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Abstract—Reconfigurable optical topologies promise to im-
prove the performance in datacenters by dynamically optimizing
the physical network in a demand-aware manner. State-of-the-
art optical technologies allow to establish and update direct
connectivity (in the form of edge-disjoint matchings) between
top-of-rack switches within microseconds or less. However, to
fully exploit temporal structure in the demand, such fine-grained
reconfigurations also require fast algorithms for optimizing the
interconnecting matchings.

Motivated by the desire to offload a maximum amount of
demand to the reconfigurable network, this paper initiates the
study of fast algorithms to find k disjoint heavy matchings in
graphs. We present and analyze six algorithms, based on iterative
matchings, b-matching, edge coloring, and node-rankings. We
show that the problem is generally NP-hard and study the
achievable approximation ratios.

An extensive empirical evaluation of our algorithms on both
real-world and synthetic traces (88 in total), including traces
collected in Facebook datacenters and in HPC clusters reveals
that all our algorithms provide high-quality matchings, and also
very fast ones come within 95% or more of the best solution.
However, the running times differ significantly and what is the
best algorithm depends on k and the acceptable runtime-quality
tradeoff.

Index Terms—reconfigurable datacenters, optical circuit
switches, graph algorithms, matching, edge coloring

I. INTRODUCTION

With the popularity of data-centric applications, network
traffic in datacenters is growing explosively [1], [2]. Accord-
ingly, over the last years, several novel datacenter topologies
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have been proposed to improve network efficiency and perfor-
mance, e.g., [3]–[5]. These network topologies typically have
in common that they are oblivious to the traffic they serve.

Emerging reconfigurable optical technologies enable an in-
triguing alternative to existing datacenter network designs [6]–
[8]: these technologies allow to enhance existing datacenter
networks with reconfigurable optical matchings, e.g., one
disjoint matching per optical circuit switch [9]–[15]. These
matchings can be adapted towards the traffic demand, exploit-
ing temporal and spatial structure [16]. State-of-the-art tech-
nologies allow in principle to change such matchings within
microseconds or even less [14]. Given these reconfiguration
times, the bottleneck becomes now how to compute such
matchings fast in the control plane.

Accordingly, this paper initiates the study of fast algorithms
to find k disjoint weighted matchings in graphs. Here, k is the
number of optical circuit switches, each of which provides one
reconfigurable matching. The matchings should be heavy, i.e.,
carry a maximal amount of traffic. Existing algorithmic work
on the matching problem typically focuses on computing a
single matching.

More formally, this paper considers the following model and
terminology. We are given a weighted graph G = (V,E,D)
where D : V × V → N0 describes a demand for each pair of
vertices. A matching is a subset of edges that have no common
vertices. The goal is to find k pairwise edge-disjoint matchings
M1, . . . ,Mk, such that

∑
1≤i≤k D(Mi) is maximized. We

show that this problem is NP-hard.
Note that this problem is different from the well-known

b-matching problem: Given a triangle, a 2-matching could
choose all edges in the graph, while 2 disjoint matchings
consist of 2 edges of the graph.

Perhaps a natural approach to find such maximum weight k
disjoint matchings would be to repeatedly remove the edges of
individual maximum weight matchings from the graph, leading
to a polynomial-time algorithm. However, this approach is not
optimal: Consider a triangle where each vertex is additionally
adjacent to a further vertex of degree one. Thus, the graph
has six vertices and six edges. Now assume unit edge weights
and consider k = 3. The unique maximum weight matching
consists of exactly the three edges incident to the degree-one
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vertices. By removing them we are left with a triangle, and
hence the second maximum weight matching has size one,
as does the third. An optimal solution, however, has size six:
Each of the three matchings consists of one triangle edge plus
the unique edge incident to the remaining triangle vertex.

Contributions: Motivated by novel optical technologies
which allow to enhance fixed datacenter topologies with
reconfigurable matchings, this paper studies algorithms for the
fast computation of k heavy disjoint matchings. We show that
the problem is NP-hard and propose six efficient algorithms:
three algorithms are based on the iterative computation of
simple matchings, one algorithm leverages a connection to the
related b-matching problem, one algorithm is an adaptation of
an edge-coloring algorithm, and one node-centered algorithm
uses a rating function that depends on the weights of a node’s
incident edges. Additionally, we study three postprocessing
strategies to improve the weight of an existing matching, and
discuss the achievable approximation ratios.

We perform an extensive evaluation of the quality and run-
ning time of our algorithms on a diverse set of instances, which
include both real-world traces as well as synthetic traces, 88
instances in total. In particular, we consider six traces from
Facebook datacenters, four traces from a High-Performance
Computing (HPC) cluster, three widely-used synthetic pFabric
traces, nine instances from the Florida sparse matrix collection,
and 66 Kronecker graphs.

Our empirical results show that our algorithms constantly
compute high-quality matchings. The running times however
vary and which is the best algorithm depends on the value
of k and the affordable tradeoff between running time and
solution quality. For small values of k, an iterative approach
is most attractive, especially when combined with a local
swapping strategy: the algorithm GPA-It, which is based on
the Global Paths matching algorithm, combined with the
LocalSwaps postprocessing routine provides low running
times and high-quality matchings whose weight is within 95 %
or more of the best algorithm (executed with a 4 h time limit).
For larger values of k, our edge coloring-based algorithm
k-EC provides the best performance as its running time barely
increases with k; for k ≥ 4, its quality score is always at
least within 93 % of the best algorithm, and at least 96 %
on average. If running time is not of concern, the iterative
algorithm Blossom-It can be an attractive choice.

As a contribution to the research community, to ensure
reproducibility and to facilitate follow-up work, we will make
all our experimental artefacts including our implementation (as
open source) publicly available together with this paper.

Organization: The remainder of this paper is organized
as follows. Sect. II introduces preliminaries and discusses
related problems and prior work. We present our algorithms in
Sect. III and report on our experimental results in Sect. IV. We
conclude by discussing future research directions in Sect. V.

II. PRELIMINARIES

A. Basic Definitions

We model our problem as a simple, undirected, edge-
weighted graph G = (V,E,D) with vertex set V , edge set E,
and a non-negative integer weight or demand D : V ×V → N0

for each pair of vertices, which corresponds to the amount
of communication (data flow) between them. We assume the
demand to be symmetric, i.e., D(u, v) = D(v, u) for all
u 6= v ∈ V and D(u, v) > 0 iff {u, v} ∈ E. As shorthand
notation, we also write D(e) = D(u, v) for e = {u, v}.
Note that because G is simple, D(v, v) = 0 always. As
usual, n = |V | and m = |E|. Furthermore, we denote by
D = maxu,v∈V D(u, v) the maximum demand. An edge
e = {u, v} is incident to its end vertices u and v, and u and
v are said to be adjacent. The neighborhood of a vertex v is
N(v) = {u | {u, v} ∈ E} and its degree is deg(v) = |N(v)|.
We denote the maximum degree by ∆ = maxv∈V deg(v). A
path P is a sequence of edges P = (e1, e2, . . . , ek) such that
ei and ei+1, 1 ≤ i < k, share a common end vertex and no
vertex appears more than once.

A matching M ⊆ E is a set of edges such that no vertex
is incident to two edges contained in M. In our context,
the weight of a matching M is D(M) =

∑
e∈MD(e).

An edge e is said to be matching if e ∈ M and non-
matching otherwise. A vertex is said to be free (w.r.t. M)
if it is not incident to a matching edge. An alternating path
is a path that alternatingly consists of matching and non-
matching edges. Given a matching M and a path P , we
denote by M⊕P the set of edges obtained as the symmetric
difference of M and the edges in P . An augmenting path
is an alternating path P such that M⊕P is a matching and
D(M) < D(M⊕P). A k-disjoint matchingM is a collection
of k matchings (M1, . . . ,Mk) that are pairwise disjoint. We
slightly abuse notation and use M both for the collection of
disjoint matchings as well as their union M1 ∪ · · · ∪Mk.

In this paper, we study the k-DISJOINT MATCHING (k-
DJM) problem: Given a graph G = (V,E,D) and an integer
k ∈ N, find a k-disjoint matching M = (M1, . . . ,Mk)
such that D(M) =

∑
1≤i≤k D(Mi) is maximized. If the

maximum demand D = 1, we speak of the unweighted k-
disjoint matching problem.

B. Related Problems and Prior Work

Our problem is especially motivated by reconfigurable dat-
acenter networks in which optical switches can be used to
augment a given fixed (electrical) topology, typically a Clos
topology [1], with additional matchings between the top-of-
rack switches [8], [9], [11]–[14], [17]. In prior work, these
matchings are typically optimized individually and not for
runtime [18]. In this regard, our paper is also related to
graph augmentation problems [19], [20] where a given (fixed)
graph needs to be enhanced with an optimal number of “extra
edges”, sometimes also referred to as “ghost edges” [21]: the
objective in this literature is typically to provide small world
properties [22] or minimize the network diameter [23], [24].



However, these algorithms are not directly applicable to our
problem where we need to add entire matchings rather than
individual edges.

The WEIGHTED MATCHING problem essentially corre-
sponds to the special case of 1-DJM. Edmonds [25], [26] was
the first to give a polynomial-time algorithm, which is known
as the blossom algorithm and has a running time of O(mn2).
In a series of improvements [27]–[32], the running time has
been reduced further to O(n(m+n log n)) [33] for the general
case and to O(m

√
n log n log(nD)) [34] for integer weights.

For dense graphs, the fastest algorithm on integer-weighted
graphs is randomized and runs in time Õ(Dnω) [35], where
ω is the exponent in the running time of fast matrix multipli-
cation algorithms (ω < 2.38 [36]). A widely known simple
greedy algorithm (cf. Sect. III) yields a 1

2 -approximation
and runs in time O(m log n). Both approximation ratio and
running time have been subject to improvement over the
years, leading to a (1 − ε)-approximation algorithm with
O(m/ε log(1/ε)) running time for arbitrary edge weights and
O(m/ε logD) running time for integer weights [37].

Different algorithms have been proposed and evaluated to
tackle the problem in practice. Drake and Hougardy [38]
experimentally compared the already mentioned greedy algo-
rithm to the LD algorithm by Preis [39] and to the Path Grow-
ing Algorithm (PGA) [40] and showed that a variant of PGA,
PGA’, performs very well in practice. Maue and Sanders [41]
later suggested the Global Paths Algorithm (GPA) and showed
in an extensive study that in combination with a postprocessing
routine called ROMA, it yields the best experimental results in
comparison to the simple greedy algorithm and PGA’.

(WEIGHTED) PERFECT MATCHING is a restricted version
that disallows free vertices. It can be solved in polynomial
time by a variant of the blossom algorithm [42].

(WEIGHTED) b-MATCHING is a generalization of
WEIGHTED MATCHING, where each vertex may be
incident to up to b edges contained in the matching. In
contrast to k-DISJOINT MATCHING, a b-matching need not
be composed of b pairwise disjoint 1-matchings. Thus, every
k-disjoint matching is a k-matching, but not necessarily
vice-versa (the edges of a triangle, e.g., form a 2-matching
but not a 2-disjoint matching). This problem can be solved
exactly in O(min{bn, n log n}(m + n log n)) time [43] and
approximated by a greedy algorithm analogous to the greedy
weighted matching algorithm with a performance guarantee
of 1

2 [44] (cf. Sect. III). A (1 + ε)-approximation can be
achieved in Oε(mα(m,n)) time [45].

Khan et al. [46] compared the performance of the b-
matching variants of the simple greedy algorithm, PGA, PGA’,
and LD to their new algorithm b-SUITOR, which computes
the same solution as the greedy algorithm, but is parallelizable
and faster than PGA’. Recently, algorithms for the b-matching
problem have been evaluated in the online setting in a similar
context of data center reconfiguration [47].

The EDGE COLORING problem consists in determining the
chromatic index of a graph, i.e., the minimum number of
colors required to assign each edge a color such that edges

incident to a common vertex receive different colors. The k-
DISJOINT MATCHING problem is hence equivalent to finding
a maximum-weight subgraph with chromatic index k. Whereas
∆ naturally gives a lower bound on the chromatic index, an
upper bound is given by ∆+1 [48]. In general, it is NP-hard
to decide whether a graph has chromatic index ∆ or ∆+1 [49]
already if the graph is cubic, i.e., deg(v) = 3 for all v ∈ V :

Theorem 1 (Holyer [49]). It is NP-complete to determine
whether the chromatic index of a cubic graph is 3 or 4.

Proposition 1. The k-DISJOINT MATCHING problem is NP-
hard already in the unweighted case and for k = 3.

Proof. Consider a cubic graph G. There is a one-to-one
correspondence between deciding the chromatic index of G
and deciding whether k = 3 disjoint matchings of weight at
least m exist in a graph where D = 1: The set of edges of the
same color in the 3-coloring give three matchings and three
disjoint matchings in G give a 3-coloring of G.

Recall that for k = 1, k-DISJOINT MATCHING is equal to
WEIGHTED MATCHING and thus solvable in polynomial time,
whereas for k = 2 the complexity is still unknown. Computing
a maximum weight matching, removing it, and computing a
second does not necessarily yield an optimal solution for k =
2, as we show in Sect. III. Note that it is easy to tell whether
a graph with maximum degree two can be colored with two or
three colors: Two colors always suffice unless the graph has
an odd-length cycle. We give below various polynomial-time
algorithms whose running time is polynomial in n, m, and k
(observe that k ≤ ∆ + 1).

In consequence of Theorem 1, EDGE COLORING is inap-
proximable within a factor less than 4/3. This implies the
following inapproximability result for DJM:

Proposition 2. It is NP-hard to approximate the k-DISJOINT
MATCHING problem within a factor of (1− ε) for any 1/m ≥
ε > 0.

Proof. Consider a cubic graph G with D = 1. If G’s
chromatic index is 3, then every algorithm for k-DJM with an
approximation ratio strictly greater than (1− 1

m ) must compute
a solution for k = 3 that contains more than m(1− 1

m ) = m−1
edges, which implies it must contain m edges. But if it is 4, it
can contain at most m−1 edges. Thus any such algorithm can
be used to decide whether the chromatic index is 3 or 4.

EDGE COLORING can be solved to optimality in
O(2.2461m) time by first obtaining the line graph and then
applying an algorithm for VERTEX COLORING [50]. Misra
and Gries [51] gave an algorithm that constructs a ∆ + 1
coloring in time O(nm), whereas an algorithm that greedily
colors the edges with the first available color can use up to
2∆− 1 colors, which is optimal in the online setting [52].

The r-FACTORIZATION problem asks for a partition of
a graph’s edge set into a disjoint collection of r-regular
spanning subgraphs, called r-factors. Thus, a 1-factor is a
perfect matching, and only regular graphs with an even number



TABLE I: Running Time complexities of various algorithms.

Algorithm Running Time Complexity Approximation

Blossom-It O(kn(m + n logn)) ≤ 7/9
Greedy-It O(sort(m) + km) 1/2
GPA-It O(sort(m) + km) ≤ 1/2
bGreedy&Extend O(sort(m) + kn2) ≤ 1/2
NodeCentered O(sort(n) + n · sort(∆) + km) ≤ 1/2
k-EC O(sort(m) + kn2) ≤ 1/2
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Fig. 1: (a): Hypercube Q3 with 3 “greedy” matchings (thick)
vs. optimum (thin). 5

6 - and 7
9 -approximations for k = 2 and

k = 3, respectively, by Blossom-It (b) vs. optimum (c).
Matchings have the same color/style, the first is red and thick.

of vertices can have a 1-factorization, which is then equivalent
to the EDGE COLORING problem.

III. ALGORITHMS

In the following, we propose and engineer different ap-
proaches to obtain disjoint matchings. As the problem is NP-
hard and the field of application requires solutions computable
within fractions of a second, we concentrate on algorithms
from which we expect good, though not necessarily optimal
quality. Our approaches are inspired by and partially also built
on methods for the related problems of WEIGHTED MATCH-
ING, WEIGHTED b-MATCHING, and EDGE COLORING, and
are evaluated on a diverse set of instances in Sect. IV.

Table I provides an overview of all algorithms and lists their
time complexity as well as approximation guarantees.

A. Algorithms based on Weighted Matching (*-It)

Given an algorithm AM for the weighted matching problem,
a straightforward approach to obtain k disjoint matchings of
large total weight consists in running AM k times and making
the set of matching edges “unavailable” to subsequent runs of
AM. As the disjoint matchings are obtained iteratively, we use
the suffix -IT for algorithms following this scheme. We study
different options for AM:
Greedy-It. A matching that has at least half the weight

of a maximum weight matching can be obtained by a greedy
algorithm in O(sort(m)) ⊆ O(m log n) time: Starting from an
empty matching, it repeatedly adds the heaviest non-matching
edge e and removes all edges incident to one of e’s end vertices
until the graph is empty. To obtain k disjoint matchings based
on this greedy strategy, it suffices to sort the edges according
to their weight once and construct the disjoint matchings by
iterating k times over the list of sorted edges and removing an
edge from the list as soon as it becomes part of a matching.
The resulting algorithm Greedy-It has a running time of

O(sort(m)+km). The greedy matching algorithm achieves an
approximation ratio of 1

2 , which also transfers to Greedy-It:

Lemma 1. Greedy-It computes a 1
2 -approximation to the

k-DISJOINT MATCHING problem. This bound is tight.

Proof. Let M be the solution computed by Greedy-It, let
M∗ be an optimal solution, and consider an edge {u, v} in
M∗ \M. By construction, M then contains at least k edges
that are incident to either u or v and all have weight at least
D(u, v). However, each of the edges in M \M∗ can have
prevented at most two edges in M∗ \M from being picked
themselves, one incident to each of its end nodes. Hence,
D(M∗) ≤ 2 ·D(M). The tightness follows by Lemma 2.

GPA-It. The Global Paths Algorithm (GPA) is a 1
2 -

approximation algorithm for the weighted matching problem
introduced by Maue and Sanders [41]. It is especially of
interest here as the authors have shown that it produces results
that are very close to optimal in experiments, especially if
combined with the postprocessing routine ROMA (see also the
end of this section). GPA grows a set of paths and even-length
cycles as follows: Initially, every vertex forms a path of zero
length. An edge is called applicable if it connects two different
paths or the two end nodes of the same odd-length path. The
algorithm iterates over all edges in weight-descending order
and joins or closes paths by applicable edges. Afterwards, it
computes an optimal weighted matching for each path and
even-length cycle via dynamic programming, which takes time
linear in the length of the path or cycle. The total running
time for GPA hence is O(sort(m) +m). To use GPA as AM,
it suffices again to sort the edges just once and only run the
path growing and dynamic programming steps k times, which
results in a total running time of O(sort(m) + km) for this
algorithm, which we refer to as GPA-It.
Blossom-It. We also evaluate the use of an optimal

weighted matching algorithm as subroutine. Blossom is the
famous algorithm developed by Edmonds originally for the
unweighted matching problem [25], which he later extended
also to the weighted case [26]. The key idea is to grow
alternating-path trees and shrink odd-length cycles (called
blossoms) to find augmenting paths, which is guided by a
(dual) vertex labelling in the weighted case. Our algorithm
Blossom-It follows the scheme described above and simply
repeats this algorithm k times, which results in a running time
of O(k · n(m + n log n)). Blossom-It does not compute
an optimal solution to k-DISJOINT MATCHING: As shown in
Figs. 1b and 1c, its approximation ratio can be at most 5

6 for
k = 2 and 7

9 for k = 3, also if all edge weights are set to 1.
The solution can be forced by simply setting the weights of the
edges in the first matching to 1+ ε for some small ε > 0 or to
the weights shown in the figure. Observe that with the shown
weights, Greedy-It computes an optimal solution for both
k = 2 and k = 3, i.e., Blossom-It is not guaranteed to
perform better than Greedy-It. However, Blossom-It
computes an optimal solution for k = 1 and hence trivially



computes a 1
2 -approximation for k = 2, as the optimum for

k = 2 can be at most twice as large as the optimum for k = 1.

B. Algorithms based on Weighted b-Matching and Coloring

bGreedy&Extend. We make use of the fact that every
k-disjoint matching is also a k-matching, see also Sect. II-B.
Furthermore, the edges of every graph with maximum vertex
degree ∆ can be partitioned into a set of at most ∆ + 1
matchings by coloring its edges, which implies that every
(k− 1)-matching can be translated into a k-disjoint matching
without loss of weight.

Analogously to the greedy weighted matching algorithm
used in Greedy-It, there is a naïve greedy b-matching
algorithm that yields a 1

2 -approximation [44]. It iterates over
all edges in weight-decreasing order and adds each edge
{u, v} to the b-matching unless u and v are already incident
to b matching edges. The running time of this algorithm
is O(sort(m)). bGreedy&Extend first obtains a (k − 1)-
matching and then colors the subgraph induced by the edges
of the (k − 1)-matching with the edge coloring algorithm by
Misra and Gries [51], which needs at most k colors and runs in
O(kn2) time. Note that the induced subgraph has a maximum
vertex degree of k − 1, so the number of edges is in O(kn)
and the algorithm uses at most k colors. The coloring assigns
each edge of the subgraph to one of the k disjoint matchings.
bGreedy&Extend then runs Greedy-It to enlarge the
k disjoint matchings if possible. The running time of this
algorithm hence is O(sort(m) + kn2).

All previously described procedures are based on matching
or b-matching algorithms, which do not tackle the problem
directly and on the whole, but have a more or less limited
view. We therefore complement our set of algorithms by two
further approaches that try to find a heavy-weight subgraph
with chromatic index k.
NodeCentered. The algorithm follows a greedy, node-

centered strategy: In a preprocessing step, it calculates a rating
for each vertex and sorts the vertices according to their rating.
We consider different options to obtain a vertex’s rating from
the weights of its incident edges: the arithmetic mean, the
median, the sum, the maximum, as well as the sum of the k
largest weights (called kSUM). Next, it processes the vertices
in rating-decreasing order and tries to color its incident edges
in weight-decreasing order. Each color represents one of the
k disjoint matchings and the algorithm has to ensure that no
vertex is incident to two edges of the same color. Hence, if for
an edge {u, v} the vertices u and v do not share any common
free color, the edge is not picked. The algorithm stores for
each vertex and color a Boolean flag whether this color has
already been used for an incident edge, such that finding a
common free color takes O(k) time if both end vertices have
been matched at most k − 1 times, and O(1) otherwise.

To avoid an overly greedy coloring, we introduce a threshold
θ ∈ [0, 1] and ignore all edges with weight less than θ · D,
where D is the maximum weight of any edge. In this case,
the first phase, in which all vertices are processed as described
above, is followed by a second phase, where we merge the

sorted lists of the non-matching edges at each vertex into one
sorted list and match and color greedily. The running time of
the algorithm isO(sort(n)+n·sort(∆)+km) and independent
of θ. Note that θ = 0 is equivalent to setting no threshold.
Irrespective of how the rating function and threshold is chosen,
the algorithm computes the same greedy weighted matching
as Greedy-It for k = 1.
k-EC. We also designed a k-edge coloring algorithm that

uses the algorithm by Misra and Gries (MG) [51] directly as
basis, but only colors up to k incident edges of each vertex
and takes edge weights into account. A key property of the
MG algorithm with respect to our modification is that once
an edge has been colored, it may only be recolored later, but
never uncolored. To color an edge {u, v}, MG builds a maximal
fan around u, which is a sequence (w0 = v, w1, . . . , w`) of
distinct neighbors of u such that, for all 1 ≤ i ≤ `, if the edge
{u,wi} has color c, then wi−1 is not incident to an edge with
color c, i.e., c is free on wi−1. MG then determines a color c
that is free on u and a color d that is free on w`. If d is not
free on u, it looks for a path that starts at u and whose edges
are alternatingly colored d and c, and swaps these colors on
the path. Afterwards, d is guaranteed to be free on u. The
prefix of the fan up to the first neighbor wj where d is free is
then rotated, which means that each edge {u,wi} is recolored
with the color of {u,wi+1}, for all 0 ≤ i < j, and {u,wj} is
colored with d.

Our adaptation k-EC proceeds as follows: It processes the
edges in weight-descending order and, similar to MG, tries to
color each edge {u, v}, however only with one of up to k
colors. The edge is skipped if u or v are already incident
to k colored edges. If the last neighbor in the maximal fan
around u does not have a free color, k-EC tries to color the
edge with swapped rules for u and v instead, and skips the
edge if also this fails. We consider four flags that modify this
basic routine: If CC (common color) is enabled, k-EC tries
to find a common free color of u and v first when trying to
color {u, v}. With LC (lightest color), it tries to balance the
total weight of the edges of each color by always picking a
free color with minimum total weight so far. If RL (rotate
long) is set and the color d is free on u, it rotates the entire
fan instead of determining the first neighbor wj where d is
free. We also consider an option LF (large fan), where we try
to avoid neighbors without a free color as long as possible
while constructing the fan. Note that by definition of the fan,
a neighbor without free color cannot have a successor.

As there are at most kn edges that can be colored and
coloring an edge can be done in O(n), the running time of
the algorithm is O(sort(m) + kn2).

Lemma 2. The approximation ratio achieved by Greedy-It,
GPA-It, bGreedy&Extend, NodeCentered, and k-EC
is at most 1

2 .

Proof. Let k ≥ 1 and consider the k-dimensional hypercube
graph Qk, where each vertex additionally has k vertices of
degree one attached to it, and set all edge weights equal. A
solution returned by one of the mentioned algorithms may



consist of all 2k−1k hypercube edges, whereas the optimal
solution consists of all 2k · k edges incident to the vertices of
degree one, see also Fig. 1a. This solution can also be forced
by assigning a (very large) weight w to all non-hypercube
edges and an only slightly larger one w + ε to the hypercube
edges. The approximation ratio is then w+ε

2w = 1
2 + ε

2w .

C. Postprocessing

We consider different postprocessing techniques to im-
prove our algorithms: ROMA (Random Order Matching Aug-
mentation) was originally proposed for GPA by Maue and
Sanders [41] to improve the weight of a matching M. For
a configurable number lROMA of times, it randomly iterates
through all vertices and for each matched vertex u attempts to
improve M by a so-called maximum-gain 2-augmentation: A
matching edge {u, v} ∈ M is replaced by two non-matching
edges {u, r} and {v, s} if r and s are currently unmatched
and the gain D(u, r) + D(v, s) − D(u, v) is positive and as
large as possible. The procedure can be terminated early as
soon as one iteration leads to no change in the matching.
We adapt this approach straightforwardly for the k-DJM
problem by calling the procedure for each of the k disjoint
matchings separately right after they have been obtained. We
also consider a variation Swaps, where we instead iterate
once over all matching edges in weight-decreasing order and
perform the same maximum-gain 2-augmentation as in ROMA.

For Swaps as well as each iteration of ROMA, we iterate
over all matching edges and for each of its endpoints ex-
plore all neighbors to find the heaviest incident free edge.
Each matching edge is hence considered once and each non-
matching edge at most twice, which yields a running time
complexity of O(m) in case of Swaps under the assumption
that the edges are already sorted.

IV. EXPERIMENTS

We performed extensive experiments to evaluate the per-
formance of the algorithms described in Sect. III both with
respect to solution quality and running time. To keep large
numbers readable, we use K and M as abbreviations for
thousands (×103) and millions (×106), respectively.

A. Instances, Setup, and Methodology

The first three collections we use originate from the applica-
tion side and contain real-world as well as synthetic instances,
the other two have been used in previous experimental eval-
uations for b-matchings [46]. Facebook Data Traces [2] are
sets of production-level traces from three different clusters in
Facebook’s Altoona Data Center. For each cluster, there are
over 300M traces, collected over a 24 h period. The resulting
six instances have 14K to 5M vertices and 497K to 164M
edges with demands between 28 and 262M. HPC represents
four different applications run in parallel using MPI [16].
The instances have 1K vertices and up to 38K edges; the
demands are between 2 and 1K. We also use three synthetic
pFabric traces [16], [53], which have 144 vertices and are
generated based on flows arriving according to a Poisson

process, with flow rates in {0.1, 0.5, 0.8}. This results in about
10K edges and demands between 1 and 34K. Following the
methodology of Khan et al. [46], we include nine instances
from the Florida Sparse Matrix Collection [54]. These
instances stem from collaboration networks, medical science,
news networks, as well as sensor data, electro magnetics,
and structural mechanics. They have 13K to 1M vertices
and 121K to 24M edges, with demands between 1 and
2 147M. Following [46], we also generated 66 Kronecker
instances using the Graph500 RMAT generator with 2x ver-
tices, 10 ≤ x ≤ 20, and initiator matrices rmat_b with
(0.55, 0.15, 0.15, 0.15), rmat_g with (0.45, 0.15, 0.15, 0.25),
and rmat_er with (0.25, 0.25, 0.25, 0.25). Demands are chosen
according to a uniform (_uni) or exponential distribution
(_exp) and range between 1 and half a million.

We implemented our algorithms in C++17 and compiled
using GCC 7.5 and full optimization(-O3 -march=native
-mtune=native). For Blossom-It, we adapted an im-
plementation of the Blossom algorithm from the Lemon1

library and made it iterative by calling the algorithm k times,
after each round setting weights of matched edges to 0. We
only report results for the variant where Blossom starts with
an approximate matching obtained from a fractional solution
instead of an empty matching, as both compute optimal
weighted matchings, but the fractional option was considerably
faster, requiring only half the running time in the geometric
mean across different data sets.

To determine the optimal weight and use it in quality
comparisons, we also implemented an exact algorithm by
casting the problem as an ILP, using an adaptation of the
assignment formulation for the edge coloring problem [55],
and solved it with Gurobi2. Unfortunately, it only terminated
within the timeout of 4 h for small instances and values of k.

All experiments were performed on a machine with
NUMA architecture running Ubuntu 18.04 with Intel(R)
Xeon(R) CPUs clocked at 3.40 GHz and 256 kByte and
20 MByte of L2 and L3 cache, respectively. The execution
of each experiment was pinned to a single CPU and its local
memory to prevent the cost of non-local memory accesses or
swapping. To counteract artifacts of measurement in running
time, we ran each experiment three times and use the median
of the elapsed real time (wall time). The only exception to this
rule is the ILP, which was run just once as we were mainly
interested in the solution size. We set a timeout of 4 h.

B. Experimental Results

We performed experiments for k ∈ {2, 4, 8, 16, 32, 64, 96}.
Our set of algorithms contained (1) NodeCentered
in 15 configurations: with threshold θ ∈ {0, 0.2, 0.5}
and vertex-ratings MAX, AVG, MEDIAN, SUM, and kSUM;
(2) Greedy-It with and without Swaps; (3) GPA-It with
and without Swaps and additionally with the postprocessing
step ROMA (lROMA = 4) after each iteration, (4) Blossom-It,

1https://lemon.cs.elte.hu/trac/lemon
2http://www.gurobi.com

https://lemon.cs.elte.hu/trac/lemon
http://www.gurobi.com
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Fig. 2: Result quality (left axis) and running time (right axis, depicted as star) for NodeCentered with θ = 0 and different
aggregation functions (a), bGreedy&Extend, GPA-It, and Greedy-It with and without postprocessing (b), k-EC (c),
and for the set of the best algorithms (f), in each case for k = 4 and all instance sets. Running time (d) and result quality (e)
for NodeCentered with kSUM and different thresholds on Facebook.

as well as (5) bGreedy&Extend and (6) k-EC. When
Swaps were used, they were either applied after each it-
eration (LocalSwaps) or once after all iterations finished
(GlobalSwaps).

Intuitively, we would expect that it becomes “easier” for the
algorithms to add high-demand edges to one of the matchings
as k increases and, thus, that all algorithms should return
an almost equally good solution when k = 96. This is
also confirmed by our results. Still we can show interesting
differences between the algorithms that we will describe in this
section. We proceed as follows: We first look at the behavior
of similar or the same algorithm with different configurations,
and then compare it to other algorithms using only the best
variant. Relative solution weights are expressed as a fraction
of the optimum (OPT) or, if the optimum is unknown, the
best that any algorithm has found (BEST). Note that all plots
use a logarithmic axis for k.

NodeCentered: We first consider for each set of in-
stances the relative weights and mean running times for
NodeCentered with thresholds 0, 0.2, and 0.5, respectively,
for the five different aggregation functions. As the threshold
effectively limits the number of edges colored in the first phase
and the aggregation function does not play a role in the second
phase, we observe as expected that the differences in quality
when using different aggregation functions become smaller
the larger the threshold θ. In general, MEDIAN led to worse
performance than the other aggregation methods, especially
on the Facebook instance set with no threshold (θ = 0),
where it achieved, e.g., for k = 4 a solution quality of only
8 % on clusterC-racks. This behavior can be explained
by the strongly biased demand distribution. SUM results in
a higher rating of vertices with many (low-demand) edges,

whereas AVG also takes a vertex’s degree into account, which
is however detrimental for small k and a skewed demand
distribution. MAX can be led astray if vertices have a single
edge with very high demand, but many others with low
demand, which resulted in bad performance especially on the
pFabric instances. Overall, kSUM showed the best and most
stable performance in most cases, see also Fig. 2a.

We observe that large thresholds incur a larger time cost, as
more edges are left unprocessed in the first phase and need to
be reconsidered in the second phase. As an example, Fig. 2d
shows the running times for the Facebook instances with
kSUM as aggregation function for the different thresholds;
the behavior on the other instances is similar. In the worst
case, the variants where θ > 0 ran more than twice as long
as without threshold (125 s vs. 260 s (268 s) for k = 4 on
clusterB-ips with θ = 0.2 (θ = 0.5)). In the geometric
mean over all instances, θ = 0.2 and θ = 0.5 led to a
slowdown by a factor between 1.5 and 2 in comparison to
setting no threshold. Looking at the result quality (Fig. 2e),
we see that thresholds are effective in avoiding overly greedy
matching, as intended. The quality differences between θ = 0
and θ = 0.2 are “only” 4 % to 2 % for Facebook instances,
e.g., which however corresponds to an average absolute gain
or loss of 1 to 5 billion due to the large absolute values. Setting
θ = 0.5 increases the quality only marginally, but comes with
an increased running time, which is why we consider kSUM
and θ = 0.2 as the best configuration for NodeCentered.

GPA-It, Greedy-It, bGreedy&Extend: As an ex-
ample, Fig. 2b shows the result quality and running time for
k = 4. We can observe a boost in quality for GPA-It when
activating either LocalSwaps or ROMA, but no improve-
ment with GlobalSwaps (omitted in the plot). Comparing
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Fig. 3: Mean running time (a) and result quality (b) of the best algorithms on Facebook, mean result quality on all 88 instances
(c), and mean running time on HPC and pFabric (d). (e, f): Per-instance absolute and relative weights on Facebook.

LocalSwaps and ROMA, we obtain almost equal result
quality at distinctly faster speed with LocalSwaps. The
running time with GlobalSwaps is similar to plain GPA-It
and faster than with LocalSwaps by a factor of two with
k = 96. As GlobalSwaps has almost equal quality as
GPA-It this suggests that no or only very few swaps were
performed. Given the trade-off between quality and running
time, we consider GPA-It with LocalSwaps to be the better
option, which we will use in our further analysis.

Similarly, we evaluated Greedy-It with local and
global Swaps, compared to a base version without swaps.
Again, we observe barely any improvement in quality by
GlobalSwaps, yet LocalSwaps consistently yields results
with better quality, at the expense of an increased running
time. To consider both ends of the result quality vs. running
time tradeoff, we include both Greedy-It alone as well as
Greedy-It with LocalSwaps in our further analysis.
bGreedy&Extend was inferior to Greedy-It on all

sets of instances both with respect to running time and solution
quality and is therefore not considered further.
k-EC: Fig. 2c shows the result quality and running time

for k-EC with different combinations of flags for k = 4
and all instances. As expected, CC (common color) decreases
the running time, here by over 30 %, as fan construction and
rotation are no longer required in many cases. It increases
the result quality distinctly as it can also color an edge if the
last neighbor in the fan does not have a free color. To the
contrary, LC (lightest color) leads to a clearly visible decline
without CC and in general to a slight increase in running time
due to the additional maintenance of color weights. RL (rotate
long) marginally improves result quality and has a negligible
effect on the running time, whereas LF leads to a slowdown
in general and slightly better quality only if CC is not set. We
thus consider CC and RL as the best parameters for k-EC.

C. Overall Running Times and Result Quality

Given our choice of representatives for each algorithm, we
analyze these representatives regarding their running time and
result quality in detail on the instance set Facebook and only
give a summary about the others. We do not discuss the other
instance sets in detail any further, as the algorithms perform
very consistently on all of them. Note that a given algorithm
is only represented for a given k if that algorithm finished on
all instances of a set within our 4 h time limit.

Looking purely at the running time complexities (cf. Ta-
ble I), one might expect to see GPA-It and Greedy-It
behaving similarly to NodeCentered. The former two have
a slightly larger preprocessing time, yet afterwards all per-
form O(km) work (with and without LocalSwaps). k-EC,
on the other hand, has both large preprocessing time and
performs O(kn2) work, so it could be expected to be the
slowest. However, Figs. 3a and 3d paint a vastly different
picture, as NodeCentered and k-EC compute the dis-
joint matchings significantly faster than the *-It algorithms.
This can be observed consistently on all instances. For the
Facebook instances and k = 4, k-EC achieves in the
geometric mean a speedup of 2 and 3.2 over Greedy-It
with LocalSwaps and GPA-It, respectively, and for k =
96 the speedups increase to 21.6 and 31.7. The running
time of Greedy-It without LocalSwaps is less than
the time for Greedy-It with LocalSwaps, but larger
than for k-EC. NodeCentered is equally fast as k-EC.
Over all instances and values of k, k-EC is faster than
Greedy-It and GPA-It with LocalSwaps by a factor
of 1.8 to 7.3 and 2.6 to 9.5, respectively. Blossom-It
terminated on all instances in HPC and pFabric, but was
4.5 to 57.9 times slower than k-EC. The speedup by k-EC
over the plain variant of Greedy-It is less pronounced,
but still between 1.2 and 9.6 for Facebook and up to 2,



e.g., on Florida. The reason that Greedy-It without
LocalSwaps is faster than Greedy-It with LocalSwaps
is that LocalSwaps prevents the algorithm from efficiently
cutting down the list of edges to process in the next each
iteration: As LocalSwaps changes the matching, the non-
matching edges need either be sorted after each iteration or all
edges are processed in each iteration, causing Θ(k) work per
edge. NodeCentered and k-EC, on the other hand, operate
more locally. NodeCentered scans each edge at most three
times and only if both end vertices have been matched less
than k times so far, it compares two lists of Boolean arrays of
length k to determine a common free color. Thus, the work per
edge is often just constant. The situation is similar for k-EC.

Regarding quality (Figs. 3b, c), for Facebook instances
and k ≤ 4, k-EC and Greedy-It with LocalSwaps
perform best. For k ≥ 8, k-EC stays slightly behind
Greedy-It and GPA-It with LocalSwaps by less than
0.01 % (regarding the mean of weights relative to BEST).
The mean performance of NodeCentered always remains
within 1 % of BEST. Across all instances, GPA-It with
LocalSwaps performed best, with a mean relative weight
of at least 97 % of BEST, closely followed by Greedy-It
with LocalSwaps and k-EC with at least 96 % and 94.7 %
on average. NodeCentered performed worst, however still
within 93.7 % of BEST on average for k = 2 and 99.7 % for
k = 96. If we look at the worst performance per algorithm
across all instances, we observe a quality ratio of at least 95 %
for GPA-It, 93 % for Greedy-It with LocalSwaps,
87 % (90 % for k ≥ 4) for Greedy-It and k-EC, and 76 %
(88 % for k ≥ 4) for NodeCentered, see also Fig. 2f.

Figs. 3e and 3f show absolute and relative per-instance
weight comparisons for k = 4 on the Facebook in-
stances. We can clearly observe that NodeCentered
struggles with the rack-level instances clusterA-racks,
clusterB-racks, and clusterC-racks. k-EC is
second-best after Blossom-It on the IP-level instances.
Blossom-It finished within the 4 h time limit on 97 % of

all experiments. Its asymptotic running time has an additive
factor of O(knm) as compared to O(km) for the other
algorithms and this is confirmed by our experiments: It is the
slowest on all graphs. However, it always achieves the best
quality results and for all graphs where the ILP terminated,
Blossom-It was within 99 % of the result quality of the
optimum. However, for k ≥ 64 the faster algorithms achieved
almost the same result quality. Thus, Blossom-It is a good
choice only for small values of k and in settings where running
time is not a limiting factor.

The ILP completed on all HPC instances for k ∈ [2, 16],
all pFabric instances for k ∈ [2, 8], most RMAT instances
with n = 210 . . . 212 for k ∈ [2, 16] (rmat_er, rmat_g_12
only for k ∈ {2, 4}), as well as on three Facebook instances
(clusterA-racks and clusterB-racks for k ∈ {2, 4}
and clusterC-racks only for k = 2).

The order of the algorithms with respect to running time
and result quality is consistent on all instances except for
pFabric, where k-EC on average finds larger solutions than

Greedy-It with LocalSwaps and partially also GPA-It
for all values of k.

Overall we conclude that for medium and large values of
k, k-EC with CC and RL enabled is the best-performing
algorithm. Unlike the running time of the *-It algorithms, its
running time barely increases with k and its quality score is on
average within 95 % or more of the best algorithm within the
4 h time limit, and 98 % or better for k ≥ 32. It is also one of
the best algorithms for small values of k on the Facebook
and pFabric instances. On the other instances, GPA-It
with LocalSwaps is a good choice for small values of k, as
its quality is always within 95 % of the best algorithm while
its running time is still moderate; if running time is not of
concern, Blossom-It is a better choice.

V. FUTURE WORK

There remain several interesting avenues for future work. In
particular, it would be interesting to further explore the power
of randomized algorithms. The only randomized algorithm
we analyzed is GPA-It with ROMA, but it did not show
the strongest performance. On the practical front, it will be
interesting to deploy and experiment with our algorithms in a
small datacenter network using optical circuit switches.

The authors have provided public access to their code at
https://doi.org/10.5281/zenodo.5851268.
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