
Design of a Honeypot for Smart Home

Master’s Thesis
submitted in conformity with the requirements for the degree of

Master of Science in Engineering (MSc)
Master’s degree programme IT & Mobile Security

FH JOANNEUM (University of Applied Sciences), Kapfenberg

Supervisor: Martin Fruhmann, Bsc MSc
Submitted by: Markus Helmut Gollmann, BSc

Personal identifier: 2010419003

May 2022

Abstract

The popularity of Smart Homes has been increasing over the last few years and this
trend still carries on. They offer great comfort while causing less struggle. This con-
currence is definitely a treat for homeowners. The budget-friendly Internet of Things
(IoT) offers a lot of devices which are commonly used in Smart Homes. Time and
again, they do not provide a decent security level. This is the point where the problems
might start off. Unnoticed by the homeowner, hackers might compromise the network;
in the end things can even get worse and the homeowner finds himself being held to
ransom.

Although, the number one risk associated with Smart Homes are hacker attacks, only
few IT security mechanisms are applied to protect the Smart Home. In this thesis an
experimental setup is established to test a simple and effective security mechanism,
impressively preventing hacker attacks. This experiment can probably raise the aware-
ness of hacker attacks. The sheer number of failed attacks happening during the exper-
iment period of time will alert homeowners; in the event that a hacker attack still turns
out successful, the homeowner gets immediately informed, which raises the overall
security enormously. The mechanism that can effectively boost the network security is
called "Honeypot". The aim of a honeypot is to reroute the attackers from their orig-
inal target and monitor the attackers’ actions. Subsequently, this information is used
to redesign the security concept of the Smart Home. This rerouting is performed with
simulated vulnerabilities which are easy to exploit.

This thesis evaluates the different design approaches of honeypots and analyses poten-
tial attack vectors for Smart Homes. The knowledge gained from the proof-of-concept
implementation is then used for further improvements of the honeypot, so that the
Smart Home Honeypot is capable of protecting a variety of different Smart Homes
against a variety of attackers.

In the end the evaluation of the design concepts and the results from the experimental
implementation together led to a design guideline for Smart Home Honeypots. The
gained knowledge should be used to create a whole range of different honeypots that
are able to protect all kinds of Smart Homes. At the same time, the setup and the main-
tenance should be kept simple and affordable. This way, a budget-friendly and effective
security mechanism is created which can be installed by any Smart Home owner. If
all precautions explained in this Master Thesis are adopted appropriate honeypots can
effectively protect a Smart Home against virtually all kinds of possible attackers.

Zusammenfassung

Die Beliebtheit von Smart Homes hat in den letzten Jahren zugenommen und dieser
Trend hält weiter an. Der von den NutzerInnen meistgeschätzte Mehrwert ist der große
Komfort und deutlich verringerte Aufwand. Das budgetfreundliche Internet der Dinge
(IoT) bietet eine Vielzahl von Geräten, die häufig in Smart Homes eingesetzt wer-
den. Immer wieder bieten sie jedoch kein angemessenes Sicherheitsniveau und genau
hier können die Probleme beginnen. Unbemerkt vom Hausbesitzer können Hacker das
Netzwerk kompromittieren; am Ende kann es sogar noch schlimmer werden und der
Hausbesitzer findet sich in der Situation wieder, Lösegeld zahlen zu müssen.

Obwohl das größte Risiko im Zusammenhang mit Smart Homes Hackerangriffe sind,
werden nur wenige IT-Sicherheitsmechanismen zum Schutz von Smart Homes ein-
gesetzt. In dieser Arbeit wird ein Versuchsaufbau erstellt, um einen einfachen und
effektiven Sicherheitsmechanismus zu testen, der Hackerangriffe eindrucksvoll ver-
hindern soll. Dieses Experiment schärft außerdem das Bewusstsein der NutzerInnen
für Hackerangriffe. Die schiere Anzahl der fehlgeschlagenen Angriffe während des
Versuchszeitraums wird die HausbesitzerInnen warnen; sollte sich ein Hackerangriff
dennoch als erfolgreich erweisen, werden die HausbesitzerInnen sofort informiert, was
die allgemeine Sicherheit enorm steigert. Der Mechanismus, der die Netzwerksicher-
heit effektiv erhöhen kann, wird "Honeypot"genannt. Das Ziel eines Honeypots ist es,
die Angreifer von ihrem ursprünglichen Ziel umzuleiten und die Aktionen der Angrei-
fer zu überwachen. Anschließend werden diese Informationen genutzt, um das Sicher-
heitskonzept des Smart Home neu zu gestalten. Diese Umleitung wird mit simulierten
Schwachstellen durchgeführt, die sich leicht ausnutzen lassen.

In dieser Arbeit werden die verschiedenen Designansätze von Honeypots bewertet
und potenzielle Angriffsvektoren für Smart Homes analysiert. Die aus der Proof-of-
Concept-Implementierung gewonnenen Erkenntnisse werden dann für weitere Verbes-
serungen des Honeypots genutzt, so dass der Smart Home Honeypot in der Lage ist,
eine Vielzahl von unterschiedlichen Smart Homes gegen eine Vielzahl von Angreifern
zu schützen.

Die Auswertung der Designkonzepte und die Ergebnisse aus der experimentellen Um-
setzung führten schließlich zu einer Design-Richtlinie für Smart Home Honeypots.
Die gewonnenen Erkenntnisse sollen genutzt werden, um eine ganze Reihe von unter-
schiedlichen Honeypots zu erstellen, die in der Lage sind, alle Arten von Smart Homes
zu schützen. Gleichzeitig sollten die Einrichtung und Wartung einfach und kosten-
günstig gehalten werden. Auf diese Weise wird ein budgetfreundlicher und effektiver
Sicherheitsmechanismus geschaffen, der von jedem Smart-Home-Besitzer/Besitzerin
installiert werden kann. Wenn alle in dieser Masterarbeit erläuterten Vorkehrungen ge-
troffen werden, können geeignete Honeypots ein Smart Home effektiv gegen praktisch
alle Arten von möglichen Angreifern schützen.

Acknowledgement
First and foremost, I would like to express my gratitude to my supervisor Martin Fruh-
mann, BSc MSc for his useful comments, remarks and engagement through the devel-
opment of my master thesis.

My grateful thanks are further extended to Ao. Univ.-Prof. Mag.rer.nat. Dr.techn
Johann Lang for proofreading my master thesis and for always having a sympathetic
ear for me and my concerns.

Finally, I am also very grateful to my family, fellow students and my friends, who had
such a positive impact on my master thesis.

THANK YOU!

Contents

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Why do we need a honeypot? . 1
1.2 Objectives . 2
1.3 Methodology . 3
1.4 Thesis Outline . 3

2 Related Work 4

3 Theoretical Background 6
3.1 Honeypots . 6
3.2 Hardware . 7
3.3 Internet of Things . 8
3.4 RTSP Protocol . 10
3.5 Network Security . 10
3.6 Network Segmentation . 11

4 Analysis of an IP Camera 13
4.1 Procedure . 13
4.2 NMAP Results . 13
4.3 Web Server Results . 14
4.4 Privacy related findings . 16

5 Software Components 17
5.1 Installation Raspberry Pi . 17
5.2 Installation Apache, MariaDB . 18
5.3 Install PIP3 . 19
5.4 Install Port Knocking . 19
5.5 Install MAC Changer . 19
5.6 RTSP-Simple Server . 20

i

CONTENTS ii

6 Implementation Honeypot 21
6.1 Basic Concepts and Detection Mechanism 21
6.2 Configuration Apache + MariaDB 22
6.3 Configuration of the alarming process 23
6.4 Creating a Telegram Bot . 24
6.5 Cron jobs . 26
6.6 Configure Port knocking . 27
6.7 Automated Honeypot Deployment 28

7 Results 30
7.1 Impressions from the Proof of Concept Honeypot 30
7.2 Comparison Camera and Honeypot 33

8 Attack Analysis 37
8.1 Test Setup . 37
8.2 Data Analysis . 39
8.3 Attack Scenarios . 42

9 Conclusion and Outlook 46

Bibliography 50

List of Figures

3.1 IT Network Segmentation . 12

4.1 Initial NMAP Scan . 14
4.2 Login Screen . 15
4.3 Management Interface . 16

6.1 Apache log rotate settings . 22
6.2 Apache log files . 23
6.3 Telegram Send configuration . 23
6.4 Telegram Message . 24
6.5 Creating a Telegram Bot Part 1 . 25
6.6 Creating a Telegram Bot Part 2 . 26
6.7 Crontab . 27
6.8 Knockd configuration . 28

7.1 Web service Requests . 31
7.2 IP Camera Web Request . 35
7.3 Honeypot web request . 35

8.1 IT Infrastructure Design . 38
8.2 IT Network Attack . 45

iii

List of Tables

3.1 Technical Details Raspberry Pi 3B+ 8
3.2 RTSP Protocol Commands . 10

6.1 Crontab . 27

iv

Chapter 1
Introduction

The initial chapter presents the basic idea of this master thesis; at the same time, it
tries to clarify the objectives. It starts with an explanation why additional security con-
cepts should be considered while designing a Smart Home and it ends with a short
comparison between a honeypot and other Information Technology (IT) security de-
vices. Moreover, the different design aspects relevant for a well-suited honeypot are
addressed.

1.1 Why do we need a honeypot?

Smart home equipment offers a lot of comfort in any apartment or house; it is little
wonder that such gadgetry becomes more and more popular all over. Homeowners,
however, are unaware of the huge number of threats looming on them. Based on a study
from Statista, the number one risks associated with smart homes are hacker attacks.
Nonetheless, only few additional defense mechanisms are applied. Along with the
rising popularity of the internet of things (IoT) more and more private households are
attacked by criminals.

In 2019 attackers were able to hijack the smart home installation of a couple living in
Milwaukee, US. They installed a camera, a doorbell and a thermostat in order to feel
safe and secure and to enjoy more comfort. Unfortunately, what they achieved was the
complete opposite. One day a voice was talking to them via the camera while, all of a
sudden, the thermostat temperature shifted to 90°F (32.2°C). Luckily, no other smart
devices were connected; otherwise, the consequences might have been even more pre-
carious. In the end the owners were deeply troubled that the 700$ installation obviously
could be misemployed as an unauthorized entrance to their home (Sears, 2019).

CHAPTER 1. INTRODUCTION 2

Based on a forecast by the company Statista the number of smart homes in Austria
will double up within the next few years from 0.81 million in 2020 to 1.69 million
in 2025 (Statista, 2021). This is why it is important that cybersecurity be not only
considered within enterprises but also with respect to private homes. Network security
appliances such as firewall or intrusion detection/prevention (IDS/IPS) systems are
fairly expensive and only very few private people will own one. Another downside is
that these systems have to be updated regularly and the configuration is by no means
trivial. In other words, there have to be simpler solutions of counteracting attacks.

One possible device that might be suitable for a small environment are so-called ‘hon-
eypots’. A honeypot is a specially crafted server that pretends to be a typical smart
home device in order to attract attackers. The huge benefit of honeypots is that they
are cheap and that they do not produce any false positive alerts as do other systems.
The reason for that is that authorized users will not connect to the honeypot, because
they are in the know of the real system. One disadvantage of a honeypot is that it does
not work proactively. So, it can only detect an attack if the attacker is already inside
the network and tries to connect to the honeypot.

Before a honeypot can be used it is pivotal to analyse possible attack vectors. Without
knowing the risks it is impossible to design a working security concept. Not all attack
vectors can be exploited right away. Therefore, it is important to figure out how current
home automation products deal with these threats. This analysis will be used for a more
specific honeypot configuration.

1.2 Objectives

The implementation and the configuration of a honeypot is of key importance. Oth-
erwise, a honeypot might even reduce the level of IT security instead of increasing it.
Theoretical knowledge of the individual components of a honeypot implementation is
imperative to create an accurate and efficient honeypot. Therefore, the most important
components and their intended purpose will be introduced gradually; the respective
information will be provided step by step.

This thesis will be addressing the following pieces of research:

• What attack vectors do exist in smart homes and how can a honeypot be used to
detect an attack?

• Which configuration of a honeypot is needed to reduce the chance of being de-
tected by an attacker?

CHAPTER 1. INTRODUCTION 3

To enhance the configuration of a honeypot a detailed analysis of potential attack vec-
tors will be carried out. This information will be needed for creating a more specific
configuration and behaviour of the honeypot. Such a specific and tailored solution can
provide a higher security level compared to a generic approach.

An analysis of state-of-the-art smart home implementation will be made. The focus
will be on how vendors usually deal with the already discussed attack vectors. That
way, the honeypot can be included into an overall security strategy.

1.3 Methodology

In this thesis qualitative methods and an experiment are used to answer the research
questions. First off, the experiment with the self-designed proof of concept honeypot
is being presented. This honeypot is then exposed to the internet and is used for data
gathering from real attacks. Later on, this data is analysed in order to extract the attack
vectors of smart homes. The knowledge gained from this analysis is determined for
subsequently creating further improvements of the honeypot.

1.4 Thesis Outline

The first section of this thesis will prepare all theoretical knowledge. This theoretical
foundation is needed to make sure that the following theories and guidelines are well
intelligible. All parts of a honeypot implementation will be explained in detail. The
next step will be to analyse possible attack vectors of a smart home and to look at ex-
isting home automation products and how these products are usually protected against
unauthorized access.

Based on the theoretical knowledge and the aforementioned attack vectors a proof-
of-concept implementation of a honeypot will be built. This honeypot will pretend
to be a camera, a heating control and a file share and will be hosted on a Raspberry
Pi platform. Finally, the conclusion of this master thesis will outline a configuration
guideline for the implementation of a honeypot as well as provide a detailed analysis
of potential risks and how vendors deal with them.

Chapter 2
Related Work

The book written by The Honeynet Project (2004) explains the methodologies used
by the "black- hat" hacker community. The explanations of the applied tools and the
trends are considered all along this thesis in the course of the design process of the
Smart Home honeypot. Additionally, the expertise provided by the authors has been
used during the analysis of the recorded attacks against the honeypots.

The authors Joshi & Sardana (2011) explain the concept of honeypots from different
perspectives. Their case studies of practical implementations of honeypots have been
used in this thesis to design a proper implementation within the Smart Home environ-
ment. In first part of the book the most important theoretical aspects of honeypots are
being explained. This information could gratefully be used in this thesis to focus on
the key properties of a Smart Home honeypot in order to optimize its efficiency.

In the master thesis of Rauter (2019) the effectiveness of different honeypot implemen-
tations were evaluated. The results of this thesis influenced the positioning as well as
the alarming strategy of designed Smart Home honeypot. It also showed that a com-
bination of different honeypots was successful in an industrial environment, which
positively influenced the confidence for the experimental setup in the Smart Home
environment.

In the conference paper written by B. Lingenfelter & Sengupta (2020) an analysis of
botnet attacks against three different honeypots was performed. This analysis showed
that most of the attacks against IoT devices are originating from botnets that try to
further expand. The dominant botnet payload is still the Mirai worm. The attack
analysis of this thesis extends the documented analysis by other components such as
the web server. This is why similarities between the two analyses can certainly be

4

CHAPTER 2. RELATED WORK 5

found, which implies that the trend of expanding botnets still carries on.

Although honeypots do not generate any false positive alerts, lots of other risks are
associated with them if their implementation is flawed. The implementation guide-
lines written by Wendzel & Plötner (2007), were adapted for the use in a Smart Home
environment. The experimental setup in this thesis has been reviewed based on the ex-
planation of different risk analyses. This review ensured that a compromised honeypot
within the experimental setup is not able to create any unwanted side effects.

A variety of different implementation options provides the required flexibility of a
honeypot. If a honeypot always performs in the same way it would be too easy to be
detected. The article written by H. Wafi & Bahaweres (2017) focuses on the integra-
tion of modern honeypots. Implementing wireless honeypots follows the trend of the
increased number of wireless IoT devices. The knowledge about these modern honey-
pots has been extended with the previously mentioned sources in this thesis in order to
create the modern self-designed Smart Home honeypot.

In the recent past, the number of IoT devices has increased exponentially which led to
a gap between the security requirements and the implemented security features. In the
article written by Iqbal et al. (2020) an in-depth analysis of the security requirements
as well as a gap analysis were performed. This gap analysis has been used in the design
process of Smart Home honeypots so that threats focusing on this gap can be identified
and redirected to the honeypot for further analysis. This procedure helps to deal with
the gap which, in turn, minimizes the risk of significant damage caused by this security
gap.

The use of Artificial Intelligence (AI) in network security has been analysed by Chu
& Song (2021). Although the implementation and training of AI might not be suitable
for the Smart Home environment, the paper also showed key principles that need to
be considered in an IoT network. These fundamentals could gratefully be used in this
thesis throughout the design of the overall Smart Home security concept.

Chapter 3
Theoretical Background

This chapter provides the essential theoretical background of a Smart Home honeypot.
It also contributes an in-depth explanation of the honeypot security concept as well as a
description of the adopted hardware. Ultimately, a network protocol will be explained
which will be needed to simulate one functionality of the target device. It continues
with a focus on the overall IT security concept as it ought to be implemented in Smart
Homes. Followed by an explanation of the most important network design aspects and
best practice implementations.

3.1 Honeypots

Of course, at this point it is paramount to understand what honeypots are and what they
are designed for. In the very basic form of a honeypot it is a simple computer server
that pretends to be some different device. A honeypot does not try to hide itself, in fact
it exposes itself as much as possible to attackers. So any attacker is instantly led to
the idea that this ‘server’ is vulnerable and easy to exploit. An attacker will then focus
on the honeypot and might ignore the rest of the network infrastructure. After all, the
honeypot seems to be the easiest path first. This allows system administrators to anal-
yse the attacker’s conduct and adjust the security mechanism of the production servers
accordingly. Based on the fact that no authorized user will connect to the honeypot,
one of the major benefits of a honeypot is that it will not generate any false-positive
alerts. In larger environments it might be possible to combine several individual hon-
eypots into one ‘honeynet’. These honeynets simulate not only a single device or a
single service, they rather simulate a whole enterprise network. The simulated net-
work distracts the attacker even longer, so that the administrators have more time for

CHAPTER 3. THEORETICAL BACKGROUND 7

their analysis. In case the attacker realizes that he is connected to a honeypot or a hon-
eynet he will instantly stop any interactions with the systems and try to find the real
production services (Joshi & Sardana, 2011).

One of the most important features in the design of a honeypot is that it has to be
extremely difficult to detect its real identity. As mentioned above, an exposed honey-
pot is pointless. Whoever creates a honeypot ought to know the details of the device,
service or network that the honeypot is meant to simulate. Moreover, the vulnerabilities
presented to the attacker have to match conceivable vulnerabilities of the simulated
device (Mukherjee, 2021).

A more detailed classification of honeypots based on their functionality is not worth-
while for the purpose in a small Smart Home environment and therefore will be skipped
in this paper.

3.2 Hardware

The requirements for a honeypot in a Smart Home environment are completely dif-
ferent from honeypots in industrial enterprises. In Smart Homes it is important that
a honeypot is very easy to set up and to maintain, also acquisition costs and mainte-
nance costs play a major role during the conception phase. For small applications in
a home environment a pocket computer called Raspberry Pi may be perfectly suited.
The Raspberry Pi contains all you need printed on a single circuit board.

3.2.1 Costs

The acquisition price is reasonably low with the Raspberry Pi, and so is the mainte-
nance cost. The latter can be calculated via the power consumption per hour. The
maximum input current for the Raspberry Pi is 2.5 Amperes and its operating voltage
is 5 Volt. The formula below calculates the power consumption per hour

U [V] · I [A] ·h [Hours] = P [Wh] (3.1)

5V ·2.5 A ·1 h = 12.5 Wh (3.2)

Obviously, in order to arrive at the yearly power consumption the value (2.2) has to
be multiplied by 8,760. Presently, the average price for one Kilowatt-hour (kWh) in
Austria is 20 cents. The overall equation for the yearly maintenance charge is the

CHAPTER 3. THEORETICAL BACKGROUND 8

following

P [kWh] ·h [Hours per Year] · c [cost per kWh] = Costs [C] (3.3)

0.0125 kWh ·8,760 h ·0.2 C = 21,9 C (3.4)

Assuming costs of 20 cents per kWh (E-Control, 2022) will lead to a maximum of 22
C for maintenance per year. Here we have to add that it is very unlikely that a honeypot
in fact will constantly draw the maximum power of 12,5W.

3.2.2 Technical Details

Apart from the cost efficiency of the Raspberry Pi also the size of the board with it’s
dimensions of only 86 mm x 56 mm is suitable for a Smart Home, because it can be
located anywhere.

In this master thesis a Raspberry Pi Model 3B+ is being used. The performance of this
model is more than adequate for running a honeypot for a single device (Ltd, 2018). If
several devices with different functionalities such as multiple cameras with individual
video streams ought to be simulated, an upgrade to a more powerful hardware can well
be considered. Otherwise, this model stands out by its performance to cost ratio. The
following table shows the most important specifications.

Description Spezifications
Processor Broadcom BCM2837B0, Cortex-A53 (ARMv8) @ 1.4GHz
RAM 1GB LPDDR2 SDRAM
Wireless Interfaces 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac
Network Interface Gigabit Ethernet over USB 2.0 (max. throughput 300 Mbps)
Power Consumption 5V/2.5A DC power

Table 3.1: Technical Details Raspberry Pi 3B+

3.3 Internet of Things

The key principle of Internet of Things (IoT) is that anything can be connected to
anything and that these things share data between each other. The term IoT can be
found in a variety of different patterns. Popular examples are automobiles which are
equipped with sensors that automatically inform the workshop that the next service
interval is reached, or a heart monitor implanted in a person’s body independently
contacting the ambulance if any inconsistency is recorded. In general, it can be said
that any man-made object with an IP-address assigned, sharing data with other objects,

CHAPTER 3. THEORETICAL BACKGROUND 9

is called an ‘IoT device’. The share of data can be implemented in a variety of ways.
The most common is the use of standard network communication where each device
gets a unique IP-address assigned. As for Smart Homes, these smart things can be
environmental sensors, IP cameras or any window contact providing the information
about open or closed windows. Usually, these sensor data are exchanged with an IoT
gateway which then controls the connected actors. Typically, Smart Home actors are
the heating or cooling as well as the shading system. The behaviour of these systems is
affected by the received sensor data. As an example, the shading system as well as the
cooling can be routinely activated or stopped whenever a specific room temperature
has been recorded. This smart interaction between the sensors and the actors, which
both can be referred to as IoT devices, is the major benefit for homeowners and the
fundamental concept of the Smart Home automation (Chu & Song, 2021).

IoT devices are often connected directly to the internet which increases the attack sur-
face of the Smart Home or an enterprise significantly. The major concerns associated
with IoT devices are privacy and IT security. Many a time it is not clear for the end
user which data is gathered and sent to the IoT gateway. Due to the fact that all IoT
devices in the Smart Home are closely connected, one exploitable vulnerability can be
enough to take control over the Smart Home. The modified data sent by one sensor di-
rectly influences the other devices. The privacy of the IoT data should also be a matter
of concern to the end user if public IoT gateways are used to connect the individual
devices. The received data could potentially be used by companies who sell personal
data of users (Iqbal et al., 2020).

A popular example showing the lack of implemented IT security in IoT devices is the
successfully established Mirai botnet. A botnet is able to control one or more devices
without the notice of their owner. This control can be used for a so-called Distributed
Denial of Service (DDoS) attack, where one target is flooded with data from each
member of the botnet, which results in an interruption of the service. The previously
mentioned Mirai botnet was the largest IoT botnet ever recorded. In 2016 the about
145000 IoT devices were under control which resulted in a DDoS attack with a peak
of 1 Tbps (B. Lingenfelter & Sengupta, 2020).

The key fundamental why it is possible to accomplish a remote control of the IoT de-
vices is called remote code execution. The threat of remote code execution as well
as the information about a real attack is explained in the Chapter 8.3.3 “Remote Code
Execution”. This popular example of the lack of security was one of the impulses that
eventually led to this master thesis. The idea behind a honeypot is the pressing need
for a device that notifies a homeowner of an ongoing attack.

CHAPTER 3. THEORETICAL BACKGROUND 10

3.4 RTSP Protocol

The Real-Time Streaming Protocol (RTSP) was designed to transmit audio and video
data between two endpoints with minimum latency. It was defined in the RFC2326
in 1998 and is nowadays the most frequently used protocol by IP cameras (Ruether,
2022). RTSP supports different commands, so that a client is not limited to viewing
the stream, he or she is also capable of controlling the stream. The most important
commands are listed below:

Command Explanation
OPTIONS The server respond with his capabilities of other commands
DESCRIBE Retrieves the description of the media object
PLAY Starts the media stream
PAUSE Temporarily stops the media stream
SETUP Specifies the transport mechanism to be used
TEARDOWN Stops all media streams and terminates the session

Table 3.2: RTSP Protocol Commands

In this master thesis a simple RTSP server will be used to simulate the video stream
from an original IP camera with the honeypot.

3.5 Network Security

Although the honeypot is a capable objective to enhance the security of a Smart Home,
it is not recommended to solely rely on it. The security design of a Smart Home
should consist out of multiple layers so even if attackers successfully bypasses one of
the implemented security mechanisms, they still do not have full access to the Smart
Home. One principle which is worth considering when designing the security strategy
is the so-called "Defender’s Dilemma". This means that the defender needs to protect
all instances which could be used to compromise a network, whereas the attacker can
focus on one piece of vulnerability to compromise a network. As a consequence, it is
pivotal to have multiple layers because it is nearly impossible to create one single layer
perfectly (Wendzel & Plötner, 2007).

The first and foremost layer in the security concept should be a network firewall. Al-
though an enhanced configuration of a firewall is not trivial, even a simple config-
uration that only blocks external connection attempts can significantly increase the
security level. Further protection features such as Intrusion Detection and Intrusion
Prevention Systems (IDS/IPS) are nowadays implemented directly on the firewall and

CHAPTER 3. THEORETICAL BACKGROUND 11

do not need a further configuration to protect Smart Homes. An even more enhanced
configuration of these systems is feasible, though the standard configuration is suitable
for the protection purpose. Due to the automatic update features the maintenance effort
is fairly low compared to the overall effect on the security (Wendzel & Plötner, 2007).

3.6 Network Segmentation

The next principle which is to be considered during the design phase of a network
is the network segmentation. This means that the IT network should be split up into
multiple segments. These segments allow granular control the network traffic between
them: If the IP camera and the file share with private data are in different network
segments, connections between them can be blocked. With this design an attacker is
unable to access sensitive or private data from the file share even if he has managed
to access the IP camera. This example convincingly shows that the separation of the
smart home equipment from other network devices is highly recommended (Joshi &
Sardana, 2011).

There are two procedures to split the network into different segments. The first one,
which is not very practical, is to physically split the network. This means that there
is no physical connection between the Smart Home equipment and the rest of the net-
work. Each segment uses their own network devices such as switches or firewalls
and has a separate connection to the internet. The second possibility is to use a so-
called logical segmentation with Virtual Local Area Networks (Virtual Local Area
Network (VLAN)s). With the use of VLANs the same network infrastructure can be
used for the different network segments. This method can be easily implemented into
existing networks without the need of separate cabling. This logical segmentation is
performed on the network switch and the network firewall. A detailed explanation how
VLANs work, is beyond the scope of this master thesis (ibid.).

The last part of the network design to be considered is the wireless network. It is highly
recommended to use different Service Set Identifier (SSID)s for the IoT devices and
the normal user devices. This way, also wireless Smart Home equipment is separated
just like the wired equipment. The graphic below illustrates a possible segmentation
of a Smart Home. In this example the red area represents the untrusted internet, the
green area is the trusted network including the management of the network devices,
the personal computers, a file share and of course the honeypot and the yellow area
represents the IoT segment with the Smart Home equipment (H. Wafi & Bahaweres,
2017) .

CHAPTER 3. THEORETICAL BACKGROUND 12

Figure 3.1: IT Network Segmentation

Commonly, personal computers use a well-tested operating system and additional se-
curity applications such as antivirus software. This means that the security level of
these devices is higher than the security level of the IoT devices. The latter are most
likely not as thoroughly tested and have to deal with limited resources, so additional se-
curity features might not be implemented. Therefore, a further segmentation between
the notebooks and the file share is not necessary in a Smart Home network and this
basic segmentation approach is sufficient.

The honeypot should be placed in the trusted network segment, so a connection to the
honeypot indicates that all other security layers have failed. An attacker has gained full
access to the network. In this situation the connection to the internet and the connection
to the file share instantly has to be cut off (Wendzel & Plötner, 2007).

Chapter 4
Analysis of an IP Camera

As mentioned above, it is very important to thoroughly analyze the device that should
be simulated. In this chapter let the device be an ordinary IP camera. The chapter
covers the structure of the analysis as well as the explanation of the results that can be
gathered using the different tools.

4.1 Procedure

The first step in every analysis is to get an overview of the different services which are
offered from the target device. Typically, the tool Network Mapper (NMAP) is used
to perform a so-called port scan. This scan shows all open network ports of the device
and is also able to gather information about the running services e.g. software version
numbers or the operating system. The next step during the analysis is to examine each
service in detail. In this analysis the web server was analyzed without any special
tool. The developer tools in the Google Chrome browser provided enough information
in order to rebuild the web interface of the Internet Protocol (IP) camera. A detailed
explanation of the initial scan as well as an explanation of the web server will be
covered in the following two sections.

4.2 NMAP Results

NMAP is a very powerful tool for network analysis. It is not only capable of identifying
open ports but also the operating system, the service version and the used protocol. For
the initial scan the top 1000 Transmission Control Protocol (TCP) ports were scanned
to get a first overview of the device. In order to get more information the following

CHAPTER 4. ANALYSIS OF AN IP CAMERA 14

additional parameters were used:

• -sC to execute the default scripts of NMAP

• -sV to determine the service/version information of open ports

• -oA to save the result for further investigation without the need of re-scanning
the device

The image below shows the complete command as well as the results for the two open
ports which were discovered.

Figure 4.1: Initial NMAP Scan

The first open TCP port is port 80 is allowing connections to the built in web server
using the Hypertext Transfer Protocol (HTTP). The further analysis of the web server
will be explained in the next section.

The second network service listens to port 8600 which is used for streaming the video
and audio signal. Based on the analysis performed by the tool this service could be
identified as a RTSP stream. Details of the RTSP protocol have already been explained
in Chapter 3.4 “RTSP Protocol”.

4.3 Web Server Results

The web server can be accessed with a web browser. The web page which can be
used for changing administrative settings consists of java script application. It is worth
mentioning that a lot of errors occur by accessing the web page, because resources (e.g.
images) are missing on the device and therefore the browser is not able to load them.
The image below shows the login screen which is visible after successfully connecting
to the server.

CHAPTER 4. ANALYSIS OF AN IP CAMERA 15

Figure 4.2: Login Screen

The java script application includes a lot of errors. This does not only relate to the
missing resources that have already been mentioned earlier; the lack of proper session
handling significantly tarnish the user experience. A well designed and implemented
session handling allows the user to visit the web page multiple times with a single lo-
gin. Typically, sessions can be terminated either by the user itself (e.g. performing a
logout) or a session could be terminated by an idle timeout. For this web application
the developers decided to terminate the session immediately when the page is loaded.
This means that every page reload needs a new login, because there is no existing ses-
sion anymore which could authenticate the user. After the successful authentication
the management panel is visible. Administrative settings such as the network connec-
tion or the password can be modified. The image below displays the web interface.
A detailed explanation of the settings will be provided later on, in the course of the
development of the honeypot.

CHAPTER 4. ANALYSIS OF AN IP CAMERA 16

Figure 4.3: Management Interface

A detailed explanation of the settings will be provided later on, in the course of the
development of the honeypot.

4.4 Privacy related findings

During the analysis of the network traffic generated by the IP camera, various packets
to a public cloud were detected. Further investigations lead to the result that it is pos-
sible to access the camera through a web interface on the website https://mipcm.com.
Each camera has a unique device ID which is also used as a user name cannot be
changed. For the user respectively the home owner it is only possible to set a password
for the device. During the setup process this connection is never mentioned, so it is
very likely that home owners use a weak password as they are not aware of the risk
of a remote access. Therefore, the investigated IP camera can be easily misused as a
spyware.

Chapter 5
Software Components

This chapter includes a record of all necessary packages that have to be installed in
order to successfully operate the honeypot. It starts off with a basic installation of the
Raspberry Pi itself and moves on to the individual packages. For a detailed under-
standing of this chapter some basic knowledge of the Linux operating system such as
changing passwords or adding a new user is a prerequisite.

5.1 Installation Raspberry Pi

The Raspberry Pi is designed to support a variety of different operating system. There
are three different versions of the Raspberry Pi OS available as well as other third-
party operating systems such as Ubuntu or TLXOS. The difference between the three
available versions is the number of additional features which are already included in the
image. In this master thesis the decision was made to use the Raspberry Pi OS in the lite
version. The light version is smallest image and only includes the essentials software
packages and no graphical desktop software, which means that the Raspberry Pi can
only be accessed via the command line. The benefit of the lite image is the reduced
size of the image, it only amounts to 463 MB large, whereas the Raspberry Pi OS with
desktop and recommended software is around 3 GB large. The additional software
packages required run the honeypot will be explained in the following chapters (Ltd,
2018).

For installing the Raspberry Pi OS Lite, the image can be downloaded from the official
website. The next step is to transfer the image to a micro SD card and power on
the Raspberry Pi. It will automatically boot from the Secure Digital (SD) card and
is ready to use. It is recommended to change the default credentials of the standard

CHAPTER 5. SOFTWARE COMPONENTS 18

user "Pi" immediately as well as to allow SSH connections to facilitate remote logins;
no monitor or keyboard is required. It is paramount to choose a strong and reliable
password for all users, otherwise attackers will actively connect to the Raspberry Pi
and compromise the whole operation.

5.2 Installation Apache, MariaDB

The basic installation being performed, the first two packages needed are a web server
and database server. These two are needed for the simulation of web interfaces as well
as for storing data gathered during an attack. This data is pivotal for a subsequent
analysis to understand the anatomy of an attack.

The Rasperry Pi OS is based on a Debian Linux, which means that the basic packet
manager is already installed. This packet manager will be used for installing all of the
additional packages. The major benefit of the packet manager is, that it takes care of
all dependencies a package might have. Otherwise, these would have to be resolved
manually, which might be a very time-consuming process.

The Apache web server was chosen in this master thesis as it is very simple to configure
and one of the most frequently used web servers. MariaDB was chosen as the database
server, because it is the open-source version of the MySQL server and therefore free
of charge.

The two software packages are installed with the following two commands:

root@raspberrypi:~/$ apt-get install apache2

root@raspberrypi:~/$ apt-get install mariadb-server

After the installation of the mariadb-server it is recommended to execute the secure
installation script which is included in the installation with the following command.

root@raspberrypi:~/$ mysql_secure_installation

This script increases the security of the installed database server by automatically per-
forming the following tasks:

• Setting the password for the root user

• Switching to the unix_socket authentication

• Removing the anonymous user

• Disabling the remote login for the root user

CHAPTER 5. SOFTWARE COMPONENTS 19

• Removing the default database "test"

5.3 Install PIP3

The next program that has to be executed in the of the honeypot setup is the python3
package installer pip. This program installs the additional python3 packages such as
the requests package which is needed for the communication with external web servers.
PIP3 can easily be installed using the following command:

root@raspberrypi:~/$ apt-get install python3-pip

The following python3 packages are essential in order to successfully run the honey-
pot:

root@raspberrypi:~/$ pip3 install requests

root@raspberrypi:~/$ pip3 install telegram_send

root@raspberrypi:~/$ pip3 install mariadb

root@raspberrypi:~/$ sudo apt-get install python3-opencv

5.4 Install Port Knocking

Port knocking describes a technique for hiding services. A service is only available for
the user if a specific pattern of connection attempts is performed. To give an example:
port 22 for the SSH service is only open if the user previously tried to connect to
the ports 1001,1002,1003, otherwise the port is closed and no SSH connection can
be established. Port knocking can be used as an additional security feature, because
without knowing the exact pattern no connection to a service can be established. As
for a honeypot this technique is used to hide the SSH port, so a possible attacker does
not recognize a difference between the target device and the honeypot during a port
scan. The port knocking daemon can be easily installed with the following command:

root@raspberrypi:~/$ apt-get install knockd

5.5 Install MAC Changer

The next software utility that is needed to hide the honeypot is called Media Access
Control (MAC) changer. This utility allows to change the MAC address of network
interfaces to a specific ad- dress or to a random address. In this use case we go for
a specific address; this way, the manufacturer of the honeypot will not be disclosed.

CHAPTER 5. SOFTWARE COMPONENTS 20

A MAC address is typically a hardware bound address which originally could not be
changed. This address consists of 48 bits, whereas the first 24 bits are a unique vendor
identifier and the remaining bits are used for consecutive numbering. The goal is to
change the MAC address so that the vendor identifier matches with the target device.
The installation and the configuration of the MAC changer can be achieved using the
following two commands:

user@raspberrypi:~/$ apt install macchanger

user@raspberrypi:~/$ macchanger -m=ae:ca:06:22:89:55 eth0

The configuration command takes two parameters. The first one starting with -m is
the new MAC address of the interface and the second parameter is the name of the
interface which is meant to be changed. The original MAC address can simply be
restored with the parameter -p. Please note that this change is only temporary, if
the honeypot reboots the change has to be re-performed. Therefore, it is advisable to
automatically perform it whenever the boot process is finished.

5.6 RTSP-Simple Server

The last software module that needs to be installed is a simple RTSP server. This server
will be used to stream the video of the simulated IP camera. Due to the complexity of
such a server an external project called "RTSP Simple Server" developed from "aler9"
is used. The pre-compiled binary of the server can be downloaded from code repository
and then started from the command line. In order to mimic the target camera as close as
possible a few additional configurations were applied. All these configurations can be
done by editing the supplied configuration file rtsp-simple-server.yml. The
first one is to change the RTSP port from 8554 to 8600. Next other supported protocols
such as RTMP or HLS were disabled (Aler9, 2022).

Chapter 6
Implementation Honeypot

In this chapter additional configuration steps of the different previously installed soft-
ware modules will be explained. These steps are needed to successfully start and op-
erate the smart home honeypot. This chapter also includes a basic explanation of the
implemented detection and reporting mechanism.

6.1 Basic Concepts and Detection Mechanism

Honeypots are a reactive tool by design, which means that they are not designed to
proactively inform about potential upcoming attacks; this would be the job of vulner-
ability scanners. A honeypot is a passive device waiting for an attacker to establish
a connection before generating an alarm. In the design of the smart home honeypot
the log files of the Apache web server play a major role in the detection process of an
attack. The access log file will be read by the honeypot process in regular intervals
and if a new entry is detected a notification will be sent to the home owner. A message
in the Telegram messenger will be used to inform the home owner about the newly
established connection. Based on the fact that an authorized user or device will never
establish a connection to the honeypot, the home owner can be sure that a malicious
activity has taken place.

The detection mechanism and the alarming mechanism are programmed in modules.
This simplifies further development, because the alarming process can be re-used even
if the design of detection mechanism changes or additional mechanisms are included.
One possible enhancement of the detection mechanism would be to also monitor the
SSH logins and look for unused usernames to detect connection attempts to the Rasp-
berry Pi itself. Login attempts with non-existing usernames are an indication for brute

CHAPTER 6. IMPLEMENTATION HONEYPOT 22

force attacks where the most common username/password combinations are tried out.

6.2 Configuration Apache + MariaDB

Once the basic configuration and installation tasks (see Chapter 4 Installation Funda-
mentals) are performed, there are a few additional steps to be taken before the honey-
pot is ready. The first adaption which has to be made to the Apache web server is a
change of permissions to the access log which is written by the server. This file con-
tains information about every connection which has been established between a client
and a server. This file will regularly be parsed by a python script; a procedure which
is usually repeated every 30 seconds. In case of irregularities the home owner will
be alarmed. Obviously, it is necessary that this file can be read by another process.
The default permission of the file is ‘read and write’ for the user ‘root’ and ‘read’ for
members of group ‘adm’. Other users have no permissions whatsoever to the file. The
permissions have to be set in the settings of the log rotation deamon. However, chang-
ing the permission of the file itself is not sufficient as a new access log file is being
created. The image below shows the log rotation settings of the Apache web server.

Figure 6.1: Apache log rotate settings

By changing the numerical permission to 644 (read/write for the owner, read for the
group and read for all others) instead of 640 read permissions to all other users are
granted. The image below shows the changed permissions to the access log files. All

CHAPTER 6. IMPLEMENTATION HONEYPOT 23

other log files such as the error log have the default permission, without any read access
for other users.

Figure 6.2: Apache log files

6.3 Configuration of the alarming process

During the design process of the honeypot the decision was made to use the Telegram
messenger for alarming the home owner. Telegram provides an Application Program-
ming Interface (API) which can be used to automatically send messages. Apart from
this, a python3 package is available handling the communication between the honey-
pot and the Telegram servers. The installation of the package has already been covered
in the previous chapter. The package needs to be configured once, following the com-
mands listed below:

Figure 6.3: Telegram Send configuration

The creation of the telegram bot itself will be covered in the next section. It goes
without saying that the password and the token itself should not be shared with anyone,
because everybody who knows the token of the bot can send messages on behalf of the
bot. After the successful configuration of the python3 package a message can be easily
sent using the following code:

CHAPTER 6. IMPLEMENTATION HONEYPOT 24

1 import telegram_send

2
3 telegram_send.send(messages=["*ALERT*:\nConnection found from IP:{ip}".

↪→ format(ip=ip)],parse_mode="Markdown")

Listing 6.1: Code snippet for sending the alert message

The function telegram_send.send() takes an array of messages, so it is possible
to send multiple messages in one go. The parameter parse_mode can be used for
further formatting of the message. The screenshot below shows what the message
looks like on the mobile phone of the home owner.

Figure 6.4: Telegram Message

6.4 Creating a Telegram Bot

In this section the process of creating a Telegram bot will be explained. This bot
will be used for sending the alarm messages. For creating or editing an existing
bot the Telegram service called "BotFather" has to be contacted. With the command
/start sent to the BotFather, a reply with all possible commands will be received.
The image below shows this process.

CHAPTER 6. IMPLEMENTATION HONEYPOT 25

Figure 6.5: Creating a Telegram Bot Part 1

Next the command /newbot is needed to create a new bot. For this master thesis the
name "SmartHomeHoney" has been chosen, but it can be any name that has not been
chosen before by any other Telegram Bot. Once the bot has been successfully created,
the API key is included in the reply from the BotFather. This token is then needed for
configuring the telegram_send python package.

CHAPTER 6. IMPLEMENTATION HONEYPOT 26

Figure 6.6: Creating a Telegram Bot Part 2

6.5 Cron jobs

The last section of this chapter focuses on the configuration of the cron jobs. Cron is
a time-based scheduler that can be used to periodically execute tasks. The smart home
honeypot uses this built-in Unix feature to periodically check the access log file on the
Apache web server for new connections. The following command allows to edit the
cron jobs of the user:

user@raspberrypi:~/$ crontab -e

The structure of the Linux crontab consists out of six columns. In the following table
each column of the crontab is contained in one row:

CHAPTER 6. IMPLEMENTATION HONEYPOT 27

Crontab column Name Explanation
m Minute A value in this field means that the command

will be executed in the specified minute of the
hour. e.g. 10 means 10th minute of the hour

h Hour This field specifies the hour of the day in a 24
hour format. e.g. 09 means 9am

dom Day of Month Executes the command only at a specific day
of the month. e.g. 15 means on the 15th day

mon Month Specifies the month in numeric value 1 to 12
dow Day of Week Specifies a specific day of the week. This

value ranges from 0 to 6
command Command Path to the command which should be

executed.

Table 6.1: Crontab explaination

An * in any of the columns means that it is executed every time. E.g. * in the HOUR
field means that the command is executed every hour and not only at a specific hour.
The smallest interval for executing a command is one minute. In order to reduce the
detection time of an attack two cron jobs are needed for the honeypot. To list all cron
jobs for a specific user the command crontab -l can be applied. The image below
shows the configuration which is recommended for the smart home honeypot.

Figure 6.7: Crontab

As can be seen, both commands use the asterisk (*) so that they are executed every
minute, on each day of the year. The second command employs a sleep 30; it instructs
the system to wait for 30 seconds before the log parser script is executed. With this
trick it is possible that the script "log_parser.py" is executed every 30 seconds. This
guarantees that the home owner gets notified within a maximum time of 30 seconds
whenever a new connection is being established. If a even smaller reaction time is
needed it would be possible to create four cron jobs and adjust the sleep time to 15, 30,
45 seconds, so that the script is executed every 15 seconds instead of every 30 seconds.

6.6 Configure Port knocking

The configuration of the knockd service can be made by editing the configuration file
located at /etc/knockd.conf. In this file the sequence for opening and closing a

CHAPTER 6. IMPLEMENTATION HONEYPOT 28

port can be configured. It is very important that this sequence be kept secret; otherwise
anybody would be able to open the port to the service. Therefore, it is highly rec-
ommended to change the initial sequence, because it is publicly available. The image
below shows the example configuration which has been used in this master thesis.

Figure 6.8: Knockd configuration

The knocking sequence for opening the SSH port 22 is set to the TCP ports 123, 1234
and 12345. Connection attempts to these ports have to be made within five seconds in
order to successfully open the port. The closing sequence is configured with the same
ports, but in reversed order.

6.7 Automated Honeypot Deployment

As described in the previous chapters the process of analyzing a Smart Home device
and programming a honeypot is a pretty time-consuming process and does not provide
good scalability. On the other hand, an automated deployment of a more generic hon-
eypot is not as accurate as an individually designed honeypot. This is why it has to
be well evaluated if such an ambiguity can be tolerated or not. The advantage of an
automated honeypot is, that the deployment is very fast, and it can be easily deployed
in multiple network segments, therefore this deployment method is often used in larger
networks (Rauter, 2019).

One framework which can be used for an easy deployment is called "OpenCanary".
This framework allows the user to configure multiple services where each service is an
individual honeypot. The list below shows a subset of the supported services which can
be useful for Smart Homes. These services can be configured in simple configuration
files which are then read by OpenCanary (Canary, 2022).

• SSH: a Secure Shell server alerting on login attempts

• File Transfer Protocol (FTP): a File Transfer Protocol server alterting on login
attempts

CHAPTER 6. IMPLEMENTATION HONEYPOT 29

• GIT: a Git protocol alerting on repository cloning

• HTTP: an HTTP web server alerting on login attempts

• MySQL: a MySQL server altering on login attempts

To compare the generic honeypot with the individual Smart Home honeypot a default
configuration of the HTTP honeypot service is listed below. The OpenCanary services
only provide a login prompt and alerts are triggered if an attacker tries to login to
the service. There are no further web pages available. This HTTP service provides
a basic Hypertext Markup Language (HTML) login page or a login form for a Syn-
ology Network Attached Storage (NAS) out of the box. Another login screen can be
configured manually (Canary, 2022).

{

"http.banner": "Apache/2.2.22 (Ubuntu)",

"http.enabled": true,

"http.port": 80,

"http.skin": "nasLogin",

"http.skin.list": [

{

"desc": "Plain HTML Login",

"name": "basicLogin"

},

{

"desc": "Synology NAS Login",

"name": "nasLogin"

}

],

}

One of the major differences between the generic HTTP honeypot and the self-designed
one, is the number of features supported. The generic honeypot will be identified
immediately after the login because there are no further features available. The self-
designed honeypot will not be detected as easily as it supports all features from the real
device.

Chapter 7
Results

This chapter provides a detailed overview of the implemented features of the honeypot
and a comparison between the honeypot and the original IP surveillance camera. It
starts off with an explanation of the simulated web service followed by an explanation
of the video stream. The comparison of the two devices will track the anatomy of a
typical attack.

7.1 Impressions from the Proof of Concept Honeypot

In this first part the implemented features will be explained one by one. The first one
of these features is the web service. A short explanation of the web service as already
been provided in Chapter 4.3 “Web Server Results”. An in-depth analysis of the web
application reveals that it consists of two parts. The first one is a client side JavaScript
application communicating with the back-end system. The image below shows some
of the requests between the front-end and the back-end. The marked request is used to
get the first basic information from the device such as the username or the nickname.

CHAPTER 7. RESULTS 31

Figure 7.1: Web service Requests

Due to the fact that the JavaScript application has been minified it would be very com-
plicated and time-consuming to reverse engineer the application in order to build a
identical version for the honeypot. This is why the decision was made to use the orig-
inal front-end application and only create a back-end that responds to the requests
from the front-end. One of the challenges by simulating the back-end was that each
request from the front-end contains a unique number. This number is generated by
the JavaScript application and has to be included in the response from the back-end
otherwise the application cannot handle the response and will halt. The back-end has
been created using the programming language recursive initialism PHP: Hypertext Pre-
processor (PHP) and the framework Symfony. This framework is capable of defining
multiple so-called controllers where each controller listens to a specific path. The code
snippet below shows such a controller together with the configured path for this con-
troller.

CHAPTER 7. RESULTS 32

1 /**

2 * @Route("/ccm/ccm_info_get.js")

3 */

4 public function ccm_info(): Response

5 {

6 $response = ’message({type:"ccm_info_get_ack",from:542113792,

↪→ from_handle:859,to_handle:’.$_GET["hfrom_handle"].’,data:{ret:{

↪→ code:"",sub:"",reason:"",desc:""},type:"IPC",sn:"1jfiegbrcrfka",

↪→ nick:"MasterThesis",ver:"v5.3.1.2003161406",spv:"v1"}});’;

7 return new Response($response);

8 }

Listing 7.1: Code snippet of the info controller

This example shows the back-end implementation of the previously mentioned info
request. This controller-based design provides three major benefits. The first one is,
that it is easily possible to extract data from the request e.g. get the unique number with
$_GET["hfrom_handle"] so that the front-end is able to parse the request. The
second advantage is that the request can be stored in a database for further analysis
of the attacker’s demeanor. The code below shows the implementation of the login
controller storing the entered password, the username and the respective time stamp in
the local database.

1 /**

2 * @Route("/ccm/cacs_login_req.js")

3 */

4 public function login_req(ManagerRegistry $doctrine): Response

5 {

6 $entityManager = $doctrine->getManager();

7 $kamtron = new Kamtron();

8 $kamtron->setRequest(’pass:’.$_GET["dpass"].’|duser:’.$_GET["duser"]);

9 $kamtron->setTime(date("Y-m-d H:i:s"));

10 $kamtron->setFile("cacs_login_req.js");

11 $entityManager->persist($kamtron);

12 $entityManager->flush();

13 $response = ’message({type:"cacs_login_ack",from:542113792,from_handle

↪→ :1155,to_handle:’.$_GET["hfrom_handle"].’,data:{result:"",sid:"0

↪→ x2",seq:1089,addr:"192.168.178.65",guest:0,vreq:"",uid:"0x0",lid

↪→ :"0x0",lkey:""}})’;

14
15 return new Response($response);

16 }

Listing 7.2: Code snippet of the login controller

CHAPTER 7. RESULTS 33

For persisting the request in a database the Object-Relational Mapping (ORM) mapper
doctrine is used. This mapper takes care of the database connection as well as the error
handling. So there is no need to type the SQL statements manually. The additional
advantage is that this design provides a very good scalability. If new features are
discovered or a new additional device ought to be simulated, it is easily possible to add
new controllers serving the new requests.

The next feature that has been implement is the video stream. Just like the IP camera
the honeypot is able to stream a video to a client using the RTSP protocol. The imple-
mentation of this feature consists of two parts. The first one is the RTSP simple server
which has already been explained in Chapter 5.6 “RTSP-Simple Server”. The second
part is a python script which reads a stored video on the disks and sends it to the RTSP
server. Clients can now connect to that server to access the video stream. The video
processing in python was achieved by the use of the OpenCV library in combination
the ffmpeg command line utility.

1 import cv2

2 import subprocess as sp

3 if __name__ == "__main__":

4 rtsp_server = ’rtsp://localhost:8600/mystream’ # push server (output

↪→ server)

5 cap = cv2.VideoCapture("/demo-video/demo.mp4")

6
7 sizeStr = str(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))) + \

8 ’x’ + str(int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))

9 fps = int(cap.get(cv2.CAP_PROP_FPS))

10 command = [’ffmpeg’, # ... Built the ffmpeg command...

11 rtsp_server]

12
13 process = sp.Popen(command, stdin=sp.PIPE)

14 while(cap.isOpened()):

15 ret, frame = cap.read()

16 ret2, frame2 = cv2.imencode(’.png’, frame)

17 process.stdin.write(frame2.tobytes())

Listing 7.3: Code snippet of the python RTSP stream

7.2 Comparison Camera and Honeypot

We observe the IP camera and, on the other hand, the simulated services on the hon-
eypot. Each of the implemented features is compared on its own. First off, the initial
information gathering process is correlated. When the whole project was set up, one

CHAPTER 7. RESULTS 34

question arose: Was it possible to create a honeypot that is virtually indistinguishable
from the original camera? But for all that, the result of the proof-of-concept imple-
mentation was surprisingly affirmative. The two code segments below show the port
scan results of the two systems. The first one is from the original IP camera and the
second is from the honeypot.

1 nmap -sV -oA kamtron_scan 192.168.178.67

2 Starting Nmap 7.91 (https://nmap.org) at 2022-02-24 05:01 EST

3 Nmap scan report for 1jfiegbrcrfka_eth0 (192.168.178.67)

4 Host is up (0.0018s latency).

5 Not shown: 998 closed ports

6 PORT STATE SERVICE VERSION

7 80/tcp open http?

8 8600/tcp open asterix?

9 1 service unrecognized despite returning data. If you know the service/

↪→ version, please submit the following fingerprint at https://nmap.org

↪→ /cgi-bin/submit.cgi?new-service :

10 SF-Port8600-TCP:V=7.91%I=7%D=2/24%Time=62175786%P=x86_64-pc-linux-gnu%r(NU

11 SF:LL,6C,"8\0\0\0l\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\xae\xd2\xcc\[\0\0

12 SF:\0\0\xe4\xb7\xd1v\0\0\0\0\xf5\x8f\x05Tmrmt_hello\0\0\0\0\0\0\0\0\0\0\0\

13 SF:0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x0e\0\0\0\x08\xb8\xd1v\0\0\0\x001jfiegbrc

14 ...

Listing 7.4: NMAP Scan of the target device

1 nmap -sV -oA honeypot_scan 192.168.178.76

2 Starting Nmap 7.91 (https://nmap.org) at 2022-02-24 05:11 EST

3 Nmap scan report for 2jfiegbrcrfka_eth0 (192.168.178.76)

4 Host is up (0.00054s latency).

5 Not shown: 998 filtered ports

6 PORT STATE SERVICE VERSION

7 80/tcp open http MWS 0.01

8 8600/tcp open asterix?

9 1 service unrecognized despite returning data. If you know the service/

↪→ version, please submit the following fingerprint at https://nmap.org

↪→ /cgi-bin/submit.cgi?new-service :

10 SF-Port80-TCP:V=7.91%I=7%D=2/24%Time=621759FA%P=x86_64-pc-linux-gnu%r(GetR

11 SF:equest,37B,"HTTP/1\.1\x20200\x20OK\r\nDate:\x20Thu,\x2024\x20Feb\x20202

12 SF:2\x2010:12:10\x20GMT\r\nServer:\x20MWS\x200\.01\r\nLast-Modified:\x20We

13 SF:d,\x2016\x20Feb\x202022\x2018:17:27\x20GMT\r\nETag:\x20\"27a-5d826a982c

14 SF:6ce\"\r\nAccept-Ranges:\x20bytes\r\nContent-Length:\x20634\r\nVary:\x20

15 ...

Listing 7.5: NMAP Scan of the honeypot

CHAPTER 7. RESULTS 35

As can be seen the only difference between the two devices is the type of data returned
in the RTSP stream. This difference is negligible, because it is very unlikely that an
attacker will actually notice the difference.

After the first comparison the next feature, the web application, is addressed. Based on
the fact that it was possible to use the original front-end JavaScript application it is not
virtually impossible to notice any differences between the two devices. Even a detailed
analysis of the sent and received requests does not reveal any perceivable differences.
The only differences found are revealed in the two images below.

Figure 7.2: IP Camera Web Request

Figure 7.3: Honeypot web request

CHAPTER 7. RESULTS 36

The minor differences between the two requests are the returned content type and a
few additional headers. With additional fine-tuning of the Apache server configuration
it would even be possible to eliminate them altogether. Unassumingly, we can see that
this proof of concept implementation of the honeypot is conclusive.

We could prove that it is possible to simulate a device on the Raspberry Pi hardware
platform in such a way that it is very hard to detect the honeypot. In the first overview
both devices have the same behaviour and the same look and feel for the user/attacker.
The marginal differences can only be detected in an in-depth analysis of both devices
side by side. This kind of comparison, however, is inaccessible to any attacker due to
the absence of further information on the simulated type of IP camera.

Chapter 8
Attack Analysis

In this chapter some detailed analysis of attacks against two honeypots in use will be
presented. At first, attacks against the self-designed Smart Home Honeypot will be
evaluated. This evaluation will be followed by the analysis of attacks against an SSH
honeypot. The protection against the identified attack vectors will be presented in the
last part of this chapter.

8.1 Test Setup

The implementation of a honeypot has to be well-prepared, otherwise the honeypot
is potentially a weak spot of the network. In order to safely record and analyze real
attacks against the honeypots, a separate network segment has been created. This seg-
ment is called Demilitarized Zone (DMZ). One of the key properties of a DMZ is,
that connections from the untrusted internet as well as connections from the trusted
office network are allowed. A more detailed explanation of network segmentation has
already been provided in ensuing Chapter 3.6 “Network Segmentation”. The enforce-
ment of the security rules which allow or block specific network traffic is done by the
firewall. A graphical implementation of the network design can be seen below.

CHAPTER 8. ATTACK ANALYSIS 38

Figure 8.1: IT Infrastructure Design

Security policies have to be applied between the different security zones, so that the
potential damage is limited if the honeypot gets compromised by an attacker. The
following security rules were enforced to restrict the network traffic to the DMZ or
originating from the DMZ. With these restrictions in place an attacker is not capable
of successfully establishing connections to the office network originating either from
the internet nor from the honeypot. The risk of a compromised network and also the
potential damage is significantly reduced.

• Traffic from the internet to the DMZ using port 22 Secure Shell (SSH), port 80
(HTTP), port 8600 (RTSP) are forwarded to the honeypot.

• Traffic from the internet to the DMZ on any other port is blocked.

• Traffic from the DMZ to the internet on any port is allowed.

• Traffic from the DMZ to the office network is blocked.

• Traffic from one management PC to the DMZ is allowed.

• Any other traffic from the office network to the DMZ is blocked.

The experimental setup with the honeypots were online for four weeks in order to
gather significant data.

CHAPTER 8. ATTACK ANALYSIS 39

8.2 Data Analysis

The aim of the experimental setup was to gain knowledge about real attacks against
Smart Home devices. Each of the applied honeypots focuses on a different attack vec-
tor. The first one, the self-designed Smart Home Honeypot, homes in on web-based
attacks. These attacks focus on the configured web servers which are running on the de-
vices as well as on the web applications themselves. The honeypot stores information
about all web requests made by an attacker. The second honeypot is used to simulate
an accessible system shell of a Smart Home Device. These shells are commonly used
for the configuration of the devices and are typically protected by usernames and pass-
words. To attract attackers, every username and password combination is eligible for
a ‘successful’ login. During an attack the used username and password combination
as well as the used commands are recorded for later analysis. Although both honey-
pots focus on different attack vectors, the structured way of storing the information is
the same for both implementations. The information gathered by the two honeypots
is stored either in text files using the JavaScript Object Notation (JSON) syntax or the
Structured Query Language (SQL) database. Due to the huge number of attacks caught
by each of the honeypots the analysis is assisted by Python scripts. These scripts are
used to extract the most important parts and create a top five list of the interesting
parameters. A detailed explanation of the results is provided in the two sections below.

8.2.1 Smart Home Honeypot

The first one to be examined within this analysis was the self-designed smart home
honeypot. Information has been gathered from the log files of the web server and from
the log files of the Real Time Streaming Protocol (RTSP) simple server. Unfortunately,
there were no connections established to the RTSP server within the four weeks of the
investigation period. One reason for the lack of connection might the use of a high
port number. All ports from zero up to 1,024 are referred to as well-known ports.
In this port range most of the widely used applications have a dedicated port, e.g.,
HTTP on port 80, HTTPS on port 443. In order to find the open RTSP port 8600 a
larger and therefore more time-consuming port scan would have been needed. Most
of the automated attacks skip the port scan and try to connect directly to the ports
of interest. With this procedure the efficiency of an attack can be increased (Project,
2004). The access log of the web server shows the complete opposite: Nearly 600
different IP addresses were connected to the honeypot generating around 2,000 lines
of log messages.

As already mentioned, the analysis of these huge number of lines is only possible with

CHAPTER 8. ATTACK ANALYSIS 40

scripted assistance. To extract the interesting information out of the Apache access log
the following function has been used.

1 def parseApacheLogLine(line):

2 regex = ’([(\d\.)]+) - - \[(.*)\] "(.*?)" (\d+) (\d+) "(.*?)" "(.*?)"’

3 # Structure Parsed Line:

4 # 0: IP

5 # 1: Timestamp

6 # 2: HTTP method + Path

7 # 3: Status code

8 try:

9 parsed_line = re.match(regex,line).groups()

10 return parsed_line[0], parsed_line[2], parsed_line[3]

11 except:

12 return "", "", ""

Listing 8.1: Parse Apache Access Log

This function is embedded in a script which opens the log file and reads it line by
line. Each line is processed with the function. The heart of the function is the regular
expression in line 2 which processes the input based on the pattern. The log message
is then stored in an array where each item of the array holds a specific information. In
the end the IP address as well as the HTTP method + path and the HTTP status code
is returned to the rest of the program.

By extracting the essential information is could be found out that the attacks focused
primarily on the web server itself and not on the simulated device. Only two connec-
tions passed the login screen, although every password has been accepted. That’s a
clear indicator that automated attacks were used with no manual interaction. Although
nearly no attack focused on the simulated device, it does not mean that the honeypot
did not work as expected. An exploited vulnerability of the web server itself is as dan-
gerous as an exploited vulnerability of the device. Therefore, also attacks against the
web server have to be notified and analysed. Most of the attacks tried to access the
/.env file or the /.robots.txt file. The first one is used in NodeJS environments
to store sensitive data, whereas the second file can be used to get further information
about the structure of the website. Accessing these files is done during the informa-
tion gathering phase of an attack. A more detailed explanation of such an attack that
happened during the test period, is provided in Chapter 8.3 “Attack Scenarios”.

Although the source of an attack usually cannot be identified by the victim, it was very
interesting to see which one was the last server contacting the honeypot. Successful
attackers try their best to hide their IP address. One of the techniques used to achieve

CHAPTER 8. ATTACK ANALYSIS 41

this goal is the use of proxy servers. Proxy servers can be utilized to redirect connec-
tions. The attacker connects to the proxy and initiates a new connection towards the
victim originating from the proxy. Without access to the proxy server, the victim has
no chance to identify the origin of the attack as it only sees the connection to the proxy
server while the connection between the attacker and the proxy server is concealed.
Of course, the proxy server can be chained which makes it even harder to identify the
source of the attack.

The analysis revealed the top 5 most used IP addresses:

1. IP: 45.155.204.146 : 112 times (Russia)

2. IP: 188.215.235.120 : 100 times (Cambodia)

3. IP: 2.57.121.51 : 83 times (Romania)

4. IP: 45.148.10.81 : 44 times (Netherlands)

5. IP: 157.230.216.203 : 38 times (United States)

8.2.2 SSH Honeypot

The second honeypot which has been used for data gathering is the SSH honeypot
called "Cowrie". Cowrie is an open source SSH honeypot with lots of features already
built into it. The source code of the project can be found on a public GitHub repository
(Oosterhof, 2022). This honeypot can be installed within minutes and the placement in
the network is the same as the one for the first honeypot. The only difference between
the two honeypots is that the SSH honeypot requires a different port mapping than the
Smart Home honeypot. The firewall security policy has to be adjusted accordingly.
Cowrie provides a variety of different logging mechanisms. In this setup the MariaDB
database as well as JSON log files have been used. Although the honeypot was only
online for a short period of around two weeks, more than 344,000 lines of text have
been written to the log file. It would be impossible to analyze the data by hand, so a
simple Python script has been created. This script consists of three parts. The first one
reads the content of the file and creates a JSON object out of the string. Each line of
the file is a single event such as login, logout, or an executed command. In the next
step each line is processed individually, and the key indicators were extracted. For this
experiment the used login credentials, the executed commands and the origin of the
attack were extracted from the gathered information. The last step of Python script
counts the events and provides the results in an easily readable way.

At first the login credentials were analyzed. The list below shows the top 5 most used

CHAPTER 8. ATTACK ANALYSIS 42

username and password combination

1. user: root, password: admin (23,302 times)

2. user: root, password: 111111 (1,199 times)

3. user: user, password: 1 (394 times)

4. user: root, password: 11111111 (349 times)

5. user: root, password: 123123 (178 times)

As can be seen from the results above, it is very important that strong passwords are
used all the time. Even if the device is "only" accessible from the internal network.
The next interesting information which could be gathered are the executed commands.
The most frequently executed commands are used to download execute shell scripts.
These scripts are either a backdoor to the system which should ensure reliable access
or crypto miners which make use of the hardware resources from the server. The ex-
ecuted commands contain sensitive information such as script parameters or Uniform
Resource Locator (URL) addresses where scripts are loaded, therefore it is not possi-
ble to print the commands into this thesis. Other commands which were not intended
to load any scripts were used for information gathering. As an example the command
uname -s -v -n -r -m were used to display information about the kernel ver-
sion and the operating system in general. A detailed explanation of the identified attack
will be provided in the next section.

8.3 Attack Scenarios

This section is used to explain attacks that have been recorded by one of the used
honeypots. Two of the attacks tried to use the vulnerabilities to gain access to the
device and one attack tried to install a so-called crypto miner. The crypto miner attack
has been recorded on the cowrie SSH honeypot, whereas the other two attacks have
been recorded on the Smart Home Honeypot.

CHAPTER 8. ATTACK ANALYSIS 43

8.3.1 Cryto Miner

The first attack which is analysed was found in the following log message:

1 {"eventid":"cowrie.command.failed","input":"curl -s -L http://<censored

↪→ data>/setup_c3pool_miner.sh | LC_ALL=en_US.UTF-8 bash -s <command

↪→ shortend>","sensor":"raspberrypi","timestamp":"2022-04-25T10

↪→ :23:11.499849Z","src_ip":"<private Data>","session":"24747365e06b"}

Listing 8.2: Crypto Miner example

The attacker tried to execute two commands connected with a pipe. The first one
curl -s -L was used to download the miner to the victim. The second command
sets a charset and tries to execute the install script which has previously been down-
loaded. A complete analysis of the payload is beyond the scope of this thesis.

Although these crypto miners do not harm the network directly nor do they try to
steal private information. The installation should be avoided because they still have
an impact to the network. The aim of such miners is to use the system resources for
generating crypto currency. The impact to the network is reduced performance due to
the unauthorized employment of hardware resources.

An effective countermeasure to this attack is the use of a firewall in combination with
an Intrusion Detection System (IDS)/Intrusion Prevention System (IPS) which is able
to track the signature of such payloads and blocks the connection immediately. Down-
loads cannot be completed anymore and therefore the installation process will fail.

8.3.2 Password leakage

The aim of the next attack is to leverage passwords with the use of Common Vulnera-
bilities and Exposures (CVE) CVE-2012-707. This attack has been identified with the
following log message from the Apache access log file.

1 <censored IP> - - [01/Apr/2022:16:57:19 +0100] "GET /?a=fetch&content=<php>

↪→ die(@md5(HelloThinkCMF))</php> HTTP/1.1" 200 600 "-" "Mozilla/5.0 (

↪→ Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

↪→ Chrome/78.0.3904.108 Safari/537.36"

Listing 8.3: Password leakage

This attack uses a window of vulnerability in the WordPress Core 3.4 to leak pass-
words. Word- Press used a weak hashing algorithm, which allowed attackers to gain
access to the plain-text passwords. The impact of this attack depends on the strength

CHAPTER 8. ATTACK ANALYSIS 44

of the password. The other thing that raises the vulnerability is if the same password
is being used for different services.

Mitigating such attacks with network protection devices can be very tricky. It is only
possible if the signature is already present to firewalls or IDS/IPS systems. Otherwise,
the most effective mitigation techniques are regular updates of all software components
and a strong password policy with a separate password for each service.

8.3.3 Remote Code Execution

The last attack and – at the same time - one of the most dangerous recorded attacks
belongs to the category ‘remote code execution’. This category allows an attacker
to execute arbitrary code on the victim’s machine. The attack has been found in the
following log message

1 <private IP> - - [02/Apr/2022:21:41:06 +0100] "POST /cgi-bin/.%2e/.%2e/.%2e

↪→ /.%2e/bin/sh HTTP/1.1" 400 459 "-" "Mozilla/5.0 (Windows NT 10.0;

↪→ Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome

↪→ /78.0.3904.108 Safari/537.36"

Listing 8.4: Remote Code Execution

The attacker tried to use a so-called path traversal vulnerability from the web server to
execute shell commands. Also, a simple Web Application Firewall (WAF) bypass has
been used, by using the URL encoded form of a dot which is %2e. WAF’s try to detect
special URL pattern to identify an attack. The pattern ../ will be recognized as a
path traversal attempt, whereas .%2e/ might not be detected, although it has the same
meaning for the web server. The URL decoding takes place after the WAF by the web
server itself. With this vulnerability the attacker is able to take over the whole device.
The compromised device can be used as so-called "jumphost" for further navigation
through the internal network (Project, 2004).

The associated risk with such a vulnerability is most daunting. One potential damage
could be the encryption of files by ransomware. The other one is the potential theft of
files. Possible mitigation for such attacks are the same as for the previous attacks: the
use of network security devices and a regular update of the software.

The most effective strategy to limit the potential impact of an attack of this kind is the
network segmentation. With network segmentation in place, the attacker will not be
able to travel through the complete network and gain access to other devices or files.

As the remote code execution is doubtlessly the most dangerous attack, the graphic

CHAPTER 8. ATTACK ANALYSIS 45

below illustrates the different steps of a network infiltration and where the attack can
be stopped.

Figure 8.2: IT Network Attack

1. Step: A connection between the IP camera and the attacker has been successfully
established. The attacker has persistent access to the device.

2. Step: The attacker tries to move inside the network. If no network segmentation
is used, he/she can now directly connect to the file share.

3. Step: In this example with network segmentation, the traffic is redirected to the
firewall.

4. Step: Without a strict security policy the traffic would be forwarded by the fire-
wall, to the file share.

5. Step: The connection between the IP camera and the file share has been success-
fully established.

This scenario highlights the importance of the firewall device with regard to the overall
network security. The firewall can stop the attack at multiple points. In Step 1 the
firewall is capable of blocking the remote-control connection between the attacker and
the IP camera. In Step 3 the firewall is capable of checking if the connection attempt
between the file share and the camera is legitimate.

Chapter 9
Conclusion and Outlook

When the topic of this master thesis was raised for the first time it was not a foregone
conclusion that it would be possible to be accomplished. The safety analysis in the
beginning uncovered major security issues of smart home devices; this, in turn, raised
the awareness for IT security in a smart home environment.

The causes of risk were addressed in detail. In order to examine the effectiveness of
the use of honeypots an experiment was thoroughly prepared and conducted. Two
honeypots of very different descent have been used: The first one was self-designed
while the second was ready-made (cowrie SSH) offered by public GitHub repository.

The self-designed honeypot performed even better than anticipated. It was almost im-
possible for attackers to notice any difference between the honeypot and a real device
that it was meant to simulate. Overall, it was on par with the object of comparison, the
cowrie SSH honeypot. The reason for this surprising outcome was the bespoke nature
of that self-designed example, made-to-measure for the particular purpose. The cowrie
SSH honeypot, on the other side, had its virtues as well.

Of course, the security concepts mentioned in the past few chapters have to be allowed
for. This being said, the application of honeypots can increase the security level of a
smart home by a wide margin. The initial expectations for the increase of smart home
security by the use of honeypots were even exceeded.

What might be the next stride to even promote the effectiveness of honeypots?

The first step could be an improvement in the deployment and update process of hon-
eypots. This way, the scalability of the system would be enhanced. An automated
deployment of smart home honeypots could close the gap between the generic frame-
works and self-designed honeypots in terms of ease and comfort.

CHAPTER 9. CONCLUSION AND OUTLOOK 47

The second objective could be the integration of external Security Information and
Event Management (SIEM) analysis tools which enhances and simplifies the analysis
of the log files.

At the time being, for the proof of concept only a single Smart Home device has been
simulated. Even though a commonly used device has been chosen, this honeypot might
not be suitable for each and every smart home application.

Therefore, the ensuing step should be to extend the list of supported devices so that
the honeypot is capable of simulating a range of devices if needed. With this next
step the possible coverage of smart homes can be significantly improved. It would
be favourable to implement different alerting mechanisms, avoiding the obligation to
install the messenger app Telegram or the like.

Acronyms

AI Artificial Intelligence

API Application Programming Interface

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DMZ Demilitarized Zone

FTP File Transfer Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

IT Information Technology

JSON JavaScript Object Notation

MAC Media Access Control

NAS Network Attached Storage

NMAP Network Mapper

ORM Object-Relational Mapping

PHP recursive initialism PHP: Hypertext Preprocessor

RTSP Real Time Streaming Protocol

SD Secure Digital

SIEM Security Information and Event Management

SQL Structured Query Language

CHAPTER 9. CONCLUSION AND OUTLOOK 49

SSH Secure Shell

SSID Service Set Identifier

TCP Transmission Control Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

WAF Web Application Firewall

Bibliography

Aler9 (2022). RtspSimpleServer. Available from: https://github.com/aler9/
rtsp-simple-server [Jan. 25, 2022] (cit. on p. 20).

B. Lingenfelter, I. V. & S. Sengupta (2020). “Analyzing Variation Among IoT Botnets
Using Medium Interaction Honeypots”. In: 10th Annual Computing and Commu-

nication Workshop and Conference (CCWC) 10, pp. 0761–0767. DOI: 10.1109/
CCWC47524.2020.9031234 (cit. on pp. 4, 9).

Canary, T. (2022). OpenCanary. Available from: https://opencanary.readthedocs.
io/en/latest/starting/opencanary.html [May 20, 2022] (cit. on
pp. 28, 29).

Chu, M. & Y. Song (2021). “Analysis of network security and privacy security based
on AI in IOT environment”. In: 2021 IEEE 4th International Conference on In-

formation Systems and Computer Aided Education (ICISCAE), pp. 390–393. DOI:
10.1109/ICISCAE52414.2021.9590786 (cit. on pp. 5, 9).

E-Control (Jan. 1, 2022). Was kostet eine kWh Strom. Available from: https://
www.e-control.at/konsumenten/strom/strompreis/was-kostet-

eine-kwh [Jan. 25, 2022] (cit. on p. 8).
H. Wafi A. Fiade, N. H. & R. B. Bahaweres (2017). “Implementation of a modern

security systems honeypot Honey Network on wireless networks”. In: International

Young Engineers Forum (YEF-ECE), pp. 91–96. DOI: 10.1109/YEF- ECE.
2017.7935647 (cit. on pp. 5, 11).

Iqbal, W., H. Abbas, M. Daneshmand, B. Rauf & Y. A. Bangash (2020). “An In-Depth
Analysis of IoT Security Requirements, Challenges, and Their Countermeasures via
Software-Defined Security”. In: IEEE Internet of Things Journal 7.10, pp. 10250–
10276. DOI: 10.1109/JIOT.2020.2997651 (cit. on pp. 5, 9).

Joshi, R. & A. Sardana (2011). Honeypots: a new paradigm to information security.
1st ed. CRC Press. ISBN 1578087082 (cit. on pp. 4, 7, 11).

https://github.com/aler9/rtsp-simple-server
https://github.com/aler9/rtsp-simple-server
https://doi.org/10.1109/CCWC47524.2020.9031234
https://doi.org/10.1109/CCWC47524.2020.9031234
https://opencanary.readthedocs.io/en/latest/starting/opencanary.html
https://opencanary.readthedocs.io/en/latest/starting/opencanary.html
https://doi.org/10.1109/ICISCAE52414.2021.9590786
https://www.e-control.at/konsumenten/strom/strompreis/was-kostet-eine-kwh
https://www.e-control.at/konsumenten/strom/strompreis/was-kostet-eine-kwh
https://www.e-control.at/konsumenten/strom/strompreis/was-kostet-eine-kwh
https://doi.org/10.1109/YEF-ECE.2017.7935647
https://doi.org/10.1109/YEF-ECE.2017.7935647
https://doi.org/10.1109/JIOT.2020.2997651
https://isbnsearch.org/isbn/1578087082

BIBLIOGRAPHY 51

Ltd, R. P. (Mar. 14, 2018). Raspberry Pi 3 Model B+. Available from: https://
www.raspberrypi.com/products/raspberry-pi-3-model-b-

plus/ [Dec. 20, 2021] (cit. on pp. 8, 17).
Mukherjee, L. (Dec. 30, 2021). What Is a Honeypot in Network Security? Definition,

Types Uses. Available from: https://sectigostore.com/blog/what-
is- a- honeypot- in- network- security- definition- types-

uses/ [Jan. 25, 2022] (cit. on p. 7).
Oosterhof, M. (2022). Cowrie. Available from: https://github.com/cowrie/
cowrie [Apr. 1, 2022] (cit. on p. 41).

Project, T. H. (2004). Know your enemy: learning about security threats. 2nd ed.
Addison-Wesley Longman, Amsterdam. ISBN 0321166469 (cit. on pp. 4, 39, 44).

Rauter, T. (2019). Improving security in industrial control systems using a honeypot/honeynet-

based approach (cit. on pp. 4, 28).
Ruether, T. (Jan. 6, 2022). RTSP: The Real-Time Streaming Protocol Explained (Up-

date). Available from: https://www.wowza.com/blog/rtsp- the-
real-time-streaming-protocol-explained [Jan. 25, 2022] (cit. on
p. 10).

Sears, A. (Sept. 23, 2019). ’Felt so violated:’ Milwaukee couple warns hackers are

outsmarting smart homes. Available from: https://www.fox6now.com/
news/felt-so-violated-milwaukee-couple-warns-hackers-

are-outsmarting-smart-homes [Feb. 25, 2022] (cit. on p. 1).
Statista (June 2021). Prognose zur Anzahl der Smart Home Haushalte nach Segmenten

in Österreich für die Jahre 2017 bis 2025. Available from: https://de.statista.
com/prognosen/801569/anzahl-der-smart-home-haushalte-

nach-segmenten-in-oesterreich [Feb. 25, 2022] (cit. on p. 2).
Wendzel, S. & J. Plötner (2007). Praxisbuch Netzwerk-Sicherheit : Risikoanalyse,

Methoden und Umsetzung ; [optimale Netzwerk- und Serverabsicherung ; für Unix/Linux-

und Windows-Systeme ; VPN, OpenVPN, IT-Grundschutz, Penetration Testing, Viren,

Würmer und Trojaner]. Galileo Press. ISBN 9783898428286 (cit. on pp. 5, 10–12).

https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://sectigostore.com/blog/what-is-a-honeypot-in-network-security-definition-types-uses/
https://sectigostore.com/blog/what-is-a-honeypot-in-network-security-definition-types-uses/
https://sectigostore.com/blog/what-is-a-honeypot-in-network-security-definition-types-uses/
https://github.com/cowrie/cowrie
https://github.com/cowrie/cowrie
https://isbnsearch.org/isbn/0321166469
https://www.wowza.com/blog/rtsp-the-real-time-streaming-protocol-explained
https://www.wowza.com/blog/rtsp-the-real-time-streaming-protocol-explained
https://www.fox6now.com/news/felt-so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes
https://www.fox6now.com/news/felt-so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes
https://www.fox6now.com/news/felt-so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes
https://de.statista.com/prognosen/801569/anzahl-der-smart-home-haushalte-nach-segmenten-in-oesterreich
https://de.statista.com/prognosen/801569/anzahl-der-smart-home-haushalte-nach-segmenten-in-oesterreich
https://de.statista.com/prognosen/801569/anzahl-der-smart-home-haushalte-nach-segmenten-in-oesterreich
https://isbnsearch.org/isbn/9783898428286

	List of Figures
	List of Tables
	1 Introduction
	1.1 Why do we need a honeypot?
	1.2 Objectives
	1.3 Methodology
	1.4 Thesis Outline

	2 Related Work
	3 Theoretical Background
	3.1 Honeypots
	3.2 Hardware
	3.3 Internet of Things
	3.4 RTSP Protocol
	3.5 Network Security
	3.6 Network Segmentation

	4 Analysis of an IP Camera
	4.1 Procedure
	4.2 NMAP Results
	4.3 Web Server Results
	4.4 Privacy related findings

	5 Software Components
	5.1 Installation Raspberry Pi
	5.2 Installation Apache, MariaDB
	5.3 Install PIP3
	5.4 Install Port Knocking
	5.5 Install MAC Changer
	5.6 RTSP-Simple Server

	6 Implementation Honeypot
	6.1 Basic Concepts and Detection Mechanism
	6.2 Configuration Apache + MariaDB
	6.3 Configuration of the alarming process
	6.4 Creating a Telegram Bot
	6.5 Cron jobs
	6.6 Configure Port knocking
	6.7 Automated Honeypot Deployment

	7 Results
	7.1 Impressions from the Proof of Concept Honeypot
	7.2 Comparison Camera and Honeypot

	8 Attack Analysis
	8.1 Test Setup
	8.2 Data Analysis
	8.3 Attack Scenarios

	9 Conclusion and Outlook
	Bibliography

