
Documentation
About open-pdf-sign 2

License 2

Open-pdf-sign CLI 3
Features 3
Use open-pdf-sign 3

Run 3
Usage with Let's Encrypt certificates 4
Visible signatures 4
Usage in server mode 5
Using a config file 5

Development documentation 5
Requirements 5
Build 6

Open-pdf-sign npm module 7
Prerequisites 7
Installation 7
Usage 7
Development documentation 7

Open-pdf-sign-configurator 8
Requirements 8
Installation instructions 8
Requirements 8
Installation 8

1. SSH into your server 8
2. Install Dependencies 8
3. Install openpdfsign-configurator 8
4. Run the Configurator 9
5. Confirm that its working 9

Development documentation 9
Testing 9
Release 10

Testing a release 10

About open-pdf-sign
Our software, open-pdf-sign allows to sign PDF files digitally from CLI or a webserver. There
are special certificates needed, users can just reuse their already existing certificates, e.g.
from Let's Encrypt.

Files are cryptographically signed following the PAdES-B and PAdES-T standards. This lets
site visitors know that PDFs were actually served by the visited server. Users can append a
visible or invisible signature. Visible signatures can be further customized. Finally,
open-pdf-sign easily integrates with existing Nginx web server or can be used in Node.JS
projects.

Open-pdf-sign is released under the Apache 2.0 Open Source license, allowing anyone to
use and modify the code. It’s free to use and distribute.

License
This document is licensed under CC-BY-SA

Open-pdf-sign CLI
The open-pdf-sign CLI application allows to easily sign PDF files from the commandline.
Signatures can be invisible or visible, and visible signatures can be customized.

Features
● Visible PDF signature in PDF (multi language support)
● Invoke via CLI or via starting a server
● Supported Signature type: PAdES
● Supported Signature profiles:

○ BASELINE-B
○ BASELINE-T
○ To be evaluated: BASELINE-LT, BASELINE-LTA

Use open-pdf-sign
Download the latest jar archive from the GitHub releases page or in your terminal:

curl -L

https://github.com/open-pdf-sign/open-pdf-sign/releases/latest/download/op

en-pdf-sign.jar -o open-pdf-sign.jar

Make sure that Java is installed in at least version 8.

Run
java -jar open-pdf-sign.jar -i input.pdf -o output.pdf -c certificate.crt

-k keyfile.pem -p key_passphrase --page -1 --locale de-AT

Usage:

Options:

-b, --binary

binary output of PDF

Default: false

-c, --certificate

certificate (chain) to be used

--config

use a configuration file

--hint

text to be displayed in signature field

--host

run as server with the given hostname

--image

Image to be placed in signature block

https://github.com/open-pdf-sign/open-pdf-sign/releases

-i, --input

input pdf file

-k, --key

signature key file or keystore

--left

X coordinate of the signature block in cm

Default: 1.0

-l, --locale

Locale, e.g. de-AT

-o, --output

output pdf file

--page

Page where the signature block should be placed. [-1] for last page

-p, --passphrase

passphrase for the signature key or keystore

--port

run as server with the given port

Default: 8090

--timestamp

include signed timestamp

Default: false

--timezone

use specific timezone for time info, e.g. Europe/Vienna

--top

Y coordinate of the signature block in cm

Default: 1.0

--tsa

use specific time stamping authority as source (if multiple given,

will

be used in given order as fallback)

Default: []

--width

width of the signature block in cm

Default: 10.0

Usage with Let's Encrypt certificates

PDFs can also be signed using your existing Let's Encrypt certificate.

java -jar open-pdf-sign.jar -i input.pdf -o output.pdf \

-c /etc/letsencrypt/live/openpdfsign.org/fullchain.pem \

-k /etc/letsencrypt/live/openpdfsign.org/privkey.pem

Visible signatures
If the page parameter is specified, a visible signature will be placed on the specified page.
For example, running

java -jar open-pdf-sign.jar -i input.pdf -o output.pdf \

-c certificate.crt \

-k key.pem \

--page -1 --logo mylogo.png \

--hint "You can check the validity at signaturpruefung.gv.at"

will place a visible signature looking similar to the image below on the last page (-1) of the
PDF document.

Usage in server mode

You can also run open-pdf-sign as a server application in order to only load certificates once
and easily integrate it in applications where CLI invocations are not possible. Simply add the
--port or --hostname parameters, e.g.

java -jar open-pdf-sign.jar -i input.pdf -o output.pdf \

-c /etc/letsencrypt/live/openpdfsign.org/fullchain.pem \

-k /etc/letsencrypt/live/openpdfsign.org/privkey.pem

--port 8090 --hostname 127.0.0.1

Then, PDFs can be signed via the specified /pdf endpoint:

curl --location --request POST 'http://localhost:8090/' \

--header 'Content-Type: application/json' \

--data-raw '{

"input": "/path/to/pdf.pdf"

}'

Using a config file

Instead of CLI parameters, you can also submit a configuration file with the same
parameters and the possibility to lead multiple keys, as shown in this example

java -jar open-pdf-sign.jar --config /path/to/config.yaml

Development documentation

Requirements

https://github.com/open-pdf-sign/open-pdf-sign/blob/master/src/main/resources/openapi.yml
https://github.com/open-pdf-sign/open-pdf-sign/blob/master/src/test/resources/test-config.yml

● Maven (https://maven.apache.org/)
● JDK 8

Build
The package can be built running

mvn package

During the build, all unit tests are executed.

https://maven.apache.org/

Open-pdf-sign npm module
Node.js wrapper for the open-pdf-sign CLI. This allows you to easily sign PDF files from your
node.js applications.

Prerequisites
● nodejs
● java

Installation
npm i open-pdf-sign --save

Usage
See demo/sample.js file for how to use with.

You can use all command line parameters from the open-pdf-sign Java CLI, including visible
signatures, signatures text, etc.

const OpenPdfSign = require("open-pdf-sign")

await OpenPdfSign.sign("-i demo.pdf", "-o demo.signed.pdf","-k

key.pem","-c cert.pem")

You can also use open-pdf-sign in your TypeScript files:

import { OpenPdfSign } from "open-pdf-sign"

await OpenPdfSign.sign("-i demo.pdf", "-o demo.signed.pdf","-k

key.pem","-c cert.pem")

Development documentation
After installing all dependencies and downloading the latest version of the open-pdf-sign CLI
application by running npm i, run npm run build to build the typescript files.

https://github.com/open-pdf-sign/open-pdf-sign
https://github.com/open-pdf-sign/open-pdf-sign-node/blob/master/demo/sample.js
https://github.com/open-pdf-sign/open-pdf-sign

Open-pdf-sign-configurator
open-pdf-sign-configurator is a tool that simplifies the process of setting up and configuring
open-pdf-sign on an nginx server. It automates many of the steps involved in the installation
and configuration process, making it quick and easy for users to get open-pdf-sign up and
running on their web servers. This can help save time and reduce the potential for errors,
allowing users to quickly and easily sign PDFs on their web server.

After you install and activate it, all PDFs served by your Nginx server will automatically be
signed by your SSL certificate.

Requirements
● Java 8 or higher
● python 3.9 or higher
● Webserver (currently only Nginx supported)
● SSL certificate (tested with letsencrypt)

Installation instructions
Following these instructions will make all PDFs served by your webserver signed by your
SSL certificate

Requirements
● comfort with the command line
● a Nginx webserver that is online and running debian or Ubuntu
● a LetsEncrypt or other SSL certificate installed with Nginx
● SSH access to your server with sudo rights

Installation

1. SSH into your server

SSH into the server running your HTTP website as a user with sudo privileges.

2. Install Dependencies

apt-get install default-jre python3 python3-pip

3. Install openpdfsign-configurator

pip install openpdfsign-configurator

4. Run the Configurator

opsconfig

You can select the domain names where open-pdf-sign will be installed

5. Confirm that its working

Go to the URL where you are currently serving a PDF Download it and check your signature
i.e. here: https://ec.europa.eu/cefdigital/DSS/webapp-demo/validation

Development documentation
● go to the "installer" folder
● create a virtual environment
● do pip install -r requirements.txt

In order to develop, you can simply run the main.py file, just make sure to change the
"stage" from "prod" to "dev"

Testing

This will create a docker container with:

● Nginx server running
● A certificate for test.com
● all dependencies installed

go to the file main.py in directory installer and change "prod" to "test"

cd installer

python -m build

cp dist/*.whl ../test/installerdev

cd ../test/installerdev

vim Dockerfile #(change the version of the whl file if necessery)

docker build -t nginx .

docker run --name installertest -d -p 80:80 -p 443:443 nginx

docker exec -it installertest bash

opsconfig

https://ec.europa.eu/cefdigital/DSS/webapp-demo/validation

java -jar /etc/openpdfsign/openpdfsign.jar --config

/etc/openpdfsign/config.yml

visit: https://127.0.0.1/test1.pdf

Release

● python -m build
● twine upload -r testpypi dist/*
● twine upload -r pypi dist/*

Testing a release

This will test the pypi test pip package. In order to test you can run the following commands.

cd test/installerrelease

docker build -t nginx .

docker run --name installertest -d -p 80:80 -p 443:443 nginx

docker exec -it installertest bash

opsconfig

java -jar /etc/openpdfsign/openpdfsign.jar --config

/etc/openpdfsign/config.yml

visit: https://127.0.0.1/test1.pdf

https://127.0.0.1/test1.pdf
https://127.0.0.1/test1.pdf

