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Abstract

The strongly increasing connectivity and interest in today’s Information Technol-
ogy (IT) infrastructure resulted in a huge amount of interconnected networks
building the Internet of Things (IoT). In parallel, a rapidly changing landscape
of innovative services for end-users could be observed. Cloud Computing (CC)
provides computing and storage resources for the vast majority of IoT services.
Still, further IoT development strives for building low-latency, reliable, highly
distributed systems, for which CC fails to satisfy the requirements. Computing
capabilities distribution paradigms, among others Edge Computing (EC) and Fog
Computing (FC), aim to deploy computing and storage resources at the IoT net-
works’ edge. Through that, a distance gap between Things and CC Data Centers
is bridged, enabling the innovative IoT services development.

Future IoT developments need to be accompanied by appropriate system archi-
tecture and security concepts to allow safe usage, overall security, and improved
usability in the complex IoT ecosystem. Well-researched, traditional network
security mechanisms like public-key encryption or X.509 certificates often cannot
be applied in IoT systems, primarily due to the Things’ computational constraints.
Additionally, heterogeneity, scale, and geographical distribution of IoT networks
impose challenges for the security management which traditional protocols and
frameworks fail to satisfy through centralized CC architectures. Finally, secu-
rity management often involves human effort for security policy configuration,
which appears to be cumbersome and error-prone for non-tech-savvy users. For
those reasons, improving IoT security requires rethinking of the traditional secu-
rity mechanisms in multiple directions: (i) offloading and distributing security
management through paradigms like EC or FC, (ii) reducing computational re-
quirements for security procedures and protocols like encryption or TLS, and
(iii) automating security policy management in IoT through data analysis in IoT
environments, adapting to its current state and minimizing users’ effort required
for the security management.
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This dissertation contributes a novel FC-based solution comprising protocols,
data models, and guidelines for distributing security services at the IoT network’s
edge. First, trust management in the Cloud - Fog -Thing continuum is introduced,
enabling scalable and reliable trust management both in local and global IoT
environments. Additionally, computation requirements concerning minimization
and trust management application on Things have been thoroughly examined,
allowing the solution’s utilization in End-to-End (E2E) security scenarios. Second,
an Access Control (AC) distribution model has been developed, allowing AC
operations availability in ”offline” use-cases, that is, without connection to the
Cloud, relying just on FC resources. Furthermore, security policy management
has been automated by adapting access policy based on the IoT environment’s
context information. In order to develop context-aware access policies, the
following contributions have been made: (1) a generic data model for integration
of context information in access policies, (2) protocols for exchanging context
information, and (3) guidelines for integrating context information in AC services.
The designed and realized approaches have been evaluated for their performance,
operability, and applicability based on a real-world Smart Home Management
system - COSYLab. Lastly, the analysis of the evaluation results leads to the
conclusion that proves the applicability of the implemented solution in FC-based
IoT systems, ensuring beneficial capabilities for hosting distributed IoT services,
such as (i) offloading computational requirements from resource-constrained
Things and remote Cloud Servers and (ii) reducing overall latency of the provided
IoT services.
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Kurzfassung

Die Entwicklung des Internet in den letzten Jahren hin zum Internet der Dinge
(Internet of Things, IoT) war durch stark wachsende Konnektivität und eine sich
rasch verändernde Landschaft innovativer Dienste für den Endnutzer geprägt.
Während dabei Cloud Computing die Rechen- und Speicherressourcen für die
große Mehrheit der IoT-Dienste bereitstellte, zielt die weitere IoT-Entwicklung
jedoch auf den Aufbau von zuverlässigen, hochgradig verteilten Systemen mit
geringer Latenzzeit ab, für die herkömmliches Cloud Computing nicht ausreicht.
Alternative Paradigmen zur Verteilung von Rechenkapazitäten, wie etwa Edge
Computing (EC) und Fog Computing (FC), haben daher zum Ziel, Rechen- und
Speicherressourcen am Rande der IoT-Netzwerke einzusetzen. Dadurch wird die
Distanz zwischen den IoT Geräten und den Cloud-Computing-Rechenzentren
effizient überbrückt, was die Entwicklung innovativer IoT-Dienste ermöglicht.

Allerdingsmüssen künftige IoT-Entwicklungen von geeigneten Systemarchitek-
turen und Sicherheitskonzepten begleitet werden, um eine sichere Nutzung,
und verbesserte Benutzerfreundlichkeit in dem komplexen IoT-Ökosystem zu
ermöglichen. Gut erforschte, traditionelle Netzwerksicherheitsmechanismen wie
Public-Key-Verschlüsselung oder X.509-Zertifikate können in IoT-Systemen oft
nicht angewendet werden, vor allem wegen der Rechenbeschränkungen der
IoT Geräte. Darüber hinaus stellen die Heterogenität, der Umfang und die
geografische Verteilung von IoT-Netzwerken neue Herausforderungen für das
Sicherheitsmanagement dar, denen herkömmliche Protokolle und Rahmenwerke
durch zentralisierte Cloud-Computing-Architekturen nicht gerecht werden kön-
nen. Schließlich macht das Sicherheitsmanagement häufig manuelles Eingreifen
bei der Konfiguration von Sicherheitsrichtlinien notwendig, was für technisch
nicht versierte Benutzer umständlich und fehleranfällig ist. Aus diesen Gründen
erfordert die Verbesserung von IoT-Sicherheit ein Überdenken der traditionellen
Sicherheitsmechanismen in mehrere Richtungen: (i) Auslagerung und Verteilung
der Sicherheitsverwaltung durch Paradigmen wie EC oder FC, (ii) Verringerung
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des Rechenaufwands für Sicherheitsverfahren und -protokolle wie Verschlüs-
selung oder Transport Layer Security, und (iii) Automatisierung der Verwal-
tung von Sicherheitsrichtlinien im IoT durch Datenanalyse in IoT-Umgebungen,
Anpassung an den aktuellen Zustand und Minimierung des für die Sicherheitsver-
waltung erforderlichen Aufwands seitens der Benutzer.

Diese Dissertation stellt eine neuartige FC-basierte Lösung vor, die Protokolle,
Datenmodelle und Richtlinien für die Verteilung von Sicherheitsdiensten am
Rande des IoT-Netzwerks umfasst. Zunächst wird ein neuer Ansatz zum Ver-
trauensmanagement im „Cloud - Fog - Thing”-Kontinuum vorgestellt, der ein
skalierbares und zuverlässiges Vertrauensmanagement sowohl in lokalen als auch
globalen IoT-Umgebungen ermöglicht. Sodann werden die Rechenanforderun-
gen in Bezug auf die Minimierung und die Anwendung des Vertrauensman-
agements auf IoT-Geräte untersucht, was die Nutzung der Lösung in End-to-
End-Sicherheitsszenarien ermöglicht. Zudem wird ein Verteilungsmodell für die
Zugangskontrolle entwickelt, das die Verfügbarkeit von Zugangskontrollvorgän-
gen in ”Offline”-Nutzungsfällen ermöglicht, d. h. ohne Verbindung zur Cloud,
nur unter Nutzung von FC-Ressourcen. Darüber hinaus wird gezeigt, wie sich
die Verwaltung der Sicherheitsrichtlinien automatisieren lässt, indem die Zu-
griffsrichtlinien auf der Grundlage der Kontextinformationen der IoT-Umgebung
angepasst werden. Um kontextbezogene Zugriffsrichtlinien zu entwickeln, wur-
den die folgenden Beiträge geleistet: (1) ein generisches Datenmodell für die
Integration von Kontextinformationen in Zugriffsrichtlinien, (2) Protokolle für
den Austausch von Kontextinformationen, und (3) Richtlinien für die Integra-
tion von Kontextinformationen in Zugriffskontrolldienste. Die entworfenen und
realisierten Ansätze wurden auf ihre Leistungsfähigkeit, Funktionsfähigkeit und
Anwendbarkeit anhand eines realen Smart Home Management Systems evaluiert.
Die Analyse der Bewertungsergebnisse beweist abschließend die Anwendbarkeit
der implementierten Lösung in FC-basierten IoT-Systemen, welche vorteilhafte
Fähigkeiten für das Hosting verteilter IoT-Dienste gewährleisten, wie z. B. (i) die
Auslagerung von Rechenanforderungen von ressourcenbeschränkten IoT Geräten
und entfernten Cloud-Servern und (ii) die Reduzierung der Gesamtlatenz der
bereitgestellten IoT-Dienste.
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Introduction

Huge advancements in the field of electronics and deployments of wireless com-
munication systems and mobile devices in the past decade allowed the extension
of everyday devices with sensing, computational, and communication capabilities
and their integration into computer networks. Through that, besides interacting
with the physical world, devices obtained extended communication capabilities
to exchange information with each other over the Internet, which named them
Virtual Devices or Things. These communication capabilities allowed remote man-
agement and control of Things and made the everyday devices more efficient,
reliable, and adaptable to the environment. [Bor14; ČH18]

These advancements and introduced services have been summarized through
the term IoT [SU22]. IoT enfolds Things with diverse characteristics like
addressing and communication using Internet Protocol (IP), communication over
wireless networks, integration into complex computer systems, and involvement
of sensing and actuating capabilities to interact with the environment [SU22].
These characteristics enabled a set of novel services and the next wave of IT
systems’ technological innovations, enabling nearly limitless IoT applications
deployment in various IoT application domains (e.g., Smart City, E-Health or
Smart Agriculture) [Bor14; ČH18]. Irrespective of the application area, IoT appli-
cations can analyze collected information and enhance the quality of everyday
life, impacting the economy and society profoundly. Moreover, increasing IoT
systems’ popularity leads to the integration of a vast number of Things.

1



1 Introduction

1.1 Motivation & Background

IoT systems’ complexity and the diversity of the applied computer science areas
in IoT systems (e.g., distributed systems, data security, and machine learning)
attracted the research community’s attention. Moreover, enormous effort in
various research, innovation, and standardization fields (e.g., network and system
architectures, emerging technologies, and information security) has been invested
in defining the standard tools and frameworks for the IoT development by the
standardization bodies like IEEE1, IETF2, or NIST3. In 2009 European Commission
launched the IoT initiative as part of the 7th Framework Program (FP7)4 to
develop architectures and optimized technologies to support heterogeneous IoT
applications and services. Furthermore, the European Research Cluster on the
IoT (IERC)5 was founded to promote a common vision of IoT and interoperability
between the IoT applications and the world-wide secure deployment of IoT.
However, despite huge standardization efforts, no common and comprehensive
framework with integrated standards under one IoT vision has been defined yet.
[Bor14; ČH18; GMS15]

The initial motivation and the first phase of this dissertation occurred during
my involvement in the H2020 project named symbIoTe - a symbiosis of smart
objects across IoT environments6. The main goal of the symbIoTe research project
was to establish an intermediary abstraction layer between various IoT environ-
ments, creating a unified view of the deployed IoT systems. Within this project,
I’ve researched AC mechanisms and implemented the AC management solution
that enables authentication and authorization mechanisms for user federation
between IoT providers. For that purpose, the focus of my research and resulting
contributions was on:

1 Institute of Electrical and Electronics Engineers, https://www.ieee.org/, last access May 2,
2022

2 Internet Engineering Task Force, https://www.ietf.org/, last access May 2, 2022
3 National Institute of Standards and Technology, https://www.nist.gov/, last access May 2,

2022
4 Seventh Framework Programme, https://ec.europa.eu/eurostat/cros/content/fp7-

projects_en, last access May 2, 2022
5 IoT European Research Cluster, http://www.internet-of-things-research.eu/, last ac-

cess May 2, 2022
6 symbIoTe project page, https://www.symbiote-h2020.eu/, last access May 2, 2022
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1.1 Motivation & Background

1. The integration of the distributed, local IoT environments, published in the
Deliverable 4.11;

2. The establishment of the authentication and authorization mechanisms
between federated IoT platforms, published in the Deliverable 3.12;

3. The definition of the semantic data model for integration of AC schemas
between IoT providers, published in the Deliverable 2.53.

Following the initial research contributions, the further work on this disserta-
tion remained in the areas of network security and distributed systems, aiming
to create standalone AC mechanisms that can operate in local IoT environments,
capable of adapting security policies to the IoT environment’s state. Based on the
goals and outcomes in this dissertation’s scope, I have been awarded the netIdee
scholarship for the final phase of my dissertation. Using this scholarship, I fur-
ther researched the aforementioned areas and developed the solution presented
in this dissertation. Partial outcomes of this dissertation are provided on the
scholarship’s web page for my research project7.

Inspired by the initial motivation and research efforts, this dissertation exam-
ines the following research areas:

1. (A1) System architecture concerning IoT systems’ scalability, flexibility,
and dynamicity;

2. (A2) Security and trust management;
3. (A3) System intelligence and self-configuration.
The goal of A1 is to define a scalable, flexible, and efficient architecture, able

to cope with the amount of data and dynamicity of IoT systems. This architecture
has to enable efficient mechanisms to retrieve all information produced by Things
and provide users with access to it [Bor14]. Therefore, a hierarchical network
architecture providing scalable connectivity and processing capacity based on
CC is applied in IoT applications. However, CC itself is not efficient enough
for all IoT applications due to the drawbacks introduced by the Cloud Servers
remote deployment, such as unacceptable delay, lacking support for mobility and

1 symbIoTe Deliverable 4.1, https://zenodo.org/record/817486#.Yl1hLuhByUl, last access
May 2, 2022

2 symbIoTe Deliverable 3.1, https://zenodo.org/record/817471#.Yl1in-hByUl, last access
May 2, 2022

3 symbIoTe Deliverable 2.5, https://zenodo.org/record/830234#.Yl1jquhByUk, last access
May 2, 2022

7 netIdee scholarship research project web page, https://www.netidee.at/trustworthy-
context-aware-access-control-iot-environments-based-fog-computing-
paradigm, last access May 2, 2022

3

https://zenodo.org/record/817486#.Yl1hLuhByUl
https://zenodo.org/record/817471#.Yl1in-hByUl
https://zenodo.org/record/830234#.Yl1jquhByUk
https://www.netidee.at/trustworthy-context-aware-access-control-iot-environments-based-fog-computing-paradigm
https://www.netidee.at/trustworthy-context-aware-access-control-iot-environments-based-fog-computing-paradigm
https://www.netidee.at/trustworthy-context-aware-access-control-iot-environments-based-fog-computing-paradigm


1 Introduction

location-awareness, as well as dependency on network Quality of Service (QoS)
[ČH18; Sch+17; Bon+12b]. For those reasons, deployment of computing, storage
and connectivity capabilities at the IoT networks’ edge, using emerging paradigms
like EC, Mobile Edge Computing (MCC), Mobile Cloud Computing (MEC), and
FC represent attractive future research topics [ČH18; Bon+12b; RZL13]. Between
these paradigms, FC stands up as a promising candidate for distribution IoT
services away from CC servers. Since FC relies on the highly virtualized service
deployment strategy, it increases the efficiency of the devices present in IoT
environments, enabling IoT services deployment capabilities to local Fog Node
(FN) devices and shifting data processing away from CC servers.

Further factors impacting IoT systems’ adoption are security and trust man-
agement issues [BPM16; ČH18; Bor14; RZL13]. These issues may occur at vari-
ous levels and affect data exchanges spanning over the ISO/OSI layers: network,
transport, and application [Bor14], resulting in numerous threats for IoT systems
like insecure authentication and authorization, insufficient transport encryption,
insecure web interfaces and firmware deployment [ČH18]. Scope of A2 is to
analyze the threats and define countermeasures using the mechanisms like
AC and secure data transmission, which are guaranteed by using acknowl-
edged network security principles like Confidentiality, Integrity, and Availabil-
ity (CIA) [Bor14; ČH18]. However, computational, storage and communica-
tion constraints of Things introduce unique requirements for designing IoT
systems security solutions, often making traditional security solutions non-
practical [LC16; GMS15]. This introduces trade-offs between data security and
computational- and energy-efficiency of security algorithms. Securing data trans-
mission requires protecting communication channels using cryptographic algo-
rithms, requiring the Things to join the IoT network securely, that is establish
trust relationships and install required encryption material (keys or certificates)
[Bor14]. For that purpose, a proper infrastructure for scalable and efficient
Identity Management (IdM) and key distribution has to be deployed in IoT
[RZL13; LC16; TC16]. This infrastructure also has to take into consideration the
heterogeneity of Things, mostly concerning computational capabilities, which
heavily affects IdM and trust management, introducing challenges in defining an
universal approach for trust management in IoT [RZL13]. Furthermore, limiting
access to IoT services and collected data is essential for ensuring data confiden-
tiality and privacy, which is achieved through AC. [Bor14]. AC mechanisms
involve user authentication and service access requests validation against pre-
configured security policies. However, the diversity of IoT applications and the

4



1.2 Problem Statement

scale of connected Things requires the definition of novel AC mechanisms with
characteristics such as responsiveness, scalability, fine-granularity, reliability, and
Context-Awareness (C-A) [Oua+17].

Information collected in IoT environments like sensor measurements and
actuators controls is mostly used for analysis and presentation to users. Sensing
capabilities of end devices enable a broad range of novel service that could be
implemented to improve IoT environments’ usability and applicability. These
improvements lead to the optimization of IoT services by adding intelligence
to them through the self-configuration routines researched within A3, increas-
ing the performance, efficiency, and resiliency of IoT systems [Bor14; ČH18].
These sensing capabilities and their aggregation are referred to as IoT system
C-A. C-A [Abo+99a] and its application have been researched since the 1990s
in various IT systems (e.g., desktop, web applications, and mobile applications).
Nowadays, C-A attracts the IoT system developers’ attention to deploy an ”intel-
ligent” IoT system, able to adapt its behavior based on the current system state
[Bor14; BDR07b; KC03]. Beside improving IoT systems through adding the ”intel-
ligent” features, C-A also allows IoT security mechanisms automation through
context analysis and provided context information. Proper candidate for IoT
security automation is security policies configuration and the maintenance of
trust relationships between entities in IoT systems, minimizing human effort
required to configure IoT environment’s security properties. For that reason, the
application of C-A principles in authorization schemes, identification, authen-
tication, and discovery mechanisms, requires future research and development
[ČH18].

1.2 Problem Statement

IoT needs to enable seamless connectivity for Things, users, and computing
infrastructure to provide intelligent services that are based on networking, sens-
ing, processing, identifying, and visualization capabilities. This requires the
research and development of a standard system architecture, accompanied by
various properties, such as scalability, security, privacy, interoperability, or C-A.
Due to the IoT systems’ unique characteristics, primarily the heterogeneity and
limited Things’ resources, developed solutions have to be resource-efficient and
adaptable to various IoT application domains (cf. Figure 2.1).

5



1 Introduction

Things’ computational, storage, networking, and energy constraints limit host-
ing of IoT services like analytics and measurement visualization. Therefore, IoT
services are leveraged to CC resources, which offer sufficient resources for hosting
IoT platforms. Still, CC introduces several drawbacks outlined in Section 2.2.1,
mainly due to the Cloud Servers remote deployment. Deployment of computing,
storage, and networking resources at the IoT networks edge layer is a promising
approach for overcoming CC drawbacks. Emerging paradigms, such as EC, MCC,
MEC, and FC enable hosting of IoT services close to the Things. The ultimate goal
of these paradigms is to improve the IoT services’ scalability and responsiveness.
However, hosting IoT services using these computing paradigms requires the
definition of standardized system architecture and deployment methods. In that
respect, secure deployment of computing resources at the IoT network’s edge
becomes an open issue due to the attack plain enlargement through the new
services deployment.

Securing IoT systems represents a complex challenge, primarily due to the
Things’ resource constraints, as well as IoT networks’ heterogeneity and dynam-
icity. For those reasons, the security solutions should be interoperable enough to
support various IoT devices and services, but also responsive and lightweight,
so that Things can apply them. Moreover, managing trust through mutual
authentication represents a vital challenge. Traditional trust management sys-
tems, such as Public-Key Infrastructure (PKI), Web-of-Trust, and Key Distribution
Center (KDC) fail to support all the IoT requirements. Still, adaptation and
extension of these systems can lead to a promising solution for IoT systems.

AC is a critical security mechanism for ensuring data confidentiality and
privacy. Since IoT devices fail to host resource-demanding AC services, they
are leveraged to CC servers. CC servers’ remote deployment introduces delay
for access policies validation and hinders the development of adaptable access
policies, based on C-A factors in a local IoT network. Thus, the AC services
distribution through edge layer computing paradigms, followed by the extension
of AC models, would minimize the delay and allow intelligent, dynamic access
policies that can adapt to the IoT system’s state. This enables IoT security policies
automation, reducing the human-effort required for IoT system configuration.

In conclusion, this dissertation develops trust management and AC solutions
for IoT systems. It aims at utilizing FC for hosting distributed security services
in the IoT network and reducing the gap between resource-constrained Things
and remote CC servers. The developed services improve the identity and key
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management strategies through distribution on FNs. Moreover, distributed AC
provisioning, extended through adaptable context-aware security policies are fur-
ther objective, enabling automated, flexible access policies management, followed
by reduced communication and processing delay.

1.3 Research Questions

This dissertation aims at developing distributed security mechanisms for IoT
systems based on the FC paradigm. The main goal is to bridge the security
services provisioning between resource-limited Things and computationally-rich
remotely deployed CC servers. A further goal is to enable the automation of the
security services using context information in the IoT environment. To achieve
these goals, the introduced research areas (A1, A2, and A3) inspire the definition
of the key research question specified in Sections 1.3.1 to 1.3.3, aiming to enable
the following features:

1. Secure deployment of FC-based services;
2. Establishing FC-based Identity and Trust Management for IoT;
3. AC distribution and its extension through C-A.

1.3.1 Fog Computing-based Access Control Distribution

Distribution and deployment of AC provisioning close to theThings brings several
benefits to the IoT, such as reduced communication and processing delay or
increased reliability of AC mechanisms in low network QoS scenarios. However,
shifting AC from CC servers to FNs brings multiple challenges like:

• Establishing and maintaining trust in AC gateways;
• Distributed user session management;
• Decentralized security policies management.

AC distribution is a heavily researched topic, with several standard protocols
and frameworks (e.g., OAuth2, Shibboleth, and OpenID Connect). Still, defined
FC requirements for ”offline” use-cases (FC services availability despite missing
internet connection) require further research in this area. In order to decentralize
AC provisioning using FC, this dissertation deals with the following research
question, accompanied by two research subquestions:
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(RQ 1) How can decentralized management of access control be achieved in a
Fog computing environment?

(RQ 1.1) Which techniques and technologies can be used in order to keep a
consistent state of an access control framework in the hierarchical IoT organi-
zation: Cloud Server – Fog Node - Things?

(RQ 1.2) What kind of trust connections between authentication and autho-
rization entities need to be achieved to minimize attack surfaces on end devices
with regard to access control?

Answering RQ 1 involves the analysis of different AC aspects addressed by
RQ 1.1 and RQ 1.2. Firstly, as emphasized in RQ 1.1, distribution of security poli-
cies management is analyzed for IoT use-cases (cf. Section 3.3.2), focusing on AC
schema modeling and enabling fine-granularity and extensibility for C-A factors.
The designed model is presented in Section 3.3.1, along with implementation
(cf. Section 4.6.1) details and performance evaluation in Section 5.4.2. Secondly,
local AC provisioning through the AC components deployment on FNs requires
managing trust relationships between Cloud Server and FNs. This is examined in
RQ1.2 for the following areas: (i) FC deployment requirements (cf. Section 3.1.2),
(ii) trust modeling (cf. Section 3.2.2), and (iii) distributed AC (cf. Section 3.3.2). The
proposed AC distribution model enables mutual authentication between FC-and
CC-based AC components, allowing security policies enforcement close to the
Things, reducing processing and data transmission latency. Extensive insights on
the distribution model are documented in (i) Sections 3.1.3 and 3.2.2, with regard
to the trustworthy FC-based security services deployment and (ii) Sections 3.3
and 3.3.2, concerning distributed approach for AC configuration. Implementation
details on trust-related bootstrapping and digital certificate management proce-
dures are provided in Sections 4.4.2 and 4.4.1, respectively. The implementation of
the distribution mechanisms for the AC configuration is presented in Section 4.6.3.
Finally, functional evaluation of the trust management and the AC distribution is
provided in Sections 5.3.1 and 5.4.1, respectively.

1.3.2 Fog Computing-based Identity and Trust Management

Building and maintaining trust in IoT systems poses several research challenges
to be resolved, primarily on how the Things can be uniquely identified and which
mechanisms can be used in IoT to build trust relationships based on mutual
authentication. The diversity of Things, vendors, and their computational capa-
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bilities represents a critical factor in finding a common approach for identifying
and authenticating Things. Also, Things’ computational limitations hinder the
application of traditional encryption algorithms and key distribution protocols
(e.g., RSA, TLS, Diffie-Hellman, or Qu-Vanstone). Moreover, IoT networks’ scale
and dynamics, with nodes often joining and leaving the network, pose further
challenges for managing encryption key and overall trust in the IoT networks.
Using the computational power of FNs in local IoT networks to shift IdM and
encryption keys management from Cloud to Fog significantly simplifies overall
trust management in IoT and enables the local trust circles creation. Achieving
these results in the following research questions:

(RQ 2) How can Fog computing be used for improving Identity management
and authentication in IoT systems?

(RQ 2.1) How can computational power on the edge of the network be used
for improving scalability of automatic (e.g., PKI or Web of Trust) authentication
procedures?

(RQ 2.2) How can Fog nodes be efficiently and effectively used as secure
storage of identities for resource-constrained devices and providing mutual
authentication in IoT environments?

As described in RQ 2, the research examines challenges in (1) IdM and
(2) mutual authentication, leading to the trust establishment and maintenance in
IoT systems. The envisioned FC-based trust management framework developed
for answering RQ 2, RQ 2.1, and RQ 2.2 incorporates the trustworthiness of
Things, FC-based IoT services, and IoT users. Background on the IdM topic is
provided in Section 2.3.3, which is used to design and implement identity naming
schema presented in Section 3.2.1. This schema provides structured notation for
building identities in IoT environments, also incorporating information about
the entities’ position in the IoT system’s Cloud - Fog - Thing hierarchy. Enabling
mutual authentication in IoT required analysis of models for building and man-
aging trust (cf. Section 2.3.2). Thereby, the critical topic is the application of
encryption algorithms and Key Management Protocol (KMP), mostly due to the
Things’ resource-constraints and scale of IoT networks. Thus, a simulation engine
for performance evaluation of various aspects of hierarchical trust management
models is designed and implemented as documented in Section 4.5, enabling the
choice of the best performing trust management model for the given use-case
(cf. Section 5.2). Based on the simulation results, a novel FC-based trust man-
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agement system (cf. RQ 2.1) enabling mutual authentication in IoT networks
is designed (cf. Section 3.2.2), implemented (cf. Sections 4.4.2 and 4.4.1), and
evaluated (cf. Sections 5.3.1 and 5.3). Moreover, the developed trust manage-
ment system is extended through security profiles to support identity and key
management procedures (cf. Section 4.4.3) for the Things that are not capable
of supporting digital certificates, enabling E2E identity and trust management
mechanisms in IoT (cf. RQ 2.2).

1.3.3 Context-aware Access Control for IoT

Deployment of FNs close to the Things allows processing the information flowing
in the local IoT environment, leading to the local IoT network’s state and context
analysis. This allows building intelligent IoT services, automatically adaptable
to various IoT scenarios. Automation of configuration mechanisms for security
policies can benefit from context analysis in IoT, reducing the required human
effort to set up a security configuration. Moreover, C-A enables a more informed
decision-making process during security policy execution. Since AC mecha-
nisms are the central point for configuring and applying security policies, their
integration with content analysis would enable adaptable, ”smartified” security
policy management. To achieve this, various C-A sources have to be examined
concerning the context information they are analyzing and integration points
with established AC models. This results in the following research questions that
are investigated in this dissertation:

(RQ 3) How can context-awareness be incorporated in access control of a Fog
computing based IoT system?

(RQ 3.1) Which factors can influence access rights validation and adjustments
in a context-aware IoT environments?

(RQ 3.2)How can these factors be embedded in today’s access control models?

Providing answers to RQ 3 involves analyzing context information manage-
ment approaches (cf. RQ 3.1) and steps to integrate context information into AC
services (cf. RQ 3.2). Firstly, RQ 3.1 analyzes how context can be quantified and
managed in computer systems. This involves the identification of context sources
and context information collection, processing, and distribution procedures
(cf. Sections 2.5.1 and 2.5.2). Secondly, strategies for building C-A systems have
been evaluated in Sections 2.5.3 and 2.5.4, leading to the design requirements
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and decisions for developing the C-A AC solution. Primary contributions of
the developed C-A AC solution involve (i) defining Application Programming
Interface (API) and message exchanges for integration of context information
into security policies (cf. Section 3.4.1), (ii) defining common C-A AC data model
presented in Section 3.4.2, and (iii) extending AC services with capabilities to
apply context information during authorization procedures. Finally, the designed
solution has been implemented (cf. Section 4.7) and evaluated in the Smart Home
environment (cf. Section 5.5), providing results on functional and performance
implications of C-A AC services in the IoT environment.

1.4 Structure of this Dissertation
The aforementioned problems are investigated in the defined research questions
in Section 1.3 and will lead to an IoT framework –COSYLab–, which is designed,
implemented, and evaluated in this dissertation. Thus, the dissertation is struc-
tured as follows:

Chapter 2 presents the background information related to the topics relevant
to answering the research questions defined in Section 1.3. In the introductory
part of Chapter 2, insights on IoT are documented, focusing on IoT Applica-
tion Domains, Things computational characteristics, and IoT reference model
(cf. Section 2.1). Afterward, the role of CC and computing decentralization
possibilities through MCC, MEC, EC, FC are being discussed in Section 2.2. Sec-
ondly, various trust and Trustworthy Networking (TN) aspects are being analyzed
in Section 2.3, with the goal of ensuring CIA securing properties in computer
networks. An AC overview is provided in Section 2.4 through its (i) general
characteristics, (ii) the main building blocks: Authentication, Authorization, and
Accounting (AAA), and (iii) AC distribution approaches. Insights on C-A are
presented in Section 2.5, including details on context information identification,
collection, processing and distribution strategies, as well as insights on building
and integrating C-A in computer systems.

Chapter 3 provides details on solution design requirements and decisions,
with the goal of building FC-based security services for trust management and C-A
AC. First, Section 3.1 presents general FC architecture requirements and provides
decisions on the FC-based security services deployment model, accompanied by a
brief description of the deployed services and their interdependencies. Afterwards,
guidelines for building trustworthy FC-based IoT network in this dissertation’s
scope are described in Section 3.2, including design decisions on different aspects
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of TN: IdM, trust management, and E2E security. Based on the designed trust
management model, the AC services deployment model is presented in Section
3.3, also taking into consideration the previously mentioned FC requirements,
along with the AC IoT-specific requirements concerning: (i) security policies
management, (ii) security policies modeling, and (iii) approach for secure AC
distribution in IoT. Finally, guidelines on C-A integration in AC are presented in
Section 3.4. These guidelines include insights in: (i) collecting context information
using C-A agents, (ii) context information management and modeling, and (iii) its
application in AC mechanisms - security policies management and authorization.

Chapter 4 presents the implementation details addressing the problem state-
ments mentioned in order to answer the defined research questions RQ 1 - RQ
3 in this dissertation. Section 4.1 provides an overview of the COSYLab IoT
framework. Section 4.2 presents the overall solution’s software architecture de-
scribing used technologies, developed software components, and the integration
interfaces. Details on FC services deployment are provided in Section 4.3. TN
services are described concerning various trust management aspects: identity
and certificate management, trust bootstrapping procedures, and establishing
E2E security (cf. Section 4.4). Moreover, trust models’ efficiency is examined
using the developed trust management performance simulator, for which the
details are provided in Section 4.5. AC services implementation (cf. Section 4.6)
is described through details on the developed components and considerations of
the applied AC model, followed by the procedures for AC configuration based
on synchronization between the CC server and FNs. Finally, AC services exten-
sion through C-A is described in Section 4.7, providing details on the messages
exchanged between C-A agents and AC components. The messages describe how
the context information is managed and applied in the AC service in the scope of
the proposed framework.

Evaluation of the developed solution is presented inChapter 5. The solution is
verified concerning its performance, functionality, and fault-tolerance, involving
four different solution areas: FC, TN, AC, and C-A. The performance and resource
consumption overview of the deployed security services on FN is provided in
Section 5.1, verifying the feasibility of the FC-based service deployment in the
Smart Home framework. Afterwards, simulation-based evaluation of different
PKI schemes is described in Section 5.2, leading to the results for choosing the best
performing PKI scheme in the given IoT application domain - Smart Home. Based
on these results, the implemented TN services are evaluated in Section 5.3, focus-
ing on the services’ performance and scalability concerning identity, certificates,
and trust management. The AC services’ evaluation (cf. Section 5.4) presents
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(i) a proof of operability for the security policy configuration synchronization
and (ii) the authorization performance concerning processing latency. A C-A
integration evaluation is presented in Section 5.5, following similar approaches
used for AC evaluation. For that purpose, a proof of operability is provided for
access policy validation using context information. Additionally, the computation
and performance overhead for context-based access policies has been evaluated.
Finally, the developed solutions’ fault-tolerance and error-handling procedures
have been analyzed and presented in Section 5.6.

Finally, Chapter 6 provides a summary of the outcomes for the defined
research questions in this dissertation. Firstly, the achieved contributions in
areas TN, AC, and C-A are summarized, and answers to the defined research
questions concerning using FC for deployment security services in IoT are given.
Lastly, an outlook for future developments in the involved research areas is
provided.
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2

State of the Art & Related work

The research goals defined in Section 1.3 involve research in multiple areas.
For that purpose, this chapter provides state-of-the-art in these areas. Firstly,
IoT basics are presented in Section 2.1, followed by the IoT deployment and
distribution approaches in Section 2.2. Afterwards, relevant areas of network
security are analyzed: building trustworthy networks in Section 2.3 and enabling
AC in distributed systems in Section 2.4. Section 2.5 provides an overview of
strategies for embedding context information in IoT systems, leading to the
creation of intelligent IoT environments. Lastly, Section 2.6 summarizes the
chapter and outlines the research gaps relevant to achieving this dissertation’s
goals.

2.1 IoT basics
The IoT is a novel paradigm that enables a set of new services and technical
innovations in IT. Amongst numerous definitions, IoT is defined as ”a global
infrastructure for the information society, enabling advanced services by intercon-
necting physical and virtual things based on existing and evolving interoperable
information and communication technologies” [22p]. The goal of IoT is the seam-
less integration of physical devices (e.g., power outlets, thermometers or smart
watches) into the connected world and enriching them with sensing, actuating,
and communication capabilities. Through the interconnection of devices, IoT
builds global infrastructure for the information society, allowing the introduction
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of novel, advanced services for end-users. Therefore, the essential building block
for IoT is a Thing, representing an entity of the physical world –physical device–
or information world –virtual Thing– with the capability of being integrated and
identified in communication networks. [22p]

In order to incorporate physical devices into IoT environments, they are
extended by additional computing and networking equipment like CPU, memory,
and antennas. Through the extension, physical devices are mapped to virtual
Things and are provided with support for the required IoT capability - communi-
cation, as well as the optional ones: sensing, actuation, data capture, data storage,
and data processing. Due to the scale of IoT systems, Things’ size and weight,
available power, and energy, as well as economic reasons, Things are mostly
equipped with low-constrained computational resources, in literature also called
Constrained Node (CN) or Constrained Devices [BKC20]. These constraints lead
to the severe operational boundaries of Things: processing cycles and comput-
ing power, programming code space, available power, user interfaces, firmware
upgradeability, and networking connectivity concerning protocols on different
ISO/OSI layers. CNs are categorized within several categories, as presented in
Table 2.1. [BKC20]

Table 2.1: Classes of CNs8[BKC20]

Name data size (RAM) code size (Flash)

Class 0 « 10 KiB « 100 KiB
Class 1 10 KiB 100 KiB
Class 2 50 KiB 250 KiB
Class 3 100 KiB 500 - 1000 KiB
Class 4 300 - 1000 KiB 1000 - 2000 KiB
Class 10 4 - 8 MiB » 2000 KiB
Class 15 0.5 - 1 GiB » 2000 KiB
Class 16 1 -4 GiB » 2000 KiB
Class 17 4 - 32 GiB » 2000 KiB
Class 19 » 32 GiB » 2000 KiB

8 KiB = Kilobyte, MiB = Megabyte, GiB = Gigabyte
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Figure 2.1: IoT application domains [Bor14]

The diversity of Things allows numerous types of innovative services that can
be offered to the end-users, leading to the everyday life enhancement, as well as
to a positive impact on socio-economic factors. These services can be divided
into three major IoT application domains (cf. Figure 2.1): (i) Industrial domain,
(ii) Smart City domain, and (iii) Health & Well-being domain. Even though the
domains are divided into separate categories, their functionalities overlap to
some degree, since they serve the common purpose of improving end-users’
life quality. Each major IoT application domain contains multiple application
areas, and further offers a limitless and increasing number of IoT services in its
particular IoT application domain. [Bor14]

The diversity and complexity of enabling technologies and IoT application
domains are identified as one of the vital challenges for the future development
of IoT systems. Hence, the standardization of IoT systems’ architecture and
technologies is seen as the driving factor for future IoT applications. These stan-
dards should offer a common ground and architecture for building interoperable,
seamlessly connected IoT systems, enabling simplified integration of different
IoT application domains, leading to a higher number of IoT services. [ČH18]

An open IoT architecture should offer a framework for the integration of
various technologies so that they are fully interoperable between IoT application
domains. Accomplishing that requires an open IoT architecture that supports
heterogeneity of Things, underlying computer networks, data, and applications.
Nonetheless, to support analytics, system’s intelligence, and user-friendly IoT
applications, this open IoT architecture should enable interactions across IoT
application domains, as well as scalable IoT services management [ČH18]. With
these expectations in mind, standardization bodies (e.g., IETF or IEEE) introduced
several conceptual IoT architecture models, mostly following the approach using
layered frameworks and architectures as depicted in Figure 2.2 [Sar+15].
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Figure 2.2: IoT reference model [22p]

Each layer has a special purpose:
• The Application layer represents a placeholder for IoT applications;
• The Service support and application support layer provides the required
support for applications, grouped in two capabilities sets:

– The Generic capabilities involving common capabilities which can
be shared between IoT applications, i.e. data processing and storage
capabilities;

– The Specific capabilities, dedicated and tailored for the particular IoT
application requirements.

• The Network layer provides network connectivity and access and transport
control functions, as well as the IoT service data transport;

• The Device layer lists capabilities for IoT devices to support, divided into
two categories:

– The Device capabilities include the support for interaction with the
communication network (direct and indirect), ad-hoc networking and
energy-saving sleeping and waking-up mechanisms;

– The Gateway capabilities incorporate support for multiple network
interfaces (e.g., ZigBee, Bluetooth, and Wi-Fi) and network protocols
conversion.

Management Capabilities of the IoT reference model cover fault, configuration,
accounting performance, and security capability classes. These classes can be
categorized into generic and application-specific ones. Examples of management
capabilities are device management (remote device activation/deactivation and
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firmware upgrade), network management, and traffic management (congestion
avoidance and resource reservation).

Security capabilities aim at providing security mechanisms on different IoT
reference model layers:

1. AC, data confidentiality, privacy, malware protection on the Application
layer;

2. Traffic signaling data confidentiality and integrity, network traffic AC on
the Network layer;

3. Device integrity validation (software and hardware), device AC on the
Device layer.

2.2 Cloud & Fog Computing in IoT

IoT enables a sharply increasing number of innovative services. However, Things
may not be capable of hosting the implementation of those services due to their
available computational capabilities. For that reason, IoT service provisioning
has been leveraged to the CC-based systems, overcoming the issues with battery-
powered, low-computational resourced Things [Pul+19]. The implications of CC
on IoT systems and accompanying benefits and drawbacks are presented in the
following sections. Moreover, to overcome negative aspects of the CC, innovative
computing paradigms based on CC decentralization are enlisted and described.

2.2.1 Cloud Computing Basics

In the previous years, CC enabled sufficient flexibility for IoT systems by
offering multiple Cloud service deployment models like IaaS (Infrastructure-as-a-
Service) [Sha+17], PaaS (Platform-as-a-Service) [BMW11] and SaaS (Software-
as-a-Service) [Cus10]. These models introduced different possibilities for the
IoT vendors to deploy their services and make them accessible for the end-users,
especially to monitor and manage systems and actors in Smart Home applications.

CC platforms are mostly deployed in a DC, incorporating numerous processing
units interconnected in high-speed, high-bandwidth computer networks [Sha+17].
DCs function as a central-point for data acquisition, processing, and storage. DCs
can be public, private, and hybrid. The most distinctive characteristic of public
DCs is that services and resources are provided by a third-party to anyone who
requires them. In contrast, private DCs [Sot+09] are driven by specific companies,
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Table 2.2: IoT application domain latency requirements [Sch+17]

Domains Latency Request

Industrial processing 0.25 - 10 ms
Smart grid 3 - 20 ms

Smart mobility 10 - 100 ms

and their services are reachable only to the employees of that company. Hybrid
DCs represent amixture of public and private DCs, where some business processes
are deployed in public DCs. In contrast, privacy and security-critical processes
are deployed within private DCs.

This Cloud service idea is a driving factor for the development of the existing
IoT solutions. Despite flexibility for the deployment of Cloud services, DCs still
represent a centralized entity for the data processing introducing at the same
time a Single-Point-of-Failure (SPoF) to the total system. Further drawbacks are
known and are depicted at the end of Section 2.2.1 in detail.

The physical distance between CC services and IoT devices, as well as the
centralized nature of DCs, introduces unpredictable network and data pro-
cessing latency in IoT [Sat15; RLM18]. Multiple IoT application domains, like
the ones listed in Table 2.2, require Ultra-Reliable Low-Latency Communications,
meaning that the data communication links between processing unit for IoT
services and Things must ensure low and predictable response times. High com-
munication latency between Things and DCs becomes challenging for meeting
the identified latency requirements. For example, the Amazon Web Services
network latency map [22h] has been analyzed for the DC in Virginia (USA). The
gained results show that in most cases the average network round trip time is
higher than 100 ms (e.g., 258 ms to the DC in Beijing, 125 ms to Italy or 146
ms to Brazil). Average round trip times of below 100 ms, which could satisfy
IoT latency requirements, are present only in North America and some parts of
Western Europe.

As multiple IoT application domains (e.g., Smart Home and eHealth) produce
a significant amount of users’ private data [Por+16], securing that informa-
tion plays a vital role in the further acceptance of IoT systems. An obvious
choice for ensuring data protection is to encrypt the data before transmission
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over the Internet. However, CNs at the edge of the IoT network are often inca-
pable of performing computationally demanding operations required for sym-
metrical and asymmetrical encryption. Thus, users’ private data transmission
to the DC can be eavesdropped and altered, therefore endangering TN concepts
(cf. Section 2.3), as well as data privacy and security, allowing network attacks,
such as Man-In-The-Middle, Data Leakage, and Replay Attack [Zho+17]. More-
over, IoT end-users are mostly unaware of the exact location where their private
data is being stored due to the global coverage of Cloud services. Therefore, it
cannot be guaranteed that the data privacy regulations applied in the DCs are
equal to the ones in the user’s country. For example, the difference between Gen-
eral Data Protection Regulation (GDPR)9 in Europe and the California Consumer
Privacy Act (CCPA)10 in the USA could lead to the users’ lack of awareness for
their data privacy settings.

The exponentially increasing number of deployed Things sets additional bur-
den on computer networks, demanding big amount of bandwidth to transmit
produced data to data processing units - DCs. International Data Corporation11

estimated that the data generated from IoT devices will reach 73.1 zettabytes
(1 zettabyte = 1.073.741.824 terabytes) by 2025. Such an envisioned development
puts a great demand on provisioning sufficient network bandwidth to support
future IoT systems while ensuring other application domains for IP networks
(e.g., Video Streaming and Voice-over-IP) to retain existing QoS. At the same time,
novel intelligent IoT services will require additional processing of the produced
data, leading to the increased bandwidth consumption towards DCs, as well
as the higher dependence on network QoS. This can represent a two-edged
sword since IoT systems are also to be deployed in hostile environments or rural
areas with weak networking infrastructure, meaning that network QoS will be
hard to guarantee, leading to interrupts in IoT service provisioning, due to the
lack of DC reachability. [Sat+13]

Deployment of Things in various environments enables better environments’
observation and monitoring, therefore providing a possibility for making more-
informed decisions and optimizing the overall system’s safety and performance.
Environment’s monitoring is defined through the terms Context and C-A

9 https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-
11e6-ba9a-01aa75ed71a1/, last access May 2, 2022

10 https://oag.ca.gov/privacy/ccpa, last access May 2, 2022
11 https://www.ridge.co/blog/iot-and-the-cloud/, last access May 2, 2022
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[Abo+99b]. In terms of IoT environments, local context represents locally sensed
and measured information (e.g., traffic statistics, network conditions, and
locally discovered Things and services) that is locally aggregated and processed
to deduct the current system’s state. However, primarily due to the geographical
distribution and lack of proximity between local context and DC, limited con-
text information is shared between them, which limits the capabilities of Cloud
Services to directly obtain and process all local contextual information
[Pul+19; RLM18].

Due to the aforementioned drawbacks and limitations, CC imposes several
limitations for the novel IoT services development and adoption. Therefore, sig-
nificant research effort has been invested in the previous years with the goal of
overcoming limitations introduced by CC [Sat+13; Pul+19; RLM18; Bon+12b].
The mainstream of these efforts was aimed towards the distribution and decentral-
ization of computing and storage resources. This involves placing Cloud services
and resources closer to the end-devices and the end-users, i.e. on the or close to
the edge of the network, with the ultimate goal of reducing the physical distance
due to the centralized nature of DCs.

Moreover, it is worth noting that the drawbacks of CC do not necessarily affect
only IoT systems, but rather all services that rely on CC, such as World Wide
Web (WWW), MCC Services, Video Streaming Services, Voice-over-IP. There-
fore, numerous research contributions with regard to the decentralization of
CC services in those areas have been achieved and applied. Content Delivery
Networks were introduced as a solution for distributing content to the Con-
tent Delivery Network edge servers, improving the overall system’s scalability
[RXA04]. Furthermore, combining CC and Peer-to-Peer protocols led to estab-
lishing decentralized Cloud architectures [Gar+15]. These architectures diverge
from the standard Cloud architectures (e.g., Client-Server and Server-to-Server),
bringing benefits to both Peer-to-Peer and CC based systems. On the one hand,
CC provides stable resources for Peer-to-Peer networks when needed, while
on the other hand, Peer-to-Peer networks lower operating costs and load on
DCs [TDM10].

In the IoT domain, the distribution and decentralization of CC services on
the edge of the network leads to the establishment of several novel computing
models. These models share a common idea - deploy CC-like capabilities on the
devices - Edge Data Center (EDC) as closely as possible to the edge of the network.
Introduction of EDC changed the standard 2-Tier IoT deployment model: ”Cloud
- Thing” by introducing the middle layer and therefore establishing the 3-Tier
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Figure 2.3: Cloud - Edge - Thing deployment model

deployment model: ”Cloud - Edge - Thing” (cf. Figure 2.3). Still, several factors
differ in these models, especially concerning mobility of EDC, integration with
DC, and ownership of EDC [RLM18]. The most cited edge deployment models
will be briefly described in the remainder of this section.

The initial deploymentmodel introduced for computing capabilities distribution
is MCC [FLR13], which is primarily developed for offloading intensive computing
and storage capabilities from battery-powered mobile devices (e.g., mobile phones
and tablets) to DCs, leading to a longer battery life in these devices. In the
original MCC concept, only centralized CC services were considered as the most
promising solution for offloading computational tasks [Ali09]. However, this
concept suffered from limitations described above, especially from unpredictable
and high network latencies. This motivated researchers to expand the scope of
CC services, and leverage computational tasks to Cloudlets, representing EDC
in the MCC deployment model [Bah+12]. A Cloudlet is defined as ”a trusted,
resource-rich computer or cluster of computers that’s well-connected to the Internet
and available for use by nearby mobile devices” [Sat+09]. This expansion provided
an underlying infrastructure for the introduction of novel services, such as mobile
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learning or mobile healthcare [Rah+14], and gave further momentum for the
decentralization of CC-like capabilities.

MEC, based on MCC, was primarily adopted and developed by cellular network
providers. Namely, in MEC, Cloudlets have been firstly deployed by IBM and
Nokia Siemens Network within a mobile base stations [Bec+14]. Afterwards, in
2014, the ETSI created an Industry Specification Group (ISG) with the final goal of
defining and integrating a standard MEC into cellular networks, called ETSI MEC
[22e]. Afterwards, ISG group researched applicability of MEC on the non-cellular
IT systems, resulting in an update of the previous standard and renaming MEC to
Multi-Access Edge Computing [22f]. Even though MEC is technologically very
similar to MCC, the major distinction between these two deployment models
is the ownership of Cloudlet - MCC is envisioned as the model where private
entities and individuals pose Cloudlets, whereas Telecommunication companies
[RLM18] possess Cloudlets in MEC.

Generalization of the MEC and MCC concept leads to the introduction of EC
[Pul+19]. The main idea behind this introduction is widening the applicability of
Cloudlets so that they are not necessarily used for mobile applications and cellular
network, but also for the other CC application domains like the IoT [Nah+18].
However, conceptually EC does not differ significantly from MCC and MEC since
the decentralization of CC-like capabilities remains mostly based on Cloudlets as
locally deployed EDC with DC as a fallback option. This characteristic of the EC
still represents Cloudlets as SPoF concerning high performance and low-latency
requirements.

FC was introduced as a novel deployment model [Bon+12b] improving decom-
position and distribution of CC-like capabilities on a hierarchy of nodes, also
including the DC. FC is considered an CC extension, with the goal of providing
computation, networking, and storage resource between Things and traditional
Cloud Servers. Therefore, compared to EC, FC is rather conceptualized as a
complementary extension of CC, offering CC service closer to the edge of the
network, across multiple, hierarchically-organized devices. Furthermore, the lack
of hard-requirement for provisioning all CC services on each FC EDC allows addi-
tional flexibility for deployment of FC-based networks and simpler decomposition
of CC services [Pul+19]. Finally, FC is focused on optimization of the network
infrastructure and increasing utilization of existing devices in the network, while
EC is focused on providing CC-like services deployed on the devices dedicated
for that purpose, namely Cloudlets.
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2.2.2 Fog Computing Basics

Initially conceived as a distributed computing paradigm where processing is done
at the edge of the network, FC represents a promising opportunity for enhancing
the scalability of the current CC-based systems. Bonomi et al. provided the
first definition of FC [Bon+12b]: ”Fog computing is a highly virtualized platform
that provides compute, storage and networking services between end-devices and
traditional DCs, typically, but not exclusively located at the edge of the network”. In
this definition, the authors emphasized several points that are vital for the overall
application of FC:

• Highly virtualized platform offers flexibility for deployment of CC ser-
vices on any devices with sufficient storage, computing and networking
capabilities;

• Between Things and DCs, stating that FC does not neglect the role of
CC, but embodies FC as middle part in Thing - FN - DC continuum;

• Typically, but not exclusively at the edge of the network imposing
non-flat, hierarchical deployment model for the device offering FC services.

These three points state that FC as a paradigm is fully complementary to the
CC and can be seen as its extension. Moreover, compared to the EC paradigms,
flexible hierarchical FC deployment models focus more on the infrastructure side,
while EC focuses more on theThings’ side [Shi+16]. However, the paper providing
FC definition [Bon+12b] lacked the definition of Fog Devices or FNs, which was
later identified as important for the description of FC-based systems. FN is defined
as ”a physical device where Fog Computing is deployed” [YLL15]. Merging this
definition with the initial definition of FC, FN can be defined as any physical
device with sufficient storage, compute, and networking capabilities for
provisioning highly virtualized deployment of the FC-based services.

Being initially defined in 2012, FC is still considered as being in its infancy
phase. Therefore, while being applied in several IoT application domains (cf.
Section 2.1), standardization efforts for FC architecture are in progress, and the
first standards for FC architecture are published. The main effort within the
FC standardization has been provided by the OpenFog Consortium, which has
been founded in 2015 by ARM, Cisco, Dell, Intel, Microsoft, and the Princeton
University and later integrated with the Industrial Internet Consortium12. Their
main objectives are:

12 https://www.iiconsortium.org/press-room/12-18-18.htm, last access May 2, 2022
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• Creation of open, comprehensive architecture for the FC;
• Promotion of the FC adoption in the several application domains that may
benefit from it;

• Accelerating the development of FC standard along with standardization
bodies.

In 2017, the consortium published the OpenFog Reference Architecture (OFRA)
[22g], describing the initial FC architecture and framework for the development
of interoperable platforms using FC. In 2018, OFRA was accepted as standard by
IEEE SA13, and published as IEEE 1934 [22a].

In [22a], the authors describe multiple high-level aspects of the FC architecture:
Pillars, Perspectives andViews. Pillars describe the set of driving, core principles for
OFRA. They represent ”key attributes that a system needs to embody the OpenFog
definition of a horizontal, system-level architecture that provides the distribution of
computing, storage, control, and networking function closer to the data source (users,
Things, et al.) along the Cloud-to-Thing- continuum.”. The Pillars have been divided
into several categories, each describing particular set key of requirements that
OFRA-based FC systems need to satisfy: (1) Security, (2) Scalability, (3) Openness,
(4) Autonomy, (5) Programmability, (6) Reliability, Availability, and Serviceability,
(7) Agility, and (8) Hierarchy.

Beside the Pillars, OFRA defines Perspectives and Views, providing more con-
crete description on architectural points for FC-based systems’ architects and
developers. ”A Perspective is a cross-cutting concern of the architecture”, meaning
that it interweaves multiple layers of the OFRA. In OFRA, layers are described
through Views, which are defined through”a representation of one or more struc-
tural aspects of the architecture”. Currently, in OFRA, there are three specified
Views described:

1. The Software View defines required characteristics for services and appli-
cations running on a FN;

2. The System View defines points that system architectures need to address
while designing FC-based systems;

3. The Node View defines characteristics that a chip installed in a FN should
possess.

Additionally, Perspectives defines technical and non-technical capabilities of
the FC systems, which ought to be supported by Views:

13 https://standards.ieee.org, last access May 2, 2022
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1. The Performance and Scale Perspective targets at improving overall
system performance (e.g., reducing network and computational latency);

2. The Security Perspective aims at providing E2E security in Cloud-to-
Things continuum;

3. The Manageability Perspective defines requirements for dynamic man-
agement of all aspects of Fog deployments;

4. The Data, Analytics and Control Perspective describes localized data
capturing, storing, analysis, and control;

5. The IT Business and Cross Fog Applications Perspective describes
interoperability of FC-based services at any level of Fog hierarchy in multi-
vendor systems.

The aforementioned characteristics of CC decentralization deployment models,
especially FC, represent the driving factor for the establishment of a new breed of
IoT services. Envisioned as an extension of CC, IoT systems can benefit from FC as
an intermediation layer between DC and Things. Furthermore, highly-virtualized
deployment of FC services enables the hierarchical organization of IoT services,
leading to the better utilization of computational resources in local IoT networks,
as well as providing CC-like services with the small distance from Things. The
hierarchical organization of FNs depends on multiple factors [Bel+19]:

1. Complexity and computational requirements of the offered service;
2. Computational capacity of the FNs;
3. Functional requirements of the IoT application domain.
In order to achieve correct system’s operation and overall end-user

satisfaction, IoT systems pose various key requirements to the accompanied
environments providing computing capabilities for Things. These requirements
are published in [Bel+19], taking into consideration multiple surveys and stan-
dardization proposals for FC and refining them by considering multiple IoT
application domains. A summary of these requirements, followed by a brief
definition for each one, is given in Table 2.3.

The distributed nature of FC proves to be a promising approach for solving
low-latency, bandwidth-independent, location-aware requirements for the intro-
duction of novel IoT services and applications. The following paragraphs of this
section list benefits of the FC application onto multiple IoT application domains.

Connected vehicles and Smart Transportation Systems can employ IoT
and FC services for broader information exchange and data-analysis enrichment
to resolve several transportation issues in highly-urbanized environments, such
as traffic congestion, time losses, accidents, and pollution. For this purpose, low-
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Table 2.3: IoT key requirements for FC [Bel+19]

Requirement Definition

Scalability Capability of the system to scale in relation to the
quantity of managed information

Interoperability A standardized way to describe and exchange in-
formation, together with an abstraction layer that
hides physical differences among elements

Real-time responsiveness Low-latency communication and real-time inter-
actions between elements

Data quality Differentiating rich-information data, filtering out
faulty or noisy data, as well as aggregation and
integrated use of data coming from highly hetero-
geneous and different IoT sensors/actuators.

Security Provisioning CIA for IoT environments.
Location-awareness Identification of the location of the deployed appli-

cations and using of this information to improve
the data processing and adaptation modules.

Mobility Supporting mobile devices to shift from an FN au-
thority to another without interrupting systems
operations or causing any problems.

Reliability Multiple categories: Resiliency against the failure
of any individual FN, failure of the whole network,
failure of the service platform, failure of the user’s
interface connected to the system.

latency data processing and analysis, as well as location-awareness, are required,
being the stumbling blocks for the employment of CC. However, FC can have a
crucial role in such scenarios [KCT16]. Deployment of FC can occur through the
installation of FNs on static (e.g., road infrastructure or traffic lights) and mobile
entities (e.g., cars or trucks), enabling connectivity and interaction scenarios: cars
to cars, cars to access points (static entities) and access points to access points
[Bon+12b]. Through that deployment, smart transportation systems can benefit
from [22g]:
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1. Decreased bandwidth consumption;
2. Data processing units deployment in the intermittent presence of vehicles;
3. Provisioning location and C-A services to the vehicle in their proximity

(e.g., alerting traffic congestion or reporting accidents to the vehicles in the
close area).

SmartGrids emerged through the integration of traditional electrical grids and
information systems, conceiving services for more efficient, reliable, and secure
energy management [Fan+12]. Being the highly distributed system of power
supply, sensing, and actuating units, Smart Grids commonly cover the area of
hundreds of square miles, resulting in the production of a vast amount of data that
saturate the network, storage, and processing units [Pul+19]. Furthermore, Smart
Grids require low and predictable response times - up to 20ms [Sch+17], as well
as enhanced privacy settings, since the smart metering devices can be exploited
to leak personal information about the inhabitants in an area [OO16]. For those
reasons, the deployment of FC in Smart Grids can bring multiple benefits, such
as (1) achieving low and predictable service response times and (2) performing
data aggregation, analysis, and anonymization in the FNs deployed along Smart
Meters. [Pul+19]

Smart Healthcare represents the most delicate IoT application domain, since
it can profoundly affects peoples’ Quality of Living and their lives themselves.
Moreover, since Smart Healthcare handles the most sensitive information about
the patients, special attention has to be given to the privacy settings and informa-
tion security in such systems. For those reasons, FC can be a promising approach
for many Smart Healthcare issues [Far+18]. Some of the beneficial aspects of FC
in Smart Healthcare [Pul+19] are:

1. Low response time, representing the crucial factor in life-critical situations;
2. Robust services provisioning, independent on network QoS;
3. Local protection of the sensitive patient data in FNs (e.g., in a hospital or

retirement home) instead of sending them over the Internet to the DC.
Smart Home, Smart Building, and Smart City incorporate management

and monitoring of various Things in indoor and outdoor scenarios whilst pro-
viding adaptive and intelligent services for improving the system’s performance,
reducing maintenance costs, and increasing overall Quality of Life for the people
residing therein. Since home and corporate IoT deployments involve multiple
diverse appliances (e.g., home gateways, routers, and set-top boxes), making use
of their computing capabilities within the virtualized FC-based environments
would bring several benefits for future IoT systems [Val+16]. Provisioning of IoT
services on FNs in local Smart Home and Smart Building context would dramati-
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cally increase resilience when Internet connectivity is absent, decrease network
latency and bandwidth consumption. Lastly, by keeping sensitive information of
the inhabitants in these IoT environments in a local context that is on the FN, the
overall IoT system’s privacy would be highly improved [Pul+19].

2.3 Trustworthy Networking
Conceptually, trust represents ”measurable belief and/or confidence which repre-
sents accumulated value from history and the expecting value for the future” [22n].
Being influenced by multiple factors (e.g., reputation of entities, relationships
between them, decision making, or human decision) quantification of trust is a
complex process. For that reason, once building a trustworthy IT system, estab-
lishing trust does not involve merely devices and network, but also human trust
in the IT system. In the scope of this thesis, building and establishing trust in com-
puter networks is in focus, that is, building a Trustworthy Networking Domain
(TND) [22o]. Trustworthy Networking (TN) incorporates a set of methods with
the goal of provisioning reliable and secure communications between network
entities (trustor and trustee) that have established trust relationships [22o]. These
entities are grouped within a TND, characterized by administrative features with
a certain trust level and established mutual trust relationships between all of its
members.

In the context of TN, establishing secure communication requires the support
of several fundamental features [22o]:

1. Identification is the process of recognizing an entity in a particular do-
main as distinct from other entities [22c];

2. Trust evaluation represents a decision-making process based on an ex-
pectation and belief for a trustee to perform a particular action;

3. Trustworthy communication enables the establishment of a secure and
reliable link between trustor and trustee.

Application of these features between multiple network entities encapsulates
them in the TND, with the common trust policy and security configuration spe-
cific for that TND. Within the TND, the following TN features are provided:
(i) support for trust management, (ii) continuous network entities trust evalu-
ation, (iii) interface for communication outside of the TND, (iv) unique entity
identification using identifiers, and (v) establishment of trustworthy communi-
cation links between entities. This encapsulation enables the minimization of
attack vectors and simplifies the establishment of mutual trust between entities
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due to the smaller number of entities in a single TND compared to public net-
works. Moreover, access to the entities is restricted through a TND interface,
which enforces predefined procedures for identification and trust evaluation for
the external TND entity. Before joining the TND, an entity is forced to pass a
particular trust procedure to establish (also called bootstrap) initial mutual trust
with other TND members. Once passing the initial validation, an entity becomes
a TND member and is continuously monitored for any misbehavior, which could
endanger the TND’s trust policy. If such behavior is detected, an entity’s trust is
revoked, and the entity is removed from the TND. [22o]

2.3.1 Building Trustworthy Networks

The operation of trustworthy networks provides secure and reliable communica-
tion links between uniquely identified, mutually authenticated network peers.
Network security defines secured peer communication through the CIA principles.
[Sta16] and [22l] provide the following descriptions for the CIA principles:

1. Confidentiality assures restricted availability of the private or confidential
information to the unauthorized peers;

2. Integrity assures that information and programs are altered exclusively
in a specified manner by an authorized peer;

3. Availability assures that the system works promptly and that authorized
users do not suffer from denial of services.

Accomplishing CIA principles leads to a successful defense against the net-
work attacks and to maintaining trust [Shi07]. Accomplishment is implemented
through the security services application defined in [22l]. Network security
employs encryption to ensure the trustworthiness of the communication links
and the transferred data. Encryption algorithms are divided into two main cate-
gories - symmetric and asymmetric encryption. Each algorithm is based on the
dissemination of security material, i.e. shared secrets, within the TND through
the trust management infrastructure. Security material is mostly in the form of
encryption keys, credentials, passwords, tokens, or certificates which are used for
the creation of encrypted channels for secure information transmission. [Hu16]

Successful provisioning of CIA principles via encryption procedures depends on
multiple factors: encryption key and algorithm strength and system-wide secure
security material dissemination. The encryption key and algorithm strength
disables the attacker to decrypt the ciphertext or discover the encryption key
even in the scenario where the attacker possesses multiple ciphertexts of the
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communication using the same encryption keys. Still, encryption algorithms
are publicly available standards, and their secrecy does not guarantee network
communication trustworthiness. In contrast, the encryption keys have to be
securely shared and managed between and stored on the communicating entities
and in the TND. [Sta16; Bar22]

Security material dissemination is achieved using different methods categorized
as KMP. Following the TND’s and accompanying security material’s lifecycle,
key management is divided into four phases [Bar22]:

1. The Pre-operational phase ensures that the initial secrets and system
attributes are being shared in the TND. Result of this phase is the establish-
ment of initial trust relationships between TND entities using encryption
keys.

2. TheOperational phase represents the state when the secrets are available,
and trustworthy communication links established, allowing applications’
information to be securely transmitted.

3. The Post-operational phase involves secrets not being anymore in nor-
mal use, since they are deactivated or in a compromised state. Despite
being obsolete, secrets are not yet destroyed but may be archived.

4. TheDestroyed phase imposes secrets being no longer available since they
have been permanently deleted from a TND entity.

Beside KMP, the strength of the encryption algorithm is a critical factor for
securing TND. Vital elements for choosing the encryption algorithm is also its
performance and the computational effort required for encrypting and decrypting
exchanged data. In that sense, symmetric encryption is favored over asymmetric
encryption since the symmetric encryption achieves the same level of trustwor-
thiness using shorter encryption keys. For example, in 2015 acknowledged secure
key lengths were 128 bits for AES symmetric and 2048 bit for RSA asymmetric
encryption algorithm [BD22]. Though the symmetric encryption offers better
performances, due to the shorter encryption keys deployed on communication
parties, Symmetric Encryption-based KMP (SEKMP) introduce several drawbacks
regarding scalability for disseminating security material (e.g., encryption key ta-
bles, master encryption keys, or key derivation secrets) in a TND (cf. Section 2.3.2).
Also, SEKMPs require the security material distribution before the realization of
KMP procedures, following two approaches: (1) Probabilistic key distribution
- having certain probability that two TND nodes will discover a common key
during trust establishment, and (2) Deterministic key distribution - creating
the encryption keys pool deterministically and with uniform distribution so that
each two TND nodes share a mutual key [NLO15]. [Bar22]
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Asymmetric encryption is useful since it relies on different encryption keys -
public and private, for information encryption and decryption, respectively. In
asymmetric encryption, the public key is known to all network entities, while the
associated private key is securely stored in the network entity. Aside the from
data decryption, the private key is commonly used for digitally signing the data,
therefore providing data integrity and sender’s authenticity [Sta16]. Network
security solutions based on Asymmetric Encryption-based KMP (AEKMP) provide
improved scalability compared to the SEKMP (cf. Section 2.3.2). Widely-accepted
procedures for AEKMP are Diffie-Hellman [Sta16] and Elgamal [Sta11], as well
as the standardized protocols like TLS [Res18] and DTLS [RM12]. However,
compared to the SEKMPs, the major drawback of ASKMPs is high computational
cost and energy consumption. The crucial assumption for secure AEKMP is the
distributed public keys’ authenticity. Public key authenticity is guaranteed by
a Trust Anchor (TA) - a TND entity that is implicitly trusted by all other TND
entities. Implicit trust for TA is achieved through the offline distribution of its
public key, by storing it in the TND entities’ memory through, for example, the
operating system or installed applications [Bar22]. [Sta16]

2.3.2 Trust Models

TNDs employ various organization strategies concerning the management of
security material and trust establishment, depending on the scenario for which
they are used. These strategies are split into three main models: (1) Direct trust,
(2) Web of Trust, and (3) Hierarchical trust [Hu16].

In the Direct trust model, trustor and trustee exchange their secrets and
establish trust relationships in a manner that is immediately convincing to them,
i.e. without the need for the trusted third-party. A common way of achieving
direct trust is the security material distribution and configuration before the
network deployment so that entities can establish trust during the system’s run-
time without further external assistance. The Direct trust model in a network
mostly involves the distribution of symmetric key pair during manufacturing
or system integration, enabling data confidentiality and integrity, as well as
entity authenticity during system’s runtime. Moreover, this approach utilizes
the efficiency of the symmetric encryption compared to the asymmetric one
[KBL18a; KBL18b]. However, this approach puts up a burden for the trust main-
tenance through the key management during the system’s runtime, since any
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secret revocation and renewal has to be propagated to every entity in the network.
Moreover, for the network of N nodes, pairwise shared symmetric keys require
storage space of total N*(N-1)/2 keys, of which (N-1) keys are stored in every
node, making it unsuitable for large-scale networks [KBL18b]. [Hu16]

Another approach is based on the digital certificates whitelisting, i.e. instead
with symmetric keys, entities are equipped with the digital certificates and certifi-
cate whitelists. During manufacturing, each entity obtains its digital certificate
signed by a trusted authority, which ensures unforgeable proof of the entity’s
authenticity during the system’s runtime. Moreover, the complementary whitelist
is stored in each node containing references to the digital certificates of all
trustable network peers [FF14]. While this approach reduces the overall number
of keys in the network, compared to the method using symmetric key pairs, the
whitelists maintenance is impractical for dynamic and large networks [Hu16].

The Web of Trust model utilizes trust propagation between peers for
improving trust management in dynamic environments. In the Web of Trust
model, the trustor can establish trust relationships with a trustee if the credentials
of the trustee are trusted by another entity that has already established trust rela-
tionships with the trustor [GZV11]. For that purpose, the trustor relies on trust
propagation techniques like direct trust inference, recommendation, reputation,
and similarity-based trust prediction [SSD09]. This model is employed in Pretty
Good Privacy [Cal+07], where individual nodes maintain a list of trusted public
keys in a key ring. When a public key is inserted, its legitimacy is assigned by
other peers in the network by marking the added key as trusted or not trusted.
While Web of Trust improves support for networks’ dynamics (peers entering
or leaving the TND) compared to the direct trust model, it still does not offer
efficient capabilities for non-static networks, such as vehicular or ad-hoc sensor
network. Namely, Web of Trust introduces several drawbacks to the TND: (1)
it disables new previously unknown peers to join TND, (2) it allows identity
spoofing through unmanaged trust management infrastructure, and (3) it does
not offer efficient means for the trust revocation since it is propagated to all TND
nodes [Hu16].

The Hierarchical trust model involves the presence of one or more inter-
mediary entities - TA in the TND, which serve to establish trust relationships
between the communicating nodes that do not have previous trust relationships.
In the case of the presence of multiple TAs, they form the hierarchical infras-
tructure for trust provisioning, named Trust Center Infrastructure (TCI) [Hu16].
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To gain the ability to act as a trusted intermediary, TAs have to establish trust
relationships with all the nodes in the TND, for which they afterward will provi-
sion trust relationships. For the trust establishment, TAs rely on the exchange
of encryption keys before or during the system’s runtime, whereas the methods
mentioned above and trust models can be employed.

Kerberos [Neu+05] represents a protocol that utilizes TA to establish hierar-
chical trust in the Local Area Network or within a corporate network [Sta11].
Initially, Kerberos was developed to allow users to access distributed services in
the network (e.g., printing or file-transfer) from their workstations [Sta16]. To
achieve that, Kerberos introduces TA named KDC, which handles the symmetric
keys for users and services and issues them encrypted permissions (Tickets) for
accessing services. Compared to the Direct trust and Web of Trust models, trust
maintenance is simplified through centralization in KDC, which requires handling
of N symmetric keys for N users or services [Sta11]. Moreover, trust revocation
and renewal through KDC is straightforward, since the keys and whitelists are
managed only within KDC [Hu16]. However, KDC is also the critical security
component representing SPoF, since compromising KDC would lead to failure
of trust management in the whole TND and, therefore, lack of integrity and
availability in the entire network [Hu16; Sta11].

PKI [Cho+03] is another example of the hierarchical trust model. Compared to
Kerberos, which is centralized through the mandatory presence of KDC, PKI
forms a hierarchy of TAs, called Certificate Authority (CA). Moreover, PKI
relies on the public key encryption for trust establishment through the use of
digital certificates [Coo+08a]. Digital certificates are representing encryption-
verifiable credentials, proving the authenticity of a TND entity. Due to that, TND
nodes can establish trustworthy communication links without the simultaneous
trust mediation by the CA, making the PKI less susceptible to attacks on avail-
ability and trust integrity [Hu16]. Digital certificates’ life cycle represents the
core of the PKI [Hu16]. The lifecycle starts with certificates issuance by a CA,
which acknowledges the integrity and authenticity of the certificate enclosed
identity information by digitally signing it using CA’s private key. Through the
digital signature, CA vouches for the trustworthiness of the entity holding the
certificate, which is afterwards verified by other TND nodes that are establish-
ing trust relationships with the certificate holder. Nonetheless, the certificate’s
lifecycle ends with revocation, which occurs after a predefined time or if the
certificate’s trustworthiness is compromised by an error or malicious event in the
TND [Sta11]. Presence of multiples CAs enables PKI’s transitive trust properties,
which are established through CAs’ digital signatures, offering multilevel PKI
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hierarchies. Multilevel PKI allows the certificate holders to act as a CA and issue
further certificates to other TND entities at a lower hierarchical level in PKI
[Hu16]. Through that, PKI scales concerning the number of managed TND nodes,
since the certificates management is leveraged between multiple CAs. [KPS02]

2.3.3 Identity Management

Besides encryption and trust management, the establishment of trustworthy
communication links depends on the authentication of network peers. That in-
volves IdM in the TND and enforcement of the mutual authentication procedures
between entities [Mah+10a]. IdM enables representing and recognizing network
entities as digital identities [22k; CLC15]. Thus, it includes processes and policies
involved in managing the identity lifecycle properties: value, type, and optional
metadata (attributes) for the identities known in a particular domain [22c; 22b].
IdM represents an essential block of IT systems since they heavily rely on digital
identities for building security mechanisms and management features [Zhu+17].

IdM is provided through the Identity Management System (IdMS) [22m], which
enables ”mechanism comprising of policies, procedures, technology, and other re-
sources for maintaining identity information, including associated metadata” [22c].
The main features offered by IdMS as per [Mah+10b; LC16] are:

1. Representation of entity through identity and its organization in names-
paces (domains);

2. Storing entities’ relevant information (e.g., names, credentials) as attributes;
3. Providing access to identity and attributes through standard interfaces.

The listed features ensure scalability for extensible entity structures through a
resilient, distributed, and high-performance infrastructure [Mah+10b; Zhu+17].
Therefore, the IdM is accomplished through four operations that are offered
by Identity Provider (IdP): (1) Identity Registration, (2) Identity Revocation,
(3) Identity Update, and (4) Identity Lookup [Zhu+17] [CLC15].

Providing required IdM operations rely on the assignment of a digital identity to
network entities through the information set that uniquely identifies the entity in
the specific context [Zhu+17]. The information set must contain all the data that
allow unique entity identification and authentication. Therefore, digital identity is
defined as a three-tuple: identifier, credentials (private key or other authentication
data), and attributes (additional entity information) [CLC15; Zhu+17]. Identifiers
and attributes need to provide intuitive means for recognizing network entities.
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Designing an identifier construction scheme involves defining semantic levels
of the entities’ identity. This corresponds to the ability to obtain descriptive
information (attributes, meta-data) on the network entity, representing any rel-
evant characteristic or property of an entity in a particular domain [22c]. For
example, the Domain Name System (DNS) system utilizes Uniform Resource
Locator (URL) addresses providing sufficient means to reason the offered ser-
vices located on that platform since they are envisioned as a human-readable
representation of IP addresses. For that reason, DNS addresses are considered
as ”strong semantics,” while IP addresses as ”weak semantics” since they do
not provide additional attributes on a network entity [Hu16]. Nonetheless, to
support unique identification, as well as ”strong semantics” of network entities,
identifiers are often split between so-called core identifier (reference identifier),
representing unique value for identification purposes, and additional attributes
that provide a semantic description of the entity [RZL13; 22c]. The core identifier
is the domain-wide unique identifier that is intended to remain constant during
the entity’s lifecycle in the TND [22c]. A further aspect of building identifiers
and attributes relates to naming convention, i.e. core identity and attribute names
representation format. The naming convention provides a structure for binding
information about the IdM namespace with the specific information concerning
digital identity (e.g., user core identifier, attributes or role). A suitable naming
convention is beneficial for the overall identity management by declaring inter-
connections between different entities in a structured manner. Moreover, query
language provisioning for the IdM identity lookup operation depends heavily
on the identity naming convention. A common way for a structured naming
convention is flattening structure into text separated with dots. For example,
DNS [Moc87] imposes name.administrative domain (e.g., .com or .org) format for
namespaces and addresses. Furthermore, IPv6 [DH17] and MAC [EA13] network
addresses utilize the same message format by having each text segment as a
placeholder for separate information on a network entity. Using this message
convention, a complex structure of identity namespaces is simplified as a single
text without hindering identity lookup operation.

Another aspect of IdM is the possibility to federate digital identities’ informa-
tion between various platforms, allowing users to reuse their identities. In the
isolated IdM approach, service providers provide IdM services to users, therefore
neglecting the possibility to reuse digital identity information for accessing other
service providers [Zhu+17]. Federated IdM (FIdM) is based on an agreement
between two or more TNDs, specifying the exchange of digital identity infor-
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mation and the management of cross-domain identification procedures [Sha+18;
Zhu+17]. Provisioning FIdM requires the establishment of trust relationships be-
tween service providers and their TNDs. Once the different TNDs trust each other,
the exchanged information’s authenticity is ensured. Establishing trust between
TNDs most commonly employs a direct trust model (cf. Section 2.3.2), where
encryption keys and digital certificates are exchanged using offline key exchange
between integrating TNDs. Thereby, both symmetric and asymmetric encryption
keys are used. For example, the OAuth2 IdM extension - OpenID Connect relies
on the symmetric encryption exchange [JH12], whereas the Liberty Alliance
Project14 solution relies on the asymmetric encryption and digitally signed SAML
tokens [CMJ15] for ensuring trust between TNDs. Moreover, Shibboleth also
utilizes the asymmetric encryption to ensure TNDs’ trustworthiness and relies
on the hierarchical trust model through X.509 certificates [Mor+04].

2.3.4 IoT Trustworthy Networks’ Implementation

IoT devices and IoT networks are vulnerable in many aspects [Bor14; ČH18]. For
that reason, trust provisioning and maintenance put up numerous challenges. The
biggest hurdle in the IoT system’s security represents low-computational, battery-
powered Thing’s resources, incapable of supporting sufficient cryptographic
primitives required for trustworthy communication [Hu16]. Moreover, a variety
ofThings in the IoT network, with different computational and storage capabilities,
hinder the application of unique IdM and security protocols in the IoT TNDs.

Currently, Things identifiers are built based on manufacturer and hardware
information (e.g., RFID or serial number) and network addresses - IP and MAC.
However, this information offers low-security levels and weak authentication
procedures, allowing spoofing and identity theft. Moreover, network addresses
do not describe the general Thing’s identity, but its identity in the context of
the connected network interface. Therefore, building Thing’s identity based on
Thing’s properties is set as a goal for IoT IdM. Thing’s properties are divided into
four categories: Inheritance, Association, Knowledge, and Context. [LC16]

The Inheritance category answers the question, ”What a Thing is?”. This
question is answered by the information that Things hold memorized as part
of hardware or software. Physical Unclonable Functions [MV10], as well as
watermarks, security printing, and holograms are representatives for the inheri-

14 http://www.projectliberty.org/, last access May 2, 2022
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tance category. However, inheritance category information is not as flexible as
further categories since it relies on fixed information installed by the hardware
manufacturer. Currently, this category is used in the system with high-security
requirements. The Association category relies on associations that the Thing
has developed during its lifecycle, like communication with the particular net-
work gateway, smartphone or smart wearable. Furthermore, association based
identity can be correlated with the Thing’s owner information to improve the
uniqueness and trustworthiness of the Thing’s identity. The Knowledge cate-
gory incorporates information the Thing can learn during installation and its
runtime. Representative is the International Mobile Station Equipment Identity.
Moreover, the measurement that Thing has previously collected represent knowl-
edge that can be used to construct Thing’s identity. The Context category is
based on Thing’s behavior. Behavior properties are gathered from IoT monitoring
and analysis modules and mapped to identities through cryptographic operations.
While this category offers adaptability for Things’ dynamic and heterogeneous
nature, collected context information is imprecise and prone to noise. Therefore,
it is hard to detect the Thing’s behavior during state transitions, as well as to
derive Thing’s identity from its behavior. [Zhu+17]

IdM deployment, accompanied by identities and secrets dissemination strate-
gies, is categorized in multiple categories [22c; Zhu+17]: (1) Centralized,
(2) Distributed, (3) User-centric, (4) Isolated, and (5) Federated. Each category
employs different trust models (cf. Section 2.3.2) for building TN between multi-
ple IdPs, end-users, and services. Centralized IdMs rely on third-party identity
providers, which are most commonly deployed separated from application ser-
vices [Zhu+17], as in, for example, Kerberos protocol [Neu+05]. The centralized
IdM approach has its limitations, mostly concerning the scalability and availabil-
ity in the highly-distributed IoT environments [Sha+18]. Distributed IdM systems
allow multiple deployments of multiple IdP within the TND, enabling various
points of control in the network for IdM functions. X.509 digital certificate-based
PKI [Ada+05] is a representative of the distributed IdM. This results in a higher
management effort required to ensure the consistent identity registry state but
also improves the IdM’s availability, fault-tolerance, and scalability.

IdM in IoT systems has to provide scalable support for a variety of devices in
highly dynamic networks. Using a centralized approach, where the IdM logic is
mainly located in one central entity, TND nodes need to establish a trust relation-
ship just with that entity that will handle identification and authentication for
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them. However, due to the distributed nature of IoT (cf. Section 2.2), centraliza-
tion of IdM hinders the possibility for Things collaboration and establishment
of the edge intelligence, where Things are communicating directly, without the
external entity’s intervention. As a result, the distributed approach for IdM offers
greater scalability and flexibility for IoT systems. Moreover, the IoT system can be
built using multiple TNDs, with each one having a separate IdM system, therefore
creating more efficient and trustworthy local IdM services. [RZL13]

Concerning Things’ trust management, the main building blocks are isolation
and cryptography. The degree of application of isolation and cryptographymainly
depends on the Things’ computational and communication capabilities and is
implemented both in the Things’ hardware and software modules. The Hardware
Security Module (HSM) provides a higher level of trust, especially for storing
cryptographic keys and operations, which is achieved through tamper-resistant
hardware modules optimized for security operations (e.g., key generation and
storage, data encryption and decryption) [Hu16]. The main representative of
HSM is the Trusted Platform Module (TPM), implemented on the device as a chip
separated from the primary device’s CPU. The application of HSM dramatically
extends the Thing’s battery life. However, HSM fails to meet the requirement for
encryption keys management and update procedures and adjusts to the encryp-
tion key formats or algorithms that were defined after HSM is deployment [Hu16].
Compared to that, software security components are implemented as an isolated
area on the device’s platform that is specialized for security functions, named
Trusted Execution Environment, offering a higher level of security compared
to the security operation in the central platform. Software security modules
also include software stores, providing cryptographically-protected storage for
encryption keys, tokens, and passwords [Hu16]. [22b]

Besides the IdM and cryptographic material protection, TN in IoT requires
protection of communication links between Things, Edge Devices, and DCs. For
that, information exchange between communicating entities should employ [22b]:

• Explicit endpoint communication policies,
• Strong mutual authentication between endpoints,
• AC rules enforcement on exchanged information, and
• Cryptographic mechanisms to ensure confidentiality, integrity, and fresh-
ness of exchanged information.
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With that goal, communication nodes need to establish secure communication
links through mutual authentication and encryption keys exchange, which will
be used to encrypt and decrypt exchanged data. Secure transfer of secrets for
Things named key distribution schemes or KMPs are categorized according to
the applied encryption algorithms into two areas [NLO15; KBL18a], following
SEKMP and AEKMP concepts described in Section 2.3.1.

Utilization of AEKMP and SEKMP provides strong security guarantees for
ensuring data confidentiality. Still, these KMPs rely on algorithms that have a high
demand on the storage and computational resources [KBL18a; Had+19; RZL13].
Things’ constraints concerning computing andmemory capacity, as well as energy
resources, result in the Things’ inability to apply traditional security protocols
and algorithms, i.e. Internet Protocol Security (IPSec), Secure Sockets Layer (SSL),
or Rivest–Shamir–Adleman (RSA), that involve strong encryption schemes in
IoT systems [LC16; Bon+12a]. To address these challenges, several lightweight
cryptography methods are analyzed and reported [McK+17; KKV12]. Still, even
lightweight encryption schemes cannot be adopted by highly-constrained Things
(e.g., Radio-Frequency Identification (RFID) Tags or low-energy Bluetooth devices)
[Sha+18], minimizing the possibility of finding a universal solution that would
ensure E2E security in IoT systems. This affects also the KMP and IdM protocols
in IoT, since they are mostly based on the computationally-demanding AEKMPs
(e.g., RSA, Elliptic Curve Digital Signature Algorithm (ECDSA), or Diffie-Hellman)
[ARC18; RZL13; Sha+18; GMS15]. Therefore, the management of the security
configuration byThingswould lead to an increase ofThings’ complexity to support
higher computation and energy demands [Bor14]. Moreover, Things would be
required to handle the security configuration (keys, identities, credentials) for
all communicating nodes in the IoT network, leading to a further increase in
their complexity. For those reasons, such an approach is not viable since it would
significantly increase the IoT system’s costs and energy consumption.

IoT networks are often equipped with computationally-rich devices like FNs,
Smart Home Gateways or Routers. These devices can support traditional security
protocols and algorithms and achieve a higher level of information security
than Things [Sha+18]. Since these devices are deployed in the IoT system’s
edge layer, they can bridge the gap between Things and remote DCs concerning
security settingsmanagement in local IoT networks [Sha+18; Bon+12a]. Relatively
stable relationship between edge devices and Things can be used to establish
trust between them, allowing offloading computationally-demanding tasks like
data encryption, key generation, and intrusion detection, as well as algorithms
and protocols: Datagram Transport Layer Security (DTLS) and Elliptic Curve
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Cryptography (ECC) [GMS15], ZigBee [Fan+17], and IdM [Zhu+17], from low-
capable Things to more powerful edge devices [Sha+18; GMS15]. Through that,
edge devices can take over the trust management from CC services, enabling
security protocols and management schemes to scale to the larger number of
connected devices [Had+19], as well as reduce the communication latency and
improve performance of security features in IoT systems [Sha+18]. Moreover, the
edge layer becomes the central point for security management in IoT networks,
simplifying the security materials management through the centralized identities
and credentials distribution [Sha+18]. However, offloading security mechanisms
to the edge layer has to be accompanied by trust relationships’ management
between Things and edge devices, requiring Things’ trust into the edge device to
which the Thing offloads computational tasks. Therefore, a Thing has to securely
connect to the edge layer using the lightweight security protocol that the Thing
supports [Sha+18].

2.4 Access Control
AC represents an essential part of the network security, focusing on providing
the data confidentiality CIA principle. It is defined as one of the basic security
mechanisms in ITU-T Recommendation X.800 [22l] as ”the prevention of unau-
thorized use of a resource, including the prevention of the use of a resource in an
unauthorized manner”. RFC 4949 provides multiple definitions for AC [Shi07]:

1. ”The prevention of unauthorized use of a resource, including the prevention of
the use of a resource in an unauthorized manner”;

2. ”A process by which the use of system resources is regulated according to a
security policy and is permitted only by authorized entities (users, programs,
processes, or other systems) according to that policy”;

3. ”Limitations on interactions between subjects and objects in an information
system”.

For a general understanding of AC definitions, it is vital to define a security
policy from [Shi07] as ”a set of policy rules (or principles) that direct how a sys-
tem (or an organization) provides security services to protect sensitive and critical
system resources”. Fundamentally all of the definitions mentioned above point to
limiting the access to the system resources and therefore protecting the system
information. In order to achieve that goal, several procedures must be applied,
divided into three main categories of AC, also known under the acronym AAA
[Laa+00; Shi07]:

42



2.4 Access Control

1. Authentication is the process of verifying a claim that a system entity or a
system resource has a certain attribute value;

2. Authorization represents an approval that is granted to a system entity to
access a system resource;

3. Accounting is the property of a system or system resource that ensures that
the actions of a system entity may be traced uniquely to that entity, which
can then be held responsible for its actions.

By observing the definitions of each AAA point term, a conclusion can be made
that AC enforces following steps: (i) identification of a system’s entity and proving
its authenticity, (ii) validation of access rights (permissions, privileges) for the
authenticated entity, concerning predefined system’s security policies and thereby
deny or grant access to the resource, and (iii) tracking and auditing performed
actions in the system so that each action can be uniquely traced to its origin.
From the system architecture standpoint, Access Control Center (ACC) has been
defined in [Shi07] as ”a computer that maintains a database defining the security
policy for an access control service, and that acts as a server for clients requesting
access control decisions”. To enable AC services, ACC is deployed within an
administrative domain, defined as ”a collection of end systems, intermediate systems,
and subnetworks operated by a single organization or administrative authority.”
[HK89]. The design of ACC is directly impacted by the AC management, which
involves the distribution of the security policies, described through the security
attributes (e.g., credentials or access rights). The selection of security attributes
depends on a used AC model (cf. Section 2.4.2) for the particular system.

Having one of the leading roles in the network security area, AC services can be
implemented using various mechanisms (firewalls, subnet-masking, application-
level authorization) on different layers of ISO/OSI basic reference model [22d].
AC support on ISO/OSI layers is presented in Table 2.4.

In the Sections 2.4.1 to 2.4.5 different AC aspects and the challenges and re-
quirements for the application of AC on IoT systems will be examined.

2.4.1 Authentication

Authentication refers to the assurance that the communicating entity is the one
that it claims to be [Sta16]. Therefore, authentication should validate and prove
the authenticity of the entity, defined as ”the property of being genuine and able to
be verified and be trusted” [Shi07]. Depending on the security object specific to a
security service, authentication is classified as follows [Hu16]:
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Table 2.4: ISO/OSI reference model’s layers [22l]

Layer AC support

Application Application protocols and/or application processes can provide
application-oriented AC facilities.

Presentation No support.
Session No support.
Transport AC is employed on a E2E transport connection basis.
Network AC mechanisms can be used to control access to sub-networks

by relay entities and access to end systems.
Link No support.
Physical No support.

1. Message authentication is the assurance of message integrity and the origin
that is preserving a message from unauthorized alteration;

2. Entity authentication is the assurance of the entity’s identity.
According to the [Shi07], an authentication15 process consists of two steps:
1. Identification involves presenting the claimed attribute (identity) value to

the authentication subsystem.
2. Verification involves presenting or generating authentication information

that acts as evidence to prove the binding between the attribute and the
identity for which it is claimed.

During the identification step, the entity provides its digital identity [22k] to
the ACC by sending through the use of the identifier, containing system-wide
unique information on the entity, distinguishing it from all others [Shi07]. For
that, digital identities have to be designed using a standard naming scheme,
addressing specific characteristics of the network entities (e.g., Things or end-
users). Moreover, the complete lifecycle of the network entities has to be followed
by a proper digital identity management and maintenance, which is provided
through the operations of IdMS (cf. Section 2.3.3) [22m].

15 Terminology concerning authentication can be misleading, because terms authentication and
entity authentication are often used as synonyms. For the sake of simplicity and better under-
standing of the definitions, these two terms will also be used as synonyms in the rest of this
dissertation.
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The verification step requires presenting authentic information about an entity.
This verification can be categorized under the three factors, namely authentication
mechanisms classes [NN06]:

1. Something the authenticating entity has, i.e. hardware token, smart card,
or a digital certificate;

2. Something the authenticating entity knows, i.e. password and PIN code;
3. Something the authenticating entity is, i.e. entity’s physical characteristic

- fingerprint or iris.
It is important to point out that identity verification can employ classes of

the multiple authentication mechanisms (e.g., a password + iris scan or SMS
TAN code), which is defined as multi-factor authentication [Sta11]. The output
of the successful authentication is a session token or encryption key, which
represents the user’s digital identity for a particular period of time, limited with
token’s validity. This token serves for confidentiality and authorization purposes
(cf. Section 2.4.2) once a user requests access to a resource.

2.4.2 Authorization

Authorization is ”a process for granting approval to a system entity to access a system
resource.” [Shi07]. Therefore, authorization represents a set of procedures that
determine if and under which conditions the access to the particular resource can
be granted to an entity based on the presented credentials. A credential represents
security information which is previously obtained from ACC in a two-folded
manner, i.e. through (1)Authentication - Successful identity proving and obtaining
session token (cf. Section 2.4.1) or (2) Accounting - acquisition of revenue that
authorizes a user for the access to the particular service [NN06]. Once provided
with a credential, authorization performs the matching of information from the
credential with previously configured access privileges (rights, policies) for the
requested resource. Access privileges reflect the security policy (cf. Section 2.4)
for the administrative domain.

AC or Authorization16 modeling defines the approach for mapping security
policies to access privileges. Therefore, the AC model bridges the gap between
the high-level security policies and low-level mechanisms by defining the means

16 In literature the terms ”AC modeling” and ”Authorization modeling” are used as synonyms
and, thus, usually the acronym ”AC” stands for both. For the sake of simplicity and a better
understanding of the definitions in this dissertation, here the term ”AC modeling” is applied.
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of how authorization rules should be applied to protect resources. Critical aspects
for choosing an appropriate AC model for the particular administrative domain
are: (1) a method for describing the digital identity (profile) of the user - a set of
attributes for the user description and (2) an access rights management policy
(distributed or centralized). With those aspects in mind, various AC models are
researched and published. [Oua+17]

With regard to the access rights management policy Mandatory Access Con-
trol (MAC) and Discretionary Access Control (DAC) models are defined.
MAC model enforces a strict management policy for access privileges by re-
stricting the assignment of access rights exclusively to a group or individual that
has the authority to manage the domain’s access rights [And11]. Thereby, the
owner of the resource or service is not allowed to manage resource’s access rights.
This approach reflects rather centralized access rights management and is widely
used in high-risk areas, i.e. military and government. In contrast, DAC enables
the owner a full control of the access rights for a resource [CMF12]. Through
that, the owner can share the resources with other users in the administrative
domain. Due to its distributed nature and minimization of the centralized access
rights management, various systems utilize DAC, such as social networks and
the UNIX file system.

The approach for describing the user’s digital identity initiated the design of
multiple AC models. The Role-Based Access Control (RBAC) model [San98]
describes the user’s profile solely through his role in the administrative domain
(e.g., administrator or student). RBAC offers simple access rights management for
a group of users, enabling the access to a user for the particular resource for a user
without creating a new role in most cases. However, RBAC negatively impacts
the access policy granularity, causing the creation of additional roles if access to a
resource should be granted or denied for an individual user. For providing access
rights for a single user without the overhead of a new role, the Identity-Based
Access Control (IBAC) model [GQ18] is used. Using IBAC, access rights can
be granted using the user’s identifier (e.g., email, passport number, or social
security number). Although this allows fine-grained access rights definitions,
management for a big number of users in such an administrative domain can
become cumbersome and time-demanding.

Overcoming the drawbacks of RBAC and IBAC concerning the access rights
management, the Attribute-Based Access Control (ABAC) model [Hu+22]
bases user’s profile description on an attribute - any generic property of a user,
such as role, age, or nationality. With that, ABAC is capable of provisioning
fine-granular access rights definition for single users, but also a group of users
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based on any users’ common attribute. The Capability-Based Access Control
(CAPBAC) model [GPR13] partially follows ABAC’s approach by enabling the
user profile description using multiple properties. However, instead of relying on
the user attributes, CAPBAC bases access rights definitions on the capabilities,
representing allowed operations the user can execute in the administrative do-
main. In contrast, Lattice-Based Access Control (LATBAC) model [San93]
follows a different approach than the previous models. Foundation of LATBAC
are labels - generic administrative properties defining the security levels that
a resource has and which user needs to match to authorize an access request.
Through this, LATBAC allows generic, fine-grained access rights management,
since that labels are not strictly bound to any user’s or resource’s property.

2.4.3 Accounting

According to the [Laa+00], the purpose of the accounting is to ”generate any rele-
vant accounting information regarding the authorization decision and the associated,
authorized session (if any) that represents the ongoing consumption of those services
or resources”. Referring to this definition, accounting serves to trace the access
request towards the services or resources in a system, and for that relies on the
results from the authentication and authorization phases, in need of authorized
session and authorization decision information, respectively. Based on outputs
of the accounting, a variety of application categories are defined [NN06]:

1. Auditing is the process for the verification of an invoice issued by the
service providers for the previous system usage;

2. Cost allocation represents analysis of costs with regard to usage portions
of the specific service;

3. Trend analysis enables forecasting future usage and required capacity for
the particular service.

As can be seen from the definition for the accounting and the main auditing
application areas, even though it is a part of AC, accounting does not represent
a security mechanism, such as authentication and authorization. The primary
purposes of accounting are the system’s usage tracking and generating metrics
for further system development and planning. Nonetheless, positioning the
accounting in the AAA architecture, as well as deploying accounting services in
the ACC, represents killing two birds with one stone, since all of the information
required for the accounting are present in ACC, making the data analysis for
accounting purposes simpler.
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Once the accounting information is collected, it is forwarded to the other
components in the system. Forwarding occurs using two models: pooling
model and event-driven model. The Pooling model relies on the forwarding
of accounting data at regular, periodical intervals, usually by the accounting
manager. For the sake of preventing the data loss, the period between two data
collections has to be shorter than the maximum time the data is stored in ACC. In
the event-driven model, the ACC publishes the data to the accounting servers,
either once a particular event in the system occurs, or a periodical interval in
ACC expires. In this manner, depending on the storage capabilities of the ACC, as
well as the type of event (e.g., monthly usage collection or fraud detection), ACC
publishes accounting data in batches or as a single accounting event. [NN06]

2.4.4 Multi-domain Access Control

The AAA mechanisms described in Sections 2.4.1 to 2.4.3 provide AC services
for a single computer system, that is a single administrative domain (referred
to as domain in the remainder of this section). These mechanisms differ from
domain to domain, each enforcing its security policies, such as credentials dis-
tribution, password policies, and authorization attributes. Security policies and
accompanying security information (e.g, username or password) partially have
to be maintained by the end-user, which presents an additional burden. This
reflects mostly the users’ need to memorize and apply different passwords once
visiting various domains. In order to reduce the maintenance overhead for end-
users’ security information, Multi-Domain Access Control Systems (MDACS)
have been introduced. These systems represent a federation [22k] of domains
that interconnect their ACCs in order to provide access to the resources without
the need for the user to re-authenticate each time once accessing the resource in
a different domain. MDACS can be categorized based on the AAA procedures:
(1) Authentication - FIdM systems and (2) Authorization frameworks.

Even though MDACS differ in their purposes, they share a typical computing
architecture pattern. The central entity in MDACS is the Authoritative Server,
i.e. the ACC exposing its internal AC services to the other federated domains,
through the exchange of authorization messages. The exposure of AC service
has to be followed with security mechanisms in order to provide a successful and
trustworthy operation of MDACS. These security mechanisms ensure a certain
level of trust between federated domains. Establishment and maintenance of
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trust relations between federated domains require cryptographic procedures on
authorization messages exchanges from and to the Authoritative Server, with the
goal of proving the authenticity of an authorization message and the federated do-
mains. PKI and digital signatures ensure the required authenticity since federated
rely on X.509 certificates to confirm their identity. Moreover, using the private
keys pairing X.509 certificates, authoritative servers digitally sign a message
and append the digital signature to the exchanged authorization message. The
digital signature is afterwards used by other communicating parties to validate
the authenticity and integrity of the authorization message. With the goal of a
standardized provisioning approach for authorization messages format, along
with digital signatures, XML-based Security Assertion Markup Language (SAML)
[22i], and JSON Web Token (JWT) [JBS15] standards have been introduced.

FIdM systems enable user authentication across multiple federated security
domains, namely Single Sign-On (SSO). SSO mechanism enables users to perform
a single authentication procedure and obtain access to all domains within FIdM
[RR12]. FIdM systems introduce several benefits to the system actors [Cha09]:

1. Enabling users with SSO capability, allowing them to access services from
different service providers without the need to re-authenticate;

2. Offloading service providers’ costs for managing users’ digital identities
and security information;

3. Providing greater system scalability, allowing service providers to offer
services to a greater number of users;

4. Allowing identity providers to maintain close relationships with the users
and offer them additional services.

The first approach towards FIdM systems was based on X.509 certificates,
where each user would obtain a private and a public key pair, as well as an X.509
certificate containing a globally unique identifier for a user. This user identifier
would be recognized by all federated domains, allowing user authentication
based on a digital signature. The biggest constraint of such a system is privacy
concerns since everyone in the federation would know everyone else’s identifier.
[Cha09]. Due to that reason, further solutions have been developed, which rely
on distributed storage of user’s security information in federated domains. This
security information is exchanged between federated domains only in scenarios
when the user requests resource access in other domains, with explicit consent
from the user. Hence, private information sharing remains under the user’s
control, leading to the minimization of privacy concerns.
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Shibboleth is a representative of such an approach. Initially established by
Internet2 through Middleware Initiative (I2MI)17, Shibboleth relied on the PKI
and SAML standards for building inter-domain trust. Furthermore, Shibboleth
requires integrating third-parties to implement an authoritative server, that is,
Shibboleth IdP, which issues SAML-based session tokens to the user upon suc-
cessful authentication. These session tokens are afterwards presented to the
Shibboleth Service Provider during authorization. Since the session token does
not carry all user security information, in case of insufficient information during
the authorization, a Service Provider is due to request further user’s security
information from IdP, which are obtained with the user’s consent. Thereby, the
user keeps control of the private information. [Mor+04]

Multi-domain authorization protocols were designed to resolve the privacy
issues related to large-scale Internet applications [Oua+17]. The primary mo-
tivation for the multi-domain authorization protocols was granting the access
to private user’s information for third-party applications. Thereby, the biggest
challenge was the enforcement of the possibility for the user authentication
exclusively at the authoritative server, which protects user information. The
OAuth2.0 protocol [Har12] has been developed with that goal. In the OAuth2.0
protocol, IdP is called authoritative server. An authoritative server manages user
security information and issues JWT [JBS15] based session tokens upon success-
ful authentication. Session tokens are then used by the third-party application
for the local session management and for accessing the user information in the
Resource Server, to whom the access is controlled by IdP. Trust between IdP and
third-party application is established by exchanging and configuring security
keys, as well as a unique application identifier for application authentication
purposes at the OAuth2.0 authoritative server. Since its definition the OAuth2.0
protocol has been adopted worldwide, including major service providers such as
Facebook, Microsoft, and Google [Oua+17].

17 https://www.internet2.edu/products-services/trust-identity/shibboleth/, last
access May 2, 2022
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2.4.5 Access Control in IoT

Even though AC is a well-researched area of network security, it is mainly applied
in CC architectures, where servers are grouped and connected in a DC. Therefore,
traditional AC solutions are designed and developed around a single ACC and
multiple clients (third-party server, applications), which are authenticated and
authorized within ACC. In contrast, IoT introduces numerous servers in the
security domain, since not just CC servers, but also Things, EDC, or FN can
be servers. Due to that, several application challenge for AC to support AAA
mechanisms in IoT systems emerged, as summarized in Table 2.5. [Oua+17]

Table 2.5: AC justifications causing IoT requirements [Oua+17]

AC challenge Description

Heterogeneity Building collaborative AC environment for
the devices of various vendors.

Data management and Privacy Provisioning users with a control over their
private information.

AC policies management Deployment and maintenance of access poli-
cies in numerous administrative domains.

Reliability Continuity of AC service in spite of network
failures.

Trust Establishment and maintenance of trust re-
lationships between different administrative
domains.

Fine-granularity Expressiveness of syntax used for access
rights definition.

C-A Application of contextual factors as inputs
for access rights validation.

Scalability Extensibility in size, structure, and number
of potential users and Things.

Lightweight Support for low-computational solutions due
to devices’ resources constraints.

Cost Economical aspects for building and main-
taining IoT AC system.
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2.5 Context-Awareness

C-A represents the core feature of computer systems developed in the areas of
pervasive and ubiquitous computing, as well as in the intelligent environments,
providing support for adapting systems behavior based on the gathered context
data [Per+14a]. The terms C-A and Context-Aware System (C-AS) have been
defined by Dey et al. [Abo+99a] as ”a system is context-aware if it uses context to
provide relevant information and/or services to the user, where relevancy depends on
the user’s task”. Context-aware computer system is any computer system able to
use the context, i.e. analyze and interpret insights on their environment’s current
state and adapt provided services and functionalities without the explicit user
intervention. This minimizes user’s effort required for the computer system man-
agement, leading to enhanced usability and effectiveness of the deployed services.
[BDR07a; AAC16]

Context interpretation and analysis refer to the transformation of context
information in a way that special knowledge derived from measured sensor data
is linked and stored along with the sensor data [BDR07a; Per+14a]. A clear
distinction between the raw sensor data and context information is explained by
Sanchez et al. [San+06], declaring the sensor data as ”unprocessed and retrieved
directly from the data source, such as sensors” while context information is ”gen-
erated by processing raw sensor data. Further, it is checked for consistency and
metadata is added”.

The variety of the deployed sensors, as well as accessible context information,
create limitless scenarios for establishing C-AS. Initially, location information is
considered as by far the most used context information [BDR07a]. However, the
increasing popularity of the intelligent environment and IoT produced various
C-ASs, accompanied by architectures, models, and context analysis techniques
[Per+14a].

The popularity of the C-ASs required standardizing mechanisms for defining,
identifying, quantifying, analyzing the context in an IT system. Even though
most people intuitively understand the term context, they find it hard to outline
the concrete definition for context. Synonyms for context that can be found in
dictionaries are circumstance, situation, phase, position, attitude, terms, status,
surroundings, location, dependence, etc. [Per+14a]. Due to the broad meaning the
context can have, many researchers tried defining context through the information
that can be collected in a C-AS:
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• Ryan et al. [RPM99] identified context as the user’s location, environment,
time, and identity;

• Dey [Dey98] identified context as the user’s emotional state and focus of
attention, location, orientation, time, and other devices and users in the
environment;

• Brown [Bro96] identified context as the elements of the user’s environment
which the computer knows about.

Still, the definitions mentioned above are considered as too specific, and that
they offer no consensus on the definition of context [Per+14a; AAC16; Abo+99a].
For that reason, Dey et al. [Abo+99a] provided a definition that identifies context
in a broader sense and is the most acknowledged until now [AAC16]. Namely, Dey
defined context as ”any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves”.

As mentioned before, integrating C-A reduces the required users’ effort for
IT system management. The IT system should understand not only simple
contexts, such as user location or room’s temperature, but also complex context
scenarios like the social context and user behavior. Complex context scenarios
contain a complex relation between context information, human activity, and
human behavior, which is somewhat hard to detect and predict. Therefore, the
expectations on C-ASs can differ from their capabilities, i.e. features that they offer.
Satisfying these expectations is vital for adopting C-ASs since the user sometimes
has a better understanding of what is happening, and if the system produces
unexpected behavior, the user can reject and abandon the system. [AAC16]

It is considered that the context arises from an activity [Gre01; Dou04; AAC16].
Thereby, ”activity comprises a subject (the person or group doing the activity), an
object (the need or desire that motivates the activity), and operations (the way an
activity is carried out). Artifacts and environment are seen as entities that mediate
activity” [Gre01]. That implies that the context information can be produced
and maintained through each activity in the system, thus being highly dynamic.
However, collected context information does not have to be relevant for each
activity [Dou04]. This increases the complexity of C-ASs since it becomes very
hard to derive inter-dependencies between various contexts and how they are
affected by an activity, leading to building the commonly disconnected context
analysis tools that are focused on solving specific, isolated issues [AAC16].
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The main problem of building C-ASs is that software developers must identify
the context they need to program. To tackle that challenge, developers have
to: ”(A) enumerate the set of contextual states that may exist; (B) know what
information could accurately determine a contextual state within that set; (C) state
what appropriate action should be taken in a particular state” [Gre01]. To resolve
the challenges, various building blocks (e.g., system architectures, models, or
features) for designing C-ASs are researched.

Upcoming sections present these building blocks: (1) main concepts for building
C-ASs and their main features in Section 2.5.1, (2) categorization of the context
information in Section 2.5.2, (3) approaches for building C-ASs in Section 2.5.3,
and (4) lifecycle of C-ASs in Section 2.5.4. Finally, the application of context in
IoT systems is presented in Section 2.5.5.

2.5.1 Context-Aware Systems Fundamentals

The process of building C-ASs, i.e. embedding C-A into computer systems,
requires tackling diverse challenges that can be dramatically different depending
on the integrated context type, aimed context-aware features, etc. [AAC16]. Still,
C-ASs fundamentally adhere to several approaches for their supported features
classification, and approaches for building them.

Dey et al. [Abo+99a] groups the features a C-AS can offer as follows:
(1) Presentation of information to the stakeholders, (2) Tagging context to infor-
mation, (3) Active or passive service execution, and (4) Active or passive service
configuration. Presentation allows usage of context to decide on what informa-
tion and services should be presented to the user. This enables the possibility to
present information based on context, such as time, location, or user behavior.
Tagging the context information enables simple retrieval of this information in
the future, allowing faster and simpler processing of the context information
and optimizing C-AS’s performances. Execution of services allows C-ASs to
execute an action depending on the environment’s context, with or without the
user’s intervention. This is a critical feature for IoT since it allows automatic
control of smart devices (e.g., turning on air condition so that the room temper-
ature is adequate once the user arrives or turning off the lights once the user
leaves the room). Configuration relies on the context-based personalization,
allowing a C-AS to learn user preferences, offering configuration options for the
user-optimized system behavior. This reduces the C-AS development complexity
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and enables system configuration for the inexperienced users. Both execution
and configuration rely on the previously mentioned C-AS interaction options and
can be passive, which requires user’s direct involvement in the actions, or active,
where the C-AS undertakes actions autonomously. Still, these features do not
have to be completely active or passive in a C-AS. Hybrid approaches applying
both passive and active interactions are possible. [Per+14a; AAC16]

Utilizing C-AS features involves interaction between the C-AS and a user. For
that purpose, Barkhuus and Dey [BD03] defined the following interaction levels:

1. Personalization enables users to manually configure their preferences, likes,
and expectations to the C-AS;

2. Passive C-A defines a C-AS that continually monitors the environment and
offers context-based options to the user to perform actions;

3. Active C-A defines a C-AS that constantly monitors the environment and
performs actions autonomously upon some activity in the environment.

Approaches for building C-AS have been examined by Hu et al. [HIR08],
resulting in the definition of the three main models for building C-AS. The No
application-level context model envisions that all the context processing tasks
(e.g., context acquisition, pre-processing, storing, and reasoning) are performed
within the application boundaries and developed as part of the application. The
Implicit context model proposes that applications use libraries, frameworks,
and toolkits to perform the context processing tasks. Thismodel provides standard
guidelines for building C-ASs that make such systems’ development faster and
easier. However, the context is still hard bound to the application. The Explicit
context model enforces application to use a context management infrastructure
or middleware software. Therefore, the context processing tasks are executed
separately, outside the application boundaries. This enables separate development
and deployment of the context management and application, allowing more
effortless extension of the application and context model.

2.5.2 Context Information Handling

C-ASs’ features and interaction options described in Section 2.5.1 rely on an
IT system’s capability to comprehend and manage context information from its
environment and make it available to system applications [Dey+01]. Furthermore,
a C-AS has to separate the context acquisition and exposure to the application and
users so that an application can use the contextual information without having
to know the details on the context acquisition [Bet+10].
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Figure 2.4: Context information categories

Successful context information management is based upon the context model
definition [BDR07a]. Henricksen et al. [HI04] define a context model as follows:
”a context model identifies a concrete subset of the context that is realistically attain-
able from sensors, applications and users and able to be exploited in the execution of
the task. The context model that is employed by a given context-aware application
is usually explicitly specified by the application developer, but may evolve over
time”. In the same publication, Henricksen et al. identify context attribute as the
primary building block of the context model and define it as ”an element of the
context model describing the context. A context attribute has an identifier, a type and
a value, and optionally a collection of properties describing specific characteristics”.
Baldauf et al. [BDR07a] propose the following context attribute properties set
for providing a more comprehensive context attribute description: timestamp,
context source, and confidence.

Acquired context information varies through time and can depend on the
complexity of the designed context model. For that reason, context information
is error-prone and does not represent a single source of truth [BFA05]. Context
information is extended through the context attributes describing Quality of
Context, which incorporates a parameter set that expresses the quality of the
context information’s requirements and properties [Per+14a]. The Quality of
Context parameter set is based on three parameters: (1) context data validity,
(2) context data precision, and (3) context data up-to-dateness [Bel+12].
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An essential aspect of the context information management is the context
identification, whose analysis is useful to the system’s applications and users.
Context identification elements are analyzed in this dissertation’s scope using the
publications [BDR07a; Per+14a; AAC16; Abo+99a; HI04; SAW94; DAS01; Hof+03;
PB03; Gus02]. The resulting list of these aspects is presented in Figure 2.4.

Context separation by acquisition type is introduced by Abowd et al. and
described as primary and secondary [DAS01]. Primary context represents any
information that can be retrieved without performing any sensor data aggregation
operations or using existing context information - for example, location, identity,
time, and activity. Secondary context is any information that can be computed
using the primary context through the sensor data aggregation or data retrieval
from context management services.

Context is categorized based on two schemes: operational and conceptual
[AAC16]. Conceptual category enables understanding interdependencies
between different contexts. Operational deals with the techniques of the context
data acquisition. Henricksen [HI04] categorized context into four categories
using operational categorization:

1. Sensed context represents context acquisition directly from the sensors;
2. Static context manages information which will not change over time;
3. Profiled context handles information that changes over time with a low

frequency, such as once per month;
4. Derived context represents the information computed using primary con-

text.
Based on the conceptual categorization, Schilit et al. [SAW94] introduced

context identification based on three questions: (1) Where you are? (2) Who
you are with? and (3) What resources are nearby? [Per+14a]. These ques-
tions lead to establishing entities that are useful for detecting context [DAS01]:
(i) places (buildings, room), (ii) Things (sensors, actuators, computer components),
and (iii) people (individuals, groups). Each entity can be defined through multiple
properties separated into four categories: identity, location, status (activity), and
time [DAS01; Per+14a].

Lastly, identified context type is classified through two dimensions. The first
dimension is called internal [PB03; Gus02] or logical [Hof+03]. This dimension
identifies the context specified by the user and its interactions in the C-AS, such as
the user’s tasks, work context, emotional state, or behavior. The second dimension
is external [PB03; Gus02] or physical [Hof+03] and refers to the context measured
by sensors, such as temperature, humidity, or location. [BDR07a]
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2.5.3 Building Context-Aware Systems

The multitude of special requirements and conditions, such as sensors location,
users number or available computational resources dictate the C-ASs’ software
architecture. For that reason, there is no universally accepted approach for
designing the C-ASs’ architecture [AAC16]. However, various architectural
elements are common to the context-aware architectures. [BDR07a]

The main driving factor for C-AS design is the context acquisition approach
[BDR07a], which is derived from the context acquisition type - primary and
secondary (cf. Section 2.5.2). Chen [Che03] classifies context acquisition as:

1. Direct sensor access enables context information collection directly from
sensor devices (primary context);

2. Middleware infrastructure (secondary context) encapsulates low-level sens-
ing details and allows context information collection through programming
interfaces. It separates context acquisition and usage, thereby enabling
easier development of the context-based application by reusing context
information management middleware [AAC16].

3. Context server (secondary context) allows access to the context information
from multiple concurrent context-based applications through remotely-
invokable services. Thus, computationally intensive context information
management operations are leveraged to separate software components,
which reduces the context-based applications’ hardware requirement.

An architecture using a context server is currently the most used one for build-
ing a C-AS. Despite being highly centralized, with one or many centralized compo-
nents, it overcomes the storage and computational constraints of small devices in a
C-AS, which is significant for IoT [BDR07a]. Furthermore, decoupling the context
server’s architecture into multiple modules is highly important [AAC16]. A Con-
text server’s generic architecture that involves multiple modules encapsulating
functionalities is proposed by Baldauf et al. [BDR07a] and is divided into layers:
(1) Sensors, (2) Raw data retrieval, (3) Storage/Management, (4) Preprocessing,
and (5) Application. Through these layers, context management functionalities
like context collection, analysis, and application management are decoupled,
allowing simpler context data sources extensions and new context applications
registration [BDR07a].

Independent from the chosen architecture, several design principles apply to
the C-AS design process. Table 2.6 presents design principles related to C-ASs
collected from publications [AAC16; MLA10; Ram+07; BTC08].
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Table 2.6: Design principles for C-ASs

Design principle Description

Architecture layers and com-
ponents

Meaningful separation of the functionalities
into layers and components.

Scalability and extensibility Dynamic addition and removal of compo-
nents.

Reliability Ensuring continuous services delivery along
with tolerance for errors and faults.

Application programming in-
terface (API)

Functionalities exposure through comprehen-
sive, simple API.

Debugging mechanisms Sufficient tools for debugging functionalities.

Automatic context lifecycle
management

Ability to automatically detect available con-
text entities (cf. Figure 2.4), their structure
and derive context model based on this infor-
mation.

Context model in-dependency Storing context model separate from C-AS
source code, enabling independent alteration
of them.

Comprehensive context mod-
eling

Context models covering managed context
information can be easily extended for further
use-cases.

Multi-model reasoning The ability of the context-aware system to
support different context models.

Mobility support The ability for C-AS to be deployed on var-
ious devices, such as gateways, PCs, mobile
phones, etc.

Share information (real-time
and historic)

Ability to share context information between
distributed components in C-AS.

Resource optimisation Data structure and algorithm optimization to
reduce demands on storage and energy, espe-
cially in IoT use-cases with a high number of
devices, i.e. 50 billion.

Monitoring and event detec-
tion

Ability to detect an event in the system and
undertake appropriate actions.
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Finally, context information management deals with private users’ information,
such as their current activity, location, and behavioral patterns [BDR07a]. Further-
more, context analysis increases the security threats that aim at misusing context
information [Per+14a]. For that reason, establishing sufficient security mecha-
nisms to guarantee user’s privacy is a critical point for C-ASs design [BDR07a].
Security and privacy must be protected in several architecture layers: sensor hard-
ware layer, data communication layer, as well as context collection, modeling, and
distribution layers [Per+14a]. This requires creating a trustworthy environment
(cf. Section 2.3) for the context information management by applying TN, AC
(cf. Section 2.4.5), secured data transmission, and other security mechanisms.

2.5.4 Context Management Lifecycle

Context information management occurs in multiple phases. These phases are
referred to as the context lifecycle, which clarifies the operations application in
each phase [Per+14a]. Phases in the context lifecycle encapsulate the following
processes: context acquisition, data processing, context reasoning, and distribu-
tion to context-based applications [BDR07a; DAS01; BTC08; AAC16]. Based on
these phases, Perera et al. [Per+14a] presented the framework for defining the
context lifecycle that contains four phases: collection, modeling, reasoning, and
distribution, where each phases depends on the results of the previous one.

First, context information collection needs to be performed. As context infor-
mation is collected from multiple distributed sources, the context information’s
quality, authenticity, and structure are challenging to achieve [AAC16]. To tackle
these challenges and provide a systematic approach for context information ac-
quisition, Perera et al. [Per+14a] propose five factors related to the acquisition
process that must be considered when designing a C-AS. Table 2.7 presents these
five factors, possible options, and their descriptions for each factor. Context
modeling supports the context information expression and management. It
enables the process of translating collected context information into usable, struc-
tured values [AAC16]. Context modeling contains two steps that are defined in
[Per+14a]. In the first step, the context information model is defined in terms
of context attributes, properties, and relationships with other context informa-
tion in a C-AS. In the second step, the modeled context information is validated
against the C-AS requirements. Requirements for context information models
are defined in [Bet+10; PRL09] as: (i) Represent any context information kind,
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reflecting the real-world entities and dependencies between them; (ii) Uniquely
identify the contextual information, context, and entities; (iii) Simplicity, reusabil-
ity, expandability, and ability to use the information at runtime; (iv) Validate
collected data and encode its uncertainty. Context models researched in several
publications [Bet+10; SL04; CK00; BDR07a] are (1) Key-Value, (2) Markup scheme,
(3) Graphical, (4) Object-oriented, (5) Logic-based, and (6) Ontology-based.

Table 2.7: Context acquisition factors

Factors Option Description

Responsibility

Pull The data is retrieved from the sensors with
a request.

Push The sensor pushes data to the software com-
ponent which is responsible to acquiring
sensor data periodically.

Frequency
Instant Context-related events occur instantly and

do not span across certain period.
Interval Context-related events span a certain period

.

Source

Sensor Context is acquired directly from sensor.
Middleware Context is acquired through middleware in-

frastructure.
Context server Context is acquired from other context stor-

ages (databases, web services) through API.

Sensor Type

Physical Generates sensor data by itself.
Virtual Does not generate data and can retrieve data

from many sources publishing sensor data.
Logical Combination of physical and virtual sensor

type.

Acquisition
Process

Sense Data is sensed through sensors.
Derive Context information is generated through

sensor data processing.
Manually pro-
vided

User provides context information manually
(e.g., configuration or preferences).
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Key-Value models represent the simplest context models. In these mod-
els, context information is structured as key-value pairs in different formats
like text and binary files. Due to their simplicity, key-value models cannot
support attaching meta-information or context attributes. Also, they are not scal-
able and capable of storing complex data structures. Markup scheme models
(Tagged Encoding) rely on markup tags based on techniques like XML to store
context information. This enables efficient context information retrieval and
context validation through markup scheme definitions. However, markup lan-
guages do not provide expressive capabilities required by the context reasoning,
which hinders the context reasoning techniques’ performance. Graphical mod-
els allow a higher expressiveness degree than key-value and markup models
by enabling the relationships between context information to be captured in
the context model. They incorporate standard languages like Unified Modeling
Language (UML) 18 to model context information while storing low-level context
information using database languages (e.g., SQL and NoSQL). This allows storing
a vast amount of information in a database, but also may demand execution of
very complex and non-performant SQL queries for complex context information
handling. Object-oriented models are applied to model context information
using object-oriented programming concepts like class hierarchies and their
relationships. This allows a more straightforward integration of the context
model into the C-ASs since most high-level programming languages are based
on object-oriented programming principles. Due to this, object-oriented models
are mostly implemented in the C-AS’s code, not externally using other languages
like XML and UML. Therefore, interoperability of such models is reduced, as
well as context model validation capabilities. Logic-based models rely on facts,
expressions, and rules to represent context information. Through that, context
information relationships are described as natural patterns that occur between
them, which allows better performing derivation and aggregation of high-level
context information using the low-level context. This allows the usage of logic-
based models by non-technical users. However, logic-based models suffer from
a lack of standardization, which hinders their interoperability and re-usability
in modern C-ASs. Ontology-based models structure context information into
ontologies [SBF98] using the standardized semantic technologies, i.e. Resource
Description Framework (RDF) or Web Ontology Language (OWL). This allows
the description of complex relationships between context information. How-
ever, context information retrieval can be time-consuming and computationally

18 https://www.omg.org/spec/UML/2.0, last access May 2, 2022
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demanding when the amount of collected data is increased. Still, ontology-based
models are supported by many development tools and reasoning engines and
offer a common understanding of the context information structure between
people or software systems [Wan+04]. [Per+14a]

As can be noticed, each group of context information models has its strengths
and drawbacks. Still, despite their complexity concerning data structuring and in-
formation retrieval performances, ontologies are acknowledged by many surveys
as the preferred mechanisms for managing and modeling context
[Per+14a; AAC16; SL04]. Finally, context models are not exclusive and can
be integrated into hybrid approaches to minimize their deficiencies [Bet+10].

Context reasoning represents a method of deriving new context informa-
tion based on the available context [Per+14a]. Through the reasoning, context
information is better understood and processed so that the context management
system obtains a better overview of the C-AS’s state. The need for context rea-
soning emerged due to the two properties of primary context: imperfection and
uncertainty. Context reasoning models can be divided into three phases [NF]:

1. Context pre-processing cleans the collected sensor data;
2. Sensor data fusion combines sensor data from multiple sensors and pro-

duces more accurate, dependable, and complete context information;
3. Context inference generates high-level context information based on the

lower-level context information.
Context reasoning techniques are classified into six categories: supervised

learning, unsupervised learning, rules, fuzzy logic, ontological reasoning, and
probabilistic reasoning [AAC16]. Still, each technique has its own strengths
and weaknesses. For that reason, C-ASs simultaneously apply multiple context
reasoning techniques to reduce their weaknesses and accomplish better results
concerning the derivation of context information. [Per+14a]

The context distribution phase provides methods for delivering context
information to its consumers, such as middleware infrastructure, context servers,
and client applications. For that purpose, two approaches are envisioned. The
first one is query-based, meaning that consumers request context information
via a query that is handled by a context management system, which produces re-
sults sent as a response. The subscription (publish/subscribe) approach allows
context consumers to subscribe with a context management system to context
information. Afterward, the context management system publishes the context
information to the consumer based on the previous subscription. [Per+14a]
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2.5.5 Context-Awareness in IoT

IoT services run in highly dynamic, mobile environments, with numerous sensors
and actuators sensing data from the environment. The exploitation of the collected
data through context analysis and applying C-ASs features (cf. Section 2.5.1)
significantly enriches IoT services intelligence and establishment of the smart
spaces [Bor14]. Intelligent IoT services can execute actions in the IoT environment
autonomously and proactively, communicate collaboratively with other platforms
to improve IoT system functionality, annotate sensed data to optimize processing
performances, etc. [AIM10]. This vision of IoT is emphasized in the documents
of the European Commission: ”Things having identities and virtual personalities
operating in smart spaces using intelligent interfaces to connect and communicate
within social, environmental, and user contexts”19.

However, IoT systems diversity, categorized through several IoT application
domains, hinders the development of the general context model for IoT [Per+14a].
Thus, IoT-based C-ASs development tends to be more application domain-specific
[RG18; EJK19]. Nevertheless, the context-aware IoT solution’s common require-
ment is the application of semantic technologies for building context-model. This
leads to the optimized context information processing, which is crucial charac-
teristic for C-ASs deployment on resource-constrained devices [Per+14a]. Smart
Home environments benefit the most from the C-ASs since they target improving
users’ quality of life by adapting the IoT environment state (room temperature,
air humidity). To achieve that, Smart Home systems rely on context information
like system time, sensor measurements, and user location [Kim+16]. Despite the
numerous benefits for Smart Homes, C-ASs tend to be vendor-oriented, resulting
in a lack of common context middleware support [Kim+16; VZN12]. Furthermore,
numerous sensors in Smart Cities allow comprehensive context analysis to opti-
mize IoT services in cities [Per+14b]. Application of C-A in vehicular networks
utilizes context information collected by the vehicles and processes it to propose
drivers safer, less congested, and more efficient driving routes [Wan+14].

Except for the optimization and smartification of the IoT services, context is
often considered as the promising approach for enhancing IoT security. To achieve
that, a set of contextual attributes can be used to derive the IoT environments state
and reconfigure security policies to protect information from unauthorized access,
modification, destruction, or disclosure [Das+16; TTČ17]. Firstly, context-aware

19 https://docbox.etsi.org/erm/Open/CERP%2020080609-10/Internet-of-Things_in_
2020_EC-EPoSS_Workshop_Report_2008_v1-1.pdf, last access May 2, 2022
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security approaches are seen as complementary techniques to cryptographic
solutions, which is highly beneficial for resource-constrained Things [Had+19].
Secondly, in the scope of AC, the context hasmultiple implications. Firstly, context
analysis can be used for authenticating users by analyzing their behavior patterns,
which reduces the user’s effort required for authentication using passwords
or biometrics [Hul+05]. Moreover, the extension of security policies used for
authorization through the context information can enable the adaptation of access
rules based on the current IoT system’s state [CBE00; Kay+20b].

2.6 Summary & Findings

In this chapter an overview and state of the art with regard to building FC-based,
trustworthy, context-aware IoT systems is provided. Firstly, IoT systems have
been described, along with the services they are enabling, possible applications
in IT systems categorized through IoT application domains, and the present chal-
lenges for building IoT solutions. The critical challenge is the Things’ lack of
computational resources, which enforces the IoT services deployment on remote
CC servers. However, as analyzed in Section 2.2.1, CC imposes its drawbacks
that hinder the innovations in IoT. To overcome these hurdles, novel computing
paradigms focusing on the computational resource deployment at the IoT net-
works’ edge are being introduced. FC stands out as a promising candidate for
extending CC and offering computation resources close to the Things through
the utilization of the existing hardware in IoT networks (e.g., gateways, routers,
and smartphones).

When it comes to securing IoT systems, as documented in Section 2.3, establish-
ing trust relationships between communicating entities plays a critical role, which
is achieved through the mutual authentication and unique identification in IoT
networks. Thereby, the application of resource-demanding cryptographic opera-
tions for encryption keys distribution hinders the utilization of the traditional key
exchange protocols on resource-constrained Things. Furthermore, IoT networks’
dynamicity implies performance and scalability requirements to which the trust
management models fail to comply. To overcome these issues, approaches for
establishing lightweight, scalable trust management infrastructure for IoT are
heavily researched. Research strategies in this area focus on the introduction of
novel, lightweight protocols and the reduction of computational requirements in
the existing protocols so that they can be applied to a variety of IoT devices.
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AC is the second factor that assures the protection of information in IoT. As
documented in Section 2.4, AC has been thoroughly researched andwidely applied
in computer systems across several ISO/OSI layers through various mechanisms
and protocols, such as firewalls, VLAN, NAT, SAML, and OAuth2. However, these
mechanisms are often centralized in DCs, making them not scalable and unable
to support novel computing distribution approaches such as FC or EC. IoT is
considered as a highly distributed system, where service providers are not located
merely in DC but deployed in the whole network as Things. Therefore, further
research and development of the mechanisms for AC distribution are required
(cf. Section 2.4.4), fulfilling the requirements of IoT systems and leading to
low-latency, E2E security in the IoT world. [Oua+17]

Finally, context information management and utilization have vital importance
for the smartification of IoT environments, that is, the establishment of intelligent,
autonomous IoT services and the improvement of IoT systems’ security. Despite
the common approaches for C-ASs design and development that are discussed
in Section 2.5, the diversity and complexity of IoT systems put up challenges for
the design and development of context-aware IoT solutions, mainly concerning
context modeling and establishing standard architecture for the context man-
agement. Current C-ASs application in IoT solutions focuses on enabling novel,
user-friendly, appealing services, leading to the broader adoption of IoT systems.
Besides these services, integration of C-A into IoT security introduces research
opportunities, resulting in improved IoT data protection through intelligent, adap-
tive security policies which require less users’ effort for their management and
maintenance. [CBE00; Kay+20b; Kay+20a]
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As described in Chapter 2, IoT networks incorporate a variety of physical devices
and provide innovative services in the several IoT application domains. The num-
ber of connected devices and their low-computational storage and computational
capabilities put up a burden for the produced data management and processing.
CC has been massively used for offloading resource-demanding tasks fromThings
and offering applications and services for end-users. Yet, the drawbacks of CC
partially hinder the future development of the IoT system (cf. Section 2.2.1). For
that reason, novel, decentralized computing platforms like MEC, MCC, EC, and
FC have been introduced to overcome the CC downsides.

Moreover, securing data information in IoT networks represents another chal-
lenge for IoT system architects, mainly due to Things’ incapability of performing
highly computationally demanding cryptographic operations. These limitations
imply offloading security services to the remote DCs, therefore making Things
more insecure and less trustworthy for the end-users. Through decentralized com-
puting platforms, security mechanisms (e.g., AC and mutual authentication) can
be deployed closer to Things, creating a trustworthy IoT execution environment.

The information collected in IoT systems provide important insights that can be
used for securing IoT networks (cf. Section 2.5). This fact gains more significance
since operators of IoT systems are not necessarily technical persons. Therefore,
the IoT environment context-based security mechanisms automation can further
improve IoT systems’ trustworthiness and leverage the security management
tasks of end-users.
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Shifting security services from DC and bringing them closer to the Things as
well as making them more automatic is the central goal of this dissertation. For
that reason, this chapter presents the analysis of the requirements and challenges,
as well as the design steps to achieve the previously mentioned goals. Firstly,
Section 3.1 lists and analyzes the requirements and features of significance defined
by a standard FC architecture to deploy IoT security service on FNs. On that basis,
Sections 3.2 and 3.3 provide solution design analysis and steps for the security
services deployment within the Cloud-Fog-Things continuum, i.e. TN, and AC,
respectively. Automation through C-A AC is described in Section 3.4. Finally,
design decisions and specifications from the Sections 3.1 to 3.4 are summarized,
providing insights for the implementation described in Chapter 4.

3.1 Solution Reqirements & Goals
Offloading computational tasks from Things to external devices (e.g., DC, EDC,
and FN) pawed the way for the adoption of IoT. Remote and centralized DCs offer
significant computing power but introduce performance and efficiency drawbacks
to the IoT, such as network latency, high bandwidth consumption, and processing
latency. In contrast, FC extends CC as a computing platform deployed closer to the
Things. Still, FC does not neglect the presence of CC, but is defined as its extension
and the intermediation layer between CC andThings, offering a more efficient and
better-performing computing platform in cases when it is required. FC processing,
storage, and networking capabilities reside in FNs. FNs are highly-virtualized
entities, meaning they can be deployed as software components on any device
with enough resources that can be dedicated to FN execution. FNs’ hierarchical
organization depends on the complexity and computational requirements of the
hosted IoT service, as well as on FN’s computational capabilities. FNs with more
resources are usually positioned higher in the hierarchy. However, the nature of
the hosted IoT service is the determining factor for FN’s hierarchical position.

To deploy software-based IoT security services using FC, a set of general FC
characteristics and requirements defined in [22g; Bel+19; Bon+12b] have been
analyzed. In the analysis (cf. Figure 3.1), FC characteristics and requirements are
matched against (1) the goals of this dissertation and (2) the general FC architec-
ture [22a]. Based on the analysis, the solution design decisions for FN deployment
are derived and presented in Section 3.1.2. Moreover, the requirements for the
design of FC-based IoT security services application support are collected and
further analyzed in Sections 3.2 to 3.4.
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Figure 3.1: Fog Computing characteristics and requirements

3.1.1 Solution Goals & General Requirements

As mentioned in Chapter 1, the final goal and central contribution of this dis-
sertation is the provisioning of IoT security services, namely C-A AC and TN in
IoT systems. To overcome the CC drawbacks collected in Section 2.2.1 and offer
better performing and more efficient security services, FC is used as a platform
for services deployment. This section provides a brief description of the security
services, as well as general requirements for their deployment based on identified
CC drawbacks and general FC requirements presented in Section 3.1.2.

AC prevents unauthorized access to the IoT services, i.e. Things and the mea-
surements previously collected by Things [22l]. To achieve that, ACC evaluates
each resource access based on the previously defined access rights. Since it is
involved in each IoT services invocation, to reduce the network communication
overhead, ACC should be deployed close to the IoT service providers. The AC ser-
vice for IoT systems described in this dissertation is designed and implemented
to (i) reduce network latency, (ii) improve efficiency and scalability of AC in
IoT, and (iii) enable support for intelligent, C-A AC by incorporating the sensed
and analyzed IoT environment’s state. These challenges have been thoroughly
analyzed and mapped to the requirements in Section 3.3.
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TN deals with the secured communication links establishment between net-
work entities within a TND [22o]. Secured communications are often established
through intermediary trusted entities that build TCI around one or multiple
TAs. Each TA requires sufficient storage and computational resources to provide
cryptographic protection for the trust relationship management within TND.
In the IoT, computational and storage resources are mostly located within DCs,
often distant from Things. DC distance makes the trust management more com-
plex since TCI covers a great physical area. Moreover, having a vital support
for cryptographic operation remote from Things makes them more vulnerable
to network attacks. Decentralization and distribution of TCI and separation of
TNDs presented in this dissertation provides several benefits for the TN in IoT
systems: (i) localization and isolation of TNDs based on the FN computing and
storage capabilities, as well as (ii) a more straightforward and more efficient trust
management. A more in-depth analysis of these goals, as well as solution design
steps in the area of trustworthy networking, are provided in Section 3.2.

C-A deals with the collection, analysis, and distribution of context information
in an IoT environment. Obtained context information is used for the optimization
of the existing and introduction of novel IoT services. While having FC-based
security services deployment as the central point in this dissertation, C-A is
applied to improve AC services. In order to achieve this, the following aspects of
C-A integration into AC mechanisms are designed and developed: (i) creating a
generic data model for integrating context information into AC, (ii) an API for
exchanging context information between C-A agents and AC components, and
(iii) the extension of authorization procedures to incorporate context information.
Further details concerning these aspects are presented in Section 3.4.

Deployment and execution of the above-mentioned security services must
comply with the FC architecture [22a]. Furthermore, solution design decisions
and their effects on the CC drawbacks declared in Section 2.2.1 are presented in
the following paragraphs.

Deployment of AC and TN services on the FNs simplifies the manage-
ment of security services and enables the creation of TND in the local network.
Since locally deployed security services are functional without the presence
of the remote DCs, the invocation of a remote security service is not required,
therefore unpredictable network latency introduced through communication with
remote Cloud Servers is reduced. Moreover, public networks (Internet) bandwidth
consumption is minimized. Also, security service provisioning will not depend on
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the network quality, since its operability does not involve the constant invocation
of the remote DC.

Deployment of FC-based C-A agents creates the possibility to sense and
analyze information from the local IoT environment, deriving its state through
context analysis. Obtained context information are afterwards used for automatic
management and optimization of IoT services. In the scope of this dissertation,
IoT context analysis will be used to improve the operability of the earlier men-
tioned security service. By having locally deployed C-A agents, IoT environment
state analysis is handled locally, without the intermediation of Cloud Server,
minimizing network and processing latency that occurs once performing the
context analysis in the remote DC.

3.1.2 Fog Computing Deployment Requirements

Deployment of the AC and TN security services, as well as C-A agents through
FC infrastructure, requires application of various FC requirements. In the scope
of this dissertation, FC requirements from OFRA [22a] and other publications like
[Bon+12b] and [Bel+19], have been analyzed. Requirements of interest have been
listed, categorized, explained and presented in Table 3.1. The presented require-
ments, however, are not merely related to the security services deployment model
but also affect the design and implementation of the security services themselves.
For that reason, several FC requirements will be satisfied in the scope of the system
architecture and services deployment (cf. Section 3.1.3). Remaining requirements
will be satisfied through the security services design, namely AC (cf. Section 3.3),
TN (cf. Section 3.2) and C-A services (cf. Section 3.4).

3.1.3 Security Services Deployment Model

As per requirements listed in Table 3.1, hosting IoT services on FN requires
a variety of requirements to be satisfied. These requirements impact the IoT
services deployment model, as well as the design and implementation of the
services themselves. This section provides design decisions and their justifica-
tion related to the IoT services deployment model. Namely, requirements FC 1,
FC 2, FC 3, FC 4, and FC 5 (cf. Table 3.1) are taken into consideration for the
deployment model and general system architecture design.
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Security services deployment through FNs involves the creation of a highly-
virtualized environment for services execution and hosting of computational,
storage, and networking capabilities. Virtualization introduces benefits for the IoT
system through the of the new services without the necessity to install new
hardware. Therefore, resource efficiency in IoT devices increases through the
execution of additional services and reduction of devices’ idle CPU cycles. Virtual-
ization techniques offer a platform-independent, emulated execution environment
- a virtual machine that can be deployed on a physical device (host). Through
the virtual machine, the abstraction of computing, storage, and networking
resources is provided to the users and services. Furthermore, virtual machines
can be multi-tenant, meaning that they can execute concurrently on the same
host. Multi-tenancy is achieved through isolation of operating system compo-
nents like kernel, network stack, and filesystem. Beside virtual machines, a novel,
lightweight virtualization approach, called containers, based on the kernel and
filesystem sharing between virtual tenants on the same host, is being widely
adopted these days. Despite shared kernel and filesystem, containers offer isolated
namespaces, as well as resource (CPU, memory) usage restrictions.

Based on the IoT devices’ characteristics concerning the computational re-
source constraints, the deployment of the aimed security services should not
introduce significant computational and storage overhead. Still, multi-tenant
service support on the same FN is mandatory, since it enables better efficiency of
the FN. Moreover, hosting multiple services on the same FN increases the overall
scalability of the IoT system through the increased number of the deployed ser-
vices. Under the influence of these arguments, the security service developed in
this dissertation will employ containers for their deployment, providing a highly-
virtual service execution environment. Complete isolation between containers is
unfortunately not present since they share operating system components, i.e. file
system and kernel. However, partial isolation and operating system components
sharing lead to more lightweight and more efficient IoT services deployment.

As already mentioned, network latency and bandwidth consumption are some
of the most critical CC drawbacks. The introduction of FC and similar computing
paradigms deal with these drawbacks. In the scope of this dissertation, reducing
network latency is set as one of the FC requirements, namely FC 3. To satisfy
that requirement, the developed security services are deployed where most IoT
services are provided - at the edge of the network, along with Things. The
closeness between FNs and Things allows for security services to be provided
without the invocation of CC servers, hence reducing network traffic congestion
in the public IP network.

73



3 Design Decisions

FC is generally considered as a CC extension. For that reason, complete elimi-
nation of CC’s application contradicts the FC definition, even though it would
mean a maximal reduction of network bandwidth consumption for IoT services.
Thus, in this dissertation’s scope, CC services are employed for the initial con-
tainer deployment, as well as their configuration and management. Locally
deployed security services are periodically and asynchronously configured by
the Cloud Server. This results in a regular monitoring and maintenance of the
FC-based security services without the need to immediately contact Cloud Server
for operations that occur in the local network, minimizing bandwidth consump-
tion and improving the responsiveness of the security services.

Basing the solution design on both CC and FC introduces a hierarchical organi-
zation of software, that is software components. As per FC 2, the definition of com-
ponents’ hierarchy is affected by present FN computational resources, as well as
the offered service’s complexity and computational requirements. In the presented
solution architecture, hierarchical organization is twofold (cf. Figure 3.2). The
top-level component hierarchy follows the standard FC-based IoT architecture,
separating services on three layers: (1) Cloud, (2) Fog, and (3) Thing. The second-
level hierarchy is emerging on the Fog layer, that is, based on security service
dependencies and complexity, but also services separation and isolated deploy-
ment via containers. Namely, TN and C-A services require fewer computational
resources than AC service. Therefore they can be deployed on more computa-
tionally constrained FNs, positioning them lower in the components hierarchy.

The overall solution architecture is presented in Figure 3.2. In this section,
a brief components overview and their inter-dependencies is provided, whilst
particularities of each component are provided in the corresponding sections:

1. Section 3.2 forTrustworthyNetworkTrustAnchor (TNTA), FogTrust
Anchor (FTA) and Fog Trust Provider (FTP);

2. Section 3.3 for Access Control Agents Management (ACAM) and Fog
Access Control Agent (FACA);

3. Section 3.4 for Context-Awareness services.

ACAM and TNTA are deployed on the Cloud Server. Therefore they represent
remote, central units for the management of other FC-based components. Con-
stant availability of these components is not required during the system’s runtime
since FC-based components can provide the desired service without invoking
CC-based methods. Still, CC-based management of the FC-based components
involves periodic and event-based configuration for the required security services.
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Namely, ACAM deploys the configuration for access policies definition through
the listing of supported IoT devices functions (cf. Section 3.3.2). TNTA represents
the root of PKI-based hierarchical trust, therefore publishes certificate updates to
FNs, maintaining the trust relationships in the IoT system (cf. Section 3.2.2).

Security services for AC, TN, and C-A deployed on FNs are implemented
through FC-based components: FACA, FTA and FTP, as well as C-A agents,
respectively. Since FACA and FTA communicate directly with CC components
and through that apply configuration and management procedures to other
FC-based components, they are positioned higher in the second-level hierarchy.
FTP and C-A agents are completely internal FC components, that can be deployed
on multiple FNs, therefore improving overall scalability and robustness of the
designed solution. Services provided by FC components are:

1. FACA supports user authentication and validation of access requests on
IoT services;

2. FTA and FTP offer operations for creation and management of the local
TND, based on PKI and direct trust model for constrained Things;

3. C-A agent is responsible for sensing and analysis of the IoT environment’s
state, as well as forwarding the information to FACA for automatic access
rights adaptation.

Figure 3.2: Solution architecture and components hierarchy
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3.2 Trustworthy IoT Networks based
on Fog Computing

TN aims at establishing a secure data exchange between entities in a TND.
Secured data exchange involves protecting information from unauthorized
access (confidentiality) and from altering it during the transmission (integrity).
To achieve that, communicating nodes in TND perform mutual authentication.
Based on the successful authentication, entities exchange secret encryption keys
or credentials, which enable encryption and decryption of the transmitted infor-
mation within the TND (cf. Section 2.3).

Trust establishment and maintenance involved several aspects concerning
nodes identification, authentication, and encryption keys distribution and man-
agement within a TND presented in Figure 3.3. The realization of trustworthy
communications during systems’ runtime involves encryption material man-
agement through several phases, namely: (1) Pre-operational, (2) Operational,
(3) Post-operational, and (4) Destroyed [BD22]. Supporting the mentioned aspects
through the key management phases dictates the definition of several trust mod-
els, incorporating different cryptographic approaches for secure keys distribution,
as depicted in Figure 3.3.

Figure 3.3: Trustworthy Networking aspects
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The TN establishment in IoT systems introduces several challenges and
requirements. The critical challenge is, by all means, the Things’ computational
and storage resource limitations, leading to Things’ incapability of performing
the required cryptographic operations. This incapability imposes hurdles for
achieving sufficient means for the trustworthy exchange of information within a
TND.This dissertation aims at using additional computing and storage capabilities
of FNs, accompanied by deployed CC- and FC-based TN services: TNTA, FTA
and FTP, to improve trustworthy communication within TNDs.

The TN services’ design and implementation are influenced by two aspects. The
first aspect consists of the FC deployment requirements (cf. Table 3.1) concerning
TN: FC 5, FC 7, FC 9, FC 10, and FC 11. The second aspect contains the IoT
system characteristics:

• TC 1 Dynamic IoT networks,
• TC 2 Heterogeneity of Things,
• TC 3 Computationally constrained Things,
• TC 4 Battery-powered Things,
• TC 5 Low-latency requirements, and
• TC 6 IoT services scalability due to the number of interconnected devices.

Enlisted FC deployment requirements and IoT system properties are analyzed
for common topics, leading to the TN requirements definition (cf. Table 3.2).

IdM and KMP deployment within the proposed solution aims at providing the
trustworthy FC infrastructure (TN 1), affecting FC-based IoT systems’characteris-
tics and requirements: interoperability (TN 4), reliability (TN 5), and scalability
(TN 6). IdM and KMP comply with each other since authentication procedures
heavily rely on digital identities, which allows unification of provisioning and
managing identities and secure secrets through common procedures. Defined
IdM functions [LC16] are tightly coupled with KMP phases [BD22]:

• Register IdM function correlates to the KMP pre-operational phase;
• Identity lookup and update are provided during the KMP operational phase;
• KMP post-operational and destroyed phases rely on the identity revoke
functionality.

Resolving defined general TN requirements involves the analysis of multiple
TN aspects. Therefore, Section 3.2.1 proposes design decisions for IdM. Moreover,
Sections 3.2.2 and 3.2.3 describe the approach for the trustworthy FC-based
services deployment model and strategy analysis for ensuring E2E security in
the FC-based IoT system, respectively.
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3.2.1 Identity Management

IoT systems also heavily rely on IdM, most notably for Things identification
and management. Compared to the traditional mainframe and CC systems,
incorporation of IdM into IoT systems introduces additional challenges due to
the heterogeneous, mobile nature of Things. Moreover, the computationally-
constrained nature of IoT, as well as scalability requirements due to the number
of interconnected Things, represent further hurdles for the IoT systems’ IdM
design [MPP13]. Thus, the ultimate goal for IoT IdMS is to provision universal
IdM, facilitating interoperability between IoT application domains and platforms
in both IoT services and Things naming, as well as identity-based authentication
procedures and protocols.

Assigning and managing IoT identities provides a solid foundation for building
cost and resource-effective IoT security solutions [LC16]. However, a universal
approach for IoT IdM has not been defined yet, resulting in the current research
on:

1. Defining identity in the IoT systems [LC16];
2. Establishing a common naming scheme to address the heterogeneous nature

of Things [Sal+16b];
3. Introducing efficient management of identifiers and accompanying creden-

tials [Zhu+17].
A major challenge for IdM system design is defining the unfalsified information

set that can be used by the Things, IoT services and end-users, allowing them to
mutually authenticate each other [Zhu+17]. End-users mostly rely on private,
memorable information for their identity and credentials (username, e-mail, pass-
word). In contrast, IoT services are described through the software manufacturer
and software version, secured through credentials in form of a digital signature.
Consensus on Things identification has not yet reached the ”one size fits all”
solution (cf. Section 2.3.3).

Since each information category imposes benefits and drawbacks, the applica-
tion of multiple categories for defining the Thing’s core identity and attributes
set occurs often. Based on the use case, information from different categories
(cf. Section 2.3.4) are selected and used for a semantic-rich Things’ identity. Since
the category information can change during the Things lifecycle, it is beneficial
to build core identity from static information. Therefore, attributes can posses
static and dynamic Things’ properties, which can be handled and obtained from
IdP or sent joined with the core identity across the network. [LC16]
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Designing and implementing a solution based on the IdM requirements (TN 2)
in the scope of the dissertation requires the design of the identity naming scheme
and management system with further characteristics: interoperability (TN 4),
reliability (TN 5), and scalability (TN 6). The listed requirements will be resolved
in the following aspects: naming scheme, IdM deployment model, and security
credentials management (cf. Section 3.2.2).

The designed identity naming scheme aims at modeling the standard identity
format for three entity types in the IoT environment: end-user, deployed services,
and Things. Enabling the interoperability of the IdM solutions requires follow-
ing the structured, dot-delimited naming convention described in Section 2.3.3.
Nevertheless, this naming convention and hierarchy-based deployment model
allows simple interdependencies replication between deployed services, improv-
ing an identifiers’ semantic. Integrated into core identifiers, the naming scheme
enables efficient lookup function within IdMS and incorporate information hold-
ing semantic on an entity.

The core identifier is intended to remain unchanged during the entities’ life-
cycle in the particular domain (namespace). Therefore, information categories
(cf. Section 2.3.4) building a core identifier should provide non-volatile informa-
tion, which excludes the context category as a possible approach. In contrast, the
inheritance category offers high-security properties based on unchangeable entity
information. However, the inheritance category requirements would obstruct the
interoperability of the proposed IdM, since not all deployed Things have identity
information (e.g., physically uncloneable function or watermarks) installed in
their hardware.

Figure 3.4: Core identifier association relations
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The knowledge category (cf. Section 2.3.3) is incorporated in the designed
solution through the generated identifiers by the CC and FC services and attached
to the entity’s core identifier. Therefore, the generated identifier has to be stored
in the entity’s memory or in the IoT system’s trusted IdP (TNTA, FTA, or FTP).
Generated identifiers are generated using a random function implemented in IdP,
allowing the identifier’s uniqueness and the low-level possibility for identifier
collision within the IoT system. Besides the knowledge category, the association
category provides additional information on the IoT system entity, describing the
entity type, deployment position, and associations with other entity types (end-
user, service) (cf. Figure 3.4). Associations allow efficient tracking of identities
and their positioning within the IoT platform, since they contain the information
on the domain in which the identity has been created.

Based on the described information categories utilization and identity naming
scheme, core identifiers are:

1. iot-platform-id.entity-type.service-name.
cc-service-deployment-id (generated) for CC service;

2. iot-platform-id.entity-type.service-name.
fog-node-id.fc-service-deployment-id (generated) for FC service;

3. iot-platform-id.entity-type.fog-node-id.
faca-service-id.user-id (generated) for User;

4. iot-platform-id.entity-type.thing-device-type.
fog-node-id.ftp-service-id.thing-id (generated) for Thing.

The proposed naming scheme consists of two field types: enumerated (prede-
fined, blue color) and generated (orange color). Generated fields are generated by
IdPs and assigned to an entity, thus representing knowledge category information.
Furthermore, these fields are used to describe associations between entities in
TNDs. In the first association scenario, fog-node-id is embedded in all identi-
fiers issued in the FC-based TND, uniquely identifying FN where IdP (FTA or FTP)
is hosted. The second scenario involves using fc-service-deployment-id in
user and Thing identifiers, documenting the identity of FACA and FTP services
that represent their IdP, respectively. Remaining generated fields user-id and
thing-td are used to uniquely address identity holders. However, these fields are
not used for creating associations since user and Thing entities are not IdPs. Enu-
merated fields are used to provide more semantic on the given identity, describing
the identity holder in more detail. These fields are:
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• iot-platform-id documents the IoT platform’s name;
• entity-type describes the type of the entity holding identity: CC service,
FC service, User, or Thing;

• service-name is applied for CC and FC service identifiers, containing the
deployed service’s name (e.g., FTA, TNTA, or FTP);

• thing-device-type is used exclusively for Things’ identifiers, document-
ing which device type the Thing is (e.g., Smart Outlet or Light Sensor),
which is tightly coupled with access control procedures (cf. Section 3.3.2).

The interoperability of the proposed naming scheme allows the mobility of
Things and users between FC deployments of the same IoT platform
using the following fields: fc-service-deployment-id, fog-node-id, and
iot-platform-id. Using iot-platform-id entity can be checked against af-
filiation to a particular platform. If different FC deployments belong to the
same IoT platform, their identities can be easily derived from the fc-service-
deployment-id and fog-node-id fields. Afterwards, the FC deployment’s trust-
worthiness can be validated using procedures presented in Section 3.2.2.

3.2.2 Trustworthy Fog-based IoT Networks

Besides IdM provisioning, the establishment of TN incorporates mutual authen-
tication between network entities, with the final goal of ensuring confidential
communication between trustworthy entities (cf. Section 2.3.1). Mutual authen-
tication relies on secure secrets (encryption keys, credentials) tightly coupled
with identities in TND. For that purpose, ensuring secure dissemination and
storage of secrets within TND through KMPs is essential. This section proposes
a solution for the trust management in FC-based IoT environments. Thereby, the
general approach for the trust relations management between identified entities
in FC-based IoT networks, namely FC services, end-users, andThings is presented.
While this section provides an overview for building the trustworthy FC infras-
tructure through authentication of FC services, due to the specific characteristics
of the end-user and Thing entities, extensions regarding authentication for those
entities are provided in the Sections 3.2.3 and 3.3.2, respectively.

Following the presented trust models in Section 2.3.2 and IdM deployment
approaches in Section 2.3.3, an approach for ensuring trustworthy FC infrastruc-
ture (TN 1), enabling trust management for IoT network entities, is proposed.
The proposed approach adheres to the TN requirements, namely TN 4, TN 5, and
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TN 6, as well as the presented FC deployment model from Section 3.1.3. The
proposed approach represents the backbone for trust management within the
FC-based IoT system, while allowing an extension for ensuring secure communi-
cation for Things and end-users, presented in Sections 3.2.3 and 3.3.2.

The first step for defining the trust management solution is choosing a trust
model. Due to the obligatory availability of CC-services, a centralized IdM
deployment fails to satisfy the reliability (TN 5) requirement, since FC-based IoT
networks have to ensure operability independently of CC services. Moreover,
having a central entity managing all identities would represent a bottleneck for
overall IoT service provisioning, negatively affecting scalability of the solution
(TN 6). Therefore, the proposed solution is based on the distributed IdM and trust
management through the FC services. However, FC services must establish and
maintain trust relationships with the CC entities, whenever the CC services are
available. To achieve that, the trust models mentioned in Section 2.3.2 have been
analyzed. Direct trust models mostly involve SEKMP, providing efficient means
for encryption keys dissemination, which is a significant benefit for the resource-
constrainedThings. However, a direct trust model introduces significant overhead
for key storage and update procedures, resulting in cumbersome encryption keys
management within the IoT system. The Web of Trust model relies on AEKMP,
and the distribution of encryption keys and trust relationships is based on already
established trust within the TND. Compared to the direct trust model, Web of
Trust offers improved key distribution capabilities, since entities can rely on the
distributed trust management in a TND for establishing trust. However, IoT
networks’ dynamicity (entities entering and leaving the TND) hinders the Web of
Trust model’s applicability in IoT, since it causes significant management effort
to maintain the consistency of encryption keys in the Web of Trust network.

The hierarchical trust model involves the trust management distribution across
multiple IoT network TNDs through the TAs. Moreover, one TND can bemanaged
by one central TA, as proposed in Kerberos [Neu+05], or by multiple TAs, as in
PKI [Cho+03]. One TA per TND approach proposed in Kerberos allows simpler
identities and encryption keys management. Moreover, symmetric encryption-
based key distribution in Kerberos introduces less performance overhead than
asymmetric encryption involved in PKI digital certificates management. However,
involving Kerberos would result in amandatory requirement forThings to support
symmetric encryption, which cannot be satisfied by all IoT devices [LC16]. In
contrast, through digital certificates and digital signature-based authentication
protocol, PKI represents a more distributed, scalable, and robust solution for trust
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management. The PKI’s major drawback is the application of AEKMP, which
is also hardly supported on IoT devices [KBL18a; Had+19]. However, PKI is a
promising approach for the proposed solution since:

• It follows the hierarchical FC deployment model;
• It does not require the constant presence of all CAs to evaluate trust,
enabling reliability (TN 5);

• It offers a standard procedure for handling digital identities (TN 4) through
digital certificates;

• It does not introduce bottlenecks and SPoF to IdM through centralized IdP.
Due to those reasons, the hierarchical trust model and PKI are chosen as trust

management and deployment models in our approach. The significant drawback
of this design decision is the inability to deploy PKI on all Things due to their
computational limitations. However, this drawback has been overcome through
the introduction of security profiles, as described in Section 3.2.3.

The proposed trust management model is based on the divide-and-conquer
strategy that separates IoT system in multiple TNDs (cf. Figure 3.5), catego-
rized into two planes: (1) the Cloud-to-Fog Trust Plane (CTFTP) and (2) the
Fog-to-Thing Trust Plane (FTTTP). CTFTP is handled by TNTA, which rep-
resents the overall IoT system’s root of trust, and maintains registry of all TNDs
within the CTFTP, i.e. FTAs’ digital certificates. FTTTP TNDs are handled by
locally-deployed FC services, FTA and FTP. Hereby, roles and duties of the FTA
and FTP are separated. FTAs represents the main CA for FTTTP TND, managing
identities and digital certificates for the FC services and end-users within one
Fog Trust Domain. FTPs is a TA in charge of managing the Things’ trust. FTP’s
separation from FTA is mainly influenced by Things’ incapability for supporting
AEKMP and trust-chain validation through digital signatures. Therefore, FTP
represents a first-hop computational capabilities provider for Things, enabling
the security services relocation from Things to FNs capable of managing digital
certificates and PKI. Features of FTP are described in detail in the Section 3.2.3.

For an entity to join the proposed trust management model in their pre-
operational phase, authentication to the nearest CA, i.e. TNTA, FTA, or FTP,
and issuance of the digital certificate is required. The issued digital certificate is
afterwards used as identity authenticity proof throughout the system’s lifecycle.
Initial entity authentication (often referred to as trust bootstrapping) is imple-
mented through the direct trust model. Depending on the trust plane, the trust
bootstrapping procedure uses different approaches.
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Figure 3.5: Trust Network Domains hierarchy

The CTFTP follows the procedure presented in Figure 3.6, with the primary
goal to issue a digital certificate from TNTA to FTA.The initial handshake is based
on offline-shared secrets: (1) TNTA’s certificate, (2) application secret (AppSec) -
key stored during FC service’s image building, (3) instance secret (InSec) - key
entered by the FN administrator during installation, unique to each FTA. The
last secret that is not deployed with FN is the user secret (USec), which the FN
administrator chooses during the FN installation. Besides being shared with FC
service image, AppSec and InSec are entered in the TNTA database to whitelist
the FTA instances that can be registered.

During its installation, FTA retrieves pre-shared secrets from its image and
generates its identity (cf. Section 3.2.1), a public key pair, and a master key for
initial trust bootstrapping using AppSec, InSec, and USec. In the next step, FTA
registers itself by sending a request encrypted with TNTA’s public key with its
identity and hashed AppSec, InSec, and USec. Upon receiving the registration
request, TNTA fetches stored FTA information and derives the same master key
as FTA. Using this key, TNTA securely shares the generated Certificate Signing
Request (CSR) token with FTA. Once having received the CSR token, the one-time
secret for issuing a certificate, FTA creates a CSR request and decrypts the CSR
token. The CSR request and plain-text CSR token are then sent to TNTA. By
matching received and generated CSR token, TNTA can determine that FTA has
used the same master key and issues a digital certificate upon validating the CSR.
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Figure 3.6: FTA trust bootstrapping

In the FTTTP, it is considered that FC components communicate over a local
network. The FTA issues a digital certificate to other FC services (e.g., FACA or
FTP) in this plane, as presented in Figure 3.720. The pre-shared secret required for
trust bootstrapping in FTTTP is the TNTA’s certificate, allowing FTA’s certificate
validation. After generating its public key pair and identity, FACA retrieves FTA’s
certificate and tries validating it. Firstly, FACA checks if FTA’s certificate is signed
with TNTA’s private key using TNTA’s certificate. In the second step, FACA
checks if TNTA is available and validates FTA’s certificate at TNTA for revocation.
If TNTA is not available, for example due to insufficient network bandwidth,
FACA will trust FTA’s certificate as is and retry validation at TNTA once TNTA
becomes available. Once FACA has validated the FTA’s certificate, it sends CSR
to FTA and receives its digital certificate.

20 For demonstration purpose FACA is used as FC service. Still, the presented message exchange
applies for all deployed FC services.
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Figure 3.7: FC service trust bootstrapping

The proposed procedures ensure trust establishment for FC services. Trust
bootstrapping for the remaining entities in IoT systems (users and Things) are
covered in Sections 3.3.1 and 3.2.3, respectively.

Once having joined the PKI scheme and provided with digital certificates,
entities step into the operational phase to communicate with each other in the IoT
system. In this phase, FC services generate Tickets to mutually authenticate each
other. The Ticket represents a unfalsifiable identity proof, containing information
on communicating FC or CC service (Ticket issuer), invoked functionality, and
message hash, signed with the issuer’s private key. Upon receiving the Ticket,
the communicating party can authenticate the message sender using PKI. In the
FTTTP, each FC service creates Tickets for itself since the local FTA manages all
certificates.

Since FTA is a TND gateway, meaning that only FTA registers its certificate
at TNTA, FTA must create a Ticket for other FC services once they want to
communicate to TNTA or ACAM. The procedure for trustworthy communication
in CTFTP is presented and explained in Section 3.3.2 for the message exchange
between ACAM and FACA.
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Furthermore, the critical aspect of trust management is distributing certifi-
cate revocation information, represented through two standards: Certificate
Revocation List (CRL) [Coo+08b], and Online Certificate Status Protocol (OCSP)
[San+13]. CRL enables retrieval of revoked certificates from the CA, allowing
the entity that verifies the certificate to check if the digital certificate is still valid.
Compared to that, OCSP offers an API hosted by the CA that enables querying
the certificate status. Due to that, information handled by a certificate verifying
entity is smaller with OCSP than with CRL, which makes it more suitable for
devices with limited memory, hence is a better option for resource-constrained
Things.

However, OCSP implies constant availability of the CA, which is contradictory
to the FC autonomy requirement (FC 5). Thus, the proposed certificate revocation
notification strategy is split into two trust planes: CTFTP and FTTTP. CTFTP
utilizes CRLs since they shift the revocation certificates management on TNTA.
Thereby, FTA collects certificate revocation information from TNTA periodically
or when TNTA becomes available. FTTTP aims to reduce computational effort,
hence reducing hardware requirements for Things to join the proposed PKI
solution. For that reason, OCSP API hosted in FTA and FTP services enables
certificate status retrieval by entities in FTTTP, which excludes the need for
managing certificate revocation information in other FTTTP entities.

The proposed IdM and PKI scheme enables the digital signature-based authen-
tication procedures for various FC services, Things, and users by abstracting their
identity through a digital certificate. The proposed scheme is based on the asym-
metric encryption, which introduces performance load and additional computing
requirements on the IoT system entities. This makes the scheme partially inappli-
cable to Things since it requires computational capabilities to support asymmetric
encryption. This drawback is further discussed in Section 3.2.3, leading to the
solution for further distribution of IdM using containerized FC services that can
be deployed on various devices. This improves the distribution and scalability of
the proposed IdM and allows the integration of resource-constrained Things into
the proposed IdM scheme.
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3.2.3 Fog to Things Trust

As described in Section 2.3.4, securing Things introduces several challenges
to adapting traditional protocols and algorithms, primarily due to the Things’
resource constraints. This creates motivation for establishing lightweight cryp-
tography methods. However, security configuration management leads to an
increase in Things complexity, which is not an acceptable approach for Things
with strict size requirements and energy consumption. An alternative method for
securing Things is to offload security operations from Things to computationally
rich, edge layer devices residing in the same TND. Offloading simplifies secur-
ing configuration management for Things and minimizes the required energy
consumption and computational capabilities to ensure TN.

Extending the proposed trust management solution (cf. Section 3.2.2) and
integrating it with Things requires a computational requirements reduction. This
primarily implies selecting better performing security protocols and algorithms,
reducing encryption-caused computations while maintaining the same security
levels. However, due to the Things’ diversity, a one-size-fits-all solution is hardly
achievable. For that reason, the application of multiple approaches is required
to comply with Things’ computational constraints for building trustworthy IoT
services. The proposed approach for integrating Things into TND is twofold:

1. Evaluating various PKI schemes through IoT environment simulations to
find the best performing one for the particular IoT application domain;

2. Offering encryption key exchange extensions in FTP forThings to integrate
with, based on ”best effort” security using their available resources.

Firstly, PKI schemes efficiency and scalability are primarily affected by the
applied encryption algorithms. Since the X.509 standard recommends the RSA
encryption algorithm but does not require it as mandatory [Sta16], the application
of the more efficient ECC could reduce the computational impact on the IoT
devices [Bia+10; Sha+18; GMS15]. The efficiency of the ECC in reflected in the
length of the encryption key to support the same security level: ECC achieves the
128-bits security level with a 256-bits key length, whereas RSA requires a 3072-bit
long key for the same security level [BMZ13]. Moreover, proper optimization
of the public-key and digital certificate management can improve the network
transmission latency, requiring to send reduced MAC-layer messages during
the certificate validation and key exchange procedures [Ted+20]. For example,
RSA-based certificate validation requires the certificate owner to send the X.509
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certificate containing the owner’s RSA public key, signed by a CA [Bia+10].
Alternatively, the certificate management proposed in the Qu-Vanstone (QV)
scheme employs implicit certificates, that hold the identity and the public key of
a certificate owner [Cam22]. Therefore, the size of the certificate transmitted by
the certificate owner is significantly reduced, minimizing the network message
size and transmission latency [HNZ16].

The evaluation of the encryption scheme and certificate management impact
on the PKI’s efficiency and scalability motivated the design and development
of the PKI simulator (cf. Section 4.5). The simulation is based on the network
package simulator, emulating message exchanges between network entities, in
this case, FNs and Things. Points of interest covered through the simulation are
the performance aspects of the IdM and KMP schemes, i.e. CPU consumption,
memory, and storage requirements, as well as the processing and network latency,
required for the exchange of digital certificates and encryption keys along with
their application for establishing a secured communication link. The simulation
goal is to compare and analyze the benefits and drawbacks of the asymmetric
encryption scheme: RSA and ECC, along with the certificate and KMPs: Diffie-
Hellman (DH) and QV. The resulting set of the simulation scenarios includes
(1) RSA with DH, (2) ECC with DH, and (3) ECC with QV. Besides the encryption
algorithm and certificate management, another aspect introducing the latency
in the certificate management is the certificate revocation validation. Therefore,
each simulation scenario is extended with a certificate revocation strategy: CRL
[Coo+08b] or OCSP [San+13].

Secondly, the above mentioned approaches for offloading security mechanisms
from resource-constrained Things that cannot support the proposed PKI scheme
to FNs, lead to the design of interoperable (TN 4) scheme for E2E security in IoT
systems (TN3). The proposed scheme relies on the deployed computationally-rich
FN devices and offloading asymmetric encryption-required operations required
by the PKI-based trust and IdM scheme proposed in Section 3.2.2. Offloading PKI
operations is implemented through FTP services, which are deployed close to
the Things. This ensures PKI operations offloading in a local network context, not
as a remote CC service. Thus, FTP represents a bridge between PKI-based trust
management between CC services, FC services, and Things that cannot support
asymmetric encryption.

FTP manages the Thing’s identity during its lifecycle, and therefore represents
the Things in the IoT system. For that purpose, FTP establishes direct trust
relationships with a Thing based on the Thing’s computational capability and the
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security levels required by the IoT system. Initial trust establishment between
Things and FTP is presented in Figure 3.8. The Thing first initializes its identity
at FTP by sending its identity stored during the manufacturing process and
supporting security profiles. Since this identity does not necessarily comply with
the proposed identity naming scheme presented in Section 3.2.1, FTP generates
identity for the Thing that will be used as Thing’s core identifier in TND and
sends it back to the Thing. Afterwards, Thing and FTP perform proprietary key
exchange procedures based on the initialized security profile. Finally, FTP stores
the exchanged key, the Thing’s identities, and the generated public key pair to its
keystore for the future use.

Once the trust between Thing and FTP is established, FTP handles the PKI-
related cryptographic operations for the Thing, achieving mutual authentication
between the Thing and other IoT network entities. These operations include
validating other entities’ digital certificates and digitally signing outgoing Thing’s
messages (e.g., sensor measurements or control messages).

Security profiles are determined based on similar approaches presented in
[22b; Fan+17; GMS15; Bor+18], offering different data protection levels concern-
ing data confidentiality and integrity. Security profiles (cf. Table 3.3) directly
correspond to the trust levels in the IoT network, therefore indicating the trust
reputation of Things and the transmitted data.

Figure 3.8: Thing trust bootstrapping
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Table 3.3: Things Security Profiles21

Profile Name Confidentiality Integrity Authenticity

No Security No No No
Integrity No Yes No
Symmetric, Insecure Keys Yes* Yes Possible
Symmetric, Secure Keys Yes Yes Possible
Asymmetric, Insecure Raw
Public Key

Yes* Yes No

Asymmetric, Secure Raw Pub-
lic Key

Yes Yes Yes

The No Security security profile does not support any of the CIA security
principles, since the Things and FNs exchange plain text messages. Therefore,
they do not establish any trust relationship utilizing encryption or hashing
algorithms. The Integrity security profile requires a Thing to calculate mes-
sage hash and attach it to the original package to allow FC service to validate
data integrity. Still, there is no guarantee that the complete message has not
been intercepted and retransmitted by another network node, due to the missing
message authentication.

The Symmetric, Insecure Keys and the Symmetric, Secure Keys security
profiles employ symmetric encryption as trust guarantee between Things and
FNs, as incorporated in standard protocols IEEE 802.15.4 [Mon+07] and ZigBee
[Fan+17]. By default, SEKMPs ensures data integrity and confidentiality, while
authenticity can be embedded by attaching encrypted information on data sender
and original information. However, the initial encryption keys distribution rep-
resents the critical factor concerning the support of CIA principles. Therefore,
confidentiality provisioning in the Symmetric, Insecure Keys is supported only
in cases when the initial key exchange has not been exposed to any attack, as for
example in previous Zigbee protocol versions [Fan+17]. Compared to that, the
Symmetric, Secure Keys security profile requires the application of protocols
and key exchange algorithms that ensure secure key distribution. These protocols

21 CIA principles marked with the ”*” character in security profile indicate that the CIA principle
is guaranteed only if the initial key exchange for that security profile has not been successfully
attacked by a malicious network entity.
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can be based on the principles described in Section 2.3.4, as well as approaches
utilizing Out-of-Band channels like sound, visual, network signals on different
frequency channels [COO13; 22j; LSA20].

The Asymmetric, Insecure Raw Public Key and the Asymmetric, Secure
Raw Public Key security profiles employ data encryption using a public key and
digitally signing data using a private key to ensure data confidentiality, integrity,
and authenticity. These profiles follow the established TLS handshake-based
protocols and solutions adapted to the Things’ computational capabilities, as pro-
posed by [Kot+13] and [RM12]. However, initial public key distribution between
Things and FNs is a critical factor for the encryption scheme’s trustworthiness.
For that, the Asymmetric, Insecure Raw Public Key categorizes public key
distribution strategies that are prone to the Man-in-the-Middle attack, leading to
the untrustworthy data and entity authenticity.

3.3 Distributed Fog-based IoT Access
Control

AC is the critical system security mechanism that prevents the unauthorized
access to information and services, thus ensuring data confidentiality. AC in-
corporates AAA as building blocks for trustworthy identity verification, valida-
tion of granted access privileges, and monitoring access requests in the system,
respectively. As documented in Section 2.4, AC mechanisms are well-researched
and widely applied in CC and mainframe computer systems. Nonetheless, to
comply with the distributed IoT environments, existing AC mechanisms need to
be extended and adapted to be deployed at the edge of IoT networks.

The primary goal of this dissertation is the adaptation of AC mechanisms to
enable automated and adaptive security policies in the IoT environment. Security
policy adaptation and automation involves the analysis of information sensed by
Things, determining the IoT environment’s context and adjusting the security
policies accordingly. Through that, the IoT system is capable of preventing unau-
thorized access with the reduced human effort required to configure security
policies. To achieve that, FC is used as the underlying computing paradigm,
enabling additional computational and storage resources in the local IoT environ-
ment. These resources are used to provide a low latency IoT environment’s state
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analysis and adaptation of security policies. Moreover, if it is deployed on FN,
ACC offers on-site access protection for Things.

In the scope of this dissertation, FC-based distribution of AC occurs through
two software components - ACAM and FACA (cf. Section 3.1.3). Still, the de-
sired distribution involves fulfillment of several requirements with regard to
the functionalities provided within ACAM and FACA. Analyzed requirements
are separated in three categories: (1) FC-inherited requirements (cf. Table 3.1),
(2) requirements for IoT AC systems (cf. Section 2.4.5), and (3) support for
C-A security policies (cf. Section 3.4). Despite separation through categories,
the requirements overlap to a certain degree. An analysis on IoT AC require-
ments, as well as their relation to FC-inherited requirements of importance
for the design of ACAM and FACA, namely FC 5, FC 6, FC 7, FC 8, FC 9,
FC 10, and FC 11 and context-aware security policy requirement is presented in
the Table 3.4.

The enlisted requirements set impacts authentication and authorization mech-
anisms for the successful AC application. Meeting the requirements involves
making several design decisions, allowing the trustworthy deployment of the
AC services in the FC-based IoT systems. The design decisions, as well as their
implications on the overall solution, are presented in the Sections 3.3.1 and 3.3.2.

3.3.1 Security Policy Management

Themain goal of the security policies is providing rules for protecting the access to
sensitive and critical system resources. In order to achieve that, security policies
are mapped to the access policies collection through the description of security
attributes. In IoT systems, two primary information producer and consumer types
are a user and a Thing. Therefore, security policies enforcement and mapping
has to provide a comprehensive security attributes set for describing both IoT
network entity types.

Building the security attributes set in the scope of this dissertation is directly
influenced by AC requirements enlisted in Section 3.3, namely AC 3, AC 4,
AC 5, and AC 7. Moreover, the AC deployment model described in Section 3.1.3
affects the access policies, hence also the security attributes management.

Fine-granular settings for the security policies definition (AC 4) allow the
configuration of access protection for the minimal set of IoT services. Through
that, overall AC in the IoT system can be better adapted to the end-user needs.
For example, a smart outlet in the Smart Home can be turned on only by its
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owner, whereas other users can just read the current consumption of a smart
outlet. Achieving fine-granularity led to the definition of the Policy Anchor
(PA), represented by an IoT system’s service property, which will be guarded
using AC. Following the heterogeneous nature of the IoT (AC 5), individual
Thing’s functionality has been chosen as a PA, allowing FACA to be deployed in
different IoT application domains. Examples for such functionalities are turning
a smart outlet on and off and changing color on a smart bulb. This decision,
however, imposes the drawback of significant management and storage demand
for access policies due to binding access policies to the singleThing’s functionality.
In this case, provisioning users’ access to 𝑁 Things, where each Thing has 𝑀
functionalities, would lead to managing and storing 𝑁 ∗ 𝑀 access policies. This
drawback has been partially prevented by defining grouped access policies in the
FACA. Grouped access policies can be defined around similar Things’ properties.
In the FACA, the grouping is possible around: (1) multiple functionalities of one
Thing, as well as (2) one or multiple functionalities of all Things of one type
(e.g., smart bulbs or humidity sensors).

Further provisioning of fine-granular, heterogeneous security policies involves
the description of end-users through generic information. Since IoT application
domains serve different purposes, accompanied by various IoT systems’ business
logics, finding a standard set of user information would be very cumbersome.
Therefore, our solution proposes generic user attributes as security attributes for
the access policy definition. Generic attributes are used as placeholders for real
user information in the IoT system where FACA is deployed. Therefore, based
on IoT system requirements, generic attributes can be resolved to the user’s age,
nationality or system role.

To satisfy AC 3, AC 4, and AC 5, a particular AC model has to be applied. The
first selection criterion for the AC model is the security policies management
policy, that dictates privileges on who or what in the IT system can manage
access policies. As described in Section 2.4.2, MAC and DAC are two dominant
approaches for delegating security policy management privileges. MAC enforces
centralized management privileges, enabling one or a couple of persons, usually
system administrators, to manage security policies for the whole IT system.
Hence, a central security policy is enforced for all IT system users, leading to
more controllable security policies. In contrast, DAC allows all system users
to assign security attributes and manage security policies. While this approach
offers less manageability and, therefore, a higher probability of security policies
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misconfiguration, it offers higher flexibility for system users to adjust access
rights without involving system administrators in the process.

IoT systems are highly-decentralized systems, with services deployed through
Things and local controlling units (e.g., Smart Home gateway or monitoring units)
in a variety of networks. Moreover, IoT systems require fine-grained and self-
configuring access control mechanisms that adjust according to the dynamicity
of the IoT environment’s context. For those reasons, enforcing MAC in IoT
systems leads to cumbersome and effort-demanding security policies, which
would endanger the dynamic and availability of IoT services. Compared to that,
DAC allows distributed security policies management, allowing the persons and
network entities (C-A agents) to manage access rights. Although this approach
can lead to a less secure IoT environment, its flexibility and supported dynamicity
are prevailing factors to comply with the distributed AC implemented through
FACA in the scope of this dissertation (AC 3).

The second selection criterion for choosing AC model is affected by the
expressiveness of access policies, i.e. which information can be used as secu-
rity attributes during the access rights validation. AC models RBAC and IBAC
rely on subject attributes (e.g., role or identity) as an input for access rights
description. Since IoT systems offer context information that can be used for
access rights validation, thus requiring Context-Aware Access Control (C-A AC)
(AC 7), RBAC and IBAC do not fit the enlisted requirements. LATBAC allows
better description of security policies through mapping of security attributes to
security levels. However, LATBAC is generally considered as MAC-based AC
model, therefore not compatible with the previous choice for employing DAC in
this solution.

ABAC supports security policy definition through generic attributes, which
do not have to relate to subject information. Hence, ABAC is compatible with
IoT context information as part of security policies. Supporting multiple generic
attributes for a security policy definition represents a two-edged sword. Various
information can be described through generic attributes and bound using logical
clauses into fine-grained access policies (AC 4). However, this can lead to com-
plex access policies, introducing higher effort for security policy management.
Moreover, complexity can negatively affect the possibility of distributing access
rights across the IoT system, since all access rights validation entities have to
be able to support a complex validation logic. CAPBAC provides a somewhat
different approach than previously mentioned AC models. As it relies on capabil-
ities as the input for access rights validation. The capabilities are pre-calculated
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and pre-assigned to users based on security attributes. Therefore, users are
required to provide proof of capability ownership to access the particular service.
These characteristics allow more lightweight, easier-to-distribute application of
CAPBAC in IoT systems, since a central entity assigns capabilities and that are
validated directly at service providers, namely Things. While both ABAC and
CAPBAC satisfy AC 3 and AC 4, the capability pre-calculation requirement
of CAPBAC represents a limiting factor for AC 7, as also stated by authors in
[Oua+17]. Namely, context information impacted security policy adjustments can
often occur, leading to an increased computing effort by AC modules. Moreover,
capabilities re-calculation can often be useless since security policy adjustments
can occur in periods when end-users do not use the IoT system. Therefore, while
offering lower scalability and distribution capabilities, ABAC is chosen as AC
model for this solution, satisfying AC 3, AC 4, and AC 7.

The proposed AC modeling approach supports the heterogeneity of IoT envi-
ronments through the description of security policies using generic attributes,
as well as applying AC policies on generic IoT services as PAs. However, provi-
sioning interoperability between heterogeneous IoT environments involves the
application of standardized language for access rights definition (AC 5). More-
over, sought language has to comply with previously chosen AC models, namely
DAC and ABAC. XACML [oas22] enables standardized procedures for defining
and validating fine-grained access policies, formatted in XML. AC policies man-
agement in XACML is decomposed into four modules: (1) Policy Information
Point (PIP) offers services required for management of generic attributes, func-
tionalities supported by IoT devices, as well as handling of user sessions, (2) Policy
Administration Point (PAP) enables the definition and management of access
policies, (3) Policy Decision Point (PDP) evaluates them in order to grant or deny
access to IoT devices, and (4) Policy Enforcement Point (PEP) defines an interface
required for the authorization of access requests and propagates them further to
PDP. Through the integration of XACML into proposed solution interoperability
between different IoT platform is ensured, since AC policy management is pro-
vided through the standardizedmessage format between the standardized XACML
modules, with the clear separation of duties.
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3.3.2 Access Control Distribution

Having AC mechanisms deployed through FACA in separate networks requires
establishing trust relationships within the local IoT network, that is TND, as well
as within the overall IoT system, involving central AC services deployed in the
Cloud through ACAM. Moreover, AC services must provide mechanisms for the
end-users to authenticate in the IoT system. Once successfully authenticated, the
user is considered as trustworthy by the IoT system and is issued with a session
token holding security attributes. By presenting these security attributes, the
user can gain access to IoT services through the access rights validation described
in Section 3.3.1.

The TN and IdM deployment model described in Section 3.2.2 allows distribu-
tion of AC services to locally deployed FNs, enabling support for the requirements
listed in Table 3.4. Namely, AC 6 requires the availability of AC services despite
the unreachability of CC services. For that reason, invoking ACAM services while
initiating user sessions is not possible in every scenario, leading to endangered
reliability of AC services in local networks (AC 6). In order to ensure the stan-
dalone operation of FACA, end-user IdM is deployed within the FACA. Through
that, private user data is held exclusively in the local IoT network, that is on FN,
enabling improved control over data and privacy settings (AC 2). At the same
time, ACAM is used as the registry of the deployed FACAs and as a central entity
for maintaining consistency between the security policies configured in FACAs.

Even though designed AC services are fully deployed to FN as FACA, they
still depend on CC services: trust management in TNTA and security policies
configuration in ACAM. In order to ensure trustworthiness of FACA services
(AC 1), FACA needs to join IdM and PKI scheme described in Section 3.2.2 in
the FTTTP (cf. Figure 3.5) by bootstrapping trust with the FTA component
(cf. Figure 3.7). Once FACA has established trust with FTA, it enters the opera-
tional phase to retrieve security policies configuration from ACAM.

In its operational phase, ACAM and FACA maintain the configuration con-
sistency of the security policies . This involves monitoring and management of
the offered IoT services during the IoT system’s runtime. Since access to the
IoT services is controlled through FACA’s authorization logic, the management
of authorized Things’ functionalities in FACA as part of the security policies is
possible.
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Figure 3.9: Global security policies synchronisation

The proposed solution bases maintaining security policies consistency by
involving ACAM into security policies management through the supported
Things’ functionalities management, bringing additional benefits to the AC ser-
vices deployment. The main motivation behind the CC-supported security policy
management is to reduce the security risks on the IoT system in case of malfunc-
tioning Thing functionality, i.e. detected security flaws or service malfunctioning.
The establishment of a central control point for security policies on each FN
enables IoT system administrators to react quickly and disable the targeted IoT
services through ACAM, reducing the damage in case of a security breach. There-
fore, FACA security policies must be derived from the ACAM’s security policies,
minimizing the local security policies divergence on FNs and allowing interoper-
able and consistent security policies between the deployed FACAs (AC 5).

To retrieve security policies from ACAM, FACA performs periodic long polling.
Since long polling involves communication between services CFTFP and FTTTP,
it represents cross-trust plane communication. Thus, FACA and ACAM have to
mutually authenticate themselves, relying on the PKI described in 3.2.2 using
Tickets for accessing each other services. As presented in Figure 3.9, before
contacting ACAM, FACA requests a Ticket from FTA, since FTA is the TND
gateway in FTTTP and through that recognized by TNTA in the Cloud. Once
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requested, FTA issues a Ticket signed with its private key to the FACA, enabling
iy to access CC services. FACA sends a request and the Ticket to the ACAM,
which validates the Ticket’s integrity and authenticity in TNTA. If the Ticket is
valid, ACAM generates a response and attaches a new Ticket with the TNTA’s
digital signature. Once FACA has received the response, it verifies the Ticket’s
digital signature using TNTA’s certificate. If the digital signature is valid, FACA
proceeds and stores the security policies.

The proposed global security policy management in ACAM relies on having
Things’ functionality as a security PA, as described in Section 3.3.1. Namely,
ACAM utilizes the whitelisting of Things’ functionalities to enable or disable
provisioning of IoT services through FACA. Once the global security policies are
defined and deployed to FNs (cf. Figure 3.9) , they are extended by local FC based
security policies and specialized for a particular local IoT environment. Still, local
security policies can be overruled by global security policies defined in ACAM by
adjusting access policies in FACA according to ACAM’s whitelists. For example:
ACAM’s global security policy can be:

A smart bulb can be switched on.

Additionally, FACA extends the global security policy by attaching security
attributes from the local IoT environment:

A smart bulb can be switched on by a user who is older than 18 and
has an administrator role.

Based on this extension, ACAM is not aware of local security policies but still
can enable or disable them by updating Things’ functionalities whitelists and
maintain consistency of the configured security policies in each FACA.

3.4 Context Information Integration
in IoT Access Control

Context information used to establish C-ASs enables a multitude of opportuni-
ties for enhancement of IoT systems. These opportunities contribute to further
improvements in IoT solutions’ usability and automation, leading to increased
IoT adoption (cf. Section 2.5.5). In this dissertation, context is used to improve
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security policy management in IoT environments by integrating context infor-
mation into AC mechanisms. C-A AC enables the automation of the access
policies management, reducing users’ effort for maintaining security policies.
The importance of C-A AC has also been recognized by Ouaddah et al. [Oua+17]
as one of the key requirements for future IoT AC systems (AC 7).

Building C-A AC requires building architecture and models capable of integrat-
ing context information into the AC scheme presented in Section 3.3.1. Context
information is used as attributes in the ABAC model, describing the IoT environ-
ment’s current state and impacting the access policies validation procedures. For
that purpose, context information has to be collected, structured, and forwarded
to FACA to enable context-aware configuration of security policies. To achieve
that, the common C-AS design approaches presented in Sections 2.5.1 to 2.5.4
have been analysed. This involves the consideration of the requirements listed in
Table 2.6, which are summarized into C-A AC design requirements in Table 3.5.
These requirements, combined with the aforementioned design approaches, are
used as guidelines for designing the aimed solution.

The initial step towards C-A AC design is to define the features and interaction
options (cf. Section 2.5.1) that the C-A AC system will offer. Since C-A AC
incorporates context information as part of security policies, which are configured
by the end-user through the access rules, context enables a passive interaction
option. This results in the AC system’s capability to continually monitor the IoT
environment and offer context information to the user to perform configuration
actions on access policies, leading to the context-adaptive security policies.

Table 3.5: C-A AC design requirements

Label Description

CA 1 Architecture layers and components
CA 2 Scalability and extensibility
CA 3 Application Programming Interface (API)
CA 4 Extended, rich, and comprehensive modeling
CA 5 Share information (real-time and historic)
CA 6 Automatic context lifecycle management
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The establishment of C-A AC mechanisms involves defining the context model,
which separates context acquisition and exposure to the application and users
[Bet+10]. Building a comprehensive, rich context model (CA 4) that enables
context services exposure through unique API (CA 3) requires identification of
context information based on all entities producing context in the IoT environment
(cf. Figure 2.4) - Things, places and end-users. For that purpose, the designed
context model (cf. Section 3.4.2) is based on three C-A use cases, incorporating
previously mentioned entities:

• Things’ context is represented through their connectivity to the inter-
net, which is handled by the Connectivity Context-Awareness Agent
(CCAA);

• Behavior Context-Awareness Agent (BCAA) collects the end-users
context information, analyzing users’ behavior and deducting behavior
patterns over a longer period;

• Places are observed by the Location Context-Awareness Agent (LCAA)
through users’ location tracking and analyzing their positioning in the IoT
environment.

These use cases also cover both context type dimensions (cf. Figure 2.4). The
internal dimension is represented through BCAA, observing users’ behavior,
tasks, and interactions with the C-AS. The external dimension is observed by
LCAA and CCAA, involving context measured by sensors, i.e. internet connection
and user location.

The documented C-A AC design requirements (cf. Table 3.5) are analyzed in
the upcoming sections. Satisfying the requirements involves the design deci-
sions establishment with regard to C-A components architecture and integration
(cf. Section 3.4.1), modeling context information (cf. Section 3.4.2), as well as the
C-A components lifecycle (cf. Section 3.4.3).

3.4.1 Context-Aware Components Architecture

Context information collection, processing, distribution, and application in AC
mechanisms require the design of C-A components in a generic manner, ensur-
ing independence from the observed context information type. Moreover, C-A
components have to satisfy requirements CA 1 and CA 2, enabling a scalable,
extensible, and layered components architecture, leading to the C-ASs that can
easily integrate a variety of context information.
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Figure 3.10: C-A layered architecture and components integration

Establishment of C-A ACmechanisms implies having the AC services deployed
in FACA as the primary context information consumer. Thus, the separation of
FACA from other C-A agents decouples AC services from the services for the
collection of context information deployed in CCAA, BCAA, and LCAA, enabling
a simpler distribution of C-A services. This leads to the layered architecture
(CA 1), with (1) the context collection layer dealing with context collection and
processing in C-A agents, and (2) the access policy layer enabling C-A AC based
on the context information from the context collection layer (cf. Figure 3.10).

The separation of C-A components into two layers enables context information
abstraction, so that FACA stays unaware of the context collection and processing
details. This information remains encapsulated in the C-A agent which distributes
the context information to FACA through the C-A AC API, which is common
to all C-A agents. The C-A AC API (cf. Section 3.4.2) bridges the gap between
low-level context information and access policies, enabling simpler integration
of different C-A agent and accompanying context into AC mechanisms (CA 3).

As FACA consumes the information sent using the C-A AC API, it follows
the Context server context acquisition approach (cf. Section 2.5.3) with explicit
context model (cf. Section 2.5.1). These approaches enable straightforward C-A
agents integration into AC mechanisms by adhering to the C-A AC API without
any intervention on FACA’s source code. This leverages the context information
management complexity to C-A agents, guaranteeing FACA’s capability to easily
scale and extend to support various context sources (CA 2).

Since FACA enables FC-based AC mechanisms, C-A integration must not
jeopardize the AC design requirements listed in Table 3.4 in any way. This affects
the C-A agents deployments strategy since FACA has to operate independently
of the CC services’ availability (AC 6). For that reason, C-A agents are deployed
along with FACA as FC services, ensuring minimal data transmission latency and
reliability of AC-related features.

104



3.4 Context Information Integration in IoT Access Control

Furthermore, as C-A agents can collect and process private users’ information
(cf. Section 2.5.3), their deployment as FC services is beneficial for the overall
system’s security and privacy. As C-A agents process context information in
a local network without its further propagation to CC services, users stay in
control of their private information. Moreover, context information security
has to be provided during the context information collection, modeling, and
distribution [Per+14a]. To achieve that, C-A agents rely on the trustworthy
environment through FTA and FTP. This guarantees the authenticity of the
collected information since all connected sensors are provided with a digital
certificate through FTP (cf. Section 3.2.3). Moreover, the authenticity of the
context information distributed from C-A agents to FACA is enforced by digitally
signing messages exchanged through the C-A AC API. This forces C-A agents to
prove their identity with each transmitted message, eliminating possibilities to
alter distributed context information and maliciously affect AC mechanisms.

Having C-A agents collecting and processing context information, it is essential
to share this information with FACA (CA 6). Securing this information relies
on the hierarchical trust through FTA components. To achieve that, FTA and
FACA have to provide a support for automatic context management (CA 7), i.e.
(1) registering and deregistering C-A agents, and (2) creation, update, and deletion
of AC-related information through C-A AC API.

The lifecycle of each C-A agent is related to its registration and deregistration
at FTA following the procedures described in Section 3.2.2. Once the C-A agent is
registered at FTA , the C-A agent starts its operational phase (cf. Figure 3.11). In
this phase, the C-A agent collects context information and distributes it to FACA
through the C-A AC API. The C-A AC API’s backbone is the context to attributes
mapping, allowing FACA to consume all context information as attributes in the
ABAC scheme. To achieve that, the C-A agent initially registers context attributes
at FACA, thereby announcing which context information will be delivered in the
future and can be used as part of access policies in FACA. Once registered, the C-A
agent publishes context information through attributes value change notifications,
which are stored in FACA’s database for the future access policies validation. If
the C-A agent detects any alteration of context information that FACA utilizes,
the C-A agent sends a required for context attributes update, containing context
attributes that should be created, deleted, or updated in FACA. Security of the
message exchanges in the operational phase relies on the certificate established
in the C-A agent’s registration phase since all requests from C-A agent contain
digital signatures that FACA and FTA validate for their authenticity.
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Figure 3.11: C-A agent’s operational phase

C-A attributes-based access rights validation in FACA relies on the notified
C-A attribute values. However, depending on the configuration and criticality of
the operation that is being authorized in FACA, notified context information can
be timely obsolete. For example, unlocking entrance doors to the Smart Home
can be considered as highly critical operation, for which the most current C-A
attribute value is required during authorization, whereas reading the room tem-
perature is not that critical. To support security critical operations, C-A AC API
enables registration of C-A agents interfaces, which can be contacted during the
critical operations’ authorization, as depicted in Figure 3.12. For FACA to contact
C-A agent during the authorization, following requirements have to be fullfilled:
(1) user has to define the access policy involving C-A attributes that are marked
as critical and (2) C-A agents have to register interfaces for C-A attributes during
C-A attributes registration. Once the requirements are satisfied, FACA invokes
C-A agent’s interface and performs the authorization using the latest C-A attribute
value, which is not yet notified to FACA.
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Figure 3.12: Authorization using C-A attributes

3.4.2 Modeling Context Information

Message exchanges presented in Section 3.4.1 heavily rely on the C-A AC API to
support the C-AACmechanisms’ scalability and extensibility with various context
information. Hence, modeling the C-AACAPI plays a critical role for the designed
solution, which should result in a comprehensive, rich, and extensible model
(CA 4) exposed by FACA’s API (CA 3).

To satisfy these requirements, modeling the API using an ontology-based
approach is applied. The key factor for choosing ontologies amongst other model-
ing methods presented in Section 2.5.4 is mostly due to the existence of numerous
tools and languages (e.g., OWL, RDF, and RDFS) that enable straightforward
understanding of complex relations between context information [Wan+04].

Designing context ontologies that cover a wide range of context information
is a challenging task [BDR07a]. Requirements for building context ontologies
listed in publications [KM03; PRL09] are: simplicity, extensibility, generality,
expressiveness. Furthermore, Perera et al. [Per+14a] emphasize the importance
of defining the ontology scope and domain within a context model, as well as
reusing existing ontologies.

Designing a simple and generic ontology that allows integrating various C-A
agents into AC mechanisms implies splitting the C-A AC API ontology model
into two smaller ones: FACA ontology and C-A agents ontology (cf. Figure 3.13).
This separation enables a generic approach that allows FACA to easily extend
its capabilities to support various C-A agents by abstracting context information
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through attributes in the ABAC scheme. Furthermore, C-A agents domain models
do not have to be ontology-based, as long as they support the C-A agents ontology
and can map the internal context model to the one implied by FACA.

Mapping various context information to attributes requires a comprehensive
definition of the C-A agents ontology. Therefore, this ontology includes basic
context attribute properties and context QoS properties (cf. Section 2.5.2), which
can affect ACmechanisms. As documented in Figure 3.13, the C-A agents ontology
is separated into two major parts: Configuration and Value Notification.

The Configuration ontology provides initial information on the context that
will be delivered to FACA in the future and enable access rights validation. On
the one hand, this information provides identifiers for future Value Notification
messages: attribute name, context type. On the other hand, with the goal of
enabling real-time context information during authorization procedures, each C-A
agent can expose an interface which FACA can contact during the authorization
to fetch the latest C-A attribute value. This interface’s address is defined in the
field Attribute Evaluation Route. Context QoS Configuration data define context
information which FACA afterwards uses to register new attributes and allow a
user to create access policies using context information:

1. A certainty (confidence) range described as maximum and minimum value;
2. Time constraints represented through distribution pattern, maximum time

between two value notifications, and notified values validity;
3. Data type depending value constraints, i.e. string or numeric;
4. Type of the access rule that can be established based on provided context

information.
Value Notification messages occur after completing the C-A attribute regis-

tration and configuration, thereby delivering context information that is used
during C-A-based authorization. The notified values are mapped to the previous
Configuration and AC policy information using the registered attribute name.
The QoS aspect of context information is covered through the certainty field,
enabling C-A Agent to express confidence in the notified value.

Support for C-A attributes through FACA ontology relies on ABAC and the
XACML scheme described in Section 3.3.1. However, context information could
not be directly mapped to the existing XACML capabilities since C-A attributes
contain QoS aspects, which are not present at user-related attributes (role, age,
nationality). Therefore, XACML has been extended with the Context access rule
type. This access rule type consists of:
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1. Numeric access rule that evaluates certainty field from Value Notification
messages;

2. Simple access rule that evaluates C-A attribute values and is defined in the
Configuration message;

3. Indication if the latest C-A attribute value needs to be fetched from C-A
agent during the authorization.

3.4.3 Context-Aware Components Lifecycle

Provided description of the FACA’s lifecycle (cf. Section 3.4.1) documents design
decisions concerning the integration of the context information into AC mecha-
nisms. Each C-A agent has its lifecycle, during which it collects information from
sensors or middleware and shares the real-time and historical context information
with FACA (CA 5) described in Section 2.5.4.

Table 3.6 presents the summary of the C-A components lifecycle design. Each
C-A component is described in terms of the context acquisition, modeling, and
reasoning aspects. The context information distribution aspect is the same for all
C-A agents, following the push approach using C-A AC API (cf. Section 3.4.1).
Furthermore, a brief description for each C-A agent’s lifecycle is provided.

BCAA tracks user behavior patterns and analyses them to estimate users’
expected actions in an IoT environment. The input for behavior patterns anal-
ysis includes the events describing (1) user controlling Things and (2) periodic
measurements (e.g., temperature or humidity measurement). BCAA tries to find
behavior patterns’ correlations between users and their usage of IoT services
based on these events. BCAA outputs the users’ behavior patterns that are identi-
fied and its confidence for the patterns to repeat in the future, which FACA then
uses for defining security policies.

Compared to CCAA and LCAA, BCAA has a slower learning curve since the
events indicating user’s behavior can occur quite randomly (e.g., every few days or
weeks). For that reason, context information provided by BCAA is operationally
categorized as ”profiled” one (cf. Section 2.5.2), meaning that they change over
time with a low frequency. Through the events pushed from the middleware,
BCAA acquires context information instantly and periodically. However, through
the events’ analysis, BCAA derives context information through unsupervised
learning reasoning models, which is then published to FACA.
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CCAA monitors internet connection and availability to the Cloud servers by
periodically (every 10 seconds) calling the exposed health-check route, exposed
by the Cloud server. The connection to the Cloud Server can fail due to multiple
reasons, such as network timeout, bandwidth congestion or Cloud Server overload,
resulting in temporary or long-lasting connectivity problems. Therefore, CCAA
considers the last ten connections to the Cloud to estimate the probability of a
successful connection.

Since CCAA acquires the required context information by pulling data directly
from a virtual sensor (the network interface), it is considered to be using the
primary context. Moreover, dealing with the estimated certainty of connectiv-
ity from the last ten intervals, CCAA performs a probabilistic reasoning model.
Finally, having a relatively simple context model, CCAA handles context infor-
mation through an object-oriented approach, simplifying the context lifecycle
management implementation in Java programming language.

LCAA tracks users’ positioning within the IoT environment and describes their
current location through a 4-tuple: building, floor, room, and zone. User position
tracking is based on Bluetooth beacons distributed over an IoT environment and
configured through the 4-tuple mentioned above. The Happy Bubbles22 open-
source project is used for the presence detection near a Bluetooth beacon, which
determines the user’s current position.

By receiving processed context information from the middleware (Happy
Bubbles), LCAA instantly consumes secondary context information as soon as
the user’s presence is detected. Afterwards, LCAA applies rule-based reasoning
to derive the user’s location through pre-configured Bluetooth beacons positions.
Finally, beacons configurations and user’s presence information are modeled
using an object-oriented approach, since context information mostly relies on
4-tuples and does not possess too many interrelationships, so that more complex
context models have to be applied.

22 https://www.happybubbles.tech/, last access May 2, 2022
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3.5 Summary and Findings
This chapter described design decisions for the developed trustworthy, FC-based,
C-A AC solution and covers the main building blocks of the designed solution
concerning their requirements and resolution approaches. First of all, the deploy-
ment strategies for FC services as well as their implications on the development
of TN, AC, and C-A services have been evaluated in Section 3.1.2. The most
critical implication is the requirement for the uninterrupted operability of the
FC services’ independently on Cloud Server availability, which hindered the
application of many established TN and AC solutions.

Sections 3.2 and 3.3 contain the design decisions concerning TN and AC ser-
vices, respectively. Based on the inherited requirements from FC and collected
requirements from the current research in these areas, several protocols, frame-
works, and models have been analyzed, leading to the definition of the novel
protocols for TN and AC in FC-based IoT environments. Finally, C-A integration
in AC mechanisms has been evaluated in Section 3.4. The variety of C-A factors
that can impact AC in IoT dictated a comprehensive analysis of the approaches for
context information management. The final result is defined through a generic,
extensible, ontology-based data model that enables the integration of context
information into ABAC-based AC mechanisms.

Conclusions on the design decision with regard to initial requirements of the
main solution areas have been summarized and presented in the following Tables:
(1) Table 3.7 for FC, (2) Table 3.8 for TN, (3) Table 3.9 for AC, and (4) Table 3.10 for
C-A. Each design decision is presented with its label, brief solution description,
and a reference to the Section where more details concerning the design decisions
can be found.
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4

Implementation

Following the design decisions presented throughout Chapter 3, provisioning TN
and C-A AC involves multiple solution steps in the network security and C-AS
design areas. Hence, Chapter 4 provides further insights into the implementation
of the envisioned IoT framework - COSYLab. Through the COSYLab, the presented
solution design is implemented and validated using a Smart Home IoT application
domain. Nevertheless, the developed solution is applicable in other IoT application
domains, involving various IoT devices from different hardware vendors.

The upcoming Sections 4.1 - 4.7 document the key aspects concerning imple-
mentation of COSYLab. Firstly, the implementation scenario overview is provided
in Section 4.1, followed by the software architecture and communication protocols
description in Section 4.2. The FC and CC services deployment strategy details
are provided in Section 4.3. Afterward, TN provisioning implementation details
are documented in Sections 4.4 and Section 4.5, with a focus on (1) developed TN
services and protocols, and (2) PKI performance simulations. AC implementation
information is presented in Section 4.6, followed by the extensions for integrating
C-A factors into AC (cf. Section 4.7).
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4 Implementation

4.1 COSYLab Smart Home Scenario

In order to implement and evaluate the designed protocols andmodels described in
Chapter 3, the COSYLab framework is implemented, representing the Smart Home
IoT environment. The implementation scenario involves a Smart Home with
multiple rooms spread across multiple floors. Each room is featured with several
Things that are connected with the Smart Home gateway, which is hosted on a
FN. A family consisting of two adult persons and several children are envisioned
as Smart Home system users. They control the Smart Home appliances and fetch
the sensor readings several times per day. Based on the Cisco Annual Internet
Report23, it is assumed that each person in a Smart Home actively uses around
nine Things, resulting in the estimated number of 50 present Things in a Smart
Home. The Smart Home is envisioned as an FC-powered IoT environment. For
that reason, Smart Home operations have to be resilient to the unavailability
of CC services. Still, to optimize and maintain a consistent state of TN and AC
services, Smart Home FC services are synchronizing with CC services whenever
the connection to CC services is available.

For the development of the software components: (1) CSWA, ACAM, and
TNTA in CC environment and (2) FACA, FTA, FTP, LCAA, BCAA, and CCAA
in an FC environment, the following key software frameworks, libraries, and
message brokers are used:

• MongoDB24 for information persistence in database,
• Spring Boot25 framework for business logic, Advanced Message Queuing
Protocol (AMQP) and Representational State Transfer (REST) interfaces,

• AngularJS26 for presentation of information in browser, and
• RabbitMQ27 for AMQP communication between FC services.

Throughout the implementation and evaluation of the COSYLab, the devel-
oped software components have been deployed on multiple devices with various
computing and storage capabilities spreading through the Cloud - Fog - Things

23 https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-
internet-report/air-highlights.html, last access May 2, 2022

24 https://www.mongodb.com/, last access May 2, 2022
25 https://spring.io/projects/spring-boot, last access May 2, 2022
26 https://angularjs.org/, last access May 2, 2022
27 https://www.rabbitmq.com/, last access May 2, 2022
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4.2 Software Architecture

continuum. The Cloud Server is hosted as a PaaS-based Linux Ubuntu 18.0428

virtual machine with 2.8GHz dual-core CPU and 4GB RAM. FNs are represented
through three different devices, where each FN device is installed with a Linux
Ubuntu Server 21.0429 operating system. Used FN devices are:

1. Raspberry Pi4 model B30, with 1.5GHz quad-core CPU and 4GB RAM;
2. Raspberry Pi3 model B+31, with 1.4GHz quad-core CPU and 1GB RAM;
3. Raspberry Pi Zero32, with 1GHz single-core CPU and 512MB RAM.

Through the FC services deployment on different FNs, it is possible to evaluate
the feasibility, risks, costs, and benefits of FC services deployment. For that
reason, Raspberry Pi4 and Raspberry Pi3 represent FNs with more computational
and storage capabilities. They are envisioned as FN that can host multiple FC
services and provide better performances for time-critical operations. Raspberry
Pi Zero represents resource-constrained FN, offering worse performances but
still providing capabilities to distribute processing of FN services, minimizing
processing bottlenecks and SPoF risks.

Things are represented through the NodeMCU-powered ESP32 development
board33, and provided with 448 KByte ROM, 520 KByte SRAM, and Xtensa 32-bit
LX6 dual-core processor. ESP32 supports 2.4 GHz wireless protocols: IEEE 802.11
b/g/n/e/i and Bluetooth protocols, i.e., BR/EDR and BLE.

4.2 Software Architecture

In order to fulfill identified requirements and achieving the defined goals, sev-
eral design decisions were taken as justified through Chapter 3, leading to the
architecture presented here. In this section, a general overview of the compo-
nents organization within the COSYLab, as well as communication protocols and
interfaces between them, is documented.

28 https://releases.ubuntu.com/18.04.5/, last access May 2, 2022
29 https://ubuntu.com/blog/ubuntu-server-21-04, last access May 2, 2022
30 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/, last access May 2,

2022
31 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/, last access

May 2, 2022
32 https://www.raspberrypi.org/products/raspberry-pi-zero/, last access May 2, 2022
33 https://nodemcu.readthedocs.io/en/dev-esp32/, last access May 2, 2022
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4 Implementation

The developed software components are based on the existing Smart Home
framework developed at the University of Vienna, allowing IoT devices man-
agement, sensor data collection and provisioning of collected information (e.g.,
current temperature or air quality measurements) to the users. Components of
the Smart Home framework are colored green in Figure 4.1. Integration of the
Smart Home framework and theThings is provided through the Home Assistant34

home automation framework. Using the Home Assistant, integration with several
Things types is provided: temperature, light, and humidity sensor. Home Assis-
tant operations are exposed through the API of the Fog Controller component,
representing the central point for the IoT services provisioning. Therefore, the
provisioned AC, TN, and C-A services are integrated with the Fog Controller to
provide security mechanisms as Smart Home framework’s extensions.

Figure 4.1 shows the COSYLab framework, extended with software compo-
nents for security and C-A services provisioning. Developed software components
depicted with orange and blue boxes in Figure 4.1 represent security modules
deployed in Fog and Cloud environment, respectively. These components are in-
tegrated using the application layer protocols, namely HTTP and AMQP. Marked
with blue color, HTTP-based communication is used for interactions between FC
and CC components, between CC components, as well as between Fog Controller
and FACA, due to the performance reasons (cf. Section 5.4.2). HTTP-based com-
munication relies on REST enabling a standardized approach for the integration
of communicating components. Orange-colored communication links represent
AMQP-based communication between FC components, allowing loosely-coupled,
synchronous, and asynchronous communication between FC components. Used
message format in case of both HTTP and AMQP communication is JSON35,
offering a lightweight data-exchange.

To enable targeted TN, AC, and CA services in IoT environment, developed
software components are grouped based on the provided service. Therefore,
details on each developed component are presented in the upcoming sections:

• Section 4.4 provides implementation details on TN provisioning, accompa-
nied by description for TNTA, FTA, and FTP components;

• Section 4.6 provides implementation details on AC provisioning, accompa-
nied by description for ACAM and FACA components;

• Section 4.7 provides implementation details on C-A provisioning, accom-
panied by description for LCAA, BCAA, and CCAA components.

34 https://www.home-assistant.io/, last access May 2, 2022
35 https://www.json.org/json-en.html, last access May 2, 2022
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4 Implementation

4.3 Components Deployment

FC per definition aims at a services deployment model that relies on creating a
highly virtualized services execution environment, improving the utilization of
existing hardware devices in the network and efficiency of the deployed resources.
FNs are envisioned as services execution hosts, which offer required computa-
tional, storage, and networking capabilities for deployed services. As described
in Section 3.1.3, two mainstream approaches for virtual execution environments
are VMs and containers. Compared to VMs, containers introduce performance
benefits, requiring fewer resources for their execution. Since IoT devices are
resource-constrained and lightweight execution is favored, the chosen service
deployment model in the scope of this dissertation relies on containers.

Docker36 is a container-based platform, offering support for application
development, deployment, and execution. Developed and supported by large
developers and companies community, Docker provides a multitude of open-
source solutions for deploying services and applications on a variety of devices
(e.g., desktop computers, single-board computers, and Cloud Servers). By separat-
ing services execution from the infrastructure using containers, Docker enables a
simple services deployment and services portability, since they do not depend on
the underlying operating system or installed software stacks. Docker containers
are deployed and installed as Docker images. Images are downloaded during the
installation from Docker Hub37 and afterwards executed on the host. Through the
simple installation and deployment, Docker offers services scalability and load-
balancing capabilities, allowing services to scale their performance depending on
the computational capabilities of the hosting devices.

In order to deploy the developed CC and FC services on FN using Docker,
respective container images have to be created and uploaded to the Docker Hub.
Docker images creation relies on the derivation of new images from the existing
ones, which are already uploaded to the Docker Hub. As stated in Section 4.1,
the developed services rely on the Spring Boot framework, which encapsulates
the developed service’s business logic in a single Java Archive (.jar) file. Thus,
the creation of a Docker image results in deriving an existing, open-source Java-
supporting Docker image by installing a compiled .jar file that contains the
service’s business logic.

36 https://www.docker.com/, last access May 2, 2022
37 https://hub.docker.com/, last access May 2, 2022
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1 FROM arm32v7/openjdk:11-ea-11-jre-slim
2 ARG \${JAR_FILE}=target/*.jar
3 COPY \${JAR_FILE} faca.jar
4 RUN chmod +x /faca.jar
5 ENTRYPOINT ["java","-jar","/faca.jar"]

Listing 4.1: Service container image compilation

An example of Docker image creation is presented in Listing 4.1, showing the
image creation steps for the FACA service. The original Docker image, fromwhich
the new image is derived, is specified at line 1. Specification and installation of
the compiled .jar file into the newly created Docker image are configured in lines
2-4. Afterwards, the generated image’s entry point, defined through a command
that will start a service execution, is presented in line 5. Using this command,
the compiled .jar file will be launched on the Docker image startup, leading to
the execution of the developed service. Once the image creation configuration is
done, the image building process is started through the command docker build
. -t IMAGE_NAME, where IMAGE_NAME stands for the name of the developed
service, i.e. FACA or FTA.

Once the Docker images are created and uploaded to the Docker Hub, their
deployment to FNs and Cloud Server is possible. Listings A.2, A.3, and A.4 in
Appendix A present service configuration bundles for FC services. Furthermore,
Listing A.1 describes the service bundle that is deployed on Cloud Server. Config-
uration bundles are deployed using the Docker’s extension for a multi-container
environment’s deployment - Docker Compose38.

4.4 Trust Management
The implementation for TN mechanisms in the scope of this dissertation relies on
a hierarchical trust model, utilizing PKI and digital certificates to establish trust
connections between FC services, Things, and users (cf. Section 3.2). The
implementation of TN software components: TNTA, FTA, and FTP enables the
trust management encapsulation within FC-based TNDs, independently of the
Cloud Servers availability. Moreover, an extension of the implemented PKI
schema through security profiles offered by the FTP component improves the
proposed solution’s applicability on resource-constrained Things. The upcoming
Sections 4.4.1 - 4.4.3 provide implementation and technical details considering
TN deployment and provisioning.

38 https://docs.docker.com/compose/, last access May 2, 2022
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Figure 4.2: Identifier Structure

4.4.1 Identity & Certificate Management

Following the identity naming structure proposed in Section 3.2.1, identifiers
for four different entity types present in the COSYlab are built. Identifiers for
each entity type follow the structure provided in Figure 4.2, containing several
dot-separated identifier parts. All identifiers contain the following common
characteristics: (1) each identifier has the IoT platform name ”COSYLab” as its first
part, (2) the second part represents the entity type : CCService, FCService, User,
or Thing, (3) the entity name is provided as the third part, and (4) each identifier
contains a generated identifier at its end, which is created using Universally
Unique Identifier [LMS05]. Other identifier parts are specific to the each entity
type and contained as optional fields. Based on the entity type, optional fields
within the identifier can have the following values:

• The FC Service entity has the FN identifier,
• The Thing entity FN identifier and FTP component identifier, and
• The User entity has the FN identifier and FACA component identifier as
optional fields.

The values contained in the optional fields are used to describe the associations
between entities in the Cloud - Fog - Thing hierarchy, following the schema
presented in Figure 3.4. For that, all optional fields contain the FN identifier,
indicating the device where IdP (FTP or FACA component) is hosted. Things’
and Users’ identifiers additionally contain the FTP’s or FACA’s unique identifier,
which uniquely defines the deployed component that issued their identity.

Managing trust in the proposed CTFTP and FTTTP requires issuing digital
certificates depending on the entity type: CC service, FC service, User, and Thing.
Issued certificates contain general information on the certificate holder, as well
as constraints and certificate validation endpoints specific to each entity type.
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1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 1621897045653 (0x179a098e695)
5 Signature Algorithm: ecdsa-with-SHA256
6 Issuer:
7 countryName = AT
8 organizationName = COSYLab
9 commonName = COSYLab.CCService.TNTA.37a71ae4-14f6-4950-a028-af9f8b9ac5fd

10 Validity
11 Not Before: May 24 22:57:25 2021 GMT
12 Not After : May 24 22:57:25 2022 GMT
13 Subject:
14 countryName = AT
15 organizationName = COSYLab
16 commonName = COSYLab.FCService.FTA.d81f20bf-f644-4ba7-a21f-a508e2b0f435
17 .fde93417-d0ff-4f50-a658-85bfb89dcf07
18 Subject Public Key Info:
19 Public Key Algorithm: id-ecPublicKey, Public-Key: (256 bit)
20 pub:
21 04:bb:52:f7:e6:27:25:fe:20:ed:14:a5:d5:a4:3a:
22 a5:ec:26:de:b5:e2:d5:da:b4:1a:0c:33:1c:7a:8b:
23 ab:b8:c7:98:05:11:9a:8f:fa:ca:82:07:24:44:ef:
24 f6:68:bc:ba:5b:47:f2:ff:89:fd:0d:fb:26:59:a4:
25 9f:fc:94:0d:e7
26 ASN1 OID: prime256v1
27 Signature Algorithm: ecdsa-with-SHA256
28 30:46:02:21:00:e8:c7:82:cd:4a:7c:a5:5f:ff:1a:dd:5f:9d:
29 85:95:45:25:ba:1d:ad:d2:ba:6c:18:54:2f:82:a6:fd:21:5c:
30 63:02:21:00:98:64:91:30:2e:5d:7a:d8:a2:e9:90:5f:44:c9:
31 41:21:11:74:5f:40:98:7c:d1:7e:ea:d7:c3:91:a3:41:79:40

Listing 4.2: Digital certificate content

1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation, Key Encipherment, Certificate Sign,
3 CRL Sign
4 X509v3 Basic Constraints: critical
5 CA:TRUE, pathlen:3
6 X509v3 CRL Distribution Points: critical
7 Full Name:
8 URI:http://ni-bakk.cosy.univie.ac.at/tnta/fog/certificate/list/revoked
9 X509v3 Authority Key Identifier:

10 URI:COSYLab.CCService.TNTA.37a71ae4-14f6-4950-a028-af9f8b9ac5fd
11 serial:01:79:A0:39:75:38

Listing 4.3: TNTA Certificate Extensions

General certificate information is common to all entity types and is presented
in Listing 4.2. Each certificate contains fields required by the X.509 version 3
standard: version, serial number, and signature algorithm (cf. lines 3-5). Based
on the PKI performance evaluation through simulation and the retrieved results
presented in Section 5.2, the signature algorithm ecdsa-with-SHA256 has been
chosen for the developed solution as the best performing option. Issuer and
subject (certificate holder) information describe their country, organization (IoT
platform), and their common name, mapped to the identity naming scheme,
as presented in lines 6-9 and 13-17, respectively. Additionally, the certificates
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contain the subject’s public key (lines 18-26) and the issuer’s digital signature
(lines 27-31). The certificate’s validity period is limited with start and end
moments, as documents in lines 11 and 12, granting trust to the subject for
the specified period.

Specific capabilities for each entity type are described through X.509 version 3
extensions. Applied extensions are:

• Key Usage limits certificate usage to particular use cases,
• Basic Constraints defines if the subject can act as CA and how long the
trust chain can be,

• CRL Distribution Points enable certificate revocation check in the CTFTP,
• Authority Key Identifier defines which certificate should be used to verify
CRL’s digital signature, and

• Authority Information Access specifies the OCSP endpoint in the FTTTP.

As described in Section 3.2.2, CTFTP contains two CC services and FTA as
FTTTP’s gateway, with the TNTA service as the IoT platform’s root CA. For that
reason, TNTA’s certificate extensions shown in Listing 4.3 enable the TNTA’s
public key pair to be applied for digital signing, encryption, and decryption infor-
mation as well as issuing certificates and managing CRL (lines 2-5). Furthermore,
as TNTA issues the digital certificates for FTA instance, it manages CRL for all
FTAs that joined CTFTP and exposes the API for retrieving CRL (lines 6-8), whose
authenticity can be verified using the TNTA’s public key defined in lines 9-11.

FTA represents the bridge between CTFTP and FTTTP. Depending on the
availability of TNTA service, FTA can hold two different types of the digital
certificate (cf. Listing 4.4). If FTA has never been connected to the TNTA, it
uses a self-signed certificate that is valid in the FTTTP, and its revocation is
validated using the OCSP endpoint listed in lines 13-14. Otherwise, FTA obtains
its certificate from TNTA, and its revocation is verified using TNTA’s API, as
enlisted in lines 6-11. In both cases, FTA acts as a root CA for the whole FTTTP
(lines 1-4), allowing FTA’s public key pair to be applied for signing information
(e.g., Tickets or OCSP responses) and issuing digital certificates to other FTTTP
entities.

FACA and FTP also represent FTTTP CAs as formulated in Listing 4.5, allowing
them to issue certificates (lines 1-4) to users and Things, respectively. Since they
exist in the FTTTP and obtain their certificates from FTA, the OCSP endpoint
hosted within FTA and exposed using AMQP protocol is applied for verifying if
their certificate has been revoked, as described in lines 5-6.
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1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation, Certificate Sign
3 X509v3 Basic Constraints: critical
4 CA:TRUE, pathlen:2
5 // When issued by TNTA
6 X509v3 CRL Distribution Points: critical
7 Full Name:
8 URI:http://ni-bakk.cosy.univie.ac.at/tnta/fog/certificate/list/revoked
9 X509v3 Authority Key Identifier:

10 URI:COSYLab.CCService.TNTA.37a71ae4-14f6-4950-a028-af9f8b9ac5fd
11 serial:01:79:A0:39:75:38
12 // When self-signed certificate
13 Authority Information Access: critical
14 OCSP - URI:amqp://fta.rpc.certificate.ocsp

Listing 4.4: FTA certificate extensions

1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation, Certificate Sign
3 X509v3 Basic Constraints: critical
4 CA:TRUE, pathlen:1
5 Authority Information Access: critical
6 OCSP - URI:amqp://fta.rpc.certificate.ocsp

Listing 4.5: FACA and FTP certificate extensions

1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation
3 X509v3 Basic Constraints: critical
4 CA:FALSE
5 Authority Information Access: critical
6 OCSP - URI:amqp://fta.rpc.certificate.ocsp

Listing 4.6: C-A agents certificate extensions

C-A agents, users, and Things represent leaf nodes in the FTTTP. For this
reason, their certificates’ extensions (X509v3 Basic Constraints and Key Usage)
deny them the possibility to issue other certificates. C-A agents’ certificates, as
presented in Listing 4.6, allow C-A agents to digitally sign messages (lines 1-4)
sent to the FTA and FACA (cf. Section 3.4.1), proving their authenticity. Since
C-A agents’ certificates are issued only by FTA, their revocation can be validated
using the already mentioned OCSP endpoint (lines 5-6).

Users’ and Things’ certificates contain the same extension sets, as presented in
Listings 4.7 and 4.8, respectively. Their certificates are applied for digitally signing
information andmutually authenticating with other FTTTP entities. Furthermore,
based on the Data Encipherment in the Key Usage extension, users and Things
can apply their public key for encrypting exchanged information. However, as
presented in line 2 of Listing 4.8, Things can also use their certificate to perform
a key exchange and perform a mutual authentication in the machine-to-machine
communication pattern. Finally, lines 6-7 in both listings define OCSP endpoints
for issuing CAs - FACA for users and FTP for Things.
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1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation, Data Encipherment
3 X509v3 Basic Constraints: critical
4 CA:FALSE
5 Authority Information Access: critical
6 OCSP - URI:amqp://faca.rpc.pip.ocsp

Listing 4.7: User certificate extensions

1 X509v3 Key Usage: critical
2 Digital Signature, Non Repudiation, Data Encipherment, Key Agreement
3 X509v3 Basic Constraints: critical
4 CA:FALSE
5 Authority Information Access: critical
6 OCSP - URI:amqp://ftp.rpc.certificate.ocsp

Listing 4.8: Thing certificate extensions

4.4.2 Trust Bootstrapping & Management

The proposed PKI schema, along with the identity naming scheme and the digital
certificates described in the previous section, allows IoT entities to mutually
authenticate themselves and establish trust relationships.

The first step for distributing trust from CC to FC services is for the FTA to join
CTFTP by obtaining its certificate from TNTA. As presented in Figure 3.6, this
is based on offline-shared secrets: Application Secret and Instance Secret. These
secrets are deployed with the FTA’s docker image and entered in the TNTA’s
database to whitelist the given FTA. Listing 4.9 provides an example for the
whitelisted FTA secrets (lines 2-3) and their SHA-256 hash as presented in line 4.

The first step’s result is FTA’s successful registration at TNTA, meaning that
FTA obtained its certificate and is recognized as trustworthy in the CTFTP. TNTA
stores the information on all registered FTAs in its database, as presented in
Listing 4.10. This information contains FTA’s identity (lines 2-3), its digital certifi-
cate in the Privacy Enhanced Mail (PEM) format (lines 4-21), and the CSR token
(line 22) that has been exchanged during the first step for securely handling
FTA’s secrets. Finally, information on the registered FTA contains timestamps for:
(i) when FTA has registered (line 23) and (ii) when FTA’s certificate has been
revoked (line 24).

1 { "_id" : ObjectId("60b1710f8666c10da0d0c605"),
2 "applicationSecret" : "Rq3by#K0l!lvoanp57hg",
3 "instanceSecret" : "0U^8HLzBS1kNaK1QacHm",
4 "hash" : "880548be6e9465529766eb732fd7c6acaa7a0e4babf0e09fd41f16079779cbc2" }

Listing 4.9: FTA whitelist credentials object
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1 {"_id" : ObjectId("60b1710f8666c10da0d0c607"),
2 "identity" : "COSYLab.FCService.FTA.eb3e3e09-be23-4f2a-96ae-3475211dfe0d
3 .69f0e0a5-d4c6-4cb2-8481-24e489b45d72",
4 "certificate" : "-----BEGIN CERTIFICATE-----
5 \nMIIC3TCCAoKgAwIBAgIGAXm1IabeMAoGCCqGSM49BAMCMGUxRDBCBgNVBAMMO0NP
6 \nU1lMYWIuQ0NTZXJ2aWNlLlROVEEuMzdhNzFhZTQtMTRmNi00OTUwLWEwMjgtYWY5
7 \nZjhiOWFjNWZkMRAwDgYDVQQKDAdDT1NZTGFiMQswCQYDVQQGEwJBVDAeFw0yMTA1
8 \nMjgyMjM5MTJaFw0yMjA1MjgyMjM5MTJaMIGJMWgwZgYDVQQDDF9DT1NZTGFiLkZD
9 \nU2VydmljZS5GVEEuZWIzZTNlMDktYmUyMy00ZjJhLTk2YWUtMzQ3NTIxMWRmZTBk

10 \nLjY5ZjBlMGE1LWQ0YzYtNGNiMi04NDgxLTI0ZTQ4OWI0NWQ3MjEQMA4GA1UECgwH
11 \nQ09TWUxhYjELMAkGA1UEBhMCQVQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAS9
12 \ndAWpNxDGFKSQX9MG0q/W6C9Q8NAb4fqd4aLyEHNZ3o0lDG8FCxPb/JkExmlH14d+
13 \nj9XZ3GMhYp1zxmfz5kkdo4H4MIH1MA4GA1UdDwEB/wQEAwICxDASBgNVHRMBAf8E
14 \nCDAGAQH/AgECMDgGA1UdHwEB/wQuMCwwKqAooCaGJGh0dHA6Ly9uaS1iYWtrLmNv
15 \nc3kudW5pdmllLmFjLmF0L2ZvZzBDBggrBgEFBQcBAQEB/wQ0MDIwMAYIKwYBBQUH
16 \nMAGGJGh0dHA6Ly9uaS1iYWtrLmNvc3kudW5pdmllLmFjLmF0L2ZvZzBQBgNVHSME
17 \nSTBHoT2GO0NPU1lMYWIuQ0NTZXJ2aWNlLlROVEEuMzdhNzFhZTQtMTRmNi00OTUw
18 \nLWEwMjgtYWY5ZjhiOWFjNWZkggYBeaA5dTgwCgYIKoZIzj0EAwIDSQAwRgIhAI2I
19 \nkwogbjVsuklZpUWlCoxUfWYJzT1R4fBolB3xfJP2AiEA84DkIE+3x9RGTGC8rZ8K
20 \nP1Pvc8oUMbRBMGQ+xVSjoys=
21 \n-----END CERTIFICATE-----\n",
22 "csrToken" : "7c79949a-72c5-45c4-9c11-944bbee86821",
23 "registeredAt" : ISODate("2021-05-28T22:39:11.804Z"),
24 "certificateRevokedAt": null}

Listing 4.10: FTA registered certificate object

In the second step, FTA initializes FTTTP and issues certificates to the other
FC services (FACA, FTP or C-A agents) upon their startup. The issued certifi-
cates are stored in FTA’s database following the object structure presented in
Listing 4.11. Similar to TNTA, FTA stores FC service information about its
identity and certificate content (lines 3-16), as well as certificate creation and
revocation timestamps (lines 17-18). Compared to TNTA, FTA is missing the CSR
token field since FC service registration occurs in a local network, often on the
same device. Due to that, certificate issuing message exchanges can be protected
using network isolation mechanisms (e.g., firewalls or AMQP broker AC).

Trust bootstrapping ends with the second step, meaning that all CC and FC
services can establish trust relationships using their certificates. From that point
on, to authenticate themselves, services attach Tickets once accessing another
service API. Tickets are attached as message headers: HTTP in CTFTP and AMQP
in FTTTP, and sent to the receiving service. They represent a JSONWeb Signature
(JWS) token [JBS15], signed with the Ticket issuer’s private key, enabling digital
signature and identity verification at the receiving entity.

The Ticket’s example is provided in Listing 4.12. Ticket header (line 1) and sig-
nature (lines 14-15) contain information on the applied cryptographic operations
to protect the Ticket’s integrity. The Ticket’s body contains general information:
the validity period (lines 9-10) and issuance details (lines 11-12). Furthermore,
the Ticket’s body contains claims for the mutual authentication in services:

131



4 Implementation

1 {
2 "_id" : ObjectId("60a12effeb73dc0400322a9f"),
3 "identity" : "COSYLab.FCService.FTP.a01398ce -1383-4dae-b8b8-59a57341608b
4 .0f403fa7 -505b-45d8-96d6-efe3e8ccaf54",
5 "certificate" : "-----BEGIN CERTIFICATE-----
6 \nMIIB3zCCAYWgAwIBAgIGAXl1n5UFMAoGCCqGSM49BAMCMGoxaDBmBgNVBAMMX0NP
7 \nU1lMYWIuRkNTZXJ2aWNlLkZUQS5hMDEzOThjZS0xMzgzLTRkYWUtYjhiOC01OWE1
8 \nNzM0MTYwOGIuZTcxZTdlM2QtMTU5NC00MGIzLTg0MzEtMjVjODRmYmU5ZWVjMB4X
9 \nDTIxMDUxNjE0NDEwM1oXDTIyMDUxNjE0NDEwM1owajFoMGYGA1UEAwxfQ09TWUxh

10 \nYi5GQ1NlcnZpY2UuRlRQLmEwMTM5OGNlLTEzODMtNGRhZS1iOGI4LTU5YTU3MzQx
11 \nNjA4Yi4wZjQwM2ZhNy01MDViLTQ1ZDgtOTZkNi1lZmUzZThjY2FmNTQwWTATBgcq
12 \nhkjOPQIBBggqhkjOPQMBBwNCAAQKtAkplo8ZYz+/JB/RHWNFBjLW14dTMToHLkQQ
13 \n4nu5DQKt9QNMMOgDnfo8IMOkjQbGQSoBhkbLZTPeZc/RBoc6gQIEwKMTMBEwDwYD
14 \nVR0TBAgwBgEB/wIBADAKBggqhkjOPQQDAgNIADBFAiEAnCT+GR9kqmi/UiY/9bL8
15 \nQYrJ1A/Z4E9zFHfcddJnhHUCIEEYZ6ghj3yLLdPWbAZrJAFySGQ/rqINvl9m53+I
16 \nVbF1\n-----END CERTIFICATE-----\n",
17 "registeredAt" : ISODate("2021-05-16T14:41:03.239Z"),
18 "certificateRevokedAt": null
19 }

Listing 4.11: FC service registered certificate object

1 { "alg": "ES256" }
2 {
3 "ticketType": "REQUEST",
4 "msgHash": "e0541b29df2f66742aded5b613bb12ce6a4cb6762d21c611bc58c7e7154a3399",
5 "functionality": "/certificate/list/revoked",
6 "iss": "COSYLab.FCService.FTA.d81f20bf-f644-4ba7-a21f-a508e2b0f435
7 .fde93417-d0ff-4f50-a658-85bfb89dcf07",
8 "sub": "COSYLab.CCService.TNTA.37a71ae4-14f6-4950-a028-af9f8b9ac5fd",
9 "exp": 1622162596,

10 "nbf": 1622155396,
11 "iat": 1622155396,
12 "jti": "103981d9-6480-4238-8d8a-f3565776465e"
13 }
14 Signature: BDr8HdjnMIDQPf_gD3Encn1EgqnpFnJPDPjPA86MbFWDy6jqdlv5qOJV
15 GbdBgAXBc8uRgGO-dyVrWpbbd0xYeA

Listing 4.12: Ticket example

1. ticketType describes the message type: request or response,
2. msgHash holds the SHA-256 hash of the original message, hence disabling

unauthorized message alterations during transmission,
3. functionality defines the API endpoint for which the Ticket is issued and

valid,
4. iss specifies the Ticket issuer, which digitally signed the Ticket, and
5. sub defines the Ticket’s subject - service for which the Ticket is created.

Upon obtaining the Ticket, the invoked service validates the issuer’s digital
signature, proving the Ticket’s and issuer’s authenticity. Afterwards, the service
checks message integrity using the msgHash. Finally, the service checks if the
ticketType and functionality match the invoked service API and verifies the
Ticket’s time constraints. If all these verifications succeed, the received message
is considered trustworthy and the service proceeds with the message processing.
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The following trust management step considers certificate revocation. The
critical point in this step is the certificate revocation notification to other TND
entities. As described in Section 3.2.2, it is decided to apply CRL in CTFTP and
OCSP in FTTTP. For that reason, for FTAs’ certificate revocation, TNTA provides
an endpoint that allows fetching CRL information. Listing 4.13 gives details on
the CRL object content. Namely, the CRL object contains FTA’s identity and
revoked certificate serial number (line 1-3). Also, minor meta-information about
revocation is provided, indicating that the certificate is no longer valid (line 4)
and the revocation timestamp (line 5).

The applied OCSP approach in FTTTP allows checking certificate revocation
at the CA service that initially issued the certificate. The entity that verifies the
certificate queries the CA service and obtains information on the certificate’s
validity. As presented in Listing 4.14, response to the OCSP query contains
identification data for the certificate holder and the certificate itself (lines 1-3).
Lastly, the OCSP response contains the current certificate validity status (line 4),
which can have the following values: ”good”, ”revoked”, or ”unknown”.

1 { identity: "COSYLab.FCService.FTA.cecfb3fe -702a-4e3f-a09a-d4aa91dc4b86
2 .5cdf3a4a-b524-475e-82aa-3a983dbdfd6e",
3 certificateSerialNumber: 1621897045653,
4 isValid: false,
5 revokedAt: 2021-05-28T17:46:11.438 }

Listing 4.13: CRL object example

1 { identity: "COSYLab.FCService.CCAA.a01398ce -1383-4dae-b8b8-59a57341608b
2 .d5a76c3a-ed4c-4a10-95f1-15bb6629a08d"
3 certificateSerialNumber: 3671399173341
4 status: "revoked" }

Listing 4.14: OCSP response example

4.4.3 End-to-End Security for Things

Based on the design for offloading the asymmetric encryption-required operations
from Things to FNs described in Section 3.2.3, the ”best effort” model for integrat-
ing resource-constrained Things into the proposed trust management schema
has been implemented. For that purpose, based on the best security capabilities
the Thing can support, Thing and FTP establish a direct trust relationship that is
categorized using the security profiles described in Table 3.3. Upon successful
trust establishment, FTP takes over the PKI-related cryptographic operations for
the Thing and supports a mutual authentication between the Thing and other
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IoT network entities. Another feature FTP offers is provisioning CA capabilities
for Things that are capable of performing all required PKI operations. In that
scenario, FTP issues a certificate (cf. Section 4.4.1) to a Thing, and the Thing
manages standalone its trust relationships during its lifecycle.

1 {
2 "_id" : ObjectId("60a164a026eeff51ff67931b"),
3 "registeredId" : "CosySenc_1",
4 "keyExchanged" : true,
5 "securityProfile" : "SYMMETRIC_SECURE_KEY",
6 "keyAlias" : "cosySenc_1_symm_key",
7 "generatedId" : "COSYLab.Thing.Smart Light.a01398ce -1383-4dae-b8b8-59a57341608b
8 .0f403fa7 -505b-45d8-96d6-efe3e8ccaf54
9 .16ccdc94-7229-4724-8570-d8440ca60291",

10 "deviceType" : "Smart Light"
11 }

Listing 4.15: FTP Thing credentials object

Offloading PKI-related operations to FTP requires managing the Things’ cre-
dentials. Credentials management is exposed through the FTP API, resulting in
storing the Thing’s information in the FTP’s database. This information contains
relevant data to define the Thing in the PKI schema (cf. Listing 4.15). First of all,
the Thing’s data object contains information obtained during the trust bootstrap-
ping process depicted in Figure 3.8: line 3 contains the Thing’s default identity,
line 4 determines if trust is established through a key exchange, line 5 defines
the applied security profile, and line 6 documents the pointer to the exchanged
key in FTP’s key storage. PKI-related information contains the Thing’s identity
generated by FTP (lines 7-9) and the Thing’s device type (line 10).

After successfully establishing a direct trust with FTP, theThing relies on FTP’s
computational capabilities to perform PKI-related operations. Messages produced
by the Thing are digitally signed by FTP and forwarded to other IoT entities. To
achieve this, the Thing measures and sends information to FTP, securing it using
security credentials established during the trust bootstrapping process. Upon
receiving a message, FTP checks if the credentials correspond to the Thing and
tries decrypting the message. Once the decryption is finished, FTP generates
JWS containing the original message (cf. Listing 4.16) and meta information
about the Thing so that other TND entities can then prove message’s and Thing’s
authenticity. Finally, FTP returns JWS to the Thing so that the Thing can forward
JWS to other nodes in the TND for further processing.
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1 {
2 "alg": "ES256"
3 }
4 {
5 "functionality": "readDimLevel",
6 "message": "{dimmingLevel: 70}",
7 "securityProfile": "SYMMETRIC_SECURE_KEY",
8 "iss": "COSYLab.FCService.FTP.a01398ce -1383-4dae-b8b8-59a57341608b
9 .0f403fa7 -505b-45d8-96d6-efe3e8ccaf54",

10 "sub": "COSYLab.Thing.Smart Light.a01398ce -1383-4dae-b8b8-59a57341608b
11 .0f403fa7 -505b-45d8-96d6-efe3e8ccaf54
12 .de20d80c-df9d-4344-a29f-dcf9a3e4c795"
13 "exp": 1621196963,
14 "nbf": 1621189763,
15 "iat": 1621189763,
16 "jti": "907d627f-16c6-4851-8684-367ca4dd7336"
17 }
18 Signature: Kpk4jvprYCkhYn7o5VY6_XbGUCd78oGja8n5GyR5IVa5KcUxtcMRf115vQD1
19 Fw6SwhFJx5J7zv9hbdEEMPE2ow

Listing 4.16: FTP signed message example

Listing 4.16 presents JWS example that is issued by FTP to the Thing. Besides
the standard JWS header (lines 1-3) and signature (lines 18-19), the JWS body
containsThing- and trust-relevant information. General JWS data, such as time in-
formation and the unique JWS identifier, are enlisted in lines 13-16. Trust-relevant
information is represented through the issuer’s (FTP’s) and Thing’s identity (lines
8-12), as well as the security profile the Thing uses (line 7). Finally, the original
message information is described through the invoked Thing’s functionality and
the produced message content, as presented in lines 5 and 6, respectively.

4.5 PKI Scalability Simulations

As described in the Section 3.2.2, IdMS’s efficiency and scalability play a significant
role in their adoption in IoT systems. To evaluate the applicability of different
IdM and KMP approaches, a simulation environment has been designed and
implemented. The main goal of the simulations was to evaluate the impact of PKI
solutions on the computational and storage resources, as well as the latency in
an IoT network.

Existing simulation tools offer various features for the evaluation of network
and data security properties of IT systems. Concerning data security, several
simulators offer capabilities for simulating various network attacks. Nessi239

39 http://www.nessi2.de/, last access May 2, 2022
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and Cymulate40 incorporate capabilities for simulating real cyber-attacks based
on detected security gaps. Moreover, in the IoT security area VANETsim41 and
NetSim42 offer simple ways to verify the establishment of security concepts in
IoT systems. However, despite being categorized as data security simulators, all
the simulators mentioned above do not serve the intended purpose for IdM and
KMP performance simulations.

For that reason, the implemented simulator is based on the NS343 network
simulator. NS3 offers capabilities for emulating data exchanges between network
entities in both IP and non-IP based networks, accompanied by a variety of
network protocols like Wi-Fi [EA13] and LTE [Koo11]. Additionally, IdM and
KMP properties relevant to IMDS simulation are integrated through NS3 plugins.
Further implementation details for IdM and KMP properties are provided in
Sections 4.5.1 and 4.5.2.

4.5.1 Simulator Setup

The implemented network simulator plugins enable the creation of a hierarchical
network environment, representing CAs and Things. For that, three types of
network nodes have been modeled:

1. Root Nodes representing the root CA in the system;
2. Intermediate Nodes representing the intermediate CAs between the root

CA and the Things;
3. Leaf Nodes representing resource-constrained Things.
The Root Node represents the root CA in the system, issuing and managing

digital certificates for the Intermediate Nodes. Also, it is assumed that the Root
Node has the most computation power in the network. Intermediate Nodes
manage the complete identity lifecycle for Leaf Nodes by creating, validating,
expiring, and revoking Leaf Nodes’ certificates. The envisioned computation
power of Intermediate Nodes is less than the one of the Root Node, but higher
than the Leaf Nodes’ computation power. Leaf Nodes represent single Things
in the system. They have the least computation power of all the nodes and can
only manage their own certificate. That means that a Leaf Node cannot create,
validate, expire or revoke certificates of other nodes in the network.

40 https://cymulate.com/, last access May 2, 2022
41 https://svs.informatik.uni-hamburg.de/vanet/index.html, last access May 2, 2022
42 https://www.tetcos.com/, last access May 2, 2022
43 https://www.nsnam.org/, last access May 2, 2022
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The identity lifecycles are modeled through the workflows of nodes and KMPs
and predetermined in the simulation through the configuration properties. Lifecy-
cles are configured through JSON-formatted instructions for the simulator to run
the necessary steps to simulate certificate creation, validation, and revocation.
Instructions are defined through built-in Cycles:

• The Create-L Cycle causes the creation of a certificate for the Leaf Nodes;
• The Create-I Cycle creates a certificate for the Intermediate Nodes;
• The Validate Cycle executes the certificate validation procedure for estab-
lishing communication between two Leaf Nodes;

• The Expire-Revoke Cycle revokes digital certificates on the nodes, based on
time or detected security breach.

The steps that need to be executed by a node to complete particular Cycle are
modeled through Tasks. Tasks define the amount of computational, storage, and
time resources required to finish an IdM- and KMP-related operation. Each Task
can have different computation requirements, and these requirements can be
different for each node. For example, creating a certificate takes longer in an
Intermediate Node than in the Root Node. Tasks are separated into two groups:
(1) NodeTask and (2) WaitTask. A NodeTask simulates a workload that is executed
on a node. Each node is featured with a queue containing NodeTasks, which are
processed in a serialized order based on the availability of the processing threads
on the node. A WaitTask represents the operation that is executed on another
node, i.e. Leaf Node requests signing a public key from the Intermediate Node.
If a node starts a request, it waits for the response on that request to complete
the WaitTask. To model the request failures due to the network and processing
timeouts, each WaitTask has a maximum waiting time, upon which expiration
the WaitTask is considered as failed.

Scalability evaluation scenarios are described usingmodels for Cycles and Tasks.
Key factors for describing scenarios, as described in Section 3.2.2, are: (1), the
asymmetric encryption type, (2) the digital certificate type (3), the key exchange
protocol, and (4) the digital certificate revocation schemes. By combining the key
factors, the following simulation scenarios are described:

• Encryption Type: RSA, Certificate Type: X.509, Key Exchange Protocol:
Diffie-Hellman,

• Encryption Type: EC, Certificate Type: X.509, Key Exchange Protocol:
Diffie-Hellman, and

• Encryption Type: EC, Certificate Type: Implicit, Key Exchange Protocol:
Qu-Vanstone.
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Furthermore, support for the evaluation of digital certificate revocation schemes
has been implemented. OCSP works with queries and runs on the Root Node and
Intermediate Nodes. As the standard map’s query complexity is modelled using
Red-Black Trees44, a single data read from a map is expressed as O(log(n)),
where n is the size of the map. In contrast, CRL iterates through a revocation
list of entries to determine if the certificate has been revoked. Therefore, the
time required for CRL-based certificate validation corresponds to the size of the
revocation list n. Revoked certificates are stored as entries consisting of the
revoked certificate serial name, as well as the date of revocation.

The ultimate goal for building the PKI simulator was to evaluate the following
performance metrics while executing different IdM and KMP protocols: CPU
usage, storage consumption, as well as the network transmission and processing
latency. CPU usage of the node is abstracted through the workload percentage
for executing Tasks. Each Task is described via the processing time it requires
to complete. Moreover, for each node, the idle time is measured, i.e. the time
during which no Task is executed. Through that, the workload percentage over
the nodes’ simulated lifetime is calculated for each node as the sum of the work-
loads of the Task processing and idle times, divided by the total simulation
time. Moreover, the processing threads number in each node is considered, so
that the workload of a Task consumes a fraction of CPU usage, expressed as
100%/overall_number_of_threads. Finally, CPU usage is expressed using the
Equation 4.1.

𝐶𝑃𝑈_𝑈𝑠𝑎𝑔𝑒 =
∑𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑡=1
𝑇𝑎𝑠𝑘𝑠(𝑡)

𝑇𝑜𝑡𝑎𝑙_𝑇ℎ𝑟𝑒𝑎𝑑𝑠𝑛𝑜𝑑𝑒

𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
(4.1)

The processing and network transmission latency expresses the required time
for the execution of a single Cycle. For a Cycle to complete, all defined steps
containing Tasks have to be executed. Each NodeTask is configured with the time
it requires to execute, which corresponds to the Task’s processing latency. AWait-
Task involves sending a request to another node and waiting for the response, in-
corporating processing and network transmission latency. Hence, WaitTask’s pro-
cessing latency represents processing latency on another node, while WaitTask’s
network transmission latency is calculated as WaitTask_Execution_Time -
Another_Node_Processing_Latency.

44 https://www.usna.edu/Users/cs/crabbe/SI321/current/red-black/red-black.
html, last access May 2, 2022
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For storage consumption, measurements of the size of the encryption keys,
digital certificates, and identities are traced during and after each Task execution,
so that storage requirements in each node can be simulated concerning IdM
and KMP operations. Furthermore, the occupation of storage influences the
duration of the Task’s execution. Namely, if a node accesses its storage location
to fetch a digital certificate, or to validate a CRL list, the Computation Time (CT)
is calculated using Equation 4.2. According to this formula, CT equals close to
the default Computation Time (CTD) if the memory is barely used, meaning that
finding desired storage location is straightforward. In case that memory is more
used, finding desired storage location is harder. For that reason, CT increases for
the proportion of used storage, which is derived from the Maximum Available
Memory (MAM) and the Current Memory Usage (CMU).

𝐶𝑇 = 𝐶𝑇𝐷 ∗ (1 +
𝐶𝑀𝑈
𝑀𝐴𝑀) (4.2)

4.5.2 Simulator Configuration

The NS3 extensions mentioned in Section 4.5.1 are implemented using the C++
language and integrated into the NS3 engine through plugins. The plugins repre-
sent NS3-applications, embodying nodes in the PKI-based network. Moreover,
both simulation and node configuration are highly customizable so that various
settings of PKI-systems can be simulated by adjusting the simulator configuration
properties. The configuration properties are formatted using the JSON format and
loaded as files into the simulator once the simulation execution starts. For the
NS3 simulator to run, certain events in the system have to be defined, triggering
actions at a given time. These actions incorporate Cycles, executing series of
Tasks. In the developed simulator, Cycles are randomly started on each node,
describing the dynamic nature of IoT network - nodes joining and leaving the
network, validating each others’ certificates, and revoking certificates in case of
a security breach or certificate validity expiration.

Nodes are implemented through three classes: RootNode, INode, and LNode45,
supporting separated operations as described in Section 4.5.1. Still, several con-
figuration properties (cf. Table 4.1) are defined to specify their behavior during

45 For the sake of more understandable configuration properties, the term Parent Node is defined,
describing the higher-level node in PKI system that handles digital certificates for a particular
node (e.g., Root Node for Intermediate Node and Intermediate Node for Leaf Node).
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Table 4.1: Simulator configuration properties - nodes

Property Name Description

max_thread Gives the node a number of simulated threads. It determines how
many NTasks the node can finish in a single loop.

max_storage Defines the maximum storage the node has in bytes.

max_ram Defines the maximum of RAM the node has in bytes.

max_tries Defines the amount of time a WaitTask can be retried before a
Lead Node searches for a new Intermediate Node or the Interme-
diate Node declares that the Root Node does no longer respond.

wtask_seed_lower Defines the lower boundary for selecting random moment when
the node retries a WaitTask in milliseconds.

wtask_seed_upper Defines the upper boundary for selecting random moment when
the node retries a WaitTask in milliseconds.

validate_lower Defines the lower boundary for selecting random moment when
nodes initiate the next validation circle.

validate_upper Defines the upper boundary for selecting random moment when
nodes initiate the next validation circle.

revoke_lower Defines the lower boundary for selecting random moment when
the Root Node revokes randomly chosen Leaf Node.

revoke_upper Defines the upper boundary for selecting random moment when
the Root Node revokes randomly chosen Leaf Node.

Table 4.2: Simulator recipient identifiers

Recipient
identifier

Description

a Send to the affected Leaf Node. The affected node is used in the validation cycle
between a starter leaf node and an affected leaf node.

t Does not send to another node but to this node.

r The Root Node. Used if you need direct communication with the root node from
the leaf node.

s Sends the package back to the node that requested Task execution.

p Sends the package to the parent of the node.
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Table 4.3: Simulator configuration properties - steps

Property Name Description

name Unique name of step.

ram_strain Defines how much heap RAM is used by this step.

time Defines the required duration for the step execution.

check_valid_aff The step checks whether the parent node has a valid certificate.
This is used to stop the cycle if, for example, a CRL entry states
that the certificate has been revoked.

check_revoke_list Adding times required for simulate time required for validating
certificate revocation using CRL or OCSP.

payload.size Defines how big the dead payload should be. The dead payload is
sent with the package but is not used afterwards by PKI opera-
tions, allowing simulations of bigger network packages.

payload.mult_with Defines a multiplier for the dead payload. For example, if a CRL
List is sent it needs to be multiplied with the number of already
revoked certificates.

next_step Defines the next step that follows the current step. It is split
between multiple options. Each option defines nextStep (unique
identifier of the next step in the Cycle) and sendTo properties
(cf. Table 4.2).

the simulation, triggering actions in the NS3 simulator. For the time-triggered
actions, the upper and lower boundary for selecting random moments are config-
ured, resulting in the definition of the upper and lower boundaries for triggering
Validate Cycles and Expire-Revoke Cycles. Furthermore, network transmission
timeouts, as well as processing overloads in nodes are considered. For that
purpose, the upper and lower boundary for requests retransmission and the
maximum number of retransmission before considering Task as failed are added
in configuration properties. Finally, nodes’ computational capabilities are con-
figurable by setting nodes’ processing threads number and memory and storage
capabilities.

Configuration properties for Cycles and Tasks are provided in Table 4.3. Each
Task is defined through its name, memory consumption, and the time it needs
to complete. The Task’s duration is directly mapped to the consumption of
one node’s thread for the given time, therefore indicating CPU usage. Further
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properties define dependencies on PKI-operations in the defined Task’s scope of,
i.e. checking the parent’s node certificate validity and if a certificate is revoked.
Each Task indicates the Cycle’s transition to the next Task the node executes
or which node is the recipient of the Task’s result (in case of a WaitTask). The
configuration property values for recipients are defined in Table 4.2.

Besides the nodes and Tasks configuration, general simulation properties
describing characteristics of IdM and KMP protocols in PKI scope are defined
(cf. Table 4.4). These properties allow defining storage requirements for encryp-
tion keys, digital certificates, and the size of the CRL and OCSP entries. Moreover,
to simulate the confidentiality of the communication links based on the asymmet-
ric encryption-based key distribution (e.g., TLS or DTLS), symmetric encryption
keys re-exchange frequency can be configured, therefore reducing or increasing
time intervals between symmetric keys exchange.

Once nodes, Tasks, IdM, and KMP properties are configured, general properties
on simulation execution are yet to be provided as input arguments for NS3
simulator application. These properties involve: (1) frequency for checking
nodes with the possibility of triggering PKI-related operations, (2) simulation
duration, (3) number of Intermediate and Leaf Nodes in the simulated network,
and (4) latency and bandwidth of the network.

Table 4.4: Simulator configuration properties - global

Property Name Description

name KMP and IdM schema that is being simulated

crl_entry_size Defines the size of a single CRL/OSCP list item.

asym_key_size Defines the size of the asymmetric encryption key.

sym_key_size Defines the size of the symmetric encryption key.

session_key_recheck Defines how long it takes to recheck the validation of already
established secured links between Leaf Nodes using symmetric
encryption keys.

cert_size Defines the size of the digital certificate.
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4.6 Access Control Implementation

As justified in the Section 3.3, the AC deployment, and its application in the scope
of this dissertation aim at utilizing FC services to distribute AC to the edge of the
network, allowing the low latency and integration of context information into
the access policies validation. For that, AC modules are deployed on FNs and can
operate independently on CC availability. Moreover, ABAC-based fine-grained
access policies allow the security policy definition based on IoT users’ generic
attributes, as well as context information sensed in the IoT environment. The
upcoming Sections 4.6.1 - 4.6.3 provide implementation and technical details
considering AC deployment and provisioning.

4.6.1 Access Control Components

The components for AC provisioning, ACAM and FACA, enable deployment of
security policies on FNs while maintaining consistency of the security policies
and the trust relationship between CC- and FC-based services. As illustrated in
Figure 4.1, the ACAM represents the central entity in the AC system, to which all
FACAs are connected. The ACAM’s primary purpose is to maintain a registry of
the deployed FACAs, as well as overall security policies and IoT device types in
the IoT system. Therefore, ACAM provides the initial setup for the FACAs and
the configuration during their operation. Despite its central role in the system, a
constant up-time of the ACAM is not mandatory, since FACAs are designed and
developed to provide AC services independently of the ACAM’s availability.

Maintained registries incorporated in ACAM are stored in the database, as
depicted in Figure 4.3. The DeviceType table holds entries of IoT device types,
specified through the device type name, device vendor (service provider), firmware
versions, and supported functionalities. Device type entries are managed by IoT
system administrators and applied to FACA through the routines for the synchro-
nization of the access policies’ configuration, described in Section 4.6.3. Device
type functionalities are managed through DeviceVersion table since this table
stores updates on IoT device functionalities, accompanied by a version identifier,
timestamp, and a human-readable changelog. IoT functionality changes are stored
in Change table contain the functionalities update for each version. Changes are
then forwarded from ACAM to FACAs during the synchronization of the access
policies’ configuration and applied to access policies deployed in FACAs.
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Figure 4.3: ACAM database schema

The FACA component offers authentication, authorization, and access policy
management services to the components deployed at the IoT network’s edge. It
is deployed on FN and built based on ABAC using XACML (cf. Section 4.6.2). As
discussed in Section 3.3.2, the central endpoint for the user management in the
proposed system is located within the FACA, offering the user authentication
and access rights authorization independently of ACAM’s availability. User
information is stored within the FACA’s database in the subject table presented
in Figure 4.4. This table contains fields for:

• User authentication containing username, password hash, password salt,
and digital certificate;

• User account management that involves information like user role, if the
user account is activated, or if the account is blocked;

• User information that is mapped to attributes and afterward used for au-
thorization, i.e. profession, birth date, handicaps.

Based on the information in the Subject table, the user is able to authenticate
and obtain a session token, which is used to authorize user actions in the IoT
system. To enable ABAC-based AC, an issued session token contains all user’s
attributes and is valid for a predefined period. Attributes are built based on
predefined user attributes (cf. Table 4.5) and user information from table Subject.
Once the session token has expired, it needs to be reissued through the renewed
user authentication. To incorporate user attributes in a session token and to
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Figure 4.4: FACA database schema

protect the session token’s integrity using FACA’s digital signature, JWS is chosen
as a session token format. Once issued, the JWS token can be presented by the
user to FACA while trying to access IoT service. FACA will evaluate if the access
can be granted based on the attributes from the JWS token (cf. Listing 4.17).

The JWS token contains digitally signed information on a user and session. It
is encoded using Base64 [Jos06] and separated into three parts: header, body, and
signature. Listing 4.17 presents the header and body of the JWS token since the
signature contains non-readable information. The JWS token is based on user
attributes presented in Table 4.5 and the identity naming scheme described in
Section 3.2.1. The header is shown in line 1-3, defining the asymmetric key encryp-
tion algorithm used for signing the JWS token - ES256 [Jon15]. Lines 5-10 present
user information which are relevant for IoT service access validation. Lines 11-15
contain identity information on token issues and token holder, holding identities
of FACA component and a user authenticated at FACA. Session token duration
and validity information is listed in lines 16-18, defining details on when the
token expires, since when the token is valid, and when the token is issued. Line
19 presents the JWS token identifier.
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1 {
2 "alg":"ES256"
3 }
4 {
5 "Subject.Identity.Username":"nignjatov",
6 "Subject.Person.Handicap":"["Shortsightedness"]",
7 "Subject.Work.Profession":"["Research Assistant"]",
8 "Subject.Work.Organization":"["University of Vienna"]",
9 "Subject.Identity.Role":"Owner",

10 "Subject.Person.Age":29,
11 "iss":"COSYLab.FCService.FACA.20769199-d9dc-4f98-aae3-f81388636852.
12 66f2019e-93d3-4940-93f4-e6b6615ca0fd",
13 "sub":"COSYLab.User.20769199-d9dc-4f98-aae3-f81388636852.
14 66f2019e-93d3-4940-93f4-e6b6615ca0fd.
15 fd1d7b8c -4368-4a82-acc4-88728d06b661",
16 "exp":1598456159,
17 "nbf":1598448959,
18 "iat":1598448959,
19 "jti":"f2624a44-be0f-48ca-affa-03f7d0f4c4ab"
20 }

Listing 4.17: JWS session token example

1 String id = "b69d68bf-8f25-4334-af21-dfb92e87237a";
2 String name = "Subject.Identity.Role";
3 AccessRuleType accessRuleType = AccessRuleType.STRING;
4 AttributeConstraint constraint = new AttributeConstraint();
5 constraint.setAllowedValues(["OWNER","ADMINISTRATOR","DEVICE_MANAGER","GUEST"]);

Listing 4.18: Role attribute value configuration

Besides user management, FACA enables management support for access
policies. FACA manages information on registered IoT device types and their
functionalities, as presented in the database tables in Figure 4.4. This informa-
tion is initially retrieved from ACAM and updated through the synchroniza-
tion procedures for the access policy configuration described in Section 4.6.3.
Fields in the AccessPolicy table affected by this synchronization procedures are:
(1) enabled, mapping presence of the IoT device’s functionality in the configu-
ration defined in ACAM, and (2) Functionality that tracks IoT device’s func-
tionality name across multiple IoT device’s configuration versions in ACAM.
Furthermore, FACA-enabled access policy management relies on IoT device func-
tionalities as the PA. Afterwards, attributes and their expected values are bound
to PA for a successful IoT device functionality authorization. Attributes present
in access policies are configured through AttributeConfiguration table. This
table contains constraints on attributes that have to be respected for the attribute
used in any access policy. Constraints depend on the attribute value’s data type
(number, text, enumeration) and access rule type for the selected data type, as
depicted in Section 4.6.2. An attribute constraint example is presented in Listing
4.18, declaring attribute constraint identifier at line 1, attribute name at line 2,
access rule type at line 3, and attribute’s list of allowed values in lines 4 and 5.
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Table 4.5: User attributes

Attributes Name Description

Subject.Identity.Username User’s account name

Subject.Identity.Role User’s role

Subject.Person.Age User’s age

Subject.Person.Handicap User’s handicap

Subject.Work.Organization User’s company

Subject.Work.Profession User’s profession

4.6.2 Attribute-Based Access Policies Management

The implementation of fine-grained access policies involves the application of
ABAC and XACML standards. The utilization of ABAC enables the usage of
generic properties as input for the access policy validation. Therefore, the IoT
service access authorization implemented in the scope of this dissertation relies
on attributes from two sources: (1) user information and (2) context information
(cf. Section 4.7). To classify attributes according to their sources, dot-delimited
attribute naming schema is used. The first two parts of each attribute name
indicate the attribute source class and subclass, such as Subject.Identity or Con-
text.Behavior, while further attribute name parts are custom to the components
that define attributes, i.e. FACA, BCAA, LCAA, and CCAA. Since FACA manages
user information, all user-related attributes implemented in the proposed solution
are managed by FACA as given in Table 4.5. Further context-related attributes
are documented in Sections 4.7.1 to 4.7.2, based on localization, user behavior,
and system connectivity context information, respectively.

Access policy management and enforcement in FACA is highly influenced by
the usage of XACML as the underlying standard, affecting the modeling and
application of access policies. This enforces the decomposition of the FACA
services into four modules: (1) PIP offers services required for management
of the user attributes, IoT devices functionalities supported by IoT devices, as
well as handling the session management (cf. Section 4.6.1), (2) PAP enables the
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definition and management of access policies, (3) PDP evaluates them in order
to grant or deny access to IoT devices, and (4) PEP defines an interface required
for the authorization of access requests and propagates them further to PDP.
The services offered by these modules are exposed through external HTTP and
AMQP interfaces in the FACA, providing other system components the required
AC functionalities.

The access policy management implemented in PAP offers CRUD operations on
access policies and access rules. The tables access_rule and access_policy
presented in Figure 4.4 utilize IoT device functionalities and attributes configura-
tion as an input for building access policies. Access policies incorporate one or
multiple access rules and are bound to PA. Furthermore, access policies grouping
around the principles presented in Section 3.3.1 are implemented through the
access policy priority, which describes the importance of an access policy, i.e. if
an access policy can override the authorization decision of other access policy
in case of an authorization decision conflict. Priorities (0 is the most important)
represent access policy grouping principles as follows:

• The value 0 represents an access policy bound directly to the particular IoT
device functionality,

• The value 1 represents an access policy bound to all functionalities of the
particular IoT device,

• The value 2 represents an access policy bound directly to the particular
functionality of all IoT device with same device type, and

• The value 3 represents an access policy bound to all functionalities of all
IoT devices with the same device type.

Access rules types define attribute data types and possible expressions that
PDP can evaluate during the authorization. The implemented access rule types
are:

• The type NUMERIC enables comparison of number-based attribute values
and expected access policy values;

• The type STRING enables comparison of text-based attribute values and
expected access policy values;

• The type BOOLEAN enables validation if attribute value is true or false;
• The type COMPOSITE allows binding other access rules through logical
operators, leading to access rules nesting and complex access policies,
consisting of multiple access rules.
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Listing 4.19 presents an access policy stored in the FACA’s database in JSON
format. As shown in lines 2-5, the access policy contains its unique database
identifier, the access policy priority, and PA defined through device name and
function, respectively. Furthermore, lines 6-28 illustrate access rules for the
access policy, allowing access to the IoT service for a person that is older than
18 and studies at the university. Access is permitted through three access rules
incorporated into a COMPOSITE type (line 7) and bound using the AND operator
(line 8), whereas each rule defines its type, attribute name, operator, and expected
value.

PDP implements the authorization logic based on access rule types. This logic
is embedded into evaluation expressions which are bound to the each access rule.
An expression is defined through: (1) evaluation operator (e.g., equals, contains,
or greater than), (2) name of the attribute for which the value will be evaluated,
and (3) expected attribute value. Evaluation operators are implemented based
on the access rule type. As an example, Listing 4.20 presents an enumerated
operators list for the text-based access rules.

1 {
2 "_id" : ObjectId("5f45050898a6b90ed03636ba"),
3 "deviceName" : "Living Room Light Sensor",
4 "function" : "readValue",
5 "priority" : 0,
6 "rule" : {
7 "accessRuleType" : "COMPOSITE",
8 "operator" : "AND",
9 "accessRules" : [

10 {
11 "accessRuleType" : "NUMERIC",
12 "expectedValue" : 18.0,
13 "attributeName" : "Subject.Person.Age",
14 "operator" : "GREATER_THAN",
15 },
16 {
17 "attributeName" : "Subject.Work.Organization",
18 "expectedValue" : "University",
19 "operator" : "CONTAINS",
20 "accessRuleType" : "STRING"
21 },
22 {
23 "attributeName" : "Subject.Work.Profession",
24 "expectedValue" : "Student",
25 "operator" : "EQUALS",
26 "accessRuleType" : "STRING"
27 }
28 ],
29 }
30 }

Listing 4.19: Access policy example
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1 public enum StringRelationalOperator {
2 EQUALS,
3 EQUALS_IGNORE_CASE,
4 CONTAINS,
5 CONTAINS_IGNORE_CASE ,
6 NOT_CONTAINS,
7 NOT_CONTAINS_IGNORE_CASE ,
8 STARTS_WITH,
9 STARTS_WITH_IGNORE_CASE ,

10 ENDS_WITH,
11 ENDS_WITH_IGNORE_CASE
12 }

Listing 4.20: Text access rule operators

Once the authorization starts, PDP executes the expression evaluation by
presenting a session token to the access rule evaluator. Based on the predefined
attribute name, the evaluator extracts the attribute value and compares it with the
expected attribute value based on the configured operator. Finally, the evaluator
returns the true or false value, indicating if the authorization has been successful.
The evaluator for text-based access rules is presented in Listing 4.21. Based
on the selected operator at line 3, the switch-case selects the required branch
(e.g., at line 7 or line 9) and compares expected and provided attribute value.

1 boolean evaluateStringExpression(String expectedVal, String controlledVal,
2 StringRelationalOperator operator) {
3 switch (operator) {
4 case EQUALS:
5 return (expectedVal.equals(controlledVal)) ? true : false;
6 case EQUALS_IGNORE_CASE:
7 return (expectedVal.equalsIgnoreCase(controlledVal)) ? true : false;
8 case CONTAINS:
9 return (expectedVal.contains(controlledVal)) ? true : false;

10 case CONTAINS_IGNORE_CASE:
11 return (expectedVal.toLowerCase().contains(controlledVal.toLowerCase()))
12 ? true : false;
13 case NOT_CONTAINS:
14 return (!expectedVal.contains(controlledVal)) ? true : false;
15 case NOT_CONTAINS_IGNORE_CASE:
16 return (!expectedVal.toLowerCase().contains(controlledVal.toLowerCase()))
17 ? true : false;
18 case STARTS_WITH:
19 return (controlledVal.startsWith(expectedVal)) ? true : false;
20 case STARTS_WITH_IGNORE_CASE:
21 return (controlledVal.toLowerCase().startsWith(expectedVal.toLowerCase()))
22 ? true : false;
23 case ENDS_WITH:
24 return (controlledVal.endsWith(expectedVal)) ? true : false;
25 case ENDS_WITH_IGNORE_CASE:
26 return (controlledVal.toLowerCase().endsWith(expectedVal.toLowerCase()))
27 ? true : false;
28 default:
29 return false;
30 }
31 }

Listing 4.21: Text access rule expression evaluation

150



4.6 Access Control Implementation

4.6.3 Access Control Distribution

The AC service distribution in this dissertation’s scope is enabled through the
deployment of FACA components on FNs. To achieve that, the trustworthi-
ness of the deployed FACA components and security policy consistency have
to be ensured, which is achieved through two approaches. The first approach is
based on the overall TN provisioning principles for FC services, as described in
Section 4.4.2. The application of these principles allows the authentication of
FACA instances within the COSYLab. Therefore, services of FACA (e.g., session
token issuance or access authorization) can be uniquely identified and validated
for their trustworthiness.

The second approach focuses on ensuring the trust of FACA’s authorization
capabilities through the configuration of access policies from ACAM. As docu-
mented in Section 3.3.2, FACA is capable of deriving local access policies based
on the access policy configuration provided by ACAM and adapting its access
policies during the system’s runtime, allowing the possibility of disabling access
to IoT services in case of a security breach. This is achieved through whitelisting
of Things’ functionalities to enable or disable the provisioning of IoT services
through FACA.

Since AC management in FACA relies heavily on the Things’ functionality
as PA, synchronization techniques for the distribution of the supported Things’
functionalities had to be employed. In order to tackle this requirement, the
solution relies on the firmware life-cycle versioning of the individual Things,
offering a mapping of functionalities based on a particular firmware installed on
them. Enlisted functionalities (e.g., turn on the light or read room’s temperature)
are exposed to the IoT system’s administrators for adding, updating, or removing
a particular functionality. Once updated, functionalities are stored in ACAM’s
database in the tables device_type, functionality, functionality_change,
and device_version (cf. Figure 4.3) and exposed to FACAs through the REST
interface. Afterwards, the Things’ functionalities and firmware versions are
retrieved by FACAs, resulting in adjusting the predefined access policies in the
FACA and managing the particular IoT service to the end-users.

FACA fetches the access policy configuration from ACAM, which contains the
whitelisted Things’ functionalities. Fetching configuration occurs periodically
(e.g., every 3 hours) or event-based (e.g., in case of suspicious behavior in IoT
environment or acknowledged security breach). The implicit requirement for
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access policy configuration synchronization is the possibility for FACA to establish
the network connection towards ACAM. Once FACA retrieves the access policy
configuration and detects a new firmware version for one or multiple Things,
it aligns the entries in the device_type and functionality database tables
(cf. Figure 4.4). Through the alignment, the functionalities for the particular
device type can be enabled, disabled, or updated. Since the functionality
table’s entries are used as PA in access_policy database table, any changes
of functionalities directly affect FACA’s access policies, therefore enabling or
disabling access to IoT services.

Since the alignment of access policies has to keep track of changes imposed by
the configuration and functionalities supported by a particular firmware version
on the Thing, a simple versioning system for functionalities is designed and
developed. The firmware version is described through a version number, a log of
changes provided in the versions, as well as a timestamp, allowing to track the
history of versions. Moreover, each version describes changes that are enforced
on the services of the Thing. These changes are documented through actions
that can be separated into:

1. CREATE for creation of a new service of a Thing;
2. CHANGE for update on the existing service;
3. REMOVE for deletion of the existing service.
Listing 4.22 provides an example for the access policies configuration. In line 1

the unique identifier of the Thing’s device type is given, followed by information
of the firmware in lines 3-8. Available functionalities are coded in lines 9-19.

1 "deviceId": "Smart Light",
2 "firmware": {
3 "version": {
4 "versionNumber": "1.1",
5 "timestamp": 1555982664905,
6 "changelog": "Added change color.
7 Renamed turnOn function to turnOnLight."
8 },
9 "functionalities": [{

10 "machineName": "turnOnLight",
11 "humanReadableName": "Turn on the light",
12 "action": "CHANGE",
13 "changeFrom": "turnOn"
14 },
15 {
16 "machineName": "changeColor",
17 "humanReadableName": "Change light's color",
18 "action": "CREATE"
19 }]
20 }

Listing 4.22: Access policy configuration version example
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4.7 Context-Aware Access Control

The designed C-A AC solution developed in this dissertation’s scope allows the
integration of context information and its utilization in security policies, as argued
in Section 3.4. Designed interfaces and data models allow the straightforward
extension of AC mechanisms through various C-A agents. This leads to the
FACA’s capability to collect and manage context information and offer users the
possibility to create AC policies based on C-A attributes and utilize them during
the authorization. The following Sections 4.7.1 - 4.7.3 provide implementation
details on the C-A AC extensions, enabling the integration of context information
into the AC mechanisms described in Section 4.6 using C-A AC API.

4.7.1 Context-Awareness Components Integration

Context information exchange between C-A agents and FACA occurs through
the C-A AC API, as described in Section 3.4.1. Using C-A AC API, C-A agents can
register themselves, configure context information they observe as C-A attributes,
and distribute C-A attribute values during their lifecycle. This section describes
implementation details concerning the C-A AC API message exchanges during
the C-A agent’s operational phase, as illustrated in Figure 3.11.

The first step in the C-A agent’s operational phase is the C-A attributes regis-
tration (cf. Listing 4.23), describing the context information C-A agent will be
delivering, as well as how FACA can apply it. Thereby contextType defines
the type of context the C-A agent supports (line 3). The C-A agent’s attribute
value publishing strategy is defined through the field distributionPattern
(line 5), valueMaximumTimePeriodSeconds expresses the maximum time dis-
tance allowed to occur between two attribute value notifications (line 6), and
attributeValueValiditySeconds (line 7) describes for how many seconds
FACA should consider a notified value valid. Based on the registered attributes,
FACA allows security policy creation. For that purpose, C-A agents register a
unique attributeName (line 2), accessRuleType (line 4) stating which access
rule type will the attribute support (cf. Section 4.6.2), and the range in which
certainty on notified attribute values will reside (lines 8-11). Finally, to enable
synchronous attribute values retrieval during the authorization, the C-A agent can
register the AMQP route using the attributeEvaluationRoute field, which
FACA invokes during the authorization of critical operations (cf. Section 4.7.3).
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1 {
2 "attributeName":"Context.Connectivity.ConnectedToCloud",
3 "contextType":"CONNECTIVITY",
4 "accessRuleType":"BOOLEAN",
5 "distributionPattern":"PERIODIC",
6 "valueMaximumTimePeriodSeconds":10,
7 "attributeValueValiditySeconds":100,
8 "certaintyRange":{
9 "minimum":0.0,

10 "maximum":100.0
11 },
12 "attributeEvaluationRoute":null
13 }

Listing 4.23: C-A attribute registration

1 {
2 "createAttributes":[
3 {
4 "attributeName":"Context.Connectivity.PingOK",
5 "contextType":"CONNECTIVITY",
6 "accessRuleType":"BOOLEAN",
7 "constraint":null,
8 "distributionPattern":"PERIODIC",
9 "valueMaximumTimePeriodSeconds":10,

10 "attributeValueValiditySeconds":100,
11 "certaintyRange":{
12 "minimum":0.0,
13 "maximum":100.0
14 },
15 "attributeEvaluationRoute":null
16 }
17 ],
18 "updateAttributes":[
19 {
20 "oldAttributeName":"Context.Connectivity.PingOK",
21 "newAttributeName":"Context.Connectivity.IsPingOK"
22 }
23 ],
24 "deleteAttributes":[
25 "Context.Connectivity.IsPingOK"
26 ]
27 }

Listing 4.24: C-A attribute configuration update

1 {
2 "attributeName":"Context.Connectivity.ConnectedToCloud",
3 "contextType":"CONNECTIVITY",
4 "attributeValue":"true",
5 "certainty":80.0,
6 "timestamp":[2021,3,30,18,57,35,834955400]
7 }

Listing 4.25: C-A attribute value notification
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Furthermore, the C-A agent can update its attributes configuration anytime dur-
ing its lifecycle once it detects new context information that might be
usable for AC mechanisms. For that purpose, the C-A agent updates the
C-A attributes configuration in FACA (cf. Listing 4.24). The configuration
update can occur through three different operations: create, update (rename), and
delete. The create operation (lines 2-17) follows the same approach as the C-A
attributes registration described in the previous paragraph. The update operation
presented in lines 18-23 allows changing registered attributeName, whereas
delete operation (lines 24-26) completely removes C-A attribute configuration.
Still, update and delete operations affect the security policy and notified attribute
values management, using the following strategies:

• Renaming the C-A attribute results in aligning all access policies containing
access rules with the renamed C-A attribute to use the new attribute name.
All notified attribute values are updated to the new attribute name.

• Deleting the C-A attribute leads to disabling all access policies containing
that C-A attribute.

Once the C-A attribute is configured at FACA, the C-A agent sends attribute
value notifications as presented in Listing 4.25. Each value notification identifies
the targeted C-A attribute through attributeName and contextType fields
(lines 2-3). The rest of the notification describes the C-A attribute value through
its certainty, sampling moment, and value, contained in the fields certainty,
timestamp, and attributeValue (lines 4-6), respectively.

An essential aspect of the C-A AC API is the attributeName fields structure.
Namely, to support the detection and revocation of multiple context information
sources and reduce the C-A attribute management overhead, attribute names
(cf. Table 4.6) contain static and dynamic parts, separated by the character ”?”.
C-A agents register only the attribute name’s static part, which declares the
general context information type it provides. Still, the dynamic part is used in
attribute value notifications to identify which IoT entity is reflected through the
context information. For example, BCAA monitors present users’ behavior in
IoT systems. However, the number of users can be highly dynamic due to the
users joining and leaving the network. Thus, BCAA configures the C-A attribute
named "Context.Behavior.Pattern.Device.Single.ControlBased", and
notified C-A attribute values are using the attribute name "Context.Behavior.
Pattern.Device.Single.ControlBased?userId=nignjatov", stating that
the notified value is for the behavior pattern analysis of the user with user-
name ”nignjatov”. This allows BCAA to configure the C-A attribute only once
and its configuration can be reused for all users that are using the IoT system.
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Table 4.6: C-A attributes

Attribute Name Description

Context.Connectivity.ConnectedToCloud Indication for successful connec-
tion to Cloud Server.

Context.Behavior.Pattern.Device.Sin-
gle.ControlBased

User behaviour pattern based on
a single Thing control actions.

Context.Behavior.Pattern.Device.Sin-
gle.MonitoringBased

User behaviour pattern based on
notified sensor data.

Context.Behavior.Pattern.De-
vice.Group.ControlBased

User behaviour pattern based on
a correlated control actions from
multiple, grouped Things.

Context.Location.Position.User User’s current position in a
Smart Home.

4.7.2 Context-Awareness Attributes Management

The integration of context information in access policies through the C-A AC API
requires the extension of the FACA’s functionalities, enabling context information
usage in defining access policies and applying them during the authorization
process. Firstly, FACA’s database schema, shown in Figure 4.4, is extended with
two new tables, as presented in the Figure 4.5.

The table context_attribute_configuration stores information on con-
text attributes registered by the C-A agents using Registration or Configuration
Update messages (cf. Section 4.7.1). PAP then uses this information to present
them to the users and enables the definition of context-based access policies. The
field attributeName serves as a key for database entities and uniquely identifies
context information. Moreover, this field is the central point for matching notified
attribute values and attributes defined in access policies, enabling the context-
based authorization. The fields contextType and certaintyRange further describe
the registered C-A attribute. The first field specifies the type of context the C-A
agent collects (e.g., location or behavior). QoS aspects are described through the
second field, defining the ranges for the certainty C-A agent will attach to the
notified context attribute values, i.e. 0-100%.
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Figure 4.5: C-A attributes management database schema

The fields distributionPattern, valueMaximumTimePeriodSeconds, and
attributeValueValiditySeconds are applied for determining if the C-A agent
is healthy and to evaluate if the notified attribute value is still valid and should
be used during the authorization. In cases when the context information is pe-
riodically distributed, FACA distinguishes if the C-A agent sends the attribute
value notifications often enough by checking if the value notification arrived in
a time difference smaller than valueMaximumTimePeriodSeconds. Moreover,
attributeValueValiditySeconds field is used for validating the notified val-
ues’ up-to-dateness by comparing the notification’s arrival timestamp and the
current system time. If the attribute’s configured number of seconds is surpassed,
the notified value will be discarded and not used during the authorization.

Finally, the fields accessRuleType and attributeEvaluationRoute impact
the access policy definition and validation procedures. The access rule type ad-
heres to the types defined in Section 4.6.2, specifying the type of operations and
operators against which attribute values can be validated during the authoriza-
tion. Since the notified context attribute values can be timely-obsolete with
regard to the criticality of the requested operation, as described in Section 3.4.1,
C-A attribute values can be fetched directly for C-A agent during the authorization
using the API endpoint specified in attributeEvaluationRoute, as described
in Section 4.7.3. This API endpoint corresponds to the AMQP queue on which
the C-A agent exchanges messages during its lifecycle.

Context-based access policies are defined based on the information in the
context_attribute_configuration table. These policies are stored in FACA’s
database according to the database schema in Figure 4.4. Listing 4.26 provides an
example of such an access policy, where the context-related aspects are contained
between lines 10 and 16. The rest of the access policy context conceptually does
not differ from the one described in Section 4.6.2. The context-based access rule
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(line 11) contains two context aspects: value-related and QoS-related. The value-
related aspect is documented in lines 12-16, specifying the access rule type,
expected value, and attribute name. The QoS aspect of the access policy is
described in the expectedCertaintyRule object in lines 17-21, enabling the
definition of the numeric access rule, specifying the certainty threshold that FACA
uses to evaluate if the notified attribute value is valid or not. Lastly, in critical
operations, the user can mark the context access rule as time-critical, which will
enforce fetching C-A attribute value from the C-A agent during the authorization.

1 {
2 "_id" : ObjectId("6067328fcdb7ee1311efd3b0"),
3 "deviceName" : "Living Room Light",
4 "cloudDeviceTypeId" : "5f8600e103031223072051cd",
5 "deviceTypeName" : "Phillips Hue Color",
6 "function" : "turnOn",
7 "rule" : {
8 "accessRuleType" : "COMPOSITE",
9 "accessRules" : [

10 {
11 "accessRuleType" : "CONTEXT",
12 "accessRule" : {
13 "attributeName" : "Context.Connectivity.ConnectedToCloud",
14 "operator" : "IS_TRUE",
15 "accessRuleType" : "BOOLEAN"
16 },
17 "expectedCertaintyRule" : {
18 "accessRuleType" : "NUMERIC",
19 "expectedValue" : 50.0,
20 "operator" : "GREATER_THAN"
21 },
22 "isAttributeValueTimeCritical" : true
23 },
24 {
25 "attributeName" : "Subject.Identity.Username",
26 "expectedValue" : "nignjatov",
27 "operator" : "EQUALS",
28 "accessRuleType" : "STRING"
29 }
30 ],
31 "operator" : "AND"
32 },
33 "priority" : 0,
34 "enabled" : true
35 }

Listing 4.26: C-A access policy definition

Once the access policies containing context-related attributes are configured, it
is essential to manage the attribute value notifications from the C-A agents. FACA
stores notified attribute values in the context_attribute_value table. In this
table, the notified attribute name, attribute value pairs along with the value’s
certainty and the notification’s timestamp are stored in the fields attributeName,
attributeValue, certainty, and timestamp, respectively. Afterwards, these
fields are used for the authorization purposes, as described in this section and
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Section 4.7.3. The field isCurrent marks the last notified value for the particular
attribute. Even though the last notified value can be deducted using timestamps,
the isCurrent field simplifies database lookup procedures for finding attribute
value entries, reducing the processing latency during the authorization.

4.7.3 Context-Awareness-based Authorization

Authorization involving C-A attributes contains multiple steps, which increases
its complexity in attributes retrieval compared to the authorization based just
on user attributes (cf. Figure 4.5). In contrast to collecting attribute values just
from the session token in cases when only user attributes are used in an access
policy, PDP collects C-A attribute values from multiple sources. Therefore, PDP
iterates through the access policy and extracts all the attributes and their access
rules that are contained within, checks each attribute’s type, and fetches its value
as presented in Figure 3.12. Having collected all attribute values, PDP forwards
them to the XACML engine for evaluation against the predefined access rules.

The attribute value collection and integration of C-A attributes into the
authorization process is presented as pseudo-code in Listing 4.27. In the first
stage (lines 1-6), PDP initializes the attribute values list and splits attributes in
the access policy to user-related and context-related, whereby context-related
ones are separated into critical and noncritical. Afterwards, PDP extracts the user
attribute values from the session token if any user-related attribute is found in
the access policy as presented in lines 9-11. Subsequently, if the access policy
contains noncritical C-A attributes, they are fetched from the database described
in Section 4.7.2 as documented in lines 13-17.

In the next stage, PDP checks if critical C-A attributes are in the policy and
processes them so that they are grouped into requests sent to C-A agents. Namely,
to reduce the number of requests sent to C-A agents and introduced network
latency, critical C-A attributes are grouped around common attribute evalu-
ation routes (lines 20-28). This results in listing all C-A attributes with the
same configurated evaluation route to be sent in the same request towards the
C-A agent. Once all C-A requests are created, they are sent to the C-A agents, and
incoming responses are stored in the attribute values list (lines 30-33). Finally, all
collected attribute values are forwarded to the XACML engine as presented in
line 36, which authorizes the user’s access request based on the predefined access
policy and collected attribute values.
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1 List attrValues = createEmptyList();
2 // Split attributes from rules in access policy
3 List userAttrs = extractUserAttributesFromPolicy(policy);
4 List contextAttrs = extractContextAttributesFromPolicy(policy);
5 List critContextAttrs = extractCriticalContextAttributes(contextAttrs);
6 List nonCritContextAttrs = extractNotCriticalContextAttributes(contextAttrs);
7
8 // extract user attribute values from session token
9 if(userAttributes.notEmpty()) {

10 attrValues.add(extractUserAttributesFromJWSToken());
11 }
12 // fetch non-critical context attribute values from database
13 if(nonCriticalContextAttributes.notEmpty()) {
14 foreach(ncAttr in nonCriticalContextAttributes) {
15 attrValues.add(fetchCAAttrValueFromDB(ncAttr));
16 }
17 }
18 if(criticalContextAttributes.notEmpty()) {
19 // create attribute value evaluation requests for C-A agents
20 Map caAgentsRequests = createEmptyMap();
21 foreach(cAttr in criticalContextAttributes) {
22 String evalAttrRoute = fetchEvalAttrRouterFromDBConfig(cAttr);
23 if(caAgentsRequests.contains(evalAttrRoute) {
24 caAgentsRequests.addRequestItemToRequestsMap(evalAttrRoute,cAttr);
25 } else {
26 caAgentsReqests.createNewRequest(evalAttrRoute,cAttr);
27 }
28 }
29 // fetch critical attribute values from C-A agents
30 foreach(req in caAgentsRequests) {
31 attrValues.add(
32 amqpClient.fetchAttrValueFromCAAgent(req.evalAttrRoute, req.cAttr));
33 }
34 }
35 // forward access policy and attribute value to XACML for access validation
36 return evaluateAccessPolicy(policyData, attrValues);

Listing 4.27: Authorization with C-A attributes
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Evaluation

The implemented COSYLab framework (cf. Section 4) enables TN, AC, and C-A
services execution on locally deployed FNs. In order to validate the framework’s
capabilities and performances, verification scenarios are focused on executing
functional and performance evaluations. Evaluations are executed using the
COSYLab, relying on the Smart Home scenario described in Section 4.1.

Verification scenarios are divided into the following sections: (1) FC and CC
services deployment presented in Section 5.1, (2) PKI performance and efficiency
evaluation presented in Section 5.2, (3) TN services deployment presented in
Section 5.3, (4) AC services deployment presented in Section 5.4, and (5) Integra-
tion of C-A in AC services presented in Section 5.5. Beside these scenarios, the
framework’s error-handling and recovery procedures concerning the deployed
services are evaluated in Section 5.6.

5.1 Fog Services Deployment
Relying on the computational resources of the deployed FNs in IoT environments
for the deployment of security services is one of the primary premises for this
dissertation. In order to evaluate the feasibility and performances of such an
approach, COSYLab CC and FC components are deployed on the Cloud Server,
as well as FNs with different computational and storage capabilities, as described
in Section 4.1. The evaluation consists of observing the requirements for the
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COSYLab components deployment through five aspects: (1) services’ installation
image size in the Docker container, (2) service startup time, (3) multi-service
deployment on a single FN, (4) CPU consumption, and (5) memory consumption
during the services execution.

Docker-based CC and FC service deployment requires downloading and
installing the Docker images containing executables for the developed com-
ponents. The developed services (cf. Figure 4.1) and accompanying open-source
servers and brokers described in Section 4.1, are deployed using scripts provided
in Appendix A. Downloaded Docker images are evaluated to determine stor-
age requirements for hosting COSYLab on Cloud Server and FNs. To achieve
that, downloaded image sizes are measured after their installation on the Cloud
Server and Raspberry Pi 4 FN device using the docker image ls command, and
presented in Table 5.1. Open-source services required for COSYLab operations
between FC components (AMQP and MongoDB server) are presented as the first
two images, followed by the image size of the developed services. Since the
developed FC services follow the same Spring Boot-based technology stack, their
images have similar sizes, from 244 MB for the Fog Controller up to 297 MB for
FACA. Adding all provided image sizes results in 1991 MB of storage required for
the initial FC services on a single device. This value increases during the execution
of the services since all of them store data in MongoDB. Furthermore, achiev-
ing components fail-safety through redundancy increases the storage demand
according to the number of the deployed services.

Table 5.1: Docker container image sizes for FC components

Service name Docker image name Image size

AMQP broker rabbitmq 217 MB
Database server mongo 424 MB
Fog Controller ignjatov90/fog_ctrl 244 MB
FTA ignjatov90/fog_fta 270 MB
FACA ignjatov90/fog_faca 297 MB
CCAA ignjatov90/fog_ccaa 269 MB
FTP ignjatov90/fog_ftp 270 MB
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Table 5.2: Docker container image sizes for CC components

Service name Docker image name Image size

Cloud proxy server nginx 133 MB
Database server mongo 449 MB
Cloud configuration
server

ignjatov90/cosylab-cloud-config-
server

334 MB

Cloud discovery
server

ignjatov90/cosylab-cloud-discovery-
server

335 MB

TNTA ignjatov90/cosylab-cloud-tnta 338 MB
ACAM ignjatov90/cosylab-cloud-acam 340 MB
CSWA ignjatov90/cosylab-cloud-cswa 134 MB

Deployed CC services’ image sizes are presented in the Table 5.2. Compared to
the FC services, CC services heavily rely on HTTP communication, resulting in
the utilization of Nginx46 servers instead of RabbitMQ brokers. This also results
in bigger CC service images. Despite being based on the same technology stack
as the FC components, CC components involve dependency on HTTP servers,
increasing the service executables’ size. Moreover, FC components’ images are
derived from the originating Docker images optimized for the Raspberry Pi 4
CPU architecture, resulting in reduced FC components image sizes. In total, the
installation of CC components with accompanying servers requires 2064 MB
storage space, which is supported by any cloud service provider on the market.

For the second evaluation aspect, to analyze a single FC service execution on an
FN device, service startup time is measured. Startup time involves a period from
starting the Docker container from the preinstalled image until the component
logs print out the information that the service executable is fully deployed. For
this purpose, FTP has been taken as a service representative since it involves
the complete trust bootstrapping procedure (cf. Figure 3.7) during its startup.
Measured startup times for each FN device are:

• Raspberry Pi 4 = 19.41 seconds;
• Raspberry Pi 3 = 33.031 seconds;
• Raspberry Pi Zero = 9538.474 seconds = 159 minutes = 2.65 hours.

46 https://www.nginx.com/, last access May 2, 2022
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Startup times indicate that Raspberry Pi 3 and 4 devices can start a single FC
service in a reasonable period. A startup time of multiple hours in the case of
Raspberry Pi Zero cannot be tolerated in IoT environments since this would mean
that the IoT system is not functioning for 2.65 hours once plugged in.

For the third, fourth, and fifth evaluation aspect, a multi-container on single
FN device has been set up. Multi-container deployment has been divided through
docker-compose scripts into three FC service groups: (i) five core docker con-
tainers - RabbitMQ, MongoDB, Fog Controller, FTA, and FACA documented in
Listing A.2, (ii) FTP service (cf. Listing A.3), and (iii) CCAA as C-A agent repre-
sentative presented in Listing A.4. For these evaluation aspects the targeted FN
devices are Raspberry Pi 4 and Raspberry Pi 3, since Raspberry Pi Zero was not
considered eligible for a multi-container deployment due to the long startup time
during the second evaluation aspect.

Deployment of the first Docker container group on Raspberry Pi 4 device
finished without errors, which further enabled a successful deployment of the
remaining FC service groups. However, during the multiple deployments of
the first Docker container group on the Raspberry Pi 3 FN, the device became
unresponsive, indicating that Raspberry Pi 3 cannot be used for a multi-container
deployment. As concluded from the fourth evaluation aspect, the main reason is
the lack of RAM in Raspberry Pi 3 device. Namely, multi-container deployment
required around 2 GB of RAM, which exceeds Raspberry Pi 3 device’s 1GB RAM
memory, as documented in Section 4.1. Nevertheless, Raspberry Pi 3 devices can
be used for single-container deployments in the COSYLab.

The fourth and fifth evaluation aspects’ goals were tomeasure CPU andmemory
consumption during the COSYLab FC components usage. For that purpose, top47

and free48 Linux commands, have been used for CPU and memory consumption
sampling, respectively. The evaluation duration was 6 hours and it was conducted
with all 7 FC services deployed on a single Raspberry Pi 4 FN. To isolate effects
of each services on CPU and RAM consumption, the test has been divided in
multiple stages, divided by events that represent FC components’ activation or
deactivation. Stages and their correlation to the enumerated events are listed in
Table 5.3. Besides the FC components execution, the impact of the developed FC
services on the CPU and RAM consumption has been measured during the whole
evaluation by the following COSYLab usage patterns:

47 https://man7.org/linux/man-pages/man1/top.1.html, last access May 2, 2022
48 https://man7.org/linux/man-pages/man1/free.1.html, last access May 2, 2022
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Table 5.3: Docker container resource consumption test stages

Stage name Executed services Start
event

End event

Setup Only OS services Test start 1
Core Contain-
ers

Core containers 1 2

All Containers All containers - TN and AC services
idle, C-A usage patterns active

2 3

TN services All containers - AC services idle, TN
and C-A usage patterns active

3 4

AC services All containers - TN services idle, AC
and C-A usage patterns active

5 6

All services All containers - TN, AC, and C-A
usage patterns active

7 8

Shutdown Only OS services 9 Test end

1. AC services are triggered randomly every 10 seconds by five users request-
ing access authorization to the IoT device. Each authorization involved
validation of 10 access rules in the access policy.

2. C-A services are represented through CCAA, evaluating connection to the
Cloud every 10 seconds and sending C-A attribute value to the FACA;

3. TN services are represented through (i) FTA hosting OCSP-based certificate
validation for the inter-service communication and (ii) FTP sensor mea-
surements message signing functionalities. In that scenario FTP serves 50
IoT devices with various security profiles: 12 devices with No Security, 12
devices with Integrity, 13 devices with Symmetric, Secure Keys, and 13
devices with Asymmetric, Secure Raw Public Key security profile. Each IoT
device sent a message signing request every 10 seconds.

CPU consumption measurements for all stages are presented in Figure 5.1,
where blue-colored lines and associated numbers indicate the above-mentioned
events during the evaluation. Until the first test event, CPU varies around 16%.
Afterwards, in the Core Containers stage, CPU consumption rises to around 28%.
In the remaining evaluation stages, CPU consumption revolves around 30%, except
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Figure 5.1: FC services Docker container CPU consumption

for the consumption peaks occurring at the start of each further evaluation stage.
Still, consumption peaks that have occurred immediately after the new Docker
containers are started, that is, after the second and third event, are bigger than
the peaks after the fifth and seventh event, where no new containers were started,
but different usage patterns have been activated. Overall CPU consumption in
stages and consumption peaks indicate that the biggest CPU consumer is the
COSYLab services deployment through the Docker containers, whereas services
themselves do not significantly impact CPU consumption.

In contrast to the CPU, the fifth evaluation aspect, RAM consumption, shows
dependency on the COSYLab services utilization. As presented in Figure 5.2,
RAM consumption of 473MB in the Setup stage jumps to 1180 MB once Core
containers stage is entered and 1433 MB after All containers has started. After-
ward, RAM consumption rises with COSYLab services activation with following
values: (a) 1740 MB for TN services stage, (b) 1780 MB for AC services stage, and
(c) 1843MB forAll services stage. These values indicate that TN services consumed
21.42% and AC services 24.21% more RAM with active usage patterns. Difference
between memory consumption of 1843 MB in All services stage and 1433 MB
in All containers indicates that COSYLab usage patterns execution consumed
additional 410 MB RAM which represents an 28.61% increase.

Based on the performed evaluations presented in this section, it can be con-
cluded that FC-based approach is a viable approach for deploying the developed
services. First, storage requirements for Docker images installation are satisfied
with the most of the SD cards in the market for a couple of euros price. Further-
more, Docker containers can be started on all tested devices, with the present
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Figure 5.2: FC services Docker container RAM consumption

trade-off between the device price and services startup time. This trade-off is
also present in service processing latencies, as further elaborated in Sections 5.3.1
and 5.3.2. Multi-container deployment requires computationally rich devices. To
deploy multiple containers on a single device, it is essential to provide sufficient
RAM, whereas CPU is less relevant. RAM importance is noticeable from the Rasp-
berry 3 inability to deploy multiple containers since deployment of the COSYLab
FC core containers requires more than 1GB RAM.

5.2 PKI Simulations

As the COSYLab aims to provide TN services in IoT networks with resource-
constrainedThings, the efficiency of the applied KMPs and encryption procedures
required to manage the digital certificates (cf. Section 4.4) is critical. The variety of
aspects impacting PKI’s efficiency, i.e., IoT application domain, network topology,
and devices’ computational capabilities, dictate a thorough analysis to find the best
performing PKI solution for the Smart Home implementation scenario described
in Section 4.1. In order to analyze PKI efficiency aspects, simulations have been
executed using the PKI simulator described in Section 4.5. Based on the simulation
results presented in this section, certificate management procedures described in
Section 4.4.1 are implemented and evaluated in Section 5.3.

Simulation goals are to measure CPU and memory requirements for the encryp-
tion and certificate management procedures defined in [BD22] - create, validate,
and revoke. To achieve that, simulation scenarios provided in Table 5.4 are exe-
cuted using PKI simulator presented in Section 4.5.1. Configuration parameters
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Table 5.4: PKI simulation scenarios

Encryption type Certificate type KMP Certificate revocation

RSA, 3072-bit key X.509v3 Diffie-Hellman CRL
RSA, 3072-bit key X.509v3 Diffie-Hellman OCSP
EC, 256-bit key X.509v3 Diffie-Hellman CRL
EC, 256-bit key X.509v3 Diffie-Hellman OCSP
EC, 256-bit key Implicit Qu-Vanstone CRL
EC, 256-bit key Implicit Qu-Vanstone OCSP

for the given scenarios are provided in Appendix B. Key lengths used in simula-
tions follow the security levels published in [BMZ13], aiming to provide a 128-bit
security level. Furthermore, to simulate secure communication links between
IoT network peers, simulated KMP protocols exchange AES-based session keys,
whose validity is limited to 60 seconds.

First, to execute the simulation scenarios, configuration parameters on the used
devices need to be provided. To resemble IoT system behavior, following input
measurements relevant for the application of PKI-related IdM and KMPs are col-
lected: introduced latencies, computational and storage requirements. Collected
measurements are provided as a configuration in Listing B.16 for the devices
present in the COSYLab: (i) Raspberry Pi 3 for Root Node, (ii) Raspberry Pi Zero
for Intermediate Node, and (iii) NodeMCU ESP3249 for Leaf Node. Secondly, PKI
lifecycles documented in Section 4.5.1 are parametrized using configurations
for the above-mentioned PKI simulation scenarios provided in Appendix B with
values for the exchanged messages in KMPs, CPU and memory consumption.

The input measurements collection for Raspberry Pi devices is based on the
open-source security and cryptography library - openssl50, using the commands
for keys and certificates creation51 and secrets encryption and decryption. The
NodeMCU ESP32 CPU measurements followed the same approach as Raspberry

49 https://nodemcu.readthedocs.io/en/dev-esp32/, last access May 2, 2022
50 https://github.com/openssl/openssl, last access May 2, 2022
51 https://msol.io/blog/tech/create-a-self-signed-ecc-certificate/, last access

May 2, 2022
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Pi devices using the mbedtls52 library. Executed commands duration is used
to quantify computational requirements for the given operation. Additionally,
created output, i.e., generated certificates or encrypted secrets, are measured
to indicate memory requirements. Memory requirements to manage the list of
revoked certificates are expressed through a single revocation entry with 100
Bytes, estimating the storage required to store the certificate’s serial number and
revocation timestamp.

However, in case of an inability to execute a cryptographic operation on the
NodeMCU ESP32, input measurements are collected using the virtual environ-
ment for emulating resource-constrained devices. To simulate a weaker CPU,
input measurements are collected using the command:

taskset –cpu-list 1 <command>,

allowing execution of a command (e.g., asymmetric or symmetric data decryption)
on one CPU thread.

Lastly, IoT network configuration is defined through its topology - the number
of the Root, Intermediate, and Leaf Nodes and the used network protocols. To
simulate wireless Smart Home devices, the simulations have been configured to
use 2.4 GHz WiFi 802.11b [Sal+16a]. Data propagation losses between devices
are using the fixed loss model with -70 dBm Received Signal Strength Indication,
which corresponds to the medium quality links53 between static, non-mobile
Smart Home devices. As for the network size, to simulate the Smart Home sce-
nario, 50 Leaf Nodes are configured. To evaluate the implication of Intermediate
Node amount onto PKI efficiency, simulations were executed with various Leaf
to Intermediate Nodes ratio. For this purpose, IoT network with 1, 2, 5, or 10
Intermediate Nodes have been chosen. The number of Root Nodes is fixed to one
in all simulations.

In order to simulate the above-mentioned scenarios, the following configura-
tions are defined in Listings B.5, B.10, and B.15 for RSA, EC with DH (ECDH),
and EC with QV (ECQV), respectively. Aggregated results concerning durations
and memory consumption for Create, Expire, and Validate lifecycles are presented
in Figure 5.3. Results are grouped from the bottom to the top on the x-axis by
(i) Intermediate Nodes number, (ii) scenario, (iii) certificate revocation schema.

52 https://tls.mbed.org/, last access May 2, 2022
53 https://support.simplisafe.com/hc/en-us/articles/360035742191-What-is-

WiFi-Strength-and-RSSI-, last access May 2, 2022
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The first finding concerning presented results indicates that OCSP outper-
forms the CRL certificate revocation scheme for each simulation scenario, both
in terms of the average lifecycle duration and memory consumption. Since OCSP
queries are hosted by the CA node, Intermediate or Root Node, despite introduc-
ing additional network communication between Leaf Node and CA node, the
computational capabilities of those nodes outperform the lookup in the locally
stored CRLs in Leaf Nodes.

The second finding focuses on choosing the most efficient encryption and KMP
schema. Figure 5.3 shows a significant duration increase for the RSA encryption
for the Create and Validate lifecycles, which is caused by the RSA’s computational
complexity and required key-length to achieve the same security level as EC. For
that reason, closer analysis between ECDH and ECQV is performed.

By comparing the presented memory consumption between ECDH and ECQV
for each lifecycle with OCSP, it can be concluded that ECDH requires slightly
less memory for the Expire and Validate lifecycles, while it is quite similar for
the Create lifecycle. For example, with one Intermediate Node, ECDH requires
11109 Bytes and ECQV 11322 Bytes on average for the Expire lifecycle, which
corresponds to a memory consumption difference of 1.88%. Similar values are
valid for multiple Intermediate Node scenarios: (a) 11174 Bytes for ECDH and
11157 Bytes for ECQV with two Intermediate Nodes, making ECQV consumer
0.15% less memory, (b) 11106 Bytes for ECDH and 11219 Bytes for ECQV with
five Intermediate Nodes, resulting in 1% less memory consumption for ECDH,
and (c) 11070 Bytes for ECDH and 11128 Bytes for ECQV with 10 Intermediate
Nodes, indicating that ECDH requires 0.52% less memory. These values give a
minor advantage to the ECDH but cannot be the determining factor for the final
decision.

Figure 5.4: Lifecycle duration comparison between ECDH and ECQV
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Further evaluations presented in Figure 5.4 provide an analysis of the average
and standard deviation values for the duration of the lifecycles. This analysis
considers ECDH and ECQV using OCSP and different Intermediate Nodes num-
bers. As the compared values for Create and Expire lifecycles are similar between
ECDH and ECQV, the Validate lifecycle has been examined more closely.

Compared to the other lifecycles, the Validate lifecycle values indicate its
significantly longer duration and a bigger standard deviation. The lifecycle’s
complexity mostly causes these increases since the certificate validation requires
communication between multiple network nodes (cf. Appendix B). Due to that,
the validation in a node is more affected by the factors like network congestion,
transmission delay, and communicating node processing latency, causing a higher
deviation from the average value. Concerning standard deviation, both ECDH and
ECQV have similar values, ranging from 1 to 10 percent in comparison, indicating
that both options are similarly affected by the factors mentioned above.

With regard to the average lifecycle duration values, ECDH outperforms ECQV
for any Intermediate Node’s number:

1. 1336 ms or 7.13% for one Intermediate Node,
2. 2660 ms or 13.89% for two Intermediate Nodes,
3. 1673 ms or 8.98% for five Intermediate Nodes, and
4. 1377 ms or 7.61% for 10 Intermediate Nodes.
This indicates that the Implicit certificate’s lesser size does not bring significant

benefits, despite reducing the bandwidth consumption required for the certificate
transmission between nodes. For that reason, it has been decided that the ECDH
is the best option for implementing the certificate management.

Furthermore, these results mean that Leaf Nodes’ (Things’) computational
capabilities represent a bottleneck in the KMPs, which should be reduced through
Intermediate Nodes (FNs). Therefore, an additional analysis is done to evalu-
ate if the higher number of Intermediate Nodes can reduce average lifecycle
duration. As presented in Figure 5.4, more Intermediate Nodes can slightly
reduce the average lifecycle durations. For example, comparing the scenario con-
taining two Intermediate Nodes with the scenario containing one Intermediate
Node, the lifecycle duration for ECDH is reduced: (a) from 6784 ms with one to
6554 ms with two Intermediate Nodes, which is 230 ms or 3.55% decrease for
Create lifecycle or (b) from 17409 ms with one to 16478 ms with two Intermediate
Nodes, resulting in 931.11 ms or 5.65% decrease for Validate lifecycle. Similar
results remain for scenarios with five and 10 Intermediate Nodes. For that rea-
son, it can be concluded that adding additional Intermediate Nodes would not
significantly speed up KMPs since Leaf Nodes remain the critical bottleneck.
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Results and analysis show that each computations reduction on the Leaf
Nodes brings performance benefits to the overall PKI: (1) using CA-based OCSP
queries instead of locally managed CRLs, (2) using shorter encryption keys, and
(3) avoiding generating certificates for Validation lifecycle using ECQV. Due to
that, ECDH with OCSP has been chosen as the best approach for the trust man-
agement implementation. Further analysis has shown that adding additional CA
nodes do not significantly improve overall performance. For that reason, more
lightweight approaches have to be introduced to bring not just reduced latency
in the IoT network but also battery- and memory-saving benefits for Things.

5.3 Trustworthy Networking
Establishing TN services for FC services deployment and securing IoT devices
and users represents this dissertation’s significant contribution. This involves
the implementation of the complete trust management lifecycle with initializa-
tion, validation, and revocation (cf. Section 4.4). To evaluate the feasibility of
the implemented solution concerning its scalability and introduced latency, the
performance of the trust management-related operations have been measured.
The first performance evaluation presented in Section 5.3.1 analyses trust and
certificate management operations described in Sections 4.4.1 and 4.4.2, respec-
tively. The second performance evaluation documented in Section 5.3.2 examines
achieving best-effort E2E security for IoT devices, based on the security profiles
and implemented in Section 4.4.3.

5.3.1 Certificate & Trust Management

Enabling TN services in the COSYLab requires FC services to initialize their trust
management operations. Initialization involves security credentials creation and
exchange in order to mutually authenticate COSYLab services (cf. Section 3.2.2)
and issue digital certificates presented in Section 4.4.1. The used digital certificates
are based on ECC with the curve named ”secp256r1” [NJP18] and ECDSA public
key pair generating algorithm [Por13]. The conducted performance evaluation
examines TN services initialization routines and their applicability on the different
devices serving as FNs described in Section 5.1.
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Table 5.5: Latencies for trust bootstrap stages between FTA and TNTA

Operation Raspberry Pi 4 Raspberry Pi 3 Raspberry Pi Zero

Generate identity 79 ms 143 ms 7112 ms

Generate and store
public key pair

339 ms 1500 ms 938002 ms

Register credentials
at TNTA

1967 ms 3112 ms 395396 ms

Decrypt CSR token
and create CSR

1540 ms 2447 ms 5988371 ms

Obtain certificate
from TNTA

171 ms 183 ms 15667 ms

Store private key and
certificate

355 ms 225 ms 30631 ms

Overall duration 4451 ms 7610 ms 7375179 ms

The initial step for provisioning FC-based TN services is for FTA to join CTFTP
and retrieve its digital certificate, resulting in enabled TN services in local net-
works without dependency on Cloud’s availability. The stages occurring in the
process of FTA joining CTFTP are presented in Figure 3.6. The duration of each
stage is measured and analyzed concerning the TN services applicability on the
FN devices, leading to the results presented in Table 5.5.

Based on the presented results Raspberry Pi 4 and Raspberry Pi 3 devices can
perform required operations in a reasonable amount of time, i.e. a couple of
seconds. Generating identities based on the naming structure documented in
Section 4.4.1 lasts a neglectable amount of time. The duration of the stages
involving cryptographic operations, i.e., generating public key pair, hashing
credentials for TNTA registration, decrypting CSR token, and digitally signing
CSR, is longer due to the computational complexity of the involved operations.
Nevertheless, the overall duration of a couple of seconds for all stages proves that
Raspberry Pi 4 and Raspberry Pi 3 devices can be used as FNs for FTA service.

In contrast to that, Raspberry Pi Zero takes a lot more time to finish all stages.
The computational complexity of the involved cryptographic operation combined
with the required communication with TNTA extends the overall duration to
approx. 2 hours. Considering that all the stages take place during the first startup
of COSYLab services, Raspberry Pi Zero would introduce delay in IoT system
installation that hardly can be acceptable in IoT systems.
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Once FTA has joined the CTFTP, it can host TN services for FTTTP entities:
FC-services, Things, and users. To evaluate the feasibility of deploying TN ser-
vices in the FTTTP, the trust bootstrap procedure between FC-services and FTA
described in Figure 3.7 is observed. Within the scenario described in Section 4.1,
FTP has been selected as an example FC-service, and it joins FTTTP by obtaining
its digital certificate from FTA.

Measured durations of the stages required for FTP to join FTTTP are presented
in Table 5.6. Compared to the results presented in Table 5.5, Raspberry Pi 4 and
Raspberry Pi 3 devices perform similarly, leading to the nearly equal durations
required for services to join CTFTP and FTTTP. Furthermore, Raspberry Pi Zero
performs much better in the FTTTP joining scenario. Better performance is
caused by fewer cryptographic operations included in evaluated stages, i.e., cre-
dentials are not hashed for registration, or encrypted CSR token is not exchanged
in FTTTP procedures. This results in a completely missing stage Register creden-
tials and reduced duration for ”Create CSR” stage from 5988371 ms to 29270 ms.
Additionally, FC services dominantly communicate in the local network, mini-
mizing latency involved in communication with the remote TNTA service.

Table 5.6: Latencies for trust bootstrap stages between FTP and FTA

Operation Raspberry Pi 4 Raspberry Pi 3 Raspberry Pi Zero

Generate identity 100 ms 140 ms 7509 ms

Generate and store
public key pair

1891 ms 2986 ms 395204 ms

Obtain FTA certifi-
cate

1021 ms 2087 ms 99194 ms

Validate FTA certifi-
cate

846 ms 954 ms 96354 ms

Create CSR 145 ms 217 ms 29270 ms

Obtain certificate
from TNTA

70 ms 89 ms 1939 ms

Store private key
and certificate

489 ms 995 ms 385043 ms

Overall duration 4562 ms 7468 ms 1014513 ms
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The above mentioned factors lead to the overall duration for FTP on Rasp-
berry Pi Zero FTTTP joining procedure of approximately 17 minutes, which can
be tolerable startup latency for FC services depending on their criticality. For
example, FACA is required for a direct user interaction during the IoT system’s
setup, making it a bad candidate to be deployed on Raspberry Pi Zeros. In contrast,
FTP and C-A agents are background services. They do not affect user interaction
during IoT system setup, making them good candidates to be deployed on the less
powerful Raspberry Pi Zero FNs. Raspberry Pi 4 and Raspberry Pi 3 devices have
shown much better performances than Raspberry Pi Zero. A couple of seconds
latency for trust bootstrapping for both devices makes them suitable for hosting
FTA and FTP services, without a higher impact on COSYLab’s performances.

5.3.2 Security Profiles

Besides identity and certificate management, the implemented services offer
E2E security services for Things through the FTP component (cf. Section 4.4.3).
Through the FTP services, Things are recognized in the implemented trust man-
agement solution and can mutually authenticate with other IoT entities. E2E
security services rely on security profiles, which adapt to the Things’ computa-
tional capabilities. The FTP component incorporates security profiles and adjusts
Things credentials and message exchanges accordingly. Computational load on
FTP and its scalability are affected by the application of security profiles and the
number of connected Things. For those reasons, performances of the FTP service
for signing messages produced by Things are evaluated.

Figure 5.5: FTP processing latency Raspberry Pi 4
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Performance evaluation focuses on measuring E2E latency between Things
and FTP service. In the scenarios, a various number of Things send message
signing requests to FTP every 10 seconds. The FTP component is deployed on
the same Raspberry Pi devices used in the evaluation described in Section 5.3.1.
The number of connected Things using FTP service resembles the number of IoT
devices in a Smart Home (cf. Section 4.1) and varies in tests with values: 1, 10, 20,
30, 40, and 50, and the following security profiles:

1. The No security profile implies plain message exchange, involving no cryp-
tographic operations on the FTP side once a message fromThing is received;

2. The Integrity profile involves checking if the received message hash is
correct based on the SHA-256 hashing algorithm;

3. The Symmetric, secure keys profile involves decrypting the receivedmessage
using AES encryption with 256 bits key length;

4. The Asymmetric, secure raw public key profile involves decrypting the
received message using EC encryption with 256 bits key length, based on
certificates presented in Section 4.4.1.

The first analysis focuses on the scalability of FTP services concerning
(1) the number of connected Things and (2) applied security protocols. To achieve
this, processing latency in the FTP message signing service on each Raspberry Pi
device has been measured. The analysis results containing the average processing
latencies are presented in (i) Figure 5.5 for Raspberry Pi 4, (ii) Figure 5.6 for
Raspberry Pi 3, and (iii) Figure 5.7 for Raspberry Pi Zero device.

Figure 5.6: FTP processing latency Raspberry Pi 3
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Figure 5.7: FTP processing latency Raspberry Pi Zero

The presented figures show that the connected Things number has a small
impact on FTP processing latency. On Raspberry Pi 4 and Raspberry Pi 3 devices,
no steady processing latency growth correlating with the connected Things
increase is detected. Raspberry Pi Zero shows a minor processing latency increase
correlating with the connected Things number for most security profiles. This
biggest increases are present between scenarios with 1 and 50 Things for No
Security - 302 ms (19.2 %) or 6.04 ms (0.38 %) per Thing and Asymmetric - 301 ms
(15.45 %) or 6.03 ms (0.31 %) per Thing. These increases are negligible for a Smart
Home, proving that the FTP service scales with the increase of the connected
Things.

The second analyzed aspect represents the impact of the security profile on a
processing latency. To that regard, all devices have shown the negligible process-
ing time difference for No Security, Integrity, and Symmetric security profiles. The
only security profile that implied increase in processing latency is Asymmetric
since it involves computationally demanding operations with the public-key
cryptography. For scenarios with 50 connected Things, the Asymmetric profile
compared to the No Security profile introduces a processing latency increase:
(1) 0.93 ms, that is 9.5% for Raspberry Pi 4, (2) 2.45 ms, that is 19% for Raspberry
Pi 3, and (3) 376 ms, that is 20.03% for Raspberry Pi Zero device.

Table 5.7: Average processing latency with 50 Things per security profile

Device No Security Integrity Symmetric Asymmetric

Raspberry Pi 4 9.84 ms 9.71 ms 10.58 ms 10.77 ms
Raspberry Pi 3 12.91 ms 13.78 ms 13.89 ms 15.36 ms
Raspberry Pi Zero 1875.87 ms 1881.2 ms 1837.9 ms 2251.76 ms
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The second analysis focuses on the FTP service responsiveness concerning the
FN devices’ computational capabilities. In the scenario with 50 connected Things,
the FTP service average processing latencies for every security profile have been
measured. The results are summarized in Table 5.7. Raspberry Pi 4 and Raspberry
Pi 3 devices show outstanding performance since their processing latency remains
under 16 ms for each profile. These performances satisfy most latency-critical
IoT applications [Sch+17]. Raspberry Pi Zero processing latency revolves around
2 seconds which makes it unsuitable for latency-critical IoT applications. Still,
deploying FTP services on Raspberry Pi Zero devices can increase IoT system’s
robustness and fail-safety in non-latency-critical IoT application domains.

5.4 Access Control

One of the the main goals of this dissertation is to provide the trustworthy
distribution of AC in FC-based IoT systems to increase the overall robustness
and performance of AC in IoT. To validate this, the developed AC components -
ACAM and FACA - were deployed and tested in the Smart Home system described
in Section 4.1. The performed evaluation is twofold: (1) A proof of operability
for maintaining a consistent state between access policies, and (2) a performance
evaluation measuring solutions’ impact on the authorization latency.

5.4.1 Synchronization of the Security Policies Configuration - Proof
of Operability

Based on the requirements for FC-based IoT AC systems outlined in Section 3.3,
the implemented AC distribution approach involves FN-hosted security policies
management (cf. Section 4.6.2) and synchronization of the policy configuration
between Cloud Server and FN presented in Section 4.6.3. To prove the feasibility of
this approach and proper AC provisioning, web applications present in COSYLab
are used - CSWA for Cloud Server and Fog Controller for FN.

Considering a Things’ management in COSYLab, the following features were
identified as occurring in a systems’ lifecycle and as vital for the systems’
operability, with special focus on AC configuration distribution: (F1) Initial
AC setup, (F2) Definition of access rights, (F3) Update of AC configuration, and
(F4) Access rights validation.
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Figure 5.9: FACA device configuration update

In order to show that these functionalities F1-F4 are supported by ACAM
and FACA, a Smart Light device54 has been connected to the Fog controller. An
AC configuration the through device type versions depicted in Figure 5.8 has
been defined in ACAM, causing adaptations of the access policies in FACA for
limiting access outlined in Figure 5.9. Due to these adaptations, the access rights
validations for a particular functionality, i.e. turning on the Living Room Smart
Light, have been affected as documented in Figure 5.10.

The first step is presented as the scenario (a) on the graphics mentioned above.
This scenario describes the F1 functionality, that is the device type setup in ACAM,
enabling the access policy definition (F2) in FACA (cf. Figure 5.9a). Once the
access policy is defined, enabling all persons older than 18 the possibility to turn
on the smart light, access to the IoT service is granted (cf. Figure 5.10a).

The next scenario is the AC configuration update - renaming IoT service
(cf. Figure 5.8b) to the new name ”Turn on the smart light”. Once the FACA’s
AC configuration is synchronized with the ACAM’s update, the access policy
remains enabled with the same access rules (cf. Figure 5.9b), enabling further
access to the renamed IoT service (cf. Figure 5.10b).

The final step is to update the initial AC configuration by disabling the func-
tionality mentioned above once the AC configuration is distributed from ACAM
to FACA, as presented in Figure 5.8c. From that moment on, access to the disabled
functionality is denied for all users, independently on the defined access rules
in FACA (cf. Figure 5.10c), since the functionality is no longer considered as
supported and all attached access policies are disabled by FACA (cf. Figure 5.9c).

54 https://www2.meethue.com/de-at, last access May 2, 2022
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Figure 5.10: FACA access policies validation

5.4.2 Authorization Performance Analysis

IoT users require an immediate system-independent management of settings and
security policies updates. Thus, long delays due to processing are unacceptable
in general and should be dependent of the size of the network and the system’s
security configuration. In order to evaluate this, delay measurements were
performed for different network sizes to prove that the impact of access policy
validation in the local network is in an acceptable range. For that purpose, the
COSYLab Fog Controller and FACA modules are installed on a Raspberry Pi
4 FN device (cf. Section 4.1). In order to provide better insights into access
policy validation times, average latencies and latencies distribution are analyzed,
examining the occurring network, processing, and E2E latencies and covering
the full impact of the authorization logic on the IoT system’s operability.

First, the impact of the used application layer protocol on the network latency
between Fog Controller and FACA is analyzed by comparing AMQP and HTTP
protocols. For this purpose, an evaluation scenario with five IoT users, each
one concurrently requesting 10 access rights validation, is defined. The targeted
access policy consists of five different access rules, evaluating various user’s
attribute values. Through that, extensive load on FACA regarding validation
requests processing and queueing, is created. As presented in the results in
Figure 5.11, the HTTP protocol allows a higher level of concurrent requests
execution, which puts more load on FACA and increases overall processing
latency. However, increased processing latency is negligible compared to the
network and E2E latency introduced by AMQP due to the serialization of the
request on the RabbitMQ broker. Therefore, the average E2E latency comparison
clearly speaks in favor of HTTP, leading to the conclusion that the HTTP protocol
should be used for communication between Fog Controller and FACA in case of
a high load concerning the access policy validation.
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Figure 5.11: FC components network protocols comparison

Table 5.8: Access policy performance evaluation cases

Aspect Users number Access rules per
policy

Requests
per user

Policy complexity 5 1, 5, 10, 15, 20 50
User number 1, 2, 3, 4, 5 5 50
Concurrent users
scalability

1, 20, 40, 60, 80, 100 5 10

As the FACA is installed on a FN with limited computational power and
equipped with an XACML-based access policy validation engine, the evalua-
tion analyzed how further factors influence the access policy validation delay:

1. Access policies complexity, that is, the number of access rules defined in a
single access policy;

2. The number of users using the system simultaneously;
3. FACA’s scalability concerning the number of concurrent access policy

validation requests.
An overview of the used values for these factors in different performance evalu-

ation aspects is provided in Table 5.8. Policy complexity, user number, and requests
per user performance evaluation aspects involve values that are defined using the
estimation of the Smart Home environment described in Section 4.1, with each
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Figure 5.12: FACA access policies complexity average latency

member issuing a batch of validation requests (up to 100). Each validation request
targets an access policy of different complexity, involving verification of up to 20
access rules, making use of ABAC for managing fine-grained access policies. The
Concurrent users scalability performance evaluation aspect represents a stress
test, creating extensive processing load for the FACA, therefore analysing FACA’s
applicability in IoT application domains other than Smart Home (e.g., Smart
Building or Smart Office) since the foreseen number of users in this evaluation
aspect is up to 100.

Since FACA allows the definition of fine-grained access policies and enables
the analysis of multiple factors during the validation of the users’ access rights,
the effect of access policy complexity on the access rights validation delay has
been analyzed. In order to achieve that, access policies with 1, 5, 10, 15, and 20
access rules have been defined and used during the evaluation. Access rules in
these policies represent one logical condition, which is to be validated for its
correctness.

As presented in Figure 5.12, a slight impact of the number of access rules on
the validation time of access policies can be noticed. Namely, average E2E latency
increases between scenarios with 1 and 5 access rules in the access policy from
31.91 ms to 36.1 ms, which represents 13% increase. Afterward, a minor E2E
latency increase from 36.1 ms to 37.99 ms, that is 5%, between scenarios with 5
and 20 access rules is noticeable. However, the E2E latency increase is mainly
impacted by the network latency since the processing latency in FACA remains
almost constant in all test scenarios with a variable access policy complexity.
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Table 5.9: FACA access policies complexity latency distribution in %

Latency limit [ms] 1 Access Rule 5 Access Rules 10 Access Rules 15 Access Rules 20 Access Rules
350.00 0.0 0.0 0.0 0.0 0.0
315.00 0.0 2.0 0.0 0.0 0.0
280.00 0.0 0.0 0.0 2.0 2.0
245.00 0.0 0.0 0.0 0.0 0.0
210.00 0.0 0.0 0.0 0.0 0.0
175.00 0.0 0.0 0.0 0.0 0.0
140.00 0.0 0.0 0.0 0.0 0.0
105.00 0.40 1.60 4.0 2.0 0.80
70.00 35.60 28.4 36.80 33.60 37.20
35.00 64.0 68.0 59.20 62.40 60.0

Figure 5.13: FACA user number average latency

E2E latencies distribution concerning the access policy complexity is presented
in the heatmap in Table 5.9. The heatmap presents the percentage of authorization
requests that were executed below a certain latency limit. The heatmap results
also indicate the E2E latency growth with the increase of access policy complexity,
since the requests number steadily shift from a 35ms to a 70ms latency limit as the
access policy complexity increases. However, in each test scenario, a minimum
of 96% of requests are executed within 70ms. Hence, no significant correlation
between the access policy complexity and the impact on the access policy valida-
tion latency has been found, implying that the access policy complexity does not
jeopardize FACA’s scalability.
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Since the developed solution is used in multi-user environments, FACA’s scal-
ability concerning the number of concurrent users in the IoT system has been
evaluated. For this purpose, to represent a most common European household, a
variable number of simultaneous Smart Home users (1 - 5) has been emulated in
COSYLab, each of them triggering the validation of 50 access policies, with five
access rules each. The results presented in Figure 5.13 show that an increase in
the number of users concurrently issuing the access policy validation requests
increases overall IoT system’s latency. The average E2E latency increased by
46%, that is from 40.08 ms in scenario with one to 58 ms in scenario with five
users, which is mainly impacted by the processing latency in FACA, since FACA
processing latency increased by 84%, from 18.52 ms to 34 ms.

However, the E2E latencies distribution presented in Table 5.10 shows that
an E2E latency increase is caused mainly by several requests that require a lot
more time to execute than most requests. This occurs more frequently as the
load on FACA increases with the user number (3, 4, 5), as this introduces a higher
probability for creating a processing bottleneck in FACA. Despite of that, 92% of
requests in each scenario are executed within 105 ms, indicating that the user
number does not dramatically decrease overall FACA’s performance. Still, the
user number has a more significant impact on E2E latency than the access policy
complexity.

Examining a detected scalability bottleneck in depth requires performing a
scalability test, aiming at a IoT environment with a higher number of users -
Smart Building. In this scenario, up to 100 users are simulated, each sending
ten validation requests, creating a higher load on FACA through concurrent
validation requests. Results in Figure 5.14 show a direct correlation between
the user number and latency increase and the leading cause of the processing
bottleneck. Namely, E2E and processing latency growth are approximately linear
for each E2E latency. The most considerable average E2E latency increase is
between 1 and 20 users - from 32 ms to 332 ms, resulting in 6.3 ms or 35% increase
per added user, while the processing latency growth is from 7.6 ms to 97.96 ms,
that is, 59.45% per added user. Further scenarios with additional 20 users each
show constant average E2E latency increases for each added user: (a) 143.75 ms
for 20 to 342.43 ms for 40 users (9.93% per user), (b) 342.43 ms for 40 to 396.54 ms
for 60 users (2.7% per user), (c) 396.54 ms for 60 to 473.61 ms for 80 users (3.85%
per user), and (d) 473.61 ms for 80 to 507.52 ms for 100 users (1.69% per user). This
indicates FACA’s lacking scalability with a higher number of concurrent users.
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Table 5.10: FACA user number latency distribution in %

Latency limit [ms] 1 User 2 Users 3 Users 4 Users 5 Users
350.00 0.0 0.0 0.0 0.0 0.0
315.00 0.0 0.0 2.0 0.0 2.0
280.00 0.0 0.0 0.0 0.5 0.0
245.00 0.0 0.0 0.0 0.0 0.0
210.00 0.0 0.0 0.0 0.0 0.0
175.00 2.0 0.0 0.0 1.0 0.0
140.00 0.0 0.0 1.33 6.5 0.0
105.00 2.0 7.0 24.0 31.0 1.60
70.00 54.00 61.0 67.33 50.50 28.40
35.00 42.0 32.0 5.33 10.50 68.0

Figure 5.14: FACA’s scalability verification - average latency

Similar observations can be derived from the heatmap presented in Table
5.11. Namely, every 20 new users significantly increase E2E latency distribution,
shifting more than 90% of requests latency in each scenario from (a) under 160ms
for one user to (b) under 640ms for 20 and 40 users and (c) under 960ms for 60,
80 and 100 users. These results indicate that the developed FACA component
scales with performances in the Smart Home environment, but its application in
IoT application domains with a higher user number requires further distribution
of the processing load between multiple FACA components. This would reduce
the processing load on a single FACA container and the caused access policy
validation latency.
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Table 5.11: FACA’s scalability verification - latency distribution in %

Latency limit [ms] 1 User 20 Users 40 Users 60 Users 80 Users 100 Users
1600.00 0.0 0.0 0.0 0.0 0.25 0.10
1440.00 0.0 0.0 0.0 0.0 0.38 1.30
1280.00 0.0 0.0 0.75 0.0 1.5 1.7
1120.00 0.0 0.0 1.25 0.17 3.0 3.8
960.00 0.0 0.0 2.75 1.5 6.0 8.0
800.00 0.0 0.0 5.25 2.33 12.5 14.6
640.00 0.0 0.0 9.5 11.83 20.88 19.7
480.00 0.0 1.0 29.0 24.5 25.625 23.5
320.00 0.0 36.0 30.75 38.83 19.66 17.4
160.00 100.0 63.0 20.75 20.83 10.38 9.9

5.5 Context-Aware Access Control
Context information integration into AC mechanisms allows the definition of
security policies that adapt to the IoT environment’s state. However, introduced
integration increases additional processing requirements compared to the AC
solution, which is evaluated in Section 5.4. The developed C-A AC solution was
deployed and verified using COSYLab and the scenario described in Section 4.1.
Thereby, the C-AAC solution’s verification is threefold: (1) the proof of operability
through the adaptation of the security policies to the change in IoT environment,
(2) the performance evaluation of C-A-based authorization (3) latency overhead
comparison between C-A AC and AC evaluation in Section 5.4.2.

5.5.1 Adaptable Access Policies Proof of Operability

Guided by the requirements for developing C-A solutions defined in Section 3.4,
the implemented C-A AC solution enables integrating context information into
security policies (cf. Section 4.7). To prove the solution’s usability and operability,
functional evaluation was conducted relying on the implemented Smart Home
management system described in Section 5.4.1. Identified main building blocks for
the functional evaluation are based on the stages in the communication between
C-A agents, FACA, and the user. They are split as follows:

• (S1) C-A attribute registration by C-A agent;
• (S2) access policy definition by the user;
• (S3) C-A attribute value notification by C-A agent;
• (S4) access policy validation by FACA.
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In the stage S1, the CCAA agent registers the C-A attribute through its configu-
ration at FACA, presented in Listing 4.23. FACA afterward uses the C-A attribute
configuration to present the access policy definition options to the user. A user
chooses the registered C-A attribute 𝐶𝑜𝑛𝑡𝑒𝑥𝑡.𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦.𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑇𝑜𝐶𝑙𝑜𝑢𝑑
for the defined access policy (S2). Along with the C-A attribute the user specifies
that the access policy will be satisfied if CCAA is connected to the Cloud Server
and has more than 70% confidence in that information (cf. Listing 5.1).

Once the C-A attribute is registered successfully, CCAAmonitors its connection
to the Cloud Server and notifies C-A attribute’s value to FACA (S3). In the first
step, presented in Listing 5.2, the CCAA’s connection to the Cloud Server works
without any interruptions, and therefore it notifies a working connection to FACA
with 100% certainty. Once the C-A attribute value is notified, the user initiates the
access policy validation using a notified value, and since it satisfies the predefined
access rules, the user is granted an access to the requested IoT service, as shown
in Figure 5.15a.

Enabling C-A authorization requires the more complex authorization logic
presented in Listing 4.27, so that the context information is included into the
access policy validation. To achieve that, attribute values are not collected
just from a user’s session token, but also from the database and directly from
C-A agents. In order to evaluate this, processing, network, and E2E latencies in
different C-A authorization scenarios are measured. The performance evaluation
testbed reuses the setup described from Section 5.4.2 to create comparable results
to the ones in Section 5.4.2 and measure overhead introduced by C-A overhead
outlined in Section 5.5.3.

In the second step, the connection to the Cloud Server has been interrupted for
two minutes. CCAA detects a missing connection and decreases the certainty in
the given attribute value to 0%, indicating a complete absence of Cloud server’s
availability. Once the Cloud Server has recovered and connection has been
reestablished, CCAA starts increasing the certainty levels, and after three minutes
notifies to FACA the 60% certainty in the working connection, as documented in
Listing 5.3. Afterwards, the user triggers authorization for the same IoT service
as previously. However, his request has been denied (cf. Figure 5.15b) since the
confidence did not satisfy the given access rule because the minimum required
confidence has been set to 70%.
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Listing 5.1: C-A access policy
1 {
2 {
3 "_id" : ObjectId("607c4fcd54e0b501d0134f97"),
4 "deviceName" : "Living Room Smart Light",
5 "cloudDeviceTypeId" : "5f8600e103031223072051cd",
6 "deviceTypeName" : "Phillips Hue Color",
7 "function" : "Turn on the light",
8 "rule" : {
9 "accessRuleType" : "CONTEXT",

10 "accessRule" : {
11 "attributeName" : "Context.Connectivity.ConnectedToCloud",
12 "operator" : "IS_TRUE",
13 "accessRuleType" : "BOOLEAN",
14 },
15 "expectedCertaintyRule" : {
16 "accessRuleType" : "NUMERIC",
17 "expectedValue" : 70.0,
18 "attributeName" : "Context.Connectivity.ConnectedToCloud",
19 "operator" : "GREATER_THAN"
20 },
21 "attributeName" : "Context.Connectivity.ConnectedToCloud",
22 "isAttributeValueTimeCritical" : false,
23 },
24 "priority" : 0,
25 "enabled" : true
26 }

Listing 5.2: C-A value notification 1
1 {
2 "attributeName":"Context
3 .Connectivity.ConnectedToCloud",
4 "contextType":"CONNECTIVITY",
5 "attributeValue":"true",
6 "certainty":100.0,
7 "timestamp":[2021,4,20,16,00,
8 49.521683900]
9 }

Listing 5.3: C-A value notification 2
1 {
2 "attributeName":"Context
3 .Connectivity.ConnectedToCloud",
4 "contextType":"CONNECTIVITY",
5 "attributeValue":"true",
6 "certainty":60.0,
7 "timestamp":[2021,4,20,16,03,
8 29.843646900]
9 }

Figure 5.15: FACA access policies validation
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5.5.2 C-A Authorization Performance Analysis

The selected evaluation scenarios target the impact of C-A access policies onto
authorization latencies. This is achieved through a variable complexity of access
policies: the amount of access rules with C-A attributes in a single access policy.
Amounts of C-A per access policy used in scenarios are the same as for the FACA
evaluations presented in Section 5.4.2: 1, 5, 10, 15, and 20 access rules. Other
evaluation variables are fixed to simulate the Smart Home environment and also
follow the ones presented in Table 5.8 for the Policy complexity evaluation aspect:
five users, where each user sends 50 authorization requests during the test. Finally,
the criticality of access policies plays a significant role in the overall performance,
defining if the C-A attribute value will be retrieved from the database or C-A agent.
Therefore, examining this performance aspect requires performance evaluation
execution for both critical and non-critical access policies.

Non-critical access policies imply fetching C-A attribute values from FACA’s
database, which C-A agents previously notified. This allows FACA to retrieve all
attribute values locally, without the need to contact C-A agents during authoriza-
tion. Amounts of C-A attributes fetched from the database during authorization
have been evaluated, resulting in the measurements presented in Figure 5.16.
The presented results show that number of access rules with the C-A attribute
does not increase with the access policy complexity. While E2E latency slightly
grows, the scenario with 20 access policies shows that latency increase is not
consistent, which can be influenced by the database’s optimization procedures,
such as data or query results caching.

The latency distribution for non-critical access policies presented in Table 5.12
provides further details concerning E2E latency. The majority of authorization
requests (more than 92%) are executed within 105ms in each scenario. However,
a slight increase in latency values for scenarios with 15 and 20 access rules is
noticeable. Still, the noticed latency increase is negligible, meaning that it does
not jeopardize the scalability of the presented C-A AC solution.

The second performance evaluation focuses on the execution of critical access
policies. This requires each C-A attribute value to be fetched from the C-A
agent before being validated using the XACML engine. For that purpose, three
C-A agents are deployed, and attribute evaluation routes are evenly distributed
between C-A attributes resulting in an even load on each C-A agent.
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Figure 5.16: Average authorization latency - non-critical C-A attribute values

Table 5.12: E2E latency distribution in %- non-critical C-A attribute values
Latency limit [ms] 1 Access Rule 5 Access Rules 10 Access Rules 15 Access Rules 20 Access Rules
350.00 0.0 0.0 0.4 0.0 0.0
315.00 0.4 0.8 0.0 0.0 0.0
280.00 1.6 1.2 0.0 0.0 0.0
245.00 0.0 0.0 0.0 0.0 0.0
210.00 0.0 0.0 0.0 0.0 0.0
175.00 0.4 0.0 0.0 1.6 0.0
140.00 2.0 2.81 1.2 6.8 0.0
105.00 13.2 11.65 4.4 23.6 9.2
70.00 51.6 57.03 47.2 51.2 58.8
35.00 30.8 26.51 46.8 16.8 32.0

The average authorization latencies with critical C-A attributes are presented
in Figure 5.17. While network latency remains even for all scenarios, both pro-
cessing and E2E latency increase with the access rules number. The highest
increase is between one and five access rules, that is from 121.8 ms to 259.29 ms,
which results in 111% latency increase. This is mostly caused by the number of
C-A agents that are contacted during the authorization. Namely, one access rule
policy contacts one C-A agent, while five access rules are evenly distributed
between C-A agents, contacting all three of them and causing network traffic
for context information exchange. Afterwards, a steady increase in E2E and pro-
cessing latencies from 5 to 15 access rules is noticeable, from 258.29 ms to 285.18
ms, resulting in an overall increase of 10%. The subsequent dramatic latency
growth is between 15 and 20 access rules - around 31%. This indicates that the
C-A agent request grouping proposed in Listing 4.27 enables a communication
reduction between FACA and C-A agents during the authorization and partially
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hinders the latency growth with more complex access policies, but does not stop
it completely.

The latencies distribution for critical C-A authorization provided in Table 5.13
speaks in favor of the results mentioned above. The required time to execute
95% of authorization requests indicates significant growth of the E2E latency.
Whereas contacting one C-A agent in one access rule scenario requires less than
280 ms for most requests, in scenarios with 5 and 10 access rules the latency
introduced through communication with three C-A agents increases to 420 ms.
Furthermore, the same percentage of requests for authorization of 15 and 20
access rules requires 700ms, stating that the evaluated solution needs further
optimization to be scalable in IoT systems with more complex access policies.

Figure 5.17: Average authorization latency - critical C-A attribute values

Table 5.13: E2E latency distribution in % - critical C-A attribute values

Latency limit [ms] 1 Access Rule 5 Access Rules 10 Access Rules 15 Access Rules 20 Access Rules
1400.00 0.0 0.0 0.0 0.4 0.0
1260.00 0.0 0.0 0.0 0.0 0.0
1120.00 0.0 0.0 0.0 0.0 0.0
980.00 0.0 0.0 0.0 0.0 0.8
840.00 0.0 0.0 0.0 1.2 1.6
700.00 0.0 0.0 0.0 2.8 8.4
560.00 0.0 2.4 4.8 6.0 20.4
420.00 4.0 12.4 14.8 25.2 42.4
280.00 21.2 74 74.8 62.4 26.4
140.00 74.8 11.2 5.6 2.0 0.0
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5.5.3 Context-Aware Authorization Performance Overhead

The authorization process, which involves user and C-A attributes, requires
fetching attribute values from multiple sources, as presented in Listing 4.27.
Separated by attribute value type, these sources are:

• Session token for user attributes fetched from the digitally signed in-
memory storage - JWS token;

• FACA’s database for C-A attributes in non-critical access rule scenarios;
• AMQP-based attribute value retrieval from C-A agent for critical access
rules.

Since attribute value sources differ in access times, the implications of all
attribute value sources on processing and E2E latency have been evaluated. This is
executed by comparing authorization latency measurements with C-A attributes
documented in Section 5.5.2 with those using user attributes exclusively presented
in Section 5.4.2, resulting in the C-A authorization’s overhead.

The processing latency comparison for three attribute value sources is presented
in Figure 5.18. In this diagram, the user and non-critical C-A attributes retrieval
keeps comparable performances with no significant latency increases. The differ-
ence between the authorization with non-critical C-A attributes and with only
user attributes varies between 5.26 ms or 25% increase for the scenario with 10
access rules and 23.98 ms or 113% for the scenario with 15 access rules. However,
despite introducing the latency increase, authorization with non-critical C-A
attributes shows no constant increase, indicating its scalability with a higher
number of access rules in an access policy. In contrast, authorization latencies
involving critical C-A attributes require an order of magnitude more time than
the user attributes. The smallest overhead is present in the scenario with one
access rule, in which the processing duration difference is 70.34 ms, which results
in a 350% latency increase. Once the access policy contains more access rules,
involving additional communication with C-A agents to fetch the latest C-A
attribute values, processing latency increases to a maximal 307.55 ms or 1506%,
representing this solution’s significant overhead.

The E2E latencies comparison presented in Figure 5.19 follows the same patterns
as the previous one. Non-critical and user attributes keep stable values, with a
minimal increase of 6.44 ms or 17% for the scenario with 20 access rules and a
maximal increase of 22.97ms or 68.2% for the scenario with 10 access rules. A
decrease in percentage difference compared to the processing overhead is imposed
by the network latency, which is almost the same for both scenarios and was
not considered in the processing overhead evaluation. The authorization with
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critical C-A attributes introduces the significant E2E overhead since it increases
the latency between 89.9 ms (281%) in the case of one access rule and 336.16
ms (884%) in the case of 20 access rules scenario. Significant overhead is mostly
caused by the above-mentioned processing latency, which involves additional
AMQP communication to fetch context information from C-A agents during the
authorization.

Figure 5.18: C-A authorization processing latency overhead

Figure 5.19: C-A authorization E2E latency overhead
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5.6 Error Handling Procedures

The developed COSYLab framework provides FC-based IoT services by deploying
them on the existing FNs in IoT networks. Availability and robustness of FNs
impact the COSYLab components’ overall stability. Due to those reasons, the
fault-tolerance of the COSYLab represents a developed solution’s critical aspect.
Various software and hardware failure scenarios and their resolution within the
COSYLab framework are discussed in this section.

Software failures can affect both CC and FC services. In most cases, these
failures occur if CPU or RAM resources are depleted and make the affected
service unresponsive until the service is restarted. Since the independence on
CC services availability is one of the central premises for FC, all FC components
within COSYLab are designed and developed to function despite complete CC
services absence. For that reason, software failures of CC components do not
introduce any downtime of FC services.

Observed FC components’ software failures are divided into two categories:
1. The FC service’s file system becomes corrupted;
2. The FC service becomes unresponsive.
A corrupted service’s file system implies storing malformatted, not-usable

data in the service’s Docker container. This does not involve the data stored in
MongoDB or RabbitMQ containers, but reflects on FC services’ security material,
such as public-key pairs, digital certificates, or offline-shared secrets. Resolving
the corrupted file system requires restarting the Docker container with a clean
file system and reinitializing the service’s security material through the trust
bootstrapping procedures presented in Section 3.2.2. Trust bootstrapping pro-
cedure in FTA differs from the ones in other FC components. Since FTA also
exists in CTFTP, it must remain identifiable by TNTA despite corrupted security
material, so that TNTA can revoke its digital certificate. This is resolved through
the offline-shared secrets described in Figure 3.6, allowing FTA to rejoin CTFTP
and TNTA to revoke FTA’s previous certificate.

The solution for the failures from the second category is based on the Docker
technology. Using Docker containers, services can be easily restarted, which
recovers their availability. This approach implies service downtime until the
Docker container has been restarted. The downtime can be minimized through a
redundant service deployment - two or more deployed service instances in FC
network, which can overtake the operations of the failed service instance.
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Hardware failures occur once FN stopsworking due to a system errorwithout
the possibility to recover. This stops all deployed FC services deployed on the
FN, with possible permanent data loss. Hardware failures’ effects are minimized
through the FC services redundancy mentioned above, improving the COSYLab
services’ stability and fault-tolerance. The COSYLab service redundancy does
not resolve data loss issues. To prevent permanent data loss in MongoDB and
RabbitMQ, the COSYLab relies on the clustering capabilities of these solutions.
MongoDB offers data replication between multiple nodes55 through the clusters
deployed on one or multiple FNs. Similarly, exchanged AMQP messages between
FC components are replicated within the RabbitMQ cluster56, ensuring that
messages will not be lost if a FN hardware failure occurs.

55 https://www.mongodb.com/basics/clusters, last access May 2, 2022
56 https://www.rabbitmq.com/clustering.html, last access May 2, 2022
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6

Conclusions & Research Outlook

This dissertation tackled the challenge of designing and deploying security ser-
vices close to the IoT networks’ edge using Fog Computing (FC) capabilities. The
designed and implemented solution - COSYLab - has been evaluated in the Smart
Home environment using various Fog Node (FN) devices currently available on
the market. The presented results focus on functional and performance aspects of
the COSYLab, implying its application possibilities in IoT systems, leading to the
creation of more secure and trustworthy IoT environments. In this chapter, the
main results of the research conducted during this thesis are reflected, focusing
on the main contributions, defined research questions, and future research and
development of the COSYLab framework.

The presented thesis contributions revolve around the research questions out-
lined in Section 1.3, with the significant goal of advancing the state-of-the-art
in creating trustworthy security services at the edge of IoT networks through
the proposed messaging and data models. The main thesis contributions are
categorized into three major research areas: FC, Trustworthy Networking (TN),
and Context-Aware Access Control (C-A AC).

FC represents the underlying layer for the contributions in other research
areas since it provides computing and storage resources for deploying TN, AC,
and C-A services. The main problems solved by the contributions in the FC area
are: (i) satisfying requirements for the development of FC-based IoT systems,
(ii) deploying developed services, and (iii) providing performant FC-based IoT
services. Addressing these problems led to the contributions with regard to
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the FC-based IoT systems design, implementation, and evaluation, presented in
Sections 3.1, 4.3, and 5.1, respectively.

Section 3.1 provides a requirements analysis for building FC-based IoT
solutions, focusing on the approaches for creating highly virtualized execution
environments required for FC services deployment. Based on this analysis, the
system design decisions are documented later in that section, providing guidelines
for deploying trustworthy, standalone, and scalable FC-based IoT services. The
structured, modularized FC services deployment model is presented in Section
4.3, providing insights for the COSYLab deployment along with required depen-
dencies like networking, data storage, and credentials distribution. Lastly, in
Section 5.1 the FC services feasibility and applicability evaluation is documented.
The deployed services performances are presented concerning the resource (CPU,
RAM) consumption and startup times on diverse FNs, resulting in the definition
of computational resource requirements for deploying one or multiple FC services
on the FN devices as significant output.

FC-based TN services provisioning implied the examination of various trust
management models involving challenges in research areas like Key Management
Protocols (KMP), Identity Management (IdM), and End-to-End (E2E) security.
In addition, the solution design and implementation were heavily impacted by
the nature of IoT devices like diversity or resource constraints and FC require-
ments for having operable FC services despite the unavailability of Cloud Servers.
Resolving these challenges involved analysis of the state-of-the-art trust models
(cf. Section 2.3.2), which served as a basis for the solution design, implementa-
tion, and evaluation, leading to the significant contributions concerning trust
management in the FC-based IoT systems. The developed solution provides
TN services for all actors in FC-based IoT systems - Things, users, and services.
Achieving that resulted in a first contribution in the IdM area, i.e. designing the
standard IdM schema for all actors presented in Section 3.2.1, maintaining the
hierarchical organization of IoT system in the core identifier’s fields. The second
contribution area is represented through the trust management model enabling
TN services provisioning independently of Cloud availability. This is achieved
through splitting the Cloud - Fog - Thing continuum into Cloud-to-Fog Trust
Plane (CTFTP) and Fog-to-Thing Trust Plane (FTTTP) and involving different
KMPs within distributed TNDs (cf. Section 3.2.2). The developed KMPs, i.e. trust
bootstraping, certificate validation, and certificate revocation can be adjusted to
the current availability of the CC services and offer optimal trust management
capabilities accordingly.
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Since the applicability of the developed trust management models is
constrained through the Things’ computational capabilities, the third contri-
bution area focuses on deploying E2E security in IoT. First, state-of-the-art trust
management protocols and underlying encryption schemes like RSA, ECC, ECQV
are evaluated through performance simulations against various factors occurring
in the IoT environment, such as the Things’ CPU and memory resources, network
bandwidth, or number interconnected Things (cf. Section 4.5). The simulation
results indicated that the best-performing trust management model is based on
EC and X.509 certificates. Nevertheless, not all Things can perform asymmetric
encryption, which requires rethinking PKI in IoT through the usage of FC. This
resulted in the novel model presented in Section 3.2.3, offering (i) ”best-effort”
E2E security using security profiles that adjust to the Things’ computational
capabilities and (ii) possibilities for monitoring the Things’ security capabilities
during the IoT system lifecycle.

Further contributions in the TN are concerned with the solution implemen-
tation and evaluation. The proposed trust management model involves using
(a) X.509 certificates, whose content corresponds to the proposed protocols, and
(b) Tickets, representing a novel concept for a mutual authentication between
Things, Users, FC, and CC services, as presented in Section 4.4. Lastly, the
developed solution has been evaluated on multiple FN devices concerning its
latency and scalability, leading to the results provided in Section 5.3 that prove
the solution’s feasibility and applicability in modern IoT systems.

The third significant contribution area is coupled with enabling C-A AC
services using FC capabilities. Providing targeted services involved collecting and
integrating context information in AC mechanisms, posing the following chal-
lenges: (i) a trustworthy AC services distribution and the maintenance of security
policies consistency and (ii) embedding context information in security policies,
focusing on the extension of the data collection and authorization procedures.
Based on these challenges, multiple contributions have been provided.

Distributed AC is a well-researched IT area represented through protocols
like OAuth2, OIDC, or SAML. However, these protocols are CC-focused and do
not satisfy the FC requirement for FNs operability in offline scenarios. Due to
that, this dissertation proposed a novel approach for the trustworthy distribution
of AC mechanisms close to the IoT network edge. The proposed AC distribu-
tion model is based on two strategies: (1) trustworthy FC services distribution
(cf. Section 3.2.2) and (2) synchronization procedures for the configuration of
security policies presented in Section 3.3.2. Furthermore, the AC distribution
model enables:
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1. Users to manage and enforce the local security policies, leading to the
improved control over their private data;

2. IoT platform administrators to maintain a consistent state of the security
policies in the IoT platform through the synchronization of the access
policies configuration.

Besides AC distribution, achieving C-A AC led to the contributions concerning
the building of C-A solutions and their integration in AC. First, provisioning C-A
AC required analyzing the state-of-the-art AC models presented in Section 2.4.2,
resulting in choosing ABAC as the best approach for integrating context infor-
mation in security policies. Second, the comprehensive analysis documented in
Section 2.5 examines the established approaches for building C-A solutions con-
cerning (a) context identification, (2) C-AS architectures, and (3) context informa-
tion management and lifecycle. Findings from that analysis led to the design and
implementation of the innovative model that integrates context information into
security policies. The integration consists of the following aspects:

• A distributed software architecture allowing extensibility of the collected
context information during the system’s runtime. The architecture is based
on the context information exchanges between FACA and C-A agents and
extension of authorization procedures, as presented in Section 3.4.1.

• The introduction of the ontology-based data model for integrating context
information into ABAC model (cf. Section 3.4.2);

• Creating a proof of concepts for the designed solution using three different
context-aware sources: location, users’ behavior, and internet connectivity,
as described in Section 3.4.3.

Finally, the performance and functionality of the implemented C-A AC
solution has been evaluated, considering multiple factors: security policy com-
plexity, IoT users number, and authorization requests concurrency. The perfor-
mance evaluation has been conducted separately for AC, without C-A factors.
AC without C-A factors results presented in Section 5.4 prove the applicability
of the developed solution in Smart Home environments and provide insights on
the bottlenecks that should be addressed to extend the solution’s application in
other IoT application domains. The performance evaluation with C-A factors
documented in Section 5.5 indicates that the proposed C-A integration model can
be applied in IoT environments with a certain latency overheads, varying from
50% to 620%, depending on the context information integration strategy.
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During this dissertation, different research questions influenced the design of
the presented solution for trustworthy, FC-based C-A AC in an IoT environment
- COSYLab. The research questions listed in Section 1.3 are now revisited and
answered, outlining the research impact of this dissertation.
(RQ 1) How can decentralized management of access control be achieved in a
Fog computing environment?

(RQ 1.1) Which techniques and technologies can be used in order to keep a
consistent state of an access control framework in the hierarchical IoT organi-
zation: Cloud Server – Fog Node - Things?

(RQ 1.2) What kind of trust connections between authentication and autho-
rization entities need to be achieved to minimize attack surfaces on end devices
with regard to access control?

Computational capabilities provided through FN can be beneficial for deploying
ACmechanisms at the IoT networks’ edge. This occurs through the deployment of
ACC as local agents in the IoT environment, which maintains trust relationships
with Cloud Server during the system’s lifecycle. Despite numerous present
protocols that suit this purpose (e.g., OAuth2 or SAML), the FC requirement
for having fully operable FC services independent of Cloud availability hinders
the application these protocols. To satisfy the abovementioned FC requirement,
COSYLab proposes ACC deployment on FNs with all functionalities for providing
AAA mechanisms - IdM, security policies management, authorization, etc.

To respond to RQ 1 and RQ 1.1, the ACC component in COSYLab named
FACA maintains trust relationships during its lifetime using PKI. PKI enables
certificate management and mutual authentication between FC and CC services
(cf. Section 3.2.2). Through that, each FACA instance and its operations (e.g., user
authentication or request authorization) is considered trustworthy across IoT
platforms. Moreover, FACA’s security policy management occurs exclusively on
locally deployed FNs, binding access rules to the present Things’ functionalities.
To keep the consistent state of the security policies on each FACA, configuration
synchronization between ACAM and FACA occurs whenever ACAM is available,
ensuring that only safelisted Things’ functionalities can be authorized by FACA
(cf. Section 3.3.2).

Ensuring trust connections between authentication and authorization entities
mentioned in RQ 1.2 requires them to ensure their trustworthiness through the
mutual authentication. COSYLab employs digital certificates to authenticate
FC services and users, resulting in digitally signed user session tokens - JWS,
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containing user information as attributes (cf. Section 4.6.1). For that reason, user
attributes provided in JWS issued by FACA are considered trustworthy and can
be securely validated by security policies during authorization.

(RQ 2) How can Fog computing be used for improving Identity management
and authentication in IoT systems?

(RQ 2.1) How can computational power on the edge of the network be used
for improving scalability of automatic (e.g., PKI or Web of Trust) authentication
procedures?

(RQ 2.2) How can Fog nodes be efficiently and effectively used as secure
storage of identities for resource-constrained devices and providing mutual
authentication in IoT environments?

Procedures for IdM and authentication mentioned in RQ2 introduce exten-
sive computational load on the devices due to the encryption procedures. As
FC utilizes deployed hardware resources in IoT networks to ensure sufficient
computing capabilities, it can bridge the gap for using acknowledged security
protocols between resource-constrained Things and remote Cloud services. This
involves deploying various trust management and IdM models, offloading tasks
from central Cloud Servers to local FNs. The deployment of security protocols
through FC services must be followed by appropriate security mechanisms, ensur-
ing their trustworthiness by satisfying standard KMP requirements as analyzed
in Section 2.3.

The deployed FC services can further create mutual trust relationships
between IoT services, users, and Things, creating isolated TNDs. This increases
the identities and credentials manageability through the divide-and-conquer strat-
egy to offload the computationally demanding tasks from Cloud Servers to FNs.
Moreover, it leads to the increased scalability, robustness, and extensibility of
the authentication procedures referred to in RQ 2.1. Through that, FNs represent
a central point for managing security operations like KMP, IdM, or certificate
management in local TND - KMP, IdM, cert management. Achieving this requires
rethinking and extending state-of-the-art KMP procedures between different
TNDs, as examined in Section 3.2.2.

Furthermore, to answer RQ 2.2, possibilities for using FNs as identity and
credentials storage for resource-constrained Things have been examined. As
traditional protocols for encryption-based mutual authentication heavily rely
on digital signatures, their applicability cannot be guaranteed on all IoT devices.
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The main reason for that are computational requirements for the asymmetric
encryption. Having FN with sufficient resources for supporting an acknowl-
edged trust management model close to the Things allows their utilization as
gatekeepers, that is, trust mediators between Things and the rest of the IoT
environment. Through that, computationally demanding operations required for
mutual authentication can be offloaded to FNs. In COSYLab, FTP components
offer these services, hosting IdM and certificate management processes forThings
while establishing ”best-effort” trust relationships based on security profiles and
E2E security with the Things (cf. Section 3.2.3). Security profiles are determined
mainly byThings computational capabilities and negotiated with FTP during trust
bootstrapping procedures. When applying this approach, networking and FTP
processing have to be taken into consideration. Results presented in Section 5.3.2
prove that even less powerful FN devices can host FTP service for the Smart Home
environment but introduce a significant latency. For that reason, it is essential
to consider the time constraints for the developed IoT application domain once
deploying this kind of TN service on FN devices.

(RQ 3) How can context-awareness be incorporated in access control of a Fog
computing based IoT system?

(RQ 3.1) Which factors can influence access rights validation and adjustments
in a context-aware IoT environments?

(RQ 3.2)How can these factors be embedded in today’s access control models?

As a response to question RQ 3, Section 2.5 provides a comprehensive analysis of
the building blocks for C-A solutions, followed by the thorough analysis of design
steps required to build the C-A AC system presented in Section 3.4. Essentially,
integration of context information in AC has two major building blocks: data
collection and authorization procedures extension. Data collection needs to allow
mechanisms for ACC to consume collected context information and store it for
future use during authorization. It is essential to distribute context information
collection across multiple components and support system characteristics like
flexibility, extensibility, trustworthiness, and scalability to scale with the types
and amount of context information easily.

Data collection is tightly bound to RQ 3.1, questioning which factors can be
considered relevant context information for AC in IoT. As the purpose of numer-
ous IoT application domains strongly differs, finding common context factors
set for all of them is hardly achievable. Despite this fact, context information
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is categorized through multiple criteria (cf. Section 2.5.2): (i) observed entities
(Things, users, and places), (ii) context type (logical or physical). These criteria,
along with the downsizing of C-AS requirements to a particular IoT application
domain, represent good practice for identifying context factors. Following this
strategy, COSYLab incorporated location, connectivity, and user behavior as
representative context information for Smart Home use-case (cf. Section 3.4.3).

Finally, collected context information has to be integrated with AC procedures,
as mentioned in RQ 3.2. Achieving this requires using context information in
the sense that users can configure security policies involving context informa-
tion. C-A security policy management requires an appropriate AC schema, for
which a thorough analysis is provided in Section 3.3.1. Based on the chosen AC
schema, context information provisioning that satisfies C-A solutions’ character-
istics requires distributed architecture, based on the common message exchanges
(cf. Section 3.4.1) and data-model (cf. Section 3.4.2). Configured C-A security poli-
cies are applied during authorization, involving the collected context information.
As the collected context information can be considered obsolete during security
policy validation, it is recommended to allow fetching current context values
directly during authorization, guaranteeing their up-to-dateness. As evaluated
in Section 5.5.2, this involves a significant increase of the authorization delay.
For that reason, during building C-A AC solutions a trade-off between context
information up-to-dateness and authorization duration has to be met.

This dissertation proposed multiple models, schemas, and protocols for estab-
lishing TN and C-A AC services using FC. Despite the achieved contributions,
several challenges remained that are out of scope of this thesis. The following
paragraphs summarize the possible future research directions for the solution
developed in this dissertation.

AC solution through ACAM and FACA modules offers AC distribution from
Cloud to Fog. Future plans for these modules involve the further distribution
of AAA mechanisms to the IoT network’s edge. This would allow additional
robustness and minimize the centrality of the current solution. Themain effort for
this improvement requires rethinking and extending the current synchronization
procedures and applied ABAC model.

The second planned research direction is aimed towards trust establishment
between FTTTP TNDs through FC-based trust federations. This would further
decrease the independence of FTA and FTP on CC services and allow FC-based
IoT networks to exchange their service despite Cloud Servers’ unavailability. For
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this purpose, the proposed PKI schema should be extended with additional trust
bootstrapping and KMP protocols.

Regarding the C-AS area, development and integration of further context
information use-cases are considered beneficial for potential improvement of
the current data- and integration model. Within the Smart Home environment,
various information sources and their applicability in AC will be examined,
offering more possibilities for AC automation.

Finally, the application of COSYLab in other IoT application domains like
Smart Building or Smart City is planned to analyze further the feasibility of the
developed protocols and models, as well as the scalability and robustness of the
developed solution.
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A

Docker Deployment

This appendix provides details on the deployment of COSYLab components.
Deployment is based on the Docker Compose, which enables building configu-
ration bundles used for installing and running multi-container Docker environ-
ments. Inside its configuration bundles, Docker Compose allows specification of
the: deployed services, their configurations, dependencies, and network setup.

As presented in Listing A.1, CC services rely on MongoDB for data storage,
as well as Nginx57 server to proxy incoming traffic to the CC services - ACAM,
TNTA, and CSWA (lines 3-22). Moreover, additional servers are deployed to
enable integration between the developed services (lines 23-35). Those servers
enable service discovery and configuration deployment, enabling communication
between TNTA and ACAM. Finally, the developed CC services are deployed, as
described in lines 36-71.

Docker Compose configuration (cf. Listing A.2) for FC services is split into
core FC services - Fog Controller, FTA and FACA (lines 23-68) along with config-
uration for MongoDB and AMQP-broker deployment (lines 3-22). Additional FC
services can be deployed through separated Docker Compose configuration files,
as presented in Listing A.3 for FTP and Listing A.2 for CCAA.

57 https://www.nginx.com/, last access May 2, 2022
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1 version: '3.5'
2 services:
3 reverse-proxy:
4 image: nginx
5 container_name: reverse-proxy
6 hostname: reverse-proxy
7 volumes:
8 - ./nginx/config:/etc/nginx
9 - ./nginx/ssl:/etc/ssl/private

10 ports:
11 - 80:80
12 links:
13 - cosylab-cswa
14 - cosylab-acam
15 - cosylab-tnta
16 cloud-mongodb:
17 image: mongo
18 container_name: cloud-mongodb
19 restart: always
20 environment:
21 MONGO_INITDB_ROOT_USERNAME: ${MONGO_USERNAME}
22 MONGO_INITDB_ROOT_PASSWORD: ${MONGO_PASSWORD}
23 cosylab-cloud-discovery-server:
24 image: ignjatov90/cosylab-cloud-discovery-server
25 container_name: cosylab-cloud-discovery-server
26 hostname: cosylab-cloud-discovery-server
27 cosylab-cloud-config-server:
28 image: ignjatov90/cosylab-cloud-config-server
29 container_name: cosylab-cloud-config-server
30 hostname: cosylab-cloud-config-server
31 links:
32 - cosylab-cloud-discovery-server
33 depends_on:
34 cosylab-cloud-discovery-server:
35 condition: service_healthy
36 cosylab-cswa:
37 image: ignjatov90/cosylab-cloud-cswa
38 container_name: cosylab-cswa
39 hostname: cosylab-cswa
40 cosylab-acam:
41 image: ignjatov90/cosylab-cloud-acam
42 container_name: cosylab-acam
43 hostname: cosylab-acam
44 environment:
45 COSYLAB_MONGO_USER: ${MONGO_USERNAME}
46 COSYLAB_MONGO_PASS: ${MONGO_PASSWORD}
47 COSYLAB_ACAM_USER: ${ACAM_USERNAME}
48 COSYLAB_ACAM_PASS: ${ACAM_PASSWORD}
49 links:
50 - cloud-mongodb
51 - cosylab-cloud-discovery-server
52 - cosylab-cloud-config-server
53 - cosylab-tnta
54 depends_on:
55 cosylab-cloud-config-server:
56 condition: service_healthy
57 cosylab-tnta:
58 image: ignjatov90/cosylab-cloud-tnta
59 container_name: cosylab-tnta
60 hostname: cosylab-tnta
61 environment:
62 COSYLAB_MONGO_USER: ${MONGO_USERNAME}
63 COSYLAB_MONGO_PASS: ${MONGO_PASSWORD}
64 COSYLAB_TNTA_KEYSTORE_PASS: ${TNTA_KEYSTORE_PASS}
65 links:
66 - cloud-mongodb
67 - cosylab-cloud-discovery-server
68 - cosylab-cloud-config-server
69 depends_on:
70 cosylab-cloud-config-server:
71 condition: service_healthy

Listing A.1: Docker Compose CC service bundle
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1 version: '3.5'
2 services:
3 fog_rabbitmq:
4 image: rabbitmq:3-management
5 container_name: fog_rabbitmq
6 environment:
7 RABBITMQ_DEFAULT_USER: ${RABBITMQ_USERNAME}
8 RABBITMQ_DEFAULT_PASS: ${RABBITMQ_PASSWORD}
9 ports:

10 - 5672:5672
11 healthcheck:
12 test: rabbitmq-diagnostics -q ping
13 interval: 5s
14 timeout: 2s
15 retries: 10
16 fog_mongodb:
17 image: mongo
18 container_name: fog_mongodb
19 restart: always
20 environment:
21 MONGO_INITDB_ROOT_USERNAME: ${MONGO_USERNAME}
22 MONGO_INITDB_ROOT_PASSWORD: ${MONGO_PASSWORD}
23 fog_ctrl:
24 image: ignjatov90/fog_ctrl
25 container_name: fog_ctrl
26 ports:
27 - 80:8080
28 links:
29 - fog_mongodb
30 - fog_rabbitmq
31 environment:
32 COSYLAB_FOG_CTRL_FACA_URL: http://fog_faca:5000
33 COSYLAB_FOG_CTRL_HA_URL: http://host.docker.internal:8123/api
34 depends_on:
35 fog_rabbitmq:
36 condition: service_healthy
37 fog_fta:
38 image: ignjatov90/fog_fta
39 container_name: fog_fta
40 links:
41 - fog_mongodb
42 - fog_rabbitmq
43 volumes:
44 - ftavolume:/keystore
45 environment:
46 COSYLAB_FTA_AS: ${FTA_AS}
47 COSYLAB_FTA_IS: ${FTA_IS}
48 COSYLAB_FTA_KEYSTORE_PASS: ${FTA_KEYSTORE_PASSWORD}
49 depends_on:
50 fog_rabbitmq:
51 condition: service_healthy
52 fog_faca:
53 image: ignjatov90/fog_faca
54 container_name: fog_faca
55 links:
56 - fog_mongodb
57 - fog_rabbitmq
58 volumes:
59 - facavolume:/keystore
60 environment:
61 COSYLAB_FACA_KEYSTORE_PASS: ${FTA_KEYSTORE_PASSWORD}
62 COSYLAB_FACA_ACAM_URL: http://ni-bakk.cosy.univie.ac.at/
63 depends_on:
64 fog_rabbitmq:
65 condition: service_healthy
66 volumes:
67 ftavolume:
68 facavolume:

Listing A.2: Docker Compose core FC service bundle
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1 version: '3.5'
2 services:
3 fog_ftp:
4 image: ignjatov90/fog_ftp
5 container_name: fog_ftp
6 volumes:
7 - ftpvolume:/keystore
8 environment:
9 COSYLAB_MONGO_HOST: ${MONGO_HOST}

10 COSYLAB_MONGO_USER: ${MONGO_USERNAME}
11 COSYLAB_MONGO_PASS: ${MONGO_PASSWORD}
12 COSYLAB_RABBIT_HOST: ${RABBITMQ_HOST}
13 COSYLAB_RABBIT_USER: ${RABBITMQ_USERNAME}
14 COSYLAB_RABBIT_PASS: ${RABBITMQ_PASSWORD}
15 COSYLAB_FTP_KEYSTORE_PASS: ${FTP_KEYSTORE_PASSWORD}
16 volumes:
17 ftpvolume:

Listing A.3: Docker Compose FTP service

1 version: '3.5'
2 services:
3 fog_ccaa:
4 image: ignjatov90/fog_ccaa
5 container_name: fog_ccaa
6 volumes:
7 - ccaavolume:/keystore
8 environment:
9 COSYLAB_MONGO_HOST: ${MONGO_HOST}

10 COSYLAB_MONGO_USER: ${MONGO_USERNAME}
11 COSYLAB_MONGO_PASS: ${MONGO_PASSWORD}
12 COSYLAB_RABBIT_HOST: ${RABBITMQ_HOST}
13 COSYLAB_RABBIT_USER: ${RABBITMQ_USERNAME}
14 COSYLAB_RABBIT_PASS: ${RABBITMQ_PASSWORD}
15 COSYLAB_FTP_KEYSTORE_PASS: ${CCAA_KEYSTORE_PASSWORD}
16 volumes:
17 ccaavolume:

Listing A.4: Docker Compose C-A agent example
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B

PKI Simulation Configuration

This appendix contains the configuration files used for PKI scalability simulations.
The provided configuration files are used for simulating following PKI schemas
and KMPs:

1. RSA with Diffie-Hellman key exchange and CRL in Listings B.1 and B.2;

2. RSA with Diffie-Hellman key exchange and OCSP in Listings B.3 and B.4;

3. EC with Diffie-Hellman key exchange and CRL in Listings B.6 and B.7;

4. EC with Diffie-Hellman key exchange and OCSP in Listings B.8 and B.9;

5. EC with Qu-Vanstone key exchange and CRL in Listings B.11 and B.12;

6. EC with Qu-Vanstone key exchange and OCSP in Listings B.13 and B.14.

Furthermore, various certificate management approaches are configured as
follows: (1) Listing B.5 provides global configuration for RSA X.509v3 certificates,
(2) Listing B.10 contains configuration for ECC X.509v3 certificates, and (3) Listing
B.15 configures ECC implicit certificates. Finally, simulated devices are configured
using Listing B.16.
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1 "create_L": {
2 "1": {
3 "name": "Start","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": { "nextStep": 2, "sendTo": "t" }}
5 },
6 "2": {
7 "name": "Gen Key", "ram_strain": 2648, "time": 83996,
8 "next_step": {"Option_1": {"nextStep": 3, "sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR", "ram_strain": 260, "time": 3081,
12 "payload": {"size": 1375},
13 "next_step": {"Option_1": {"nextStep": 4, "sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate", "ram_strain": 130, "time": 290,
17 "payload": {"size": 4830},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {"name": "Save Cert", "ram_strain": 144, "time": 10}
21 },
22 "create_I": {
23 "1": {
24 "name": "Start","ram_strain": 1,"time": 1,
25 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
26 },
27 "2": {
28 "name": "Gen Key","ram_strain": 2648,"time": 40000,
29 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
30 },
31 "3": {
32 "name": "Gen CSR","ram_strain": 260,"time": 124,
33 "payload": {"size": 1375},
34 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
35 },
36 "4": {
37 "name": "Create Certificate", "ram_strain": 130,"time": 120,
38 "payload": {"size": 3220},
39 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
40 },
41 "5": {"name": "Save Cert", "ram_strain": 144, "time": 10}
42 },
43 "expire_revoke": {
44 "1": {
45 "name": "Expire on Me", "ram_strain": 144, "time": 3,
46 "payload": {"size": 100,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
48 },
49 "2": {
50 "name": "Expire on I","ram_strain": 144,"time": 3,
51 "payload": {"size": 100, "mult_with": "1"},
52 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
53 },
54 "3": {
55 "name": "Expire on R","ram_strain": 144, "time": 3,
56 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
57 },
58 "4": {
59 "name": "Return L", "ram_strain": 144, "time": 3,
60 "next_step": { "Option_1": {"nextStep": 5,"sendTo": "s"}}
61 },
62 "5": {"name": "Finish","ram_strain": 1,"time": 1}
63 }

Listing B.1: RSA CRL create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 4830,"mult_with": "1"},
9 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Check Root Cert","ram_strain": 144,"time": 42,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Check CRL","ram_strain": 144,"time": 10,"condition": "has_Crl",
21 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "t"},
22 "Option_2": {"nextStep": 9,"sendTo": "t"}}
23 },
24 "6": {
25 "name": "Request CRL", "ram_strain": 1,"time": 1,
26 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "p"}}
27 },
28 "7": {
29 "name": "Send CRL","ram_strain": 96,"time": 10,
30 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "s"}},
31 "payload": {"size": 100,"mult_with": "num_revo_cert"}},
32 "8": {
33 "name": "Save CRL","ram_strain": 96,"time": 1,
34 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "t"}}
35 },
36 "9": {
37 "name": "Loop CRL","ram_strain": 100,"time": 1,"check_revoke_list": "CRL"
38 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "t"}},
39 },
40 "10": {
41 "name": "Is not Revoked","ram_strain": 1,"time": 1,"check_valid_aff": true
42 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "t"}},
43 },
44 "11": {
45 "name": "Set Alice Context and send","ram_strain": 374,"time": 440,
46 "payload": {"size": 360,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 12,"sendTo": "a"}}
48 },
49 "12": {
50 "name": "Setting Bob Context","ram_strain": 372,"time": 440,
51 "next_step": {"Option_1": {"nextStep": 13,"sendTo": "t"}}
52 },
53 "13": {
54 "name": "Bob Read Alice Values and gen Secret","ram_strain": 374, "time": 250,
55 "payload": {"size": 116,"mult_with": "1"},
56 "next_step": {"Option_1": {"nextStep": 14,"sendTo": "s"}}
57 },
58 "14": {
59 "name": "Alice reading Bob and gen Key","ram_strain": 360,"time": 250
60 }
61 }

Listing B.2: RSA CRL validation lifecycle
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B PKI Simulation Configuration

1 "create_L": {
2 "1": {
3 "name": "Start","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
5 },
6 "2": {
7 "name": "Gen Key","ram_strain": 2648,"time": 83996,
8 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR","ram_strain": 260,"time": 3081,
12 "payload": {"size": 1375},
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate","ram_strain": 1090,"time": 290,
17 "payload": {"size": 4830},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {
21 "name": "Save Cert","ram_strain": 144,"time": 10
22 }
23 },
24 "create_I": {
25 "1": {
26 "name": "Start","ram_strain": 1,"time": 1,
27 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
28 },
29 "2": {
30 "name": "Gen Key","ram_strain": 2648,"time": 40000,
31 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
32 },
33 "3": {
34 "name": "Gen CSR","ram_strain": 260,"time": 124,
35 "payload": {"size": 1375},
36 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
37 },
38 "4": {
39 "name": "Create Certificate","ram_strain": 130,"time": 120,
40 "payload": {"size": 3220},
41 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
42 },
43 "5": {
44 "name": "Save Cert","ram_strain": 144,"time": 10
45 }
46 },
47 "expire_revoke": {
48 "1": {
49 "name": "Expire on Me","ram_strain": 144,"time": 3,
50 "payload": {"size": 100,"mult_with": "1"},
51 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
52 },
53 "2": {
54 "name": "Expire on I","ram_strain": 144,"time": 3,
55 "payload": {"size": 100,"mult_with": "1"},
56 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
57 },
58 "3": {
59 "name": "Expire on R","ram_strain": 144,"time": 3,
60 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
61 },
62 "4": {
63 "name": "Return L","ram_strain": 144,"time": 3,
64 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
65 },
66 "5": {
67 "name": "Finish","ram_strain": 1,"time": 1
68 }
69 }

Listing B.3: RSA OCSP create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 4830,"mult_with": "1"},
9 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Check Root Cert","ram_strain": 144,"time": 42,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Check CRL","ram_strain": 144,"time": 10,
21 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "t"}}
22 },
23 "6": {
24 "name": "OSCP Request","ram_strain": 1,"time": 10,
25 "payload": {"size": 100,"mult_with": "1"},
26 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "r"}}
27 },
28 "7": {
29 "name": "Check OSCP","ram_strain": 96,"time": 10,"check_revoke_list": "OSCP",
30 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "s"}},
31 "payload": {"size": 100,"mult_with": "num_revo_cert"}},
32 "8": {
33 "name": "Check Valid","ram_strain": 10,"time": 10,"check_valid_aff": true,
34 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "t"}}
35 },
36 "9": {
37 "name": "Set Alice Context and send","ram_strain": 374,"time": 440,
38 "payload": {"size": 360,"mult_with": "1"},
39 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "a"}}
40 },
41 "10": {
42 "name": "Setting Bob Context","ram_strain": 440,"time": 240,
43 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "t"}}
44 },
45 "11": {
46 "name": "Bob Read Alice Values and gen Secret","ram_strain": 374,"time": 250,
47 "payload": {"size": 116,"mult_with": "1"},
48 "next_step": {"Option_1": {"nextStep": 12,"sendTo": "s"}}
49 },
50 "12": {
51 "name": "Alice reading Bob and gen Key","ram_strain": 360,"time": 250
52 }
53 }

Listing B.4: RSA OCSP validation lifecycle

1 "const_data": {
2 "crl_entry_size": 100, "asym_key_size": 384, "sym_key_size": 128,
3 "session_key_recheck": 60, "cert_size": 1610
4 }

Listing B.5: RSA global configuration
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B PKI Simulation Configuration

1 "create_L": {
2 "1": {
3 "name": "Start","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
5 },
6 "2": {
7 "name": "Gen Key","ram_strain": 2648,"time": 240,
8 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR","ram_strain": 260,"time": 248,
12 "payload": {"size": 500},
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate","ram_strain": 130,"time": 120,
17 "payload": {"size": 1500},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {"name": "Save Cert","ram_strain": 144,"time": 10}
21 },
22 "create_I": {
23 "1": {
24 "name": "Start","ram_strain": 1,"time": 1,
25 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
26 },
27 "2": {
28 "name": "Gen Key","ram_strain": 2648,"time": 120,
29 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
30 },
31 "3": {
32 "name": "Gen CSR","ram_strain": 260,"time": 124,
33 "payload": {"size": 500},
34 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
35 },
36 "4": {
37 "name": "Create Certificate","ram_strain": 130,"time": 60,
38 "payload": {"size": 1000},
39 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
40 },
41 "5": {"name": "Save Cert","ram_strain": 144,"time": 10}
42 },
43 "expire_revoke": {
44 "1": {
45 "name": "Expire on Me","ram_strain": 144,"time": 3,
46 "payload": {"size": 100,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
48 },
49 "2": {
50 "name": "Expire on I","ram_strain": 144,"time": 3,
51 "payload": {"size": 100,"mult_with": "1"},
52 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
53 },
54 "3": {
55 "name": "Expire on R","ram_strain": 144,"time": 3,
56 "payload": {"size": 100,"mult_with": "1"},
57 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
58 },
59 "4": {
60 "name": "Return L","ram_strain": 144,"time": 3,
61 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
62 },
63 "5": {"name": "Finish","ram_strain": 1,"time": 1}
64 }

Listing B.6: ECC CRL create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 1500,"mult_with": "1"},
9 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Check Root Cert","ram_strain": 144,"time": 42,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Check CRL","ram_strain": 144,"time": 10,
21 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "t"}}
22 },
23 "6": {
24 "name": "Request CRL","ram_strain": 1,"time": 1,
25 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "p"}}
26 },
27 "7": {
28 "name": "Send CRL","ram_strain": 96,"time": 10,
29 "payload": {"size": 100,"mult_with": "num_revo_cert"},
30 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "s"}}
31 },
32 "8": {
33 "name": "Save CRL","ram_strain": 96,"time": 1,
34 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "t"}}
35 },
36 "9": {
37 "name": "Loop CRL","ram_strain": 100,"time": 1,"check_revoke_list": "CRL",
38 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "t"}}
39 },
40 "10": {
41 "name": "Is not Revoked","ram_strain": 1,"time": 1,"check_valid_aff": true,
42 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "t"}}
43 },
44 "11": {
45 "name": "Set Alice Context and send","ram_strain": 209,"time": 372,
46 "payload": {"size": 360,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 12,"sendTo": "a"}}
48 },
49 "12": {
50 "name": "Setting Bob Context","ram_strain": 372,"time": 209,
51 "next_step": {"Option_1": {"nextStep": 13,"sendTo": "t"}}
52 },
53 "13": {
54 "name": "Bob Read Alice Values and gen Secret","ram_strain": 116,"time": 216,
55 "payload": {"size": 116,"mult_with": "1"},
56 "next_step": {"Option_1": {"nextStep": 14,"sendTo": "s"}}
57 },
58 "14": {
59 "name": "Alice reading Bob and gen Key","ram_strain": 116,"time": 218
60 }
61 }

Listing B.7: ECC CRL validation lifecycle
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B PKI Simulation Configuration

1 "create_L": {
2 "1": {
3 "name": "Start","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
5 },
6 "2": {
7 "name": "Gen Key","ram_strain": 2648,"time": 240,
8 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR","ram_strain": 260,"time": 248,
12 "payload": {"size": 500},
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate","ram_strain": 130,"time": 120,
17 "payload": {"size": 1500},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {"name": "Save Cert","ram_strain": 144,"time": 10}
21 },
22 "create_I": {
23 "1": {
24 "name": "Start","ram_strain": 1,"time": 1,
25 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
26 },
27 "2": {
28 "name": "Gen Key","ram_strain": 2648,"time": 120,
29 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
30 },
31 "3": {
32 "name": "Gen CSR","ram_strain": 260,"time": 124,
33 "payload": {"size": 500},
34 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
35 },
36 "4": {
37 "name": "Create Certificate","ram_strain": 130,"time": 120,
38 "payload": {"size": 1000},
39 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
40 },
41 "5": {"name": "Save Cert","ram_strain": 144,"time": 10}
42 },
43 "expire_revoke": {
44 "1": {
45 "name": "Expire on Me","ram_strain": 144,"time": 3,
46 "payload": {"size": 100,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
48 },
49 "2": {
50 "name": "Expire on I","ram_strain": 144,"time": 3,
51 "payload": {"size": 100,"mult_with": "1"},
52 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
53 },
54 "3": {
55 "name": "Expire on R","ram_strain": 144,"time": 3,
56 "payload": {"size": 100,"mult_with": "1"},
57 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
58 },
59 "4": {
60 "name": "Return L","ram_strain": 144,"time": 3,
61 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
62 },
63 "5": {"name": "Finish","ram_strain": 1,"time": 1}
64 }

Listing B.8: ECC OCSP create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 1500,"mult_with": "1"},
9 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Check Root Cert","ram_strain": 144,"time": 10,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Query OSCP Request","ram_strain": 1,"time": 10,
21 "payload": {"size": 100,"mult_with": "1"},
22 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "r"}}
23 },
24 "6": {
25 "name": "Query OSCP","ram_strain": 69,"time": 1,"check_revoke_list": "OSCP",
26 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "s"}}
27 },
28 "7": {
29 "name": "Check Valid","ram_strain": 1,"time": 1,"check_valid_aff": true,
30 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "t"}}
31 },
32 "8": {
33 "name": "Set Alice Context and send","ram_strain": 209,"time": 372,
34 "payload": {"size": 360,"mult_with": "1"},
35 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "a"}}
36 },
37 "9": {
38 "name": "Setting Bob Context","ram_strain": 372,"time": 209,
39 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "t"}}
40 },
41 "10": {
42 "name": "Bob Read Alice Values and gen Secret","ram_strain": 116,"time": 216,
43 "payload": {"size": 116,"mult_with": "1"},
44 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "s"}}
45 },
46 "11": {
47 "name": "Alice reading Bob and gen Key","ram_strain": 116,"time": 218
48 }
49 }

Listing B.9: ECC OCSP validation lifecycle

1 "const_data": {
2 "crl_entry_size": 100,"asym_key_size": 32,"sym_key_size": 128,
3 "session_key_recheck": 60,"cert_size": 500
4 }

Listing B.10: ECC global configuration
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B PKI Simulation Configuration

1 "create_L": {
2 "1": {
3 "name": "Load Param from ECQV","ram_strain": 24,"time": 10,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
5 },
6 "2": {
7 "name": "Gen Key","ram_strain": 2300,"time": 240,
8 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR","ram_strain": 260,"time": 248,
12 "payload": {"size": 290},
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate","ram_strain": 130,"time": 120,
17 "payload": {"size": 984},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {"name": "Save Cert and Finish Priv Key","ram_strain": 244,"time": 20}
21 },
22 "create_I": {
23 "1": {
24 "name": "Load Param from ECQV","ram_strain": 24,"time": 10,
25 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
26 },
27 "2": {
28 "name": "Gen Key","ram_strain": 2300,"time": 120,
29 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
30 },
31 "3": {
32 "name": "Gen CSR","ram_strain": 260,"time": 124,
33 "payload": {"size": 290},
34 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
35 },
36 "4": {
37 "name": "Create Certificate","ram_strain": 130,"time": 60,
38 "payload": {"size": 656},
39 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
40 },
41 "5": {"name": "Save Cert and Finish Priv Key","ram_strain": 244,"time": 10}
42 },
43 "expire_revoke": {
44 "1": {
45 "name": "Expire on Me","ram_strain": 144,"time": 3,
46 "payload": {"size": 100,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
48 },
49 "2": {
50 "name": "Expire on I","ram_strain": 144,"time": 3,
51 "payload": {"size": 100,"mult_with": "1"},
52 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
53 },
54 "3": {
55 "name": "Expire on R","ram_strain": 144,"time": 3,
56 "payload": {"size": 100,"mult_with": "1"},
57 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
58 },
59 "4": {
60 "name": "Return L","ram_strain": 144,"time": 3,
61 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
62 },
63 "5": {"name": "Finish","ram_strain": 1,"time": 1}
64 }

Listing B.11: ECQV CRL create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 984},
9 "next_step": {"Option_1": "nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Extract Public Key","ram_strain": 200,"time": 50,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Check Root Cert","ram_strain": 144,"time": 42,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true,
21 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "t"}}
22 },
23 "6": {
24 "name": "Check CRL","ram_strain": 144,"time": 10,
25 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "t"}}
26 },
27 "7": {
28 "name": "Request CRL","ram_strain": 1,"time": 1,
29 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "r"}}
30 },
31 "8": {
32 "name": "Send CRL","ram_strain": 96,"time": 10,
33 "payload": {"size": 100,"mult_with": "num_revo_cert"},
34 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "s"}}
35 },
36 "9": {
37 "name": "Save CRL","ram_strain": 96,"time": 1,
38 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "t"}}
39 },
40 "10": {
41 "name": "Loop CRL","ram_strain": 100,"time": 1,"check_revoke_list": "CRL",
42 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "t"}}
43 },
44 "11": {
45 "name": "Is not Revoked","ram_strain": 1,"time": 1,"check_valid_aff": true,
46 "next_step": {"Option_1": {"nextStep": 12,"sendTo": "t"}}
47 },
48 "12": {
49 "name": "Set Alice Context and send","ram_strain": 209,"time": 372,
50 "payload": {"size": 360,"mult_with": "1"},
51 "next_step": {"Option_1": {"nextStep": 13,"sendTo": "a"}}
52 },
53 "13": {
54 "name": "Setting Bob Context","ram_strain": 372,"time": 209,
55 "next_step": {"Option_1": {"nextStep": 14,"sendTo": "t"}}
56 },
57 "14": {
58 "name": "Bob Read Alice Values and gen Secret","ram_strain": 116,"time": 216,
59 "payload": {"size": 116,"mult_with": "1"},
60 "next_step": {"Option_1": {"nextStep": 15,"sendTo": "s"}}
61 },
62 "15": {"name": "Alice reading Bob and gen Key","ram_strain": 116,"time": 218}
63 }

Listing B.12: ECQV CRL validation lifecycle
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B PKI Simulation Configuration

1 "create_L": {
2 "1": {
3 "name": "Load Param for ECQV","ram_strain": 24,"time": 10,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
5 },
6 "2": {
7 "name": "Gen Key","ram_strain": 2648,"time": 240,
8 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
9 },

10 "3": {
11 "name": "Gen CSR","ram_strain": 260,"time": 248,
12 "payload": {"size": 290},
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
14 },
15 "4": {
16 "name": "Create Certificate","ram_strain": 130,"time": 120,
17 "payload": {"size": 984},
18 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
19 },
20 "5": {"name": "Save Cert and finish priv Key","ram_strain": 244,"time": 20}
21 },
22 "create_I": {
23 "1": {
24 "name": "Load Param from ECQV","ram_strain": 24,"time": 10,
25 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "t"}}
26 },
27 "2": {
28 "name": "Gen Key","ram_strain": 2300,"time": 120,
29 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "t"}}
30 },
31 "3": {
32 "name": "Gen CSR","ram_strain": 260,"time": 124,
33 "payload": {"size": 290},
34 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "p"}}
35 },
36 "4": {
37 "name": "Create Certificate","ram_strain": 130,"time": 60,
38 "payload": {"size": 656},
39 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
40 },
41 "5": {"name": "Save Cert and Finish Priv Key","ram_strain": 244,"time": 10}
42 },
43 "expire_revoke": {
44 "1": {
45 "name": "Expire on Me","ram_strain": 144,"time": 3,
46 "payload": {"size": 100,"mult_with": "1"},
47 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "p"}}
48 },
49 "2": {
50 "name": "Expire on I","ram_strain": 144,"time": 3,
51 "payload": {"size": 100,"mult_with": "1"},
52 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "p"}}
53 },
54 "3": {
55 "name": "Expire on R","ram_strain": 144,"time": 3,
56 "payload": {"size": 100,"mult_with": "1"},
57 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "s"}}
58 },
59 "4": {
60 "name": "Return L","ram_strain": 144,"time": 3,
61 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "s"}}
62 },
63 "5": {"name": "Finish","ram_strain": 1,"time": 1}
64 }

Listing B.13: ECQV OCSP create and expire lifecycles
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1 "validate": {
2 "1": {
3 "name": "Request Cert","ram_strain": 1,"time": 1,
4 "next_step": {"Option_1": {"nextStep": 2,"sendTo": "a"}}
5 },
6 "2": {
7 "name": "Sending Cert","ram_strain": 144,"time": 10,
8 "payload": {"size": 1500,"mult_with": "1"},
9 "next_step": {"Option_1": {"nextStep": 3,"sendTo": "s"}}

10 },
11 "3": {
12 "name": "Extract Public Key","ram_strain": 200,"time": 50,
13 "next_step": {"Option_1": {"nextStep": 4,"sendTo": "t"}}
14 },
15 "4": {
16 "name": "Check Root Cert","ram_strain": 144,"time": 10,
17 "next_step": {"Option_1": {"nextStep": 5,"sendTo": "t"}}
18 },
19 "5": {
20 "name": "Is Valid Root Cert","ram_strain": 1,"time": 1,"check_valid_aff": true
21 "next_step": {"Option_1": {"nextStep": 6,"sendTo": "t"}}
22 },
23 "6": {
24 "name": "Query OSCP Request","ram_strain": 1,"time": 10,
25 "next_step": {"Option_1": {"nextStep": 7,"sendTo": "r"}},
26 "payload": {"size": 100,"mult_with": "1"}
27 },
28 "7": {
29 "name": "Query OSCP","ram_strain": 69,"time": 1,"check_revoke_list": "OSCP"
30 "next_step": {"Option_1": {"nextStep": 8,"sendTo": "s"}},
31 },
32 "8": {
33 "name": "Check Valid","ram_strain": 1,"time": 1,"check_valid_aff": true
34 "next_step": {"Option_1": {"nextStep": 9,"sendTo": "t"}},
35 },
36 "9": {
37 "name": "Set Alice Context and send","ram_strain": 209,"time": 372,
38 "payload": {"size": 360,"mult_with": "1"},
39 "next_step": {"Option_1": {"nextStep": 10,"sendTo": "a"}}
40 },
41 "10": {
42 "name": "Setting Bob Context","ram_strain": 372,"time": 209,
43 "next_step": {"Option_1": {"nextStep": 11,"sendTo": "t"}}
44 },
45 "11": {
46 "name": "Bob Read Alice Values and gen Secret","ram_strain": 116,"time": 216,
47 "next_step": {"Option_1": {"nextStep": 12,"sendTo": "s"}},
48 "payload": {"size": 116,"mult_with": "1"}
49 },
50 "12": {"name": "Alice reading Bob and gen Key","ram_strain": 116,"time": 218}
51 }

Listing B.14: ECQV OCSP validation lifecycle

1 "const_data": {
2 "name": "ECQV","crl_entry_size": 100,"asym_key_size": 32,
3 "sym_key_size": 128,"session_key_recheck": 60,"cert_size": 328
4 },

Listing B.15: ECQV global configuration
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1 {
2 "GLOBAL": {
3 "create_lower": 30000,
4 "create_upper": 90000,
5 "validate_lower": 30000,
6 "validate_upper": 90000,
7 "revoke_lower": 30000,
8 "revoke_upper": 120000,
9 "validation_timeout": 40000,

10 "max_ms" : 1000
11 },
12 "R_NODE": {
13 "max_thread": 8,
14 "max_storage": 9000000,
15 "max_ram": 10000,
16 "max_tries": 1,
17 "wtask_seed_lower": 1000,
18 "wtask_seed_upper": 2000
19 },
20 "I_NODE": {
21 "max_thread": 4,
22 "max_storage": 2621440,
23 "max_ram": 655360,
24 "max_tries": 20,
25 "wtask_seed_lower": 30000,
26 "wtask_seed_upper": 60000
27 },
28 "L_NODE": {
29 "max_thread": 1,
30 "max_storage": 1310720,
31 "max_ram": 327680,
32 "max_tries": 20,
33 "wtask_seed_lower": 60000,
34 "wtask_seed_upper": 120000
35 }
36 }

Listing B.16: Global configuration - time constraints and PKI nodes
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