛 log𝑛) bits of information for each node touching the cut 𝐶 = 𝐸 (𝑉𝐴,𝑉𝐵)
induced by the partition. In this way, we show that any attempt to apply Theorem 11 cannot give
a lower bound higher than Ω(𝑛): we consider an arbitrary function 𝑓 , and an arbitrary family
of lower bound graphs with respect to a function 𝑓 and the weighted APSP problem, defined
according to the extended definition from the beginning of Section 7. We then prove that Alice
and Bob can compute weighted APSP, which determines their output for 𝑓 , by exchanging only
𝑂 (|𝑉 (𝐶) |𝑛 log𝑛) bits, where 𝑉 (𝐶) is the set of nodes touching 𝐶 . This implies that CC(𝑓) is at
most𝑂 (|𝑉 (𝐶) |𝑛 log𝑛). Thus, the lower bound obtained by Theorem 11 cannot be better than Ω(𝑛),
and hence no super-linear lower bound can be deduced using this framework.
Formally, given a graph 𝐺 = (𝑉𝐴 ¤∪𝑉𝐵, 𝐸), let 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴) be the subgraph induced by the

nodes in 𝑉𝐴 and let 𝐺𝐵 = (𝑉𝐵, 𝐸𝐵) be the subgraph induced by the nodes in 𝑉𝐵 (see Figure 14(a)).
Let 𝐶 = 𝐸 (𝑉𝐴,𝑉𝐵), and let 𝑉 (𝐶) denote the nodes touching the cut 𝐶 , with 𝐶𝐴 = 𝑉 (𝐶) ∩𝑉𝐴 and
𝐶𝐵 = 𝑉 (𝐶) ∩𝑉𝐵 . For a graph 𝐻 , denote the weighted distance between two nodes 𝑢, 𝑣 by wd𝐻 (𝑢, 𝑣).

Lemma 7. Let𝐺 = (𝑉𝐴 ¤∪𝑉𝐵, 𝐸,𝑤) be a weighted graph. Suppose that𝐺𝐴, 𝐶𝐵 , 𝐶 and the values of𝑤

on 𝐸𝐴 and𝐶 are given as input to Alice, and that𝐺𝐵 ,𝐶𝐴,𝐶 and the values of𝑤 on 𝐸𝐵 and𝐶 are given

as input to Bob.

Then, Alice can compute the distances in 𝐺 from all nodes in 𝑉𝐴 to all nodes in 𝑉 and Bob can

compute the distances from all nodes in 𝑉𝐵 to all the nodes in 𝑉 , using 𝑂 (|𝑉 (𝐶) | 𝑛 log𝑛) bits of
communication.

Proof. We describe a protocol for the required computation. For each node 𝑢 ∈ 𝐶𝐵 , Bob sends
to Alice the weighted distances in 𝐺𝐵 from 𝑢 to all nodes in 𝑉𝐵 , that is, Bob sends {wd𝐺𝐵

(𝑢, 𝑣) |
𝑢 ∈ 𝐶𝐵, 𝑣 ∈ 𝑉𝐵} (or ∞ for pairs of nodes not connected in 𝐺𝐵). Alice constructs a virtual graph

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Abboud, Censor-Hillel, Khoury, Paz

𝐺 ′
𝐴
= (𝑉 ′

𝐴
, 𝐸 ′
𝐴
,𝑤 ′

𝐴
) (see Figure 14(b)) with the nodes𝑉 ′

𝐴
= 𝑉𝐴∪𝐶𝐵 and edges 𝐸 ′𝐴 = 𝐸𝐴∪𝐶∪(𝐶𝐵×𝐶𝐵).

The edge-weight function𝑤 ′
𝐴
is defined by𝑤 ′

𝐴
(𝑒) = 𝑤 (𝑒) for each 𝑒 ∈ 𝐸𝐴 ∪𝐶 , and by𝑤 ′

𝐴
(𝑢, 𝑣) =

𝑤𝐺𝐵
(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐶𝐵 , as received from Bob. Alice then computes the set of all weighted distances

in 𝐺 ′
𝐴
, that is, {wd𝐺′

𝐴
(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉 ′

𝐴
}.

Alice assigns her output for the weighted distances in 𝐺 as follows (see Figure 14(c)). For two
nodes 𝑢, 𝑣 ∈ 𝑉𝐴 ∪𝐶𝐵 , Alice outputs their weighted distance in 𝐺 ′

𝐴
, wd𝐺′

𝐴
(𝑢, 𝑣). For a node 𝑢 ∈ 𝑉 ′

𝐴

and a node 𝑣 ∈ 𝑉𝐵 \𝐶𝐵 , Alice outputs min{wd𝐺′
𝐴
(𝑢, 𝑥) + wd𝐺𝐵

(𝑥, 𝑣) | 𝑥 ∈ 𝐶𝐵}, where wd𝐺′
𝐴
is the

distance in 𝐺 ′
𝐴
as computed by Alice, and wd𝐺𝐵

is the distance in 𝐺𝐵 that was sent by Bob.
For Bob to compute his required weighted distances, similar information is sent by Alice to Bob,

that is, Alice sends to Bob the weighted distances in 𝐺𝐴 from each node 𝑢 ∈ 𝐶𝐴 to all nodes in
𝑉𝐴. Bob constructs the analogous graph𝐺 ′

𝐵
and outputs his required distance. The next paragraph

formalizes this for completeness, but may be skipped by a convinced reader.
Formally, Alice sends {wd𝐺𝐴

(𝑢, 𝑣) | 𝑢 ∈ 𝐶𝐴, 𝑣 ∈ 𝑉𝐴}. Bob constructs 𝐺 ′
𝐵
= (𝑉 ′

𝐵
, 𝐸 ′
𝐵
,𝑤 ′

𝐵
) with

𝑉 ′
𝐵

= 𝑉𝐵 ∪ 𝐶𝐴 and edges 𝐸 ′
𝐵

= 𝐸𝐵 ∪ 𝐶 ∪ (𝐶𝐴 × 𝐶𝐴). The edge-weight function 𝑤 ′
𝐵
is defined

by 𝑤 ′
𝐵
(𝑒) = 𝑤 (𝑒) for each 𝑒 ∈ 𝐸𝐵 ∪ 𝐶 , and 𝑤 ′

𝐵
(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐶𝐴 is defined to be the weighted

distance between 𝑢 and 𝑣 in 𝐺𝐴, as received from Alice (or ∞ if they are not connected in 𝐺𝐴).
Bob then computes the set of all weighted distances in 𝐺 ′

𝐵
, {wd𝐺′

𝐵
(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉 ′

𝐵
}. Bob assigns

his output for the weighted distances in 𝐺 as follows. For two nodes 𝑢, 𝑣 ∈ 𝑉𝐵 ∪𝐶𝐴, Bob outputs
their weighted distance in 𝐺 ′

𝐵
, wd𝐺′

𝐵
(𝑢, 𝑣). For a node 𝑢 ∈ 𝑉 ′

𝐵
and a node 𝑣 ∈ 𝑉𝐴 \𝐶𝐴, Bob outputs

min{wd𝐺′
𝐵
(𝑢, 𝑥) + wd𝐺𝐴

(𝑥, 𝑣) | 𝑥 ∈ 𝐶𝐴}, where wd𝐺′
𝐵
is the distance in 𝐺 ′

𝐵
as computed by Bob,

and wd𝐺𝐴
is the distance in 𝐺𝐴 that was sent by Alice.

Complexity. Bob sends to Alice the distances from all nodes in 𝐶𝐵 to all node in 𝑉𝐵 , which
takes𝑂 (|𝐶𝐵 | |𝑉𝐵 | log𝑛) bits, and similarly Alice sends𝑂 (|𝐶𝐴 | |𝑉𝐴 | log𝑛) bits to Bob. Since |𝑉𝐴 | ≤ 𝑛,
|𝑉𝐵 | ≤ 𝑛 and |𝐶𝐴 | + |𝐶𝐵 | = |𝑉 (𝐶) |, we have |𝐶𝐵 | |𝑉𝐵 | log𝑛 + |𝐶𝐴 | |𝑉𝐴 | log𝑛 ≤ (|𝐶𝐴 | + |𝐶𝐵 |) 𝑛 log𝑛 =

|𝑉 (𝐶) | 𝑛 log𝑛, and the players exchange a total of 𝑂 (|𝑉 (𝐶) | 𝑛 log𝑛) bits.

Correctness. By construction, for every edge (𝑢, 𝑣) ∈ 𝐶𝐵 × 𝐶𝐵 in 𝐺 ′
𝐴
with weight wd𝐺′

𝐴
(𝑢, 𝑣),

there is a corresponding shortest path 𝑃𝑢,𝑣 of the same weight in 𝐺𝐵 . Hence, for any path 𝑃 ′ =
(𝑣0, 𝑣1, . . . , 𝑣𝑘) in 𝐺 ′

𝐴
between 𝑣0, 𝑣𝑘 ∈ 𝑉 ′

𝐴
, there is a corresponding path 𝑃𝑣0,𝑣𝑘 of the same weight

in 𝐺 , where 𝑃 is obtained from 𝑃 ′ by replacing every two consecutive nodes 𝑣𝑖 , 𝑣𝑖+1 in 𝑃 ∩𝐶𝐵 by
the path 𝑃𝑣𝑖 ,𝑣𝑖+1 in 𝐺𝐵 . Thus, wd𝐺′

𝐴
(𝑣0, 𝑣𝑘) ≥ wd𝐺 (𝑣0, 𝑣𝑘).

On the other hand, for any shortest path 𝑃 = (𝑣0, 𝑣1, . . . , 𝑣𝑘) in 𝐺 connecting 𝑣0, 𝑣𝑘 ∈ 𝑉 ′
𝐴
, there

is a corresponding path 𝑃 ′ of the same weight in 𝐺 ′
𝐴
, where 𝑃 ′ is obtained from 𝑃 by replacing

any sub-path (𝑣𝑖 , . . . , 𝑣 𝑗) of 𝑃 contained in 𝐺𝐵 and connecting 𝑣𝑖 , 𝑣 𝑗 ∈ 𝐶𝐵 by the edge (𝑣𝑖 , 𝑣 𝑗) in 𝐺 ′
𝐴
.

Thus, wd𝐺 (𝑣0, 𝑣𝑘) ≥ wd𝐺′
𝐴
(𝑣0, 𝑣𝑘). Alice thus correctly computes the weighted distances between

pairs of nodes in 𝑉 ′
𝐴
.

It remains to argue about the weighted distances that Alice computes to nodes in 𝑉𝐵 \𝐶𝐵 . Any
shortest path 𝑃 in 𝐺 connecting a node 𝑢 ∈ 𝑉 ′

𝐴
and a node 𝑣 ∈ 𝑉𝐵 \ 𝐶𝐵 must cross at least one

edge of𝐶 and thus must contain a node in𝐶𝐵 . Therefore, wd𝐺 (𝑢, 𝑣) = min{wd𝐺 (𝑢, 𝑥) +wd𝐺 (𝑥, 𝑣) |
𝑥 ∈ 𝐶𝐵}. Recall that we have shown that wd𝐺′

𝐴
(𝑢, 𝑥) = wd𝐺 (𝑢, 𝑥) for any 𝑢, 𝑥 ∈ 𝑉 ′

𝐴
. The sub-

path of 𝑃 connecting 𝑥 and 𝑣 is a shortest path between these nodes, and is contained in 𝐺𝐵 , so
wd𝐺𝐵

(𝑥, 𝑣) = wd𝐺 (𝑥, 𝑣). Hence, the distance min{wd𝐺′
𝐴
(𝑢, 𝑥) + wd𝐺𝐵

(𝑥, 𝑣) | 𝑥 ∈ 𝐶𝐵} returned by
Alice is indeed equal to wd𝐺 (𝑢, 𝑣).

The outputs of Bob are correct by an analogous arguments, completing the proof. □

Proof of Theorem 13: Let 𝑓 : {0, 1}𝐾1 × {0, 1}𝐾2 → {0, 1}𝐿1 × {0, 1}𝐿2 be a function and let𝐺𝑥,𝑦
be a family of lower bound graphs w.r.t. 𝑓 and the weighted APSP problem. By Lemma 7, Alice
and Bob can compute the weighted distances for any graph in 𝐺𝑥,𝑦 while exchanging at most

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:33

𝑂 (|𝑉 (𝐶) |𝑛 log𝑛) bits, which is in 𝑂 (|𝐶 |𝑛 log𝑛) bits. Since 𝐺𝑥,𝑦 is a family of lower bound graphs
w.r.t. 𝑓 and weighted APSP, item 3 in the definition of lower bound graphs implies that they can
use the solution of the APSP problem to compute 𝑓 without further communication, implying
CC(𝑓) = 𝑂 (|𝐶 | 𝑛 log𝑛). Therefore, when applying Theorem 11 to 𝑓 and 𝐺𝑥,𝑦 , the lower bound
obtained for the number of rounds for computing weighted APSP is Ω(CC(𝑓)/|𝐶 | log𝑛), which is
no higher than a bound of Ω(𝑛). □

Extending to 𝑡 players: Weargue that generalizing theAlice-Bob framework to a shared-blackboard
multi-party setting is still insufficient for providing a super-linear lower bound for weighted APSP.
Suppose that we increase the number of players in the above framework to 𝑡 players, 𝑃0, . . . , 𝑃𝑡−1,
each simulating the nodes in a set 𝑉𝑖 in a partition of 𝑉 in a family of lower bound graphs w.r.t. a
𝑡-party function 𝑓 and weighted APSP. That is, the outputs of nodes in 𝑉𝑖 for an algorithm 𝐴𝐿𝐺

for solving a problem 𝑃 in the congest model, uniquely determines the output of player 𝑃𝑖 in the
function 𝑓 . The function 𝑓 is of the form 𝑓 : {0, 1}𝐾0 × · · · × {0, 1}𝐾𝑡−1 → {0, 1}𝐿0 × · · · × {0, 1}𝐿𝑡−1 .
The communication complexity CC(𝑓) is the total number of bits written on the shared black-

board by all players. Denote by 𝐶 the set of cut edges, that is, the edge whose endpoints do not
belong to the same set𝑉𝑖 . Then, if𝐴𝐿𝐺 is an 𝑅-round algorithm, we have that writing𝑂 (𝑅 |𝐶 | log𝑛)
bits on the shared blackboard suffice for computing 𝑓 , and so 𝑅 = Ω(CC(𝑓)/|𝐶 | log𝑛).
Consider the weighted APSP problem. Let 𝑓 be a 𝑡-party function and let 𝐺𝑥0,...,𝑥𝑡−1 be a family

of lower bound graphs w.r.t. 𝑓 and weighted APSP. The players first write all the edges in 𝐶 on
the shared blackboard, for a total of 𝑂 (|𝐶 | log𝑛) bits. Then, each player 𝑃𝑖 writes the weighted
distances from all nodes in𝑉𝑖 to all nodes in𝑉 (𝐶) ∩𝑉𝑖 . This requires no more than𝑂 (|𝑉 (𝐶) |𝑛 log𝑛)
bits.

It is easy to verify that every player 𝑃𝑖 can now compute the weighted distances from all nodes
in 𝑉𝑖 to all nodes in 𝑉 , in a manner that is similar to that of Lemma 7.
This gives an upper bound on CC(𝑓), i.e. CC(𝑓) = 𝑂 (|𝑉 (𝐶) | 𝑛 log𝑛). A lower bound obtained

by a reduction from 𝑓 is Ω(CC(𝑓)/|𝐶 | log𝑛), which is at most Ω(|𝑉 (𝐶) |𝑛 log𝑛/(|𝐶 | log𝑛)). But
|𝑉 (𝐶) | ≤ 2|𝐶 |, so the lower bound cannot actually be larger than Ω(𝑛), as claimed.

Remark 1: Notice that the 𝑡-party simulation of the algorithm for the congest model does
not require a shared blackboard and can be done in the peer-to-peer multiparty setting as well,
since simulating the delivery of a message does not require the message to be known globally.
This raises the question of why would one consider a reduction to the congest model from the
stronger shared-blackboard model to begin with. Notice that our argument for 𝑡 players does not
translate to the peer-to-peer multiparty setting, because it assumes that the edges of the cut 𝐶
can be made global knowledge within writing |𝐶 | log𝑛 bits on the blackboard. However, what our
extension above shows is that if there is a lower bound that is to be obtained using a reduction
from peer-to-peer 𝑡-party computation, it must use a function 𝑓 that is strictly harder to compute in

the peer-to-peer setting than in the shared-blackboard setting.

Remark 2: We suspect that a similar argument can be applied for the framework of non-fixed
Alice-Bob partitions (e.g., [99]), but this requires precisely defining this framework, which we do
not address in this paper.

8 STREAMING LOWER BOUNDS
In this section we show how our super-linear lower bound constructions can be used to prove
lower bounds in the streaming model in a straightforward manner. The crux of our proofs is that
our constructions use instances for the disjointness problem that have very large inputs; the cut

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Abboud, Censor-Hillel, Khoury, Paz

sizes do not play a role here. In particular, the larger the input is, the higher the space lower bound
is. We start by defining a family of lower bound graphs for the semi-streaming model.

Definition 4. (Family of Streaming Lower Bound Graphs)

Fix an integer 𝐾 , a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 → {TRUE, FALSE} and a graph predicate 𝑃 . A family

of graphs

{
𝐺𝑥,𝑦 = (𝑉 , 𝐸𝑥,𝑦) | 𝑥,𝑦 ∈ {0, 1}𝐾

}
with a partition of the edges 𝐸 = 𝐸𝐴 ¤∪𝐸𝐵 is said to be a

family of streaming lower bound graphs w.r.t. 𝑓 and 𝑃 if the following properties hold:

(1) Only the existence of edges in 𝐸𝐴 may depend on 𝑥 ;

(2) Only the existence of edges in 𝐸𝐵 may depend on 𝑦;

(3) 𝐺𝑥,𝑦 satisfies the predicate 𝑃 iff 𝑓 (𝑥,𝑦) = TRUE.

This definition is a variant of Definition 1. Unsurprisingly, the existence of such a family implies
a lower bound in a way similar to Theorem 6, as stated next. Note that for the semi-streaming
model, the cut size does not play a role.

Theorem 14. Fix a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 → {TRUE, FALSE} and a predicate 𝑃 . If there is a
family {𝐺𝑥,𝑦} of streaming lower bound graphs w.r.t. 𝑓 and 𝑃 then any semi-streaming algorithm for

deciding 𝑃 in 𝑅 passes and𝑀 bits of memory requires 𝑅𝑀 = Ω(CC(𝑓)) rounds, and any randomized

semi-streaming algorithm for deciding 𝑃 in 𝑅 passes and𝑀 bits of memory requires 𝑅𝑀 = Ω(CC𝑅 (𝑓))
rounds.

Proof. Let 𝐴𝐿𝐺 be a semi streaming algorithm for deciding 𝑃 in 𝑅 passes and𝑀 bits of memory.
Given inputs 𝑥,𝑦 ∈ {0, 1}𝐾 to Alice and Bob, respectively, Alice and Bob simulate the execution of
the algorithms, as follows. To simulate a pass of the algorithm, Alice executes the algorithm using
the edges of 𝐸𝐴 as input—she can do so since these edges depend only on 𝑥 . Alice then sends the
current state of the memory to Bob, who continues the execution of 𝐴𝐿𝐺 from the point where
Alice stopped, using the edges of 𝐸𝐵 as input—he can do so since these edges depend only on 𝑦.
This concludes a simulation of a single pass; if there are more passes left, Bob sends the current
memory state to Alice, who continues the execution from this state. Otherwise, Bob knows the
value of 𝑃 , and by Item 3 in Definition 4, he can compute 𝑓 (𝑥,𝑦).

To simulate a pass, Alice sent to Bob at most𝑀 bits, and in all passes but the last, Bob sent Alice
another𝑀 memory bits at the most. This sums to 𝑅(2𝑀 − 1) bits of communication, using which
the players have computed 𝑓 (𝑥,𝑦) correctly. The lower bounds follows directly from the lower
bounds for CC(𝑓) and CC𝑅 (𝑓). □

Any family of lower bound graphs for the congest model is also a family of streaming lower
bound graphs: use exactly the same graphs, and set 𝐸𝐴 to be the edges in 𝑉𝐴 ×𝑉𝐴 and in 𝐶 , and 𝐸𝐵
be the edges in 𝑉𝐵 ×𝑉𝐵 . This implies the following, simple corollary.

Corollary 1. Fix a function 𝑓 : {0, 1}𝐾 × {0, 1}𝐾 → {TRUE, FALSE} and a predicate 𝑃 . If there is a
family {𝐺𝑥,𝑦} of lower bound graphs for the congest model w.r.t. 𝑓 and 𝑃 then any semi-streaming

algorithm for deciding 𝑃 using 𝑅 passes and 𝑀 bits of memory requires 𝑅𝑀 = Ω(CC(𝑓)) rounds,
and any randomized semi-streaming algorithm for deciding 𝑃 using 𝑅 passes and𝑀 bits of memory

requires 𝑅𝑀 = Ω(CC𝑅 (𝑓)) rounds.
With this corollary in hand, the lower bounds from Section 5 easily extend to a series of lower

bounds in the semi-streaming model.

Theorem 15. Any algorithm in the semi-streaming model for the following problems that uses 𝑅

passes and𝑀 bits of memory requires 𝑅𝑀 = Ω(𝑛2).
(1) Computing a minimum vertex cover or deciding whether there is a minimum vertex cover of a

given size.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:35

(2) Computing a maximum independent set or deciding whether there is an independent set of a

given size.

(3) Computing a maximum clique or deciding whether there is a clique of a given size.

(4) Computing a coloring of a graph with a minimal number of colors or deciding whether there is

a coloring with a given number of colors.

(5) Deciding if a graph contains an 8-cycle of a given weight.

(6) Deterministically deciding the identical subgraphs detection problem.

In addition, any such algorithm for deciding whether a graph is 𝑐-colorable, for an input parameter

3 ≤ 𝑐 < 𝑛 that may depend on 𝑛, requires 𝑅𝑀 = Ω((𝑛 − 𝑐)2).
Proof. Theorem 15 is obtained from Corollary 1 and the constructions from Sections 5 and 6.
Item 1 follows from the lower bound graph of Section 5.1, as proven in Lemma 4. Item 2 follows

from the same lemma, as the complement of a minimum vertex cover is a maximum independent
set.

For Item 3, consider the complement graph of the graph from Lemma 4: a graph with the same
node set but complement edges. An independent set translates into a clique in the complement
graph, each non-edge is either fixed, depends solely on Alice’s input, or depends solely on Bob’s
input, and so the complement graph is a family of lower bound graph w.r.t. DISJ and maximum
clique. Theorem 14 completes the proof.
Item 4 follows from the construction in Section 5.2, and specifically from Lemma 5. Item 5

follows from the construction in Section 6.1, and specifically from Lemma 6. Item 6 follows from
the construction in Section 6.2, and specifically from the proof of Theorem 9. In all these cases, the
communication complexity problem is DISJ𝐾 , where 𝐾 ∈ Θ(𝑛2).

The 𝑐-coloring lower bound follows the construction in the proof of Claim 9, where 𝐾 ∈ Θ((𝑛 −
𝑐)2). □

The lower bound for finding a graph’s chromatic number 𝜒 also applies for (4/3−𝜀)-approximation
of 𝜒 , in a weak sense: since 𝜒 is integral, any (4/3 − 𝜖)-approximation algorithm must return the
exact solution in the case 𝜒 = 3, so the impossibility for distinguishing the cases 𝜒 ≤ 3 and 𝜒 ≥ 4

result also rules out a (4/3 − 𝜖)-approximation algorithm. However, it does not rule out such an
algorithm that works only for graph with 𝜒 ≥ 5, and may distinguish, e.g., 𝜒 ≤ 6 from 𝜒 ≥ 8.
We now show a stronger result for the semi-streaming model: it is hard to get (4/3 − 𝜀)-

approximation of 𝜒 even when a small additive error is allowed, and even if the algorithm should
work only for graphs with high chromatic number. To this end, we show a lower bound for distin-
guishing between 𝜒 ≤ 3𝑐 and 𝜒 ≥ 4𝑐 , for any integer 𝑐 .

Theorem 16. For any positive integer 𝑐 , any algorithm in the semi-streaming model that distin-

guishes a graph 𝐺 with 𝜒 (𝐺) ≤ 3𝑐 from a graph with 𝜒 (𝐺) ≥ 4𝑐 and uses 𝑅 passes and 𝑀 bits of

memory, requires 𝑅𝑀 = Ω((𝑛/𝑐)2).
Proof. We show a family of lower bound graphs with respect to the DISJ𝐾 function, where

𝐾 ∈ Θ((𝑛/𝑐)2), and the predicate 𝜒 ≥ 4𝑐 (TRUE) or 𝜒 ≤ 3𝑐 (FALSE). The predicate is not defined for
other values of 𝜒 .
We create a graph 𝐺𝑐𝑥,𝑦 , composed of 𝑐 copies of 𝐺𝑥,𝑦 , the original graph from the proof of

Theorem 5, each on 𝑛/𝑐 nodes. The 𝑖-th copy is denoted 𝐺𝑥,𝑦 (𝑖), and its nodes are partitioned into
𝑉𝐴 (𝑖) and 𝑉𝐵 (𝑖). Naturally, let 𝑉𝐴 = ∪𝑖𝑉𝐴 (𝑖) and 𝑉𝐵 = ∪𝑖𝑉𝐵 (𝑖). For every 𝑖 ≠ 𝑗 ∈ [𝑐], we connect
𝐺𝑥,𝑦 (𝑖) and𝐺𝑥,𝑦 (𝑗) by a complete bipartite graph, i.e., we add an edge from each node in𝐺𝑥,𝑦 (𝑖) to
each node in 𝐺𝑥,𝑦 (𝑗).
This construction immediately guarantees that each copy is colored using unique colors, that

are not used in any other copy. By Theorem 5, if 𝑥 and 𝑦 are disjoint then each copy requires at

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Abboud, Censor-Hillel, Khoury, Paz

least 4 colors, and 𝜒 (𝐺𝑐𝑥,𝑦) ≥ 4𝑐; otherwise, each copy is 3-colorable, and 𝜒 (𝐺𝑐𝑥,𝑦) = 3𝑐 . Therefore,
𝐺𝑐𝑥,𝑦 is a family of lower bound graphs. □

The boosting reduction in the proof of Theorem 16 does not apply to the congestmodel: the cut
size is Θ(𝑛2), which only yields a constant lower bound in this model. It is natural to try to modify
it by only connecting the nodes on each side of the cut by full bipartite graphs, i.e., connect each
node in𝑉𝐴 (𝑖) and each node𝑉𝐴 (𝑗) with 𝑖 ≠ 𝑗 , and similarly for𝑉𝐵 (𝑖) and𝑉𝐵 (𝑗). However, this does
not guarantee that each copy is colored with a unique set of colors4 because a fourth color from
𝑉𝐴 (𝑖) might also be used in 𝑉𝐵 (𝑗) for 𝑖 ≠ 𝑗 . The loss from this boosting reduction in the congest
model prevents us from getting a 3𝑐 vs. 4𝑐 lower bound, unless we start with a lower bound of 3
vs. 𝑘 with a sufficiently large 𝑘 > 4. It may be possible to prove such a claim, as described below.

A remark on approximating 𝜒 with larger factors. A beautiful construction of Guruswami and
Khanna [57] proves the NP-hardness of 3 vs. 5 coloring (in the sequential setting) by giving a
reduction from MaxIS. Their construction can be combined with our lower bounds for MaxIS to
get a lower bound for 𝜒 ≤ 3 vs. 𝜒 ≥ 5 in the streaming setting, but it does not directly work in the
congestmodel—some special nodes in their construction (the “ground vertices”) must be connected
to nearly all other nodes, causing the cut size to become Ω(𝑛). This issue can be alleviated by using
two sets of ground vertices, one for Alice and one for Bob, and by modifying their “edge gadgets”
in a simple but non-trivial way. We have chosen to omit this more involved construction because
we believe a much higher lower bound is probably attainable by a different approach. In particular,
in the sequential setting it is known that 3 vs. 𝑘 for all constant 𝑘 is NP-hard under variants of the
Unique Games Conjecture [42]; whether such hardness can be transferred into the congest and
streaming models is an interesting open question.

9 DISCUSSION
We introduced the bit-gadget, a powerful tool for constructing graphs with small cuts. Using the
bit-gadget, we were able to prove new lower bounds for the congest model for fundamental graph
problems, such as computing the exact or approximate diameter, radius, minimum vertex cover,
and the chromatic number of a graph.

Our lower bound for computing the radius answers an open question that was raised by Holzer
and Wattenhofer[66]. Notably, our lower bound for computing the diameter implies a large gap be-
tween the complexity of computing a (3/2)-approximation, which can be done in𝑂 (

√
𝑛) rounds[64],

and the complexity of computing a (3/2−𝜖)-approximation, which we show to require Ω̃(𝑛) rounds.
As there are no known lower bounds for computing a (3/2)-approximation, an intriguing open
question that immediately arises is the complexity of (3/2)-approximation.

Furthermore, our bit-gadget allows us to show the first super-linear lower bounds for the congest
model, raising a plethora of open questions. First, we showed for some specific problems, namely,
computing a minimum vertex cover, a maximum independent set and a 𝜒-coloring, that they are
nearly as hard as possible for the congest model. However, we know that approximate solutions
for some of these problems can be obtained much faster, in a polylogarithmic number of rounds
or even less. For vertex cover, our lower bound can easily be amplified to any constant additive
approximation5, but this also leaves huge gaps in our understanding of the trade-offs between
approximation factors and efficiency for this problem. Thus, a family of specific open questions

4We have included such a wrong claim in a previous version of this work, and thank an anonymous reviewer of ACM TALG
for spotting this error.
5We thank David Wajc for pointing this out.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Smaller Cuts, Higher Lower Bounds 1:37

is to characterize the exact trade-offs between approximation factors and round complexities for
various optimization problems.

Finally, we propose a more general open question which addresses a possible classification of
complexities of global problems in the congest model. Some such problems have complexities of
Θ(𝐷), such as constructing a BFS tree. Others have complexities of Θ̃(𝐷 +

√
𝑛), such as finding

an MST. Some problems have near-linear complexities, such as unweighted APSP. And now we
know about the family of hardest problems for the congest model, whose complexities are near-
quadratic. Do these complexities capture all possibilities, as far as natural global graph problems
are concerned? Or are there such problems with a complexity of, say, Θ(𝑛1+𝛿), for some constant
0 < 𝛿 < 1? A similar question was recently addressed in [34] for LCL problems the local model,
and we propose investigating the possibility that such a hierarchy exists for the congest model for
certain classes of problems.

ACKNOWLEDGMENTS
We are grateful to Yuval Emek for many discussions and fruitful comments about the connection
between communication complexity and streaming lower bounds, and for pointing out that our
technique can be useful for streaming models. We also thank Ohad Ben Baruch, Michael Elkin, Yuval
Filmus, Christoph Lenzen, Merav Parter and David Wajc for useful discussions, and the reviewers
of ACM TALG journal for their thorough reading and the helpful comments and references.
This research has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 755839. This research is also supported in part
by the Israel Science Foundation (grant 1696/14). We acknowledge the Austrian Science Fund (FWF)
and netIDEE SCIENCE project P 33775-N.

REFERENCES
[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed distance computations,

even in sparse networks. In 30th International Symposium on Distributed Computing, DISC, pages 29–42, 2016.
[2] Amir Abboud, Vincent Cohen-Addad, and Philip N Klein. New hardness results for planar graph problems in p and

an algorithm for sparsest cut. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

STOC, pages 996–1009, 2020.
[3] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences between graph centrality

problems, APSP and diameter. In ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1681–1697, 2015.
[4] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed parameter subquadratic

algorithms for radius and diameter in sparse graphs. In ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
377–391, 2016.

[5] Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. Distributed coloring in sparse graphs with
fewer colors. In ACM Symposium on Principles of Distributed Computing, PODC, pages 419–425, 2018.

[6] Udit Agarwal and Vijaya Ramachandran. A faster deterministic distributed algorithm for weighted apsp through
pipelining. CoRR, abs/1804.05441, 2018.

[7] Udit Agarwal, Vijaya Ramachandran, Valerie King, and Matteo Pontecorvi. A deterministic distributed algorithm for
exact weighted all-pairs shortest paths in𝑂 (𝑛3/2) rounds. In Proceedings of the ACM Symposium on Principles of

Distributed Computing, PODC, pages 199–205, 2018.
[8] Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In Automata, Languages and

Programming, 36th Internatilonal Colloquium, ICALP, pages 328–338, 2009.
[9] Matti Åstrand, Patrik Floréen, Valentin Polishchuk, Joel Rybicki, Jukka Suomela, and Jara Uitto. A local 2-

approximation algorithm for the vertex cover problem. In Proceedings of the 23rd International Symposium on

Distributed Computing, DISC, pages 191–205, 2009.
[10] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for vertex cover and set cover in

anonymous networks. In Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms andArchitectures,

SPAA, pages 294–302, 2010.
[11] Nir Bachrach, Keren Censor-Hillel, Michal Dory, Yuval Efron, Dean Leitersdorf, and Ami Paz. Hardness of distributed

optimization. In PODC, pages 238–247. ACM, 2019.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:38 Abboud, Censor-Hillel, Khoury, Paz

[12] Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman. Distributed approximation of
maximum independent set and maximum matching. In Proceedings of the ACM Symposium on Principles of Distributed

Computing, PODC, pages 165–174, 2017.
[13] Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartzman. A distributed (2+𝜖)-approximation for vertex

cover in o(log𝛿/𝜖 log log 𝛿) rounds. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,

PODC, pages 3–8, 2016.
[14] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an application to counting

triangles in graphs. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 623–632, 2002.

[15] Leonid Barenboim. On the locality of some NP-complete problems. In Proceedings of the 39th International Colloquium

on Automata, Languages, and Programming, ICALP, pages 403–415, 2012.
[16] Leonid Barenboim. Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic, and faulty networks. J.

ACM, 63(5):47:1–47:22, 2016.
[17] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polylogarithmic time. J. ACM,

58(5):23:1–23:25, 2011.
[18] Leonid Barenboim andMichael Elkin. Combinatorial algorithms for distributed graph coloring. Distributed Computing,

27(2):79–93, 2014.
[19] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (delta+1)-coloring in linear (in delta) time. SIAM J.

Comput., 43(1):72–95, 2014.
[20] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of distributed symmetry breaking.

J. ACM, 63(3):20:1–20:45, 2016.
[21] Surender Baswana. Streaming algorithm for graph spanners - single pass and constant processing time per edge. Inf.

Process. Lett., 106(3):110–114, 2008.
[22] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-optimal approximate

shortest paths and transshipment in distributed and streaming models. In Andréa W. Richa, editor, 31st International
Symposium on Distributed Computing, DISC, volume 91 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.7.

[23] Suman Kalyan Bera and Prantar Ghosh. Coloring in graph streams. CoRR, abs/1807.07640, 2018.
[24] Aaron Bernstein and Danupon Nanongkai. Distributed exact weighted all-pairs shortest paths in near-linear time.

In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 334–342, 2019.
doi:10.1145/3313276.3316326.

[25] Marijke H. L. Bodlaender, Magnús M. Halldórsson, Christian Konrad, and Fabian Kuhn. Brief announcement: Local
independent set approximation. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC,
pages 93–95, 2016.

[26] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. Mining large networks with subgraph counting.
In Proceedings of the 8th IEEE International Conference on Data Mining ICDM, pages 737–742, 2008.

[27] Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, and Lin F. Yang. New bounds for the
CLIQUE-GAP problem using graph decomposition theory. Algorithmica, 80(2):652–667, 2018.

[28] Karl Bringmann and Sebastian Krinninger. A note on hardness of diameter approximation. Inf. Process. Lett., 133:10–15,
2018. doi:10.1016/j.ipl.2017.12.010.

[29] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, and Christian Sohler. Estimating clustering indexes in data
streams. In Algorithms - ESA 2007, 15th Annual European Symposium, pages 618–632, 2007.

[30] Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New bounds for approximating extremal distances in undirected
graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
363–376, 2016.

[31] Keren Censor-Hillel, Telikepalli Kavitha, Ami Paz, and Amir Yehudayoff. Distributed construction of purely additive
spanners. Distributed Computing, 31(3):223–240, 2018.

[32] Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds for the CONGEST model.
In 31st International Symposium on Distributed Computing, DISC 2017, pages 10:1–10:16, 2017.

[33] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic
complexity in the LOCAL model. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pages
615–624, 2016.

[34] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. CoRR, abs/1704.06297, 2017.
[35] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and Virginia Vassilevska

Williams. Better approximation algorithms for the graph diameter. In Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, SODA, pages 1041–1052, 2014.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.4230/LIPIcs.DISC.2017.7
https://doi.org/10.1145/3313276.3316326
https://doi.org/10.1016/j.ipl.2017.12.010

Smaller Cuts, Higher Lower Bounds 1:39

[36] Shiri Chechik and Doron Mukhtar. Optimal distributed coloring algorithms for planar graphs in the LOCAL model.
CoRR, abs/1804.00137, 2018.

[37] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza Monemizadeh. Parameterized
streaming: Maximal matching and vertex cover. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA, pages 1234–1251, 2015.
[38] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász local lemma and graph coloring.

In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC, pages 134–143, 2014.
[39] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Information

and Control, 70(1):32–53, 1986.
[40] Graham Cormode, Jacques Dark, and Christian Konrad. Approximating the caro-wei bound for independent sets in

graph streams. In Combinatorial Optimization - 5th International Symposium, ISCO, pages 101–114, 2018.
[41] Andrzej Czygrinow, Michal Hanckowiak, and Wojciech Wawrzyniak. Fast distributed approximations in planar

graphs. In Proceedings of the 22nd International Symposium on Distributed Computing, DISC, pages 78–92, 2008.
[42] Irit Dinur and Igor Shinkar. On the conditional hardness of coloring a 4-colorable graph with super-constant number

of colors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages
138–151. Springer, 2010.

[43] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique model. In Proceedings of

the 33rd ACM Symposium on Principles of Distributed Computing, PODC, pages 367–376, 2014.
[44] Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the distributed minimum

spanning tree problem. SIAM J. Comput., 36(2):433–456, 2006.
[45] Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners.

ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.
[46] Michael Elkin. Distributed exact shortest paths in sublinear time. In 49th Annual ACM SIGACT Symposium on Theory

of Computing, STOC, pages 757–770, 2017.
[47] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + 𝜀, 𝛽)-spanners in the distributed and

streaming models. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing,

PODC, pages 160–168, 2004. doi:10.1145/1011767.1011791.
[48] Yuval Emek, Christoph Pfister, Jochen Seidel, and Roger Wattenhofer. Anonymous networks: randomization = 2-hop

coloring. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC, pages 96–105, 2014.
[49] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a

semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
[50] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph distances in the

data-stream model. SIAM J. Comput., 38(5):1709–1727, 2008. doi:10.1137/070683155.
[51] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed computing with advice: information

sensitivity of graph coloring. Distributed Computing, 21(6):395–403, 2009.
[52] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proceedings of the IEEE 57th

Annual Symposium on Foundations of Computer Science, FOCS, pages 625–634, 2016.
[53] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their diameter in sublinear

time. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1150–1162, 2012.
[54] Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi. Distributed weighted vertex cover via maximal

matchings. ACM Trans. Algorithms, 5(1):6:1–6:12, 2008.
[55] Fabrizio Grandoni, Jochen Könemann, Alessandro Panconesi, and Mauro Sozio. A primal-dual bicriteria distributed

algorithm for capacitated vertex cover. SIAM J. Comput., 38(3):825–840, 2008.
[56] Ofer Grossman, Seri Khoury, and Ami Paz. Improved hardness of approximation of diameter in the CONGEST model.

In DISC, volume 179 of LIPIcs, pages 19:1–19:16, 2020.
[57] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM J. Discret.

Math., 18(1):30–40, 2004.
[58] Bjarni V. Halldórsson, Magnús M. Halldórsson, Elena Losievskaja, and Mario Szegedy. Streaming algorithms for

independent sets in sparse hypergraphs. Algorithmica, 76(2):490–501, 2016.
[59] Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and ChenguWang. Streaming and communication complexity

of clique approximation. In Automata, Languages, and Programming - 39th International Colloquium, ICALP, pages
449–460, 2012.

[60] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed complexity of computing
maximal matchings. SIAM J. Discrete Math., 15(1):41–57, 2001.

[61] David G. Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (Δ+1)-coloring in sublogarithmic rounds. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 465–478, 2016.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/1011767.1011791
https://doi.org/10.1137/070683155

1:40 Abboud, Censor-Hillel, Khoury, Paz

[62] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight distributed algorithm
for approximating single-source shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing, STOC, pages 489–498, 2016.
[63] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data streams. In External

Memory Algorithms, pages 107–118, 1998.
[64] Stephan Holzer, David Peleg, Liam Roditty, and Roger Wattenhofer. Distributed 3/2-approximation of the diameter.

In Proceedings of the 28th International Symposium on Distributed Computing, DISC, pages 562–564, 2014.
[65] Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in the broadcast congest clique.

In Proceedings of the 19th International Conference on Principles of Distributed Systems, OPODIS, pages 6:1–6:16, 2015.
[66] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and applications. In Proceedings

of the ACM Symposium on Principles of Distributed Computing, PODC, pages 355–364, 2012.
[67] Qiang-Sheng Hua, Haoqiang Fan, Lixiang Qian, Ming Ai, Yangyang Li, Xuanhua Shi, and Hai Jin. Brief announcement:

A tight distributed algorithm for all pairs shortest paths and applications. In Proceedings of the 28th ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA, pages 439–441, 2016.
[68] Chien-Chung Huang, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed exact weighted all-pairs shortest

paths in �̃� (𝑛5/4) rounds. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 168–179,
2017.

[69] Michael Kapralov. Better bounds for matchings in the streaming model. In ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1679–1697, 2013.
[70] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approximating MAX-CUT. In

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1263–1282, 2015.
[71] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. Theory Comput. Syst.,

53(2):243–262, 2013.
[72] Samir Khuller, Uzi Vishkin, and Neal E. Young. A primal-dual parallel approximation technique applied to weighted

set and vertex covers. J. Algorithms, 17(2):280–289, 1994.
[73] Christos Koufogiannakis and Neal E. Young. Distributed and parallel algorithms for weighted vertex cover and other

covering problems. In Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing, PODC,
pages 171–179, 2009.

[74] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being near-sighted. In Proceedings of the

Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 980–989, 2006.
[75] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and upper bounds. J. ACM,

63(2):17:1–17:44, 2016.
[76] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, New York, NY, USA,

1997.
[77] Christoph Lenzen. Theory of distributed systems, lecture 8: Distance approximation and routing, 2019. URL:

https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/winter19/tods/ToDS_08.pdf. Last visited 09/11/2020.
[78] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applications. In Proceedings of the 2015

ACM Symposium on Principles of Distributed Computing, PODC, pages 153–162, 2015.
[79] Christoph Lenzen and David Peleg. Efficient distributed source detection with limited bandwidth. In Proceedings of

the ACM Symposium on Principles of Distributed Computing, PODC, pages 375–382, 2013.
[80] Christoph Lenzen and Roger Wattenhofer. Leveraging linial’s locality limit. In Proceedings of the 22nd International

Symposium on Distributed Computing, DISC, pages 394–407, 2008.
[81] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/

data, June 2014.
[82] Jason Li and Merav Parter. Planar diameter via metric compression. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, STOC, pages 152–163, 2019.
[83] Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201, 1992.
[84] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate counting of cycles in

streams. In Algorithms - ESA 2011 - 19th Annual European Symposium, pages 677–688, 2011.
[85] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The graph structure in the web - analyzed

on different aggregation levels. J. Web Science, 1(1):33–47, 2015.
[86] Thomas Moscibroda and RogerWattenhofer. Coloring unstructured radio networks. Distributed Computing, 21(4):271–

284, 2008.
[87] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical Computer

Science, 1(2), 2005.
[88] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In Proceedings of the

Symposium on Theory of Computing, STOC,, pages 565–573, 2014.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/winter19/tods/ToDS_08.pdf
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Smaller Cuts, Higher Lower Bounds 1:41

[89] Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. A tight unconditional lower bound on distributed
randomwalk computation. In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,

PODC, pages 257–266, 2011.
[90] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse networks. Distributed

Computing, 14(2):97–100, 2001.
[91] Ami Paz and Gregory Schwartzman. A (2 + 𝜖)-approximation for maximum weight matching in the semi-streaming

model. In ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2153–2161, 2017.
[92] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2000.
[93] David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for network diameter and girth. In Proceedings of the

39th International Colloquium on Automata, Languages, and Programming, ICALP, pages 660–672, 2012.
[94] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-weight

spanning tree construction. SIAM J. Comput., 30(5):1427–1442, 2000.
[95] Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-free graphs. Inf. Comput., 243:263–280,

2015.
[96] Valentin Polishchuk and Jukka Suomela. A simple local 3-approximation algorithm for vertex cover. Inf. Process. Lett.,

109(12):642–645, 2009.
[97] Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput. Sci., 106(2):385–390, 1992.
[98] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse

graphs. In Proceedings of the Symposium on Theory of Computing Conference, STOC, pages 515–524, 2013.
[99] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg,

and Roger Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM J. Comput.,
41(5):1235–1265, 2012.

[100] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending on the chromatic number
or the neighborhood growth. Theor. Comput. Sci., 509:40–50, 2013. doi:10.1016/j.tcs.2012.09.004.

[101] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary report). In
Proceedings of the 11h Annual ACM Symposium on Theory of Computing, STOC, pages 209–213, 1979.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/j.tcs.2012.09.004

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Computational Models
	2.2 Graph Parameters
	2.3 Communication Complexity
	2.4 Lower Bound Graphs

	3 The Bit-Gadget Construction
	4 Near-Linear Lower Bounds for Sparse Graphs
	4.1 Exact Diameter
	4.2 (3/2-)-Approximation of the Diameter
	4.3 Radius

	5 Near-Quadratic Lower Bounds for General Graphs
	5.1 Minimum Vertex Cover
	5.2 Graph Coloring

	6 Quadratic and Near-Quadratic Lower Bounds for Problems in P
	6.1 Weighted Cycle Detection
	6.2 Identical Subgraphs Detection

	7 Weighted APSP
	7.1 A Linear Lower Bound for Weighted APSP
	7.2 The Alice-Bob Framework Cannot Give a Super-Linear Lower Bound for Weighted APSP

	8 Streaming Lower Bounds
	9 Discussion
	Acknowledgments
	References

