
User Documentation

Authors
Thomas Rausch

CognitiveAR Contributors

https://netidee.at/cognitivear
Version: 2021-01-24
Licence: CC-AT-SA

Table of Content

Introduction 2

Architecture 2

Components 2

CogStream 3

Documentation 4

Available engines 4

Cyber-Physical Object Positioning (CPOP) 4

Example 5

Documentation 5

Complete deployment example 5

https://netidee.at/cognitivear


Cognitive XR User Documentation

Introduction
The vision of CognitiveXR is a platform to seamlessly interface wearable AR devices with
smart city environments that are pervaded by edge computing infrastructure. The platform is
tailored to enable multi-user cognitive assistance applications that require (1) real-time
sensor data from the environment, such as approaching cars or pedestrians, and (2)
computing resources for low-latency video processing using AI.

The users of CognitiveXR are primarily developers of Augmented Reality applications,
as well as operators of edge computing infrastructure that hosts services for such
applications. Most relevant to users are therefore the APIs provided by CognitiveXR, as well
as the components involved in running the entire platform on edge infrastructure.

This document summarises the architecture and main components of CognitiveXR, and
collects links to documentation of individual components for more details.

Architecture
The following figure shows the main architectural components of our system

(1) Runtime platform that provisions AI services from a repository in the cloud (1) to
edge nodes (1b)

(2) Edge nodes such as a smart lamp post, providing compute resources and access to
environmental sensor data;

(3) device-specific client software on an AR or mobile device, that facilitates transparent
access to the system

(4) actual AR application running on the specific device.

Page 2



Cognitive XR User Documentation

Components
The central software components of CognitiveXR are:

● CogStream: a platform for distributed real-time AI-based video analytics:
○ CogStream Engine: a video analytics engine processes a video feed

received over the network and annotates it with metadata. Engines are
instantiated dynamically by the Mediator.

○ CogStream Mediator: allows AR apps to request CogStream Engines
available in the system, and negotiates a video transformation pipeline

● CPOP: The Cyber-Physical Object Positioning (CPOP) System
● cognitivexr-clients: Client libraries to connect to CogStream and CPOP from AR

devices

You can choose to run CognitiveXR on any container-based deployment platform, such as
Docker-Swarm or Kubernetes. For communication between devices and edge nodes, we
use standards like websockets and MQTT.

CogStream
Suppose you want to build an assistive AR app that helps the wearer of AR glasses to
interpret the emotional response of conversational partners. The AR glasses would record
the person you are conversing with, offload the video to a video analytics engine that
responds with the bounding boxes of the face and the label of the emotional response. Such
operations are computationally expensive and generally cannot be performed on the device,
but have to be offloaded to nearby infrastructure with AI-accelerators. Moreover, the sender
(AR glasses) and receiver (video analytics engine) need to negotiate a video streaming
format.

CogStream facilitates this end-to-end. AR devices request an engine (e.g., for facial
expression recognition) via the Mediator, which instantiates the engine (if available), and
negotiates the streaming format. The AR device then connects directly to the newly created
engine, and begins receiving the metadata processed by the engine. The AR app can then
further process or visualise the metadata as required by the application.

For development purposes,
you can also instantiate and
connect to engines directly.
The images on the right
shows the debug view of a
particular engine that uses
OpenCV to detect faces and
a pre-trained MXNet AI
model (FERPlus) to interpret
facial expressions.

Page 3



Cognitive XR User Documentation

Documentation
● Engine streaming protocol

https://github.com/cognitivexr/CogStream
● Mediator

https://github.com/cognitivexr/CogStream/tree/main/mediator

Available engines
The following engines are available out-of-the-box. However, CogStream is pluggable, such
that custom engines can be easily implemented. Engines are meant to be started by the
Mediator, but can also be started directly and debugged with their respective engine clients.

● YOLOv5 object detector:
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/yolov5

● Facial expression recognition (FER) using OpenCV and MXNet
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/fermx

● Simple face detection with OpenCV
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/facescv

● Recorder to record the received video feed (useful for debugging)
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-go/plugin/recor
d

Cyber-Physical Object Positioning (CPOP)
Tracking objects in the immediate vicinity, even if they are not visible to the wearer of AR
glasses, is a fundamental aspect of assistive AR apps for urban spaces. Suppose a cyclist is
wearing AR glasses that can display approaching cars that are hidden behind the corner of a
house. To correctly display virtual representations of physical objects in AR apps,
CognitiveXR tracks objects and devices in a global coordinate space. To track physical
objects like cars, CPOP uses regular RGB cameras and deep learning-based object
detection to translate the detected objects into 3D positions. The CPOP server sends
positional updates to an MQTT broker or network, for example Mosquitto1 or EMMA2,
respectively, that AR devices receive via subscription to the same brokers.

To set up CPOP, the following steps are required (details in the linked documentation)

● Connect a webcam to a device that can run Pytorch
● To anchor the camera to a common origin, run the CPOP calibration procedure using

an AruCo marker
● Start an MQTT broker on a server
● Start CPOP server on a device that has a camera attached to it
● To calibrate the AR app, we do not yet provide an out-of-the-box mechanism. We

have

2 http://dsg.tuwien.ac.at/staff/trausch/pub/PID5190461.pdf
1 https://mosquitto.org/download/

Page 4

https://github.com/cognitivexr/CogStream
https://github.com/cognitivexr/CogStream/tree/main/mediator
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/yolov5
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/fermx
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-py/facescv
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-go/plugin/record
https://github.com/cognitivexr/CogStream/tree/main/engines/engines-go/plugin/record
http://dsg.tuwien.ac.at/staff/trausch/pub/PID5190461.pdf
https://mosquitto.org/download/


Cognitive XR User Documentation

Example
Here is an example of how we used CPOP to create a simple application that can track
pedestrians through walls. A detailed explanation can be found in this presentation:

IEEE VR DISCE'21: Towards a Platform for Smart City-Scale Cognitive Assistance Ap…

Documentation
● CPOP https://github.com/cognitivexr/cpop
● Calibrating the camera: https://github.com/cognitivexr/cpop#calibrate-the-camera
● Run the service: https://github.com/cognitivexr/cpop#run-the-service

Complete deployment example
A complete example of how to deploy the entire system on to edge computing infrastructure
can be found here: https://github.com/cognitivexr/cognitivear-demo

Page 5

https://www.youtube.com/watch?v=kv8gmf_8jtI&t=243s
https://github.com/cognitivexr/cpop
https://github.com/cognitivexr/cpop#calibrate-the-camera
https://github.com/cognitivexr/cpop#run-the-service
https://github.com/cognitivexr/cognitivear-demo

