
Improving Serverless Edge
Computing for Network Bound

Workloads

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Jacob Palecek, BSc.
Matrikelnummer 01526624

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Thomas Rausch

Dipl.Ing. Philipp Raith

Wien, 19. April 2022
Jacob Palecek Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Improving Serverless Edge
Computing for Network Bound

Workloads

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Jacob Palecek, BSc.
Registration Number 01526624

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dr. Thomas Rausch

Dipl.Ing. Philipp Raith

Vienna, 19th April, 2022
Jacob Palecek Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Jacob Palecek, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. April 2022
Jacob Palecek

v

Danksagung

Ich will mich hiermit bei all jenen bedanken, die es mir ermöglicht haben diese Arbeit
zu schreiben, die mich dabei geduldig unterstützt, und auch bei schwierigen Phasen
unaufhörlich ermuntert haben. Insbesondere möchte ich meinem Betreuer Prof. Dustdar
und meinem Mitbetreuer Thomas Rausch danken, von denen ich nicht nur über den
Fachbereich sondern weit darüber hinaus viel lernen durfte. Mein besonderer Dank gilt
auch Philipp Raith, für die neuen Perspektiven, anregenden Diskussionen, und spannenden
Einblicke in seine eigene Forschungsarbeit.

Zuletzt möchte ich auch netidee der Internet Privatstiftung Austria danken, die diese
Arbeit duruch ein Stipendium unterstützt haben.

vii

Kurzfassung

Moderne Applikationen sind zunehmend von kurzen Antwortzeiten, maßgeschneiderter
Hardware und dynamischer Skalierung abhängig. Edge Computing ist ein attraktives
Konzept um diese Anforderungen zu erfüllen, bringt aber andere Herausforderungen
mit sich. Im Gegensatz zu Cloud-Umgebungen sind bei Edge Computing Hardware und
Netzwerk heterogen, was für Entwickler*Innen zusätzlichen Aufwand bedeutet. Serverless
Computing, eine mögliche Lösung hierfür, ist ein Paradigma das die dahinter liegende
Infrastruktur abstrahiert, wodurch Entwickler*innen mit der einhergehenden Komplexität
nicht mehr umgehen müssen. Aktuelle Serverless Frameworks sind allerdings nicht für die
Anforderungen von Edge Computing ausgelegt. Um dies zu verbessern wurden mehrere
Prototypen entwickelt, aber in vielen Situationen, insbesondere bei netzwerkgebundenen
Anfragen, was solche Anfragen sind bei denen die Netzwerktransferzeiten den größten
Anteil der Antwortzeit ausmachen, ist die Leistung nach wie vor nicht ausreichend. In
dieser Diplomarbeit präsentieren wir eine Methode welche die Funktionsweise von Server-
less Frameworks anpasst, sodass sich die Antwortzeiten für netzwerkgebundene Anfragen
deutlich verbessern. Um herauszufinden woher die schlechte Leistung hervorgerufen wird
führen wir vorläufige Experimente durch.

Diese zeigen, dass unpassende Platzierung und Implementierung von Load Balancern für
die schlechte Leistung verantwortlich sind, da diese nicht für Edge Computing angepasst
sind, und diese darüber entscheiden welchen Pfad eine Anfrage durch das Netzwerk
nehmen muss. Wir schlagen daher vor diese Komponenten anzupassen, sodass sie den
Anforderungen von Serverless Edge Computing besser entsprechen. Hierfür entwickeln
wir eine Version von gewichtetem Round Robin Load Balancing. Weil die Leistung
einzener Geräte nicht a priori bekannt ist nutzen wir die Antwortzeit von Anfragen als
Black-Box-Metrik anhand derer wir kontinuierlich die Load Balancing Gewichte anpassen.
Um die Anzahl an und Position von Load Balancern zu entscheiden, schlagen wir eine
von osmotischem Druck inspirierte Lösung vor, in welcher dieser dynamische Druck für
die Entscheidung herangezogen wird. Der Druck selbst ist eine Funktion der Anzahl an
Anfragen, sowie der Nähe zu Clients und Instanzen der angefragten Serverless Funktionen.

Unsere Evaluierungen zeigen, dass unsere Lösung verglichen mit dem aktuellen Stan-
dard, nämlich zentralisiertem Round Robin Load Balancing, abhängig vom Szenario die
durchschnittlichen Antwortzeiten um 30% bis 69% reduziert. Außer den Leistungsverbes-
serungen ermöglicht es unsere Lösung auch mit einem sich dynamisch ändernden System

ix

umzugehen wie es typischerweise bei Edge Computing vorgefunden wird, und nutzt die
Systemressourcen effizienter als bestehende Methoden.

Abstract

Modern applications depend increasingly on fast response times, special purpose hardware,
and dynamic scaling. Edge computing offers an attractive computing paradigm to address
these needs but brings with it several challenges. Contrary to cloud environments it
is heterogeneous and dynamic in both devices and network conditions, which puts an
additional burden on application developers. Serverless computing, a potential solution
to this, is a computing paradigm that abstracts away the underlying infrastructure,
alleviating developers from dealing with the associated complexity, but existing serverless
frameworks are not build for the unique requirements of edge computing. To address
this, numerous research prototypes have been built, but under many conditions, and
particularly for network bound workloads, which are workloads where network transfers
make up the majority of the total processing time, the performance is still lacking. In this
thesis, we present an approach that changes the inner working of serverless frameworks
and existing research prototypes in a way that drastically improves the performance
of network bound workloads. To find out what causes poor performance with network
bound workloads we conduct some preliminary experimentation.

These initial experiments show that inefficient load balancer placement and load balancing
decisions are one among the biggest performance problems since those parts of the system
are not edge optimized, and their placement and decision making determines each
request’s path through the network. We thus propose that these components be adapted
to better meet the needs of serverless edge computing. To this end, we develop a version
of weighted round robin load balancing. Since the performance is not known a priori we
observe response times during runtime as an encompassing black-box-metric, based on
which we continuously derive appropriate weights. To decide on the scale and position of
load balancers we propose an approach inspired by osmotic computing, where dynamic
pressures determine the location and scale of load balancers. The pressure itself is a
function of request rate, as well as the proximity to clients and serverless function replicas.

Evaluations show that compared to the current default of centralized round robin load
balancing our approach reduces mean response times by between 30% and 69%, depending
on the evaluation scenario. Aside from performance benefits, it is also able to deal with
the dynamically changing system conditions found in edge computing environments and
utilizes resources in a more efficient manner than previous methods.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Approach . 5
1.5 Structure . 6

2 Background 7
2.1 Serverless Computing . 7
2.2 Serverless Edge Computing . 11
2.3 Load Balancing . 13
2.4 Service Placement . 16

3 Related Work 17
3.1 Serverless Edge Computing . 17
3.2 Load Balancing at the Edge . 18
3.3 Serverless Function Placement . 20

4 Load Balancers and Their Placement 23
4.1 Concept . 23
4.2 Least Response Time Load Balancing 26
4.3 Osmotic Scaling and Scheduling . 35

5 Methodology 47
5.1 Simulating Serverless Edge Computing Systems 47
5.2 Network Simulation and Topologies . 49
5.3 Using Empirical Data in Simulations 52
5.4 Captured Metrics . 54

xiii

6 Evaluation 55
6.1 Initial Assessment . 55
6.2 Load Balancer Implementation and Parametrization 61
6.3 Resource Usage and Load Balancer Scale 70
6.4 Osmotic Scaling and Scheduling . 78

7 Discussion 87
7.1 Load Balancer Implementation and Parametrization 87
7.2 Resource Usage and Load Balancer Scale 89
7.3 Osmotic Scaling and Scheduling . 91
7.4 Implications of Osmotic Scaling for Serverless Edge Computing 93

8 Conclusion 95
8.1 Research Questions . 96
8.2 Future Work . 98

List of Figures 101

List of Tables 103

List of Algorithms 105

Acronyms 107

Bibliography 109

CHAPTER 1
Introduction

1.1 Motivation
Serverless Computing is a computing paradigm which alleviates application developers
from deployment considerations to an unprecedented level. In traditional, and even
in modern containerized computing environments, developers are required to explicitly
specify how their application should be deployed [SD16], thus requiring a great deal
of effort and high level of competency. With the introduction of edge computing, the
adaptation of serverless platforms was proposed as a means to abstract the additional
complexity arising from edge computing, allowing one to make use of the advantages and
new possibilities of edge computing more readily [NRS+17][GND17]. Edge Computing
does, however, have its own range of specific challenges that need to be overcome to
make use of it effectively, such as easy programmability by software developers[SD16]
and service management across its heterogeneous environment[SCZ+16].

Serverless platforms typically utilize existing technologies to provide their functionality.
Most of all they rely on containerization techniques, and as a result, the techniques used to
manage large-scale container deployments. For this reason, popular serverless platforms
such as kubeless[Kub] and OpenFaaS[Auta] are built on top of Kubernetes, the de-facto
standard container orchestration platform. Neither these platforms nor the underlying
container orchestration technology, are by default suited for the unique conditions posed
by edge computing, in particular, increased heterogeneity in both network structure and
compute capability. OpenFaaS has been adapted as a serverless system by Rausch et al.
with a focus on optimized container scheduling [RRD21b]. While function placement has
been studied more extensively, efficient processing of network bound workloads, which
are workloads where network transfers make up the dominant part of the overall response
time, remains a challenge. For serverless frameworks like OpenFaaS, one of the likely
causes is the centralized architecture of it and the underlying container orchestration
framework, as outlined by Rausch et al.[RRD21b]. This centralization leads to the system

1

1. Introduction

Figure 1.1: Kernel Density Estimate of an experiment run. Result shows Total Response
Time (TRT) of different load balancer implementations in a globally distributed scenario.

routing requests in a highly inefficient manner, thus likely causing the relatively poor
response times of network bound workloads. A potential solution outlined by Rausch et al.
is to distribute the ingress points throughout the cluster, including to the edge[RRD21b].
The ingress points first accept the request and forward it to a running instance of the
function, thus acting as a load balancer for incoming requests.

Before developing an approach to the range of engineering challenges such a solution
requires we decided to perform a preliminary analysis to determine whether distributed
load balancers for the serverless system are a viable solution at all, and if so by how much
the performance of network bound workloads can be improved. To this end we used Faas-
Sim[TP21a], a serverless edge computing simulator built to emulate the core concepts of
OpenFaaS and Kubernetes. Building on the work done by Philipp Raith [RRD21a], we
extended the simulator with a more realistic and adaptable method for load balancing,
allowing different load balancing techniques to be employed, and taking into account
function placement and network conditions when simulating requests.This preliminary
analysis shows an improvement in mean response time of between 81.3% and 606.9%,
depending on the scenario. Figure 1.1 shows the fitted probability density functions of
the overall response time in a globally distributed scenario. While we can see in Figure

2

1.2. Problem Statement

1.1 that the usage of a more sophisticated load balancing scheme than round robin does
improve the performance, as long as the load balancers are centralized the improvement
is not particularly significant. Similarly we can see that the distribution of load balancers
across the entire network yields performance benefits. Most importantly, however, Figure
1.1 shows that when distributed placement and sophisticated load balancing decisions
are used together, the performance improvements are much bigger than either of the two
measures can provide on its own. We also observe that aside from the mean response
time being improved, the variance is also reduced, leading to more stable and predictable
processing times. A more detailed account of these first experiments can be found in the
evaluation chapter of this thesis.

From the combined results of the initial evaluation we learn that:

1. distribution of load balancers alone is insufficient to improve performance,

2. more sophisticated load balancing methods are required to make use of network
proximity, and

3. sophisticated load balancing methods can, in addition to improving network induced
delay, reduce function execution time.

4. The location of load balancers has a significant impact on performance, making
the effective placement of load balancers important

Based on these results we believe that it is worthwhile to explore this area further, and
in more detail than the preliminary evaluation could.

1.2 Problem Statement

Existing serverless and serverless edge computing frameworks still perform worse than
expected in certain regards, particularly for network bound workloads where network
transfers make up the dominant share of the total processing time[RRD21b]. This is
due to the fact that these frameworks have been built for cloud based environments
where the link latency between nodes is small, and the hardware of the nodes themselves
homogeneous. Using these frameworks in an edge scenario as-is leads to requests taking
inefficient routes through the network and being processed by a random node, which
leads to unnecessarily long network and processing delays.

Based on the results of our initial evaluation we propose that the load balancer imple-
mentation, as well as how load balancers are scaled and placed throughout the system
needs to be adapted for the edge environment in order to improve the performance of
network bound workloads.

For the load balancer implementation itself this means that is has to take into account the
heterogeneous nature of nodes the serverless system, the different networking conditions,

3

1. Introduction

variable client locations and request rates, as well as the dynamic aspect of edge computing.
The requirements of the load balancer scaling and scheduling component are similar,
having to integrate the location of clients, function replicas, existing load balancers, and
the request rate into its decisions. Lastly, both components must be able to handle
dynamically changing system conditions, which entails that the makeup of network,
devices and clients cannot be known beforehand.

1.3 Research Questions

1. How can current scaling and placement techniques for load balancers be changed,
such that the overall performance of the serverless edge computing system improves?

Serverless (edge) computing frameworks typically already possess a mechanism
for scaling and placing services. It is also typical for load balancers to be treated
as "just another service", and thus identically to functions[Auta]. Conceptually
this is not surprising since load balancers, like functions, can be scaled to handle
more requests than a single instance could. Serverless frameworks do not, however,
consider the special role load balancers play in the performance of the system in
edge computing scenarios. To improve the performance, particularly of network
bound workloads, the scaling and placement techniques used for load balancers
will likely need to be changed. As a result, we need to answer the question how
the used techniques in that area have to be adapted in order to realize the aspired
performance improvements, while still considering the potential side effects this has
on the overall system.

2. How much of a performance improvement can be gained from optimizing the scal-
ing, placement and decisions of load balancers in serverless edge computing systems?

When investigating what changes could be made to increase system responsive-
ness in serverless edge computing, particularly for network bound workloads, load
balancing stands out as an area that is likely to yield significant improvements.
Current serverless computing systems do not possess the scaling, placement and load
balancing mechanisms required to process requests efficiently in an edge computing
scenario. Their implementation is based on the assumption of relative homogeneity
in compute power and network structure one typically finds in cloud computing
systems. Even serverless computing frameworks specifically built or adapted for
the edge do not necessarily take the heterogeneity of edge computing environments
into account when it comes to load balancing[RRD21b]. This leaves the question
of whether or not adapting serverless edge computing frameworks in regard to the
scaling and placement of load balancers, as well as their load balancing decision
mechanism, results in performance improvements, and if so, how large they likely
are.

4

1.4. Approach

3. How do edge optimized scaling and placement techniques for load balancers, includ-
ing the load balancing techniques themselves, affect the overall system behavior
and characteristics in regard to their key performance metrics?

In a serverless computing framework there usually exists an interplay between
a number of different components, such as the scaler and the scheduler[Auta][AF].
When parts of the system are now changed, in this case, the way in which load
balancers behave, as well as how they are scaled and placed, this change is poten-
tially liable to affect the rest of the system. Some of these effects would of course
be intended, such as better end to end latency, but there could also be additional,
potentially unwanted effects. It is thus important how exactly such changes affect
the system, and what implications that has. These changes are measured in the
form of key performance indicators.

1.4 Approach

Our objective with this thesis is to improve serverless computing for network bound
workloads. The improvements we aim for are focused primarily on reducing response time,
which has already been identified as an issue [RRD21b], but are likely also translatable
to efficiency gains, depending on what the implementation goals of the specific system in
question are.

Our initial evaluation identified load balancing as the primary factor holding back the
performance of serverless edge computing for network bound workloads, and we thus aim
to make improvements in this area. As our preliminary testing showed, the minimum
requirements to make meaningful improvements in this area are that load balancers need
to be distributed across the network instead of being centralized, and that they need
to make more sophisticated load balancing decisions. To this end our goal is two-fold.
First, we want to present a method for scaling and scheduling load balancers in such a
way that they are close enough to both clients and function replicas in the network to
enable requests to take an efficient path between the two. Second, we will propose a
load balancing scheme that makes load balancing decisions, which take into account the
network distance of clients and function replicas, as well as the replicas’ performance.

To evaluate different approaches for load balancer placement and load balancing decisions
we use and extend a state of the art serverless computing simulator, and ground those
simulations on real data where possible by building upon existing research[RRD21a],
and conducting additional experiments to inform the simulator’s functioning. This way
our methodology allows us to explore scenarios beyond those feasible for live-hardware
experimentation, while making sure results are as representative as possible by using
performance profiles generated via experiments with actual hardware [RD21]. Apart
from simulations in the context of serverless computing, we perform separate simulations
and experiments in related areas, deepening the understanding and showing the relation
between the challenges of serverless edge computing and the broader context.

5

1. Introduction

We further explore more than just end user performance metrics, also showing how the
different components present in modern serverless solutions are influenced and themselves
influence methods for load balancing and placing load balancer replicas. Through this we
gain an understanding of, outline, and propose a potential solution for the engineering
problems that need to be solved in order to improve serverless edge computing in practice.

1.5 Structure
Chapter 2 provides relevant background information for the technological environment
this work is embedded in. In particular it outlines the concept of serverless computing,
serverless edge computing, as well as describing the concepts of load balancing and service
placement. Chapter 3 explores the related work, highlighting which other works are most
directly related to this one, and describing how this thesis differs from them. Chapter
4 describes our proposed approach. After a brief overview of the general concept, it
gives insight into our view of the problem domain, followed by detailed explanations of
our approach and the rationale that led to it. Chapter 5 describes the methodologies
we used when evaluating our approach, explaining the serverless function as well as its
relevant components, and how it informs its simulation with data from experiments on
actual hardware. Chapter 6 contains the evaluations of our approach, detailing both
experiment setups and results. These results are then discussed in chapter 7, where their
implications for serverless edge, but also the limitations of our approach are explained.
Lastly, chapter 8 concludes this thesis and gives and outlook on future work.

6

CHAPTER 2
Background

2.1 Serverless Computing

This section aims to give an overview of serverless computing. Readers who are well-
versed within the matter can feel free to skip this introduction, and reference it only
when needed

2.1.1 What serverless computing is

Serverless computing emerged as a new computing paradigm in the context of cloud
computing, which delegates infrastructure provisioning and configuration to the cloud
provider to alleviate software developers from that burden. Function as a Service (FaaS)
is one of the most prominent types of serverless computing products on offer. It allows
developers to specify serverless functions, which are then deployed and scaled by the
cloud provider. It is a way in which software developers architect, develop, and deploy
applications that is dramatically different from more traditional approaches. In traditional
approaches, such as microservice architectures, an application is partitioned into small
components which can be scaled and deployed independently of each other. Although
microservice architectures often rely on the Infrastructure as a Service (IaaS) or Platform
as a Service (PaaS) solutions cloud providers offer, and thus abstract away the underlying
infrastructure to a certain degree, developers still need to handle most scaling and
application specific Quality of Service (QoS) requirements themselves.

From a developer’s perspective, serverless computing is a further increase in abstraction
[JSS+19]. It can be seen as the next step in an evolution away from monolithic software
applications. Where microservices and containerized deployments first partitioned a
large application into several smaller applications, serverless computing continues this
trend of division into smaller components, since in serverless computing applications are
partitioned into individual functions, which each perform a single action[KKR20].

7

2. Background

Figure 2.1: Conceptual overview of different application architecture paradigms

Figure 2.1 shows this transition towards smaller partitioning of application code, leading
to a higher and higher level of abstraction. Just like microservices enabled application
developers to scale different aspects of an application independently, thus enabling
elasticity, serverless computing takes this even further allowing individual functions of
the application to be scaled separately from each other[JSS+19].

Overall serverless affords application developers a number of advantages:

• Arbitrary elasticity: As mentioned, serverless applications can scale their com-
ponents on an extremely fine-grained level[KKR20]

• Abstracted infrastructure: Where previously developers needed to be at least
somewhat cognizant of the deployment of their application or its microservices,
serverless enables this task to be fully delegated to the cloud provider. Developers
don’t necessarily need any knowledge of cloud infrastructure[JSS+19].

• Precise Billing: While in traditional cloud computing environments resources
are leased for a set amount of time, irrespective of their actual usage[KKR20],
serverless features a billing model where only the actual execution time and memory
footprint of a function is billed down to millisecond precision[JSS+19]. This allows
for better resource utilization and potentially reduced costs from a customer’s
perspective[KKR20].

While these advantages of serverless computing over more traditional approaches are
compelling, there are also idiosyncrasies of serverless computing that can, depending
on the application, be problematic. These include the need for statelessness, meaning

8

2.1. Serverless Computing

that serverless functions have no inherent capacity to store data and would instead need
to fetch it from yet another service[KKR20], or potential performance inconsistencies
from cold-starts. A cold-start, which means that the specific function code isn’t running
and has to be started before the request can be serviced, can occur because a serverless
function wasn’t executed for a certain time[WLZ+18].

2.1.2 The architecture of serverless systems

Architecturally, serverless systems are closely related to event based systems. Their
general concept is also very similar, since an event (i.e. a request) first arrives at the
system in a form of queue, where a dispatcher or load balancer decides what action needs
to be taken based on the event, and forwards it to the service (i.e. function), which
ultimately processes it[CIMS19].

Prominent cloud based serverless platforms such as AWS Lambda[Inca] and Azure
Functions[Mic] are, however, proprietary and their precise architecture and inner workings
are thus unknown to the public. How these systems behave is a topic of ongoing
research[WLZ+18], but since our research requires precise knowledge of implementation
details, we choose to use open source serverless frameworks as a reference architecture
of serverless systems. These systems include Apache OpenWhisk[Fou], Kubeless[Kub],
and OpenFaaS[Auta]. Since OpenFaaS has already been adapted for serverless edge
computing by Rausch et al.[RHM+19], we choose to use this open source serverless
framework as the stand-in for serverless computing frameworks in general.

Architecturally, OpenFaaS is structured very similarly to the generic serverless archi-
tecture described by Castro et al.[CIMS19]. It too has a centralized entry-point, the
Gateway, which sends requests to specific function replicas or alternatively to a queue
(used for asynchronous processing and dealing with requests to functions that aren’t
currently running). Each Gateway is thus effectively a load balancer for the serverless
functions. Figure 2.3 shows a diagram of the architecture, as it is found in their official
documentation[Autb].

From a technical perspective, a key aspect of OpenFaaS’ implementation is that it
uses containers to host functions. Containers provide an abstraction over Linux based
operating systems, allowing for easier management of software dependencies, more closely
controlled execution environments, and stronger application isolation. Each function
is packaged into such a container, which is an almost fully self-contained and portable
artifact, that allows executing the developers’ code on any machine with a compatible
container runtime. Functionally they behave similar to virtual machines, although
they start up much faster, and aren’t actually running individual kernels, which is why
they do not provide the same level of security isolation true virtual machines do. This
choice allows functions to execute reliably, no matter the environment, and also makes
it entirely agnostic to the programming language developers wish to use. Since using
containers entails their management over a cluster of multiple nodes, a task which is
extremely complex, OpenFaaS[Auta] as well as other serverless frameworks build on

9

2. Background

Kubernetes[AF], the de-facto industry standard container orchestration and management
platform. Building upon Kubernetes to deal with container management is a common
choice among open source serverless frameworks, a choice which OpenWhisk and Kubeless
make as well[MPd18].

OpenFaaS delegates a large number of tasks to the underlying Kubernetes cluster,
including name resolution, request routing, which includes load balancing, and potentially
scaling. For this work, the delegation of load balancing decisions is especially important,
since it implies that OpenFaaS uses whichever load balancing algorithm Kubernetes uses
internally to distribute requests among function replicas. Scaling, which determines how
many instances of a serverless functions are running at any given time, can work via
different mechanisms in OpenFaaS. Depending how OpenFaaS is configured, it can either
use Kubernetes’ integrated Horizontal Pod Autoscaler (HPA)[KT] or its own internal
mechanism, which optionally allows for user customized scaling behavior[Ope]. Since this
work also aims to explore the impact a change in scaling and scheduling load balancers
can have on the behavior of these scaling systems in general, we will now briefly describe
the default scaling behavior of both HPA and OpenFaaS’ own scaler.

Kubernets HPA

In Kubernetes scaling is typically based on either CPU or memory utilization, although
in principle it can be extended with user-provided custom metrics[KT]. For a given
deployment, which in the context of serverless computing would be a function, a target
resource value is defined. An example would be a target average CPU utilization of 50%
for a type of function. At that point, Kubernetes decides in a linear fashion what the
desired number of replicas is.

Let rcurrent be the number of current replicas, mcurrent the current value of the metric in
question and mtarget the target value of the metric. Then the target replica count is

rtarget =
⌈

rcurrent ×
mcurrent
mtarget

⌉

To prevent inconsistent behavior such as replica counts oscillating Kubernetes also allows
certain limiters to be set, such as minimum and maximum scales, rate of change for
adding or removing replicas, and cool-downs which give the system time to stabilize
before new scaling decisions are considered[KT].

OpenFaaS scaling

The OpenFaaS integrated scaling mechanism is comprised of different parameters. First
a minimum and maximum scale must be set, which determine the effect of the scaling
factor. In this custom scaling variant system parameters, such as the request rate of
a given function, are continuously evaluated. Once a configured condition is met the
system is notified that a given function needs to scale up or down. The aforementioned

10

2.2. Serverless Edge Computing

scaling factor, which is a percentage value between 0 and 100, is then used to determine
how many replicas should be started or stopped[Ope]. Each scaling iteration adds or
removes a number of replicas relative to the maximum scale allowed, and the scaling
factor determines the size of that share. If, for example, the maximum number of replicas
is 50, and the scaling factor is 10%, then at each scaling operation 5 replicas will be
added or removed.

Which exact conditions trigger a scale up or scale down event within OpenFaaS is
extremely configurable, and allows for customization based on an individual function’s
requirements. By default, OpenFaaS triggers a scale-up event if the rate of rise of a
function’s invocation frequency exceeds a threshold over a period of time.

2.2 Serverless Edge Computing

Serverless edge computing is an extension of existing serverless computing frameworks to
the edge of the network. It is an area of ongoing research, and aims to both further the
adoption of edge computing and enable new use cases[NRS+17].

2.2.1 Edge Computing

Edge Computing has been proposed as a new computing paradigm to address a number
of limitations and shortcomings of centralized cloud computing. Edge Computing means
that computations are not performed in a single centralized location like a data center,
but close to where the computations are needed or requested from, i.e. the edge of the
network[SD16].

Edge computing enables a number of structural benefits that allow for the creation of
new types of use-case and application. Most notably, edge computing enables low latency,
high bandwidth, computation offloading. This can be used to improve application respon-
siveness, perform computations not possible on low-powered devices or conserve energy
on mobile devices by offloading complex computations to nearby edge nodes[AZTS18].
Edge computing can also been seen as a way to transparently improve cloud computing,
reducing the overall traffic in the network and making existing cloud applications more
responsive by moving them closer to the user[Sat17]. Figure 2.2 shows the difference
between edge and cloud computing in a simplified way. In the example, edge computing
features computational nodes on Radio Access Network (RAN)-towers, and thus much
closer to the users.

This computing paradigm does, however, pose a challenge to existing frameworks and
application architectures. Given that computation resources are spread farther through-
out the network, the network infrastructure itself in edge computing is much more
diverse[SCZ+16], potentially consisting of anything from the unreliable mobile network
connection of a user’s device to high bandwidth fiber networks between cloud data centers.
From both a hardware and software perspective, the computation hardware itself is more

11

2. Background

Figure 2.2: An example of how in a) cloud computing all computation is centralized,
while in b) edge computing there are nodes interspersed throughout the network and
close to clients.

heterogeneous as well, requiring specific optimization mechanism to use resources in the
most efficient way possible[AZTS18].

2.2.2 Serverless at the Edge

Since serverless computing offers an abstraction layer on top of the actual infrastructure
[JSS+19], and a key challenge of edge computing is that edge applications, at least up to
now, have to be specifically crafted for their deployment scenario by developers[SD16].

With future Artificial Intelligence (AI) applications being dependent on edge computing to
deliver their benefits to users via augmented reality, and smart city infrastructure[RD19],
serverless offers an attractive abstraction layer to develop such AI applications in an
edge-native way. Building on serverless as an abstraction layer for the application, the
idea is that it will be able to jointly provide the benefits afforded by edge computing
and serverless computing at the same time. Functions are supposed to be deployed to
nodes close to the users that rely on these functions, be scaled automatically, and routed
efficiently, without any manual intervention from developers.

Achieving such a computing infrastructure would enable a host of new types of application,

12

2.3. Load Balancing

such as wearable cognitive assistance[HCH+14][RHS+21], offloading AI inference tasks
from devices with low compute capability[LZZC20], and analyzing video feeds in real
time to improve public safety[ZSWZ19], for example to ensure face masks are worn where
mandated[WWL+21].

Open source serverless frameworks have been evaluated in terms of their performance in
edge-scenarios, but in their current, unmodified state they lack the full set of capabilities
needed to provide all the benefits edge computing offers[PKC19]. While some of these
serverless frameworks have been adapted to address the challenges posed by the edge
computing environment, or to be better tailored to workloads related to AI[RHM+19],
more of which will be discussed in the next chapter, overall there remain a lot of challenges
for the universal practical application of serverless edge computing[ATC+21]. Optimizing
the performance of network bound workloads, for example, is one such challenge[RRD21b],
and the one this thesis aims to address.

2.3 Load Balancing
Load balancing refers to the concept of distributing requests between different servers
in such a way that the amounts of requests per server are balanced. It is a necessary
component of a system where a single instance cannot service all requests, and thus
multiple instances are used to keep performance levels acceptable. A balanced distribution
can depend on one’s objectives, but typically aims to maximize overall system performance
over the available servers[CCY99].

While load balancer type system components are ubiquitous in our modern computing
environment, in this work we focus solely on web load balancers. From the perspective of
the OSI network reference model[DZ83], load balancers typically work on the transport
layer (level 4), or the application layer (level 7). Because serverless frameworks like
OpenFaaS differentiate between functions based on HTTP request data, only application-
level load balancing is of concern for us in the context of this paper.

There exist a large number of load balancing algorithms, which decide the application
instances servicing each request. The most common algorithms include:

• Round Robin: requests are distributed evenly between servers, irrespective of the
performance or load of each server. Each subsequent request is sent to a different
server.

• Weighted Round Robin: requests are also distributed among servers, but not
necessarily evenly. Each server is manually assigned a weight, which determines
the share of requests it receives relative to other servers. Weights scale linearly,
meaning that one server having double the weight of another also means that it
will receive double the requests

• Least Response Time: can be implemented in different ways. In the naive
approach the load balancer forwards all requests to the server showing the fastest

13

2. Background

initial response time, until that server’s performance degrades to the point where
another server is faster, which receives subsequent requests from that point on.

Since OpenFaaS[Auta] builds on Kubernetes and its primitives, it also delegates service
resolution and thus request routing to it. While Kubernetes can use any type of load
balancer in principle, particularly the kinds available from cloud providers as a managed
service, it defaults to using its internal kube-proxy to handle traffic routing, which in
turn defaults to using a round robin load balancing strategy. Next, we elaborate on the
role load balancing plays in serverless frameworks in a bit more detail.

2.3.1 Definition & Role In a Typical Serverless Framework

To give a bit more context to the role of load balancers in this work, we now discuss
what component exactly we mean by load balancer, and how it functions in the context
of a serverless framework. While our approach is not tied to any specific serverless
framework, implementation, or technology, we developed it with their general concepts
and functioning in mind. Because of this, we feel that is helpful and informative to
explain the components of our system in the context of an actual implementation, since
this helps understand the abstract role these components play. In addition, this is helpful
for anyone who might want to integrate our approach into a production ready serverless
edge computing platform.

As previously mentioned there are a number of different serverless frameworks, some
free, some open source, some commercial, and some that fall in-between[Inca][Mic]
[Autb][Kub][Fou]. To reiterate, we choose OpenFaaS as a proxy for serverless computing
frameworks in general because it has been extended for edge computing, and because it
builds on and makes use of well established technologies in the same way other serverless
frameworks do[Kub][Fou], thus making it representative for the space.

As mentioned, OpenFaaS uses Linux containers to run functions, and in turn Kubernetes
to manage these containers. To clarify the role our load balancer would take in a serverless
system, we describe how it would affect OpenFaaS. By default, OpenFaaS employs a
component they call API Gateway. This API Gateway is the component that first receives
all client requests, and then continues to send them on to the corresponding functions,
while at the same time collecting metrics used by the system for tasks like auto-scaling.
Figure 2.3, which is taken directly from the official OpenFaaS documentation shows the
interactions with the other components of the system. Since the API Gateway is just
another container running in Kubernetes[AF], and failover capability is a concern, there
can be multiple instances of the API Gateway running at any given time. As discussed
a major reason for the sub-optimal performance of network bound workloads in edge
scenarios is the lack of efficient request routing. In the case of OpenFaaS this stems
from it delegating networking and routing tasks to Kubernetes, since it is the underlying
container orchestration platform. This applies to both the initial ingress into the cluster,
as well as to how the API Gateway forwards client requests to the relevant replicas to
be processed. Kube-proxy, the component of Kubernetes which handles networking and

14

2.3. Load Balancing

Figure 2.3: Diagram showing the architecture and components of OpenFaaS, in par-
ticular the OpenFaaS API Gateway. Taken from the official OpenFaaS architecture
documentation[Autb]

routing tasks, will default to the round-robin policy of selecting upstreams. While it is
possible to set up kube-proxy in a way that will prefer nodes in the same zone based
on a label, this functionality is built around cloud based deployments and is insufficient
to address the heterogeneity in networking and compute power introduced by edge
computing. This defaulting to round-robin means that in effect, serverless frameworks
such as OpenFaaS route the requests basically at random between the entry point of the
network and the API Gateway, and then from the API Gateway to the relevant function.
In our approach, the load balancer takes the role the API Gateway has in OpenFaaS. It
is characterized by being

1. the entry point for the client to the serverless system, meaning there are no network
hops between the load balancer instance and the node the request originally arrived
at, and

2. directly forwarding requests to the corresponding serverless function instances.

When implementing our proposed approach in practice this would mean that the serverless
framework would have to be adapted to fulfill these conditions for the load balancer. If
these conditions aren’t met, this would likely negate the positive effect our approach has
on performance.

15

2. Background

As an example in the case of OpenFaaS, referencing the OpenFaaS architecture in Figure
2.3, this could be realized in the following ways:

1. API Gateways and load balancers are scaled and scheduled together, meaning they
are always co-located on the same node. The API-Gateway would then still first
receive requests and handle implementation-specific tasks for the serverless system,
but then forward the request to the load balancer instance on the same node, which
then decides on further request routing.

2. The load balancer is the new entry point for clients, effectively replacing the API
Gateway. In this scenario, the load balancer and API Gateway would also be
altered such that metrics and information relevant to the system could be collected
by the load balancers and forwarded to API Gateway instances, which then handle
them as before.

2.4 Service Placement
Service placement, in the context of this work, refers to how instances of an application
or application component are placed within a cluster or network. Referring specifically
to serverless computing, once the scaler has determined new replicas of a function have
to be created, the scheduling component then decides where the new replicas, i.e. the
service, should be placed. As open source serverless frameworks rely on Kubernetes to
handle these types of container orchestration tasks[MPd18], the Kubernetes scheduler
effectively decides where function replicas are placed.

Generally, Kubernetes uses a two-stage process for deciding where a new replica is placed.
In the first step all nodes in the cluster are filtered, to leave only the ones that meet the
basic requirements of running the replica in question. Typically that includes available
CPU time, free memory, and other conditions such as the required ports being available on
the node. Remaining nodes are then ranked according to a set of default, and optionally
custom specified, scoring methods. The node with the highest score is then selected to
host the new replica.

While this is only a very basic overview, it helps to understand the behavior of server-
less systems, and how our approach could be integrated into open source serverless
frameworks.

16

CHAPTER 3
Related Work

3.1 Serverless Edge Computing
Glikson, Nastic, and Dustdar first propose serverless edge computing under the name de-
viceless edge computing to the transparent infrastructure abstraction serverless computing
provides to the edge[GND17]. Nastic et al. exemplify this concept through their proposal
of an analytics platform for real-time data using serverless edge computing[NRS+17].
They provide use cases for which such a platform would be beneficial, and present an
architectural view outlining the components needed. In addition, they elaborate on
the challenges the edge poses for such a system, particularly heterogeneity in resources
and infrastructure, and data management[NRS+17]. Aslanpour et al. round out the
conceptual understanding of serverless edge computing by outlining the current vision and
challenges of the space [ATC+21]. Among the challenges listed are resources inefficiency,
distributed networking, location agnosticism, and a lack of simulation tools[ATC+21], all
of which we hope to contribute to overcoming with the work presented in this thesis.

Rausch et al.[RHM+19] present the architectural considerations necessary to bring AI
applications to the edge using serverless computing. Parts of the life cycle of an AI appli-
cation make their deployment in serverless edge systems a particular challenge[ATC+21],
which Rausch et al. address by giving application developers more fine-grained con-
trol over scheduling decisions[RHM+19], who can formulate constraints to guarantee
deployments of their AI application have the resources they need available, even at the
edge. Putting the proposition of these constraints into practice Rausch et al. present
a scheduler which is able to consider such resource and locality constraints[RRD21b].
Rausch et al. show that their scheduler makes significantly better scheduling decisions
than the default Kubernetes scheduler, using the resources in a more efficient manner
and reducing Function Execution Time (FET)[RRD21b]. In contrast to this work, they
do not consider the load balancing component of the system as something to be scaled
and scheduled separately from the other functions.

17

3. Related Work

Cicconetti et al. propose different methodologies for matching up clients with function
replicas in a serverless system[CCPS20]. They evaluate different assignment policies,
showing through simulations that between static global matching, periodical global
matching, and dynamic decentralized matching of clients to replicas, the decentralized
version performs best. Their work is closely related to ours in that it too explores ingress
points at the edge. Functionally, their notion of ingress points, or dispatcher as they
call it, is identical to what we in this work refer to as a load balancer. They do not,
however, discuss how these dispatcher components are placed throughout the network,
which is a significant difference from our work. Additionally, their conceptual view of
the system differs from ours in that they assume clients to be assigned to dispatchers
by a centralized orchestration component, while we work on the assumption that clients
are connected to whichever load balancer is closest at the time of the request being
sent. In subsequent work Cicconetti, Conti and Passarella[CCP20a] explore the idea of
building a performance model for function replicas, both in terms of FET and network
time, to account for the heterogeneity found in edge systems. In another paper, which
strongly intersects with this work, Cicconetti, Conti, and Passarella explore methods
for distributed load balancing[CCP20b]. In their experiments, their proposed version
of selective weighted round robin load balancing outperforms naive least response time
load balancing, and random weighted round robin load balancing. While similar to
our approach in that a combination of weighted round robin and least response time
is used to make load balancing decisions, our approach differs from theirs in the way
upstreams are sampled and weights are assigned. They assume a cutoff at twice the
optimum performance, meaning upstreams that show a response time more than double
the optimum do not receive requests for a given time period, while we do not assume such
a cutoff[CCP20b]. Which approach is better in this regard will depend on the particular
scenario of the evaluation. Another difference is that their weight assignments are linearly
proportional to the response time, while in our approach a factor can be defined that
determines whether this relationship is linear, logarithmic, or exponential.

Baresi and Mendonca[BFM19] address a range of engineering challenges that need to
be solved for serverless edge computing, focusing particularly on function composition,
challenges of stateful computations, and potential protocol overhead.

Lastly, Gadepalli et al. [GPC+19] propose aWsm, a serverless edge computing platform
focused around the advantages afforded by using Web Assembly as a basis. Their work
places a particular emphasis on execution efficiency, meaning a low memory footprint, and
fast start-up times to address the cold-start problems endemic to serverless platforms, and
one of the challenges for serverless edge computing outlined by Aslanpour et al.[ATC+21].

3.2 Load Balancing at the Edge

Load Balancing is a topic that is well established and studied in the scientific literature.
Edge compute introduces several challenges to established load balancing algorithms, in
particular through resource and network heterogeneity[GAJWD21].

18

3.2. Load Balancing at the Edge

A number of researchers propose adaptations of the well known Join-the-Shortest-Queue
(JSQ) and Join-the-Idle-Queue (JIQ) load balancing techniques to overcome some or
all of these challenges[GAJWD21][WZS20][VKO20]. Gardner et al. propose a to adapt
JIQ and JSQ by changing how the upstream queue lengths are sampled. Instead of
sampling the queue length of all nodes, which in and of itself can be infeasible in
large systems[GAJWD21], their implementation considers two subsets of nodes. One
is drawn from a set of nodes determined to be fast, while the other is drawn from a
subset determined to be slow. The relative performance level of nodes and thus their
categorization is assumed to be a priori knowledge.

In a different approach to addressing the issue of large clusters, where not all nodes can
be sampled, Vargaftik, Keslassy, and Orda propose that load balancers hold a local view
of server queues, which is not fully updated all the time[VKO20]. While all nodes in the
local view of the system state are considered for load balancing, only a small subset of
all nodes are queried for their actual queue length at a given iteration.

Weng, Zhou and Srikant propose adapted versions of JIQ and JSQ, which are Join-
the-Fastest-of-the-Idle-Queue (JFIQ) and Join-the-Fastest-of-the-Shortest-Queue (JFSQ)
respectively. In this adapted version, nodes and request types are considered as bipartite
graphs, where for each request type only a subset of nodes is able to service it. This
represents the reality of a multi-tenant system such as Kubernetes[AF], where nodes
might host multiple applications. In JFSQ and JFIQ, the potentially heterogeneous
performance is nodes is taken into account insofar as the nodes service rate (i.e. node
performance) determines which node is chosen in cases there are multiple shortest or idle
queues.

Karagiannis and Schulte provide research with regard to routing decisions for offloading
Internet of Things (IoT) computations to the edge of cloud respectively[KS21]. They
investigate the performance impact between direct, single-hop, and multi-hop routing,
with special focus on the difference between utilizing the network of the internet service
provider or the interconnects cloud providers have between their data centers.

Kogias, Iyer, and Bugnion propose the usage of the TCP redirect feature to change
the flow of data between a client, load balancer, and selected node[KIB20]. Instead of
returning requests through the load balancer, their approach suggests that nodes should
return the response directly to the requesting node. This is realized using a Layer 4 load
balancer that adds specific information for TCP redirections, and a kernel extension on
all participating nodes to enable these TCP features.

Both the paper by Manju and Sumathy[MS19], and the one by Zhang et al. [ZEH+21]
propose load balancing through a tiered system, where nodes are categorized as cloud,
edge, or local (i.e. fog) nodes. Requests are preferentially handled by close-by nodes, and
clients are migrated and/or requests forwarded to higher tier nodes should it be the most
performant option. Both approaches assume a priori knowledge of node performance and
employ the concept of a centralized global view of the system to arrive at the best load
balancing decisions possible.

19

3. Related Work

Beraldi, Mtibaa, and Alnuweiri[BMA17] consider edge resources to be grouped into what
they call edge data centers, but what could functionally just as easily be considered
regions, which have the main property of internal communication delays being extremely
low. Based on this view of the system, they propose a scheme for forwarding requests to
another edge data center, once resources in the current one are overloaded.

Finally, Zhang and Wang[ZW21] propose to view load balancing as a task that is
undertaken by individual clients. Clients are aware that there are different nodes they
could offload tasks to, and that other clients exist that also offload tasks. As each client
seeks to make load balancing decisions for its own requests which minimize response time,
a stochastic congestion game is formed[ZW21] which they prove has Nash equilibria, that
are subsequently the strategy individual clients pursue when choosing upstreams. Their
approach does not consider network latencies but takes into account different compute
capabilities of upstreams, albeit under the assumption that they are known a priori.

3.3 Serverless Function Placement

While not necessarily dealing with load balancer, like we are in this work, we consider
research that deals with serverless function placement, and generalized service placement
in edge computing to be related, as similar mechanisms and decision-making methods
apply.

In this context, Zhao et al. [ZLS+17] propose heuristic algorithms efficiently place
services in a mobile edge computing environment. In their work, they aim to minimize
the overall data traffic within the system by optimizing placement decisions of a given
number of replicas within an edge computing system. To this end, they first formulate
their optimization problem, which has the goal of placing k service replicas among
the available nodes such that the overall traffic within the network generated from
client requests is minimal. They present their Divide-and-Conquer Based Near-Optimal
Placement Algorithm[ZLS+17], which is a heuristic algorithm that for a given target
deployment of k replicas divides the set of all possible nodes into k clusters. Within each
cluster, a single replica is placed on the best node available in the cluster. While not
necessarily optimal, the division into multiple clusters dramatically reduces computation
complexity, while performing almost as well as a full-space search for optimal placement.
Building on this work Zhao, and Liu[ZL18] present a similar algorithm also based around
divide-and-conquer methods, which aims to minimize average client request latency.

Raith, Rausch and Dustdar[RRD21a] propose a method for machine-learning based
workload characterization to then make improved scheduling decisions for serverless
edge computing functions. Evaluating their approach both through simulation and
experimentation on a physical testbed, they show that their approach is able to reduce
FET, as well as performance degradation caused by resource contention significantly,
compared to default methods employed in serverless frameworks[RRD21a].

Nezami et al.[NZDP21] present a method for decentralized scheduling of services through-

20

3.3. Serverless Function Placement

out the cloud-edge continuum. Building on a multi-objective function they propose that
nodes create deployment scenarios for their local neighborhood using a greedy heuristic.
Local solutions are then cooperatively combined to make the actual scheduling decisions.

Ma et al.[MSG+20] propose the usage of ant colony optimization to migrate application
instances from overloaded to underloaded regions of the edge, such that overall the
system is as balanced as possible. In their notion of balance, their approach is in part
conceptually similar to the osmotic scaling and scheduling we propose. The significant
difference is that our view of the system is comparatively reduced and thus simple to
calculate, while Ma et al. take into account a much larger number of variables, making
the use of a complex search algorithm like ant colony optimization necessary.

Gao et al.[GZLX19] approach client assignment and service placement in a joint way. In
their view of mobile edge computing, they consider clients attached to ingress points
to the network, which are potentially subject to network congestion. They suggest
optimizing the placement of services in the network, and the assignment of clients to
network entry points should be optimized together, thus enabling better performance
than optimizing both separately.

Finally Bernbach et al.[BMA17] propose to address the issue of potentially competing
applications being scheduled on a limited set of resources by having the application
developers, and by extension the application, bid for resources. They argue that such an
auction-based approach can be used to make a balanced assignment of applications to
nodes, or to maximize the profits of edge platform providers.

21

CHAPTER 4
Load Balancers and Their

Placement

In this chapter we describe our chosen approach for improving the performance of network
bound workloads in serverless edge computing environments. We start by explaining
our considerations when developing our approach in the context of a serverless edge
computing system, and showing in what way our solution changes the system. From
there, we go into detail about how the load balancing mechanism of our solution works,
how it is different from currently employed methods, and how the choices made in regard
to the load balancing method inform other parts of the proposed approach. Lastly, we
go into our approach to scaling and scheduling load balancers among the nodes present
in the serverless edge computing system. We make use of osmotic scaling and scheduling,
a method previously outlined in existing literature. Using this idea of osmotic scaling
and scheduling, we provide a concrete implementation of such an approach for placing
and deciding on the number of load balancers in the system. The implementation is
designed with current state of the art systems such as Kubernetes as its basis, and
can thus be used as a reference implementation for use outside of a simulation context.
The approach also addresses the challenges of edge computing environments that make
current methods, developed with the cloud in mind, unsuitable. Specifically, our approach
addresses issues of location awareness, device and network heterogeneity, and dynamically
changing workload conditions.

4.1 Concept
To understand the approach we first take a step back to view the boarder technical
context the solution addresses and is built around. As previously outlined, our solution
aims to improve the performance of network bound workloads. In the context of serverless
edge computing systems network bound workloads are characterized by the network

23

4. Load Balancers and Their Placement

Figure 4.1: A generic view of the different parts that make up the total request processing
time from the perspective of our approach

being the main or a significant contributing factor to the overall response time. In Figure
4.1 we can see the different processing steps we consider for a request. A network bound
workload in this sense is one where the time taken up by the network portion of handling
the request is proportionally speaking significantly larger than the portion taken by the
FET. This is typically the case because the request either contains a lot of data that
needs to be transported, or because the FET is very short.

The primary way by which our approach improves the response times of network bound
workloads is thus by reducing the amount of time spent on the network transfer portion
of handling a client request. While optimizing FETs is not the primary objective of
our approach, at least from a systems design perspective, it still has the potential to
additionally reduce FETs compared to current methods. We consider the structure and
makeup of the serverless computing system to be a given factor. As a result our approach
aims to reduce network times not by changing the network makeup itself, but by utilizing
the existing resources as effectively as possible. From a network-optimization perspective
this means that each request should take an optimal path from the client to the node
where the request is ultimately processed.

As can be understood quite intuitively in Figure 4.2, round robin load balancing will in
many cases lead to clearly suboptimal choices in terms of incurred network delay. The
figure also shows the three key components we consider when trying to make network
location based decisions: The client, the load balancer, and the node. Because our
approach solely considers application level load balancers, since serverless platforms
typically require these for their advanced routing decisions, any given request takes a
path from the client to the load balancer, then to the selected upstream node, and back
the same way.

Subsequently we want to incur the minimal amount of delay possible from both the hop
between the client and load balancer, as well as between the load balancer and upstream
node. Our proposed approach handles these two kinds of hops separately, at least for

24

4.1. Concept

Figure 4.2: Example diagram showing efficient and inefficient request routing based on
network delay. "fx-1" through "fx-2" denote different types of function, and the dotted
line denotes a network link between the cloud and edge node with a latency of 50ms

the most part. Since the scope of this work does not include optimizing the location of
the serverless function instances themselves, this means we can improve performance
through the following methods:

1. Intelligent load balancing decisions: load balancers should choose upstream
nodes that are both close in the network, and have FETs short enough as not to
negate the performance won through network proximity

2. Effective placement of load balancers: the scheduler of the serverless system
should place load balancers at locations in the network where they are in close
proximity to clients and serverless function instances requested by these clients

3. Efficient scaling of load balancers: the number of load balancers should be
high enough to provide the needed performance improvement, but not so high that
the resources consumed by the load balancers diminish or even negate that effect

In our approach the first method is provided by the load balancer itself. It is continuously
updated with information where function instances, typically also referred to as replicas,
are located. Based on this and other information gathered by the load balancer, it tries
to make decisions that lead to faster overall request responsiveness by selecting upstreams
that are close and provide fast FETs.

The other two methods are handled by the osmotic joint scaling and scheduling component
of our approach. While the different methods of improvement are split between these
two components of our proposed solution, this does not mean that they are completely

25

4. Load Balancers and Their Placement

separate from each other. Naturally the scheduling and scaling decisions will influence
the way in which the placed load balancers work, while these in-turn affect the data
gathered for and available to the scaling and scheduling component. The specifics of
these two components will be discussed in the next two sections.

It is also important to note that a significant amount of the approaches’ implementation
details are not chosen arbitrarily, but are rather the result of continuous cycles of
experimentation and evaluation. While not detailed in the approach, the evaluation, and
discussion chapters of this thesis include some of these experiments, in particular those
that give additional insight into the problem domain and yielded results useful beyond
informing this specific approach.

4.2 Least Response Time Load Balancing

In this section we describe the role the load balancer plays in the context of our approach,
how it is related to the underlying serverless platform, and the details of how it is
implemented.

4.2.1 Load Balancing Concepts

While load balancing might at first appear as a rather simple problem, venturing outside
cloud-centric scenarios, where resource homogeneity can be assumed, makes it much
more complex of a challenge. Since we feel the changes implied by resource heterogeneity
are often only implicitly covered in literature, or an understanding of the problem is
assumed, we believe that it is beneficial to describe it in more detail. This not only helps
form a basis on which subsequent research can build, but also gives a lot of contextual
information on how our approach relates to the underlying formal problem.

For our formulation of the load balancing problem we consider two types of resources:
nodes, and network links. Nodes are the compute nodes in the cluster, and are charac-
terized by the compute capabilities they possess and the function instances they host.
Network links are characterized by their latency, and their bandwidth. To get a more
intuitive understanding of the problem we developed a visualization, where resources are
depicted as rectangles, and their dimensions correspond to their characterizing attributes.
Figure 4.3 shows an example of this. The width of the rectangle corresponds to the
load of the system, in our case measured in requests per second (rps), and the height
corresponds to the performance, which since we are concerned about response times is
the response time in milliseconds. One should note that, even though maybe counter
intuitive, a greater height corresponds to higher performance, which in turn means lower
response times. A core concept of this visualization is the capability of resources to stretch
or compress. This means increasing or decreasing width or height of the resource, while
doing the inverse to the other side. The condition is that the total area of the resource,
i.e. the product of width and height, must be consistent throughout this process. This is
effectively the way in which performance regression is modeled in this visualization, but

26

4.2. Least Response Time Load Balancing

Figure 4.3: Rectangles representing a resource in our problem visualization

Figure 4.4: Rectangles representing Node and Network Link resources, including their
respective bounding boxes showing maximum load and performance capabilities

one should note that this way only works under the condition that performance regression
is linear with respect to the load. Luckily this is close to observed real world behaviour,
meaning that at least for understanding the underlying problem this visualization holds.
There are, however, limits to this stretching or compressing resources. From a visual
perspective there is a bounding box around each resource, which cannot be exceeded in
either height or width. This corresponds to the real world behaviour of workloads not
getting faster beyond a certain point even if resources would be available on one side,
and requests simply timing out once response times exceed a certain limit on the other.
Network link resources work slightly differently, as they have a fixed component, dictated
by the latency of the link, and a variable component set by the bandwidth. The variable
component works as just described, while the static component is constant. Figure 4.4
shows the variable and static components along with their limits.

27

4. Load Balancers and Their Placement

Figure 4.5: Example visualization of an optimal selection of nodes, including their network
links, for a given request load. Bounding boxes showing min/max load/performance, and
fixed network latency performance parts are not displayed to keep the example simple.

Resources can be conditionally linked. This maps the real world conditions of nodes
being attached to the cluster via network links. Just like in actual clusters multiple nodes
can be dependent on the same network link, and network links in turn can depend on
another network link.

With this definition we can define the optimization problem an effective edge load balancer
is trying to solve. The input to this problem is the given request load arriving from
clients. In our visualization this corresponds to a set width. The objective is then to
select nodes which when combined have the same width as the incoming client node,
while at the same time maximizing the area of the nodes and network links selected. One
needs to keep in mind that network links are not selected directly, but are implicitly

28

4.2. Least Response Time Load Balancing

included if selected nodes depend on them. Figure 4.5 shows an example of such an
optimal selection.

If the area is maximized in this optimization problem, response time is minimized, which
is the goal a load balancer is trying to achieve.

While this visualization and problem is still relatively straightforward, there are other
significant factors that we omitted until now:

1. There are multiple functions, meaning that there are multiple "widths" or bins that
need to be filled

2. Functions share compute capabilities of nodes, meaning that performance regression,
i.e. stretching and compression, needs to be considered over all functions running
on a node

3. Dependencies between network links and nodes aren’t necessarily known

4. Some network links necessarily handle traffic from outside the system, making
performance regression assessment harder

5. Actual performance profiles, i.e. dimensions, of nodes and functions aren’t known

6. Performance profiles, capabilities, client load, and function deployments change
dynamically over time

Considering these factors, load balancing in this context is a much higher-dimensional
and thus more complex problem, where it is intuitively not clear whether an optimal
solution is possible or if explicitly pursuing it in practise is even computationally feasible.

Since the true performance and regression characteristics of the nodes and network links
are unknown, a load balancing solution needs to consider how this lack of information
can be addressed. The simplest way to gather this information is by sending requests
to nodes and observing response times. While this can yield insight into performance
characteristics, these observations are merely a statistical sample, making them at
least somewhat prone to misinterpretation. Especially when it comes to more complex
behaviours such as functions sharing compute resources of nodes, or multiple nodes
sharing network links.

Depending on the goals of the load balancer there is a risk/reward dynamic at play when
it comes to sending requests to nodes in order to learn more about their performance
characteristics. On one hand this can lead to "discovering" nodes that offer high per-
formance and are able to handle a large number of requests, but on the other hand it
could also lead to poor performance for those very requests in case network or compute
capabilities are sub par. There is no single correct answer to this dilemma, since the
efficacy of any given solution would depend on the specific goals and tolerances of the
application in question. In case Service Level Agreements (SLAs) exist that stipulate a

29

4. Load Balancers and Their Placement

Figure 4.6: Our approach as seen through the described visualization. All nodes are
included in the "solution", and their load is determined by the load balancer assigning
weights (w)

certain response time for a minimum percentage of requests the risks might outweigh
potential rewards, while an application that is somewhat tolerant to a fraction of requests
being slow might experience a great performance uplift overall. For our approach we
consider SLAs to be out of scope, and therefore do not further address ways to address
them. At the same time we want to point out that these are potentially relevant aspects
for bringing serverless edge computing towards production readiness in the industry, and
therefore highlight the areas where further study is needed.

Considering the myriad of potentially complicating factors for load balancing, in particular
if one were to attempt to directly model the problem algorithmically, we decided to take
a comparatively simple approach for our load balancing method. In our approach we base
our load balancing decisions solely on the total response time as it is observed by the load
balancer. This means that we do not differentiate between times incurred from FET and
the times incurred from the networking portion. In this way we treat the total response
time as a black box metric to the overall system. Our approach is to always include every
single node in the "solution" to selecting appropriate nodes for the given width. This
means that over the long term our approach gathers information about every potential
node for every function replica that gets requested. The disadvantage of this approach
is that it dispatches requests to nodes that would not be included in a mathematically

30

4.2. Least Response Time Load Balancing

optimal solution, meaning that is will never reach the optimal performance possible
assuming perfect knowledge of the system. To counteract the performance penalty of
including all nodes in the solution we assign them weights based on the response time they
achieve. This allows the load balancer to strike a balance between gathering information
about the performance of the nodes available to the cluster, and processing requests as
fast as possible. Figure 4.6 shows the view of our approach on the system as described in
the visualization. Note that the networking portion is not present, as our approach only
considers the total response time in relation to the node it was sent to. Our approach
also views each function replica separately, meaning that joint performance degradation
of co-located function replicas is not modeled explicitly, only implicitly via the degraded
performance observable through total request response times on that node.

There are a number of important considerations about the practical realization of our
approach, which we will discussed next.

4.2.2 Implementation

As was just outlined our approach uses the response time as a black box metric to get
insights into the system, and thus make load balanced decisions based on that information.
Since the idea of using a black box metric alone does not constitute a concrete and
testable approach we need to define the implementation details of how this concept can
be applied in practise.

A well-known and simple implementation of this concept is the least response time method
of load balancing. In this approach the server with the lowest average response time gets
chosen whenever a request needs to be processed. While this certainly works in general,
and implicitly solves the proximity issue from Figure 4.2, there are a few issues with
this approach when it comes to serverless edge computing. First, this approach can be
problematic when it comes to co-located functions, as the load is not distributed among
upstreams equally. This leads to the fastest node being selected until its performance
degrades enough for the next best node to be chosen. Since there is no coordination that
ensures some kind of balance, other functions that happen to be deployed on that node
could experience severely hampered performance unexpectedly. Second, this method does
not take into account that the performance of nodes is, at least at first, unknown, and that
it can change. A node that generally performs exceptionally well could be permanently
excluded if at one point, for a spurious reason, performance was poor. A naive least
response time load balancer would then likely rotate between a small handful of nodes
that at one point performed well, effectively ignoring potentially better solutions. These
reasons point to the need of a more sophisticated approach than a naive implementation
of least response time load balancing.

Metrics Collection

As explained, in our approach the metric used for load balancing decisions is the response
time, specifically the time it takes between the load balancer forwarding the request to

31

4. Load Balancers and Their Placement

the selected upstream, and the load balancer receiving the response to the request.

Based on the response time data there are a number of performance metrics that could
be calculated. Since our goal is to reduce the average total response time, we also chose
the average response time as the key metric for load balancing decisions. Depending on
the requirements the load balancer needs to fulfill, other metrics could be used. A load
balancer that is supposed to ensure a type of SLA might, for example, benefit from a
percentile based metric instead.

In addition to effectively summarizing the performance of nodes, the metric needs to be
time sensitive. Considering the performance of nodes can change over time, more recent
values are more important as an indication of performance than those that lie farther
back. To address this, our approach makes use of a moving average with fixed window
size. We chose to use an exponential moving average since it has a number of advantages
over more typical implementations.

Given the previous average value r̄0, the most recent response time r, the time passed
since the last request ∆t, and the windows size w, the new average value r̄1 is

r̄1 = (1− e
−∆t

w) · r + e
−∆t

w · r̄0

The most significant advantage of this implementation over ones that use a buffer or a
similar data structure, is precisely that complex data structures are not required. For
each upstream only two values need to be recorded:

1. The time the moving average was last updated

2. The current value of the moving average itself

While there are situations, where this can be less accurate, it is far easier to implement
than buffer based solutions, since with these the required buffer size is unknown thus
leading to frequent memory allocations and de-allocations. Using an exponential moving
average ensures minimal memory consumption, while at the same time being easy to
understand and implement.

Choosing Upstreams

With the metrics collected what remains is deciding on upstreams based on those values.
As previously outlined, naively choosing the upstream with the lowest average response
time is potentially problematic. For this reason our approach uses weighted round robin
to decide which upstream should service a given request, where the response time metrics
determine the weight assigned to each upstream.

The decision how exactly this weighted round robin gets implemented is surprisingly im-
portant, since the load balancing decisions affect the accuracy and volume of performance

32

4.2. Least Response Time Load Balancing

data gathered on each node, thus creating a feedback cycle that can, depending on the
situation, lead to sub optimal performance. For our approach we decided to use the same
method employed by NGINX[Incb], a popular web-server and request proxy. We chose
this approach after experimenting with other solutions, and analyzing their performance
profiles and characteristics with regard to the unique challenges posed by serverless edge
computing environments. Compared to other approaches is has the advantage of being
deterministic, leading to all nodes being chosen eventually, which gives the load balancer
sufficient data to make informed decisions, while at the same time distributing traffic in a
mixed fashion between upstreams of different weights. The evaluation methodology and
experiment results of these experiments can be found alongside the general evaluation in
the subsequent chapters.

Algorithm 4.1: Smooth Weighted Round Robin
Input: Set of available nodes n0, n1, n... ∈ N
Input: Weights for each of the nodes wn0 , wn1 , ... ∈W
Input: Current counter value for each node. cn0 , cn0 , ... ∈ C
Output: The node the next request should go to

1 for n ∈ N do
2 cn ← cn + wn . add node weight to its counter
3 end
4 selectedNode← n : cn = max{c : c ∈ C} . select node with highest counter value
5 cselectedNode ← cselectedNode −

∑
w∈W w

6 return selectedNode

Algorithm 4.1 shows a pseudo-code implementation of our weighted round robin compo-
nent using the approach also used in the NGINX source code [Sys21]. Table 4.1 shows
how this implementation of weighted round robin distributes requests between upstreams
of different weights. Note that the proportions between the weights are considered when
choosing upstreams without using a fixed ordering based on weight, meaning that choices
of upstreams with lower weights are interleaved between choices of upstreams with higher
weights.

The only part of our load balancing approach that is not yet described is how the average
response time recorded is mapped to the weight used by our weighted round robin
implementation. There are a number of ways in which values like this can get mapped
to weights. There is, unfortunately, no single correct answer since the lack of precise
information on the state and performance of nodes and the network prevents us from
reliably making globally optimal load balancing decisions. There are two factors that
determine how response times are mapped to weights:

1. The weight range response times should be mapped to

2. The function by which they are mapped to these weights

33

4. Load Balancers and Their Placement

Node A B C
Weight 4 2 1
Iteration #1 4 2 1

-3 2 1
Iteration #2 1 4 2

1 -3 2
Iteration #3 5 -1 3

-2 -1 3
Iteration #4 2 1 4

2 1 -3
Iteration #5 6 3 -2

-1 3 -2
Iteration #6 3 5 -1

3 -2 -1
Iteration #7 7 0 0

0 0 0

Table 4.1: An example of weighted round robin iteration results when using Algorithm
4.1 as we do in our approach. Colored cells indicate the selected node at the iteration.

In our approach we chose to use a fixed range of weights, since this makes sure every
upstream is assigned at least a fixed fraction of traffic. This guarantees that the response
times of all upstreams are sampled eventually, preventing a situation where a significant
change in the performance of an upstream goes unnoticed forever. The weight of each
upstream is determined by it’s average response time in the last value and calculated
using the following formula:

Let r̄ ∈ R be the set of response time averages, wmin the minimum weight, and wmax
the maximum weight. Then the weight for each response time average w(r̄) is defined as

w(r̄) = max{wmin,
wmax

(r̄
min{r̄:r̄∈R})s

}

where s > 0 is a chosen scaling factor.

The scaling factor determines how weights correlate to response time. A scaling factor
of 1 means that there is a linear relationship between the average performance and the
weight. Figure 4.7 shows the effect different scaling factors have on weight mappings
in the weight range of 1-10. Both continuous and integer values are shown, since it
depends on the weighted round robin implementation which of the two can be used.
Based on grid-search experiments we chose a weight range of 1-25, and a scaling factor of
2, although we stress that there is no one optimal parameter choice for all circumstances.
The experiments that determined this choice will be described in detail in subsequent
chapters.

34

4.3. Osmotic Scaling and Scheduling

Figure 4.7: Plot showing the effects of different scaling factors on how response time
averages are mapped to weights.

Framework Integration

In our approach the load balancers are assumed to be integrated into the serverless
framework. This means that load balancers are notified of changes to function replicas,
meaning that they are always aware which functions exist, and which exact replicas are
available for each function. From a practical perspective this is simple to achieve in a
production implementation as serverless frameworks already provide this information in
some way, and the underlying technologies, typically some kind of container orchestration,
also have means to retrieve the necessary data.

Apart from the available functions and their respective replicas, new load balancer
instances are initialized with response time values and weights of already running load
balancer instances nearby. While the load balancer still needs to adapt its weights based
on its specific client load and position in the network, this initial pre-loading of values
allows it to converge on a stable configuration faster, thus resulting in quicker performance
gains.

4.3 Osmotic Scaling and Scheduling

In this section we describe our approach to scaling, and scheduling load balancer replicas,
meaning the process by which we decide how many load balancer instances are in the
system, and on which nodes they are placed.

35

4. Load Balancers and Their Placement

4.3.1 Osmotic scaler and scheduler

To determine the number of replicas and their location we opted for an approach based
on osmotic pressure. Like we outlined in previous chapters, osmotic pressure is a high
level concept supposed to facilitate elastic diffusion, elastic diffusion being the process
by which a central starting configuration, typically in the cloud, is extended to the edge
dynamically based on request load with the goal of providing low latency communication
for edge clients[RDR18]. The general idea of this approach is that client requests generate
pressure on nodes that are close to the clients, meaning that they could potentially host a
load balancer instance, and then using this pressure in conjunction with a set threshold to
determine both the number of load balancer instances and their locations. If pressure at
a node exceeds a certain level, because there are a lot of client requests originating close
by, a load balancer will be placed at the node, thus lowering the pressure. Conceptually
this approach is supposed to create an equilibrium of pressure throughout the system,
which results in a well-chosen set of load balancer instances. This means that by using
an osmotic approach, the scaling and scheduling decisions are effectively made together
and cannot be controlled separately.

The main challenge of realizing an approach based on the concept of osmotic pressure is
finding the method by which pressure is calculated. This can be particularly challenging
when the system requires a manually set pressure threshold, since this requires the
threshold value to fulfill a number of criteria:

1. Intuitive: the threshold value should be at least somewhat intuitive to whoever
determines it. It should be clear what a certain pressure threshold means, and how
it will affect the system.

2. Robustness: the threshold should be reasonably robust to dynamically changing
systems. A few extreme outliers in the system, for example extremely far or close
nodes, should not require the threshold to be changed to still achieve the desired
behaviour.

3. Linearity: while not necessarily fully achievable, ideally changes in the threshold
value should have a close to linear relationship with the scaling and scheduling
behaviour. This is important in conjunction with its intuitiveness and is important to
prevent sudden, unexpected effects such as dramatically changed system behaviour
with minuscule changes in the threshold value.

4.3.2 Calculating osmotic pressure

Building on the previously outlined requirements we can develop a pressure calculation
methodology.

36

4.3. Osmotic Scaling and Scheduling

Required data

Because osmotic pressure based scaling and scheduling is at its core still a heuristic-
driven approach, we cannot assume to have perfect global knowledge of the system. Our
approach is built with that in mind, staying close to assumptions about data availability
already used for the load balancers themselves, and building on information current
container orchestration platforms such as Kubernetes already provide. For our calculation
of osmotic pressure we require the following data:

• Network locations of all function replicas, i.e. which nodes the instances are running
on

• Network locations of all clients

• Number of all client requests, and which functions they are for

• Network locations of all load balancer replicas

• Network distances (latency) between nodes and clients

Replica information is readily available through state of the art container orchestration
platforms, while network distances and exact client request numbers are relatively simple
to obtain. Because of this comparatively available set of data, we believe that our
approach could easily be integrated into current serverless frameworks.

Concept

The basis of our pressure calculation is a hypothetical "what-if" scenario. For all nodes in
the system that could potentially host a load balancer, and are currently not doing so, we
ask the question "what if there was a load balancer instance running on that node". We
then compare this hypothetical scenario to the current state of the system and determine
whether the hypothetical addition of the load balancer on the node would constitute an
improvement or deterioration in performance, and if so by how much. For nodes that are
hosting a load balancer already we do the same in reverse and ask "what if there wasn’t
a load balancer there", once again estimating whether performance would improve or
deteriorate.

The two metrics we use to determine the impact of adding or removing load balancer
replicas are the request share and the projected performance of the node. These
metrics are calculated for each node on a per-function basis, and ultimately determine
the pressure.

Request Share

The request share is one of the central metrics we use to determine a node’s pressure. In
principle it shows which portion of the system’s total incoming requests would be routed

37

4. Load Balancers and Their Placement

Figure 4.8: Assignment of clients and function replicas to potential load balancer nodes
during pressure calculation

over that node, if it had a load balancer. To calculate this value we need to first look at
client assignment, meaning the process by which it is determined which client will send
requests to which load balancer.

As we already outlined previously, one of our core assumptions is that clients will send
their requests to whichever load balancer is closest from a network perspective, which
is the load balancer with the shortest Round Trip Time (RTT). In keeping with our
hypothetical scenario of "what if there was a load balancer on this node", clients will
send their requests to this potential new load balancer if that node is closer to the clients
than whichever load balancer instance is currently closest. An example visualization
of this client assignment for calculating request share can be seen in Figure 4.8. The
specific number of clients our potential load balancer would service is, however, only of
secondary importance. The more important and precise metric is the number of requests
it will service. We do not really care about whether there are a lot of clients sending
few requests, or a low number of clients sending a large amount. What is important is
only the number of requests going to the potential load balancer relative to the total
amount sent. Generally the data for this calculation is readily available, and can easily be
gathered for example via existing load balancers reporting on the requests they receive.

A point to note here is that we only consider the requests sent within a certain time frame

38

4.3. Osmotic Scaling and Scheduling

for this calculations, as they should be recent enough to be relevant for current scaling
and scheduling decisions. In our case we chose this time frame to be the last 60 seconds,
which is relatively short but works within the relatively dynamic and heterogeneous
systems we consider. For real deployments this value might have to be adapted based on
how dynamically the request load changes, how many requests each client typically sends
in a session, and what amount of load is generally typical of the system. The important
point to consider here is that the time frame needs to be long enough to give a reasonably
accurate picture, while not being so long that the data is delivers is not reflecting the
current state of the system anymore.

Lastly, since there are multiple functions in the system, which we generally consider to
be of equal importance, we calculate the request share the potential load balancer would
receive on a per-function basis. Thus we define the request share as the following:

Let N be the set of all nodes, L the set of nodes with running load balancer instances, F
the set of deployed serverless functions, and C the set of clients.
Further let dist(n, c) be the distance between a node n ∈ N and client c ∈ C, and let
requests(c, f) be the number of requests from client c ∈ C for function f ∈ F.
Then for each node n ∈ N the assigned clients are defined as

assignment(n) = {c|c ∈ C ∧ dist(c, n) < min{dist(l, c)|l ∈ L}}

Finally the request share for node n ∈ N for function f ∈ F is defined as

rqshare(n, f) =
∑

c∈assignment(n) requests(c, f)∑
c∈C requests(c, f)

Thus we define the request share of a node for a given function, as the fraction of all
requests for that function the node would receive if it had a load balancer instance
running.

Projected Performance

The second major metric that determines the pressure of a given node is what we refer
to as the projected performance. This metric is once again based on the hypothetical
scenario of "what if there was a load balancer on the given node" and is supposed to
estimate the level of network performance we could expect if a load balancer is actually
placed there. Conceptually our notion of performance is rather simple. It is determined
by how close the clients are that would be assigned to that node, and by how close
the function replicas are. We once again calculate this metric for each node, and on a
per-function basis. To calculate the client distance we use the average distance of all
assigned clients, weighted by their relative share of requests among the assigned clients
for the given function.

The calculation of the function distance is somewhat more intricate. Using a flat average
over all function replicas is not a particularly suitable metric, since this would also

39

4. Load Balancers and Their Placement

consider the distance of function replicas that are far away, meaning that we would
include the distance to function replicas we don’t want the requests being sent to in the
first place. To address this issue we only consider a subsection of function replicas to
calculate the function distance. Our approach to the function distance is based on the
assumption that the function scaling component correctly scales the function as required,
meaning that we assume that the total number of function replicas is sufficient to serve
the given number of incoming requests. The number of function replicas we consider for
a node is based on that nodes request share. We take into account the fraction of closest
function replicas equal to the request share of the node for which we want to calculate
the function distance. If a node, for example, has a request share of 0.5, meaning 50%,
then its function distance is the average distance of the 50% closest function replicas.
An example of this can once again be seen in Figure 4.8, where nodes A and B have
a differently sized share of functions assigned to them for distance calculation based
on their respective request share. Since we assume that the function replica scale is
sufficient to handle the systems requests, this should mean that, not accounting for
heterogeneity in function replica performance, the replicas considered for the function
closeness metric are sufficient the incoming requests of the load balancer. The reason we
are not considering heterogeneity in replica performance is that this factor is not known
beforehand, and in addition hard to estimate. Finally we add the function distance
and client distance together and invert them, since our subsequent calculations require
the projected performance metric to have high values indicating good performance, and
low values indicating poor performance. Making this explicit we arrive at the following
formulation for our projected performance:

Let replicas(f) be the set of replicas of a function f ∈ F. Then the client distance for a
function f ∈ F and node n ∈ N is

cldist(n, f) =
∑

c∈assignment(n) dist(n, c) · requests(c, f)∑
c∈assignment(n) requests(c, f)

Further, let repdistn,f = 〈r0, r1, ...〉 be the list of replicas for a function f ∈ F ordered
by their distance to n ∈ N in ascending order such that for each pair

(ri, rj) ∈ repdist2
n,f : i < j =⇒ dist(n, ri) ≤ dist(n, rj)

Then the set of replicas considered is

replicas(n, f) = {ri|ri ∈ repdistn,f ∧ i < brqshare(n, f) · |repdistn,r|c}

Thus the function distance is

fndist(n, f) =
∑

r∈replicas(n,f) dist(n, f)
|replicas(n, f)|

and finally, the projected performance is

perf(n, f) = 1
cldist(n, f) + fndist(n, f)

40

4.3. Osmotic Scaling and Scheduling

Needless to say slight adaptations of these formulas are necessary for a practical im-
plementation. For our simulator based evaluation the formulas are used exactly as we
present them here, with the exception that special values are used as placeholders for
undefined values, particularly those that result from a division by 0. If a node has a
request share of 0 for example, the projected performance is simply set to 0. Likewise if
the request share is > 0, the function distance calculation will take into account at least
one replica, even if based on these formulas none would qualify.

Pressure

Now that we defined request shares and the projected performance we can move on to the
actual pressure calculation. In our approach we calculate what we call relative pressure.
This means that the pressure of a given node is always in relation to the current state of
the system, and not in absolutes. This is done to ensure that the pressure calculation
is not dependent on a-priori knowledge of the system. If, for example, pressure were
directly related to the number of requests per second the user would have to define what
number of requests is considered high or low manually beforehand, negating precisely the
kinds of advantage serverless frameworks are supposed to afford: Alleviating developers
from complex configuration.

Our proposed notion of pressure is focused on the changes adding a load balancer on
the node in question would bring to the system. We start out by making an estimation
of the average performance and impact of a load balancer in the system. This notion
of performance is based on the already described projected performance, and the load
balancers request share. We cannot rely purely on the projected performance, as it is
also tremendously important for how many requests this performance is provided. If we,
for example, have a situation where we need to decide between two nodes which could
potentially host a load balancer, that have a very high projected performance, then we
most likely improve overall system performance more by selecting the node with the
higher request share, since the high expected performance will affect more requests.

We call our estimation of the current system performance the status quo performance.
To calculate it we once again rely on the projected performance, and the request share
of node, although since we are interested in the current state of the system we consider
these metrics only for nodes which currently host a load balancer. The calculation of
these metrics is exactly the same as for nodes that do not have load balancer instances
deployed on them. A slight difference to note is that the partition of clients onto nodes
with load balancers will be without overlap, meaning that if we sum up all the request
shares of a function over all nodes with a load balancer, the result would be 1, i.e. 100%.

For our pressure metric this status quo performance is calculated using a weighted
quantile. The projected performance of the load balancer nodes are the values over
which the quantile is calculated, while their respective request share is the weight. We
use the 50% weighted quantile, also referred to as the weighted median, as our status
quo performance. In our testing the weighted median provided a robust metric that

41

4. Load Balancers and Their Placement

behaved predictably and similarly over different network topologies and cluster sizes. It
is, however, conceivable that there are situations in which this quantile should be set
higher or lower depending on how dynamic the system changes, and how heterogeneous
its structure and network topology are. We should also note that at this point all of
these metrics are still calculated on a per-function basis. The values for each function are
only combined at the very end, weighted by how important the individual functions are.
In our case the importance of individual functions is determined by which proportion
of total requests are directed to it. This means that we effectively treat each request
as equally important and thus a function which gets double the traffic of another, for
example, would also be considered twice as important when the individual function based
metrics are combined.

With this metric we can now calculate our pressure metric. For a given node we do
this by calculating its impact on the system compared to the status quo performance.
Assuming that the status quo performance represents the current system performance
overall, we compare the status quo performance with the performance of the system with
the node added. Since, as described earlier, the current set of load balancers services all
client requests, adding a new load balancer will remove some of the traffic from existing
load balancers. This amount is represented by the potential load balancer node’s request
share. To then calculate the system performance with the potential load balancer added
we replace a part the size of the node’s request share with the nodes performance. Lastly
we compare by how much adding a load balancer on this node changes the overall system
performance, by calculating their difference in percent. This percentage difference is the
pressure value we use to make scaling and scheduling decisions in our osmotic system. A
positive pressure indicates that adding would likely improve performance, while negative
pressure indicates that it would likely deteriorate overall system performance. Thus we
formally define our pressure as follows:

For each function f ∈ F its relative importance is

importance(f) =
∑

c∈C requests(c, f)∑
f ′∈F

∑
c∈C requests(c, f ′)

Let the set of tuples of a load balancer node’s performance and request share for a
function f ∈ F be lbperff = {(perf(l, f), rqshare(l, f))|l ∈ L}
Then for a function the weighted median performance is statusquo(f) = weightedmedian(lbperff)
Based on this we can estimated the systems performance when adding a load balancer
on node n ∈ N as

addperf(n, f) = (rqshare(n, f) ∗ perf(n, f)) + ((1− rqshare(n, f)) ∗ statusquo(f))

which relative to the status quo performance gives us the pressure per function

fp(n, f) = addperf(n, f)− statusquo(f)
statusquo(f)

42

4.3. Osmotic Scaling and Scheduling

Combined, the final pressure of the node is then

p(n) =
∑
f∈F

fp(n, f) · importance(f)

Downscaling Pressure

Just like we need pressure to determine where load balancers should be scheduled, we
also need to decide on conditions which trigger an existing load balancer to be removed.
Without this mechanic the osmotic scaling and scheduling component would not be
able to properly adapt to changing system conditions, since load balancers that aren’t
placed effectively anymore cannot be removed. During development we learned that an
important property of the osmotic scaling and scheduling system is that it is consistent.
For our purposes this means that it should find a stable configuration eventually that
doesn’t change anymore unless the surrounding system parameters change. In our testing
the use of the exact same metric for removing load balancers as for adding them led to
oscillations in their scheduling, meaning that there were cases were a load balancer would
be added only to be removed again immediately.

To address this we use a slightly different measure of pressure for removing load balancer
replicas. It is also based on a hypothetical scenario, though in this case we try to estimate
the consequences removing a load balancer would have on the system performance.
Compared to the pressure when adding load balancer replicas, we use a somewhat more
accurate measure than for the removal process, since the original and future state of the
system are more well known, considering it relies on more tangible and less hypothetical
data. First, the status quo before removal is calculated. This is a weighted average of
the projected performance of all load balancers weighted by their request share. For the
system performance once the load balancer is removed, we calculate how the system
structure would change if the load balancer is removed. The primary change this entails
is that the removed load balancers clients would then send their requests to the next
closest load balancer instance. For simplicity and calculation efficiency, we assume that
the clients would be assigned to whichever load balancer is closest to the one potentially
getting removed. At this point we recalculate the projected performance and request
share of the load balancer that takes over the clients. Based on this we can then calculate
the system performance with the load balancer removed by again using a weighted average
over the projected load balancer performances weighted by their request share, with
the difference being that the load balancer we potentially remove is no longer counted,
and its clients are moved to the next closest load balancer. We then have an estimation
of system performance with and without the load balancer in question, and go on to
calculate their percentage difference. This percentage difference tells us by how much
removing the load balancer would affect overall system performance in percent, and based
on a user defined threshold the scaler then decides to remove or keep each individual
load balancer instance.

43

4. Load Balancers and Their Placement

For a function f ∈ F the pre-removal status quo system performance is

rmstatusquo(f) =
∑
l∈L

perf(l, f) · rqshare(l, f)

If we then remove a load balancer l ∈ L the clients are taken over by another load balancer

l′ : dist(l, l′) ≤ min{dist(l, l′′)|l′′ ∈ L\{l}} =⇒ assignment(l′) = assignment(l′)∪assignment(l)

Giving us the adapted set of load balancers L′ = L \ {l}. Then the system performance
without the load balancer for a function is

rmperf(l, f) =
∑

l′∈L′

perf(l′, f) · rqshare(l′, f)

Based on which we can calculate the removal pressure per function as

rmfp(l, f) = rmperf(l, f)− rmstatusquo(f)
rmstatusquo(f)

and combine the two to the final removal pressure

rmp(l) =
∑
f∈F

rmfp(l, f) · importance(f)

Throttled Scaling

In our approach the scaling and scheduling components calculates pressures for all nodes
and load balancers, and then makes subsequent scaling decisions, at a fixed interval.
While in theory multiple nodes could have a pressure beyond the set threshold that
warrants adding a load balancer in a single interval, in our approach we artificially throttle
this amount. In our implementation of the scaling and scheduling component only a
single load balancer can be added or removed per iteration. We compensate for this
comparatively slow rate of change by running the scaling and scheduling calculations at
relatively short intervals. There are two major reasons for our choice to limit the rate of
change in the system in this way.

1. The pressure metrics and calculation are based on the addition or removal of a
single instance

2. Since request shares potentially overlap, scheduling multiple load balancers often
leads to immediate removal during the next scaling and scheduling cycle

During development we observed faster convergence to a stable configuration when only
adding or removing a single load balancer at a time. We also considered changing
our pressure calculations to optimize for a faster rate of change, but decided against
it because these calculation are much less intuitive, which is detrimental to the ease

44

4.3. Osmotic Scaling and Scheduling

of parametrization of the system, and most importantly the computational effort rises
sharply with the number of load balancer instances that are considered simultaneously.
While the single node calculations we use only require calculating a maximum of 250
scenarios for a system with 250 nodes, the equivalent calculations for two nodes being
scheduled simultaneously would require calculating up to 31125 scenarios for an equally
sized system. While this does limit the potential rate of change, we believe that a rate of
change of about 4 load balancers per minute, which could still be increased if necessary,
should be enough to handle the requirements of even comparatively dynamic systems.

45

CHAPTER 5
Methodology

The goal of this chapter is to give an overview of the general evaluation setup and
methodology behind our approach, as this ties together the relation between our approach
and its evaluation. The approach we present is the result of several iterations of design
and experimentation, as one would expect in the field of distributed systems engineering.

First, we give an introduction to FaaS-Sim, the serverless edge computing simulator we
use and extend and the devices included in the simulation.
Next we dive into more detail about the simulation setup by describing the serverless
functions deployed, along with their performance characteristics. In this section we also
describe how the network simulation part of the simulator is implemented and how the
network topologies used in the evaluations are structured.
From there we describe how empirical measurements and experiments are integrated in
FaaS-Sim to improve its representation of real serverless systems.
Lastly, we conclude this chapter by outlining the metrics and Key Performance Indicators
(KPIs) captured in our simulation experiments.

5.1 Simulating Serverless Edge Computing Systems

We choose FaaS-Sim[TP21a] as our simulation framework. FaaS-Sim is is a state of
the art serverless computing simulation built on SimPy, a discrete even simulation tool.
From an architectural basis, FaaS-Sim is built to mimic a serverless framework similar to
OpenFaaS. FaaS-Sim is built on top of a simulated Kubernetes infrastructure, meaning
that it too has the notion of containers, container images, resource requirements, scaling,
and scheduling. Because FaaS-Sim is built with evaluating serverless edge computing
in mind, it also includes support for representing a wide array of node hardware with
heterogeneous capabilities and performance.

47

5. Methodology

Bin LOW MED HIGH VERY HIGH
CPU Cores (logical) 1 - 2 4 - 8 16 - 32 >32
Memory 1 to 2 4 - 8 9 - 32 >32
CPU Frequency (GHz) <1.5 1.6 - 2.2 <3.5 >3.5

Table 5.1: Resource binning used for performance categorization and prediction with
Ether devices by Raith, Rausch and Dustdar[RRD21a]

Device
Name

CPU
Arch

CPU
Cores

CPU
Freq

Memory
GiB GPU/AI Accel

RPi3 arm32v7 4 LOW 1 -
RPi4 arm32v7 4 MED 1 -
RockPi aarch64 6 MED 4 -
Coral aarch64 4 MED 1 Google TPU co-processor
Intel NUC x86_64 4 MED 16 -
Jetson Xavier NX aarch64 6 LOW 8 384-core Volta
Jetson Nano aarch64 4 LOW 4 128-core Maxwell
Jetson TX2 aarch64 4 LOW 8 256-core Pascal
Intel Xeon x86_64 4 HIGH 8 -
Intel Xeon + GPU x86_64 4 HIGH 8 Nvidia Turing GPU

Table 5.2: Table showing the simulated devices available in FaaS-Sim/Ether. CPU
frequency bin sizes are shown in Table 5.1

Table 5.2 shows an overview of the hardware devices our simulated clusters are comprised
of.

Scheduling in FaaS-Sim is based on the work of Rausch et al.[RRD21b], and uses an exact
re-implementation of the Kubernetes scheduler, making it an exact representation of
that component’s behaviour in real-life. Scaling works like it does in OpenFaaS, meaning
that functions can be scaled either via HPA or via OpenFaaS’ trace driven approach. Of
course, the system also allows for custom and experimental scaling mechanisms to be
integrated. For some of our evaluations we do integrate such custom scaling behaviour,
or more precisely the option to disable scaling at will, and to use a fixed replica counts
instead, to remove this variability from certain evaluations if necessary.

For the purposes of this work we extended FaaS-Sim to feature a second, parallel, and
completely separate scaling and scheduling system. As the placement of load balancers
in serverless edge computing systems is one of the core aspects of this work, this second
scaling and scheduling system is tasked only with determining the amount and location of
load balancers. All other parts of the serverless system are scaled and scheduled using the
first system. The two systems are entirely separate from each other, with the exception
that they share the node resources containers are placed on.

Being a serverless computing simulator, FaaS-Sim also includes the concept of functions.

48

5.2. Network Simulation and Topologies

Functions are, just like they are in OpenFaaS, an application running in a containerized
fashion on the Kubernetes cluster, with a number of replicas determined by the scaler.
To simulate function invocations, particularly the FET component, FaaS-Sim relies on
pre-defined statistical distributions to sample from. For every request these distributions
are sampled to determine the FET of the invocation. FaaS-Sim supports the use of
different distributions for each type of device present in the system, which allows FaaS-Sim
to build on trace data from real-world deployments to make its own simulation more
accurate. For our evaluations, we build on the work done in this area by Raith, Rausch
and Dustdar[RRD21a]. FaaS-Sim also includes a model for performance degradation
based on the computational capacity of the nodes, meaning that given a high enough
request load single nodes become unable to handle all of them in reasonable time. To
provide some variability, we simulate a cluster that has three serverless functions deployed:
Resnet50-Inference, Mobilenet-Inference, and Speech-Inference

These functions all represent AI inference workloads as these the cornerstone to enabling
edge intelligence[RD19] through serverless edge computing. They are also an example of
network bound workloads, usually featuring fast request processing, and are impacted
significantly potential network congestion or long latencies.

Figure 5.1 shows the FET distributions for these functions on the hardware outlined in
Table 5.2.

Because FaaS-Sim originally only supported response time evaluations due to FET, we
extend it to also include the network time incurred from request transfers. To enable this
functionality, we introduce the notion of clients explicitly. They are represented via nodes
in the underlying network topology, just like the serverless cluster’s nodes are. Each
request is dispatched from a client, sent to the nearest running load balancer instance,
on to the function instance the load balancer selects, and back the same way.

The load pattern clients exhibit in FaaS-Sim can be fully controlled. Generally, clients
follow a predefined request pattern, either individually or globally, but absolutely any
pattern required can be implemented. This allows the simulation of differently active
clients, differently active regions, and request patterns that change depending on system
parameters.

To extract data for later analysis, FaaS-Sim features fine-grained and extensible trace-
logging of all requests and system events.

5.2 Network Simulation and Topologies

Because this work places a particular emphasis on network optimization, the network
simulation component of FaaS-Sim is of particular relevancy to us. Under the hood,
FaaS-Sim relies on Ether[RLF+20] for its networking.

Aside from vast option for customization, Ether supports a number of networking
primitives that allow us to easily create a range of topologies. In Ether’s model, resources

49

5. Methodology

Figure 5.1: Probability density functions of the FETs of the different devices we simulate

50

5.2. Network Simulation and Topologies

are usually, but not necessarily, grouped together in a cell. The most important ones for
our case are the LAN Cell and the Shared Link Cell. The LAN Cell represents a set of
compute nodes which are interconnected with each other in the way a LAN typically is,
which means bandwidth is high, latency low, and variance small.
Contrary to that Shared Link Cells are more typical of what we might expect in an IoT
scenario. It represents multiple nodes, which, as the name suggests, share a network
connection between them. This can, for example, be used to represent a number of edge
devices which are grouped together into a small compute box and share a mobile internet
connection for wider connectivity.

The networking simulation in Ether is based around the Link object[RLF+20], which
represents a connection between nodes. A mobile network connection, for example, would
be considered a Link. As Links represent connections, they also have a set bandwidth
and latency. To more accurately simulate how networks behave in real life, the latency of
a link is not defined as a fixed number, but as a random distribution which gets sampled
during simulation.

To simulate network transfers Ether uses a flow-based simulation. The transfer of a request
from one node to another is considered a flow. For each flow two steps are simulated:
TCP connection establishment, and data transfer. TCP connection establishment is
assumed to be equal to 3× latency of the route the flow takes, based on the three-way
SYN, SYN-ACK, ACK handshake of the TCP protocol.
The data transfer is where the flow simulation component is used. Each flow consists of
a number of hops, connected by links. Each of these links has a set latency, bandwidth,
and potentially a number of other flows currently being transferred. To calculate how
long data transfer takes, we first determine the bandwidth. The bandwidth is determined
by the minimum bandwidth available from any of the flow’s links. What exactly this
is depends on the general bandwidth of the link in question, and by how many flows
have to share this available bandwidth. Once the bandwidth of the flow is determined
we can simply calculate how long data transfer will take, given a request of known size.
To preserve the impact different flows have on each other, once a flow is added to the
system, or once a flow is completed and thus removed, every link of the flow is updated
and potentially recalculates the bandwidth of other running flows. Other flows might be
unaffected, but may also see and increase or decrease in available bandwidth depending
on whether there are now more or fewer flows competing. If flows are competing for
bandwidth, they are all treated with equal priority, and share equally in the available
bandwidth.

The topologies we use for our evaluations are based on the concept of smart cities[SLF11].
In this context we assume there may or may not be a central point in the city which
provides a high amount of computational capability, i.e. a data center, and that the
majority of computational capability will be interspersed throughout the city alongside
with the clients.

For these edge-located resources we assume that two major types exist: Smart Poles
and RAN Towers. We consider RAN Towers to be any type of LTE or 5G mobile

51

5. Methodology

base station, which in our smart city scenario would additionally be equipped with
edge computing capability. The Smart Poles we consider to be a functionally similar,
though comparatively smaller device, much like the Huawei PoleStar[Hua], which is also
equipped with computational capability, albeit less of it, and providing a connection to
the wider network. We assume that these Smart Poles would be spread out throughout
the city like sensor nodes in the Array of Things[CBSG17], a real world edge computing
and smart city sensing deployment. In terms of latency and bandwidth we assume
latency to Smart Pole devices to be in the same ballpark as WiFi connections, while
RAN Tower connections are in line with what one would typically expect of LTE or
5G connections respectively. In keeping with our methodology of informing simulation
values with real world measurements where possible, we used the research conducted
by Braud et al.[BKSH19] and Nikravesh et al.[NCK+14] on real world LTE network
characteristics to inform our parametrization of these connections. We also assume that
truly low latency connections for client devices are only provided by physically near
access points such as the aforementioned Smart Pole devices, as research on wireless
network technology indicates that there is a fundamental tradeoff between bandwidth,
latency, and reliability[SMPA14].

Finally, Figure 5.2 shows a simplified visualization of how one of our smart city topologies
is structured. Note that latency cannot be read from this visualization and that distances
between nodes on the visualization do not correspond to network distances whatsoever.
The wider internet, presented as a red circle, is how communication to areas not deemed
within the city, or general web-services such as container registries would be routed.
Also note that we only represent logical network links and connections in our topologies,
which means that while in truth there might be tens of network hops between an edge
node and the wider internet (e.g. through the nearest backbone uplink), for simulation
performance reasons we do not include these in our model.

5.3 Using Empirical Data in Simulations

As already described FaaS-Sim[TP21a], the serverless simulator we use, is a trace-driven
simulator[RD21], meaning that it relies on measurements of real world data to make its
results more representative. The types of empirical data that can be used to improve
simulation accuracy are very broad, but are typically limited to those that actually
affect the metrics one is interested in measuring. Usually this includes the memory
consumption, CPU utilization, network utilization and storage size of different software
components present in the system. It can, however, also include more specific metrics
such as deployment, staring, stopping and teardown times of container in a Kubernetes
cluster[RRD21b].

Similar to how Raith et al. extended FaaS-Sim to include traces of real function executions
to better represent FETs [RRD21a], we perform experiments to inform how load balancers
are modelled within the system. Since in current serverless frameworks ingress-points,
which is equivalent to a load balancer in our case, are considered as just another service,

52

5.3. Using Empirical Data in Simulations

Figure 5.2: Simplified network topology of a single smart city. Centered around the
internet backbone uplink (red), 1) shows edge devices co-located with client devices. 2)
shows a small cloud data center or cloudlet. Note the lack of clients directly connected
to the cloudlet.

53

5. Methodology

they compete with function replicas for resources. As a result the resource usage of
typical application level load balancers is an important metric for us to capture and
integrate into the serverless simulator.

For our empirical evaluations we use a real Kubernetes cluster that features a variety
of heterogeneous nodes. Since we deal with edge computing applications, and resource
heterogeneity is a core challenge of edge computing[SCZ+16], having a range of different
nodes to evaluate performance on is critical to account for variance incurred by the use
of different types of devices. We also make use of and extend galileo[RRP21][RRPD19],
a framework built for distributed load testing, as it allows us to easily define request
patterns and loads that then get executed. By using this we can go beyond measurements
of baseline resource consumption and examine the relationship between the request load
of a service and its performance and resource consumption profile. To gather performance
data of individual containers in a Kubernetes cluster, galileo relies on and integrates with
telemd[Edg21]. Telemd is a daemon application that can gather a number of system
metrics at specified intervals, including CPU utilization, memory consumption, disk I/O,
and network transfers.

5.4 Captured Metrics
There is a significant number of metrics that could be captured using such a simulation.
With FaaS-Sim we capture traces of the requests being sent, and major system events.
The major system events are the addition or removal of deployments, as well as all scaling
and scheduling decisions with respect to functions and load balancers. For requests our
traces provide the following information: TRT, FET, waiting time, request client, load
balancer instance, function instance, and the network times between client, load balancer
and function instance. The waiting time refers to the elapsed between a request having
been received by a function instance, and the request being processed. Waiting times
occur if a node receives requests faster than it can process them. In terms of resource
usage, the resources reserved by the simulated Kubernetes pods, which correspond to the
requirements defined in Kubernetes deployment manifests, are also recorded. Note that
this does not necessarily correspond to actual resource usage. Because these reserved
resource metrics are used for Kubernetes’ scheduling decisions, we believe they are still
worth being captured.

In keeping with the set of potential metrics outlined by Aslanpour, Gill and Toosi[AGT20],
we pay particular attention to response times, potential SLA levels and oscillation miti-
gation. We also introduce more qualitative metrics, related to our particular evaluation
scenario, such as the share of requests being routed outside of the city or network region
they originate in.

54

CHAPTER 6
Evaluation

This chapter describes the experiments we conduct as well as their results. First, we
described the initial evaluation we performed which significantly informed our exact
approach. It provides first insights into the performance improvement one can expect,
and also helps uncover potentially unexpected system behaviour. After this initial set
of experiments we continue our evaluation with the implementation and parameter
configuration of the load balancers. From there we continue with experiments related to
the effect and cost load balancers have. As we described, our serverless function simulator
uses real-world values whenever possible to inform its simulation. To this end we test the
resources used by a single load balancer instance under various conditions on different
kinds of hardware. Because the overall resource cost load balancers incur is a function
of the resource consumption of each instance and the number of instances deployed, we
next evaluate load balancer scale. Lastly we evaluate our osmotic scaling and scheduling
approach. We start this evaluation by testing how our osmotic scaling behaves under more
realistic system conditions, as well as how it affects the serverless system. Next, we test
the effect of different pressure thresholds on system performance. Combined with previous
experiments this informs how scaling parameters result in different levels of performance
and load balancer resource consumption. The last experiment conducted tests how our
osmotic approach handles dynamically changing system conditions, exploring how the
scaler and scheduler behave when requests change their origin within the system over
time.

6.1 Initial Assessment

This initial assessment is the first experiment we performed in the course of this work.
We performed it very early on to get an initial impression on whether our diagnosis of the
problem, namely that load balancers are making ineffective decisions and are themselves
located too far from clients, is accurate. We also hoped to get a first impression of how

55

6. Evaluation

large of a performance uplift might be achievable, and thus whether the performance
improvement would justify the additional complexity our approach adds to the system.

The overarching question we want to answer with these experiments is whether more
complex load balancing, such as least response time load balancing, and moving the load
balancers closer to the clients leads to overall performance improvements. We also want
to understand what impact on performance we could expect from implementing only one
of the two proposed improvements.

Setup

To answer these questions we test four load balancer configurations in three different
scenarios.

Load Balancer Setup To assess the role of the load balancer implementation, we
compare typical round robin load balancing, as it is found in current serverless frame-
works such as OpenFaaS[Auta] and their underlying container orchestration service[AF],
and least response time load balancing to represent more sophisticated load balancing
decisions.

Since this experiment is performed before the others we rely on an initial parametrization
and implementation, which differs slightly from the one we ultimately propose. The
weight range is [1;10], with a scaling factor of 1, and a weight update interval of 15
seconds. Furthermore we rely on a different implementation of weighted round robin[Lin],
which is functionally very similar but works through upstreams iteratively by their weight,
instead of the more intermixed upstream selection we describe in our approach. In this
implementation, there is also a notion of current weights[Lin], and they are reset every
time the weights are updated.

Load balancer scaling and placement For the load balancer location we evaluate
the two most extreme scenarios: A single centralized load balancing instance which serves
all client requests, and a maximally distributed scenario in which every single node in
the system also hosts a load balancer instance.

This gives us four load balancer configurations:

• Round Robin centralized

• Round Robin on all nodes

• Least Response Time centralized

• Least response time on all nodes

Each of these four configurations is evaluated in three different scenarios, which represent
clusters of different size and network topology. These topologies are oriented on a smart
city/urban sensing type application.

56

6.1. Initial Assessment

Chicago New York Seattle
Chicago - 31ms 55ms

New York 31ms - 75ms
Seatte 55ms 75ms -

Table 6.1: Network latencies between cities in the initial nation evaluation scenario.
Latencies are taken from Wonder Network’s global ping statistics[Won]

New York London Sydney
New York - 86ms 204ms

London 86ms - 253ms
Sydney 204ms 253ms -

Table 6.2: Network latencies between cities in the initial global evaluation scenario.
Latencies are taken from Wonder Network’s global ping statistics[Won]

• City

• Nation

• Global

City In this scenario the cluster is set to a size of 100 nodes, which are assumed to all
be located in the same city, meaning network latencies between nodes are small. The city
features a data center which consists of about 50% of the total node count, and features
nodes with high compute capability, partially with GPU acceleration. The rest of the
nodes are assumed to be distributed across the city closer to clients, and consist to two
thirds of medium performance nodes, and one third low performance nodes.

Nation This scenario features a larger cluster that spans over three cities. Each of
those cities features the same relative node distribution as the previous scenario. We
chose the USA as our example, as using a small country such as Austria would not
provide significant enough latency differences between cities. Our scenario features the
cities of Chicago with 100 nodes, Seattle with 100 nodes, and New York with 150 nodes.
While nodes within the same city feature extremely low network latency, nodes across
two cities have more significant network distances between them.

The network latencies between the cities are taken from Wonder Network[Won], and can
be seen in Table 6.1

Global The global scenario once again features three cities, but they are distributed
not just within a single country, but across the globe. The cities are New York with 100
nodes, London with 100 nodes, and Sydney with 150 nodes. Network latencies can be
seen in Table 6.2.

57

6. Evaluation

mean
Load Balancer Type TRT FET Net CL-LB Net LB-FX

City Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 13.3% 0.0% 35.4% 30.3%
Least Response Time centralized 32.7% 47.9% 15.8% 24.6%
Least Response Time on all nodes 81.3% 109.3% 51.6% 61.9%

Nation Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 95.7% -0.4% 1028.2% 34.8%
Least Response Time centralized 18.1% 27.8% 3.0% 34.7%
Least Response Time on all nodes 312.0% 86.9% 1065.6% 257.5%

Global Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 82.8% -0.7% 2910.6% -5.3%
Least Response Time centralized 21.0% 18.4% 0.0% 60.8%
Least Response Time on all nodes 606.9% 77.3% 2997.8% 428.2%

Table 6.3: Percentage improvement in mean values of a single experimental run of the
initial evaluation in different scenarios. Displayed mean values are in order: TRT, FET,
network time between client and load balancer, and network time between load balancer
and function replica

Clients Each scenarios features a client ratio of 0.6, meaning there are 60% as many
clients as there are compute nodes. Clients are assumed to be on the edge of the network
and thus closest to the medium and small sized compute nodes.

Functions and request load We use our basic three function deployments for these
experiments. To isolate the system behaviour on the effect of load balancer implementa-
tion, scale and placement we disabled the normal function scaling behaviour. Instead
the system immediately sets a fixed scale for each function such that on each node in
the entire cluster a function replica is started. We consider the functions to be of equal
importance, thus each function starts up n

3 replicas where n is the total number of nodes.
Lastly all experiments simulate a timeframe of 1000 seconds, and feature a request load
of 75rps.

Results

Since the experiments feature a significant degree of random sampling in their simulation as
function location, FET sampling and client positions are random, we ran each experiment
10 times. The results presented here are those of a single experimental run, since no
runs showed significantly different results. Table 6.3 shows the percentage improvement
different load balancer types and scales give when compared to the default centralized

58

6.1. Initial Assessment

Figure 6.1: Kernel Density Estimate of a single experiment run. Shown data can be
interpreted as probability density functions. Data is visualized for TRT, FET and the
time incurred through network transfers.

59

6. Evaluation

50th percentile (median)
Load Balancer Type TRT FET Net CL-LB Net LB-FX

City Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 26.5% 0.0% 34.0% 25.1%
Least Response Time centralized 34.8% 183.0% 5.0% 13.5%
Least Response Time on all nodes 93.3% 185.6% 37.0% 37.7%

Nation Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 109.0% -7.9% 1674.1% 76.2%
Least Response Time centralized 23.5% 16.1% 4.3% 118.2%
Least Response Time on all nodes 350.4% 22.9% 1674.1% 1316.4%

Global Scale Evaluation
Round Robin centralized 0.0% 0.0% 0.0% 0.0%
Round Robin on all nodes 27.6% 0.0% 5338.8% 95.0%
Least Response Time centralized 9.8% 0.6% 0.0% 1498.5%
Least Response Time on all nodes 1653.3% 25.9% 5338.8% 4541.5%

Table 6.4: 50th percentile (i.e. median) values of a single experimental run of the initial
evaluation in different scenarios. Displayed values are in order: TRT, FET, network time
between client and load balancer, and network time between load balancer and function
replica

round robin. Here the mean values of the TRT, FET, and network times between
client and load balancer, and load balancer and function replica are shown. Both a
more sophisticated approach to load balancing and moving load balancer instances
closer to the clients shows significant performance improvements, but across the board
only the combination of these two improvements (i.e. least response time on all nodes)
gives the most significant performance uplift. We can also see that least response time
load balancing not only improves network times between the load balancer and the
function replica, but also decreases FET. In addition we observe that the performance
improvement given through distributed least response time load balancing becomes larger
in geographically more distributed scenarios.

Table 6.4 shows the difference between the median of these metrics. Here the performance
uplift achieved by least response time load balancing on all nodes become even larger, up
to a 16,5x improvement in TRT in the global scenario.

For even more detailed analyses figure 6.1 shows the probability density function estimated
of the same experimental run. Note that E2E RT in this figure means TRT. Here the
overall trend observed in the tables 6.3 and 6.4 carries through, showing that least
response time on all nodes not only improves average performance, but pushes the whole
distribution towards faster FET and lower network times.

60

6.2. Load Balancer Implementation and Parametrization

6.2 Load Balancer Implementation and Parametrization
Next, we explore the effect the load balancer implementation and parametrization have.
Because the edge computing environment features different conditions than the cloud,
we evaluate whether or not different implementations of weighted round robin affect the
system differently. In addition we evaluate the parameter configuration for our load
balancing approach, testing if there are certain configurations that perform better than
others and trying to see if there are patterns in the parameters’ influence on performance.

6.2.1 Least Response Time Load Balancing Implementation

With these experiments the goal is to better understand how the implementation details
of the load balancing solution affect overall performance. The previously performed initial
evaluation revealed some potentially counter-intuitive behaviour, so to better inform our
proposed implementation these experiments evaluate different implementation patterns.

An implementation of least response time load balancing is split in two parts: The
gathering of response time data, and the conversion of that data into load balancing
decisions. As we discussed in our approach, we convert the response time data into weights,
which are used as inputs to a weighted round robin load balancing implementation that
ultimately makes load balancing decisions.

Setup

With these experiments our focus lies on these implementations of weighted round robin.
In particular we evaluate four different implementations of weighted round robin:

• Random: this implementation uses a simple weighted random distribution. It is
used as a baseline to compare other implementations to

• Classic: this represents the implementation used in the initial evaluation experiment[Lin].
It is deterministic and works through upstreams starting with the ones with the
highest weight.

• Adapted Classic: an adaptation from the classic implementation, which allows
for weights to be updated on the fly without the algorithm having to be restarted.

• Smooth: the implementation described in our approach and also used by nginx[Sys21].
It too is deterministic but alternates between upstreams with high and low weights
in load balancing decisions.

We simulate a least response time load balancer with each of these implementations
with 500 upstreams, which are simplified to sample response times from a lognormal
distribution, over a timeframe of 500 seconds with a request rate of 5rps. Weights are
updated every 15 seconds, except for the smooth weighted round robin implementation
which is updated every second, since this is a core benefit afforded by the implementation

61

6. Evaluation

Figure 6.2: A graph showing how quickly each upstream receives at least one request with
different weighted round robin implementations for least response time load balancing

we want to test explicitly. The weight range for each implementation is [0;10] and response
times get mapped linearly, i.e. using a scaling factor of 1.

Results

In our results we can see significant differences between the implementations. First, as
can be seen in Figure 6.2, there are significant differences on how fast, or whether at all,
every node in the system receives at least one request. Since least response time load
balancing relies on requests to evaluate the performance of an upstream, the quality of
the solution is limited by the amount of information available about the upstreams. We
can see that the classic implementation never sends requests to more than a small subset
of upstreams, which is due to its internal state being reset on weight updates. While the
random sampling eventually converges toward covering all upstreams, both the smooth
and adapted classic implementation do so much more quickly. The adapted classic is
even a slight bit faster than the smooth implementation, but from our point of view we
consider this difference to be negligible.

We also observe drastically different behaviour of the average response times between
the different implementations. Figure 6.3 shows that Classic never reaches the level of
performance of the other implementations, most likely due to it never discovering the
faster subset of upstreams. While we can also observe that for both the smooth and
the random reference implementation average response times stabilize eventually, the
adapted classic shows an alternating pattern of fast and slow response time averages.

62

6.2. Load Balancer Implementation and Parametrization

Figure 6.3: Graph showing average response times converging for different weighted
round robin implementations with least response time load balancing

This is due to the implementation, which works through the highest weighted upstreams
first, before including the next highest weighted ones and so on. Since the order in which
this happens is deterministic this oscillating performance pattern forms. The classic
implementation shows the same behaviour, but due to it only ever sending requests
to a smaller set of upstreams the pattern isn’t as easily visible. Note that as we are
considering response time averages low values on the y-axis in Figure 6.3 are desirable.

6.2.2 Load Balancer Parametrization

With this range of experiments we set out to better understand the effects different
parameters have on a load balancers performance. We then continue to use this infor-
mation to make an informed decision for the load balancer parameters in subsequent
experiments.

Specifically, we want to understand the relationship between the following load balancer
parameters:

1. Scaling Factor: the factor which determines how linearly observed node perfor-
mance is mapped to weights

2. Weight Range: the size of the weight range the load balancer can use

3. Current Weight Reset: whether or not it makes sense to reset the current
weights of the load balancers when the weights are changed

63

6. Evaluation

Setup

Since previous experiments have shown that the impact parameter changes can have
are at times hard to predict, we decided to perform this evaluation using a grid-search,
meaning that we rely on trying a large number of permutations to find patterns in their
behaviour. To test these settings we do not rely on the full FaaS-Sim environment, but
rather perform isolated tests with a single load balancer and less sophisticated function
and network simulations.

Since we are trying to evaluate how well load balancers choose upstreams, the upstreams
are the comparatively most accurately simulated component. The performance model of
our simulated upstreams is closely informed by our notion of a node’s performance level
and capacity, which we outlined in our load balancing approach. Thus, each simulated
upstream has a set level of performance, which determines how long it takes for a request
to be processed. Since our aim is to keep this simulation simple, we consider the response
time determined by the upstream to represent both the network and the FET that would
be observed in a real serverless system. Each upstream samples its response times from
a set of two lognormal distribution, one of which represents the FET, while the other
represents the network time. To simulate the effect of high load, each upstream also has a
set capacity, measured in requests per second. If an upstream receives more requests per
second than is has capacity for, FETs start to degrade linearly, meaning that response
times get longer in proportion to how overloaded the upstream is.

To represent different system conditions we introduce performance spread as an input
variable to these experiments that determines the how heterogeneous the performance
of the simulated upstreams is. The assumed system scenario is closely aligned with the
one of our initial evaluation. Relative to the load balancer a node can fall into one of
four location categories, which determine the network distance from the load balancer:
local, city, nation, and global. Like it would be in a real scenario, the probabilities of
nodes falling into each of the categories gets progressively higher, meaning that a very
low number of nodes will be local, while the majority will be global and thus rather
far away form a network perspective. Apart from their location, nodes can fall into
three performance categories, which are small, medium, and large. This performance
category determines both the typical FET of that node and its capacity. Small and
medium nodes are more likely to be located close to the load balancer, while large
nodes are likely to be farther away in the network. This is done to represent a typical
edge computing scenario where relatively weaker compute is available locally, with a
large amount available farther away, e.g. in the cloud. The performance spread then
determines how big the differences between the different categories nodes can fall into
are. A performance spread of 15 for example would correspond to as scenario where
FETs range from 10ms to 150ms, capacities from 5rps to 100rps, and network times
from 5ms to 250ms. A higher performance spread would indicate higher performance
differences, while a lower one would indicate lower differences, with a performance spread
of 1 indicating complete homogeneity.

64

6.2. Load Balancer Implementation and Parametrization

Figure 6.4: Mean response time over various levels of performance spread and scaling
factors

To make an informed decision on load balancer parametrization we performed three
experiments.

Scaling Factor and Performance Spread

In this evaluation we examine the effect the scaling factor has on performance in a variety
of different scenarios. To this end we tested scaling factors from 0,1 to 10. Scenarios
included performance spreads from 1 to 46, and all scenarios were repeated three times
with request loads of 50rps, 250rps, and 1000rps. The weight range upstreams were
mapped onto in this experiment is [1;10]. The experiment covers a simulated time frame
of 1000 seconds.

The results of this experiment can be seen in Figure 6.4. Aside from showing lower
performance for higher performance spreads, which is entirely to be expected since a
larger performance spread means nodes are farther away and have higher FETs, there
are no significant differences between the scaling factors.

Scaling Factor and Weight Range

Analogously, we also evaluated the relationship between the scaling factor and weight
range using a grid-search type experiment. We once again tested scaling factors in the
range [0,1;10] with request loads of 50rps, 250rps, and 1000rps. For the weight range
the minimum weight was always set to 1, and the max weight between 1 and 100. The
performance spread was fixed over all experiments at 15, and the simulation is again run
for 1000 seconds.

The results of this evaluation can be seen in Figure 6.5. Results show a clear trend
towards higher weight ranges and scaling factors that are close to or slightly above 1,
which would correspond to linear scaling. We can also observe that higher request loads
lead to worse performance on average, as one would expect, and also seem to shrink the
set of configurations that provide good performance.

65

6. Evaluation

Figure 6.5: Mean response time over different weight ranges and scaling factors

Resetting Weights on Updates and Weight Update Intervals

Our implementation of weighted round robin described earlier has a set of two weights
for each upstream: the weight, and the current weight. Once the weight of an upstream
changes, we can choose to also reset the current weight or leave it as is. Since intuitively
there was no clear answer as to which choice is better, and the testing infrastructure
around this was already in place, we chose to perform an experiment to measure the
impact of this choice. Apart from whether or not weights should be reset on updates,
one also needs to decide at which interval weight updates should occur. To evaluate this
choice we performed these experiments using a variety of different update intervals. Since
we expected that resetting weights will have an outsized effect for scenarios with a low
request rate, we performed experiments over a wider range of request loads than before,
and also tested over different weight ranges. Request load ranges from 2rps to 1000rps,
weight update frequency from 5 seconds to 200 seconds, and maximum weight once again
from 1 to 100. Lastly, all experiments simulated a timeframe of 1000 seconds.

Figure 6.6 shows the difference between the mean values of resetting or not resetting
current weights. In the results there is no clear indication resetting or not resetting is
clearly superior. There is a slight trend for not resetting performing better with low
request rates, and resetting leading to better results in very high rps scenarios.

Figure 6.7 shows a trend towards longer intervals for weight updates performing better,
irrespective of the weight range. Figure 6.8, which shows the 95th percentile of the same
data generally indicates the same tendency, although not for all request levels. While at
low request rates long update intervals perform better, they perform worse than shorter
update intervals for high request rates. Lastly we advise that care should be taken when
comparing these visualizations, as the scale sometimes differs. This is always indicated
on the side of the visualization, and was necessary to better show relative differences
within the same experiment run.

66

6.2. Load Balancer Implementation and Parametrization

Figure 6.6: Difference between resetting and not resetting weights on update. Positive
values indicate not resetting performs better, while negative values indicate the opposite.

67

6. Evaluation

Figure 6.7: Mean response times over different weight ranges and weight update times.
Current weights are reset on update.

68

6.2. Load Balancer Implementation and Parametrization

Figure 6.8: 95th percentile of response times over different weight ranges and update
times. Current weights are reset on update.

69

6. Evaluation

6.3 Resource Usage and Load Balancer Scale

After load balancer implementation and parametrization have been evaluated, we now
move on to load balancer resource usage and scale. The initial evaluation already
shows that having distributed load balancers improves system performance. With larger
numbers of load balancers also come increased resource costs, however. To find out
the exact resource costs we measure the system resource usage of our load balancing
approach on different physical hardware. The second factor influencing the overall cost of
distributed load balancers is the number of load balancers deployed. Intuitively a greater
number of load balancers will result in better overall performance, as load balancers
will then have a better chance at being close to clients and function replicas. In the
second evaluation we explore the relationship between load balancer scale and system
performance. Together these two evaluations give us the insight needed to make an
informed trade-off between total resource consumption and system performance.

6.3.1 Load Balancer Resource Usage

Resource Evaluation Setup

The goal of these experiments is to understand the resource consumption one can expect
from a load balancer in the context of serverless edge computing. Using the traces of these
experiments we implement the load balancers within the serverless simulator as close to
reality as possible, thus making sure the simulation results are more representative.

As described we use a Kubernetes cluster with a number of different nodes to make
real-life measurements of load balancer’s performance characteristics, requests are sent
via galileo[RRP21][RRPD19], and the system metrics are measured via telemd[Edg21].
Since the load balancer is containerized, just like it would be in a serverless framework,
telemd relies on the metrics provided by Kubernetes to measure resource consump-
tion. Specifically, telemd reports the values provided by the following files at a set
interval[Edg21].

/sys/fs/cgroup/cpuacct/kubepods/besteffort/pod<pod ID>/<container
ID>/cpuacct.usage

/sys/fs/cgroup/memory/kubepods/besteffort/pod<pod ID>/<container
ID>/memory.stat

Network characteristics are not taken into account with these measurements, as they
are highly application specific and experimental evaluation is thus neither fruitful nor
necessary.

Since scaling and scheduling are important aspects of our approach, we also consider
the image size of the load balancer to be relevant. Because Docker Hub is one of the
largest hosting platforms for application container images, we use the information it
provides[DT] to determine the image size for different platforms.

70

6.3. Resource Usage and Load Balancer Scale

Node Processor
Architecture

logical CPU
core count

RAM
(GiB) Model Name

AMD x86/amd64 8 32 AMD Ryzen Embedded V1605B
Intel x86/amd64 8 16 Intel Xeon E3-1230 v6
Jetson aarch64 4 4 NVIDIA Jetson Nano
RockPi aarch64 6 4 RockPi 4B
RPi ARMv7 4 1 Raspberry Pi 4Model B Rev 1.1

Table 6.5: Nodes present in the real Kubernetes cluster used for resource consumption
evaluation

To cover a wide range of possible deployment scenarios the nodes we use for this experiment
cover hardware from powerful desktop processors as they are used in large scale data
centers to small scale reduced instruction set processors as one finds in mobile devices.

Table 6.5 shows the different nodes that are present in the cluster and which get evaluated.
Aside from covering typical compute resources we also include a number of ARM devices,
one with special purpose compute acceleration, to show how mobile edge computing
devices or devices built for purposes such as image processing would perform.

To evaluate load balancer’s resource consumption we need to select a real load balancer
implementation that serves as a stand-in for generic load balancers. For this purpose we
selected traefik proxy[Tra], a level 7 load balancer and application proxy. We considered
it a fitting example of a real world load balancer since it is available on all the different
platforms we want to test, supports the kind of complex load balancing required of our
proposed approach. It is also open source, which allowed us to extend it with least
response time load balancing capabilities like we proposed, which further moves these
experiments closer to real-world conditions. This modified version[TP21b] is also open
source and is already functional, although it does not feature the integrations that would
allow its use in a serverless framework.

Since in the experimental setup requires actual requests being sent we also need an
upstream the load balancer can then forward the requests it receives to. For this
experiment the upstream is a separate application that does nothing but respond to
the requests with a given payload. Its only distinguishing feature is that we can choose
from a random distribution that determines how long the application waits before
responding, thus simulating the FET usually experienced within a serverless system.
For the general evaluation of different devices we simulated a response time/FET of 20
milliseconds. We built this application specifically for this purpose, and also made it
publicly available[Pal21] so that it can be used by others. We oriented our payload on a
hypothetical edge intelligence application, where a client sends an image for it to then
be classified. Our payload is thus a compressed JPEG image with a file size of 250KiB,
while the response is a simple JSON with negligible size.

Lastly for the request load we decided to test a range of different loads. To do this in a

71

6. Evaluation

Node CPU utilization RAM Usage Docker Image Size
AMD 4,3% 57 MiB 28.46 MB
Intel 6,5% 16 MiB 28.46 MB
Jetson Nano 12,5% 16 MiB 26.18 MB
RockPi 13% 59 MiB 26.18 MB
RPi 34% 12 MiB 26.75 MB

Table 6.6: Results of the load balancer resource evaluation at 250 requests per second

simple and presentable way we send requests along a pattern, which steadily increases the
amount of requests sent from 0 to 250 requests per second over a period of 300 seconds,
then continuously sending 250 requests per second for 60 more seconds before stopping
completely.

Apart from the evaluation of different types of devices we performed another test with
the same request pattern, but one time with the previously used response time of 20ms
and once again with a response time of 250ms to see whether the response time of the
upstreams makes a difference to the load balancer resource consumption.

Observed Resource Consumption

Our results show that the resource consumption of load balancers of this class is, generally
speaking, quite moderate. At a rate of 250 requests per seconds, a substantial load,
CPU utilization ranges from 4,3% to 34%, while memory consumption is between 12 and
59MiB. The results at 250 requests per second can be seen in Table 6.6.

The relationship between the resource consumption and request load can be seen in
Figure 6.9. From these graphs we can see that CPU utilization rises almost linearly
with the number of concurrent requests, while the RAM consumption does not show
a comparable pattern. In fact, the memory consumption shows significant variance
between the different nodes with some nodes showing more than quadruple the system
memory usage of others. There is also no obvious explanatory pattern to be observed, as
these wide ranges of memory consumption also exist within nodes of the same processor
architecture.

The response time of the upstream services also appears to influence resource utilization as
can be seen in Figure 6.10. While the CPU utilization seems to be consistent throughout
the experiments with 20ms and 250ms response time, the memory consumption is higher
for the case of 250ms.

Lastly, the size of the different Docker images, which can be seen in Table 6.6, does differ
across processor architectures, but not to a significant degree. The difference between the
largest and the smallest images is 2,28Mib, or 8% to 8,5%, depending on which image is
considered the default basis for the calculation.

72

6.3. Resource Usage and Load Balancer Scale

Figure 6.9: Resource consumption of the traefik[Tra] load balancer on different devices
with a response time of 20ms and request payload size of 250KiB

Figure 6.10: Resource consumption of the traefik[Tra] load balancer with different
response times on and a 250KiB request payload

73

6. Evaluation

6.3.2 Performance Impact of Load Balancer Scale

With this experiment we evaluate the effect different load balancer scales have on the
system. As we already described the quality and thus resulting end user performance of
load balancer decisions only stabilizes after a while, since the load balancer first has to
evaluate the available upstreams by sending requests to them. Because of this, having
larger numbers of load balancers present in the system might lead to delayed convergence,
and thus suboptimal performance. Having too few load balancers, on the other hand,
might lead to lost performance through overly long routes.

To find out how different scales affect the overall system, we test the system performance
with fixed percentages of nodes hosting load balancers. We test a ranges between 5%
and 100% of nodes hosting load balancers, which in our scenarios across three cities and
400 nodes means between 20 and 400 load balancer instances. Scheduling load balancer
replicas in these scenarios is still left to the Kubernetes scheduler, which means that the
location of the node in the topology is not taken into account.

When testing ratios where less than 5% of nodes hosted load balancers, we ran into
frequent occurrences of the simulation not terminating within a feasible time window.
Upon investigation it turned out that if a load balancer was the only one in the city,
or otherwise handled a lot of traffic, but happened to be placed onto a node with very
limited bandwidth, the network simulation would take an exceedingly long time, because
the bandwidth bottleneck resulted in each request only receiving a minuscule amount
of bandwidth. Requests that did go through took so long, that in real-life it would be
considered a failed request by timeout. We take this as an indication of the inherent
problematic of current replica scheduling methods in edge computing, and that the usage
of current techniques would simply require an outsized number of load balancers to
mitigate the risk of such dysfunctional configurations.

The topologies tested are structurally similar to those of the initial evaluation. Our two
testing scenarios are three cities distributed across the United States, and three cities
distributed across the globe. The cities are identical to the ones from the initial evaluation,
and feature identical network latencies between them. The difference between these and
the ones of the initial evaluation is that these feature a different internal topology, which
is more closely related to edge intelligence[RD19] and edge computing in general. The
cities in this evaluation have their compute capabilities, i.e. the cluster nodes, either
in the city’s local cloud data center, on a smart pole, or next to a cellular base station.
Clients are attached either to smart poles or directly to cellular base stations. Cellular
base stations themselves have a high-speed, high-bandwidth uplink to the wider network
and feature a lower bandwidth and higher latency wireless connection to the clients.
These wireless properties depend on whether the cellular tower is LTE or 5G based, as
both types are present in our scenario and their network properties are based on real
world data[BKSH19]. Not all cellular towers have directly attached compute capabilities.
In addition, one of the three cities does not feature a data center.

We simulate the cluster over the course of 2000 seconds, once with 25 rps, once with

74

6.3. Resource Usage and Load Balancer Scale

mean
Nodes with
Load Balancers

Global
75rps

Global
25rps

Nation
75rps

Nation
25rps

5% 210ms 132ms 220ms 141ms
10% 149ms 128ms 158ms 133ms
20% 134ms 127ms 147ms 128ms
30% 132ms 124ms 141ms 127ms
40% 130ms 126ms 135ms 126ms
50% 128ms 125ms 134ms 125ms
60% 129ms 126ms 133ms 126ms
70% 129ms 125ms 128ms 126ms
80% 128ms 128ms 131ms 125ms
90% 129ms 125ms 129ms 125ms
100% 127ms 125ms 129ms 126ms

Table 6.7: Mean TRT values of different load balancer scales, once they have converged
to a stable value

75rps.

Our results show consistent patterns across both topologies, but differ across the request
rate. While in scenarios with a request rate of 75 rps higher numbers of load balancers
lead to improved mean response time, in scenarios with 25 rps lower numbers perform
better. Figures 6.11 and 6.12 show explanations for this behaviour. With lower numbers
of load balancers the request rate per load balancer is higher, and thus leads to faster
convergence towards a stable and efficient response time.

Table 6.7 shows the mean response times of different load balancer scales once response
times have stabilized. Once only stabilized values are considered higher numbers of load
balancers lead to improved performance. Figures 6.11 and 6.12 show this too, where lower
numbers of load balancers stabilize earlier, but at higher TRT values. From Table 6.7
we also see that between the different load balancer scales, differences in response time
become negligible at a certain point, with load balancers on 50% of nodes converging to
almost the same mean response time as having load balancers on 100% of nodes.

Lastly, we observe that the absolute difference between the time when the system performs
best, and when the system performs worst is dependent on topology make up. The
globally distributed scenario has the potential to perform worse, as there is a greater
likelihood of poor request routing decisions resulting in longer network distances.

The results of this experiment are closely related to the pressure threshold for load
balancer scaling in our approach. Subsequent evaluations explore how different thresholds
result in different load balancer scales and thus different system performance with our
osmotic scaling.

75

6. Evaluation

Figure 6.11: TRTs of different load balancer scales in the global scenario. For legibility a
10 second moving average is applied.

76

6.3. Resource Usage and Load Balancer Scale

Figure 6.12: TRTs of different load balancer scales in the nation scenario. For legibility a
10 second moving average is applied.

77

6. Evaluation

6.4 Osmotic Scaling and Scheduling

Finally, we evaluate our osmotic scaling and scheduling approach. Our evaluations pursue
a number of goals. First, we evaluate how our scaling and scheduling approach affects
the serverless system, both in terms of performance and in regard to its key metrics. Of
particular interest is how our approach affects the scaling decisions of functions when
simulating the default scaling behaviour of serverless frameworks like OpenFaaS[Auta].
Second, we explore the relationship between the osmotic pressure threshold and the
system performance. The threshold affects the load balancer scale, which in turn affects
the system performance as previous evaluations showed. This makes it a key parameter
to determine both the performance the system provides and the amount of resources it
consumes to run its load balancers. Third and last, we evaluate the behaviour of our
approach under dynamic system conditions, which are a key facet of edge computing. In
particular we examine how the system behaves when the location in the network requests
originate from changes over time.

6.4.1 Performance of Osmotic Scaling and Load Balancing

With this experiment we want to provide baseline performance data for the osmotic
scaling and scheduling method we propose. The goal is to show how our proposed solution
operates without fine-tuning of parameters, or any other conditions. The experiment
should also show how the osmotic scaling and scheduling of load balancers affects other
parts of the serverless system, most notably the scaling decisions of regular functions.

Setup

Our experiment setup for these evaluations is once again based on the serverless edge
computing simulator we also used for the initial evaluations. To stay consistent we used
the same network topologies from the previous experiment that investigated the impact
of load balancer scale on the system, meaning we assume clients to typically be connected
via a mobile network, and compute resources to be distributed on the edge. The three
topologies we tested are once again one scenario with a single city, one with three cities
on the same continent, and one with three cities distributed across the globe. The cities
chosen, along with the network latencies between them are the same as in the initial
evaluation namely Chicago, New York, and Seattle for the nation-distibuted and New
York, London, and Sydney for the globally-distributed experiment. The network latencies
between them can be seen in tables 6.1 and 6.2 respectively.

To stay consistent with the other experiments, and partially due to performance limita-
tions, we once again tested each topology scenario with 25rps, 50rps, and 75rps. As for
the osmotic scaling and scheduling component, we set the pressure threshold for scaling
up to 0.025 and the downscaling threshold to 0.03, which can roughly be read as the
system requiring an expected TRT improvement of 2.5% and 3% to add or remove a load
balancer instance on a given node. Bear in mind that this idea of required estimated

78

6.4. Osmotic Scaling and Scheduling

Figure 6.13: Total scale of all functions for each load balancer scaling/schedulilng method

performance improvement is a mental model to get a more intuitive understanding for
the parameters, and is not equivalent to the actual implementation.

The last way in which the experiment setup differs from the previous experiments is
that there is a function scheduling component active. While the other experiments
purposefully set a fixed scale for each of the serverless functions in the system to avoid
it as a confounding variable, these experiments use a dynamic function scaler to show
how this type of load balancer scaling and scheduling affects the overall system. In
concrete terms, we set the simulator up to use a set rate of average requests per function
replica. The reasoning behind this choice is that OpenFaaS uses the same methodology
as a default configuration, which we use as a stand-in example of serverless computing
frameworks in general. For the osmotic scaling and scheduling parameters we used 0.03
as a scale-up threshold and 0.05 as a scale-down threshold.

Results

Table 6.8 shows the results of the experiment. In terms of mean TRT performance the
results of our proposed osmotic scaling and scheduling method are similar to those of the
fixed scaling LRT reference setup, albeit between 1% and 45% worse with most scenarios
only between 2% and 8% worse. Differences between least response time static, and
osmotic scaling are less pronounced in the median and 90th percentile TRTs as can also
be seen in Table 6.8. The statically scaled round robin load balancing is, as one would
expect, significantly worse. It does, however, give a good impression of the performance
improvements possible based on our approach in a more complex and realistic deployment

79

6. Evaluation

Experiment LB
replicas

Converged
Total

Function
Replicas

Cross-City
Request

Share

Mean
TRT

Median
TRT

Q90
TRT

25rps City LRT 6 88 0.0% 121ms 121ms 157ms
25rps City Osmotic 24 89 0.0% 117ms 119ms 149ms
25rps City RR 6 90 0.0% 168ms 136ms 275ms
25rps Nation LRT 14 89 17.0% 154ms 131ms 254ms
25rps Nation Osmotic 3 88 32.5% 224ms 208ms 386ms
25rps Nation RR 14 90 65.4% 274ms 266ms 432ms
25rps Global LRT 14 94 0.4% 142ms 126ms 210ms
25rps Global Osmotic 5 90 1.7% 152ms 128ms 224ms
25rps Global RR 14 99 65.4% 501ms 410ms 937ms
50rps City LRT 6 249 0.0% 127ms 124ms 177ms
50rps City Osmotic 13 249 0.0% 123ms 123ms 164ms
50rps City RR 6 249 0.0% 162ms 141ms 248ms
50rps Nation LRT 14 179 17.7% 153ms 129ms 270ms
50rps Nation Osmotic 5 177 24.3% 165ms 135ms 283ms
50rps Nation RR 14 181 65.0% 271ms 264ms 430ms
50rps Global LRT 14 190 1.2% 147ms 128ms 213ms
50rps Global Osmotic 4 181 3.8% 159ms 128ms 238ms
50rps Global RR 14 197 65.1% 494ms 410ms 922ms
75rps City LRT 6 249 0.0% 127ms 123ms 175ms
75rps City Osmotic 14 249 0.0% 122ms 122ms 162ms
75rps City RR 6 249 0.0% 168ms 140ms 275ms
75rps Nation LRT 14 269 14.9% 150ms 129ms 260ms
75rps Nation Osmotic 5 264 24.1% 169ms 138ms 287ms
75rps Nation RR 14 269 65.2% 273ms 269ms 433ms
75rps Global LRT 14 278 0.1% 141ms 128ms 214ms
75rps Global Osmotic 5 268 1.9% 152ms 129ms 223ms
75rps Global RR 14 285 65.2% 497ms 406ms 928ms

Table 6.8: Osmotic baseline evaluation results

80

6.4. Osmotic Scaling and Scheduling

scenario than the initial evaluation.

We can also observe that in the city scenario the osmotic scaling and scheduling ends
up deploying the more load balancer instances than the static scaling, but that for the
nation- and globally-distributed network topology scenarios this patterns is reversed.
There the osmotic scaler deploys only about a third of the replicas of the static scaling.

A similar pattern can be seen with regard to function scaling. The osmotic scaling leads
to between 1% and 6% fewer function replicas being deployed. Figure 6.13 shows how the
timing and frequency of scaling decisions are not different between the scaling methods,
but osmotic scaling results in slightly fewer function replicas.

6.4.2 Optimization Aggressiveness with Osmotic Scaling

We already learned from the experiment about load balancer scale that there is a tendency
for a higher scale of load balancers to ultimately result in better performance. With
this experiment we want to test the interplay of this phenomenon with the osmotic load
balancing and scaling we propose. With our osmotic approach we can set the scale-up
threshold to more or less arbitrary values to influence how quickly or slowly the system
scales up the number of load balancers, and how many load balancers will thus ultimately
end up being deployed.

Setup

To test the performance we simulate a number of different configuration scenarios. For
the rest of the system environment we choose to reuse the globally distributed topology
from previous experiments with a request rate of 75rps being simulated over the course
of 2000 seconds.

For the parameters of the osmotic scaling and scheduling we run experiments for a range
of scale-up thresholds ranging from 0.02 to 0.1. The scale down threshold is always set to
0.2, which is relatively high, because we explicitly want to test how the scale-up threshold
can be used to determine how many load balancers the system will deploy to optimize
response times.

Results

The results show two clear trends. First that will lower upscaling pressure thresholds more
load balancer replicas are being deployed by the osmotic scaling component, and second
that the mean response time improves with higher number of load balancer replicas. As
Table 6.9 shows, there is a diminishing return with higher numbers of load balancers, at
least in the topology scenario tested. The results also show that while higher numbers of
load balancers provide better performance once the load balancers have gathered enough
information about available replicas, this process is faster the fewer load balancers there
are, thus giving better performance early on. The behaviour can be observed easily in
the graph in Figure 6.14.

81

6. Evaluation

Upscaling
Pressure
Threshold

LB
Replicas

Mean
TRT

Mean
FET

Mean
LB_FX

Mean
CL_LB

0.1 4 155.8ms 29.1ms 33.5ms 92.7ms
0.09 4 152.5ms 29.7ms 30.1ms 92.2ms
0.08 6 152.1ms 29.5ms 30.0ms 92.2ms
0.07 5 152.5ms 29.3ms 30.4ms 92.4ms
0.06 5 148.5ms 29.6ms 26.6ms 91.6ms
0.05 5 147.5ms 29.9ms 25.3ms 91.3ms
0.04 5 148.5ms 29.8ms 26.5ms 91.5ms
0.03 7 136.8ms 26.4ms 19.6ms 91.2ms
0.02 20 139.0ms 24.8ms 25.3ms 90.2ms

Table 6.9: Response time performance metrics for different upscaling pressure thresholds

Figure 6.14: TRT compared to current load balancer scale for two different osmotic
scaling parametrizations

82

6.4. Osmotic Scaling and Scheduling

6.4.3 Osmotic Scheduling in Dynamic Systems

In this last experiment we test the behaviour of our osmotic scaling and scheduling
method in a dynamic system. Since dynamic changes of the system make-up are a core
part of edge computing, and our approach is explicitly constructed with these dynamic
factors in mind, we believe it is important to test the efficacy of our approach in such a
scenario. Because a lot of components have already been analyzed in-depth, and results
are most clear when only one factor is tested at any given time, we choose to use the
request origin as the dynamic system component. With the experiment we test how
our proposed approach handles requests originating from different regions of the overall
system over time.

Setup

For this experiment we once again use the globally distributed scenario as our network
topology, and apply a constant request rate of 25rps. Each of the three cities present in
the topology additionally has a probability function associated with it, which determines
the chance of a request originating from that city. These probability functions for the
cities are set up in such a way that most of the requests originate from only one of the
cities for a given time period. After some time the active city changes and the requests
gradually start to come from another city. The periods and changes are set up in such a
way that over the course of the 2000 second long simulation each of the cities is the main
originator of requests at one point.

Results

First of all, the results show that the osmotic scaling and scheduling component does
indeed take the request origin into account when deciding on the number and location
of new load balancer replicas. Figure 6.15 shows this in action. While originally load
balancers are only spawned in one city, because all requests originate from it, once
requests start coming from another city, another load balancer instance is deployed in
that city, as can be seen around timestamps 00:12 and 00:25 in Figure 6.15.

The effect this has on the system at large can also be observed easily, as Figure 6.16
shows. Here we can see that while the total response time of the system spikes once
requests start to originate from another city, it starts to stabilize and come down to
previous levels again once load balancers are present in the new city. Please note that
the TRT values shown in Figure 6.16 are a moving average over a 10 second window,
since this removes noise from the plot, making it more readable. Likewise the request
rate per city in Figures 6.15, 6.16, and 6.17 is a moving average over a 5 second window,
and displays the request rate for all functions deployed in the system.

Just like with the TRT, Figure 6.17 shows that the request transfer time between client
and load balancer, as well as between load balancer and function replica also spike when
traffic originates from a different city. There too, though we see that it returns to previous
levels once load balancer replicas become available near the request origin.

83

6. Evaluation

Figure 6.15: Load balancer replica count per city over changing request origins

Figure 6.16: Total response time over changing request origins

84

6.4. Osmotic Scaling and Scheduling

Figure 6.17: Client to load balancer, and load balancer to function transfer times over
changing request origins

85

CHAPTER 7
Discussion

7.1 Load Balancer Implementation and Parametrization

7.1.1 Choosing the right implementation

Our evaluations show that careful consideration is necesssary when deciding on a load
balancer implementation. Our results show that some implementations can exhibit
idiosyncratic behaviour that might be undesirable for the FaaS system in general.

Our implementation considerations were focused in large parts on how the weighted round
robin component of our approach is implemented. A key result is that the implementation
strongly affects how quickly the load balancer is able to discover enough nodes to make an
informed load balancing decision and thus converge onto a somewhat stable response time.
From the results we also learn that a deterministic weighted round robin implementation
results in faster discovery of the available nodes, as can also be seen in figure 6.2. The
potential difficulty of load balancers discovering nodes in an acceptable time frame in
system with very high numbers of nodes or load balancers also supports our decision to
already initialize load balancers with weights of neighboring instances to reduce the time
until performance stabilizes.

We can also observe that certain implementations may exhibit behaviour that is specific
to heterogeneous edge computing environments. An example of such behaviour is the
oscillating performance of the Adapted Classic load balancing implementation that can be
seen in figure 6.3. In this implementation upstreams are always worked through iteratively
with faster upstreams being chosen first, before slower upstreams are steadily interleaved
in order of their respective weight. As a result the performance varies with time going
through periods where performance is extremely good, and ones where performance is
comparatively poor. When taking the mean response times over a longer period of time
though this implementation performs no worse than the smooth implementation we chose
for our approach.

87

7. Discussion

While intuitively this behaviour might seem undesirable, it also shows potential for more
complex application scenarios. A load balancer could, for example, try to sample as
many upstreams as possible, but only send requests to a certain percentile of the best
performing ones. This approach is similar to the implementation proposed by Cicconetti,
Conti, and Passarella [CCP20b], where they propose to only include upstreams whose
response time is at most double the minimum response time achieved. Sampling in their
approach is handled through a generally fixed rate, but with the addition of exponential
back off times for upstreams that continuously fail to make the cut.

In terms of additional features, the stratification of upstreams according to their perfor-
mance would, for example, allow client-specific QoS policies to be enforced. This could
be relevant for scenarios where some requests are urgent, while others are not, or where
devices have to compete for and bid on their QoS.

Our results here show that there isn’t necessarily a singular, optimal implementation,
but that depending on goals and requirements of the system an implementation should
be chosen. It also shows, once again, that even system components as basic as weighted
round robin implementations may behave differently in a heterogeneous environment such
as edge computing, and that careful evaluations are necessary when reusing components
developed for the cloud at the edge.

7.1.2 Choices in parametrization

Parametrization is another area where our results indicate developers can make a choice.
As figures 6.4 and 6.5 show, the choice of parameters for how and when response times
are mapped onto weights has a significant impact on response times. The results show
that for any given scenario, there can be a whole set of different configurations that would
results in the same performance. We can, however, also see that parameter choices are
not universally wise. What results in good performance under one set of circumstances
can result in poor performance under another. Figure 6.8 shows this well. While the
configuration with weight updates every 150-200 seconds, and a weight range of 20-30
performs well in the 95th percentile in the range of up to 250 rps, once rps go beyond
500, it performs much worse.

Because rps changes are to be expected in a serverless edge computing system, these results
indicate that load balancers potentially have to dynamically adapt their parametrization
to keep performance as high as possible. Our results also show that the higher the rps
a load balancer experiences, the smaller the set of configurations with near optimal
performance becomes. This is particularly relevant to scenarios with high load and strict
SLA policies, since those circumstances would be most affected by suddenly worsened
performance due to high rps numbers. While our experimentation in this area is not
extensive enough to arrive at definitive conclusions, it suggests that scenarios in which
rps varies highly requires very careful investigation of the impact of parametrization.

88

7.2. Resource Usage and Load Balancer Scale

7.2 Resource Usage and Load Balancer Scale

7.2.1 Resource Usage Patterns

The resource usage between different device types differs significantly more than one would
intuit with the load balancer consuming more than triple the memory on some devices
than it does others. While the variance in CPU utilization was to be expected, given
that the different device’s processors vary vastly in terms of core count, frequency, cache
size, and power consumption, the difference observed in terms of memory consumption is
harder to explain.

As can be seen in table 6.6, the memory consumption is split in two groups which differ by
a factor of four. Considering that there groups aren’t separated by the device’s respective
processor architecture, we believe that operating system specific reasons are the cause
of these variations. While all devices tested run some form of Linux, typically Debian
based, the specific Linux distribution differs, because particularly the edge-type devices
feature special purpose hardware and thus rely on specially adapted version of Linux to
function properly.

We also observe that the edge devices more frequently feature ARM based processor
architectures, which are lower in computational power and for which running a load
balancer instances poses a bigger challenge compared to traditional x86 based systems.
One should note, however, that this different is not necessarily due to the processor
architecture itself, but due to the fact that the devices feature very different Thermal
Design Powers (TDPs), and ARM based devices feature lower TDPs, at least in the
selection of devices we evaluated.

The second major observation of this experiment, namely that longer response times or
upstream node lead to increased memory usage as can be seen in figure 6.10, is easily
explained. As the type of load balancer we evaluate is an application level load balancer,
when receiving a request it must first fully receive it before it can make a load balancing
decision. This means that if a request takes longer to receive its parts need to be kept in
memory for a longer time. This is true both for clients sending requests, as well as for
upstreams responding to forwarded requests. This also holds for the request processing
time, or FET in serverless computing, as the load balancer needs to at least keep some
information of each request in memory while the upstream processes it.

7.2.2 Load Balancer Scale

Our results show that the scale of load balancers in the system has a significant effect
on the system’s performance. Particularly at the beginning, when the system’s load
balancers still have to evaluate the performance of each upstream, different scales perform
differently. Naively speaking, lower numbers of load balancers perform better early on,
because they converge to a stable response time sooner, but larger numbers perform better
later on, because they tend to be more spread out and thus possess more optimization
potential.

89

7. Discussion

While adding more load balancers to the system generally improves the maximum
achievable performance, the returns diminish beyond a certain point, as can been seen in
the evaluation results in table 6.7. This effect is also due to the reason that not all nodes
have clients close to them, which means that while there are more load balancers present
in the system, the number of load balancers actually receiving traffic from clients doesn’t
change, as clients send traffic to the closest load balancer. In our globally distributed
evaluation topology with roughly 400 nodes and 75 rps, for example, 50% of nodes hosting
load balancers (i.e. 200 load balancers) results in 90 load balancers actually being used
by clients. Doubling this number to 100% of nodes hosting load balancers, only results
in 113 load balancer instances actually being used. This makes it clear that not only
is there a certain number of load balancers beyond which performance improvements
diminish significantly, it also shows that this point is dependent on the location of load
balancers in the system.

7.2.3 Implications

The results of our evaluation of both resource consumption and load balancer scale have
a number of implications for the design decisions of serverless edge computing systems in
regard to how load balancing is handled.

First, we have to assume that for each load balancer in a Kubernetes based system 128MiB
of memory should be requested to allow for a safe headroom in case large requests have
to be handled, the request rate peaks, or other issues lead to overhead. Through the
memory consumption, but particularly through the CPU consumption results show that
running a load balancer can be a significant task for a smaller, edge-based device.

Secondly, these results make it clear that load balancers need to be scaled and scheduled
in a more sophisticated way than is default in Kubernetes and thus in most existing
serverless systems.
After a certain point, adding more load balancers yields to massively diminishing returns,
making the addition of more inefficient from a resource perspective. At which point more
load balancers become inefficient depends on the system’s priorities and capabilities, and
the scaling component is what should continuously evaluate this question. The efficiency
of the load balancers that are present in the system depends on their location, since a
load balancer that receives no traffic is essentially a waste of resources, just as one that
receives a lot of traffic, but is located far from clients or upstreams, results in overly
distant network transfers. This makes the effective placement of load balancers in the
system a key component of minimizing the number of load balancer instances needed,
and thus the amount of resources consumed.
Particularly at the edge, where resources can potentially be scarce and valuable, this
makes a strong case for new scaling and scheduling methods such as the one we present
in this thesis.

Lastly, the results of our evaluation show that the number of load balancers in the
system can actively be used as a variable to influence the overall performance achieved.

90

7.3. Osmotic Scaling and Scheduling

This potentially gives developers the flexibility to make an informed trade off between
the amount of resources consumed by load balancers, and the resulting performance.
Through this more fine grained control over the system’s QoS could be achieved, and
differentiated policies developed to guarantee performance levels compliant with different
levels of SLA.

7.3 Osmotic Scaling and Scheduling

7.3.1 Basic Evaluation

From the basic evaluation of how our proposed osmotic scaling and scheduling approach
performs we can make a number of important observations. First and foremost we see that
our approach does indeed work and correctly scales up to at least one load balancer replica
per city and schedules these replicas. Using similarly low load balancer replica counts
with a random scheduling method would likely result in much worse performance, as there
would be a significant chance of a city not having an instance deployed. This demonstrates
how the location aware components of the scheduler successfully identify areas where
a significant share of requests originates from and then starts the load balancer replica
there, while also taking into account the locations of the required upstream functions.

We can, however, also see from table 6.8 that the osmotic approach doesn’t always
behave consistently in all scenarios. In the city topology based scenarios the osmotic
scaler consistently deploys many more load balancers than in other scenarios. While this
comparatively high replica count results in good performance, the fact that the same
scaling and scheduling configuration results in different scaling decisions and levels based
on topology highlights that there is no single set of optimal parameters. How the scaler
is configured and which parameters are right will depend on the level of performance
required of the load balancers, and the node topology of the system in question.

What this finding suggests is that for our approach to work in a larger variety of network
topologies irrespective of scale we may have to change the way in which osmotic pressure
is calculated. Currently absolute information with regard to the size of the system is
not included at all, as our calculations purely rely on metrics’ magnitude relative to
each other. Right now the size of the system in question is implicitly encoded in the set
pressure thresholds.
An example might help to illustrate this more clearly: Assuming a network needs a fixed
number of load balancers positioned well in order to achieve a certain performance level.
If we now have a suitable pressure level to achieve the performance in question, and want
to find the configuration for a system many times that size we know that for the larger
system overall more load balancers will be required. Because the pressure computations
themselves work irrespective of the system size, what needs to change is the threshold at
which load balancer replicas are scaled up.
In the interest of stabilizing load balancer performance resulting from scaling and
scheduling decisions one would need to take a closer look into the relationship between
the parametrization, the make-up of the system, and the resulting performance.

91

7. Discussion

What we could show with these initial experiments is that our osmotic approach is
capable of providing tangible performance benefits over the status-quo of serverless edge
computing frameworks, although some manual tuning of the configuration is necessary
to achieve the best performance possible.

7.3.2 Optimization Aggressiveness

The basic evaluation of our osmotic approach and the load balancer scale experiment
already showed how larger numbers of load balancers tend to result in better system
performance, and the performance results of this experiment are right in line with the
previous findings. Knowing this, the question is how our proposed osmotic scaling and
scheduling approach influences the scale, and thus the performance.

As discussed, the primary way the number of load balancers in the system can be
influenced is via the pressure thresholds, with lower thresholds resulting in higher replica
counts. The experiment shows this behaviour clearly, with the lower thresholds indeed
resulting in higher replica counts. By just how much these thresholds influence the replica
counts isn’t intuitively obvious though, and as we can see in table 6.9, the relationship
between the threshold and resulting scale is not linear. Because the benefits of increasing
the amount of load balancer replicas themselves aren’t linear either, the results indicate
that the tuning of the pressure threshold parameters to meet certain performance criteria
is a complex task.

It opens up a more general question of how the configuration complexity in serverless
edge computing should be addressed. In real deployments there is the potential of strict
SLA requirements for certain functions, which creates the need to predict the system
performance based on its topology and parameter configuration. Perhaps the way to
deal with this complexity is not a systematic evaluation of topologies, configuration
parameters, and their interplay, but rather an agent that dynamically adjusts parameters
based on current performance and requirements. If performance is insufficient and the
workload in question is network bound, this agent could then for example decrease the
pressure threshold to spawn more load balancers.

7.3.3 Dynamic System Conditions

One of the core motivations for our osmotic approach is the necessity for the scaling
and scheduling component to adapt to changing system conditions, and in particular to
system conditions which are not known beforehand. One of these system conditions is
which part of the system requests originate from.

Ideally, the osmotic scaling and scheduling component should register rising pressure once
requests come from an area where no load balancer is close-by and then schedule one to
be deployed there. From the results of the experiment we can see that our approach reacts
exactly in this way, scaling up and scheduling replicas in each of the cities once requests
start originating from there in significant numbers. Figure 6.15 shows this behaviour
visually, with load balancer replica counts rising shortly after request rates rise.

92

7.4. Implications of Osmotic Scaling for Serverless Edge Computing

While our approach does react to the changing request origin correctly, there are still some
points that could be improved. First of all, once the origin changes we can still observe
a significant spike in response time as is also shown by figure 6.16. In the experiment
the request origin changes from one city to the other such that each city is the main
request origin at one point. Although when requests change origin for the first point the
spike in TRT is comparatively small, going from a baseline of around 140ms to 250ms,
the temporary decrease in performance is much more pronounced on the second change,
spiking up to 380ms. The reason the first spike is so small in comparison is that in
the second city already has a load balancer replica deployed. Like we describe in our
approach, there has to be at least one load balancer present in the system at all times
for requests to be processed at all. In this case the load balancer happened to initially be
deployed in the second city, shortening the time until response times stabilized again.

There are a number of factors that influence how quickly the system adapts to changes in
request origin: The rate at which the system evaluates the osmotic pressure, how quickly
a load balancer can be deployed on the selected node, and how quickly the load balancer
gathers sufficient information to make informed load balancing decisions. The last point
in particular, how quickly the new load balancer makes effective decision, can take more
or less time depending on how much traffic the new load balancer receives and how well
the initial values fit for the location and traffic of the new instance.

Our evaluation also showed some limitations of our approach. For extreme cases like the
scenario tested in this experiment the de-scheduling portion of our approach does not
work as well. Since our approach is not based on any a-priori information on the system,
and uses the expected relative performance improvement when deciding on whether or
not to de-schedule a load balancer, it can sometimes keep instances that are no longer
needed. Because a load balancer running even though there is little traffic in an area
does not deteriorate the system’s performance in terms of TRT, the scaler cannot detect
a probable performance improvement from de-scheduling and thus leaves the instance
running. This is also visible in the results of this experiment. Figure 6.15 shows how
load balancers scale up once requests originate from a new city, but it also shows how the
previously scheduled load balancers remain, even though the request share they receive
is miniscule compared to the newly scheduled instances.

7.4 Implications of Osmotic Scaling for Serverless Edge
Computing

Finally we have to ask what implications our approach and the general idea of osmotic
scaling and scheduling have for the area of serverless edge computing. Osmotic computing
has been proposed as a potential solution to provide an effective solution to the complex
task of cloud-edge integration[RDR18]. Specifically it provides a promising approach
for dealing with changing system conditions, and environments which are not known
beforehand. Our experiments suggest that withing the area of serverless computing,
particularly for scaling and scheduling load balancers, osmotic approaches offer tangible

93

7. Discussion

benefits. Our evaluations show that an osmotic approach allows us to react to changing
system conditions well, and that even though the environment is unknown beforehand
,comparatively decent scaling and scheduling decisions can be made that result not only in
better performance than current serverless solutions offer at the edge, but also increased
resource efficiency through reduced scales.

Our evaluations also show however, that our approach does not yet provide a solution
that fits every serverless edge computing scenario and use-case. While the design of our
approach aims to rely as little as possible on a-priori information about the system, the
results of our evaluations show that in certain cases this type of a-priori knowledge is
required to have consistent behaviour in different scenarios. The size of the system, for
example, is one such factor that needs to be known beforehand so that the scaling and
scheduling parameters can be set in a way that the system performs according to the
scenario’s requirements.

This inherent challenge between a need for a-priori information about the system on
one hand, but edge computing systems being dynamic and thus changing in nature
on the other suggests that a static parameter choice might never work in a sufficiently
predictable way. Instead, a self-adapting system that tunes the parameters of the system
in real time might result in more predictable behaviour across more scenarios.

In addition to the topics explicitly tested in the experiments we would like to briefly
outline other aspects of osmotic scaling and scheduling for serverless edge computing
that should be investigated prior to real-world deployment.
First, it might be beneficial to create a simplified heuristic version of the pressure
calculation. Depending on the size of the serverless system, the computational effort
to perform these calculations in short intervals could start to be a limiting factor on
how quickly the scaler and scheduler can react to changes in the system. This would be
particularly true of highly dynamic scenarios, as these make solutions such as caching
and re-using certain parts of the computation infeasible.
Second, our approach does not yet include one of the potentially most important aspects
of serverless edge computing: Different priority and QoS levels. With the heterogeneous
nature of edge computing scenarios also come additional challenges for providing certain
QoS levels. In edge computing, certain resources might be more precious than others
and effective usage is required to achieve the best performance possible. For our osmotic
scheduling approach this means that these kinds of priorities and goals will need to be
included in the pressure calculation, if the scaling and scheduling of the system should
take them into account.

94

CHAPTER 8
Conclusion

Edge computing has been proposed as a new computing paradigm to address the com-
putational needs of new applications such as real-time cognitive assistance, large scale
analytics from IoT sensors, or deep learning based image analysis on resource constrained
devices. Edge computing brings with it a number of significant implementation challenges.
In particular, edge computing environments are heterogeneous in hardware, software
and networking conditions, featuring drastically different hardware, various operating
systems, and a wide range of network conditions. In addition to the system itself being
heterogeneous, the surrounding conditions can be highly dynamic with request rates,
clients, running applications, and the very structure of the system changing over time, in
some scenarios even very quickly.

Currently, this complexity needs to be resolved by system developers themselves, which
is not only very difficult, but is typically implementation-specific and thus not efficient
in the long run. Serverless computing has been proposed as an abstraction layer on
top of edge computing systems with the goal of alleviating the need to deal with this
complexity for developers. Instead, the serverless edge computing framework is supposed
to handle the tasks of scheduling and scaling functions, as well as routing them in such a
way that the requirements of the application are fulfilled. While serverless systems have
been adapted to be edge-capable, there are some challenges that remain. Network bound
workloads in particular are an area where the performance of serverless edge computing
systems was not in line with expectations.

This is the area of serverless edge computing this work aims to improve upon. We perform
an initial analysis of the load balancing component of the serverless system, which we
suspect is the key component that needs to be adapted for network bound workloads
to perform better. Based on these results we propose to improve load balancing for
serverless edge computing through two adaptations. First, our approach changes the
operating logic of the load balancer itself, moving away from the simple round robin load
balancing current systems default to, towards a weighted response time implementation

95

8. Conclusion

that tunes and adapts weights dynamically based on a least response time logic. Second,
we propose an osmotic pressure based approach to scaling and scheduling load balancer
replicas, giving load balancers their own scaling and scheduling logic separate from the
one regular serverless functions use, which allows the load balancer scheduling to consider
the location of both function replicas and clients.

Results show that our approach not only significantly improves response times and
network traffic of network bound workloads, but that it also opens up future opportuni-
ties for sophisticated deployment scenarios that have more differentiated performance
requirements.

8.1 Research Questions

How can current scaling, placement, and routing techniques for load
balancers be changed, such that the overall performance of the serverless
edge computing system improves?

In their current state serverless edge computing systems treat load balancers as "just
another function", not paying special attention to how they are scheduled and scaled.
Likewise the routing (i.e. load balancing) decisions themselves are made by algorithms
designed for and tested in cloud-centric environments. To improve performance, both
of these areas have to be adapted to deal with the challenges of the edge computing
environment.
To improve routing decisions we move away from simple round robin load balancing, which
is incapable of addressing the heterogeneous device capabilities found in edge computing.
Instead we use a variant of weighted round robin load balancing, which is better suited
to deal with the differently performant devices and accordingly differently performant
upstreams. Because the performance of different devices is not known beforehand, and
can change dynamically at runtime we use the observed response time of past requests
as a black box metric and stand in for the expected performance of the upstream in
question. Based on a moving average of these past response times and a least response
time logic we assign each of the upstreams their respective weights used by weighted
round robin. This evaluation of observed response times and weight mappings happens
continuously and as a result it can adapt to changing system conditions as well. For
scaling and scheduling we introduce an approach inspired by the concept of osmotic
pressure we call osmotic scaling and scheduling.
The load balancer scaling and scheduling component needs to take into account where in
the network client requests are originating from, where function replicas to handle those
requests are located, and where load balancer instances are already present. To this end
we introduce the notion of osmotic pressure. For each node that does not already have
a load balancer deployed, we calculate a pressure metric that depends on how many
requests it would receive if there was a load balancer present, how close the clients sending
these requests are, and how close the function replicas required to process the requests
are located. If the pressure exceeds a set threshold a new load balancer replica is added

96

8.1. Research Questions

on that node. Likewise a negative pressure is calculated for nodes which are already host
to a load balancer instance, where requests that would be more efficiently handled by
other running load balancer instances contribute to negative pressure. If the pressure
falls below the downscaling pressure threshold the load balancer replica is removed.
Through the introduction of these techniques for load balancing, scaling and scheduling
the overall performance of the system improves, particularly for network bound workloads.

How much of a performance improvement can be gained from optimizing
the scaling, placement and decisions of load balancers in serverless edge
computing systems?

Our initial evaluations show that the diagnosis of load balancer location and load balancing
technique was correct. In the first evaluation, where we tested the new load balancing
implementation and compared a scenario with a centralized round robin load balancer on
one hand, and our adapted version running on every node on the other, the mean total
response time could be improved by between 81% and 606%, depending on the scenario.
These performance gains hold, albeit in a less dramatic way in our more stringent and
realistic evaluation of the osmotic scaling and scheduling component. In these tests
the results still show an improvement between in mean TRT between 43% and 229%
compared to a non-centralized round robin implementation, which corresponds to a
reduction of -30% to -69% in TRT. The improvements are larger when looking not only
at the mean values, but at the different percentiles as well.
The higher the percentile, the bigger the TRT improvement generally is. What this means
is that our approach not only improves the performance of the system on average, it
also reduces the variance, making the performance gains more reliable. The performance
gains are realized by having decreased network transfer times between client and load
balancer, and load balancer and function replica. This is expected and optimizing this
part of the response time is the primary implementation goal of the osmotic scaling and
scheduling approach we present. In addition to improving network transfer times, our
approach realizes part of its performance gains via improvements FET, which are a result
of the load balancing implementation relying on a black box metric that also encompasses
FET and thus partially optimizing for it.

How do edge optimized scaling and placement techniques for load
balancers, including the load balancing techniques themselves, affect the
overall system behaviour and characteristics in regard to their key
performance metrics?

Our approach also has effects on the system beyond its improvements in TRT. Notably
it positions load balancers efficiently, achieving performance that would require the
deployment of more load balancer instances when using current scheduling methods. This
is particularly relevant as our experiments with real hardware show that depending on the
device and operating system used memory and CPU consumption can vary significantly.
In addition we can observe that our approach slightly reduces the number of function

97

8. Conclusion

replicas deployed in the serverless system, when using the default scaling methodology of
OpenFaaS[Auta] as a representative example of serverless frameworks in general. While
these reductions in function scale are too small to be considered a stable feature of our
approach, it indicates that it can likely be integrated into serverless frameworks without
adverse effect on function scale.
As one would expect based on the faster network transfer times, our approach reduces
the share of requests that get routed to far-away function replicas. In an evaluation with
three distinct cities far apart from each other our approach routes only 1.9% of requests
to a function replica outside the city, compared to the 65.2% of round robin based load
balancing currently used in serverless frameworks.

8.2 Future Work

Our work provides a basis on which future work can be built, both to address limitations
of our approach, as well as to further the capabilities of serverless edge computing. This
section provides a list of some of the most important areas for future work.

• A continued evaluation of our approach in different deployment scenarios and
network topologies could give further insight into its advantages and limitations.
Based on this our approach could be changed to bring it closer to a state where it
can reliably be used in real-world deployments.

• Building on our results, that show how response time percentiles and general
service levels are influenced by load balancer scaling and implementation, a more
sophisticated approach could be developed that takes into account and optimizes
for different QoS levels on a per-function basis.

• In keeping with the previous point about different QoS levels, our approach could
be modified to explicitly model the requirements of functions and then automat-
ically tune its parameters accordingly. This would stand in contrast to current,
statically configured implementations. In addition the need to do so is indicated
by our experimental results, which show that for different environments different
configurations are required to achieve optimal performance.

• Joint scheduling and scaling of functions and load balancers offers the potential
for additional performance gains, where the information about required resources
gathered by the load balancer could help make more informed decisions about
function replica scale and location.

• Lastly, the topic of standardized edge computing scenarios for benchmarking remains
a worthwhile area to improve upon. While there is effort to develop systematic
benchmarks for edge computing, for example EdgeBench[DPW18], there is much
to be done in terms of modelling network topologies and dynamically changing
environments. Such a suite of standardized benchmarks and deployment scenarios

98

8.2. Future Work

would help to make competing approaches more directly comparable, and results
more transparent.

99

List of Figures

1.1 Kernel Density Estimate of an experiment run. Result shows TRT of different
load balancer implementations in a globally distributed scenario. 2

2.1 Conceptual overview of different application architecture paradigms . . . 8
2.2 An example of how in a) cloud computing all computation is centralized, while

in b) edge computing there are nodes interspersed throughout the network
and close to clients. 12

2.3 Diagram showing the architecture and components of OpenFaaS, in particular
the OpenFaaS API Gateway. Taken from the official OpenFaaS architecture
documentation[Autb] . 15

4.1 A generic view of the different parts that make up the total request processing
time from the perspective of our approach 24

4.2 Example diagram showing efficient and inefficient request routing based on
network delay. "fx-1" through "fx-2" denote different types of function, and
the dotted line denotes a network link between the cloud and edge node with
a latency of 50ms . 25

4.3 Rectangles representing a resource in our problem visualization 27
4.4 Rectangles representing Node and Network Link resources, including their re-

spective bounding boxes showing maximum load and performance capabilities 27
4.5 Example visualization of an optimal selection of nodes, including their network

links, for a given request load. Bounding boxes showing min/max load/per-
formance, and fixed network latency performance parts are not displayed to
keep the example simple. 28

4.6 Our approach as seen through the described visualization. All nodes are
included in the "solution", and their load is determined by the load balancer
assigning weights (w) . 30

4.7 Plot showing the effects of different scaling factors on how response time
averages are mapped to weights. 35

4.8 Assignment of clients and function replicas to potential load balancer nodes
during pressure calculation . 38

5.1 Probability density functions of the FETs of the different devices we simulate 50

101

5.2 Simplified network topology of a single smart city. Centered around the
internet backbone uplink (red), 1) shows edge devices co-located with client
devices. 2) shows a small cloud data center or cloudlet. Note the lack of
clients directly connected to the cloudlet. 53

6.1 Kernel Density Estimate of a single experiment run. Shown data can be
interpreted as probability density functions. Data is visualized for TRT, FET
and the time incurred through network transfers. 59

6.2 A graph showing how quickly each upstream receives at least one request with
different weighted round robin implementations for least response time load
balancing . 62

6.3 Graph showing average response times converging for different weighted round
robin implementations with least response time load balancing 63

6.4 Mean response time over various levels of performance spread and scaling
factors . 65

6.5 Mean response time over different weight ranges and scaling factors . . . 66
6.6 Difference between resetting and not resetting weights on update. Positive

values indicate not resetting performs better, while negative values indicate
the opposite. 67

6.7 Mean response times over different weight ranges and weight update times.
Current weights are reset on update. 68

6.8 95th percentile of response times over different weight ranges and update
times. Current weights are reset on update. 69

6.9 Resource consumption of the traefik[Tra] load balancer on different devices
with a response time of 20ms and request payload size of 250KiB 73

6.10 Resource consumption of the traefik[Tra] load balancer with different response
times on and a 250KiB request payload 73

6.11 TRTs of different load balancer scales in the global scenario. For legibility a
10 second moving average is applied. 76

6.12 TRTs of different load balancer scales in the nation scenario. For legibility a
10 second moving average is applied. 77

6.13 Total scale of all functions for each load balancer scaling/schedulilng method 79
6.14 TRT compared to current load balancer scale for two different osmotic scaling

parametrizations . 82
6.15 Load balancer replica count per city over changing request origins 84
6.16 Total response time over changing request origins 84
6.17 Client to load balancer, and load balancer to function transfer times over

changing request origins . 85

102

List of Tables

4.1 An example of weighted round robin iteration results when using Algorithm
4.1 as we do in our approach. Colored cells indicate the selected node at the
iteration. 34

5.1 Resource binning used for performance categorization and prediction with
Ether devices by Raith, Rausch and Dustdar[RRD21a] 48

5.2 Table showing the simulated devices available in FaaS-Sim/Ether. CPU
frequency bin sizes are shown in Table 5.1 48

6.1 Network latencies between cities in the initial nation evaluation scenario.
Latencies are taken from Wonder Network’s global ping statistics[Won] . . 57

6.2 Network latencies between cities in the initial global evaluation scenario.
Latencies are taken from Wonder Network’s global ping statistics[Won] . . 57

6.3 Percentage improvement in mean values of a single experimental run of the
initial evaluation in different scenarios. Displayed mean values are in order:
TRT, FET, network time between client and load balancer, and network time
between load balancer and function replica 58

6.4 50th percentile (i.e. median) values of a single experimental run of the initial
evaluation in different scenarios. Displayed values are in order: TRT, FET,
network time between client and load balancer, and network time between
load balancer and function replica . 60

6.5 Nodes present in the real Kubernetes cluster used for resource consumption
evaluation . 71

6.6 Results of the load balancer resource evaluation at 250 requests per second 72
6.7 Mean TRT values of different load balancer scales, once they have converged

to a stable value . 75
6.8 Osmotic baseline evaluation results . 80
6.9 Response time performance metrics for different upscaling pressure thresholds 82

103

List of Algorithms

4.1 Smooth Weighted Round Robin . 33

105

Acronyms

AI Artificial Intelligence. 12, 13, 17, 49

FaaS Function as a Service. 7

FET Function Execution Time. 17, 18, 20, 24, 25, 30, 49, 50, 52, 54, 58–60, 64, 65, 71,
89, 97, 101–103

HPA Horizontal Pod Autoscaler. 10, 48

IaaS Infrastructure as a Service. 7

IoT Internet of Things. 19, 95

JFIQ Join-the-Fastest-of-the-Idle-Queue. 19

JFSQ Join-the-Fastest-of-the-Shortest-Queue. 19

JIQ Join-the-Idle-Queue. 19

JSQ Join-the-Shortest-Queue. 19

KPI Key Performance Indicator. 47

PaaS Platform as a Service. 7

QoS Quality of Service. 7, 88, 91, 94, 98

RAN Radio Access Network. 11, 51, 52

rps requests per second. 26, 58, 61, 64–66, 74, 75, 78, 81, 83, 88, 90

RTT Round Trip Time. 38

SLA Service Level Agreement. 29, 30, 32, 54, 88, 91, 92

TDP Thermal Design Power. 89

TRT Total Response Time. 2, 54, 58–60, 75–79, 82, 83, 93, 97, 101–103

107

Bibliography

[AF] The Kubernetes Authors and The Linux Foundation. Kubernetes. https:
//kubernetes.io/. Accessed 2021-09-30.

[AGT20] Mohammad S. Aslanpour, Sukhpal Singh Gill, and Adel N. Toosi. Perfor-
mance evaluation metrics for cloud, fog and edge computing: A review,
taxonomy, benchmarks and standards for future research. Internet of Things,
12:100273, December 2020. doi:10.1016/j.iot.2020.100273.

[ATC+21] Mohammad S. Aslanpour, Adel N. Toosi, Claudio Cicconetti, Bahman
Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh
Gill, Raj Gaire, and Schahram Dustdar. Serverless Edge Computing:
Vision and Challenges. In 2021 Australasian Computer Science Week
Multiconference, pages 1–10, Dunedin New Zealand, February 2021. ACM.
doi:10.1145/3437378.3444367.

[Auta] OpenFaaS Authors. OpenFaaS. https://www.openfaas.com/. Ac-
cessed 2021-09-30.

[Autb] OpenFaaS Authors. OpenFaaS Architecture Documentation - Gate-
way. https://docs.openfaas.com/architecture/gateway/. Ac-
cessed 2021-09-30.

[AZTS18] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile Edge
Computing: A Survey. IEEE Internet of Things Journal, 5(1):450–465,
February 2018. doi:10.1109/JIOT.2017.2750180.

[BFM19] Luciano Baresi and Danilo Filgueira Mendonca. Towards a Serverless
Platform for Edge Computing. In 2019 IEEE International Conference on
Fog Computing (ICFC), pages 1–10, Prague, Czech Republic, June 2019.
IEEE. doi:10.1109/ICFC.2019.00008.

[BKSH19] Tristan Braud, Teemu Kämäräinen, Matti Siekkinen, and Pan Hui. Multi-
carrier Measurement Study of Mobile Network Latency: The Tale of Hong
Kong and Helsinki. In 2019 15th International Conference on Mobile
Ad-Hoc and Sensor Networks (MSN), pages 1–6, December 2019. doi:
10.1109/MSN48538.2019.00015.

109

https://kubernetes.io/
https://kubernetes.io/
https://doi.org/10.1016/j.iot.2020.100273
https://doi.org/10.1145/3437378.3444367
https://www.openfaas.com/
https://docs.openfaas.com/architecture/gateway/
https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/ICFC.2019.00008
https://doi.org/10.1109/MSN48538.2019.00015
https://doi.org/10.1109/MSN48538.2019.00015

[BMA17] Roberto Beraldi, Abderrahmen Mtibaa, and Hussein Alnuweiri. Cooperative
load balancing scheme for edge computing resources. In 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
pages 94–100, Valencia, Spain, May 2017. IEEE. doi:10.1109/FMEC.
2017.7946414.

[CBSG17] Charles E. Catlett, Peter H. Beckman, Rajesh Sankaran, and Kate Kusiak
Galvin. Array of things: A scientific research instrument in the public
way: Platform design and early lessons learned. In Proceedings of the
2nd International Workshop on Science of Smart City Operations and
Platforms Engineering, SCOPE ’17, pages 26–33, New York, NY, USA, April
2017. Association for Computing Machinery. doi:10.1145/3063386.
3063771.

[CCP20a] Claudio Cicconetti, Marco Conti, and Andrea Passarella. Architecture
and performance evaluation of distributed computation offloading in edge
computing. Simulation Modelling Practice and Theory, 101:102007, May
2020. doi:10.1016/j.simpat.2019.102007.

[CCP20b] Claudio Cicconetti, Marco Conti, and Andrea Passarella. A Decentralized
Framework for Serverless Edge Computing in the Internet of Things. IEEE
Transactions on Network and Service Management, pages 1–1, 2020. doi:
10.1109/TNSM.2020.3023305.

[CCPS20] Claudio Cicconetti, Marco Conti, Andrea Passarella, and Dario Sabella.
Toward Distributed Computing Environments with Serverless Solutions in
Edge Systems. IEEE Communications Magazine, 58(3):40–46, March 2020.
doi:10.1109/MCOM.001.1900498.

[CCY99] V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic load balancing on
Web-server systems. IEEE Internet Computing, 3(3):28–39, May 1999.
doi:10.1109/4236.769420.

[CIMS19] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
The server is dead, long live the server: Rise of Serverless Computing,
Overview of Current State and Future Trends in Research and Industry.
arXiv:1906.02888 [cs], June 2019. http://arxiv.org/abs/1906.02888. arXiv:
1906.02888.

[DPW18] Anirban Das, Stacy Patterson, and Mike Wittie. EdgeBench: Benchmarking
Edge Computing Platforms. In 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion), pages 175–
180, Zurich, December 2018. IEEE. doi:10.1109/UCC-Companion.
2018.00053.

[DT] Docker Inc. and Traefik Labs. Traefik | Docker Hub. https://hub.
docker.com/_/traefik?tab=tags. Accessed 2021-11-11.

110

https://doi.org/10.1109/FMEC.2017.7946414
https://doi.org/10.1109/FMEC.2017.7946414
https://doi.org/10.1145/3063386.3063771
https://doi.org/10.1145/3063386.3063771
https://doi.org/10.1016/j.simpat.2019.102007
https://doi.org/10.1109/TNSM.2020.3023305
https://doi.org/10.1109/TNSM.2020.3023305
https://doi.org/10.1109/MCOM.001.1900498
https://doi.org/10.1109/4236.769420
http://arxiv.org/abs/1906.02888
http://arxiv.org/abs/1906.02888
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.1109/UCC-Companion.2018.00053
https://hub.docker.com/_/traefik?tab=tags
https://hub.docker.com/_/traefik?tab=tags

[DZ83] J.D. Day and H. Zimmermann. The OSI reference model. Proceedings of
the IEEE, 71(12):1334–1340, December 1983. doi:10.1109/PROC.1983.
12775.

[Edg21] Edgerun Authors. Telemd. https://github.com/edgerun/telemd,
September 2021. Accessed 2021-11-11.

[Fou] The Apache Software Foundation. Apache OpenWhisk. https://
openwhisk.apache.org/. Accessed 2021-09-30.

[GAJWD21] Kristen Gardner, Jazeem Abdul Jaleel, Alexander Wickeham, and Sherwin
Doroudi. Scalable load balancing in the presence of heterogeneous servers.
Performance Evaluation, 145:102151, January 2021. doi:10.1016/j.
peva.2020.102151.

[GND17] Alex Glikson, Stefan Nastic, and Schahram Dustdar. Deviceless edge com-
puting: Extending serverless computing to the edge of the network. In
Proceedings of the 10th ACM International Systems and Storage Confer-
ence, pages 1–1, Haifa Israel, May 2017. ACM. doi:10.1145/3078468.
3078497.

[GPC+19] Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob Aitken,
and Gabriel Parmer. Challenges and Opportunities for Efficient Serverless
Computing at the Edge. In 2019 38th Symposium on Reliable Distributed
Systems (SRDS), pages 261–2615, Lyon, France, October 2019. IEEE.
doi:10.1109/SRDS47363.2019.00036.

[GZLX19] Bin Gao, Zhi Zhou, Fangming Liu, and Fei Xu. Winning at the Starting
Line: Joint Network Selection and Service Placement for Mobile Edge
Computing. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pages 1459–1467, Paris, France, April 2019. IEEE. doi:
10.1109/INFOCOM.2019.8737543.

[HCH+14] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. Towards wearable cognitive assistance. In
Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’14, pages 68–81, New York, NY,
USA, June 2014. Association for Computing Machinery. doi:10.1145/
2594368.2594383.

[Hua] Huawei Technologies Co., Ltd. How 3 stars are making
life better around the world. https://www.huawei.com/
en/technology-insights/publications/winwin/31/
how-three-stars-are-making-life-better. Accessed 2021-
12-03.

111

https://doi.org/10.1109/PROC.1983.12775
https://doi.org/10.1109/PROC.1983.12775
https://github.com/edgerun/telemd
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://doi.org/10.1016/j.peva.2020.102151
https://doi.org/10.1016/j.peva.2020.102151
https://doi.org/10.1145/3078468.3078497
https://doi.org/10.1145/3078468.3078497
https://doi.org/10.1109/SRDS47363.2019.00036
https://doi.org/10.1109/INFOCOM.2019.8737543
https://doi.org/10.1109/INFOCOM.2019.8737543
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2594368.2594383
https://www.huawei.com/en/technology-insights/publications/winwin/31/how-three-stars-are-making-life-better
https://www.huawei.com/en/technology-insights/publications/winwin/31/how-three-stars-are-making-life-better
https://www.huawei.com/en/technology-insights/publications/winwin/31/how-three-stars-are-making-life-better

[Inca] Amazon Web Services Inc. AWS Lambda – Serverless Compute. https:
//aws.amazon.com/lambda/. Accessed 2021-09-30.

[Incb] F5 Networks Inc. NGINX. https://www.nginx.com/. Accessed 2021-
10-05.

[JSS+19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. Cloud Programming Simplified: A Berke-
ley View on Serverless Computing. arXiv:1902.03383 [cs], February 2019.
http://arxiv.org/abs/1902.03383. arXiv:1902.03383.

[KIB20] Marios Kogias, Rishabh Iyer, and Edouard Bugnion. Bypassing the load
balancer without regrets. In Proceedings of the 11th ACM Symposium on
Cloud Computing, pages 193–207, Virtual Event USA, October 2020. ACM.
doi:10.1145/3419111.3421304.

[KKR20] Anurag Khandelwal, Arun Kejariwal, and Karthikeyan Ramasamy. Le
Taureau: Deconstructing the Serverless Landscape & A Look Forward.
In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, pages 2641–2650, New York, NY,
USA, June 2020. Association for Computing Machinery. doi:10.1145/
3318464.3383130.

[KS21] Vasileios Karagiannis and Stefan Schulte. edgeRouting: Using Compute
Nodes in Proximity to Route IoT Data. IEEE Access, 9:105841–105858,
2021. doi:10.1109/ACCESS.2021.3099942.

[KT] Kubernetes Authors and The Linux Foundation. Horizontal Pod Autoscaler.
https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/. Accessed 2021-11-30.

[Kub] Kubeless. Kubeless. https://kubeless.io/. Accessed 2021-09-30.

[Lin] Linux Virtual Server Authors. Weighted Round-Robin Scheduling -
LVSKB. http://kb.linuxvirtualserver.org/wiki/Weighted_
Round-Robin_Scheduling. Accessed 2021-11-23.

[LZZC20] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge AI: On-Demand
Accelerating Deep Neural Network Inference via Edge Computing. IEEE
Transactions on Wireless Communications, 19(1):447–457, January 2020.
doi:10.1109/TWC.2019.2946140.

[Mic] Microsoft. Microsoft Azure Functions - Serverless Compute. https://
azure.microsoft.com/en-us/services/functions/. Accessed
2021-09-30.

112

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.nginx.com/
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3419111.3421304
https://doi.org/10.1145/3318464.3383130
https://doi.org/10.1145/3318464.3383130
https://doi.org/10.1109/ACCESS.2021.3099942
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubeless.io/
http://kb.linuxvirtualserver.org/wiki/Weighted_Round-Robin_Scheduling
http://kb.linuxvirtualserver.org/wiki/Weighted_Round-Robin_Scheduling
https://doi.org/10.1109/TWC.2019.2946140
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[MPd18] Sunil Kumar Mohanty, Gopika Premsankar, and Mario di Francesco. An
Evaluation of Open Source Serverless Computing Frameworks. In 2018
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pages 115–120, Nicosia, December 2018. IEEE. doi:10.
1109/CloudCom2018.2018.00033.

[MS19] A. B. Manju and S. Sumathy. Efficient Load Balancing Algorithm for
Task Preprocessing in Fog Computing Environment. In Suresh Chan-
dra Satapathy, Vikrant Bhateja, and Swagatam Das, editors, Smart In-
telligent Computing and Applications, Smart Innovation, Systems and
Technologies, pages 291–298, Singapore, 2019. Springer. doi:10.1007/
978-981-13-1927-3_31.

[MSG+20] Zitong Ma, Sujie Shao, Shaoyong Guo, Zhili Wang, Feng Qi, and Ao Xiong.
Container Migration Mechanism for Load Balancing in Edge Network
Under Power Internet of Things. IEEE Access, 8:118405–118416, 2020.
doi:10.1109/ACCESS.2020.3004615.

[NCK+14] Ashkan Nikravesh, David R. Choffnes, Ethan Katz-Bassett, Z. Morley
Mao, and Matt Welsh. Mobile Network Performance from User Devices:
A Longitudinal, Multidimensional Analysis. In Michalis Faloutsos and
Aleksandar Kuzmanovic, editors, Passive and Active Measurement, Lecture
Notes in Computer Science, pages 12–22, Cham, 2014. Springer International
Publishing. doi:10.1007/978-3-319-04918-2_2.

[NRS+17] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan
Gusev, Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko
Ristov, and Radu Prodan. A Serverless Real-Time Data Analytics Platform
for Edge Computing. IEEE Internet Computing, 21(4):64–71, 2017. doi:
10.1109/MIC.2017.2911430.

[NZDP21] Zeinab Nezami, Kamran Zamanifar, Karim Djemame, and Evangelos
Pournaras. Decentralized Edge-to-Cloud Load Balancing: Service Place-
ment for the Internet of Things. IEEE Access, 9:64983–65000, 2021.
doi:10.1109/ACCESS.2021.3074962.

[Ope] OpenFaaS Authors. Autoscaling - OpenFaaS. https://docs.openfaas.
com/architecture/autoscaling/. Accessed 2021-11-30.

[Pal21] Jacob Palecek. Responder. https://github.com/jjnp/responder,
October 2021. Accessed 2021-11-11.

[PKC19] Andrei Palade, Aqeel Kazmi, and Siobhan Clarke. An Evaluation of Open
Source Serverless Computing Frameworks Support at the Edge. In 2019
IEEE World Congress on Services (SERVICES), pages 206–211, Milan,
Italy, July 2019. IEEE. doi:10.1109/SERVICES.2019.00057.

113

https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1007/978-981-13-1927-3_31
https://doi.org/10.1007/978-981-13-1927-3_31
https://doi.org/10.1109/ACCESS.2020.3004615
https://doi.org/10.1007/978-3-319-04918-2_2
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/MIC.2017.2911430
https://doi.org/10.1109/ACCESS.2021.3074962
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://github.com/jjnp/responder
https://doi.org/10.1109/SERVICES.2019.00057

[RD19] Thomas Rausch and Schahram Dustdar. Edge Intelligence: The Conver-
gence of Humans, Things, and AI. In 2019 IEEE International Conference
on Cloud Engineering (IC2E), pages 86–96, Prague, Czech Republic, June
2019. IEEE. doi:10.1109/IC2E.2019.00022.

[RD21] Thomas Rausch and Dustdar, Schahram. A Distributed Compute Fabric
for Edge Intelligence. PhD thesis, Vienna University of Technology, May
2021.

[RDR18] Thomas Rausch, Schahram Dustdar, and Rajiv Ranjan. Osmotic Message-
Oriented Middleware for the Internet of Things. IEEE Cloud Computing,
5(2):17–25, March 2018. doi:10.1109/MCC.2018.022171663.

[RHM+19] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Schahram Dust-
dar, and Alexander Rashed. Towards a Serverless Platform for Edge AI.
page 7, July 2019. URL: https://www.usenix.org/conference/
hotedge19/presentation/rausch.

[RHS+21] Thomas Rausch, Waldemar Hummer, Christian Stippel, Silvio Vasiljevic,
Carmine Elvezio, Schahram Dustdar, and Katharina Krösl. Towards a
Platform for Smart City-Scale Cognitive Assistance Applications. In 2021
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts
and Workshops (VRW), pages 330–335, March 2021. doi:10.1109/
VRW52623.2021.00066.

[RLF+20] Thomas Rausch, Clemens Lachner, Pantelis A. Frangoudis, Philipp Raith,
and Schahram Dustdar. Synthesizing Plausible Infrastructure Config-
urations for Evaluating Edge Computing Systems. In 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 20), 2020.
https://www.usenix.org/conference/hotedge20/presentation/rausch.

[RRD21a] Philipp Alexander Raith, Thomas Rausch, and Dustdar, Schahram. Con-
tainer Scheduling on Heterogeneous Clusters using Machine Learning-based
Workload Characterization. Master’s thesis, Vienna University of Technol-
ogy, Vienna, February 2021.

[RRD21b] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized
container scheduling for data-intensive serverless edge computing. Future
Generation Computer Systems, 114:259–271, January 2021. doi:10.1016/
j.future.2020.07.017.

[RRP21] Rausch, Thomas, Raith, Philipp, and Palecek, Jacob. Galileo: A frame-
work for distributed load testing experiments. https://github.com/
edgerun/galileo, September 2021. Accessed 2021-11-11.

[RRPD19] Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dust-
dar. A system for operating energy-aware cloudlets: Demo. In Proceedings of

114

https://doi.org/10.1109/IC2E.2019.00022
https://doi.org/10.1109/MCC.2018.022171663
https://www.usenix.org/conference/hotedge19/presentation/rausch
https://www.usenix.org/conference/hotedge19/presentation/rausch
https://doi.org/10.1109/VRW52623.2021.00066
https://doi.org/10.1109/VRW52623.2021.00066
https://doi.org/10.1016/j.future.2020.07.017
https://doi.org/10.1016/j.future.2020.07.017
https://github.com/edgerun/galileo
https://github.com/edgerun/galileo

the 4th ACM/IEEE Symposium on Edge Computing, pages 307–309, Arling-
ton Virginia, November 2019. ACM. doi:10.1145/3318216.3363325.

[Sat17] Mahadev Satyanarayanan. The Emergence of Edge Computing. Computer,
50(1):30–39, January 2017. doi:10.1109/MC.2017.9.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal,
3(5):637–646, October 2016. doi:10.1109/JIOT.2016.2579198.

[SD16] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing.
Computer, 49(5):78–81, May 2016. doi:10.1109/MC.2016.145.

[SLF11] Kehua Su, Jie Li, and Hongbo Fu. Smart city and the applications. In
2011 International Conference on Electronics, Communications and Con-
trol (ICECC), pages 1028–1031, September 2011. doi:10.1109/ICECC.
2011.6066743.

[SMPA14] Beatriz Soret, Preben Mogensen, Klaus I. Pedersen, and Mari Carmen
Aguayo-Torres. Fundamental tradeoffs among reliability, latency and
throughput in cellular networks. In 2014 IEEE Globecom Workshops (GC
Wkshps), pages 1391–1396, December 2014. doi:10.1109/GLOCOMW.
2014.7063628.

[Sys21] Igor Sysoev. NGINX - ngx_http_upstream_round_robin.c.
https://github.com/nginx/nginx/blob/
e56ba23158b8466d108fd4d571bd7d9a88f2a473/src/http/
ngx_http_upstream_round_robin.c, October 2021. Accessed
2021-10-05.

[TP21a] Thomas Rausch and Philipp Raith. Faas-sim: A trace-driven Function-
as-a-Service simulator. https://github.com/edgerun/faas-sim,
November 2021. Accessed 2021-11-11.

[TP21b] Traefik Labs and Palecek, Jacob. Jjnp/traefik. https://github.com/
jjnp/traefik/tree/load-balancing, September 2021. Accessed
2021-11-11.

[Tra] Traefik Labs. Traefik, The Cloud Native Application Proxy. https:
//traefik.io/traefik/. Accessed 2021-11-11.

[VKO20] Shay Vargaftik, Isaac Keslassy, and Ariel Orda. LSQ: Load Balancing in
Large-Scale Heterogeneous Systems With Multiple Dispatchers. IEEE/ACM
Transactions on Networking, 28(3):1186–1198, June 2020. doi:10.1109/
TNET.2020.2980061.

115

https://doi.org/10.1145/3318216.3363325
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/ICECC.2011.6066743
https://doi.org/10.1109/ICECC.2011.6066743
https://doi.org/10.1109/GLOCOMW.2014.7063628
https://doi.org/10.1109/GLOCOMW.2014.7063628
https://github.com/nginx/nginx/blob/e56ba23158b8466d108fd4d571bd7d9a88f2a473/src/http/ngx_http_upstream_round_robin.c
https://github.com/nginx/nginx/blob/e56ba23158b8466d108fd4d571bd7d9a88f2a473/src/http/ngx_http_upstream_round_robin.c
https://github.com/nginx/nginx/blob/e56ba23158b8466d108fd4d571bd7d9a88f2a473/src/http/ngx_http_upstream_round_robin.c
https://github.com/edgerun/faas-sim
https://github.com/jjnp/traefik/tree/load-balancing
https://github.com/jjnp/traefik/tree/load-balancing
https://traefik.io/traefik/
https://traefik.io/traefik/
https://doi.org/10.1109/TNET.2020.2980061
https://doi.org/10.1109/TNET.2020.2980061

[WLZ+18] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking Behind the Curtains of Serverless Platforms. In 2018
{USENIX} Annual Technical Conference ({USENIX} {ATC} 18), pages 133–
146, 2018. https://www.usenix.org/conference/atc18/presentation/wang-
liang.

[Won] Wonder Network. Global Ping Statistics. https://wondernetwork.
com/pings. Accessed 2021-11-23.

[WWL+21] Zekun Wang, Pengwei Wang, Peter C. Louis, Lee E. Wheless, and Yuankai
Huo. WearMask: Fast In-browser Face Mask Detection with Serverless
Edge Computing for COVID-19. arXiv:2101.00784 [cs, eess], January 2021.
http://arxiv.org/abs/2101.00784. arXiv:2101.00784.

[WZS20] Wentao Weng, Xingyu Zhou, and R. Srikant. Optimal Load Balancing
with Locality Constraints. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 4(3):1–37, November 2020. doi:10.1145/
3428330.

[ZEH+21] Wei-Zhe Zhang, Ibrahim A. Elgendy, Mohamed Hammad, Abdullah M.
Iliyasu, Xiaojiang Du, Mohsen Guizani, and Ahmed A. Abd El-Latif. Se-
cure and Optimized Load Balancing for Multitier IoT and Edge-Cloud
Computing Systems. IEEE Internet of Things Journal, 8(10):8119–8132,
May 2021. doi:10.1109/JIOT.2020.3042433.

[ZL18] Lei Zhao and Jiajia Liu. Optimal Placement of Virtual Machines for
Supporting Multiple Applications in Mobile Edge Networks. IEEE Trans-
actions on Vehicular Technology, pages 1–1, 2018. doi:10.1109/TVT.
2018.2808171.

[ZLS+17] Lei Zhao, Jiajia Liu, Yongpeng Shi, Wen Sun, and Hongzhi Guo. Optimal
Placement of Virtual Machines in Mobile Edge Computing. In GLOBECOM
2017 - 2017 IEEE Global Communications Conference, pages 1–6, Singapore,
December 2017. IEEE. doi:10.1109/GLOCOM.2017.8254084.

[ZSWZ19] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. Edge Video
Analytics for Public Safety: A Review. Proceedings of the IEEE, 107(8):1675–
1696, August 2019. doi:10.1109/JPROC.2019.2925910.

[ZW21] Fenghui Zhang and Michael Mao Wang. Stochastic Congestion Game for
Load Balancing in Mobile-Edge Computing. IEEE Internet of Things Jour-
nal, 8(2):778–790, January 2021. doi:10.1109/JIOT.2020.3008009.

116

https://wondernetwork.com/pings
https://wondernetwork.com/pings
http://arxiv.org/abs/2101.00784
https://doi.org/10.1145/3428330
https://doi.org/10.1145/3428330
https://doi.org/10.1109/JIOT.2020.3042433
https://doi.org/10.1109/TVT.2018.2808171
https://doi.org/10.1109/TVT.2018.2808171
https://doi.org/10.1109/GLOCOM.2017.8254084
https://doi.org/10.1109/JPROC.2019.2925910
https://doi.org/10.1109/JIOT.2020.3008009

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Approach
	Structure

	Background
	Serverless Computing
	Serverless Edge Computing
	Load Balancing
	Service Placement

	Related Work
	Serverless Edge Computing
	Load Balancing at the Edge
	Serverless Function Placement

	Load Balancers and Their Placement
	Concept
	Least Response Time Load Balancing
	Osmotic Scaling and Scheduling

	Methodology
	Simulating Serverless Edge Computing Systems
	Network Simulation and Topologies
	Using Empirical Data in Simulations
	Captured Metrics

	Evaluation
	Initial Assessment
	Load Balancer Implementation and Parametrization
	Resource Usage and Load Balancer Scale
	Osmotic Scaling and Scheduling

	Discussion
	Load Balancer Implementation and Parametrization
	Resource Usage and Load Balancer Scale
	Osmotic Scaling and Scheduling
	Implications of Osmotic Scaling for Serverless Edge Computing

	Conclusion
	Research Questions
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

