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Kurzfassung

Das Internet der Dinge (Internet of Things, IoT) hält immer mehr Einzug in unser tägli-
ches Leben und Sensoren ermöglichen, kostengünstig die Umwelt zu erfassen und darauf
zu reagieren. Diese Sensoren haben jedoch häufig nur beschränkte Ressourcen, da sie auf
Batterien als Energiequelle angewiesen sind und nur drahtlose Kommunikation zur Verfü-
gung haben, was zu einem höheren Energieverbrauch und auch zu einer Überlastung des
Netzwerks führen kann. Die Reduzierung der erforderlichen Kommunikation der Sensoren
erhöht ihre Lebensdauer, reduziert die Wartungskosten, und schont Netzwerkressourcen.

Diese Arbeit präsentiert SenseReduce, ein Open Source Framework für Datenreduktion
durch Datenvorhersage mit kontinuierlichen Modellaktualisierungen in IoT-Umgebungen.
Das Framework ermöglicht die Verwendung neuronaler Netze als multivariate Prognose-
modelle, die den Kommunikationsaufwand durch die Vorhersage zukünftiger Sensormes-
sungen mit hoher Genauigkeit erheblich reduzieren können.

Um das Frameworks zu evaluieren, führen wir eine Parameterstudie durch, die auf dem
Anwendungsfall der Lufttemperaturüberwachung basiert. Wir entwerfen drei neuronale
Netze unterschiedlicher Grüße und Komplexität unter Verwendung von Hyperparameter-
Optimierung, und führen mehrere Simulationsszenarien mit verschiedenen Trainings-
datensätzen und Parameterkonfigurationen durch. Die quantitative Auswertung der
Simulationsergebnisse zeigt die Effizienz von SenseReduce durch Reduzierung der
erforderlichen Nachrichten um bis zu 38% und der Gesamtmenge der übertragenen Daten
um bis zu 22% im Vergleich zum Referenzwert eines Prognosemodells basierend auf
Trendextrapolation. Kontinuierliche Modellaktualisierungen reduzieren die insgesamt
übertragenen Daten in Szenarien mit geringen Trainingsdaten und verbessern die Pro-
gnosegenauigkeit im Laufe der Zeit. Darüber hinaus zeigen unsere Simulationen, dass die
Effizienz des Frameworks kontextabhängig ist, insbesondere vom Messintervall, der defi-
nierten Schwellenwertmetrik und der Modellarchitektur. Wir fassen unsere Erkenntnisse in
Empfehlungen für zukünftige Anwendungen der Datenreduktion durch Datenvorhersage,
insbesondere im Kontext der Lufttemperaturüberwachung, zusammen.
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Abstract

The Internet of Things (IoT) is becoming increasingly prevalent in our daily lives, with
sensor devices providing the ability to sense and act on the environment. However, these
sensor nodes are often resource-constrained, relying on batteries as an energy source, and
constrained by wireless communication, which results in higher energy consumption and
network congestion. Reducing required network communication in these devices increases
their lifetime, reduces maintenance costs, and preserves network resources.

To tackle this challenge, we propose SenseReduce, an open-source framework for
prediction-based data reduction with continual learning and continuous deployment of
prediction models in IoT environments. The framework enables using neural networks as
multivariate prediction models, which can significantly reduce the required communication
by predicting future sensor measurements with high accuracy.

To evaluate the performance of the proposed framework, we conduct a parameter study
based on the use case of air temperature monitoring. We design three neural networks with
varying architectural and computational complexities using hyperparameter optimization
and run multiple simulation scenarios using different training datasets and parameter
configurations. The quantitative evaluation of the simulation results demonstrates the
effectiveness of SenseReduce in reducing the required messages by up to 38% and the
amount of transferred data by up to 22% compared to a baseline using trend extrapolation.
Continuous model updates reduce the total data transferred in scenarios with sparse
training data and improve model performance over time. Additionally, our simulations
show that the effectiveness of prediction-based data reduction highly depends on the
context, including measurement frequency, threshold metric, and model architecture.
Overall, we provide several recommendations for future applications, particularly for air
temperature monitoring.
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CHAPTER 1
Introduction

1.1 Motivation

The proliferation of Internet of Things (IoT) devices in recent years has led to a rapid
increase in the number of interconnected devices. According to Ericsson, the number
of IoT connections is expected to reach 30.2 billion by 2027 [Eri22]. IoT enables the
interconnection of physical devices, vehicles, buildings, and other items embedded with
sensors, software, and connectivity, to collect and exchange data, enabling resource
sharing, analysis, and management across various industries [LYZ+17]. Wireless sensor
nodes, which are small and low-cost computing devices equipped with radio antennas and
sensors, are an essential component of IoT systems. The constantly increasing performance
and decreasing cost of these sensor nodes facilitate ever-expanding fields of application:
industrial IoT [SSH+18], precision agriculture [JNG+17], IoT for healthcare [ZB21], and
smart cities [PQE+18], for example, are vibrant research areas.

These sensor nodes are capable of sensing a wide range of environmental parameters and
are often deployed in the form of Wireless Sensor Networks (WSNs) in areas that are
difficult for humans to access. Within WSNs, sensor nodes are typically deployed in large
numbers in a mesh topology and are used to collect and transmit data wirelessly [ACFP09].
Sensor nodes often rely on batteries as energy sources because the environment does
not provide an alternative (e.g., rural environments), or the nodes must be mobile (e.g.,
body sensors). Reducing energy consumption increases the lifetime of sensor nodes and
reduces maintenance costs. Additionally, a lower energy demand implies a lower carbon
footprint, a desirable goal by itself in the face of the present climate crisis [RDK+22].

Due to their constrained computing power and hardware limitations, sensor nodes cannot
execute high-complexity algorithms. In order to overcome these limitations, many
IoT systems rely on devices located in physical proximity to act as gateways between
sensor nodes and the wider internet. The distributed computing paradigm of edge
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1. Introduction

computing brings computing power and data storage closer to sensor nodes or “edge”
of a network [DZF+20]. These edge devices are crucial for processing, analyzing, and
extracting valuable information from the collected datasets. Still, for wireless sensor nodes,
the energy demand of the communication subsystem is significantly higher than that of
the computation subsystem, and communication is the single-most energy-demanding
task [ACFP09]. Hence, reducing the required communication in resource-constrained
WSNs increases the energy efficiency of sensor nodes and is essential for efficacious IoT
applications.

The reduction of energy consumption in WSNs has been the subject of numerous studies,
resulting in the development of various techniques that operate at different levels of the
communication stack [ACFP09]. Data-driven approaches, such as data prediction or
data compression, leverage the functionality provided by lower-layer protocols, such as
medium access control (MAC) and routing protocols. Furthermore, recent advancements
in energy supply methods for sensor nodes, such as energy harvesting and wireless power
transfer [SK11], have also significantly improved the overall energy efficiency of WSNs. In
this thesis, we focus on prediction-based data reduction, where sensor nodes use prediction
models to forecast future measurements and do not communicate as long as the difference
between predictions and measurements does not violate a defined threshold.

Efforts to increase energy efficiency in WSNs should not be considered mutually exclusive
alternatives but complementary techniques that can be utilized together. In this regard,
incorporating data prediction into WSNs can provide an additional means of optimizing
transmissions in a way neither data compression nor routing protocols can. Prediction-
based data reduction eliminates the need for communicating data, reducing exchanged
messages and total data transfer without compromising the quality of the measurements
made by sensor nodes.

Another critical challenge in wireless networks is medium access control due to the
growing number of wireless devices and traffic profiles [BBBK16]. Dense networks
are particularly affected, leading to wireless unreliability, channel collision, network
congestion, and other issues. These problems can cause transmission failure, increasing
energy consumption for retransmission. Additionally, the inefficiency of routing protocols
due to the broadcast nature of wireless communications also contributes to higher energy
consumption [MZC+21]. Reducing the number of transferred messages in WSNs can
alleviate these issues by requiring fewer simultaneous open connections.

In the past, the computational limitations of sensor nodes have imposed constraints on
the complexity of prediction algorithms that can be implemented [DBO16]. However,
recent advancements in technology, such as TinyML [WS20], have enabled the deployment
of neural networks (NNs) on even low-power microcontroller units, enabling the use of
NNs for model inference on sensor nodes. This integration of state-of-the-art machine
learning techniques holds significant potential for enhancing IoT applications’ performance,
efficiency, and privacy in general. For prediction-based data reduction, NNs can improve
prediction accuracy and thus increase energy efficiency.
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1.1. Motivation

One of the challenges associated with prediction-based data reduction is the need for the
chosen model to be suitable for representing the phenomenon of interest. Furthermore,
using NNs for prediction often requires significant training data to achieve acceptable
model performance. This necessitates an a-priori dataset collected by the sensor node,
which may not always be feasible. To overcome this limitation, transfer learning [ZQD+21]
is a commonly employed technique to improve the performance of NNs by leveraging
knowledge from related source domains. This allows for training models with acceptable
performance using minimal available training data.

However, deployed models are also subject to issues such as insularity and non-stationarity
of the data, which can lead to degradation of the model performance over time, rendering
them ineffective or even causing catastrophic failures [AEKB20]. Non-stationarity refers
to a phenomenon in which the statistical properties of a time series data change over
time and can arise from various factors, including seasonal or periodical effects, thermal
drift or aging effects in sensors, hardware or software faults in cyber-physical systems, or
changes in user behavior [DRAP15]. Therefore, the need to compute and deploy updated
NN models becomes apparent in such scenarios.

Continual learning (CL) addresses the challenge of computing model updates, given its
definition of being “the ability to continually learn over time by accommodating new
knowledge while retaining previously learned experiences” [PKP+19]. However, training
NNs for CL requires significant computational resources and benefits from specialized
hardware, such as GPUs, which are often unavailable on IoT devices. Additionally,
the accumulation of data from multiple sensor nodes can be exploited to improve the
performance of prediction models through the use of additional knowledge.

A distributed CL approach can be used to overcome these limitations, where a central
base station handles the computation and deployment of model updates. This can be
implemented in various ways, such as utilizing edge devices or cloud servers: The use
of edge devices reduces the amount of data transmitted to the cloud, thus reducing
communication costs and increasing privacy. However, the use of cloud servers allows for
the use of powerful computational resources to train NNs with large datasets, leading to
improved model performance. The decision of which approach to use should be based on
the application’s specific requirements.

Either way, the deployment of NNs to sensor nodes in WSNs poses a significant challenge
in terms of data transfer for the sensor node, as it requires a trade-off between improved
accuracy and the associated transfer costs. By utilizing better predictions, sensor
nodes can further reduce the required communication. However, the net effect of this
improvement on overall data transmission and energy efficiency depends on the specific
details of the application and the cost of the model transfer. Our proposed prediction-
based data reduction is a novel approach that combines NNs as prediction models with
continuous model updates in long-term scenarios.

3



1. Introduction

1.2 Contribution

In this thesis, we propose a novel framework, SenseReduce, for prediction-based data
reduction with continual learning and continuous deployment of prediction models in
IoT systems. The aim of SenseReduce is to enable data reduction using NN-based
prediction models in monitoring applications with multivariate measurements. We design
an adaptive data reduction algorithm using a dual prediction mechanism and a pull-based
communication protocol for sensor nodes to enable high duty-cycling.

We extend the state-of-the-art approaches for prediction-based data reduction by including
mechanisms for continual learning and continuous model deployment. Additionally, we
focus on customizability by implementing SenseReduce with a modular architecture
and abstract interfaces, allowing others to adapt and use the framework in different
application scenarios. The implementation of SenseReduce is open-source and available
on GitHub1.

To evaluate the performance of SenseReduce, we conduct a parameter study over a 2-
year period, where the deployment of a single sensor node for air temperature monitoring
is simulated. We analyze the effects of different training datasets, prediction models,
and hyperparameter values on the performance of SenseReduce in terms of prediction
accuracy, total transferred data, and the number of exchanged messages. Additionally, we
demonstrate the advantages of transfer learning in environments with minimal available
training data. In total, we run and analyze 756 scenarios and compare NN-based
approaches to baseline implementations, highlighting their power and limitations and
providing recommendations for future applications of prediction-based data reduction in
IoT systems.

The novel contributions of this thesis are summarized as follows:

• We propose a novel framework, SenseReduce, for prediction-based data reduction
with continual learning and continuous deployment of prediction models in IoT
systems.

• We design and evaluate different NN-based prediction models for short-term air
temperature forecasting, considering their performance, architectural complexity,
and computational complexity.

• We present a novel error metric, Weighted Mean Squared Error, as a loss function
optimized for training models in applications with prediction-based data reduction.

• We conduct extensive simulations to investigate the impact of different model
update strategies and application parameters on top of SenseReduce and provide
a comprehensive analysis of their strengths and weaknesses.

1github.com/falzberger/SenseReduce
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1.3. Methodologies

1.3 Methodologies
In this thesis, we propose an algorithm for prediction-based data reduction that uses
a dual prediction scheme to reduce the amount of data that needs to be transmitted
in WSNs. A modular framework was implemented motivated by the use case of air
temperature monitoring but allowing for customization to different application areas.

The data reduction algorithm is based on a prediction model, for which we designed
three different neural network architectures (MLP, LSTM, CNN) using hyperparameter
optimization. The models were evaluated in terms of architectural and computational
complexity to find the best trade-off between accuracy and resource usage.

Finally, a parameter study was conducted using simulation data for air temperature
monitoring to evaluate the impact of different parameters on the performance of the
prediction models. Rehearsal-based continual learning in the form of retraining and
transfer learning with freezing layers and fine-tuning was applied to further improve the
performance of the prediction models over time.

1.4 Outline
The thesis is organized as follows: In Chapter 2, we provide the theoretical background
of the methods used in this research. Chapter 3 reviews related work and state-of-the-art
approaches for prediction-based data reduction in WSNs and cost-efficient continuous
model deployments.

Our main contributions are presented in the following chapters: Chapter 4 describes the
SenseReduce framework and the working principles of the data reduction algorithm.
Chapter 5 explains the experimental setup, including the datasets, evaluation metrics,
and the model design used in our simulation study. In Chapter 6, we present and discuss
the results of our simulations.

Finally, we conclude in Chapter 7 with a summarizing view back on our results and
forward into prospective future research directions.
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CHAPTER 2
Preliminaries

In this chapter, we present the theoretical foundations of our research. We begin with
prediction-based data reduction techniques for energy-efficient wireless sensor networks,
introducing dual prediction schemes. We discuss the use of neural networks, emphasizing
time series forecasting using Long Short-Term Memory (LSTM) and convolutional
networks. Additionally, we introduce the concepts of continual learning and transfer
learning, which enable models to adapt to changing data and improve their performance
over time. These concepts and techniques are crucial for comprehending the contributions
and limitations of our proposed approach.

2.1 Dual Prediction Schemes
Wireless sensor networks (WSNs) are composed of multiple sensor nodes connected
to a central base station. The connection is bidirectional: It can be used to collect
measurement data from and distribute information to the sensor nodes. Continuous data
transfer between sensor nodes results in massive communication overhead and overall
high energy consumption.

Data reduction plays an essential role in data-driven approaches for energy conservation
in WSNs [ACFP09]. Additional techniques like adaptive sampling, duty cycling, and
mobile base stations target other layers in a sensor node’s technological stack and can
be viewed as complementary. The approaches to data reduction in WSNs are manifold,
with prediction-based data reduction reducing required communication to a subset of
the measured values without compromising their accuracy [DBO17]. In this thesis, we
refer to prediction as the process of estimating future values based on historical data,
also known as time series forecasting, in contrast to inferring missing values in a dataset.

A dual prediction scheme (DPS) utilizes a prediction model deployed on both the sensor
node and the base station. This allows both devices to generate predictions of future
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2. Preliminaries

values using historical data from the sensor node. The sensor node uses a threshold metric
to evaluate the discrepancy between the predicted and measured values to decide whether
to transmit its measurements to the base station. If the threshold metric is not violated,
the sensor node does not transmit data, thus reducing the amount of communication
and increasing energy efficiency. In cases where the sensor node does not transmit data,
the base station assumes that the value obtained from the prediction model is within the
required error bound. In the case of a threshold violation, the sensor node immediately
informs the base station, and the prediction model may be adapted.

In the field of time series forecasting, various methods are available for modeling and
predicting future values of a given time series. One popular class of methods is based on
the autoregressive (AR) and moving average (MA) models, which can be combined to
form the autoregressive-moving average (ARMA) model. These models are beneficial for
forecasting time series data that exhibit temporal dependencies and are stationary, i.e.,
their statistical properties do not change over time.

However, not all time series data are stationary; thus, alternative methods are required for
forecasts in nonstationary environments. One such method is the autoregressive integrated
moving average (ARIMA) model, which has been shown to reduce communication for
sensed data by Li et al. [LGS09]. Despite their effectiveness, the ARIMA model and
its subclasses have some limitations. One major limitation is that they cannot capture
non-linear patterns in the data. Additionally, these models do not support forecasting
multivariate time series data. Both issues are addressed by neural networks, which we
will introduce in the next section.

2.2 Neural Networks

Neural networks (NNs) are a powerful class of machine learning algorithms widely used
in various application areas. This is due to their ability to discover complex relationships
among data, robustness to data uncertainty, and ability to predict multivariate output
values in near real-time. However, a significant drawback of NNs is the need for a large
amount of representative data to train an accurate forecasting model, which can be
challenging to obtain in certain situations. Despite the complexity of their underlying
fundamentals, the use of NNs in practice has become increasingly feasible due to the
proliferation of open-source libraries and a growing community of experts, along with a
high economic demand for their application in various fields.

2.2.1 Multilayer Perceptron

A NN is a computational model composed of layers of interconnected neurons, which
are mathematical functions with multiple inputs. The perceptron is the simplest form of
a neuron [Ros57]. Given inputs x1, . . . , xn, the perceptron computes the weighted sum
of all inputs using weights w1, . . . , wn, including a bias b. The sum is the input for an
activation function f : R → R, whose result is the output of the perceptron. In short,

8



2.2. Neural Networks

the computation of a single perceptron is given by:

y = f(
n∑

i=1
wixi + b). (2.1)

Perceptrons utilize various activation functions f to introduce non-linearity in the model.
The selection of an optimal activation function is an active area of research and can
often be determined through a process of experimentation and evaluation using a variety
of different variants. A commonly applied activation function is the sigmoid logistic
function, defined as

σ(x) = 1
1 + e−x

, (2.2)

which maps any given input value to the range [0, 1]. The hyperbolic tangent function
has a similar S-shaped curve but maps to the larger range [−1, 1] and is given by

tanh(x) = ex − e−x

ex + e−x
. (2.3)

The weighting parameters are determined through a process known as training, which is
typically performed through several iterations, referred to as epochs. During training,
the weighting parameters are updated to optimize the network’s performance. Multiple
algorithms are available for implementing the training process, with the Adam algo-
rithm [KB14] being one of the most widely used. The optimization is performed by
minimizing a chosen loss function, which is a mathematical expression that quantifies
the difference between the predicted value of the network and the actual value. Various
loss functions are used in neural network training, with the choice of the loss function
depending on the specific task and the nature of the data.

Models in which the data is processed linearly from the input layer through one or
more hidden layers to the output layer are referred to as feed-forward neural networks.
Figure 2.1 shows an example of such a network. Additionally, the layers in this network
architecture are fully connected, meaning that each neuron in a given layer is connected
to every neuron in the preceding layer. Such layers are also called dense layers, and
networks of multiple dense layers are referred to as Multilayer Perceptrons (MLPs).

Given a neural network model M, its architectural complexity p(M) is defined by its
number of parameters [Won19]. For dense layers consisting of perceptrons, the number
of parameters is given by the number of input weights and biases for every perceptron.
Given a dense layer Dense with Nout perceptrons and Nin input units we thus have:

p(Dense) = Nin ·Nout + Nout = Nout(Nin + 1). (2.4)

9
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Input Layer Hidden Layers Output Layer

Figure 2.1: Simplified model of a feed-forward neural network with dense layers

The computational efforts for network inference are attributed mainly to the computation
of multiply-accumulate (MAC) operations. The number of MAC operations m(M) can be
considered as an accurate proxy for quantifying the computational complexity of a neural
network M [Won19]. A MAC operation is a computational step that simultaneously
computes the product of two values and accumulates the result into a third value, as
represented by the equation a← a+(b ·c). For a dense layer Dense with Nout perceptrons
and Nin inputs, MAC operations allow perceptrons to accumulate and multiply the inputs
by the weights simultaneously, resulting in

m(Dense) = Nout(Nin + 1) = p(DL). (2.5)

2.2.2 Long Short-Term Memory

In the context of prediction-based data reduction, the measurements collected by sensor
nodes are usually represented as a time series. Sensor nodes can monitor multiple physical
phenomenons simultaneously, leading to multivariate time series data. Recurrent neural
networks (RNNs) are a class of neural networks that are particularly well suited for
modeling time series data. RNNs have the ability to incorporate previous outputs as
inputs and maintain an internal state that allows them to capture temporal dependencies
in the data.

The Long Short-Term Memory (LSTM) network, a specific type of RNN introduced by
Hochreiter et al.[HS97], has been shown to be an effective model for prediction-based data
reduction in environmental monitoring in the work of Shu et al.[SCBdS19], as detailed in
Section 3.2. The ability of LSTMs to effectively capture long-term temporal dependencies
in sequential data has been identified as a key factor of their success in this application.

10
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Γf Γi tanh
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Figure 2.2: Schematic architecture of a Long Short-Term Memory cell

Figure 2.2 illustrates the schematic architecture of a single LSTM cell. Unlike traditional
perceptrons, LSTM cells generate two distinct values through a series of mathematical
operations and non-linear activations. The first value is the cell state, c<t>, and is
responsible for carrying and storing information over an extended period of time. The
second value, a<t>, represents the cell’s output. In contrast to feed-forward neural
networks, LSTM cells compute a cell output for each time step t of the input sequence x.

An LSTM cell has three main gates: the input gate Γi, the forget gate Γf , and the output
gate Γo. Each gate controls the flow of information into and out of the cell state. The
output of a single gate unit given input x<t> and previous cell output a<t−1> is defined
by the following equation:

Γ = σ(Wx<t> + Ua<t−1> + b), (2.6)

where W and U are gate-specific input weights, b is an additive bias, and σ the sigmoid
activation function as described in Equation 2.2.1. The gates work together to allow
LSTM cells to selectively write, read, and forget information over time, which enables
them to maintain long-term dependencies in sequential data.

Additionally, the hyperbolic tangent function (Equation 2.2.1) is used to compute the
intermediate cell state ĉ<t> similar to the other gates:

ĉ<t> = tanh(Wcx
<t> + Uca

<t−1> + bc), (2.7)

where Wc, Uc and b are another set of trainable coefficients. Next, the new cell state
c<t> is computed with

c<t> = Γi ◦ ĉ<t> + Γf ◦ c<t−1>, (2.8)
where ◦ is the element-wise multiplication, also known as the Hadamard product. Finally,
the cell output a<t> is computed using the hyperbolic tangent function:

a<t> = Γo ◦ tanh(c<t>). (2.9)
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A single LSTM cell contains a significantly greater number of parameters than a traditional
perceptron. Each gate can be conceptualized as a dense layer with Nin + Nout input
units and Nout output units. As a result, the architectural complexity of an LSTM layer
is significantly higher than that of a dense layer with the same number of output units.
Specifically, for an LSTM layer LSTM with Nin input units and Nout output units, the
number of parameters can be calculated using the following equation:

p(LSTM) = 4 · (Nout((Nin + Nout) + 1)) (2.10)

Furthermore, the computational complexity in terms of MAC operations also differs
from Dense layers, as the Hadamard products must be considered. Additionally, the
computational complexity is dependent on the length of the input sequence Nt, as for
every x<t>, 1 ≤ t ≤ Nt, a new cell output will be computed, which leads to the following
equation:

m(LSTM) = 4 · (Nout((Nin + Nout) + 1)) + 2 ·Nout + Nout, (2.11)

where every gate requires MAC operations as computed in Equation 2.2.1, and the
Hadamard products of Equation 2.2.2 and 2.2.2 require 2 · Nout and Nout MAC oper-
ations, respectively. This highlights that LSTMs, compared to dense layers, have a
higher computational complexity with similar architectural complexity, as the additional
operations required to maintain the temporal dependencies in sequential data increase
the number of operations required.

2.2.3 Convolutional Neural Networks

Recent studies [TBKV21, LLS20] have demonstrated the efficacy of using Convolutional
Neural Networks (CNNs) for air temperature predictions, particularly with forecast
horizons up to 24 hours. CNNs are characterized by their ability to share parameters
through the use of convolutional layers, which are able to extract features from mul-
tidimensional input data [LBBH98]. Multivariate time series data can be represented
as a two-dimensional matrix, where the column axis corresponds to the attributes and
the row axis to the temporal dimension. As highlighted in [KMS20], the use of CNNs
is motivated by the high degree of correlation among individual measurements and the
time-invariant property of convolutional kernels, which enables the extraction of relevant
features from the time series data.

A key aspect of CNNs is the convolution layer, which employs a kernel K that is convolved
with the input data I to construct a feature map O. The kernel is a small two-dimensional
filter used to extract features from the input data by scanning it with a stride S and
applying an activation function g at each position. A convolution layer consists of multiple
filters C, each with its own kernel K1, . . . , KC . In this thesis, we use of CNNs with stride
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S = 1 and zero-padding, such that the feature map is given by:

O = (oi,j)1≤i≤Ix,1≤j≤C = g(
Kx∑
x=1

Iy∑
y=1

Xi+x−1,y ·Kj
x,y + b), (2.12)

where the input X is of size Ix×Iy, the kernel K of size Kx×Iy, and g(·) is an activation
function that often is the identity function g(x) = x. Similar to the other layer types, a
bias term b is added.

In CNNs, parameter sharing is used, where a single kernel is convolved with the input
data, resulting in a relatively low architectural complexity. Given a layer Conv with C
filters of size Kx × Iy, the number of parameters is given by:

p(Conv) = C ·Kx · Iy (2.13)

However, the computational complexity of CNNs is relatively high, as the number of
computations in which a single kernel is involved depends solely on the input data size.
Given input data I of size Ix × Iy the number of MAC operations is

m(Conv) = C · Ix · (Kx · Iy + 1). (2.14)

2.2.4 Overfitting

In neural networks, overfitting occurs when the model becomes too intricate and starts to
adapt to the random variations or noise present in the training data. This leads to poor
generalization and decreased performance on new, unseen data. Methods to mitigate
overfitting include regularization techniques such as dropout and pooling layers.

Dropout is a regularization technique that randomly drops out (i.e., sets to zero) a certain
proportion of neurons during the training process [SHK+14]. This helps to prevent the
co-adaptation of neurons, which can lead to overfitting. The dropout rate, i.e., the
proportion of neurons that are dropped out, is a hyperparameter that needs to be set
before training the model.

Pooling or subsampling layers reduce the spatial dimensions of the feature maps, which also
helps prevent overfitting by reducing the number of parameters in the network [LBBH98].
For instance, max pooling works by taking the maximum value from a small window of
the feature map. As a result, the model is less sensitive to small translations in the input
data, which makes the model more robust and less prone to overfitting.

Another way to prevent overfitting is to use a lower learning rate. The learning rate
determines the step size of the optimization algorithm, and a lower learning rate means
that the model updates less aggressively during training. This can help to prevent the
model from fitting to the noise in the training data.
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2.3 Continual Learning

In many applications of neural networks, the goal is to optimize performance on a fixed
dataset. However, in the context of wireless sensor networks (WSNs), the dataset contin-
uously expands with new data samples from measurements. This dynamic nature of the
dataset can lead to the phenomenon of concept drift [DRAP15], where the characteristics
of the data change over time. For example, user interests in social networks may adapt
to new trends, or climate conditions may shift due to climate change.

Algorithms for addressing concept drift can be classified in various ways, as outlined
in [EP11], such as online and batch algorithms or active and passive approaches. Online
algorithms, which process one instance at a time, demonstrate enhanced plasticity
but inferior stability properties. This results in frequent adjustments to the model
parameters, making them infeasible for dual prediction schemes in WSNs. In contrast,
batch algorithms benefit from utilizing more extensive amounts of data and possess
superior stability properties. Active approaches incorporate a drift detection mechanism
and only update the model when drift is detected. On the other hand, passive approaches
assume the possibility of steady drift and continuously update the model with new data.
As reported in [DRAP15], passive approaches are generally more appropriate for batch
learning.

The phenomenon of a model’s performance on previously learned tasks deteriorating as it
adapts to new data is commonly referred to as catastrophic forgetting [KAM+18]. Neural
networks suffer from catastrophic forgetting independent from their architecture [SG19].
Continual learning (CL) is the process of neural networks continually adapting to changing
input distributions over time. Balancing the need for model adaptation, or plasticity,
with the need for model stability is the primary challenge in CL and is often referred to
as the stability-plasticity dilemma [MBB13]. Various techniques such as regularization
methods, architectures, and memory replay have been proposed to address this problem
in the literature [PKP+19].

Maltoni and Lomonaco [ML19] have proposed a fuzzy categorization of continual learning
(CL) strategies, which can be broadly grouped into three types: architectural strategies,
regularization strategies, and rehearsal strategies. Each strategy type comes at different
costs, particularly in IoT and edge environments, which we will briefly summarize.

Architectural strategies involve adapting the structure of the model, such as adding
new layers or re-training on a new architecture. This type of strategy relies on flexible
resource allocation, which can be challenging in IoT environments due to the limited
memory and computational power available on these devices. For instance, in [EP11], an
ensemble of models is applied, which is continuously extended with new models.

Regularization strategies constrain the extent to which weights in the neural network
can change, for example, by differentiating their contributions to already learned tasks.
This can lower the memory requirements by only relying on new data for adapting
model weights. However, CL algorithms generally are polynomial-time heuristics to
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solve an NP-hard problem and require perfect memory for an optimal solution [KHD20].
Consequently, regularization strategies are still prone to catastrophic forgetting in many
scenarios [LSF19].

Rehearsal strategies selectively maintain past information and use it for periodic replays
to strengthen already learned weights [HKB+21]. Ven et al. [vdVT19] find that rehearsal-
based approaches are most reliable across different CL scenarios. They have greater
requirements in terms of memory as they require maintaining a representation of previous
training data, which can exceed the capabilities of an IoT device [IC18]. This highlights
the importance of centralizing model training on base stations, where specialized hardware
and centralized data aggregation can be leveraged to support the additional memory
requirements of rehearsal strategies.

The taxonomy introduced in [ML19] classifies CL scenarios into two dimensions: the type
of task and the type of data updates. In terms of tasks, CL scenarios can be Multi Task
(MT), Single Incremental Task (SIT), or Multi Incremental Task (MIT). MT scenarios
involve incoming tasks that are different from the previous ones, whereas SIT scenarios
involve the same task. In contrast, MIT scenarios involve new and old tasks that may be
interleaved and presented again to the model.

Task-incremental (MT, MIT) scenarios assume task labels are available for each sample.
However, it is difficult to acquire explicit task labels for each sample in many real-world
applications, particularly at test time. Therefore, Single Incremental Task (SIT) scenarios,
which do not rely on task labels, are commonly used [CCLB21].

In terms of data updates, there can be New Classes (NC), New Instances (NI), or a
combination of both, referred to as New Instances and Classes (NIC). NC scenarios
introduce new classes, whereas NI scenarios involve new examples of previously seen
classes. In the case of NIC scenarios, new instances and new classes are presented to the
model simultaneously.

In the context of time series forecasting, the task of the model is typically a regression
task. The focus is on making predictions based on new instances of the same time series
rather than introducing new classes or new and unseen instances of classes. In contrast,
classification tasks, such as image or speech recognition, involve predicting a categorical
value, and the focus is on learning new classes and new instances of previously seen
classes. Therefore, in time series forecasting, the notion of classes is less relevant, and
the NI scenario is the most applicable. Although research on CL for classification tasks
has yielded promising results [RKSL17], the field of CL for regression tasks, such as time
series forecasting, is still in its early stages of development [HS21].

2.4 Transfer Learning
The data obtained from sensor nodes in WSNs highly depends on their physical location.
This can make it challenging to train NNs with high performance in situations with limited
historical data. The cost of acquiring extensive training data before deploying the initial
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model may be prohibitively high in practical scenarios. Continual learning strategies
can be employed to improve performance after deployment; however, acquiring sufficient
data may take considerable time to achieve acceptable performance for prediction-based
data reduction. Transfer learning (TL) can be an effective solution to this problem by
leveraging knowledge acquired from other related tasks to improve the performance of
the target task [ZQD+21].

Transfer learning is a technique that utilizes the knowledge gained from one task, known
as the source task, to enhance the performance of a new task, referred to as the target
task. This is done by utilizing the learned features or representations from the source
task as a foundation for the target task, instead of starting the learning process from
scratch. Transfer learning can effectively reduce the amount of training data required for
the target task and improve the generalization performance of a model as the features or
representations learned from the source task are likely to be more robust and generalizable
than those learned from a limited amount of training data in the target task. The specific
implementation of transfer learning depends on the type of model and the nature of the
source and target tasks.

One of the most common techniques used in transfer learning is freezing layers. This
method involves freezing the weights of specific NN layers, considered to be task-invariant,
and only training the remaining layers on the new task. This allows the model to retain
the knowledge acquired from previous tasks while adapting to new tasks. The frozen
layers act as a prior, providing a good initialization for the new task, while the unfrozen
layers can adapt to the new task.

Another transfer learning technique is fine-tuning. This technique involves training the
entire neural network on the new task but using a lower learning rate than the one used
for the previous task. This allows the model to adapt to the new task while retaining the
knowledge acquired from previous tasks. The lower learning rate ensures that the model
does not forget the previous task by making too significant adjustments to the weights.

2.5 Overview

Property ARIMA MLP LSTM CNN TL CL

Univariate Prediction • • • •
Multivariate Prediction • • •
Non-Linearity • • •
Temporal Dependencies • •
Limited Training Data • • •
Concept Drift •

Table 2.1: Comparison of relevant methods for data prediction
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In Table 2.1, an overview of the methods for data prediction presented in this chapter is
provided. We highlight the aspects each method addresses in WSNs. While capable of
incorporating temporal dependencies with limited training data, statistical models, such
as ARIMA, are limited to univariate time series and cannot fully exploit the additional
information present in multivariate time series. Conversely, prediction models based on
different neural network architectures (MLP, LSTM, CNN) can utilize this additional
information. LSTM networks are specifically designed to consider temporal dependencies.
However, these models require a substantial amount of training data. Both continual
learning (CL) and transfer learning (TL) techniques can be employed to address this
issue. CL allows updating the model over time, integrating new knowledge, while TL
leverages knowledge from similar domains. Altogether, integrating NN-based prediction
models with CL and TL leads to the desired system properties.
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CHAPTER 3
Related Work

Our proposed prediction-based data reduction framework is a novel approach that
combines NN-based prediction models with continual learning and continuous deployment
in IoT environments. This chapter will first provide an overview of the state-of-the-art
for energy-efficient continuous model deployment before discussing different approaches
to prediction-based data reduction with dual prediction schemes in IoT environments.

3.1 Continuous Model Deployment

Today, many cloud vendors offer solutions for state-of-the-art machine learning (ML)
operations that aim to continuously integrate, deliver, and train ML systems. For example,
Google’s Vertex AI1, Amazon SageMaker2, and Azure Machine Learning3 all provide fully
automated ML platforms that include automated deployments to IoT devices. However,
although they automate many required steps, these solutions are not designed for data
reduction in sensor applications and do not support dual prediction schemes.

Continuum [TYW18] represents a general-purpose platform for updating and deploying
models in a continual learning setting. The platform is language-agnostic, i.e., it provides
an abstraction layer that allows using heterogeneous ML frameworks and supports
pluggable and customizable model update strategies. However, the provided default
strategies only focus on incorporating data as quickly as possible and reducing training
costs; they do not consider network communication or model performance.

Similarly, Derakshan et al. [DMRM19] propose a framework that includes advanced
sampling techniques for continual learning of ML models and automatically deploys

1cloud.google.com/vertex-ai
2docs.aws.amazon.com/sagemaker
3azure.microsoft.com/services/machine-learning
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updated models. However, the deployment policy only targets low latency and does not
consider model performance or communication costs.

Aral et al. [AEKB20] present a network-aware scheduling algorithm for ML model updates
called Staleness Control for Edge Data Analytics (SCEDA), based on reinforcement
learning. The proposed algorithm is specifically designed for nonstationary environments
that exhibit concept drift and intermittent connectivity, where data from edge nodes is
collected to train a central ML model. The algorithm considers the model’s performance
through a data variety metric, which acts as an estimate for model generalization. The
primary goal of SCEDA is timeliness and fault tolerance, and the evaluation results
demonstrate that it can effectively minimize the age of information. However, the
algorithm does not consider the transfer cost of model updates, nor is it designed for
sensing applications.

Edge MLOps [RBWA21] is a fully automated framework for “Machine Learning Oper-
ations at the Edge”. The authors focus on the design of a complete ML framework,
including continuous model monitoring, retraining, and deployment, with state-of-the-art
technologies. The deployment decision is based on estimating future model performance
using a pre-defined error metric. The scenario of indoor air quality prediction is chosen
to evaluate the framework. The authors only validate the stability of the framework and
neither show an improved model performance in general nor consider communication
cost.

The optimization framework introduced in [JZXJ22] aims for cost efficiency with a holistic
view of edge and IoT application systems. The framework optimizes data processing,
transmission, and deployment decisions, given a cloud-edge system with potentially
multiple applications deployed on a single edge node. The system model is generic
because it allows retraining models on the edge and the cloud, depending on resource
limitations. The framework’s goal is to (1) minimize cloud and edge resource costs;
and (2) maximize data throughput for best-possible model performance. Unfortunately,
the framework does not consider communication costs in its cost model. The authors
argue that compressed ML models have minimal model sizes, making their transfer cost
negligible. However, this argument does not apply to sensor nodes in WSNs with limited
bandwidth and energy limitations.

The Stratum framework [BBK+19] provides life cycle management for ML in IoT
analytics. It provides a unified end-to-end framework for designing, building, and
deploying ML models. Likewise, the framework in [MKL19] constitutes a fully automated
ML pipeline and includes a sophisticated model selection approach to select the best
model for an IoT device based on collected data samples. However, neither of these
frameworks has any continual learning aspects, i.e., once a model is deployed, there is no
performance monitoring, automated retraining, or continuous deployment.

The Deep-Edge framework [BCS+20] distributes the computation of model updates.
Some nodes might have access to GPU-enabled hardware optimized for neural network
computations in a heterogeneous network of edge nodes. Deep-Edge tries to optimize
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the selection of nodes participating in the computation to minimize computational load
and resource interference while increasing fault tolerance. “Latent Replay” [PGLM20] is a
technique for enabling continual learning with a rehearsal strategy directly on embedded
devices. Similarly, [DV21] extends the TensorFlow Lite framework with continual learning
capabilities to enable continual learning on edge devices. However, those frameworks do
not consider the possibility of computing a model update in the cloud. Thus, centralized
data collection and model optimization across multiple inference nodes is impossible.
Moreover, in resource-constrained environments, distributed update computations pose a
heavy burden regarding the required data transmission.

In [DBT+19], the authors introduce a reference architecture for a complete ML pipeline
life-cycle, including model retraining and deployment. However, their work comprises
only an outline for possible implementations, with no specific strategies or cost models in
place.

3.2 Dual Prediction Schemes
Dias et al. [DBO16] conduct a comprehensive survey of prediction-based data reduction
techniques in WSNs. They propose a taxonomy for existing approaches and provide an
in-depth analysis of the application of different prediction models, including statistical
and probabilistic methods, as well as machine learning techniques utilizing NNs. The
survey also covers approaches for different WSN topologies, including those with multiple
clusters and cluster heads as intermediaries between sensor nodes and base stations that
can apply prediction models and data fusion for data reduction. In this section, we will
focus on recent literature that specifically addresses prediction models for sensor nodes,
and that has been published since the survey was conducted.

Fathalla et al. [FSM+22] propose using ensemble learning as a prediction model in a
dual prediction scheme for wireless sensor networks. The model employs an automatic
retraining mechanism based on the number of miss-predicted observations. The proposed
approach is evaluated with a simulation based on a univariate time series over seven days
with a sampling interval of 1 minute. The results demonstrate that ensemble learning
outperforms simpler techniques such as the least mean square (LMS) filter [SR06].
However, the authors note that there is no clear trend on when to update the prediction
model, and they do not consider the cost of model transfer in their analysis.

In [MdSBF21], the authors apply three recurrent neural networks and one CNN for
multivariate data prediction in dual prediction schemes in WSNs. The efficacy of the
models is evaluated with a simulation over 14 days with a sampling interval of 5 minutes,
where the best-found model predicts the next 40 minutes using an input sequence of
length 256. The threshold metric has been defined as the absolute difference between
predicted and measured temperature. The study also examines the impact of varying
threshold values on the performance of the models, with a correlation observed between
lower threshold values and improved average accuracy, albeit at the cost of increased
transmission rates, and vice versa for higher threshold values.
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Shu et al. [SCBdS19] propose a hybrid model in a dual prediction scheme to minimize the
number and overall duration of transmissions. The hybrid model consists of a gradient
descent-based Least Mean Square filter (GD-LMS) in combination with an LSTM network.
The GD-LMS filter is designed to have low computational complexity, reduced storage
requirements, and aims for fast convergence speed while maintaining high prediction
accuracy; however, it is limited to univariate prediction. The proposed approach is
evaluated using a univariate indoor air temperature dataset over one day, and the study
demonstrates the effect of different threshold metrics on the average prediction accuracy.

Moghadam and Keshmirpour [MK11] combine an autoregressive integrated moving
average (ARIMA) model with a neural network (NN) for data prediction. The ARIMA
model is used for predictions as long as the threshold metric is not violated. Once the
error exceeds the threshold, the NN is employed to generate input for the ARIMA model
that aims to represent the non-linear trend of the data. The base station is informed
of this change in input data through a beacon signal that is significantly smaller in size
compared to an update packet. The results of the evaluation, which used datasets from
three different days for indoor temperature monitoring, demonstrate that the proposed
hybrid model outperforms either of its individual components.

Yu et al. [YWS17] utilize a dual prediction scheme with Kalman filters (KF) for data
reduction in IoT environments. The generated IoT data is sent to fog platforms and
is deemed redundant if it falls within the predicted range. Otherwise, the predictions
are treated like measurements. The sensor data is modeled as a multivariate normal
distribution based on historical data determined by statistical properties. The approach is
shown to outperform baselines based on the Grey model and Autoregressive and Moving
Average (ARMA) model for indoor temperature, humidity, and brightness monitoring in
terms of accuracy and the number of transmitted packets. Deng et al. [DGLZ19] propose
a similar approach in fog computing and base their data reduction on an autoregressive
model (AR), limited to univariate prediction. Jain et al. [JAK20] propose the extended
linear regression technique (ELR), where an autoregression (AR) model is combined with
a cosine distance method to incorporate the trend of the current measurement using past
measurements, showing similar results.

Santini and Römer [SR06] also propose a least mean square (LMS) adaptive algorithm
for a dual prediction mechanism in temperature measurement. The adaptive algorithm
provides a tracking capability and is thus able to adapt to a nonstationary environment.
With a threshold metric implemented as an absolute difference of 0.5 Celsius, they achieve
a communication reduction of up to 92% over three days for indoor air temperature and
humidity monitoring compared to constant reporting. Similarly, Fathy et al. [FBT18]
developed an Adaptive Method for Data Reduction (AM-DR) based on a convex combi-
nation of two decoupled LMS filters with different memory sizes and could increase the
reduction rate in the same setting to 95%.

Tayeh et al.[TMLD18] combine a dual prediction scheme with an adaptive sampling rate
to further extend the lifetime of WSNs. They use a univariate linear prediction model
based on the last value and a computed additive weight. The proposed approach is
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evaluated over 35 days for indoor temperature monitoring, and the results are compared to
the Data Prediction and Adaptive Sampling (DPCAS) approach introduced by Monteiro
et al.[MDP+17]. The evaluation results demonstrate that both the proposed and the
DPCAS approaches can effectively reduce data transmission, with minimal differences
depending on the observed attribute.

In the study by Salim et al. [SM21], an examination of time series forecasting for
temperature and humidity measurements in precision agriculture is conducted to achieve
prediction-based data reduction. The authors employ a trend computation approach
utilizing previous measurements in both a machine learning algorithm and a correlation-
based prediction algorithm that leverages inter- and intra-node data correlation of
temperature and humidity measurements. The effectiveness of the proposed approach is
evaluated using temperature data over three days with a sampling interval of 30 minutes,
and the results demonstrate a decrease in transmission rate and energy consumption in
each sensor node. Razafimandimby et al. [RLVN17] apply a Bayesian Inference Approach
(BIA) for outdoor weather monitoring, leveraging the spatio-temporal correlated data
of densely deployed nodes in agriculture networks. They focus on heterogeneous data
generated by IoT devices, utilizing temperature data to infer humidity over an evaluation
period of eighteen hours.

Almalki et al. [AOAS21] propose the Energy Efficient Routing Protocol using Dual
Prediction Model (EERP-DPM) for up to 17 biomedical sensors in the context of
healthcare IoT. The proposed protocol combines prediction-based data reduction with a
routing protocol that assigns a priority to each packet based on whether it is related to a
medical emergency. However, the authors do not explain the prediction model used in
the proposed protocol in detail.

Publication UI MI CL TM MC

Fathalla et al. [FSM+22] • • •
Morales et al. [MdSBF21] • • •

Shu et al. [SCBdS19] • • •
Moghadam and Keshmirpour [MK11] • •

Yu et al. [YWS17] • • • • N/A

Santini and Römer [SR06] • • N/A

Fathy et al. [FBT18] • • • N/A

Tayeh et al.[TMLD18] • N/A

Salim et al. [SM21] • • N/A

SenseReduce • • • • •

Table 3.1: Qualitative assessment of the relevant literature

In Table 3.1, a qualitative assessment of selected studies from the literature in the field
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of prediction-based data reduction is presented concerning key design considerations and
evaluation methodologies. The former include the challenges addressed by the proposed
SenseReduce framework, such as support for univariate input (UI), multivariate input
(MI), and continual learning (CL). The latter include evaluation metrics such as varying
threshold metrics (TM) and the consideration of model transfer costs (MT). The table
uses a symbol notation, where the presence of a bullet (•) indicates that the work
addresses the criterion, a gap indicates otherwise, and (N/A) indicates that the criterion
does not apply to the selected work.

This thesis conducts an in-depth examination of the cost-performance trade-offs of
prediction-based data reduction over an extended period of 2 years. We extend the
state-of-the-art by analyzing the performance of different neural network architectures as
prediction models combined with various strategies for continual learning and continuous
model deployment in different application scenarios. This research aims to provide a
comprehensive understanding of the trade-offs and potential optimizations that can be
made in deploying NN-based prediction models with continuous model updates for data
reduction in IoT environments.
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CHAPTER 4
SenseReduce Framework

This chapter presents our proposed prediction-based data reduction algorithm based on
a dual prediction scheme for energy-efficient IoT. Based on this algorithm, we propose
SenseReduce, an open-source, state-of-the-art framework that supports continual
learning and continuous model deployment. The implementation of SenseReduce
is motivated by the use case of air temperature monitoring, and we will discuss its
components and interfaces in detail.

4.1 Data Reduction Algorithm
We introduce common notation before discussing the working principles of SenseReduce
in detail: Let a sensor node collect measurements x ∈ Rf with a defined measurement
interval ρ. Each measurement x consists of f ≥ 1 measured values and has an associated
timestamp tx.

Prediction-based data reduction requires forecasts provided by a prediction model M.
Given input matrix X ∈ Rk×l, model M outputs a prediction matrix Y ∈ Rm×n. The
dimensions of inputs and outputs can vary depending on the application. Moreover,
the number of input features l can differ from the number of measured values f (e.g.,
through feature engineering) and from the number of predicted features n. However,
every predicted value must have a corresponding measurement value, i.e., n ≤ l, and the
function µ : N→ N maps the prediction column index to its corresponding measurement
column index.

In both matrices, each row xi,∗ represents (predicted) measurements correlated with
timestamp txi . Moreover, the rows are sorted by their timestamps in ascending order,
i.e., txi < txj for all i < j.

The model predictions Y ∈ Rm×n range from timestamp ty1 to tyn . For prediction-based
data reduction, SenseReduce constructs the prediction horizon H ∈ R(m+1)×n by
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adding the last measurement xk,∗ of input matrix X ∈ Rk×l as first element to the
predictions Y :

H = (hij)1≤i≤(m+1),1≤j≤n =
{

xk,µ(j) if i = 1
yi−1,j if i > 1

(4.1)

Clearly, the prediction horizon must contain at least two rows, i.e., m + 1 ≥ 2. We
denote the prediction horizon length η of modelM as the length of the prediction interval
[th1 , thm+1 ].

Given two rows xi,∗, xj,∗, the difference between their corresponding timestamps txi , txj

is called the data aggregation period δ. For simplicity, we assume that δ is an integer
multiple of the measurement interval ρ, i.e., mod(δ, ρ) = 0. Intuitively, η = δ ∗m holds
for any model predictions Y ∈ Rm×n, and thus m = η/δ.

A threshold metric T is a Boolean function with two inputs: a measurement x ∈ Rf

and a prediction ŷ ∈ Rn. Depending on the application context, the threshold metric
defines when the prediction deviates from the measurement to such an extent that the
base station must be notified.

4.1.1 Prediction Interpolation

For every sensor node measurement x at timestamp tx, prediction-based data reduction
requires a prediction ŷ as input to the threshold metric T . However, as defined above,
the measurement interval ρ can be smaller than the data aggregation period δ. Hence, it
can be the case that the prediction horizon H does not contain a row hi,∗ with timestamp
thi

= tx.

Linear interpolation is used to compute predictions for all timestamps that do not match
the timestamp of a row in the prediction horizon: Given prediction horizon H ∈ R(m+1)×n

with prediction interval [th1 , thm+1 ] and data aggregation period δ, the prediction ŷt at
timestamp t is given by

ŷt = hi,∗ ·
t− thi

δ
+ hj,∗ ·

thj
− t

δ
, (4.2)

where i and j are the smallest and largest indices, respectively, such that thi
< thj

and
thi
≤ t ≤ thj

hold.

4.1.2 Prediction Horizon Adjustment

As soon as the sensor node collects a measurement that causes a threshold violation or is
not within the current prediction interval, the prediction model M is used to compute a
new prediction horizon. However, if measurement xt at time t causes a threshold violation
within the first and second timestamp of the prediction horizon H, i.e., th1 ≤ t < th2 , no
new prediction horizon can be created as no new data samples have been collected. Still,
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it is desirable to improve the current prediction horizon based on the new information.
To this end, we adjust the prediction horizon H with

H = H ⊕ (xt − ŷt), (4.3)

where ⊕ is the addition of (xt − ŷt) to each row hi,∗, 1 ≤ i ≤ (m + 1). By shifting
the prediction horizon to match the current measurement, we decrease the number of
threshold violations within the current data aggregation period as it incorporates the
most recent observations prior to the execution of the prediction algorithm.

4.1.3 Sensor Node

After introducing the essential concepts of the dual prediction scheme, we now present
the data reduction mechanism from the sensor node’s perspective: In Algorithm 4.1, we
list the algorithm executed on a single sensor node. Initially, the node registers itself at
the base station by informing it about its threshold metric T and receives its prediction
model M and the first prediction horizon H as a result. The measurement process of
the sensor node does not have a stopping criterion; hence we use an infinite loop with a
sleep timer of the interval ρ for the node to collect and evaluate measurements.

Algorithm 4.1: Data Reduction Algorithm on Sensor Node
Input: Base station B, threshold metric T , data aggregation period δ, and

measurement interval ρ
1 M, H ← register_at_base_station(B, T );
2 while node is running do
3 t ← current_datetime();
4 xt ← current_measurement();
5 if not in_prediction_horizon(H, t) then
6 data ← data_since_last_event(δ);
7 M← send_update(B, t, data);
8 H ← update_prediction_horizon(M, t, data);
9 end

10 ŷt ← predict(H, t);
11 if is_threshold_violation(T , xt, ŷt) then
12 data ← data_since_last_event(δ);
13 M← send_violation(B, t, data, xt);
14 H ← update_prediction_horizon(M, t, data);
15 H ← adjust_prediction_horizon(H, t, xt, ŷt);
16 end
17 sleep(ρ);
18 end
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In Line 5, the sensor node checks whether the current measurement is still within the
prediction horizon. If not, the node first collects all measurements acquired since the last
prediction horizon has been computed with the data aggregation interval δ; for instance,
if δ is set to one hour, then data contains hourly measurements. The collected data
are then sent to the base station B with the current timestamp in Line 7 before a new
prediction horizon is computed in Line 8.

In Line 10, the prediction horizon H is used to compute the prediction ŷt for the current
timestamp t according to Equation 4.1.1. In case a threshold violation is detected in
Line 11, the node again retrieves the aggregated data and communicates the violation to
the base station in Line 13. After updating the prediction horizon, the node adjusts it to
the measurement as described in Equation 4.1.2 in Line 15.

When communicating threshold violations or horizon updates (Lines 7 and 13), the node
can receive a new model from the base station. This depends on the active model update
strategy in the base station. If it does not assign a new model to the node, the functions
return the currently active prediction model M instead.

In the background, the sensor node maintains a limited-size buffer that contains the most
recent measurements. The prediction horizon gives the lower bound of the buffer size,
i.e., the buffer must be large enough to hold all measurements within one horizon. The
upper bound is the length of the input sequence for the prediction model M.

4.1.4 Example

To provide a clear understanding of the prediction-based data reduction algorithm, we
present an example in Figure 4.1. The plot illustrates the application of the algorithm
for one week in a sensor node with a measurement interval of ρ = 10 minutes. During
the visualized period, the sensor node collected 7 · 24 · 6 = 1008 measurements; however,
it only transmitted 13 messages to the base station, consisting of 9 threshold violations
and 4 horizon updates.

The prediction horizon length is η = 24 hours, as demonstrated by the horizon updates
from July 4 to July 6. Since the predictions match the measurements without violating
the threshold, no communication is required between these horizon updates. In the case
of threshold violations, we can observe that the predictions are immediately shifted due
to either computing a new prediction horizon or adjusting the existing one. Furthermore,
the first threshold violation on July 2 resulted in an updated model immediately utilized
to compute a new prediction horizon.

4.2 Architecture

After presenting the prediction-based data reduction algorithm, we will delve into the
implementation details of the proposed SenseReduce framework. The framework not
only supports prediction-based data reduction but also incorporates the capabilities for
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2020−07−01 2020−07−02 2020−07−03 2020−07−04 2020−07−05 2020−07−06 2020−07−07 2020−07−08

Measurement
Prediction
Threshold Violation
Horizon Update
Model Deployment

1Figure 4.1: Example of prediction-based data reduction over one week for a univariate
measurement, where the threshold metric is defined using the absolute difference between
measurement and prediction.

continual learning and continuous deployment of prediction models. The implementation
of the framework is motivated by the use case of temperature monitoring, a typical
application area for WSNs, which we will also use as a case study for our simulation-based
evaluations in Chapters 5 and 6.

In Figure 4.2, we provide a Unified Modeling Language (UML) deployment diagram of the
proposed SenseReduce framework. The diagram illustrates the functional components
of the framework and their interactions. The central component of the framework is the
base station, which is responsible for managing the communication and data aggregation
of potentially multiple sensor nodes located at the network edge. This design represents a
standard deployment of WSNs but can also be applied to IoT environments where sensor
devices are connected to edge nodes or cloud-based processing units. For instance, in
smart agriculture [ERO+18], multiple battery-driven sensor nodes can be deployed on an
agricultural field to monitor the micro-climate. The base station can predict the current
measurements with the accuracy defined by the threshold metric without requiring any
energy-intensive communication with the sensor nodes.

The central component of each sensor node is its Monitor, which is responsible for
running the data reduction algorithm as described in Algorithm 4.1. A sensor node can
consist of multiple sensors, i.e., hardware units responsible for collecting measurements
from the physical environment with a Sensing Unit. For every measurement, the
Monitor retrieves a prediction from the Predictor and uses it together with the
Threshold Metric for data reduction.

The base station contains a node manager, which maintains a representation of each
sensor node connected to it with a Node component. Essentially, a Node is a virtual
copy of a deployed sensor node, including its Predictor and all collected measurement
data. The node manager uses the DeploymentStrategy and ContinualStrategy to
manage continuous model updates for every node, which we will explain in Section 4.3.3.
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:Sensor Node
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:DBServer

Measurement DB
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<<HTTP>>

Figure 4.2: SenseReduce deployment diagram

The design goal of SenseReduce is to be adaptable for different application scenarios.
To this end, the framework relies on the design principle of abstraction. We discuss the
interfaces of the customizable classes in Section 4.3.

4.2.1 Software Dependencies

We implemented SenseReduce using the Python programming language and made the
source code freely available via an open-source repository1. The dependencies of the
framework are listed in Table 4.1, and our choices are briefly discussed as follows:

• We chose Python as a commonly used language for data analysis and machine learn-
ing tasks. The open-source libraries NumPy and pandas provide high-performance
implementations for data transformation and are widely supported in the data
science community.

• TensorFlow is used as a machine learning framework due to its support for
TensorFlow Lite, which enables easy conversion of models for inference on mobile,
embedded, and edge devices.

1github.com/falzberger/sense-reduce
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• The Flask and requests libraries were used for implementing network commu-
nication efficiently.

Python 3.9 programming language
NumPy 1.23.4 [HMvdW+20] scientific computing library

pandas 1.5.1 [WM10] data analysis and manipulation tool
TensorFlow 2.11 [ABC+16] open-source machine learning framework

Flask 2.2.22 web application framework
requests 2.28.13 HTTP request library

Table 4.1: Software dependencies of SenseReduce

4.2.2 Communication

The primary objective of the SenseReduce framework is to optimize energy efficiency by
reducing the communication between sensor nodes and the base station. To accomplish
this, the framework employs a limited set of communication interfaces consisting of only
four distinct message types. Additionally, the framework utilizes a pull-based approach
for sensor node communication, where the sensor nodes initiate all communication and
do not have to maintain a constant connection with the base station. This pull-based
approach enables the sensor nodes to power down their communication hardware during
idle periods, referred to as duty cycling [ACFP09], resulting in increased energy efficiency.
Furthermore, this approach also helps to mitigate communication congestion and reduce
the overall power consumption in the sensor nodes, which is a crucial factor in IoT
applications where the sensor nodes are battery-powered.

In detail, SenseReduce facilitates communication between sensor nodes and the base
station using the following message types:

• Register: After start-up, a sensor node registers itself at the base station by
sending its threshold metric. The base station assigns a new unique identifier to
the sensor node and returns it together with the initial data required for computing
the first prediction horizon.

• Get Model: Due to pull-based communication, the sensor node fetches the
prediction model from the base station itself. By sending the base station its unique
identifier, the sensor node receives its currently assigned prediction model as a
response. The base station reacts by also changing its prediction model currently
employed in the dual prediction scheme.

2github.com/pallets/flask
3github.com/psf/requests

31

github.com/pallets/flask
github.com/psf/requests


4. SenseReduce Framework

• Threshold Violation: The sensor node immediately informs the base station
when a measurement causes a threshold violation. In addition to the current
timestamp and measurement, the message contains measurement data to compute
a new prediction horizon as described in Section 4.1.3. Depending on the active
model deployment strategy, the base station’s response may inform the sensor node
that it must update its prediction model.

• Horizon Update: If a measurement is outside the current prediction horizon,
the sensor node will compute a new one. However, the base station also requires
accumulated measurements to update its prediction horizon. Therefore, the sensor
node sends a message to the base station containing the required measurement
data (see Section 4.1.3).

The communication protocol utilized in the SenseReduce framework is HTTP (Hy-
pertext Transfer Protocol). The base station provides RESTful endpoints using the
Flask framework, which the sensor nodes access using the requests library. While the
MQTT (Message Queueing Telemetry Transport) protocol would provide advantages
in an IoT environment, we have chosen to use HTTP due to its capability to transfer
large prediction models to sensor nodes. MQTT is a lightweight protocol optimized for
sending small amounts of data and does not have native support for resuming or retrying
transfers, which can be problematic when dealing with large data transfers.

However, the HTTP protocol poses scalability limitations for the framework in heteroge-
neous networks, as some IoT devices may only support MQTT or other custom protocols.
Additionally, HTTP has a higher message overhead due to its text-based nature. One
possible improvement in future versions of the framework would be to support multiple
communication protocols or to adapt the protocol depending on the message type. This
will increase the scalability and allow the selection of the most efficient protocol depending
on the message type to improve overall communication efficiency.

4.3 Interfaces
The implementation of our data reduction framework, SenseReduce, is based on the
principles of object-oriented programming, specifically utilizing the features of the Python
programming language. Through encapsulation, we can achieve a high level of modularity
within our framework. In addition, we utilize polymorphism in the form of subtyping,
which allows for the implementation of abstract classes that define essential interfaces,
ultimately resulting in a high degree of customizability for various application areas.

In Figure 4.3, we provide a UML class diagram of the core logic within our framework.
Abstract classes are denoted by the keyword ’abstract’ for easy identification. It is worth
noting that while the implementation of our prediction-based data reduction algorithm is
fixed as previously described in Section 4.1, its behavior can be adapted by implementing
custom subtypes. In the subsequent sections, we will provide detailed information on the
interfaces of all abstract classes in our framework.
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Figure 4.3: Class diagram of SenseReduce’s core components

4.3.1 Threshold Metric

An implementation of the abstract ThresholdMetric class defines what constitutes
a threshold violation in a given application scenario. Its interface consists of a single
function:

• is_threshold_violation(measurement, prediction): As described in
Section 4.1, the function returns a Boolean value given a measurement and a pre-
diction, indicating whether the measurement lies within the prediction’s threshold.
The implementation of this function should be tailored to the specific requirements
of the application scenario and must be based on a thorough analysis of the under-
lying data. Furthermore, this function must be stateless and as efficient as possible
to reduce computational overhead.
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4.3.2 Prediction Model

The design of appropriate neural networks for a given task is considered a complex and
multi-faceted task within the field of machine learning, with some researchers noting that
it is often more of an art than science [Cho17]. Furthermore, different prediction tasks
often require distinct neural network architectures. In light of this, it is important to
design our framework to be architecture-agnostic to maximize its applicability across a
wide range of domains.

The abstract class PredictionModel defines the minimal set of functions required for
a prediction model within the SenseReduce framework. The interface of this class is
composed of two functions:

• get_metadata(): This function returns a description of the prediction model,
including information on its input and output dimensions, data required for value
normalization, and any additional context.

• predict(input): The core function of the model, providing predictions based
on the input passed to it.

In addition to the abstract class, our framework also provides two subtypes of the
PredictionModel class: Model and LiteModel. The Model class uses a TensorFlow
model and is intended for use in a base station. In contrast, the LiteModel class utilizes
a lightweight TensorFlow Lite model and is intended for use on sensor nodes. These
subtypes demonstrate the adaptability of the framework to different requirements of the
application scenario.

4.3.3 Update Strategy

Continuous model updates are a crucial aspect of the SenseReduce framework as they
enable models deployed on sensor nodes to adapt and improve over time, ultimately
leading to more accurate prediction-based data reduction and increased energy efficiency.
The node manager within the framework utilizes two interfaces, the LearningStrategy
and DeploymentStrategy, to devise an update strategy for any given sensor node.

The LearningStrategy class defines the continual learning method applied to the
prediction models to allow them to adapt to new data. This class has several interface
functions that include:

• add_node(node, data): Allows the addition of new sensor nodes with the
specified initial measurement data, which may be empty, to be maintained by the
strategy.

• add_measurements(node, measurements): Adds collected measurements
of the specified node to the strategy that can be considered for updating prediction
models.
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• get_candidates(node): Returns possible prediction models for the specified
node. The number of models returned depends on the implementation of the
strategy.

• add_model(model): Allows for the addition of prediction models to the strategy.

It is worth noting that it depends on the implementation of LearningStrategy how
many prediction models are maintained simultaneously and when to trigger continual
learning of existing prediction models. For instance, if many resources are available, a
separate model for each sensor node can be maintained and updated every time new
measurements are available. On the contrary, in some scenarios, a single prediction model
for all sensor nodes that is updated once a year may be sufficient.

The DeploymentStrategy class is responsible for continuous model deployment by
deciding when prediction models devised by the LearningStrategy class are deployed
to sensor nodes. The node manager accesses this event-based interface through the
following functions:

• on_initial_deployment(t, candidates): Triggered when a new sensor
node registers at the base station at time t. The strategy selects a prediction model
among the candidates to deploy at the sensor node.

• on_threshold_violation(t, node, candidates): Called when a thresh-
old violation occurred at time t on the specified node. The node object contains
all measurements collected so far, and the strategy can select a model among the
candidates to be deployed on the sensor node based on this information. However,
it is up to the strategy to decide whether to deploy a new model at all.

• on_horizon_update(t, node, candidates): The behavior is equally de-
fined as in the on_threshold_violation function but allows the strategy to
differentiate between threshold violations and horizon updates.

The interface is generic and allows for many different implementations. For instance,
model deployments can happen in regular intervals or if data drift is detected in the node’s
collected measurements. The framework provides two default implementations for both
LearningStrategy and DeploymentStrategy, which will be used in Section 5.4 to
devise different update strategies for our simulation study.
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CHAPTER 5
Parameter Study

In this chapter, we present the methodology for the parameter study that evaluates the
performance of the SenseReduce framework in the application scenario of temperature
monitoring. We first provide an overview of the experimental setup, including the datasets
and models used. We then describe the evaluation metrics and methods employed to
assess the performance of model update strategies in different simulated deployment
scenarios. We also present the process for model selection, including the criteria used and
strategies employed for the simulation. Finally, we outline the explored parameter space,
providing details on the range of values and settings used to evaluate the framework’s
performance.

5.1 Experimental Setup

5.1.1 Hard- and Software

All experiments were conducted on a single desktop computer. We list the hardware
specifications in Table 5.1.

CPU Intel Core i9-11950H (2.60GHz)
RAM 64 GB
GPU NVIDIA RTX A3000 Mobile
OS Ubuntu 22.04.1

GPU Driver 520.61.05
CUDA Version 11.8

Table 5.1: Hardware used for the simulations
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Graphical Processing Units (GPUs) are preferred over Central Processing Units (CPUs)
for training ANNs because they can perform vector and matrix operations more efficiently.
This allows for faster training of neural networks and reduces inference time. The
TensorFlow library supports NVIDIA GPUs, which require the CUDA toolkit to enable
GPU acceleration.

In addition to the software used by SenseReduce (Table 4.1), we used the libraries
listed in Table 5.2 in our simulations for model optimization and data visualization.
Additionally, we provide all code required for running the simulations as open source1.

KerasTuner 1.1.3 [OBL+19] hyperparameter optimization framework
matplotlib 3.6.2 [Hun07] visualization library
seaborn 0.12.1 [Was21] statistical data visualization

Table 5.2: Additional software libraries used for the simulations

5.1.2 Deployment Scenario: Air Temperature Monitoring

We conduct a simulation study based on the use case of environmental monitoring.
Specifically, we will use SenseReduce to increase the energy efficiency of a single sensor
node utilized for air temperature monitoring. We will simulate different measurement
intervals ρ for the sensor node: 10, 30, and 60 minutes.

We define the prediction horizon length η to be 24 hours. Recent work has shown that
NN-based prediction models work best for short-term intervals of this length [TBKV21].
Additionally, a horizon of 24 hours makes the implementation of baselines straightforward
because they can exploit the daily periodicity naturally displayed by weather data
(Section 5.2.2).

The data aggregation period δ is 1 hour, i.e., the base station will collect hourly measure-
ments, which will be used as inputs for the prediction models. Consequently, prediction
horizon updates can only occur at full hours.

The precision with which the currently measured temperature from the sensor node must
be known can vary depending on the use case. Therefore, we will also simulate different
threshold metrics T based on the absolute difference between predicted and measured air
temperature. More specifically, given threshold value t, prediction ŷ, and measurement
x, the threshold metric is defined as

Tt =
{

True if |ŷ − x| ≥ t

False otherwise
(5.1)

The threshold values t in our simulations will be 0.5 (TL_low), 1.0 (TL_medium), and
2.5°C (TL_high).

1github.com/falzberger/sense-reduce
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5.1.3 Dataset

We base our experiments on data provided by the Austrian Central Institution for
Meteorology and Geodynamics (ZAMG) Data Hub2. Table 5.3 provides an overview of the
utilized datasets. We will use the data from the Vienna Inner City station to simulate the
deployment of one sensor node with SenseReduce for two years, from January 1, 2020,
to December 31, 2021. Along the classification introduced in Section 2.3 for continual
learning, the simulation is a Single Incremental Task (SIT) scenario with New Instances
(NI).

Stations Vienna Inner City (5925)
Linz City (3202)

Features air temperature in 2 meters (TL)
air pressure (P)

relative humidity (RF)
sunshine duration (SO)

Duration 2010-01-01 - 2021-12-31
Interval 10 min

Table 5.3: ZAMG dataset description

The feature of interest is the air temperature in 2 meters (TL), i.e., our threshold metrics
evaluate the difference between measured and predicted air temperature. However, the
sensor node observes additional variables, namely the air pressure (P), relative humidity
(RF), and sunshine duration (SO). These are utilized as additional input variables to the
prediction models to improve their performance.

Our goal is to also consider different availability of training data as a parameter in our
simulations. As shown in Table 5.4, all training datasets range until December 31, 2019,
i.e., the day before the deployment simulation starts (inclusive). We use three subsets of
varying lengths of the dataset from Vienna Inner City as training data: vienna_2010_
2019 starting from January 1, 2010, vienna_2019_2019 starting from January 1, 2019,
and vienna_201907_201912 starting from July 1, 2019. Additionally, we simulate a
transfer learning scenario using data from another station, Linz City. The linz_2010_
2019 dataset will be described in more detail in the following section.

Analysis and Preprocessing

We first shortly discuss our process of data analysis and the preprocessing involved. We
aim to optimize the performance of the prediction models and will show that the data
from Linz City is feasible for the simulation scenario with transfer learning.

2data.hub.zamg.ac.at
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Dataset Name Station Start Date End Date

vienna_2010_2019 Vienna Inner City 2010-01-01 2019-12-31
vienna_2019_2019 Vienna Inner City 2019-01-01 2019-12-31

vienna_201907_201912 Vienna Inner City 2019-01-01 2019-12-31
linz_2010_2019 Linz City 2010-01-01 2019-12-31

Table 5.4: Definition of training datasets

The datasets from both stations contain 12 years of weather data in 10-minute intervals,
resulting in 631,152 measured data points each. Both contain approximately 0.1% of
missing data. We impute most missing values using linear interpolation for gaps up to 3
hours. For both datasets, a gap from April 6, 2017, to April 9, 2017, remains, where we
replace each missing value by taking the average of the values from 24, 48, and 72 hours
before.

The sampling interval of the datasets provided by ZAMG is 10 minutes. This allows
us to simulate the deployment of a sensor node with a measurement interval ρ of 10
minutes with real-world data. However, we will use a data aggregation interval, δ, of
60 minutes in our simulations. Hence, we assume to have only hourly measurements
available for model training. To that end, we downsample all training datasets using
only the measurements at the full hours. Since the sunshine duration (SO) denotes the
seconds of sunshine in the last 10 minutes, we downsample it by computing the sum over
the last hour.

As mentioned above, we will use the historical weather data from Linz City in a simulation
scenario to demonstrate the effect of transfer learning. We choose the Austrian city Linz
as an approximation of Vienna which has similar but still different weather characteristics.
Both stations are situated at the Danube river; however, Linz is located 150 kilometers
west of Vienna. The Linz station lies at an altitude of 262 meters, and Vienna at 177
meters. In Figures 5.1 and 5.2, we visualize and compare the feature distributions, which
we will briefly discuss.

Given the boxplots in Figure 5.1, we can observe that the value distributions are similar
but centered around different means. The interquartile ranges do not have any noteworthy
differences. For the sunshine duration (SO), we plot the hours of sunshine for every day;
for all other attributes, we plot the distribution of all measurements. Pressure (P) and
relative humidity (RF) display some outliers that are within the expected variance given
the vast number of data points.

In Figure 5.2, we plot the daily averages over all years for every station. For all attributes
except sunshine duration (SO), we plot the average over all years of the daily average.
For SO, we plot the average over all years of the daily sum, i.e., the total hours of
sunshine on a given day. Both datasets exhibit a strong yearly periodicity typical for the
mid-European climate.
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1Figure 5.1: Feature distributions of the training datasets

We can observe that the yearly averages move in parallel but are shifted due to the
different means. The pressure (P) displays the most significant difference, which the
different altitudes of the stations can explain. We provide the Pearson correlation
coefficient (of the daily averages or sum) for every attribute in Table 5.5. We can observe
a very high correlation (> 0.95) for features TL and P. For RF and SO, the correlation is
lower but still high (> 0.75). Given these observations, we conclude that the Linz City
station is a good approximation of the Vienna Inner City station for our transfer learning
scenario.

Intuitively, weather data exhibits a strong daily and yearly periodicity. However, neither
the timestamp nor the time in seconds is a valuable input for NN models. Given a date
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1Figure 5.2: Yearly averages of the training datasets

Feature Correlation Coefficient

TL 0.97088
P 0.97250

RF 0.75975
SO 0.82744

Table 5.5: Pearson correlation coefficients of dataset features from both stations

and time encoded in a timestamp t in seconds, we derive the following additional features:

Daysin = sin(t · 2π

24 · 60 · 60)

Daycos = cos(t · 2π

24 · 60 · 60)

Y earsin = sin(t · 2π

365.2425 · 24 · 60 · 60)

Y earcos = cos(t · 2π

365.2425 · 24 · 60 · 60)
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We encode the timestamps using sine and cosine functions, which map radian (rad) values
to the range [−1, 1]. Intuitively, the encoding allows us to provide the model with the
information that 23:59h is close to 00:00h and December 31 is close to January 1.

As the last step, we apply feature normalization, which is essential for training well-
performing neural networks. We transform all features to be normally distributed with
zero mean and unit variance by using standard normalization:

z = x− µ

σ
, (5.2)

where µ is the mean of the feature and σ its standard deviation. We arrive at complete
and normalized datasets for our simulations with four input features (TL, P, RF, and
SO) and encoded periodicity with sine and cosine functions.

5.2 Evaluation

5.2.1 Evaluation Metrics

We require evaluation metrics not only for comparing the results of different simulation
scenarios but also as loss functions for training NN models. In the context of our
simulation study, we are only predicting a single feature (air temperature), which allows
us to use univariate metrics in the following definitions.

Let ŷ be the vector of predicted values. The vector of true target values, i.e., the
measurements, is given by x. Both ŷ and x have length |ŷ| = |x| = n, and ŷi (xi) denotes
the predicted (true) scalar value at position i. Given the data aggregation period δ of
1 hour, if any model outputs prediction vector ŷ at time tŷ, the value ŷ1 denotes the
predicted air temperature at the next full hour after tŷ.

A simple measure to evaluate a model’s accuracy with intuitive interpretation is the
average over the absolute differences of all predictions. The mean absolute error (MAE)
is defined as

MAE(x, ŷ) = 1
n

n∑
i=1
|xi − ŷi|. (5.3)

However, in the context of SenseReduce, prediction errors do not affect the data
reduction algorithm as long as they do not cause a threshold violation. Hence, it would
be better to have many small prediction errors than a single large error. The mean
squared error (MAE) considers this by squaring the errors and hence increasing their
impact with higher differences:

MSE(x, ŷ) = 1
n

n∑
i=1

(xi − ŷi)2. (5.4)

By taking the square of the errors, the MSE changes the unit of measurement. Although
this might not make a difference when using the metric for training NN models, the
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resulting values are more difficult to interpret. The root mean squared error (RMSE)
mitigates this issue by taking the square root of the MSE:

RMSE(x, ŷ) =

√√√√ 1
n

n∑
i=1

(xi − ŷi)2. (5.5)

In SenseReduce, using the above error metrics poses a problem. All values yi, 1 < i < n
contributing equally to the metric implies that a correct prediction for the first hour in
the prediction horizon is as important as for the last hour. However, if the first prediction
y1 already leads to a threshold violation, the last prediction yn is never actually used.
Therefore, we derive a weighted MSE metric that penalizes errors less the further they
are in the future. The weighted mean squared error (WMSE) is defined as

WMSE(x, ŷ) = 1
n

n∑
i=1

(xi − ŷi)2
(

10 + (i− 1)
( 1

n − 10
n− 1

))
. (5.6)

Each squared error (xi − ŷi)2 is weighted by a linearly distributed penalty value ranging
from 10 to 1

n . Hence, given our prediction horizon of 24 hours, the first hour will be 240
times more important than the last hour in the WMSE metric. We will use the WMSE
as a loss function for training NN models and as a metric to compare the performances
of different model architectures.

5.2.2 Baselines

Using NN models for data prediction on sensor devices requires a non-trivial amount
of data transfer to deploy and update the models. Hence, we want to ensure that the
benefit outweighs the cost compared to simpler approaches. To this end, we define a
simple baseline (without machine learning) that extrapolates the trend from the past 24
hours into the future. The repeat baseline is defined as follows:

Let xt be the air temperature at horizon update time t, and x be a vector of hourly
air temperature measurements of the past 24 hours. Moreover, x1 represents the first
element of x, i.e., the air temperature 24 hours before t. The prediction vector y for the
next 24 hours is given by

y = x⊕ (xt − x1) (5.7)

where ⊕ is the element-wise addition applied to vector x. Intuitively, repeat forecasts
the trend of the last day one day into the future. Thus, it exploits the daily periodicity
of the air temperature.

In addition, we will use two other baselines that serve as lower and upper bounds in the
parameter study:

• naive baseline: The sensor node communicates every measurement directly to
the base station without prediction-based data reduction. This approach results in
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the most communication since the number of sent messages equals the number of
measurements, and no data aggregation is applied.

• oracle baseline: We assume a perfect prediction model, i.e., ŷ = x for all
predictions ŷ and (future) measurements x. This approach poses a theoretical lower
bound. In practice, random noise in measurements makes it impossible to achieve
a prediction model that perfectly forecasts all measurements.

5.3 Prediction Models
Finding a neural network architecture for a specific use case can be difficult because there
are many types of architectures to choose from, each with its strengths and weaknesses.
This requires domain expertise, knowledge of the latest research and techniques, and
experimentation to determine the best solution. Moreover, more complex models may have
increased performance but are typically larger in size and have a higher communication
cost. Therefore, we will also have different neural network architectures as a parameter
in our simulation scenarios.

We want to compare the effectiveness of simpler, more generic NN models against more
complex architectures. Before we present the three chosen models in detail, we discuss our
methodology in model design. As discussed in Section 4.2, SenseReduce supports the
TensorFlow library for prediction models by default; therefore, we will also TensorFlow to
implement our NN models. Moreover, by utilizing TensorFlow Lite for mobile and edge
devices, we can reduce the size of deployed models without developing custom model
compression techniques.

5.3.1 Model Design

Air temperature forecasting is an established research area, and NN-based models have
shown promising results in recent work [TBKV21, CMBR20, LLS20]. However, reviews
of the state-of-the-art conclude that “it is still difficult to pick the best methodology for
air temperature forecasting” [TBKV21].

In recent research by Kreuzer et al. [KMS20], it has been shown that multivariate LSTMs
outperform simpler neural networks and univariate Seasonal Autoregressive Integrated
Moving Average (SARIMA) for temperature forecasting with a prediction horizon of up
to 6 hours. For prediction horizons greater than 6 hours, they showed that convolutional
LSTMs performed even better. The authors used datasets from four German cities with
different climate characteristics. Since their climate is similar to our datasets, we can
transfer these findings to our scenario.

Aligned with the state-of-the-art discussed in [TBKV21], and the results presented
in [KMS20], we designed three different architectures:

• Dense: A simple generic model with two densely connected layers
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• LSTM: An LSTM network specialized in time series forecasting

• ConvLSTM: An LSTM network with convolutional layers, similar to [KMS20]

After initial experiments, we defined a search space for every model variant. We then
utilized KerasTuner [OBL+19], a hyperparameter optimization framework, to optimize
the architecture of each model. The search has been conducted based on the dataset
definition in Table 5.6. We do not use data from the simulation period (January 1, 2020,
to December 31, 2021) for the model architecture search since this would introduce a
bias based on future information in our model design.

Loss Function WMSE
Dataset vienna_2010_2019

Validation Data 2018-01-01 - 2019-12-31
Maximum Input Length 5 days

Maximum Epochs 150
Patience Value 20

Batch Size 32

Table 5.6: Hyperparameters for model architecture search

Additionally, we applied two callbacks during model training after every epoch to avoid
overfitting the model to the training data. Therefore, although we defined an equal
number of maximum epochs for all models, the actual number of epochs depends on the
progress of the loss function (WMSE) during model training. Given the patience value p
as listed in Table 5.6, we use the following callbacks:

• EarlyStopping: Early stopping is a technique that halts the training process if
the loss function does not decrease over a set number of consecutive iterations,
specified as p epochs. The callback will return the best model found during all
epochs.

• ReduceLROnPlateau: If the loss function does not decrease for ⌊p/2⌋ epochs,
the callback will reduce the current learning rate by a factor of 5 (i.e., multiply by
0.2).

We list the detailed search space of every model for the hyperparameter optimization in
Appendix A. In the remainder of this section, we discuss the final design and compare
the model performances.

5.3.2 Model Architectures

In Figure 5.3, we provide an overview of the design of every NN. For all layers, we use
the TensorFlow default weight initialization method. Except for the dense1 layer in the
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Dense model, all Dense layers use a linear activation function. All convolutional layers
in the ConvLSTM model have equal kernel size k = 3 and use zero-padding such that
the output dimension does not change. For the Dense and LSTM layers, the numbers in
parentheses indicate the number of units. For the Conv1D layers, it is the number of
filters, and for the dropout and pooling layers, the dropout rate or pool size, respectively.
As shown in Table 5.7, the hyperparameter optimization led to different optimizers and
learning rates for every model.

Model Optimizer Learning Rate

Dense RMSprop 2.3994 · 10−3

LSTM RMSprop 5.0287 · 10−4

ConvLSTM Adam 2.4407 · 10−4

Table 5.7: Optimizers and learning rates of the prediction models

The different numbers of layers in the NN visualizations give a sense of the differences in
architectural complexity. Due to its design, an LSTM layer with an equal number of units
as a Dense layer requires approximately four times more parameters. Also, the length of
the input sequence varies across the models: While the hyperparameter optimization led
to the Dense model only using the last 4 hours, the LSTM model uses the last 48 hours,
and the ConvLSTM model uses the last 120 hours as input data. This influences the
number of parameters in the first network layer, which we will analyze in more detail
later in this section.

Model MAE MSE RMSE WMSE

constant 0.8673 1.0568 1.0280 5.3057
last 0.3210 0.1838 0.4287 0.8392

previous 0.2693 0.1285 0.3584 0.6447
repeat 0.2833 0.1599 0.3999 0.5542
Dense 0.1816 0.0630 0.2511 0.2337
LSTM 0.1763 0.0602 0.2453 0.2189

ConvLSTM 0.1736 0.0576 0.2400 0.2108

Table 5.8: Evaluation metrics of all prediction models including baselines

In Table 5.8, we provide the performance metrics on the validation dataset of the prediction
models and additional baselines. In addition to the repeat baseline introduced in
Section 5.2.2, we use the following:

• constant: Predict the average temperature from the training dataset for 24 hours

• last: Predict the last measured air temperature for 24 hours
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• previous: Repeat the previous 24 hours of measurements

Overall, we can observe that the additional model complexity leads to better performance
across all metrics. Considering the WMSE, LSTM can improve by 6% compared to the
Dense, and ConvLSTM by 10%. Compared to the baselines, all NN prediction models
show a significant improvement. For example, Dense performs 36% better in terms
of MAE and 58% better in terms of WMSE compared to the repeat baseline, which
suggests that the prediction-based data reduction of SenseReduce benefits in particular
from the increased performance.

Notably, the previous strategy performs better in terms of the MAE, MSE, and
RMSE metrics, while the repeat strategy exhibits superior performance according to
our custom WMSE metric. This discrepancy can likely be attributed to the fact that
the previous strategy is better suited for short-term predictions due to its ability to
extrapolate trends, while the repeat strategy is better suited for long-term predictions.
In the context of SenseReduce, the repeat strategy is, therefore, the more desirable
choice.

Although the LSTM and ConvLSTM models show better performances, they come at
the cost of higher architectural and computational complexity. Recent work [Won19] has
introduced information density and NetScore as metrics to assess which NN models offer
the best trade-off between prediction performance and complexity. Since the NetScore is
an extension of information density, we will first introduce the latter:

Given a NN model M, its information density D(M) is given by

D(M) = a(M)
p(M) , (5.8)

where p(M) is the number of parameters of the NN as described in Section 2.2 and a(M)
is the model’s accuracy.

The accuracy is generally defined as the percentage of samples correctly attributed to
their classes in a classification task. However, since air temperature forecasting is a
regression task, we need to redefine the concept of accuracy to calculate the NetScore
metric for the models.

In [CDF21], the authors also applied the NetScore metric to compare models for air
temperature forecasting. To derive an accuracy metric, they used an arbitrary threshold
for the prediction error of 1°C. In our simulations, the temperature threshold varies,
making using a constant threshold impractical. Hence, we derive a regression accuracy
metric:

Let ϵM be the MAE of a neural network prediction model M used for a regression task,
then its accuracy a(M) is defined as

a(M) = (1− ϵM
ϵB

) · 100, (5.9)

48



5.3. Prediction Models

where ϵB is the MAE of an upper-bound baseline B. Theoretically, the accuracy could
become negative; however, in that case, the model would not provide any advantages over
the baseline. Choosing an appropriate baseline B that depicts an appropriate worst-case
performance is thus essential. We will use the constant baseline (Table 5.8) in our
evaluation; a NN model performing worse than this baseline does not have any use for
prediction-based data reduction.

The metric of information density only accounts for the structural complexity of a model,
based solely on the number of parameters, p(M). However, as stated in Section 2.2,
the complexity of a network’s architecture does not necessarily reflect the amount of
computation required to run inferences on the network. To address this, the NetScore
metric was introduced by [Won19]. It is defined as:

Ω(M) = 20 log

(
a(M)α

p(M)βm(M)γ

)
, (5.10)

where m(M) represents the number of multiply-accumulate (MAC) operations required
for a single inference computation, i.e., the computational complexity. The coefficients α,
β, and γ determine the relative importance The authors propose default values of α = 2
and β = γ = 0.5, which we will also use for our evaluation.

We arrive at the complexity metrics for all prediction models as shown in Table 5.9.
We computed each model’s computational and architectural complexity as described in
Section 2.2. First, we can observe that the number of parameters required for model
representation increases by a factor of 6 from Dense to LSTM and by a factor of 4 from
LSTM to ConvLSTM. However, the MAC operations for model inference increase by
a much greater factor (×355 from Dense to LSTM, ×7 from LSTM to ConvLSTM).
This is due to the higher computational complexity of the LSTM and Conv1D layers:
With Dense layers, every parameter is involved in a single computation during network
inference; in LSTM and Conv1D layers, a parameter is used for every element in the
input time series sequence.

The models’ computed accuracy, a(M), demonstrates only minimal differences, similar
to the MAE metric. Therefore, the information density displays the same relations as
the number of parameters, with decreases by factors of 6 and 4, respectively. On the
contrary, the NetScore also considers the MAC operations and shows a greater difference
between the models. Information density and NetScore metrics show that the Dense
model has a much better performance-complexity trade-off due to its small architectural
and computational complexity.

The model size |M| is the number of bytes required to represent the model after com-
pressing it with the TensorFlow Lite library. Since the model parameters constitute the
main part of the required information, the size is proportional to p(M). Additionally,
TensorFlow Lite can decrease the file size with increasing parameters, as the size increases
only by factors 5 and 3 from Dense to LSTM and LSTM to ConvLSTM, respectively,
compared to factors 4 and 6 of the parameters.
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Model (M) Dense LSTM ConvLSTM

Parameters (p(M)) 936 6,040 26,016
MAC operations (m(M)) 936 355,608 2,507,400

Accuracy (a(M)) 79.061 79.673 79.984
Information Density 0.084 0.013 0.003

NetScore 16.493 -17.268 -32.025
Model size (|M|) 7,204 35,036 119,736

Table 5.9: Complexity of all prediction models in terms of number of parameters, MAC
operations, Information Gain, NetScore, and TensorFlow Lite model size

5.4 Update Strategies
Model update strategies can greatly influence the prediction performance and model
transfer cost over the simulation period. Therefore, in addition to the simulation variables
introduced in the sections above, we will compare multiple strategies for continual learning
and continuous deployment of prediction models. Although each strategy has a different
approach to continual learning, they all use the callbacks defined in Section 5.3.1 with a
patience value of 20 and at most 100 training epochs. The strategies are implemented in
SenseReduce and described as follows:

• static: After initial deployment, the sensor node receives no model updates.

• retrain_*: A new model gets trained on all collected data. The most recent 30%
of the data is used as validation data during training. For every model, we use its
defined optimizer and learning rate. We simulate two variants, retrain_short
updates the model quarterly (after 91 days), and retrain_long after half a year
(183 days).

• fine_tune_*: All model weights get fine-tuned with a reduced learning rate. The
model-specific optimizer is used, and we define a reduced learning rate for every
model: 2 · 10−5 (Dense), 5 · 10−6 (LSTM), and 2 · 10−6 (ConvLSTM).
The fine_tune_* strategies maintain a limited buffer: After every update, the
collected data used as training data is removed, while the validation data is
kept to be used in the next update. Like the other strategies, we simulate two
variants, fine_tune_short and fine_tune_long, with quarterly and half-
yearly updates, respectively. The last four weeks of validation data are used for
quarterly updates, and for half-yearly updates, the last eight weeks are used.

• transfer_*: Transfer learning is applied to the models by freezing a model-
specific set of layers and only training a subset of layers on newly collected data.
For the Dense model, we freeze the first dense layer (dense1 ); for the LSTM
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model, only the LSTM layer (lstm) is frozen, and in the ConvLSTM model, all
convolutional layers (conv1 - conv4 ) keep their model weights.
With these strategies, we aim to maintain already learned features in higher NN
layers while adapting to new data with minimal effort. The more data is available
for the initial model to train, the better the strategies are expected to work.
The transfer_* strategies apply the optimizer and learning rate defined for each
model in Table 5.7. The update intervals, validation data, and buffer size of the
transfer_* strategies are defined equally as in the fine_tune_* strategies.

5.5 Parameter Space

Prediction Horizon 24 h
Aggregation Interval 1 h

Model Dense, LSTM, ConvLSTM
Training Data vienna_2010_2019,

vienna_2019_2019,
vienna_201907_201912,
linz_2010_2019

Threshold Metric TL_high, TL_medium, TL_low
Stride 10 min, 30 min, 60 min

Strategy static,
retrain_short, retrain_long,
fine_tune_short, fine_tune_long,
transfer_short, transfer_long,

Table 5.10: Parameter space of the simulations

An overview of the parameter space for all simulation scenarios is given in Table 5.10.
Considering the cardinality of every parameter, the total number of simulation scenarios
is

3 · 4 · 3 · 3 · 7 = 756.

Employing the hardware described in Section 5.1.1, running all simulations required
approximately 92 hours to complete. We will describe our analytical approach and discuss
the results in the next chapter.
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Figure 5.3: Neural network architectures of the prediction models
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CHAPTER 6
Results

In this chapter, we present the results of the simulation scenarios described in the previous
chapter. Our focus is on energy efficiency through data reduction and, consequently, on
the number of exchanged messages and the amount of transferred data in every scenario.
We begin by explaining our method for analyzing network communication, followed by
a brief discussion of the baseline performances. We then present the results for each
model architecture and, finally, provide a summary of the findings across all simulation
scenarios. We highlight the most interesting findings in this chapter and provide tables
with detailed results for every simulation scenario in Appendix B.

Communication Analysis

We assume the sensor nodes are deployed in a standard IEEE 802.11 (Wi-Fi) WLAN to
compute the transferred data in our simulations. The nodes use the IPv4 protocol for
communication based on the TCP protocol (TCP/IP). In practice, further optimizations
in network communication are possible using Low Power Wide Area Network (LPWAN)
protocols like LoRaWAN. However, their choice depends on the application’s require-
ments and the available infrastructure. Moreover, they can require custom protocol
implementations due to maximum allowed packet size limitations.

We base the analysis of the total transferred data in our parameter study on the
following: The TCP and IPv4 headers have a fixed size of at least 20 bytes per network
packet [Pos81a, Pos81b]. The minimum overhead for a data frame in a Wi-Fi network is
32 bytes [IEE16]. Hence, the packet overhead ph is 72 bytes in total.

Each data point consists of a timestamp and the four features described in Table 5.3.
In our setup, the timestamps will always be a full hour by definition and can thus be
inferred from the message reception time, i.e., they are implicitly encoded. Each of the
four features is encoded with a 32-bit float value, resulting in a data point size pd of 16
bytes. Given a prediction horizon length η of 24 hours and data aggregation period δ of 1
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hour, the maximum payload size of a single data exchange is (η/δ) · pd = 24 · 16 = 384B.
Since the 802.11 standard gives the smallest maximum transmission unit (MTU) of all
communication protocols with 2304 bytes, we can assume that a single packet will always
be sufficient for a single data exchange.

In total, given a set of V threshold violations, nu horizon updates, and nd model
deployments with a model of size |M|, we estimate the data transferred in total D with
the equation

D =
∑
v∈V

(ph + elapsed(v) · pd) + nu(ph + h · pd) + nd(ph + |M|), (6.1)

where elapsed(·) is a function such that given a threshold violation v, it computes the
elapsed hours since the last threshold violation or horizon update event, i.e., the number
of (new) data points transferred with the threshold violation.

By design, elapsed(v) < (η/δ) for any given threshold violation v, prediction horizon
length η, and data aggregation period δ. SenseReduce would trigger a horizon update
if no threshold violation occurs within the defined prediction horizon. Consequently,
threshold violation messages are affected more by the packet overhead ph than horizon
update messages. Hence, although decreasing the number of threshold violations can
lead to increased horizon updates, the amount of data transferred is reduced in total.

Given the number of threshold violations nv = |V |, we can further compute the total
number of message exchanges E in a deployment scenario by summarizing the number of
events:

E = nv + nu + nd. (6.2)

Most related work focuses only on this communication metric, neglecting the network
overhead and model transfer cost. Nevertheless, reducing the number of messages is
an essential complementary metric as it can improve the duty cycle of sensor nodes by
allowing them to power down their wireless communication for extended periods.

The difference between data transmission and reception is not considered in analyzing
the transferred data in our parameter study. Instead, the focus is on the total amount
of data transferred between the sensor node and the base station. The difference in
energy consumption between transmission and reception is determined by the sensor
node’s hardware, making it difficult to accurately estimate the energy consumption for
all possible application scenarios. Moreover, the broadcast nature of wireless networks
can result in sensor nodes receiving messages that are not intended for them, thereby
increasing the energy consumption associated with data reception in dense networks.
Therefore, we apply the data transferred in total combined with the number of message
exchanges as a metric for the overall energy efficiency.

It is important to note that our estimation of transferred data simplifies the required
communication in a Wi-Fi network by only using the TCP/IP protocol. The cost of a
single message exchange may be significantly higher in practice due to overhead from
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additional layers in the communication setup, such as TLS or HTTPS. Additionally,
message exchanges typically occur at sparse intervals in SenseReduce, leading to tem-
porary disconnections. Establishing a connection can be resource-intensive, particularly
in congested networks with a high density of sensor nodes, and may further increase the
overhead for a single message exchange. However, the network infrastructure depends
on the application requirements, making a general analysis challenging. Our communi-
cation analysis aims to show that prediction-based data reduction can reduce network
communication even in an environment with minimal overhead.

Baselines

Before we present the simulation results for every prediction model, we shortly discuss
the performances of the baselines introduced in Section 5.2.2 since they are equal across
all simulation scenarios.

Baseline ρ [s] T nv nu D [B] MAE [°C] MSE [°C2] RMSE [°C]

naive 600 - 105264 0 9263232 - - -
naive 1800 - 35088 0 3087744 - - -
naive 3600 - 17544 0 1543872 - - -
oracle - - 0 731 333336 0 0 0

Table 6.1: naive and oracle baselines

We provide the results for the naive and oracle baselines in Table 6.1. For both
baselines, the performance is independent of the applied threshold metric. No predictions
are made for the naive baseline, and thus the error metrics (MAE, MSE, RMSE) are
not applicable. For the oracle baseline, we assume perfect predictions (i.e., ŷ = x)
independent of the measurement interval ρ, and hence the error metrics are equal to zero.

The naive approach shows the upper bound for the number of exchanged messages and
the amount of transferred data. Each measurement will be communicated to the base
station, which is equal to each measurement resulting in a threshold violation. Hence,
the number of threshold violations nv equals the total number of measurements taken
over the simulation period.

On the contrary, given the oracle baseline, we can observe a theoretical lower bound
of approximately 333 kB of transferred data in our simulation scenario. Due to the
prediction horizon length η of 24 hours, the sensor node sends daily messages containing
hourly measurements of the elapsed day. Without any communication overhead, these
data alone would require pd · 24 · (366 + 365) = 280, 704 bytes. The additional packet
overhead leads to a total sum of 333,336 bytes. However, we do not consider the data
required for model transfer in this sum, as we do not know the minimum size of a perfect
prediction model. Therefore, the actual lower bound must be greater in our defined
simulation scenario.
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ρ [s] T nv nu D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high 1811 203 431201 0.9538 1.3923 1.1799
600 TL_medium 6530 20 757034 0.4562 0.3185 0.5644
600 TL_low 15102 0 1372704 0.2809 0.1309 0.3617

1800 TL_high 1641 212 418856 1.0475 1.7152 1.3097
1800 TL_medium 5472 16 680400 0.5745 0.5561 0.7457
1800 TL_low 10970 1 1075264 0.4243 0.3447 0.5872
3600 TL_high 1494 199 404032 1.1677 2.2669 1.5056
3600 TL_medium 4618 20 618952 0.7544 1.0747 1.0367
3600 TL_low 8173 2 873904 0.6377 0.8589 0.9268

Table 6.2: Simulation results for repeat baseline

In Table 6.2, we present the results of the repeat baseline. The exhibited performance
can be intuitively explained across multiple parameter dimensions:

• The lower the threshold of the applied metric T , the higher the number of threshold
violations nv and the lower the number of horizon updates nu. Since threshold
violations lead to an adjustment of the prediction horizon, the error metrics improve
similarly. For TL_low, we observe that it is rarely the case that a full day passes
without any threshold violation, i.e., nu is close to (or exactly) 0. Moreover,
with TL_low and a measurement interval of 3600 seconds, almost every second
measurement (47%) leads to a threshold violation.

• As the measurement interval increases, the number of threshold violations nv

decreases. Since fewer model updates occur, the error metrics worsen. Interest-
ingly, the number of horizon updates nu seems to be (almost) unaffected by the
measurement frequency.

• The higher the number of threshold violations nv, the higher the amount of total
data transferred D. As shown in Equation 6, threshold violations have a more
significant share in data transfer than horizon updates due to packet overhead.
Hence, although the number of horizon updates nu is decreasing, they cannot
compensate for the increase in nv in the repeat baseline.

For every measurement interval ρ, we can already observe that the repeat baseline
significantly reduces transferred data compared to the naive baseline. For instance,
with a measurement interval of 600 seconds, repeat reduces the transferred data by
85% to 95% and the number of exchanged messages by 86% to 98%. Clearly, the higher
the defined threshold metric, the more relative improvement can be expected.

The repeat baseline requires 21% more data and 131% more messages compared to the
oracle baseline in the best scenario (ρ = 3600, T = TL_high). In the worst scenario
(ρ = 600, T = TL_low), 312% more data and 1966% more messages are needed.
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We can conclude that the trend extrapolation of the repeat baseline can already lead to
a significant data reduction in our simulation scenario compared to the baseline without
any data reduction. In the remainder of this chapter, we will analyze the performance
of prediction-based data reduction using neural networks by comparing the number of
message exchanges and the amount of transferred data for every model update strategy
against the repeat baseline.

6.1 Dense model

The first prediction model in our simulation analysis is the Dense model, which has a
model size of 7204 bytes after being converted to a TensorFlow Lite model. We will
examine the results for each dataset separately and provide more detailed information in
Tables B.2 through B.5.

6.1.1 vienna_2010_2019
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Figure 6.1: Results for Dense model with vienna_2010_2019 dataset

In the simulations conducted on the vienna_2010_2019 dataset, several strategies
demonstrated similar performance in terms of message exchanges, as shown in Figure 6.1.
We achieve a reduction in the number of messages by up to 37% compared to the
repeat baseline with retrain_* and static strategies (ρ = 600, T = TL_high).
The static strategy required the least amount of data transfer in all scenarios, with
a potential reduction of up to 22% compared to the repeat baseline (ρ = 600, T =
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6. Results

TL_low). Moreover, in the best case, the static strategy requires only 9% more data
than the oracle baseline (ρ = 3600, T = TL_high). The strategies with frequent
model deployments (*_short) did often perform worse than their counterparts with less
frequent model deployments (*_long). Additionally, the model transfer cost increased
data transfer compared to the repeat baseline.

The transfer_short strategy exhibited the poorest performance in all scenarios, even
performing worse than the repeat baseline in scenarios with a threshold metric other
than TL_high. This can be attributed to the small model size and limited training data
for transfer learning, resulting in overfitting and reduced performance.

6.1.2 vienna_2019_2019
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Figure 6.2: Results for Dense model with vienna_2019_2019 dataset

As shown in Figure 6.2, when using the Dense model with training data from the year
2019 only, all strategies experience a decrease in performance compared to the results
obtained when using the entire training dataset. However, it is still possible to reduce the
number of message exchanges by up to 33% (ρ = 600, T = TL_high) and the amount
of transferred data by up to 14% (ρ = 600, T = TL_low) compared to the repeat
baseline. As the measurement interval increases, the relative performance gain decreases.

Intuitively, the retrain_* baselines show the best performance in terms of message
exchanges across all scenarios. They can fully utilize the accumulated new data by training
the models anew. However, considering the data transferred, the static strategy is best
when applying the TL_high threshold metric. Otherwise, retrain_long outperforms
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6.1. Dense model

both static and retrain_short. In particular, only the retrain_long strategy
outperforms the repeat baseline regarding transferred data and message exchanges in
the scenario with ρ = 3600 and T = TL_low. Similar to the scenarios with the vienna_
2010_2019 dataset, the transfer_short has the poorest performance.

Given the reduced dataset, we can observe that static deployment of the Dense model
performs worse than the repeat baseline if the threshold metric is low and the mea-
surement interval increased (ρ ≥ 1800, T = TL_low). This already highlights one of the
limitations of NN-based prediction models, namely the requirement of sufficient training
data.

6.1.3 vienna_201907_201912
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Figure 6.3: Results for Dense model with vienna_201907_201912 dataset

The simulation results when limiting the available training data to half a year are shown
in Figure 6.3. Overall, the performance is significantly lower than when using an entire
year or multiple years of data, and the trend observed with the vienna_2019_2019
dataset continues.

The retrain_* strategies perform the best but still require at least 4% more message
exchanges or 12% more transferred data compared to the repeat baseline (ρ = 600,
T = TL_high). Across all scenarios, none of the strategies outperform the repeat
baseline in terms of exchanged messages or transferred data. Therefore, even for the
neural network with the lowest architectural complexity, we require at least a full year of
data for efficient prediction-based data reduction.
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6.1.4 linz_2010_2019
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Figure 6.4: Results for Dense model with linz_2010_2019 dataset

With the linz_2010_2019 dataset, we demonstrate the effects of transfer learning,
simulating a deployment scenario where only an estimation of the historical measurements
is available for model training. The results in Figure 6.4 show that we can significantly
improve the performance compared to both scenarios with reduced training data from the
exact location. Overall, we can reduce the exchanged messages by up to 30% (ρ = 600,
T = TL_high) and the transferred data by up to 15% (ρ = 600, T = TL_low) compared
to the repeat baseline.

Because the retrain_* strategies do not use data from the linz_2010_2019 dataset
for continual learning but only the newly accumulated data during the simulation, they
exhibit the poorest performance. They do not acquire enough data during the two
simulated years to train a model with adequate performance.

In scenarios with a measurement interval of 3600 seconds and TL_low threshold metric,
the transfer_long strategy requires the fewest message exchanges. Moreover, it
outperforms the best-performing strategy for the same scenario with the vienna_2019_
2019 dataset.

If the TL_high metric is applied, the static strategy requires the least data transfer.
However, in terms of message exchanges, the fine_tune_long strategy performs best
in 8 out of 9 scenarios and has the least amount of transferred data for all threshold
metrics other than TL_high. These results demonstrate the effectiveness of transfer
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learning techniques in scenarios with limited training data.

6.2 LSTM model
In the following analysis, we will examine the simulation results for the LSTM model.
The TensorFlow Lite version of this model has a size of 35036 bytes, which is five times
larger than the size of the Dense model. While the model will require more data transfer,
we expect it to reduce the message exchanges by providing better predictions. We will
present the results for each dataset individually and provide detailed results in Tables B.6
through B.9.

6.2.1 vienna_2010_2019
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Figure 6.5: Results for LSTM model with vienna_2010_2019 dataset

Given the entire training dataset from the deployment location, all model update strategies
perform similarly to the Dense model (Figure 6.5). Only in scenarios with higher threshold
metrics (T ̸= TL_low) can we observe a performance increase compared to the Dense
model in terms of message exchanges. Although the transfer_short strategy still has
the poorest performance among all strategies, it is better compared to the Dense model
in all scenarios, showing the effect of the implementation adapted to the NN architecture.

All strategies outperform the repeat baseline regarding exchanged messages. For the
retrain_* and static strategies, we can again achieve a reduction by up to 37%
(ρ = 600, T = TL_high). However, we can reduce the transferred data by at most 19%
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6. Results

due to the increase in model size (ρ = 600, T = TL_low), and the static strategy is
the only strategy that outperforms the repeat baseline across all scenarios. The higher
the defined threshold, the more strategies require more data transfer than the baseline.

6.2.2 vienna_2019_2019
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Figure 6.6: Results for LSTM model with vienna_2019_2019 dataset

When the dataset is limited to one year with the vienna_2019_2019 dataset, the
performance of the LSTM model significantly decreases, as shown in Figure 6.6. The
performance degradation is worse compared to the Dense model, which is likely due to the
fact that the LSTM model has a higher architectural complexity and is, therefore, more
sensitive to the lack of available training data. Upon directly comparing the performances
of the best strategies with Dense and LSTM models across all scenarios, the Dense model
consistently outperforms the LSTM model.

Nevertheless, the retrain_short strategy demonstrates the most significant reduction
in message exchanges in all scenarios. This strategy enables improved performance by
allowing the model to incorporate accumulated data as quickly as possible. However,
the strategy’s effectiveness is limited, with a maximum reduction of message exchanges
by 17% compared to the repeat baseline (ρ = 600, T = TL_high). Additionally, the
retrain_short strategy performs worse than the repeat baseline in the scenarios
(ρ = 1800, T = TL_low), (ρ = 3600, T = TL_medium), and (ρ = 3600, T = TL_low).

If the threshold metric is lower than TL_high, the accuracy gain from model updates
in the retrain_* strategies outweighs the cost of data transfer of model updates, i.e.,
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6.2. LSTM model

they outperform the static strategy. Nonetheless, all strategies still require at least
3% more data transfer than the repeat baseline (ρ = 600, T = TL_high).

6.2.3 vienna_201907_201912
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Figure 6.7: Results for LSTM model with vienna_201907_201912 dataset

In the simulation scenario with a limited training dataset of only half a year, the
performance trend observed with reduced training data persists (Figure 6.7). None of
the strategies can outperform the repeat baseline in terms of either message exchanges
or transferred data.

Of the strategies analyzed, the retrain_short strategy requires the least number of
exchanged messages, but still at least 38% more than the repeat baseline (ρ = 600,
T = TL_high). In terms of transferred data, the best-case scenario with the retrain_
long strategy still requires at least 47% more data than the repeat baseline (ρ = 600,
T = TL_high).

Compared to the Dense model, the LSTM model, therefore, experiences a far greater
decline in performance, similar to the scenarios with one entire year of training data.
However, all scenarios and update strategies require still fewer data transferred in total
than the naive baseline, showing that prediction-based data reduction using NNs still
provides benefits in the lack of alternatives.
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Figure 6.8: Results for LSTM model with linz_2010_2019 dataset

6.2.4 linz_2010_2019

In the simulation scenarios using the training data from Linz, transfer learning significantly
improves the performance of the LSTM model (Figure 6.8). Across all scenarios, the
best-performing strategy outperforms the best-performing strategy in equivalent scenarios
using the vienna_2019_2019 or vienna_201907_201912 datasets. However, the transfer
learning approach still performs worse than using the entire dataset from Vienna in all
scenarios.

Similar to the Dense model, the fine_tune_* strategies perform best with transfer
learning, while the retrain_* strategies struggle with limited training data. Compared
to the repeat baseline, we can reduce the number of message exchanges by up to 33%
using the fine_tune_short strategy (ρ = 600, T = TL_high). Considering the
transferred data, only the static strategy can improve upon the repeat baseline in 8
out of 9 scenarios with a maximum reduction of 8% (ρ = 600, T = TL_high).

In all scenarios, the LSTM model performs better than the Dense model with the same
training dataset in terms of message exchanges, achieving a relative reduction of up
to 5% (ρ = 600, T = TL_high). However, due to its smaller model size, the Dense
model leads to better results regarding the transferred data, with the LSTM model
requiring at least 6% more (ρ = 1800, T = TL_medium). Hence, choosing a model with
higher architectural complexity for transfer learning requires a trade-off between message
exchanges and data transfer, which depends on the application context.
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6.3 ConvLSTM model

In the final simulation scenarios, the ConvLSTM model provides the predictions. The
reduced TensorFlow Lite model has a size of 119,736 bytes, roughly three times larger
than the LSTM model and almost 17 times larger than the Dense model. We will present
the results for each dataset and provide additional details in Tables B.10 through B.13.
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Figure 6.9: Results for ConvLSTM model with vienna_2010_2019 dataset

Similar to the Dense and LSTM models, all strategies demonstrate similar performance
regarding message exchanges (Figure 6.9). Moreover, the ConvLSTM model manages to
provide the best predictions given a large training dataset and can reduce the messages
by up to 38% compared to the repeat baseline, the largest improvement observed in all
simulations (ρ = 600, T = TL_high). Compared to the oracle baseline, it requires
only 72% more messages and reduces the number of messages compared to the naive
baseline by 99.8%.

Due to the large model size, all strategies require more data transfer than the repeat
baseline if they deploy the model more than once. Therefore, only the static strategy
requires less transferred data than the repeat baseline (up to a 5% reduction for ρ = 600
and T = TL_low). The relative improvement worsens with increasing threshold metrics
or measurement intervals.

65



6. Results

Among the best-performing strategies are the static, retrain_*, and fine_tune_*
strategies, with only minimal differences among them. As the threshold metric decreases,
more improvement can be expected by updating the model regarding the number of
exchanged messages. However, in scenarios ρ = 3600 and T = TL_low, all strategies
with short deployment intervals require more data transfer than the naive baseline,
making them an expensive trade-off for minimizing the number of message exchanges.

6.3.2 vienna_2019_2019
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Figure 6.10: Results for ConvLSTM model with vienna_2019_2019 dataset

As observed with the LSTM model, prediction models with higher architectural complexity
require more training data for adequate performance. As demonstrated in Figure 6.10,
the ConvLSTM model performs poorly compared to the repeat baseline when only one
year of training data is available. Like the LSTM model, the Dense model outperforms
the ConvLSTM model in all scenarios.

Of the strategies analyzed, only the retrain_* strategies were able to reduce the
number of message exchanges compared to the repeat baseline, achieving a reduction
of up to 25% (ρ = 600, T = TL_high). However, for the TL_low threshold metric, the
performance of these strategies is worse than the baseline in all scenarios. In terms of
transferred data, the best-performing strategy still requires an increase of at least 28%
compared to the repeat baseline (ρ = 600, T = TL_high).

For scenarios with hourly measurement intervals (ρ = 3600) and lower threshold metrics
(T ≠ TL_high), 8 out of 14 strategies require more data transfer than the naive
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baseline while performing worse than the repeat baseline regarding message exchanges.
Therefore, the ConvLSTM model becomes unfeasible for continuous deployment in such
scenarios.

6.3.3 vienna_201907_201912
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Figure 6.11: Results for ConvLSTM model with vienna_201907_201912 dataset

As anticipated, the performance further deteriorates when only minimal training data
is available. As shown in Figure 6.11, no strategy can outperform the repeat baseline
in any scenario. Intuitively, the retrain_* strategies can adapt the fastest to newly
accumulated data; however, this does not compensate for the poor predictions made
during the initial period of the simulation. The increase in message exchanges is at least
12%, and the increase in transferred data is at least 76% due to the large model compared
to the repeat baseline (ρ = 600, T = TL_high).

It is worth noting that, in contrast to the simulations with the vienna_2019_2019 dataset,
the best-performing strategies for the ConvLSTM model outperform the best-performing
strategies for the LSTM model in scenarios with threshold metric TL_high. However,
the Dense model still demonstrates the best performance among all models in all scenarios
with only half a year of training data.

As observed with the vienna_2019_2019 dataset, the ConvLSTM model requires more
data transfer than the naive baseline in scenarios with ρ = 3600 for most strategies
with continuous model deployment.
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6.3.4 linz_2010_2019
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Figure 6.12: Results for ConvLSTM model with linz_2010_2019 dataset

Similar to the other models, transfer learning with the dataset from Linz improves the
performance of the ConvLSTM model. In all scenarios, the best-performing strategy
using the linz_2010_2019 dataset outperformed the best-performing strategies using the
vienna_2019_2019 and vienna_201907_201912 datasets for the same scenario. However,
the results are not better than those obtained with the vienna_2010_2019 dataset.

The transfer_* and fine_tune_* strategies performed particularly well with the
ConvLSTM model, with the former demonstrating strong performance at high threshold
metrics. In the most favorable scenario, we observe a reduction in exchanged messages
by 31% compared to the repeat baseline (ρ = 600, T = TL_high). However, the
ConvLSTM model requires at least 18% more data transferred across all scenarios.

In contrast to the Dense and LSTM models, the ConvLSTM does not outperform the
repeat baseline with threshold metric TL_low and a measurement interval of 3600
seconds, suggesting the quality of the training data is not sufficient to train the complex
model. Even though the transfer_long strategy can improve against the static
strategy, the training data seems insufficient for this scenario. Moreover, although
the performance improves compared to the scenarios with limited training data, the
ConvLSTM still requires more data transfer than the naive baseline in scenarios with
ρ = 3600 and short deployment intervals.
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6.4 Discussion

After discussing the simulation results for every model and dataset individually, we will
conclude this chapter with a general discussion of the parameter study. In the following,
we will synthesize and analyze the results, drawing conclusions and implications from
our findings.

Training Dataset Dense LSTM ConvLSTM

vienna_2010_2019 37% 37% 38%
vienna_2019_2019 33% 17% 25%

vienna_201907_201912 -4% -38% -12%
linz_2010_2019 30% 33% 31%

Table 6.3: Best-case reduction in message exchanges compared to repeat baseline

Training Dataset Dense LSTM ConvLSTM

vienna_2010_2019 22% 19% 5%
vienna_2019_2019 14% -3% -28%

vienna_201907_201912 -12% -47% -76%
linz_2010_2019 15% 8% -18%

Table 6.4: Best-case reduction in transferred data compared to repeat baseline

Overview

Tables 6.3 and 6.4 provide an overview of the achievable data reduction rates in the
best-performing scenarios for each model-dataset combination compared to the repeat
baseline.

Overall, the ConvLSTM model provides the best predictions given a large training dataset
and can reduce the messages by up to 38%, the largest improvement observed in all
simulations. Compared to the naive baseline, it can reduce the message exchanges by
up to 99.8%. Regarding the total data transfer, the Dense model demonstrates the best
results due to its smaller model size. It can reduce the overall communication by up to
22% compared to the naive baseline and by up to 92% compared to the naive baseline.

With the exceptions discussed for the results of the ConvLSTM model (Section 6.3), all
models outperform the naive baseline in terms of message exchanges and transferred
data across all scenarios. In the remaining section, we will discuss various aspects of the
parameter study.
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6. Results

Training Dataset

The quality and quantity of the available training dataset play an essential role in the
efficiency of prediction-based data reduction. As we have observed in our simulations, the
performance worsens significantly if only limited training data, such as an entire year or
half a year of the deployment location, is available. Even models with low architectural
complexity (Dense model) require more than half a year of training data to outperform
the naive baseline.

Statically deployed prediction models trained with limited training data can still perform
better than the repeat baseline in scenarios with small measurement intervals and low
threshold metrics. Continuous model updates can improve the performance of these
models, leading to fewer message exchanges. However, it often requires a trade-off
between message exchanges and transferred data because even the deployment of models
with low architectural complexity (Dense model) requires more data transfer in total
compared to the repeat baseline.

Threshold Metrics

The results of our simulations with the vienna_2010_2019 dataset suggest that as the
threshold metric increases, more complex models tend to perform better regarding the
number of message exchanges. When the threshold metric is set to TL_low, the Dense
model performs the best, while the LSTM model performs the best when the threshold is
set to TL_medium (except for the scenario with hourly measurement intervals). When the
threshold is set to TL_high, the ConvLSTM model demonstrates the best performance.
This is likely due to the fact that the increased complexity of these models leads to
improved long-term predictions, which do not necessarily offer an advantage when
threshold violations occur in the short term. Similar observations have been made
in [KMS20], where more complex models lead to better predictions for prediction horizons
greater than 6 hours.

Measurement Interval

In general, the parameter study demonstrates that the more the measurement interval
of the sensor node decreases, the more prediction-based data reduction can minimize
communication. All best-case reduction rates depicted in Tables 6.3 and 6.4 originate
from scenarios with a measurement interval of 600 seconds, the lowest value in our
parameter study.

Model Complexity

The Dense model is the best choice if (1) reducing transferred data is more important
than reducing message exchanges and (2) insufficient training data is available. Across all
scenarios, the Dense model requires less transferred data than the LSTM or ConvLSTM
models. Although they may require fewer message exchanges, the larger model size always
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6.4. Discussion

cancels out the increase in performance. Additionally, when only limited training data is
available, the best-performing strategies with the Dense model are never outperformed
by any strategy using another model.

Considering the computational complexities of the prediction models analyzed in Sec-
tion 5.3.2, the Dense model provides further benefits by requiring less than 1% of the
operations to compute a prediction horizon compared to the LSTM and ConvLSTM
models. Depending on the hardware capabilities of the sensor nodes, this reduction in
required computation can further increase the efficiency of less complex models. However,
if reducing the number of message exchanges is paramount, complex model architectures
can still be valuable through increased prediction performance.

Transfer Learning

Transfer learning with a similar dataset is worthwhile if limited training data is available.
For the more complex LSTM and ConvLSTM models, using the historical measurements
from Linz leads to better results than using the limited training datasets from the
deployment location. The smaller Dense model seems to adapt quickly enough, so transfer
learning only leads to better performance compared to the scenarios with half a year of
training data. However, using the linz_2010_2019 dataset, the best-performing strategies
with the LSTM model outperform the Dense model strategies with the vienna_2019_
2019 dataset in 7 out of 9 scenarios. Hence, choosing a model with higher architectural
complexity for transfer learning requires a trade-off between message exchanges and data
transfer, which depends on the application context.

Applying transfer learning with a similar dataset demonstrated a comparable reduction in
message exchanges to using the entire vienna_2010_2019 dataset, as depicted in Table 6.3.
However, this is not the case regarding the transferred data. Since the strategies that
reduce the message exchanges the most rely on continuous model deployment, they
require more data transferred in total.

Continuous Model Updates

The various model update strategies demonstrate different advantages and disadvantages
depending on the available training data and the complexity of the model architecture.
In scenarios with limited training data, the retrain_* strategies tend to produce the
best results due to their ability to quickly incorporate new data. However, in scenarios
with the full vienna_2010_2019 dataset, the models may also benefit from short-term
adaptations using retrain_* or fine_tune_* strategies. In most cases, retrain_
short outperforms retrain_long in terms of exchanged messages, but at the cost of
increased transferred data due to more frequent model updates. However, in the case of
transfer learning, the retrain_* strategies fail due to a severe lack of available training
data in the initial simulation period.

When utilizing transfer learning, the effectiveness of the model update strategies depends
on the model architecture. For the linz_2010_2019 dataset, the LSTM model and the
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6. Results

Dense model demonstrate the best results with the fine_tune_* strategies, while the
more complex ConvLSTM model benefits from the transfer_* strategies. Although
the fine_tune_* strategies work comparably well in scenarios with TL_high metric,
they perform worse than static strategies if a different threshold is applied. Contrary to
expectations, the best-performing fine_tune_* strategies with the ConvLSTM model
are outperformed by the best-performing fine_tune_* strategies with the LSTM
model.

When sufficient training data is available (vienna_2010_2019 dataset), the static
strategies always require the least data transferred in total. However, other strategies
demonstrate a reduction in message exchanges by up to 3% in the same scenario. It
depends on the application context whether the data transfer cost outweighs the higher
number of messages. Given less training data, the performance gain through model
updates often compensates for the cost of the model transfer, leading to less data
transferred in total compared to a static deployment. Hence, continuous model updates
can increase the energy efficiency of sensor nodes in prediction-based data reduction,
especially with sparse training data.
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CHAPTER 7
Conclusion

In the final chapter of this thesis, we present a summary of our key findings and discuss
the applicability and limitations of the proposed framework. We conclude the thesis
by providing recommendations for future research in the field of prediction-based data
reduction, highlighting the potential for further extensions of the proposed approach to
increase energy efficiency in IoT environments.

7.1 Summary

In this thesis, we presented SenseReduce, an open-source state-of-the-art framework
for prediction-based data reduction in IoT environments with continuous model updates.
We presented its data reduction algorithm based on a dual prediction scheme and the
mechanisms for continual learning and continuous deployment. The framework’s modular
architecture allows for high customization to different application scenarios.

Using an extensive parameter study, we evaluated SenseReduce in the context of air
temperature monitoring. We designed three prediction models based on neural networks
using hyperparameter optimization and showed that their architectural and computational
complexities depend on the applied technique. We used four training datasets of varying
length and quality for a simulated deployment over two years, demonstrating the effects
of different model update strategies, threshold metrics, and measurement intervals.

We significantly reduced the required communication using neural networks as multivariate
prediction models. We have shown that prediction-based data reduction can reduce the
number of exchanged messages by up to 38% and the amount of transferred data by
up to 22% compared to a baseline using univariate trend extrapolation. Compared to
constant reporting, our proposed approach can reduce the exchanged messages by up to
99.8% and the data transfer by up to 92%.
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7. Conclusion

The result analysis has shown that optimizing prediction-based data reduction is highly
context-dependent. Continuous model updates improve the performance of prediction
models over time, especially if training data is sparse. However, the best-performing
model update strategy is influenced by the measurement frequency, the threshold metric,
and the utilized model architecture.

Additionally, the results demonstrated that the quantity and quality of training data are
crucial factors for the performance of neural network models. While optimizing model
architectures can lead to improved performance, simpler models with larger amounts of
training data often surpass these gains. This highlights the importance of acquiring and
preprocessing high-quality data for machine learning applications.

We conclude with the following recommendations for future applications of prediction-
based data reduction, in particular for air temperature monitoring:

• If only limited training data is available, using transfer learning to build a model
on a similar dataset leads to better results than relying on continual learning to
improve the performance over time.

• More complex model architectures can provide benefits for scenarios with transfer
learning. If enough training data is available, they only improve performance in
scenarios with more coarse-grained threshold metrics.

• The higher the measurement frequency, the more relative data reduction can be
expected from using more sophisticated prediction models like neural networks
compared to baseline approaches.

• Continuous model updates reduce the total data transferred if training data is
sparse; otherwise, it only helps reduce the number of message exchanges. The
increase in prediction performance rarely compensates the model transfer cost.

7.2 Limitations and Applicability

We anticipate potential limitations and applicability of our proposed SenseReduce
framework. Thus, in this section, we discuss and provide possible solutions to them.

Multidimensional Data

The SenseReduce framework is intended for two-dimensional time series data, making
it suitable for various application scenarios such as environmental monitoring, industrial
control, and smart building systems. However, although it supports scenarios where
multiple attributes are measured and observed simultaneously by supporting multivariate
prediction models, it is not designed to be used with sequential image data such as image
classification or video analysis. Adapting the framework to handle such data would
require defining appropriate threshold metrics and either reducing the dimensionality
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7.2. Limitations and Applicability

of image data or increasing the dimensionality of prediction model inputs and outputs.
Due to the absence of a relevant application scenario, we did not include it within the
scope of this thesis.

Additionally, the proposed framework requires each connected sensor node to monitor
the same attributes. This design choice is based on the typical application scenarios of
WSNs. However, it is possible to operate multiple node managers within a single base
station to support multiple application scenarios with one physical device.

Communication Efficiency

As highlighted in our parameter study, implementing prediction-based data reduction
may increase communication compared to a basic baseline that does not utilize neural
networks. The point at which the SenseReduce framework demonstrates advantages in
terms of energy efficiency is highly dependent on the context, and we will briefly discuss
the relevant considerations.

Prediction-based data reduction should improve the overall communication efficiency
compared to the naive baseline discussed in Section 6. In particular, the total number
of messages can be reduced as long as a given prediction model can accurately predict
at least one measurement during each model deployment, as outlined in Equation 6 In
terms of overall data reduction, we first look at the total data transferred with the naive
baseline. Given a deployed sensor node where ∆t is the duration of deployment, ρ is the
measurement interval, pd is the size of a data point, and ph is the packet overhead, the
total amount of transferred data in bytes is given by

Dnaive = ∆t

ρ
(pd + ph). (7.1)

Similarly, for prediction-based data reduction, we discussed the computation of the
transferred data in Equation 6. Combining both equations, prediction-based data
reduction leads to a decrease in overall transferred data if the following inequality holds:

∆t

ρ
(pd + ph) <

∑
v∈V

(ph + elapsed(v) · pd) + nu(ph + h · pd) + nd(ph + |M|). (7.2)

However, the resulting threshold violations V are dependent on both the defined threshold
metric T and the performance of the prediction modelM. The number of horizon updates
depends on the defined prediction horizon length η, and the number of model deployments
nd depends on the chosen model update strategy. Additionally, the packet overhead ph

depends on the chosen communication protocol, and the data point size pd is determined
by the monitored data. These parameters must be defined for a specific application
and chosen appropriately based on the underlying data distribution and application
requirements.
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7. Conclusion

Cost of Continual Learning

In addition to the parameters discussed, the cost of continual learning for prediction
models must also be considered in evaluating the overall performance of the proposed
framework. The cost of continual learning is determined by multiple factors, including
the neural network architecture, deployment strategy, and the specific continual learning
method implemented, and thus cannot be generalized across all cases. Nevertheless,
although a significant factor, the continual learning cost is often insignificant in practice.
This is because continual learning is performed on the base station, where computational
resources are readily available, and the neural network models used for prediction tend to
be smaller than other types of neural networks that require many resources for training.

Generic Applicability

The modular design of SenseReduce with generic interfaces allows for high customization
to different prediction models, threshold metrics, and model update strategies. Therefore,
the framework is applicable to various use cases in the context of wireless sensor networks
and IoT sensor applications in general, not limited to air temperature monitoring. The
essential requirement is that the observed data can be predicted with adequate accuracy
using neural network models.

The proposed prediction-based data reduction mechanism builds on the general advantages
neural network models provide. In addition to being able to handle non-linear data,
the large number of trainable parameters enables neural networks to extract underlying
patterns in multivariate input data without the need for domain-specific expert knowledge.
In certain applications, such as climate prediction, neural networks have been shown
to be a viable alternative to traditional scientific models while also offering reduced
computational costs [RDK+22]. However, it should be noted that training neural network
models requires a sufficient dataset of historical measurements or an approximation
thereof, as demonstrated through our simulation scenarios with transfer learning. In cases
where such data is not readily available, prediction models that require minimal or no
training data are preferable. In light of these considerations, our proposed methodology,
SenseReduce, represents a versatile tool for a wide range of applications, particularly
in addressing the challenges of energy efficiency in IoT environments.

7.3 Future Work

Numerous avenues for further research could build upon the work presented in this thesis.
First and foremost, exploring use cases in other domains will provide valuable insights.
By making the SenseReduce framework available as open source, we aim to encourage
other researchers to explore these possibilities in greater depth. In the following section,
we will outline other areas for future study to conclude this thesis.
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7.3. Future Work

Multiple Sensor Nodes

Our simulations focused on a network with a single sensor node, though SenseReduce
can be used with multiple sensor nodes. In such cases, it may be possible to enhance
model deployment strategies by aggregating data from multiple nodes. Centralized
federated learning [DZF+20] could be employed to distribute model update computations
across the sensor nodes, or prediction performance could benefit from centralized data
collection and data fusion. Additionally, sensor nodes may directly utilize measurements
from neighboring nodes to improve their predictions, as shown in [SM21].

Data Reduction

The proposed framework can be further optimized for data reduction through model and
data compression techniques. Model compression methods, such as quantization and
pruning, reduce the size and inference latency of prediction models [HMD16]. Additionally,
various data compression techniques can be employed to reduce the size of transmitted
data, depending on the application domain. For instance, symbolic representation for time
series data [LKWL07] or the transfer of differences between subsequent measurements
instead of the entire measurement can be used to reduce the size of messages.

Deployment Strategies

One potential avenue for future research is to investigate dynamic strategies for model de-
ployment time. This could involve utilizing techniques such as change detection [DRAP15]
and cost-performance optimization techniques, such as linear programming or reinforce-
ment learning, to determine the optimal deployment time. However, it is important
to consider the computational complexity of these techniques. Additionally, advanced
continual learning methods, such as dynamic adaptation of model architecture and
techniques like random or buffered replay, can be investigated to improve prediction
performance and handle sparse training data.

Improving Prediction Performance

In future work, it may be worthwhile to investigate other model architectures, such as
ensemble learning techniques and univariate models like ARIMA, while considering the
suitability of each architecture for specific use cases. Given the challenge of limited
training data in our parameter study, simpler prediction models (like the repeat baseline)
could be employed until enough training data has been gathered to train a neural network.
Another idea would be to use transfer learning combined with fine-tuning on a sample of
historical measurements to train a prediction model before the first deployment.

Additionally, data augmentation and feature engineering techniques could be employed to
increase the available training data and enhance performance. Furthermore, hyperparame-
ter optimization of the proposed framework can be conducted to determine optimal values
for parameters such as prediction horizon, data aggregation period, and hyperparameters
related to continual learning, such as learning rate and validation split.

77



7. Conclusion

Fault Tolerance

In the proposed framework, fault tolerance for sensor nodes is incorporated to a limited
extent. The expected communication between sensor nodes and the base station is
restricted to the horizon update, which depends on the defined prediction horizon length.
However, if sensor nodes fail in between these updates, the base station may not be aware
of the failure; on the contrary: it assumes that the current predictions match the sensor
node’s measurements. One approach to increase resiliency is to decrease the prediction
horizon length, which may also increase required communication.

The required level of resiliency is highly dependent on the specific application scenario.
For instance, in a densely deployed wireless sensor network in an agricultural field,
the failure of a single node may be insignificant. However, in scenarios where fault
tolerance is paramount, sensor nodes may implement a heartbeat signal independent of
the framework to ensure their status is known. Hence, the trade-off between the required
level of resiliency and the communication overhead must be carefully evaluated for each
use case.

Security

In this thesis, we did not address security concerns related to the data transfer from sensor
nodes to the base station. The implementation of encryption can result in additional
computational overhead and energy consumption. The necessary level of security in
IoT environments is highly dependent on the specific use case, making it challenging to
develop a universally applicable technique. For example, using the HTTP/S protocol can
provide the required level of security but increases packet overhead and computational
complexity. In some cases, symmetric key encryption with manually deployed keys may
be a lightweight and feasible option, but key storage and management can pose issues in
low-capacity devices [SSH+18].
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APPENDIX A
Hyperparameter Optimization

As discussed in Section 5.3.1, we used the KerasTuner library for hyperparameter opti-
mization during our model design process. More specifically, we applied the provided
implementation of the Hyperband algorithm [LJD+18] with the parameters listed in
Table A.1. The val_loss objective is equal to the WMSE metric described in Sec-
tion 5.2.1.

Parameter Value

Objective val_loss

Max Epochs 150
Factor 3

Hyperband Iterations 3

Table A.1: Hypberband parameters for model optimization

In Tables A.2, A.3, and A.4, we list the search space used as input to KerasTuner for the
Dense, LSTM, and ConvLSTM model, respectively. We denote multiple options within
the search space with the list notation [·]. The logRange(x, y) function samples with
equal probabilities from each order of magnitude range between x and y.
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A. Hyperparameter Optimization

Layer Parameter Values

Input Sequence Length [1,2,3,4,5,6]

dense1
Units [8,16,24,32]

Activation [relu, tanh, linear]

dense2
Units 24

Activation linear

Optimizer
Learning Rate logRange(1e-8, 1e-2)

Optimizer [adam, rmsprop]

Table A.2: Search space for Dense model

Layer Parameter Values

Input Sequence Length [3, 6, 12, 18, 24, 36, 48, 72, 96, 120]

lstm
Units [8,16,24,32,40,48,56,64]

Recurrent Dropout [0, 0.25, 0.5]

dropout rate [0, 0.1, 0.2, 0.3, 0.4, 0.5]

dense2
Units 24

Activation linear

Optimizer
Learning Rate logRange(1e-8, 1e-2)

Optimizer [adam, rmsprop]

Table A.3: Search space for LSTM model
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Layer Parameter Values

Input Sequence Length 120

conv1
Kernel Size 3

Filters [8, 16, 24, 32]

conv2
Kernel Size 3

Filters [16, 24, 32]

conv3
Kernel Size 3

Filters [32, 48, 64]

conv4
Kernel Size 3

Filters [64, 128]

MaxPool1D Pool Size 2

lstm Units [16, 24, 32]

dense
Units 24

Activation linear

Optimizer
Learning Rate logRange(1e-8, 1e-3)

Optimizer [adam, rmsprop]

Table A.4: Search space for ConvLSTM model
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APPENDIX B
Parameter Study Results

For reference, we provide the results for every scenario simulated in our parameter study.
We group the result tables by prediction model and training dataset; Table B.1 presents
an overview for orientation.

Training Dataset Dense LSTM ConvLSTM

vienna_2010_2019 Table B.2 Table B.6 Table B.10
vienna_2019_2019 Table B.3 Table B.7 Table B.11
vienna_201907_201912 Table B.4 Table B.8 Table B.12
linz_2010_2019 Table B.5 Table B.9 Table B.13

Table B.1: Overview of detailed result tables

The variables in the table headers are as defined in the previous chapters, with datad

representing the sum of transferred data in bytes required only for deploying the prediction
models.
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 941 338 1 7160 380608 0.8736 1.1758 1.0843
600 TL_high retrain_short 937 332 8 57280 430408 0.8783 1.1884 1.0901
600 TL_high retrain_long 938 348 4 28640 402762 0.8660 1.1665 1.0801
600 TL_high fine_tune_short 992 333 8 57280 434517 0.8919 1.2231 1.1059
600 TL_high fine_tune_long 939 339 4 28640 402240 0.8733 1.1755 1.0842
600 TL_high transfer_short 1374 254 8 57280 456293 0.9848 1.4411 1.2005
600 TL_high transfer_long 939 339 4 28640 402240 0.8733 1.1755 1.0842
600 TL_medium static 4229 28 1 7160 594205 0.4204 0.2737 0.5232
600 TL_medium retrain_short 4267 36 8 57280 648165 0.4219 0.2755 0.5249
600 TL_medium retrain_long 4252 28 4 28640 617549 0.4225 0.2761 0.5254
600 TL_medium fine_tune_short 4426 26 8 57280 658850 0.4219 0.2768 0.5261
600 TL_medium fine_tune_long 4230 28 4 28640 615973 0.4203 0.2737 0.5232
600 TL_medium transfer_short 6062 15 8 57280 775821 0.4648 0.3214 0.5669
600 TL_medium transfer_long 4230 28 4 28640 615973 0.4203 0.2737 0.5232
600 TL_low static 10849 0 1 7160 1068986 0.2538 0.1087 0.3297
600 TL_low retrain_short 10791 0 8 57280 1115434 0.2519 0.1080 0.3286
600 TL_low retrain_long 10870 1 4 28640 1092266 0.2538 0.1089 0.3301
600 TL_low fine_tune_short 11609 1 8 57280 1174400 0.2578 0.1119 0.3346
600 TL_low fine_tune_long 10851 0 4 28640 1090826 0.2538 0.1087 0.3297
600 TL_low transfer_short 16891 0 8 57280 1554645 0.2958 0.1390 0.3729
600 TL_low transfer_long 10851 0 4 28640 1090826 0.2538 0.1087 0.3297

1800 TL_high static 865 358 1 7160 374840 0.9068 1.3167 1.1475
1800 TL_high retrain_short 863 355 8 57280 425440 0.9228 1.3511 1.1624
1800 TL_high retrain_long 895 340 4 28640 397296 0.9128 1.3297 1.1531
1800 TL_high fine_tune_short 889 362 8 57280 427800 0.9392 1.3858 1.1772
1800 TL_high fine_tune_long 865 358 4 28640 396536 0.9068 1.3167 1.1475
1800 TL_high transfer_short 1465 271 8 57280 462944 1.0943 1.7692 1.3301
1800 TL_high transfer_long 865 358 4 28640 396536 0.9068 1.3167 1.1475
1800 TL_medium static 3579 35 1 7160 547728 0.5032 0.4239 0.6510
1800 TL_medium retrain_short 3545 36 8 57280 595976 0.5045 0.4256 0.6523
1800 TL_medium retrain_long 3567 41 4 28640 568912 0.5006 0.4202 0.6483
1800 TL_medium fine_tune_short 3728 36 8 57280 609520 0.5108 0.4339 0.6587
1800 TL_medium fine_tune_long 3579 35 4 28640 569424 0.5032 0.4239 0.6510
1800 TL_medium transfer_short 6450 16 8 57280 803680 0.6176 0.5986 0.7737
1800 TL_medium transfer_long 3579 35 4 28640 569424 0.5032 0.4239 0.6510
1800 TL_low static 8003 1 1 7160 864136 0.3513 0.2389 0.4888
1800 TL_low retrain_short 8113 1 8 57280 922680 0.3539 0.2422 0.4921
1800 TL_low retrain_long 7924 2 4 28640 880216 0.3511 0.2401 0.4900
1800 TL_low fine_tune_short 8688 2 8 57280 964152 0.3642 0.2508 0.5008
1800 TL_low fine_tune_long 8001 1 4 28640 885688 0.3512 0.2389 0.4888
1800 TL_low transfer_short 14388 1 8 57280 1374504 0.4945 0.4076 0.6384
1800 TL_low transfer_long 8001 1 4 28640 885688 0.3512 0.2389 0.4888
3600 TL_high static 774 354 1 7160 363104 0.9570 1.5567 1.2477
3600 TL_high retrain_short 769 356 8 57280 413480 0.9533 1.5454 1.2432
3600 TL_high retrain_long 769 348 4 28640 384104 0.9567 1.5539 1.2466
3600 TL_high fine_tune_short 792 350 8 57280 414800 0.9810 1.6079 1.2680
3600 TL_high fine_tune_long 774 354 4 28640 384800 0.9570 1.5567 1.2477
3600 TL_high transfer_short 1567 249 8 57280 464944 1.2168 2.2662 1.5054
3600 TL_high transfer_long 774 354 4 28640 384800 0.9570 1.5567 1.2477
3600 TL_medium static 3080 39 1 7160 511560 0.6083 0.6691 0.8180
3600 TL_medium retrain_short 3032 42 8 57280 558880 0.6083 0.6682 0.8174
3600 TL_medium retrain_long 3082 46 4 28640 533808 0.6081 0.6702 0.8187
3600 TL_medium fine_tune_short 3269 34 8 57280 575512 0.6299 0.7038 0.8389
3600 TL_medium fine_tune_long 3080 39 4 28640 533256 0.6083 0.6691 0.8180
3600 TL_medium transfer_short 5689 19 8 57280 748880 0.8274 1.1321 1.0640
3600 TL_medium transfer_long 3080 39 4 28640 533256 0.6083 0.6691 0.8180
3600 TL_low static 6166 2 1 7160 731920 0.4788 0.4747 0.6890
3600 TL_low retrain_short 6273 4 8 57280 790360 0.4839 0.4793 0.6923
3600 TL_low retrain_long 6251 2 4 28640 759736 0.4829 0.4789 0.6920
3600 TL_low fine_tune_short 6833 2 8 57280 830552 0.5120 0.5191 0.7205
3600 TL_low fine_tune_long 6166 2 4 28640 753616 0.4788 0.4747 0.6890
3600 TL_low transfer_short 9805 1 8 57280 1044480 0.7618 1.0293 1.0145
3600 TL_low transfer_long 6166 2 4 28640 753616 0.4788 0.4747 0.6890

Table B.2: Detailed results for Dense model with vienna_2010_2019 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1185 274 1 7204 393513 0.9381 1.3180 1.1481
600 TL_high retrain_short 1078 303 8 57632 438938 0.9100 1.2527 1.1193
600 TL_high retrain_long 1026 320 4 28816 407149 0.9029 1.2375 1.1124
600 TL_high fine_tune_short 1193 268 8 57632 444557 0.9294 1.2978 1.1392
600 TL_high fine_tune_long 1154 280 4 28816 413533 0.9216 1.2839 1.1331
600 TL_high transfer_short 2746 160 8 57632 548506 1.0532 1.6081 1.2681
600 TL_high transfer_long 1235 252 4 28816 417274 0.9459 1.3323 1.1543
600 TL_medium static 5391 15 1 7204 677236 0.4477 0.3036 0.5510
600 TL_medium retrain_short 4620 17 8 57632 672786 0.4329 0.2877 0.5363
600 TL_medium retrain_long 4677 20 4 28816 647973 0.4309 0.2853 0.5342
600 TL_medium fine_tune_short 5649 6 8 57632 746040 0.4515 0.3075 0.5546
600 TL_medium fine_tune_long 5262 13 4 28816 689624 0.4456 0.3012 0.5489
600 TL_medium transfer_short 9992 4 8 57632 1058592 0.5036 0.3772 0.6142
600 TL_medium transfer_long 5529 11 4 28816 708685 0.4504 0.3068 0.5539
600 TL_low static 14227 0 1 7204 1312305 0.2790 0.1263 0.3554
600 TL_low retrain_short 11841 0 8 57632 1191442 0.2616 0.1140 0.3376
600 TL_low retrain_long 12190 1 4 28816 1187530 0.2646 0.1160 0.3406
600 TL_low fine_tune_short 14834 0 8 57632 1406941 0.2817 0.1285 0.3585
600 TL_low fine_tune_long 13928 0 4 28816 1312605 0.2765 0.1244 0.3527
600 TL_low transfer_short 26865 0 8 57632 2273173 0.3573 0.1950 0.4416
600 TL_low transfer_long 14483 0 4 28816 1352562 0.2797 0.1276 0.3572

1800 TL_high static 1091 298 1 7204 387316 0.9916 1.5065 1.2274
1800 TL_high retrain_short 974 318 8 57632 431232 0.9649 1.4421 1.2009
1800 TL_high retrain_long 944 343 4 28816 401768 0.9544 1.4153 1.1897
1800 TL_high fine_tune_short 1154 281 8 57632 441824 1.0053 1.5382 1.2402
1800 TL_high fine_tune_long 1104 293 4 28816 409680 0.9900 1.5076 1.2278
1800 TL_high transfer_short 2459 190 8 57632 529152 1.1732 2.0483 1.4312
1800 TL_high transfer_long 1201 258 4 28816 414144 1.0203 1.5810 1.2574
1800 TL_medium static 4923 8 1 7204 642940 0.5645 0.5104 0.7144
1800 TL_medium retrain_short 4126 25 8 57632 638048 0.5287 0.4571 0.6761
1800 TL_medium retrain_long 4190 31 4 28816 613584 0.5305 0.4600 0.6783
1800 TL_medium fine_tune_short 5335 3 8 57632 723184 0.5777 0.5320 0.7294
1800 TL_medium fine_tune_long 4772 15 4 28816 654376 0.5575 0.5004 0.7074
1800 TL_medium transfer_short 10317 5 8 57632 1082040 0.7576 0.8812 0.9387
1800 TL_medium transfer_long 5090 16 4 28816 677328 0.5699 0.5229 0.7231
1800 TL_low static 11902 0 1 7204 1144900 0.4328 0.3275 0.5722
1800 TL_low retrain_short 9512 0 8 57632 1023752 0.3822 0.2710 0.5206
1800 TL_low retrain_long 9465 0 4 28816 991256 0.3818 0.2705 0.5201
1800 TL_low fine_tune_short 13070 0 8 57632 1279928 0.4544 0.3533 0.5944
1800 TL_low fine_tune_long 11338 0 4 28816 1126120 0.4216 0.3146 0.5609
1800 TL_low transfer_short 18662 0 8 57632 1682552 0.6268 0.6241 0.7900
1800 TL_low transfer_long 11898 0 4 28816 1166440 0.4323 0.3278 0.5725
3600 TL_high static 1060 280 1 7204 379676 1.0756 1.8424 1.3573
3600 TL_high retrain_short 889 328 8 57632 420936 1.0170 1.6924 1.3009
3600 TL_high retrain_long 934 311 4 28816 394168 1.0367 1.7365 1.3178
3600 TL_high fine_tune_short 1150 260 8 57632 435968 1.1113 1.9393 1.3926
3600 TL_high fine_tune_long 1036 280 4 28816 399760 1.0730 1.8354 1.3548
3600 TL_high transfer_short 2605 169 8 57632 535616 1.3778 2.9221 1.7094
3600 TL_high transfer_long 1150 256 4 28816 406624 1.1058 1.9444 1.3944
3600 TL_medium static 4614 12 1 7204 620812 0.7417 0.9356 0.9672
3600 TL_medium retrain_short 3450 33 8 57632 589096 0.6448 0.7407 0.8606
3600 TL_medium retrain_long 3666 27 4 28816 575224 0.6643 0.7710 0.8780
3600 TL_medium fine_tune_short 4965 9 8 57632 696848 0.7653 0.9826 0.9912
3600 TL_medium fine_tune_long 4396 17 4 28816 627224 0.7235 0.8986 0.9480
3600 TL_medium transfer_short 8628 7 8 57632 960472 1.1929 2.2908 1.5135
3600 TL_medium transfer_long 4714 18 4 28816 650176 0.7472 0.9465 0.9729
3600 TL_low static 9338 0 1 7204 960284 0.6797 0.8302 0.9111
3600 TL_low retrain_short 7474 1 8 57632 877064 0.5550 0.6019 0.7758
3600 TL_low retrain_long 7343 1 4 28816 838512 0.5464 0.5840 0.7642
3600 TL_low fine_tune_short 9762 0 8 57632 1041744 0.7109 0.8828 0.9396
3600 TL_low fine_tune_long 8944 0 4 28816 953744 0.6487 0.7706 0.8778
3600 TL_low transfer_short 12699 0 8 57632 1253208 1.1988 2.3222 1.5239
3600 TL_low transfer_long 9186 1 4 28816 971224 0.6711 0.8182 0.9045

Table B.3: Detailed results for Dense model with vienna_2019_2019 dataset
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 3650 108 1 7204 558868 1.0774 1.6908 1.3003
600 TL_high retrain_short 1828 262 8 57632 489936 0.9656 1.4053 1.1854
600 TL_high retrain_long 2145 246 4 28816 482506 0.9779 1.4418 1.2008
600 TL_high fine_tune_short 3480 53 8 57632 593413 1.0156 1.5633 1.2503
600 TL_high fine_tune_long 3053 73 4 28816 535074 1.0388 1.5887 1.2604
600 TL_high transfer_short 4556 46 8 57632 670474 1.1534 1.8840 1.3726
600 TL_high transfer_long 3293 118 4 28816 555784 1.0630 1.6542 1.2862
600 TL_medium static 13704 0 1 7204 1274633 0.5448 0.4379 0.6618
600 TL_medium retrain_short 7173 22 8 57632 856968 0.4654 0.3281 0.5728
600 TL_medium retrain_long 8113 10 4 28816 894637 0.4735 0.3424 0.5851
600 TL_medium fine_tune_short 12241 0 8 57632 1220213 0.5166 0.4038 0.6355
600 TL_medium fine_tune_long 12992 0 4 28816 1245152 0.5238 0.4178 0.6464
600 TL_medium transfer_short 16603 0 8 57632 1534280 0.5913 0.5068 0.7119
600 TL_medium transfer_long 13267 3 4 28816 1265197 0.5436 0.4354 0.6598
600 TL_low static 28884 0 1 7204 2367596 0.3648 0.2026 0.4502
600 TL_low retrain_short 16929 0 8 57632 1557752 0.2930 0.1393 0.3732
600 TL_low retrain_long 17998 0 4 28816 1605618 0.2992 0.1463 0.3826
600 TL_low fine_tune_short 25165 0 8 57632 2150757 0.3429 0.1824 0.4271
600 TL_low fine_tune_long 26063 0 4 28816 2186309 0.3487 0.1887 0.4344
600 TL_low transfer_short 43361 0 8 57632 3460858 0.4606 0.3102 0.5570
600 TL_low transfer_long 29921 0 4 28816 2464085 0.3728 0.2107 0.4590

1800 TL_high static 4103 103 1 7204 590388 1.3137 2.5736 1.6042
1800 TL_high retrain_short 2046 252 8 57632 503608 1.0915 1.8415 1.3570
1800 TL_high retrain_long 2208 255 4 28816 486272 1.1184 1.9157 1.3841
1800 TL_high fine_tune_short 3403 58 8 57632 588136 1.2184 2.2702 1.5067
1800 TL_high fine_tune_long 3256 68 4 28816 549488 1.2342 2.2823 1.5107
1800 TL_high transfer_short 5777 42 8 57632 757584 1.4955 3.2737 1.8093
1800 TL_high transfer_long 3776 124 4 28816 590096 1.2948 2.5066 1.5832
1800 TL_medium static 12522 0 1 7204 1189516 0.8475 1.0880 1.0431
1800 TL_medium retrain_short 6159 18 8 57632 783528 0.6057 0.6048 0.7777
1800 TL_medium retrain_long 7692 15 4 28816 864624 0.6633 0.7222 0.8498
1800 TL_medium fine_tune_short 11625 0 8 57632 1175864 0.8120 1.0022 1.0011
1800 TL_medium fine_tune_long 10398 0 4 28816 1058416 0.7684 0.9470 0.9731
1800 TL_medium transfer_short 16915 0 8 57632 1556752 1.0445 1.5826 1.2580
1800 TL_medium transfer_long 13239 2 4 28816 1263104 0.8765 1.1489 1.0719
1800 TL_low static 20436 0 1 7204 1759332 0.7143 0.8189 0.9049
1800 TL_low retrain_short 12796 1 8 57632 1260240 0.4814 0.4276 0.6539
1800 TL_low retrain_long 14552 0 4 28816 1357488 0.5282 0.5011 0.7079
1800 TL_low fine_tune_short 19849 0 8 57632 1768000 0.6565 0.6768 0.8227
1800 TL_low fine_tune_long 17741 0 4 28816 1587112 0.6342 0.6934 0.8327
1800 TL_low transfer_short 24973 0 8 57632 2136928 0.9646 1.4059 1.1857
1800 TL_low transfer_long 21195 0 4 28816 1835808 0.7391 0.8602 0.9275
3600 TL_high static 4111 98 1 7204 589364 1.6462 4.1664 2.0412
3600 TL_high retrain_short 1677 255 8 57632 473792 1.1916 2.3247 1.5247
3600 TL_high retrain_long 2121 250 4 28816 476376 1.2668 2.6693 1.6338
3600 TL_high fine_tune_short 3264 63 8 57632 577336 1.5150 3.5386 1.8811
3600 TL_high fine_tune_long 3299 64 4 28816 550824 1.5234 3.5784 1.8917
3600 TL_high transfer_short 6010 31 8 57632 773272 2.0822 6.6735 2.5833
3600 TL_high transfer_long 3848 115 4 28816 593192 1.6298 4.0839 2.0209
3600 TL_medium static 9642 1 1 7204 982212 1.3576 2.9713 1.7238
3600 TL_medium retrain_short 5207 21 8 57632 714944 0.8297 1.2520 1.1189
3600 TL_medium retrain_long 6194 14 4 28816 756512 0.9502 1.6640 1.2900
3600 TL_medium fine_tune_short 9553 0 8 57632 1026680 1.2588 2.4486 1.5648
3600 TL_medium fine_tune_long 9580 0 4 28816 999520 1.2781 2.5631 1.6010
3600 TL_medium transfer_short 12207 0 8 57632 1217768 2.0014 6.2693 2.5039
3600 TL_medium transfer_long 10013 3 4 28816 1030864 1.4158 3.1890 1.7858
3600 TL_low static 13179 0 1 7204 1236820 1.2896 2.7717 1.6649
3600 TL_low retrain_short 8998 0 8 57632 986720 0.7322 1.0654 1.0322
3600 TL_low retrain_long 9960 0 4 28816 1026880 0.8624 1.4736 1.2139
3600 TL_low fine_tune_short 13136 0 8 57632 1284656 1.1854 2.2324 1.4941
3600 TL_low fine_tune_long 11984 0 4 28816 1172608 1.1212 2.2637 1.5045
3600 TL_low transfer_short 15062 0 8 57632 1423328 2.0758 6.7238 2.5930
3600 TL_low transfer_long 13496 0 4 28816 1281472 1.3819 3.1127 1.7643

Table B.4: Detailed results for Dense model with vienna_201907_201912 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1219 278 1 7204 396417 0.9237 1.3059 1.1428
600 TL_high retrain_short 2079 230 8 57632 505704 0.9632 1.4064 1.1859
600 TL_high retrain_long 1564 243 4 28816 440685 0.9575 1.3758 1.1729
600 TL_high fine_tune_short 1138 307 8 57632 443834 0.9240 1.3024 1.1412
600 TL_high fine_tune_long 1119 297 4 28816 412552 0.9132 1.2697 1.1268
600 TL_high transfer_short 1679 237 8 57632 477661 0.9874 1.4644 1.2101
600 TL_high transfer_long 1193 281 4 28816 416621 0.9141 1.2878 1.1348
600 TL_medium static 5180 14 1 7204 661988 0.4397 0.2969 0.5449
600 TL_medium retrain_short 11325 9 8 57632 1154994 0.5151 0.4151 0.6443
600 TL_medium retrain_long 5492 16 4 28816 706445 0.4461 0.3036 0.5510
600 TL_medium fine_tune_short 4860 16 8 57632 690042 0.4356 0.2906 0.5390
600 TL_medium fine_tune_long 4657 21 4 28816 646706 0.4336 0.2883 0.5370
600 TL_medium transfer_short 5883 10 8 57632 763261 0.4465 0.3062 0.5534
600 TL_medium transfer_long 4866 7 4 28816 660661 0.4336 0.2891 0.5376
600 TL_low static 12764 0 1 7204 1206964 0.2650 0.1163 0.3410
600 TL_low retrain_short 24745 0 8 57632 2120544 0.3761 0.2752 0.5246
600 TL_low retrain_long 15429 1 4 28816 1420765 0.2830 0.1314 0.3624
600 TL_low fine_tune_short 12512 0 8 57632 1239741 0.2661 0.1165 0.3414
600 TL_low fine_tune_long 12081 0 4 28816 1179632 0.2615 0.1138 0.3374
600 TL_low transfer_short 14686 0 8 57632 1396266 0.2791 0.1277 0.3574
600 TL_low transfer_long 12486 0 4 28816 1208786 0.2637 0.1155 0.3399

1800 TL_high static 1090 310 1 7204 388300 0.9860 1.5090 1.2284
1800 TL_high retrain_short 1696 213 8 57632 475664 1.0459 1.7027 1.3049
1800 TL_high retrain_long 1372 277 4 28816 428056 1.0422 1.6561 1.2869
1800 TL_high fine_tune_short 1068 302 8 57632 436688 0.9939 1.5223 1.2338
1800 TL_high fine_tune_long 1014 307 4 28816 404024 0.9683 1.4577 1.2073
1800 TL_high transfer_short 1387 238 8 57632 455176 1.0357 1.6497 1.2844
1800 TL_high transfer_long 1080 289 4 28816 407520 0.9746 1.4849 1.2185
1800 TL_medium static 4466 13 1 7204 610396 0.5323 0.4648 0.6817
1800 TL_medium retrain_short 8634 9 8 57632 961168 0.7525 1.0778 1.0382
1800 TL_medium retrain_long 6657 14 4 28816 790048 0.6174 0.6181 0.7862
1800 TL_medium fine_tune_short 4247 13 8 57632 645944 0.5329 0.4621 0.6798
1800 TL_medium fine_tune_long 4051 22 4 28816 602944 0.5203 0.4457 0.6676
1800 TL_medium transfer_short 4996 7 8 57632 699072 0.5607 0.5036 0.7096
1800 TL_medium transfer_long 4542 17 4 28816 637960 0.5444 0.4808 0.6934
1800 TL_low static 9572 0 1 7204 977148 0.3804 0.2657 0.5155
1800 TL_low retrain_short 13048 0 8 57632 1278352 0.4897 0.4434 0.6659
1800 TL_low retrain_long 11014 0 4 28816 1102784 0.4155 0.3105 0.5573
1800 TL_low fine_tune_short 9895 0 8 57632 1051320 0.3876 0.2733 0.5228
1800 TL_low fine_tune_long 9332 1 4 28816 981744 0.3783 0.2647 0.5145
1800 TL_low transfer_short 10273 0 8 57632 1078552 0.3949 0.2802 0.5294
1800 TL_low transfer_long 9784 0 4 28816 1014248 0.3874 0.2742 0.5236
3600 TL_high static 1011 300 1 7204 377524 1.0730 1.8535 1.3614
3600 TL_high retrain_short 3640 226 8 57632 613600 1.5943 4.6493 2.1562
3600 TL_high retrain_long 1254 249 4 28816 413992 1.1108 1.9873 1.4097
3600 TL_high fine_tune_short 938 310 8 57632 423792 1.0693 1.8261 1.3513
3600 TL_high fine_tune_long 904 321 4 28816 392856 1.0332 1.7357 1.3175
3600 TL_high transfer_short 1253 241 8 57632 442576 1.1253 2.0118 1.4184
3600 TL_high transfer_long 1048 262 4 28816 399888 1.0698 1.8497 1.3600
3600 TL_medium static 3836 8 1 7204 564588 0.6664 0.7613 0.8725
3600 TL_medium retrain_short 6230 16 8 57632 788352 1.0092 1.9703 1.4037
3600 TL_medium retrain_long 6558 10 4 28816 782528 1.2466 3.6977 1.9229
3600 TL_medium fine_tune_short 3747 17 8 57632 609600 0.6637 0.7617 0.8728
3600 TL_medium fine_tune_long 3491 25 4 28816 562528 0.6452 0.7288 0.8537
3600 TL_medium transfer_short 4833 9 8 57632 687376 0.7486 0.9121 0.9550
3600 TL_medium transfer_long 3686 14 4 28816 575952 0.6485 0.7338 0.8566
3600 TL_low static 7467 0 1 7204 825572 0.5361 0.5456 0.7387
3600 TL_low retrain_short 10642 0 8 57632 1105120 1.0985 2.7643 1.6626
3600 TL_low retrain_long 9773 0 4 28816 1013432 1.1134 3.1535 1.7758
3600 TL_low fine_tune_short 7941 0 8 57632 910648 0.5645 0.5917 0.7692
3600 TL_low fine_tune_long 7608 0 4 28816 857536 0.5464 0.5705 0.7553
3600 TL_low transfer_short 8518 0 8 57632 952176 0.6034 0.6566 0.8103
3600 TL_low transfer_long 7258 0 4 28816 832352 0.5292 0.5366 0.7325

Table B.5: Detailed results for Dense model with linz_2010_2019 dataset
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 930 338 1 35036 407468 0.8647 1.1595 1.0768
600 TL_high retrain_short 958 337 8 280288 655306 0.8656 1.1624 1.0782
600 TL_high retrain_long 949 331 4 140144 513906 0.8692 1.1715 1.0824
600 TL_high fine_tune_short 949 334 8 280288 654354 0.8749 1.1808 1.0867
600 TL_high fine_tune_long 948 335 4 140144 513994 0.8846 1.1994 1.0952
600 TL_high transfer_short 999 308 8 280288 656133 0.8822 1.2007 1.0958
600 TL_high transfer_long 1014 308 4 140144 516813 0.8800 1.1990 1.0950
600 TL_medium static 4261 33 1 35036 624905 0.4245 0.2772 0.5265
600 TL_medium retrain_short 4219 31 8 280288 867440 0.4231 0.2756 0.5250
600 TL_medium retrain_long 4192 35 4 140144 725421 0.4208 0.2738 0.5233
600 TL_medium fine_tune_short 4238 39 8 280288 869469 0.4233 0.2759 0.5253
600 TL_medium fine_tune_long 4240 37 4 140144 729050 0.4230 0.2755 0.5249
600 TL_medium transfer_short 4381 31 8 280288 879208 0.4291 0.2819 0.5310
600 TL_medium transfer_long 4295 36 4 140144 732925 0.4250 0.2782 0.5274
600 TL_low static 11110 4 1 35036 1115993 0.2555 0.1097 0.3313
600 TL_low retrain_short 10928 4 8 280288 1348626 0.2539 0.1088 0.3299
600 TL_low retrain_long 11004 3 4 140144 1213589 0.2551 0.1094 0.3308
600 TL_low fine_tune_short 11088 3 8 280288 1360098 0.2554 0.1097 0.3312
600 TL_low fine_tune_long 11096 3 4 140144 1220242 0.2554 0.1097 0.3313
600 TL_low transfer_short 11822 3 8 280288 1412936 0.2619 0.1141 0.3378
600 TL_low transfer_long 11251 3 4 140144 1231394 0.2573 0.1106 0.3326

1800 TL_high static 852 346 1 35036 401380 0.9248 1.3502 1.1620
1800 TL_high retrain_short 873 346 8 280288 648176 0.9186 1.3443 1.1594
1800 TL_high retrain_long 886 326 4 140144 507768 0.9191 1.3436 1.1591
1800 TL_high fine_tune_short 880 347 8 280288 649232 0.9229 1.3488 1.1614
1800 TL_high fine_tune_long 867 345 4 140144 507704 0.9317 1.3624 1.1672
1800 TL_high transfer_short 933 327 8 280288 651248 0.9441 1.3934 1.1804
1800 TL_high transfer_long 896 333 4 140144 508520 0.9332 1.3680 1.1696
1800 TL_medium static 3597 39 1 35036 577348 0.5074 0.4265 0.6530
1800 TL_medium retrain_short 3528 44 8 280288 818448 0.5051 0.4227 0.6501
1800 TL_medium retrain_long 3587 37 4 140144 681736 0.5043 0.4230 0.6504
1800 TL_medium fine_tune_short 3615 40 8 280288 824432 0.5085 0.4281 0.6543
1800 TL_medium fine_tune_long 3622 40 4 140144 684488 0.5053 0.4247 0.6517
1800 TL_medium transfer_short 3780 34 8 280288 835856 0.5203 0.4436 0.6660
1800 TL_medium transfer_long 3636 33 4 140144 685040 0.5084 0.4284 0.6545
1800 TL_low static 8397 3 1 35036 920956 0.3579 0.2422 0.4921
1800 TL_low retrain_short 8337 2 8 280288 1161920 0.3588 0.2442 0.4941
1800 TL_low retrain_long 8371 6 4 140144 1024224 0.3593 0.2427 0.4927
1800 TL_low fine_tune_short 8314 5 8 280288 1160880 0.3578 0.2419 0.4919
1800 TL_low fine_tune_long 8364 5 4 140144 1024048 0.3581 0.2422 0.4922
1800 TL_low transfer_short 9303 4 8 280288 1231624 0.3806 0.2659 0.5157
1800 TL_low transfer_long 8671 5 4 140144 1045760 0.3655 0.2504 0.5004
3600 TL_high static 748 350 1 35036 388996 0.9669 1.5535 1.2464
3600 TL_high retrain_short 750 351 8 280288 634952 0.9682 1.5677 1.2521
3600 TL_high retrain_long 768 350 4 140144 495760 0.9649 1.5561 1.2474
3600 TL_high fine_tune_short 744 350 8 280288 634464 0.9638 1.5442 1.2427
3600 TL_high fine_tune_long 744 350 4 140144 494032 0.9623 1.5371 1.2398
3600 TL_high transfer_short 811 328 8 280288 638056 0.9963 1.6312 1.2772
3600 TL_high transfer_long 808 331 4 140144 497576 0.9862 1.5978 1.2640
3600 TL_medium static 3104 44 1 35036 541604 0.6193 0.6759 0.8221
3600 TL_medium retrain_short 3067 49 8 280288 784960 0.6151 0.6716 0.8195
3600 TL_medium retrain_long 3099 42 4 140144 646440 0.6100 0.6611 0.8131
3600 TL_medium fine_tune_short 3126 43 8 280288 788872 0.6171 0.6705 0.8188
3600 TL_medium fine_tune_long 3107 42 4 140144 647016 0.6180 0.6740 0.8210
3600 TL_medium transfer_short 3523 38 8 280288 817192 0.6480 0.7314 0.8552
3600 TL_medium transfer_long 3256 39 4 140144 657576 0.6263 0.6876 0.8292
3600 TL_low static 6621 6 1 35036 792828 0.4976 0.4872 0.6980
3600 TL_low retrain_short 6567 7 8 280288 1034736 0.4914 0.4817 0.6940
3600 TL_low retrain_long 6415 4 4 140144 883192 0.4854 0.4741 0.6886
3600 TL_low fine_tune_short 6577 5 8 280288 1035360 0.4955 0.4846 0.6961
3600 TL_low fine_tune_long 6578 5 4 140144 895000 0.4961 0.4851 0.6965
3600 TL_low transfer_short 7432 5 8 280288 1096920 0.5442 0.5659 0.7522
3600 TL_low transfer_long 6977 2 4 140144 923560 0.5171 0.5177 0.7195

Table B.6: Detailed results for LSTM model with vienna_2010_2019 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1570 219 1 35092 445169 0.9611 1.3626 1.1673
600 TL_high retrain_short 1174 287 8 280736 667704 0.9456 1.3328 1.1545
600 TL_high retrain_long 1189 287 4 140368 528218 0.9221 1.2854 1.1338
600 TL_high fine_tune_short 1555 208 8 280736 689421 0.9512 1.3512 1.1624
600 TL_high fine_tune_long 1526 213 4 140368 547002 0.9550 1.3568 1.1648
600 TL_high transfer_short 1538 222 8 280736 689314 0.9809 1.4080 1.1866
600 TL_high transfer_long 1445 240 4 140368 543168 0.9604 1.3758 1.1729
600 TL_medium static 7945 1 1 35092 887937 0.4820 0.3491 0.5908
600 TL_medium retrain_short 5578 20 8 280736 965106 0.4515 0.3072 0.5543
600 TL_medium retrain_long 5849 24 4 140368 844309 0.4559 0.3132 0.5597
600 TL_medium fine_tune_short 7805 1 8 280736 1124040 0.4770 0.3432 0.5858
600 TL_medium fine_tune_long 7635 1 4 140368 971144 0.4782 0.3437 0.5862
600 TL_medium transfer_short 7779 5 8 280736 1122493 0.4824 0.3484 0.5902
600 TL_medium transfer_long 7016 13 4 140368 927498 0.4753 0.3376 0.5810
600 TL_low static 21922 0 1 35092 1894241 0.3261 0.1682 0.4102
600 TL_low retrain_short 15008 0 8 280736 1642565 0.2841 0.1311 0.3621
600 TL_low retrain_long 15173 0 4 140368 1513800 0.2854 0.1322 0.3635
600 TL_low fine_tune_short 21517 0 8 280736 2111229 0.3231 0.1657 0.4070
600 TL_low fine_tune_long 21153 0 4 140368 1944365 0.3212 0.1639 0.4049
600 TL_low transfer_short 21894 0 8 280736 2138373 0.3289 0.1713 0.4139
600 TL_low transfer_long 18616 0 4 140368 1761701 0.3082 0.1518 0.3896

1800 TL_high static 1759 221 1 35092 458596 1.0908 1.8012 1.3421
1800 TL_high retrain_short 1136 303 8 280736 665240 1.0090 1.5528 1.2461
1800 TL_high retrain_long 1186 298 4 140368 527488 1.0356 1.6171 1.2717
1800 TL_high fine_tune_short 1709 231 8 280736 702280 1.0819 1.7812 1.3346
1800 TL_high fine_tune_long 1719 223 4 140368 560960 1.0867 1.7839 1.3356
1800 TL_high transfer_short 2232 192 8 280736 736488 1.2028 2.1000 1.4491
1800 TL_high transfer_long 1542 252 4 140368 549904 1.0907 1.7810 1.3345
1800 TL_medium static 9384 1 1 35092 991564 0.7296 0.8348 0.9137
1800 TL_medium retrain_short 5328 17 8 280736 947168 0.5845 0.5513 0.7425
1800 TL_medium retrain_long 5878 19 4 140368 846256 0.6063 0.5871 0.7662
1800 TL_medium fine_tune_short 8947 1 8 280736 1206632 0.7158 0.8091 0.8995
1800 TL_medium fine_tune_long 8792 3 4 140368 1054568 0.7100 0.7942 0.8912
1800 TL_medium transfer_short 8811 3 8 280736 1196584 0.7161 0.8081 0.8989
1800 TL_medium transfer_long 7458 9 4 140368 958912 0.6664 0.7086 0.8418
1800 TL_low static 18967 0 1 35092 1681476 0.6370 0.6619 0.8136
1800 TL_low retrain_short 12074 0 8 280736 1431320 0.4458 0.3601 0.6001
1800 TL_low retrain_long 12037 0 4 140368 1288008 0.4493 0.3672 0.6060
1800 TL_low fine_tune_short 18305 0 8 280736 1879960 0.6206 0.6355 0.7972
1800 TL_low fine_tune_long 17990 0 4 140368 1716624 0.6094 0.6168 0.7853
1800 TL_low transfer_short 19024 0 8 280736 1931728 0.6597 0.7187 0.8478
1800 TL_low transfer_long 16844 0 4 140368 1634112 0.5727 0.5535 0.7440
3600 TL_high static 1935 210 1 35092 466660 1.2784 2.6137 1.6167
3600 TL_high retrain_short 1069 311 8 280736 656080 1.0912 1.9216 1.3862
3600 TL_high retrain_long 1136 301 4 140368 519704 1.0948 1.9387 1.3924
3600 TL_high fine_tune_short 1892 227 8 280736 710664 1.2733 2.5981 1.6119
3600 TL_high fine_tune_long 1833 221 4 140368 565424 1.2685 2.5702 1.6032
3600 TL_high transfer_short 1960 215 8 280736 714888 1.3055 2.6853 1.6387
3600 TL_high transfer_long 1675 228 4 140368 554440 1.2554 2.4638 1.5696
3600 TL_medium static 8301 0 1 35092 913508 1.1457 2.2116 1.4872
3600 TL_medium retrain_short 4841 23 8 280736 911824 0.7804 1.0909 1.0445
3600 TL_medium retrain_long 5019 19 4 140368 783760 0.8053 1.1621 1.0780
3600 TL_medium fine_tune_short 8233 0 8 280736 1154760 1.1354 2.1679 1.4724
3600 TL_medium fine_tune_long 7901 1 4 140368 990256 1.0985 2.0442 1.4298
3600 TL_medium transfer_short 8912 3 8 280736 1203816 1.2388 2.5389 1.5934
3600 TL_medium transfer_long 6772 12 4 140368 909584 0.9783 1.6814 1.2967
3600 TL_low static 12817 0 1 35092 1238660 1.1573 2.2288 1.4929
3600 TL_low retrain_short 9315 1 8 280736 1232720 0.7157 0.9941 0.9970
3600 TL_low retrain_long 9781 0 4 140368 1125560 0.7538 1.0773 1.0379
3600 TL_low fine_tune_short 12469 0 8 280736 1459752 1.1177 2.1170 1.4550
3600 TL_low fine_tune_long 12403 0 4 140368 1314344 1.0937 2.0386 1.4278
3600 TL_low transfer_short 12607 0 8 280736 1469688 1.1832 2.3856 1.5446
3600 TL_low transfer_long 11470 0 4 140368 1247168 0.9733 1.6926 1.3010

Table B.7: Detailed results for LSTM model with vienna_2019_2019 dataset
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 5511 148 1 35092 724286 1.1793 1.9770 1.4061
600 TL_high retrain_short 2546 238 8 280736 763090 1.0157 1.5325 1.2379
600 TL_high retrain_long 2732 226 4 140368 634885 1.0225 1.5535 1.2464
600 TL_high fine_tune_short 3806 157 8 280736 848024 1.1027 1.7541 1.3244
600 TL_high fine_tune_long 3299 188 4 140368 673208 1.0725 1.6693 1.2920
600 TL_high transfer_short 6560 130 8 280736 1044405 1.2234 2.1813 1.4769
600 TL_high transfer_long 3526 183 4 140368 689213 1.1090 1.7563 1.3253
600 TL_medium static 22197 2 1 35092 1914158 0.6589 0.6309 0.7943
600 TL_medium retrain_short 10849 18 8 280736 1344482 0.5222 0.4159 0.6449
600 TL_medium retrain_long 10921 13 4 140368 1208634 0.5229 0.4147 0.6440
600 TL_medium fine_tune_short 17912 4 8 280736 1851968 0.6089 0.5467 0.7394
600 TL_medium fine_tune_long 15321 3 4 140368 1524677 0.5771 0.4930 0.7021
600 TL_medium transfer_short 33739 0 8 280736 2991194 0.8067 0.9538 0.9766
600 TL_medium transfer_long 17888 0 4 140368 1709264 0.6143 0.5489 0.7409
600 TL_low static 44423 0 1 35092 3514300 0.4817 0.3497 0.5913
600 TL_low retrain_short 23402 1 8 280736 2247008 0.3374 0.1881 0.4337
600 TL_low retrain_long 23835 0 4 140368 2137453 0.3402 0.1911 0.4372
600 TL_low fine_tune_short 39981 0 8 280736 3440624 0.4396 0.2892 0.5378
600 TL_low fine_tune_long 35580 0 4 140368 2983096 0.4124 0.2559 0.5059
600 TL_low transfer_short 63269 0 8 280736 5117360 0.7198 0.7824 0.8845
600 TL_low transfer_long 41345 0 4 140368 3398176 0.4492 0.2952 0.5433

1800 TL_high static 7930 126 1 35092 896060 1.6561 4.0350 2.0087
1800 TL_high retrain_short 3610 230 8 280736 838088 1.2423 2.4346 1.5603
1800 TL_high retrain_long 3462 217 4 140368 686248 1.2475 2.4177 1.5549
1800 TL_high fine_tune_short 6082 133 8 280736 1009744 1.4965 3.3431 1.8284
1800 TL_high fine_tune_long 5068 162 4 140368 797672 1.4203 3.0130 1.7358
1800 TL_high transfer_short 11482 103 8 280736 1404176 2.0831 6.5826 2.5657
1800 TL_high transfer_long 5829 153 4 140368 852592 1.5040 3.3481 1.8298
1800 TL_medium static 17836 2 1 35092 1600148 1.2318 2.4459 1.5639
1800 TL_medium retrain_short 9032 9 8 280736 1212888 0.7731 1.0660 1.0325
1800 TL_medium retrain_long 9958 9 4 140368 1138920 0.8101 1.1480 1.0715
1800 TL_medium fine_tune_short 16571 1 8 280736 1755160 1.1092 1.9254 1.3876
1800 TL_medium fine_tune_long 15486 2 4 140368 1536440 1.0243 1.6349 1.2786
1800 TL_medium transfer_short 24099 0 8 280736 2297104 1.9491 5.9735 2.4441
1800 TL_medium transfer_long 17389 0 4 140368 1673328 1.1233 1.9061 1.3806
1800 TL_low static 24559 0 1 35092 2084084 1.1549 2.2906 1.5135
1800 TL_low retrain_short 15680 0 8 280736 1690936 0.6574 0.9047 0.9511
1800 TL_low retrain_long 16860 0 4 140368 1635248 0.6927 0.9661 0.9829
1800 TL_low fine_tune_short 23923 0 8 280736 2284440 1.0266 1.7410 1.3195
1800 TL_low fine_tune_long 23012 0 4 140368 2078192 0.9191 1.4016 1.1839
1800 TL_low transfer_short 29605 0 8 280736 2693544 1.9570 6.0372 2.4571
1800 TL_low transfer_long 24965 0 4 140368 2218808 1.0634 1.7889 1.3375
3600 TL_high static 6915 117 1 35092 820140 2.3937 9.4143 3.0683
3600 TL_high retrain_short 3002 224 8 280736 790512 1.5109 4.1716 2.0424
3600 TL_high retrain_long 3168 219 4 140368 661528 1.5551 4.2837 2.0697
3600 TL_high fine_tune_short 5872 122 8 280736 991472 2.0825 6.9737 2.6408
3600 TL_high fine_tune_long 5031 138 4 140368 791160 1.8872 5.7080 2.3891
3600 TL_high transfer_short 9754 75 8 280736 1268344 3.7074 23.0089 4.7968
3600 TL_high transfer_long 5982 130 4 140368 859184 2.0862 6.8676 2.6206
3600 TL_medium static 11708 2 1 35092 1158908 2.2352 8.8171 2.9694
3600 TL_medium retrain_short 6904 13 8 280736 1059784 1.1922 3.1361 1.7709
3600 TL_medium retrain_long 7098 13 4 140368 933096 1.2398 3.3321 1.8254
3600 TL_medium fine_tune_short 11437 0 8 280736 1385432 1.9977 6.7787 2.6036
3600 TL_medium fine_tune_long 10932 2 4 140368 1208528 1.7656 5.2907 2.3001
3600 TL_medium transfer_short 14475 2 8 280736 1604280 3.8793 24.1355 4.9128
3600 TL_medium transfer_long 11955 2 4 140368 1282184 2.0356 6.7026 2.5889
3600 TL_low static 14515 0 1 35092 1360900 2.2208 8.7701 2.9614
3600 TL_low retrain_short 11033 0 8 280736 1356344 1.1474 3.0468 1.7455
3600 TL_low retrain_long 11157 0 4 140368 1224616 1.1908 3.2579 1.8050
3600 TL_low fine_tune_short 14384 0 8 280736 1597616 1.9759 6.6754 2.5837
3600 TL_low fine_tune_long 14033 0 4 140368 1431688 1.7422 5.2063 2.2817
3600 TL_low transfer_short 16015 0 8 280736 1715048 3.9523 24.9487 4.9949
3600 TL_low transfer_long 14841 0 4 140368 1489864 2.0424 6.6801 2.5846

Table B.8: Detailed results for LSTM model with vienna_201907_201912 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1238 279 1 35092 425734 0.9275 1.3142 1.1464
600 TL_high retrain_short 3257 230 8 280736 813834 1.0248 1.5837 1.2585
600 TL_high retrain_long 1884 238 4 140368 574925 0.9941 1.4572 1.2071
600 TL_high fine_tune_short 1030 311 8 280736 659421 0.9091 1.2608 1.1228
600 TL_high fine_tune_long 1073 311 4 140368 521802 0.9038 1.2463 1.1164
600 TL_high transfer_short 1043 300 8 280736 659461 0.8934 1.2285 1.1084
600 TL_high transfer_long 1061 313 4 140368 521189 0.8816 1.1996 1.0953
600 TL_medium static 5109 23 1 35092 685420 0.4408 0.2955 0.5436
600 TL_medium retrain_short 13282 8 8 280736 1518917 0.5531 0.4821 0.6943
600 TL_medium retrain_long 7679 13 4 140368 975197 0.4826 0.3514 0.5928
600 TL_medium fine_tune_short 4588 36 8 280736 895040 0.4321 0.2861 0.5349
600 TL_medium fine_tune_long 4682 37 4 140368 761170 0.4322 0.2865 0.5352
600 TL_medium transfer_short 4810 24 8 280736 910152 0.4358 0.2901 0.5386
600 TL_medium transfer_long 4690 22 4 140368 760672 0.4344 0.2877 0.5364
600 TL_low static 13226 0 1 35092 1268105 0.2695 0.1195 0.3457
600 TL_low retrain_short 31150 0 8 280736 2804808 0.4190 0.3260 0.5710
600 TL_low retrain_long 21206 0 4 140368 1948184 0.3243 0.1756 0.4191
600 TL_low fine_tune_short 11962 0 8 280736 1423245 0.2626 0.1145 0.3384
600 TL_low fine_tune_long 12013 0 4 140368 1286264 0.2619 0.1139 0.3376
600 TL_low transfer_short 13097 0 8 280736 1504984 0.2698 0.1205 0.3471
600 TL_low transfer_long 12359 1 4 140368 1311250 0.2646 0.1158 0.3403

1800 TL_high static 1102 299 1 35092 415916 0.9859 1.5118 1.2296
1800 TL_high retrain_short 4303 219 8 280736 887672 1.3383 2.8858 1.6988
1800 TL_high retrain_long 4324 234 4 140368 749192 1.3105 2.9068 1.7049
1800 TL_high fine_tune_short 918 354 8 280736 652696 0.9568 1.4304 1.1960
1800 TL_high fine_tune_long 958 327 4 140368 513368 0.9448 1.4039 1.1848
1800 TL_high transfer_short 956 325 8 280736 653440 0.9533 1.4301 1.1958
1800 TL_high transfer_long 973 317 4 140368 513392 0.9608 1.4398 1.1999
1800 TL_medium static 4478 23 1 35092 639788 0.5433 0.4784 0.6916
1800 TL_medium retrain_short 10739 10 8 280736 1335904 0.9211 1.7554 1.3249
1800 TL_medium retrain_long 10414 13 4 140368 1172024 0.8550 1.3522 1.1628
1800 TL_medium fine_tune_short 3938 31 8 280736 848416 0.5217 0.4477 0.6691
1800 TL_medium fine_tune_long 3986 35 4 140368 710712 0.5219 0.4493 0.6703
1800 TL_medium transfer_short 4643 32 8 280736 898472 0.5529 0.4990 0.7064
1800 TL_medium transfer_long 4078 34 4 140368 717664 0.5286 0.4577 0.6765
1800 TL_low static 10397 1 1 35092 1064492 0.3970 0.2844 0.5333
1800 TL_low retrain_short 17868 0 8 280736 1848504 0.8139 1.5561 1.2474
1800 TL_low retrain_long 16768 0 4 140368 1628648 0.7432 1.3440 1.1593
1800 TL_low fine_tune_short 9249 0 8 280736 1227912 0.3769 0.2623 0.5121
1800 TL_low fine_tune_long 9298 0 4 140368 1090784 0.3760 0.2616 0.5114
1800 TL_low transfer_short 10885 0 8 280736 1345720 0.4161 0.3131 0.5595
1800 TL_low transfer_long 9703 2 4 140368 1120088 0.3866 0.2739 0.5233
3600 TL_high static 994 294 1 35092 403868 1.0754 1.8545 1.3618
3600 TL_high retrain_short 3633 228 8 280736 836328 1.7349 6.3805 2.5260
3600 TL_high retrain_long 2831 244 4 140368 638808 1.5269 4.5662 2.1369
3600 TL_high fine_tune_short 841 328 8 280736 640872 1.0115 1.6798 1.2961
3600 TL_high fine_tune_long 873 315 4 140368 501808 0.9993 1.6624 1.2893
3600 TL_high transfer_short 870 327 8 280736 642920 1.0225 1.7114 1.3082
3600 TL_high transfer_long 847 322 4 140368 500328 1.0120 1.6809 1.2965
3600 TL_medium static 4007 28 1 35092 605908 0.6884 0.8016 0.8953
3600 TL_medium retrain_short 8512 10 8 280736 1175424 1.6306 6.2613 2.5023
3600 TL_medium retrain_long 7648 10 4 140368 972560 1.3210 3.7945 1.9479
3600 TL_medium fine_tune_short 3526 35 8 280736 817816 0.6542 0.7416 0.8612
3600 TL_medium fine_tune_long 3545 40 4 140368 678808 0.6469 0.7301 0.8545
3600 TL_medium transfer_short 4203 32 8 280736 866392 0.7094 0.8872 0.9419
3600 TL_medium transfer_long 3644 36 4 140368 685712 0.6598 0.7580 0.8707
3600 TL_low static 8014 0 1 35092 892844 0.5829 0.6377 0.7986
3600 TL_low retrain_short 12145 0 8 280736 1436440 1.5689 5.7883 2.4059
3600 TL_low retrain_long 11173 0 4 140368 1225800 1.2193 3.5948 1.8960
3600 TL_low fine_tune_short 7396 2 8 280736 1094608 0.5417 0.5667 0.7528
3600 TL_low fine_tune_long 7230 5 4 140368 942168 0.5331 0.5538 0.7441
3600 TL_low transfer_short 8497 1 8 280736 1173840 0.6664 0.8439 0.9187
3600 TL_low transfer_long 8024 2 4 140368 999168 0.5807 0.6313 0.7945

Table B.9: Detailed results for LSTM model with linz_2010_2019 dataset
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 954 342 1 119736 494576 0.8807 1.1911 1.0914
600 TL_high retrain_short 886 365 8 957888 1329714 0.8628 1.1514 1.0730
600 TL_high retrain_long 952 329 4 478944 852680 0.8788 1.1866 1.0893
600 TL_high fine_tune_short 942 342 8 957888 1332445 0.8792 1.1844 1.0883
600 TL_high fine_tune_long 955 337 4 478944 853853 0.8712 1.1756 1.0843
600 TL_high transfer_short 950 341 8 957888 1332992 0.8822 1.1945 1.0929
600 TL_high transfer_long 989 327 4 478944 855904 0.8740 1.1808 1.0866
600 TL_medium static 4394 30 1 119736 719093 0.4271 0.2798 0.5290
600 TL_medium retrain_short 4291 26 8 957888 1549954 0.4234 0.2759 0.5253
600 TL_medium retrain_long 4378 25 4 478944 1076952 0.4238 0.2771 0.5264
600 TL_medium fine_tune_short 4460 25 8 957888 1562154 0.4245 0.2779 0.5272
600 TL_medium fine_tune_long 4397 32 4 478944 1078930 0.4252 0.2785 0.5278
600 TL_medium transfer_short 4503 30 8 957888 1565658 0.4263 0.2793 0.5285
600 TL_medium transfer_long 4354 33 4 478944 1075920 0.4252 0.2786 0.5278
600 TL_low static 11693 1 1 119736 1242458 0.2586 0.1123 0.3351
600 TL_low retrain_short 11553 0 8 957888 2070914 0.2567 0.1111 0.3334
600 TL_low retrain_long 11540 0 4 478944 1590749 0.2577 0.1116 0.3340
600 TL_low fine_tune_short 11587 0 8 957888 2073410 0.2576 0.1116 0.3340
600 TL_low fine_tune_long 11634 0 4 478944 1597570 0.2579 0.1118 0.3344
600 TL_low transfer_short 11918 1 8 957888 2097317 0.2604 0.1135 0.3369
600 TL_low transfer_long 11606 0 4 478944 1595546 0.2580 0.1119 0.3344

1800 TL_high static 844 362 1 119736 486568 0.9309 1.3582 1.1654
1800 TL_high retrain_short 846 352 8 957888 1324240 0.9317 1.3571 1.1649
1800 TL_high retrain_long 870 351 4 478944 846688 0.9260 1.3563 1.1646
1800 TL_high fine_tune_short 851 354 8 957888 1325512 0.9349 1.3663 1.1689
1800 TL_high fine_tune_long 877 349 4 478944 847424 0.9380 1.3747 1.1725
1800 TL_high transfer_short 863 350 8 957888 1326136 0.9405 1.3817 1.1755
1800 TL_high transfer_long 910 330 4 478944 848432 0.9356 1.3704 1.1706
1800 TL_medium static 3774 28 1 119736 674120 0.5153 0.4378 0.6617
1800 TL_medium retrain_short 3813 40 8 957888 1516336 0.5125 0.4357 0.6600
1800 TL_medium retrain_long 3764 43 4 478944 1033776 0.5130 0.4349 0.6595
1800 TL_medium fine_tune_short 3745 36 8 957888 1511272 0.5155 0.4366 0.6608
1800 TL_medium fine_tune_long 3739 40 4 478944 1031832 0.5087 0.4297 0.6555
1800 TL_medium transfer_short 3847 30 8 957888 1518200 0.5149 0.4377 0.6616
1800 TL_medium transfer_long 3899 19 4 478944 1041960 0.5198 0.4437 0.6661
1800 TL_low static 8987 0 1 119736 1047544 0.3726 0.2609 0.5107
1800 TL_low retrain_short 8898 0 8 957888 1879768 0.3690 0.2572 0.5072
1800 TL_low retrain_long 8791 1 4 478944 1393288 0.3683 0.2546 0.5045
1800 TL_low fine_tune_short 8885 1 8 957888 1878928 0.3696 0.2562 0.5061
1800 TL_low fine_tune_long 8789 0 4 478944 1392712 0.3684 0.2557 0.5057
1800 TL_low transfer_short 9237 0 8 957888 1904200 0.3764 0.2636 0.5135
1800 TL_low transfer_long 9098 0 4 478944 1414960 0.3731 0.2600 0.5099
3600 TL_high static 778 336 1 119736 475296 0.9679 1.5733 1.2543
3600 TL_high retrain_short 746 350 8 957888 1312144 0.9679 1.5550 1.2470
3600 TL_high retrain_long 769 344 4 478944 834248 0.9759 1.5875 1.2600
3600 TL_high fine_tune_short 778 345 8 957888 1314440 0.9808 1.5893 1.2607
3600 TL_high fine_tune_long 774 336 4 478944 834432 0.9778 1.5884 1.2603
3600 TL_high transfer_short 799 329 8 957888 1315072 0.9958 1.6312 1.2772
3600 TL_high transfer_long 779 332 4 478944 834568 0.9887 1.6047 1.2668
3600 TL_medium static 3246 41 1 119736 636488 0.6266 0.6953 0.8339
3600 TL_medium retrain_short 3235 55 8 957888 1475072 0.6246 0.7002 0.8368
3600 TL_medium retrain_long 3263 41 4 478944 997056 0.6222 0.6891 0.8301
3600 TL_medium fine_tune_short 3250 42 8 957888 1475488 0.6262 0.6916 0.8316
3600 TL_medium fine_tune_long 3261 49 4 478944 997440 0.6223 0.6861 0.8283
3600 TL_medium transfer_short 3416 33 8 957888 1486936 0.6334 0.7069 0.8408
3600 TL_medium transfer_long 3337 30 4 478944 1001832 0.6322 0.6989 0.8360
3600 TL_low static 7248 1 1 119736 922392 0.5349 0.5526 0.7433
3600 TL_low retrain_short 7185 3 8 957888 1756576 0.5282 0.5401 0.7349
3600 TL_low retrain_long 7257 2 4 478944 1282472 0.5366 0.5596 0.7481
3600 TL_low fine_tune_short 7122 2 8 957888 1752032 0.5255 0.5375 0.7332
3600 TL_low fine_tune_long 7106 1 4 478944 1271592 0.5238 0.5338 0.7306
3600 TL_low transfer_short 7459 1 8 957888 1776240 0.5447 0.5651 0.7517
3600 TL_low transfer_long 7766 0 4 478944 1319056 0.5601 0.5888 0.7673

Table B.10: Detailed results for ConvLSTM model with vienna_2010_2019 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1908 165 1 119920 550533 0.9607 1.3835 1.1762
600 TL_high retrain_short 1223 262 8 959360 1347978 0.9172 1.2675 1.1258
600 TL_high retrain_long 1275 243 4 479680 870453 0.9087 1.2567 1.1210
600 TL_high fine_tune_short 1977 158 8 959360 1394986 0.9578 1.3761 1.1731
600 TL_high fine_tune_long 1739 185 4 479680 899808 0.9432 1.3414 1.1582
600 TL_high transfer_short 2225 133 8 959360 1410989 0.9835 1.4437 1.2015
600 TL_high transfer_long 1680 196 4 479680 896402 0.9461 1.3496 1.1617
600 TL_medium static 8875 3 1 119920 1039912 0.4823 0.3534 0.5944
600 TL_medium retrain_short 5804 14 8 959360 1659520 0.4438 0.3020 0.5496
600 TL_medium retrain_long 5834 7 4 479680 1181194 0.4468 0.3041 0.5514
600 TL_medium fine_tune_short 9219 0 8 959360 1904389 0.4875 0.3593 0.5994
600 TL_medium fine_tune_long 8227 4 4 479680 1353285 0.4752 0.3427 0.5854
600 TL_medium transfer_short 9951 0 8 959360 1957104 0.4926 0.3685 0.6070
600 TL_medium transfer_long 7771 6 4 479680 1320602 0.4704 0.3361 0.5797
600 TL_low static 21222 0 1 119920 1928674 0.3178 0.1599 0.3999
600 TL_low retrain_short 15270 0 8 959360 2340042 0.2814 0.1294 0.3597
600 TL_low retrain_long 15552 0 4 479680 1880354 0.2827 0.1307 0.3616
600 TL_low fine_tune_short 22344 0 8 959360 2849402 0.3261 0.1670 0.4087
600 TL_low fine_tune_long 20067 0 4 479680 2205493 0.3113 0.1541 0.3925
600 TL_low transfer_short 23597 0 8 959360 2939621 0.3340 0.1734 0.4164
600 TL_low transfer_long 18788 0 4 479680 2113400 0.3032 0.1475 0.3841

1800 TL_high static 1958 156 1 119920 552272 1.0804 1.7995 1.3414
1800 TL_high retrain_short 1158 270 8 959360 1342696 0.9726 1.4735 1.2139
1800 TL_high retrain_long 1174 274 4 479680 863736 0.9933 1.5130 1.2300
1800 TL_high fine_tune_short 2040 161 8 959360 1398448 1.0991 1.8528 1.3612
1800 TL_high fine_tune_long 1800 167 4 479680 901616 1.0707 1.7551 1.3248
1800 TL_high transfer_short 2226 123 8 959360 1409280 1.1208 1.9222 1.3864
1800 TL_high transfer_long 1664 196 4 479680 893872 1.0522 1.7019 1.3046
1800 TL_medium static 8621 2 1 119920 1021544 0.6948 0.7654 0.8749
1800 TL_medium retrain_short 5192 12 8 959360 1615208 0.5697 0.5262 0.7254
1800 TL_medium retrain_long 5540 8 4 479680 1160032 0.5785 0.5479 0.7402
1800 TL_medium fine_tune_short 9319 2 8 959360 1911736 0.7219 0.8165 0.9036
1800 TL_medium fine_tune_long 8064 2 4 479680 1341416 0.6768 0.7270 0.8526
1800 TL_medium transfer_short 9583 0 8 959360 1930608 0.7315 0.8453 0.9194
1800 TL_medium transfer_long 7479 4 4 479680 1299416 0.6565 0.6898 0.8306
1800 TL_low static 17116 0 1 119920 1633040 0.5733 0.5384 0.7337
1800 TL_low retrain_short 12403 0 8 959360 2133616 0.4425 0.3416 0.5845
1800 TL_low retrain_long 12907 0 4 479680 1689936 0.4571 0.3625 0.6021
1800 TL_low fine_tune_short 18168 0 8 959360 2548728 0.6050 0.5899 0.7680
1800 TL_low fine_tune_long 16479 0 4 479680 1947152 0.5521 0.5033 0.7094
1800 TL_low transfer_short 18484 0 8 959360 2571480 0.6131 0.6046 0.7776
1800 TL_low transfer_long 15922 0 4 479680 1907048 0.5361 0.4789 0.6920
3600 TL_high static 1987 155 1 119920 552424 1.2792 2.6428 1.6257
3600 TL_high retrain_short 1102 280 8 959360 1335328 1.0819 1.9051 1.3802
3600 TL_high retrain_long 1082 289 4 479680 854408 1.0748 1.8913 1.3752
3600 TL_high fine_tune_short 2151 152 8 959360 1404008 1.3190 2.7538 1.6595
3600 TL_high fine_tune_long 1809 164 4 479680 900088 1.2505 2.5128 1.5852
3600 TL_high transfer_short 2359 130 8 959360 1417752 1.3592 2.9031 1.7038
3600 TL_high transfer_long 1641 195 4 479680 889728 1.2108 2.3728 1.5404
3600 TL_medium static 7586 2 1 119920 946984 1.0443 1.8167 1.3478
3600 TL_medium retrain_short 5132 9 8 959360 1610584 0.7821 1.0548 1.0270
3600 TL_medium retrain_long 5376 10 4 479680 1148240 0.8006 1.1039 1.0506
3600 TL_medium fine_tune_short 8095 3 8 959360 1823632 1.1030 1.9919 1.4114
3600 TL_medium fine_tune_long 7108 3 4 479680 1272600 0.9909 1.6487 1.2840
3600 TL_medium transfer_short 8392 1 8 959360 1844904 1.1320 2.0912 1.4461
3600 TL_medium transfer_long 6729 5 4 479680 1245424 0.9465 1.5158 1.2312
3600 TL_low static 11989 0 1 119920 1263888 0.9950 1.6669 1.2911
3600 TL_low retrain_short 9596 0 8 959360 1931488 0.7135 0.9186 0.9584
3600 TL_low retrain_long 10206 0 4 479680 1495456 0.7588 1.0243 1.0121
3600 TL_low fine_tune_short 12366 0 8 959360 2130976 1.0678 1.8773 1.3701
3600 TL_low fine_tune_long 11696 0 4 479680 1602768 0.9497 1.5279 1.2361
3600 TL_low transfer_short 12343 0 8 959360 2129320 1.0543 1.8363 1.3551
3600 TL_low transfer_long 11465 0 4 479680 1586136 0.9048 1.3955 1.1813

Table B.11: Detailed results for ConvLSTM model with vienna_2019_2019 dataset
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B. Parameter Study Results

ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 4871 92 1 119920 758413 1.0787 1.7406 1.3193
600 TL_high retrain_short 2049 194 8 959360 1402344 0.9474 1.3621 1.1671
600 TL_high retrain_long 2683 195 4 479680 968218 0.9792 1.4487 1.2036
600 TL_high fine_tune_short 3506 82 8 959360 1499397 1.0478 1.6288 1.2762
600 TL_high fine_tune_long 3672 101 4 479680 1032746 1.0409 1.6132 1.2701
600 TL_high transfer_short 3803 71 8 959360 1519869 1.0285 1.5909 1.2613
600 TL_high transfer_long 3608 108 4 479680 1028658 1.0316 1.5915 1.2616
600 TL_medium static 23625 0 1 119920 2101693 0.6538 0.6459 0.8037
600 TL_medium retrain_short 11307 11 8 959360 2055400 0.5108 0.4059 0.6371
600 TL_medium retrain_long 12042 7 4 479680 1628048 0.5183 0.4183 0.6468
600 TL_medium fine_tune_short 16830 0 8 959360 2452394 0.5801 0.5052 0.7107
600 TL_medium fine_tune_long 17140 0 4 479680 1994749 0.5821 0.5128 0.7161
600 TL_medium transfer_short 16033 0 8 959360 2395010 0.5629 0.4826 0.6947
600 TL_medium transfer_long 15783 2 4 479680 1897200 0.5653 0.4870 0.6978
600 TL_low static 45743 0 1 119920 3694189 0.5116 0.4128 0.6425
600 TL_low retrain_short 25350 0 8 959360 3065805 0.3503 0.2076 0.4556
600 TL_low retrain_long 26882 0 4 479680 2696144 0.3624 0.2187 0.4676
600 TL_low fine_tune_short 37553 0 8 959360 3944453 0.4293 0.2828 0.5318
600 TL_low fine_tune_long 37277 0 4 479680 3444613 0.4294 0.2865 0.5353
600 TL_low transfer_short 33736 0 8 959360 3669629 0.4034 0.2549 0.5049
600 TL_low transfer_long 36079 0 4 479680 3358357 0.4192 0.2713 0.5209

1800 TL_high static 7923 86 1 119920 977488 1.6103 4.0683 2.0170
1800 TL_high retrain_short 3169 214 8 959360 1483288 1.1696 2.2089 1.4862
1800 TL_high retrain_long 3539 208 4 479680 1029392 1.2045 2.3362 1.5285
1800 TL_high fine_tune_short 5195 81 8 959360 1620224 1.3991 2.9994 1.7319
1800 TL_high fine_tune_long 5461 99 4 479680 1160608 1.4070 3.0658 1.7509
1800 TL_high transfer_short 4408 89 8 959360 1564392 1.2993 2.6556 1.6296
1800 TL_high transfer_long 4466 143 4 479680 1092480 1.2998 2.6801 1.6371
1800 TL_medium static 18162 0 1 119920 1708352 1.3441 3.0687 1.7518
1800 TL_medium retrain_short 10135 11 8 959360 1970920 0.8262 1.2604 1.1227
1800 TL_medium retrain_long 10334 4 4 479680 1504816 0.8384 1.3040 1.1419
1800 TL_medium fine_tune_short 15973 0 8 959360 2390688 1.0692 1.8188 1.3486
1800 TL_medium fine_tune_long 15616 0 4 479680 1885016 1.0771 1.8971 1.3774
1800 TL_medium transfer_short 14818 0 8 959360 2307528 1.0029 1.6327 1.2778
1800 TL_medium transfer_long 14704 0 4 479680 1819352 1.0140 1.6893 1.2997
1800 TL_low static 24662 0 1 119920 2176352 1.2687 2.9019 1.7035
1800 TL_low retrain_short 17056 0 8 959360 2468632 0.7010 1.0245 1.0122
1800 TL_low retrain_long 18069 0 4 479680 2061600 0.7474 1.1384 1.0670
1800 TL_low fine_tune_short 23874 0 8 959360 2959560 0.9772 1.6150 1.2708
1800 TL_low fine_tune_long 23077 0 4 479680 2422208 0.9854 1.6970 1.3027
1800 TL_low transfer_short 22648 0 8 959360 2871288 0.9058 1.4266 1.1944
1800 TL_low transfer_long 23585 0 4 479680 2458784 0.9262 1.4420 1.2008
3600 TL_high static 6775 82 1 119920 893072 2.5436 11.5895 3.4043
3600 TL_high retrain_short 3012 212 8 959360 1469024 1.5284 4.5721 2.1382
3600 TL_high retrain_long 3170 186 4 479680 999008 1.5674 4.7507 2.1796
3600 TL_high fine_tune_short 5106 81 8 959360 1612792 1.9673 6.5403 2.5574
3600 TL_high fine_tune_long 5242 99 4 479680 1143624 1.9992 6.9262 2.6318
3600 TL_high transfer_short 4346 92 8 959360 1558688 1.8033 5.7373 2.3953
3600 TL_high transfer_long 4700 96 4 479680 1104432 1.8539 5.8986 2.4287
3600 TL_medium static 11905 0 1 119920 1257840 2.4810 11.3274 3.3656
3600 TL_medium retrain_short 7652 7 8 959360 1791784 1.3635 4.1891 2.0467
3600 TL_medium retrain_long 7466 6 4 479680 1298368 1.3336 4.0269 2.0067
3600 TL_medium fine_tune_short 11484 0 8 959360 2067472 1.8873 6.1404 2.4780
3600 TL_medium fine_tune_long 11050 0 4 479680 1556256 1.9063 6.4913 2.5478
3600 TL_medium transfer_short 11373 0 8 959360 2059480 1.8140 5.6216 2.3710
3600 TL_medium transfer_long 10730 0 4 479680 1533216 1.7814 5.6916 2.3857
3600 TL_low static 14504 0 1 119920 1444968 2.4405 11.1737 3.3427
3600 TL_low retrain_short 11316 0 8 959360 2055328 1.2638 3.8251 1.9558
3600 TL_low retrain_long 11636 0 4 479680 1598416 1.2976 3.9170 1.9791
3600 TL_low fine_tune_short 14422 0 8 959360 2279008 1.8600 6.0539 2.4605
3600 TL_low fine_tune_long 14073 0 4 479680 1773912 1.8673 6.3475 2.5194
3600 TL_low transfer_short 14363 0 8 959360 2274760 1.7751 5.4727 2.3394
3600 TL_low transfer_long 14611 0 4 479680 1812648 1.8182 5.5760 2.3614

Table B.12: Detailed results for ConvLSTM model with vienna_201907_201912 dataset
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ρ [s] T strategy nv nu nd datad [B] D [B] MAE [°C] MSE [°C2] RMSE [°C]

600 TL_high static 1213 280 1 119920 508962 0.9152 1.2812 1.1319
600 TL_high retrain_short 3046 175 8 959360 1472914 1.0075 1.5287 1.2364
600 TL_high retrain_long 3751 190 4 479680 1045069 1.0265 1.6014 1.2655
600 TL_high fine_tune_short 1075 311 8 959360 1341157 0.8903 1.2184 1.1038
600 TL_high fine_tune_long 1092 320 4 479680 863197 0.9038 1.2489 1.1175
600 TL_high transfer_short 1081 314 8 959360 1341957 0.8850 1.2016 1.0962
600 TL_high transfer_long 1072 312 4 479680 861120 0.8933 1.2238 1.1062
600 TL_medium static 5571 16 1 119920 803016 0.4402 0.2976 0.5455
600 TL_medium retrain_short 14379 3 8 959360 2276133 0.5545 0.4947 0.7033
600 TL_medium retrain_long 14014 2 4 479680 1769818 0.5453 0.4685 0.6845
600 TL_medium fine_tune_short 5200 20 8 959360 1616530 0.4322 0.2889 0.5375
600 TL_medium fine_tune_long 5449 21 4 479680 1154941 0.4418 0.2982 0.5461
600 TL_medium transfer_short 5232 11 8 959360 1618130 0.4334 0.2896 0.5381
600 TL_medium transfer_long 5381 21 4 479680 1149669 0.4358 0.2933 0.5416
600 TL_low static 13971 1 1 119920 1406672 0.2725 0.1230 0.3507
600 TL_low retrain_short 31801 0 8 959360 3530304 0.4370 0.3738 0.6114
600 TL_low retrain_long 25577 0 4 479680 2602210 0.3660 0.2463 0.4963
600 TL_low fine_tune_short 14179 0 8 959360 2261520 0.2760 0.1257 0.3545
600 TL_low fine_tune_long 14598 1 4 479680 1811792 0.2800 0.1287 0.3587
600 TL_low transfer_short 13613 0 8 959360 2220757 0.2699 0.1212 0.3481
600 TL_low transfer_long 13473 0 4 479680 1730709 0.2703 0.1216 0.3488

1800 TL_high static 1124 301 1 119920 502336 0.9788 1.4964 1.2233
1800 TL_high retrain_short 5095 149 8 959360 1617720 1.3834 3.3335 1.8258
1800 TL_high retrain_long 3009 182 4 479680 989632 1.1689 2.2094 1.4864
1800 TL_high fine_tune_short 1003 316 8 959360 1334824 0.9534 1.4237 1.1932
1800 TL_high fine_tune_long 995 331 4 479680 855304 0.9610 1.4362 1.1984
1800 TL_high transfer_short 958 336 8 959360 1332872 0.9460 1.4046 1.1852
1800 TL_high transfer_long 1006 322 4 479680 855504 0.9440 1.4080 1.1866
1800 TL_medium static 4917 17 1 119920 755848 0.5502 0.4980 0.7057
1800 TL_medium retrain_short 12686 5 8 959360 2154344 0.9842 1.8810 1.3715
1800 TL_medium retrain_long 9817 4 4 479680 1467752 0.8134 1.2790 1.1309
1800 TL_medium fine_tune_short 4731 21 8 959360 1582648 0.5490 0.4994 0.7067
1800 TL_medium fine_tune_long 5034 27 4 479680 1124976 0.5626 0.5187 0.7202
1800 TL_medium transfer_short 4468 17 8 959360 1563472 0.5390 0.4816 0.6940
1800 TL_medium transfer_long 4695 19 4 479680 1099992 0.5439 0.4912 0.7009
1800 TL_low static 11059 0 1 119920 1196928 0.4163 0.3136 0.5600
1800 TL_low retrain_short 19939 0 8 959360 2676240 0.9798 2.1861 1.4785
1800 TL_low retrain_long 19297 0 4 479680 2150048 0.9397 2.1267 1.4583
1800 TL_low fine_tune_short 11570 0 8 959360 2073664 0.4315 0.3371 0.5806
1800 TL_low fine_tune_long 12345 2 4 479680 1649624 0.4504 0.3604 0.6003
1800 TL_low transfer_short 11080 0 8 959360 2038384 0.4167 0.3125 0.5590
1800 TL_low transfer_long 11262 1 4 479680 1571592 0.4213 0.3209 0.5665
3600 TL_high static 1047 287 1 119920 492120 1.0624 1.8416 1.3571
3600 TL_high retrain_short 4855 152 8 959360 1598664 2.1402 10.1559 3.1868
3600 TL_high retrain_long 2878 189 4 479680 978440 1.4978 4.2497 2.0615
3600 TL_high fine_tune_short 918 312 8 959360 1324192 1.0314 1.7390 1.3187
3600 TL_high fine_tune_long 943 309 4 479680 845856 1.0223 1.7149 1.3096
3600 TL_high transfer_short 924 310 8 959360 1324496 1.0151 1.6970 1.3027
3600 TL_high transfer_long 969 294 4 479680 846872 1.0298 1.7482 1.3222
3600 TL_medium static 4388 18 1 119920 717608 0.7199 0.9019 0.9497
3600 TL_medium retrain_short 9556 8 8 959360 1929088 2.0582 10.0124 3.1642
3600 TL_medium retrain_long 8019 1 4 479680 1338080 1.3696 4.4394 2.1070
3600 TL_medium fine_tune_short 4405 26 8 959360 1559240 0.7277 0.9395 0.9693
3600 TL_medium fine_tune_long 4871 27 4 479680 1112880 0.7671 1.0307 1.0153
3600 TL_medium transfer_short 4069 10 8 959360 1534152 0.6981 0.8560 0.9252
3600 TL_medium transfer_long 4320 25 4 479680 1073096 0.7161 0.9131 0.9556
3600 TL_low static 8648 0 1 119920 1023336 0.6418 0.7672 0.8759
3600 TL_low retrain_short 12990 0 8 959360 2175904 1.9824 8.8711 2.9784
3600 TL_low retrain_long 12036 0 4 479680 1627248 1.3197 4.2522 2.0621
3600 TL_low fine_tune_short 9151 0 8 959360 1899496 0.6949 0.8934 0.9452
3600 TL_low fine_tune_long 9498 1 4 479680 1444568 0.7282 0.9691 0.9844
3600 TL_low transfer_short 8936 0 8 959360 1884016 0.6458 0.7586 0.8710
3600 TL_low transfer_long 8594 0 4 479680 1379424 0.6537 0.8158 0.9032

Table B.13: Detailed results for ConvLSTM model with linz_2010_2019 dataset
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