
Developer Documentation

Open Audio Search

Open Audio Search is a search engine for audio. It uses automated speech recognition to

turn spoken word into text, which is then indexed in a full-text search engine. The engine

can subscribe to RSS feeds to ingest content from different sources. Through a web user

interface, users can search in the generated transcripts of radio shows and podcasts and

play them right from the time mark of a search result.

About

Open Audio Search is an open source project by arso collective and cba - cultural

broadcasting archive.

Funding

The development of Open Audio Search is supported by:

Links

GitHub Repository

https://github.com/openaudiosearch/openaudiosearch

Project Website

https://openaudiosearch.org

Demo site

https://demo.openaudiosearch.org

Open Audio Search – User and Developer Documentation 2 / 13

https://arso.xyz/
https://demo.openaudiosearch.org/
https://openaudiosearch.org/
https://github.com/openaudiosearch/openaudiosearch
https://cba.fro.at/
https://cba.fro.at/
https://arso.xyz/
https://cba.media/
https://prototypefund.de/
https://netidee.at/

Content

Open Audio Search...2

About...2

 Funding...2

Architecture..4

Core (or backend)..4

Worker...5

Frontend..6

Packaging..6

Development setup..7

Tips and tricks..7

Development mode..7

Frontend development...7

Requirements..7

Inspect the Redis databaes...8

ASR Evaluation..8

NLP Evaluation..8

Generate Devset...8

Access NLP Results..9

Notes..10

Notes on Elastic...11

Create an index with a delimited payload filter:...11

ffmpeg..12

User Guide...13

User Interface..13

Search...13

Login..14

How To...14

Find a seach term in an audio track..14

Find all audio tracks of a specific genre..14

Get audio tracks from last month..14

Filter audio tracks by their duration...14

Import new sources...15

Open Audio Search – User and Developer Documentation 3 / 13

Get an audio track's transcript...15

Frequently Asked Questions..16

How can I contribute to OAS?...16

How do you transcribe audio tracks?..16

Open Audio Search – User and Developer Documentation 4 / 13

Architecture

The following paragraphs will outline the technical architecture of Open Audio Search

(OAS). This is directed towards developers and system administrators. We intend to

expand and improve this document over time. If something in here is unclear to you or you

miss explanations, please feel invited to open an issue.

Core (or backend)

This is a server daemon written in Rust. It provides a REST-style HTTP API and talks to

our main data services: CouchDB and Elasticsearch or OpenSearch.

The core compiles to a static binary that includes various sub commands, the most

important being the run command which runs all parts of the core concurrently. The other

commands currently mostly serve debug and administration purposes.

The core oftenly uses the changes endpoint in CouchDB. This endpoint returns a live-

streaming list of all changes to the CouchDB. Internally, CouchDB maintains a log of all

changes made to the database, and each revision is assigned a sequence string. Various

services in OAS make use of this feature to visit all changes made to the database.

The core uses the asynchronous Tokio runtime to run various tasks in parallel. Currently,

this includes:

• A HTTP server to provide a REST-style API that allows to GET, POST, PUT and

PATCH the various data records in OAS (feeds, posts, medias, transcripts, ...). It

also manages authentication for the routes. It can serve the web frontend either by

statically including the HTML, JavaScript and other assets directly in the binary, or

by proxying to another HTTP server (useful for development). The HTTP server

uses Rocket, an async HTTP framework for Rust.

• An indexer service that listens on the CouchDB changes stream and indexes all

posts, medias and transcripts into an Elasticsearch index. For the index, our data

model is partially flattened to make querying more straightforward.

• The RSS importer also listens on the changes stream for Feed records and then

periodically fetches these RSS feeds and saves new items into Post and Media

Open Audio Search – User and Developer Documentation 5 / 13

https://rocket.rs/
https://tokio.rs/
https://docs.couchdb.org/en/stable/api/database/changes.html
https://opensearch.org/
https://www.elastic.co/
https://couchdb.org/
https://rust-lang.org/
https://github.com/openaudiosearch/openaudiosearch/issues/new/choose

records. It also sets a flag on the Media records depending on the settings that are

part of the Feed record whether a transcribe job is wanted or not.

• A job queue also listens on the changes stream and may, depending on a

TaskState flag, create jobs for the worker. The job services currently uses the

Celery job queue with a Redis backend.

The core still is rough at several edges. While it works, the internal APIs will still change

quite significantly towards better abstractions that makes these data pipelines more

flexible and reliable. We need better error handling in cases of failures and better

observability. There is a lot of room for optimizations. For example, at this point each

service consumes a separate changes stream, and there is no internal caching of data

records. This also means that any performance issues that might be visible at the moment

will have a clear path to being solved.

Worker

The worker is written in Python. It currently uses the Celery job queue to retrieve jobs that

are created in the core. It performs the jobs and then posts back its results to the core over

the HTTP API exposed by the core. Usually, it will send a set of JSON patches to update

one or more records in the database with its results.

Currently, the two main tasks are:

• transcribe: This task takes an audio file, downloads and converts it into a WAV file

and then uses the Vosk toolkit to create a text transcription of the audio file. Vosk is

based on Kaldi ASR, an open-source speech-to-text engine. To create these

transcripts, a model for the language of the audio is needed. At the moment, the

only model that is automatically used in OAS is the German language model from

the Vosk model repository. We will soon provide more models, and will then also

need to implement a mechanism to first detect the spoken language to then use the

correct model.

• nlp: This task takes the transcript, description and other metadata of a post as input,

and then performs various NLP (natural language processing) steps on this text.

Most importantly, it tries to extract keywords through an NER (named entity

recognition) pipeline. Currently, we are using the SpaCy toolkit for this task.

Open Audio Search – User and Developer Documentation 6 / 13

https://spacy.io/
https://kaldi-asr.org/
https://alphacephei.com/vosk/
https://docs.celeryproject.org/en/stable/
https://redis.io/
https://docs.celeryproject.org/en/stable/getting-started/introduction.html

We plan to add further processing tasks, e.g. to detect the language of speech, restore

punctuation in the transcript, chunk the transcript into fitting snippets for subtitles.

Frontend

The frontend is a single-page web application written with React. It uses the Chakra UI

toolkit for various components and UI elements. The frontend talks to the core through its

HTTP API. It is mostly public-facing with a dynamic search page that allows filtering and

faceting the search results. We currently use ReactiveSearch components for the search

page. It also features a login form for administrators, which unlocks administrative

sections. Currently, this only includes a page to manage RSS feeds and some debug

sections. We will add more administrative features in the future.

Packaging

OAS includes Dockerfiles for the core and the worker to easily package and run OAS as

Linux containers. It also includes docker-compose files to easily start and run OAS

together with all required services: CouchDB, Elasticsearch and Redis.

The docker images can be built from source with the provided Dockerfiles. We also push

nightly images to Dockerhub, which allows to run OAS without building from source.

Open Audio Search – User and Developer Documentation 7 / 13

https://docs.docker.com/compose/
https://docs.docker.com/engine/reference/builder/
https://github.com/appbaseio/reactivesearch
https://chakra-ui.com/
https://reactjs.org/

Development setup

Follow the instructions for the development setup in the README.

Tips and tricks

Development mode

The server can be reloaded automatically when application code changes. You can enable

it by setting the oas_dev env config, or starting the server with OAS_DEV=1 server.py.

Frontend development

Requirements

You need Node.js and npm or yarn. yarn is recommended because it's much faster.

On Debian based systems use the following to install both Node.js and yarn:

curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -

echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee

/etc/apt/sources.list.d/yarn.list

sudo apt update

sudo apt install yarn nodejs

Development

For development webpack-dev-server is included. In this folder, run yarn to install all

dependencies and then yarn start to start the live-reloading development server. Then

open the UI at http://localhost:4000. In development mode, the UI expects a running

oas_worker server at http://localhost:8080.

Deployment

Make sure to run yarn build in this directory after pulling in changes. The oas_worker

server serves the UI at /ui from the dist/ folder in this directory.

Open Audio Search – User and Developer Documentation 8 / 13

https://docs.openaudiosearch.org/README.html

Inspect the Redis databaes

redis-commander is a useful tool to inspect the Redis database.

install redis-commander

yarn global add redis-commander

or: npm install -g redis-commander

start redis-commander

redis-commander

Now, open your browser at http://localhost:8081/

ASR Evaluation

Start worker:

cd oas_worker

python worker.py

Run transcription using ASR engine in another Terminal:

cd oas_worker

download models if needed

python task-run.py download_models

transcribe a single file

python task-run.py asr --engine ENGINE [--language LANGUAGE] --file_path

FILE_PATH [--help]

(e.g).

python task-run.py asr --engine vosk --file_path ../examples/frn-leipzig.wav

NLP Evaluation

Generate Devset

Generate and serve Devset RSS feed on localhost port 6650:

cd oas_worker/

poetry run python devset/generate_devset.py

sh devset/serve_nlp_devset.sh

Open Audio Search – User and Developer Documentation 9 / 13

http://localhost:8081/
https://www.npmjs.com/package/redis-commander

Import RSS feed:

In UI, login first. Then head over to Importer-Tab. There fill in the URL

http://127.0.0.1:6650/rss.xml into the Add new feed-Section and make sure to check

the Transcribe items-Button.

Access NLP Results

In Search-UI, click on a post you want to inspect. From its URL, copy the Post-ID and

paste it as argument to the examples nlp.py script:

cd oas_worker/examples

poetry run python nlp.py <OAS-POST-ID>

Open Audio Search – User and Developer Documentation 10 / 13

Notes

This section contains various notes, tips and tricks and other discoveries that are

somehow related to Open Audio Search development.

Open Audio Search – User and Developer Documentation 11 / 13

Notes on Elastic

We want to encode the ASR metadata for each word (start, end, conf) into the elastic

index with the delimited_payload filter.

Create an index with a delimited payload filter:

{

 "mappings": {

 "properties": {

 "text": {

 "type": "text",

 "term_vector": "with_positions_payloads",

 "analyzer": "whitespace_plus_delimited"

 }

 }

 },

 "settings": {

 "analysis": {

 "analyzer": {

 "whitespace_plus_delimited": {

 "tokenizer": "whitespace",

 "filter": ["plus_delimited"]

 }

 },

 "filter": {

 "plus_delimited": {

 "type": "delimited_payload",

 "delimiter": "|",

 "encoding": "float"

 }

 }

 }

 }

}

top level "transcript" field,

token|mediaNum,start,end,conf

Open Audio Search – User and Developer Documentation 12 / 13

ffmpeg

some useful ffmpeg commands

Cut mp3 to first 30 seconds:

ffmpeg -t 30 -i inputfile.mp3 -acodec copy outputfile.mp3

Open Audio Search – User and Developer Documentation 13 / 13

	Open Audio Search
	About
	Funding
	Architecture
	Core (or backend)
	Worker
	Frontend
	Packaging

	Development setup
	Tips and tricks
	Development mode
	Frontend development
	Requirements
	Development
	Deployment

	Inspect the Redis databaes
	ASR Evaluation
	NLP Evaluation
	Generate Devset
	Access NLP Results

	Notes
	Notes on Elastic
	Create an index with a delimited payload filter:

	ffmpeg

