
SSI EduWallets

Developer documentation

Contents
1 Course of the work packages... 4
2 Introduction to SSI EduWallets...4
3 What is SSI EduWallets.. 4
4 What is the purpose of SSI EduWallets.. 5
5 HowWeb 3.0 & SSI (Self Sovereign Identity) paradigmworks................................. 5
6 Why to use the new paradigm of Web 3.0.. 7
7 SSI EduWallets Components.. 9

Wallets... 9
User Interface.. 9
Wallet Kit API... 9
Issuer API (Open API)..10
Verifiable API (Open API).. 10

8 Standards used...10
8.1 W3C Decentralized Identifiers.. 10
8.2 W3C Verifiable Credentials Data Model..11

9 Verifiable credentials security..12
10 Architecture and deployment...13

10.1 WebWallet proof of concept...13
Wallet deployment..14
Wallet backend..14
Demo wallet UI..15

10.2 Demo Application..15
Demo Application UI...16

Architecture...17
UI pages, workflows & requests... 17
UI components, workflows & requests.. 23

The "issueCredentialsBtn" component..23
The "VerifyCredentialsBtn" component... 24
The “userProfileDialog” component...24

How to run...25
Demo Application API... 26

Functionalities.. 26
Architecture...27
So�ware components.. 27
How to run...29

netidee Call 17 | Developer Documentation | Project-ID 6344 2

Demo Application Web wallet.. 30
Architecture...30
Issuance workflow & requests..31
Verification workflow & requests... 38
How to run...43

11 Development Environment Setup...44
11.1 System Requirements...44
11.2 Dependency Installation...45
11.3 System Configuration... 46
11.4 Repositories needed... 47

12 Open API documentation... 50
13 Wallet kit API.. 51

Functionalities.. 52
Architecture...53
Integration with the Demo Application... 55
HowWallet Kit verify a verifiable presentation... 56

14Wallet Kit configuration... 57
15 DID and keys creation.. 62
16 Creation of VC schema... 64
17 Creation of the verifiable credential..68
18 Verifiable credentials issuance... 71
19 Verifiable presentation.. 78
20 Documental sources.. 85

netidee Call 17 | Developer Documentation | Project-ID 6344 3

1 Course of the work packages

The Developer's Manual for Self-Sovereign Identity (SSI) EduWallets provides guidelines

and best practices for developing a stack of applications for the Web 3.0 related to the SSI

for the issuance, verification, and exchange of verifiable credentials. This manual is

designed to assist developers in understanding how the SSI paradigmworks and the

process of issuance and verification of the verifiable credentials and ensuring the proper

implementation of related specifications and standards.

2 Introduction to SSI EduWallets
The SSI EduWallets project was born with the purpose of transforming the issuance of

traditional educational certificates into cryptographically secure and interoperable

digital documents called verifiable credentials (VCs), thus eliminating problems such as

the low interoperability of the credentials and the forgery of physical documents which

are easy to falsify but difficult to verify their authenticity. Adjusting to the new generation

of Web 3.0 and the Self-Sovereign Identity (SSI) paradigm through the European

Self-Sovereign Identity Framework (ESSIF).

3 What is SSI EduWallets
SSI EduWallets is a so�ware implementation made up of several components which, once

integrated into an e-learning platform, allow the use of self-sovereign identity wallets

within these platforms for the issuance, verification, and exchange of verifiable

credentials, thus allowing the exchange of verifiable credentials between the userʼs wallets

and the platforms that implement this system.

netidee Call 17 | Developer Documentation | Project-ID 6344 4

4 What is the purpose of SSI EduWallets
SSI EduWallets allows transforming any traditional elearning platform to the new

self-sovereign identity paradigm of Web 3.0, this allows users to be the owners of their

own information so they are the ones whomanage their information and not third parties.

In addition, this implementation allows the exchange of verifiable credentials between

the userʼs wallets and the platforms that implement the system, so that users can

present certain verifiable credentials to the platforms and then they can read and verify

them in order to use that information within the platforms streamlining some processes.

The platforms will also be able to issue educational verifiable credentials to the userʼs

wallet, that certifies that a user has completed and achieved certain knowledge at the end

of a course or assessment.

These verifiable credentials will be stored in the userʼs wallets to later be used at any

time when necessary. The implementation brings the advantages of issuing digital and

cryptographically secure certificates that can be easily verified by third parties and

interoperable between other SSI systems based on the same standards (ESSIF/EBSI1).

5 HowWeb 3.0 & SSI (Self Sovereign Identity)

paradigmworks
The new paradigm of Web 3.0 aims to revolutionize certain areas of previous generations of

the web; it represents a more decentralized, secure, and user-centered vision of the web,

where users have greater control over their data and digital experiences.

Specifically, SSI EduWallets focuses on the self-sovereign identity of the users, this means

that it is the user who stores andmanages all their data in a single place, such as a digital

1 European Commission European Blockchain Services Infrastructure, Home - EBSI -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed: 09 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 5

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

wallet application installed on a smartphone. In such a way that it is the user whomanages

what data to share and with whom, thus eliminating the third parties that store and decide

how to share this data.

In this new paradigm, users possess applications called self-sovereign identity wallets,

where they store verifiable credentials in a centralized and digital manner. These

applications function as virtual walletswhere users hold different verifiable credentials

that attest to something, such as identity, driver's license, or academic certificates. These

digital verifiable credentials use asymmetric cryptography (Public Key Infrastructure) to

ensure their security and validity.

This approach does not imply that the data is directly, locally, and physically stored in the

wallet of the user. How data is actually stored, will depend on the implementation of the

chosen wallet. For instance, the data could be stored by the wallet in a cloud web service,

but this implementation detail does not change the following essential key points:

● Wallet solutions are interoperable. The user is able to choose which wallet service

to use and store the credentials in any wallet.

● The user is actively choosing which data to share with each third-party platform.

● Wallets and platforms are independent of each other.

These verifiable credentials are generated and issued by platforms implementing the SSI

EduWallets system using standards for the generation of Decentralized Identifiers (DIDs),

and Verifiable Credentials (VCs). DIDs are unique identifiers that each user can have and

generate within the wallets). VCs are documents in JSON-LD or JWT format that define the

information contained in a verifiable credential following a defined verifiable credential

schema. The credentials schema allows the creation of verifiable credentials with the

same body structure, this makes them interoperablewith other SSI systems.

Once a verifiable credential of a certain type is created, it is shared with the requesting

party. The exchange between the issuer and the receiver, in this case, a learning platform

and the userʼs wallet, is done using protocols such asOIDC and SIOP.

netidee Call 17 | Developer Documentation | Project-ID 6344 6

When a verifiable credential is stored in the user's wallet, the user can subsequently

present it to another platform (verifier) or third party that requires a specific type of

verifiable credential. Through the verification UI, the user makes a request to create a

verifiable presentation (VP), which is a document in JSON-LD or JWT format that acts as a

wrapper for the VCs that the user wants to deliver to the verifier. The VP includes the

user's signature performing the presentation. In this way, VPs contain two different

signatures as proof of the whole chain of custody, the original signature from the issuer

contained in the VC and the signature of the holder contained in the VP.

Once the verifier receives the verifiable presentation, it verifies the validity of the user's

signature in the VP body and then the signature of each VC within the VP ensuring that the

content has not been altered. In decentralized systems, this verification is typically done by

checking if the DID of the issuer of the verifiable credentials is registered on the ledger

along with their public key within the blockchain. This allows the verifier to authenticate a

verifiable credential and subsequently verify the correctness of the user's signature by

obtaining their public key, usually from the user's DID.

6 Why to use the new paradigm of Web 3.0
The SSI EduWallets provide a series of advantages, these advantages are given by a new

paradigm in which users are the ones who own their data and not third parties so that

users can unify their credentials in one single storage location, the wallet. Examples of

credentials could be the national identifier or educational diplomas. In this way, users can

choose which information they want to share and with whom increasing the user's

privacy.

The new paradigm also improves efficiency in tasks such as sending verifiable data to the

platforms for verification by eliminating third parties that were in charge of carrying out

the verification process so that now the recipient is directly in charge of carrying out the

verification and then using that information within the platforms, speeding up the

netidee Call 17 | Developer Documentation | Project-ID 6344 7

process, saving costs and time. When working with digital educational certificates,

certain problems derived from the interoperability,mobility, and forgery can be

removed because once theyʼre digitized they can be shared easily with anyone anytime,

they are interoperable with other systems just because they are created with a structure

under certain standards and a common definition of the content that follows certain rules

and they are secure because asymmetric cryptography is used for it.

The educational verifiable credentials body definition follows the ELM v3 (European

Learning Model) data model in JSON-LD format to structure and describe the skills and

learning opportunities a user gains by completing a course or assessment. The ESCO

(European Skills, Competences, Qualifications, and Occupations) is used in conjunction

with ELM v3 to classify the learning outcomes of the users like the skills and the

occupations, and with that information, it is possible to classify the knowledge, learning

opportunities, and job occupations.

Within the educational verifiable credentials is intended to follow and integrate a

Qualification Metadata Schemata (QMS) which documents the skills and qualifications that

the person achieves once the course or assessment is completed. The ESCO classification

is integrated within the QMS that shows the learning outcomes of the users and with that

information it is possible to classify the knowledge, learning opportunities, and job

occupations under a European standard.

● Users own their personal data.

● Unify user information in one place.

● Users choose which data they want to share.

● Streamline platform processes like the presentation of documents.

● Achieve interoperability between different SSI systems that use educational

verifiable credentials.

● Issue educational verifiable credentials in a standardized manner following a

schema.

netidee Call 17 | Developer Documentation | Project-ID 6344 8

● Security, the verifiable credentials are secure by Public Key Infrastructure (PKI)

encryption, so theyʼre tamper-proof.

● Provide the skills, competencies, qualifications, and occupations that a user has

attained upon completion of a course or assessment.

7 SSI EduWallets Components

Wallets

Wallets are the applications where users store their DIDs and verifiable digital

credentials that users must use to support the SSI EduWallets implementation. Those

wallets are developed by third parties under European standards. In the implementation of

SSI EduWallets, it is provided a demowebwallet that acts as a real web wallet in order to

simulate the web wallet workflow, it was also tested the implementation with another

compliant wallet provider “ValidatedID” and the issuance flow was performed using the

cross-device workflow through the scanning of the QR code provided by the issuer

platform.

User Interface

The user interface is the part that is graphically displayed to the users on platforms that

implement SSI EduWallets. This is in charge of graphically showing users an abstraction of

the implementation so that users can easily interact with the platform.

The user interface is made up of several graphical components that show the steps of

issuing verifiable credentials and presenting verifiable presentations. These graphical

components make requests to the different APIs to interact and exchange data.

Wallet Kit API

The Wallet Kit API is a third-party integration that uses the SSI EduWallets project to take

advantage of the implementation to handle the entire Web 3.0 and SSI stack. This API is

responsible for DID creation, verifiable credential issuance, verifiable presentations,

netidee Call 17 | Developer Documentation | Project-ID 6344 9

verifiable credential security, and the demo web wallet. All those responsibilities are

divided into different sets of API endpoints.

This API is not directly accessible but the issuer API and the verifiable API are responsible

for communicating with it.

Issuer API (Open API)

The issuer API (Application Programming Interface) is the main component in charge of

performing the issuance process of the verifiable credentials to the users. This component

must be implemented within any platform to allow the issuance of verifiable credentials to

the users using a compliant wallet. Once the issuer API is integrated within any platform it

can interact directly with the userʼs wallets and with the wallet kit API to issue an

educational verifiable credential to the users.

Verifiable API (Open API)

The verifier API is the main component in charge of performing the verification process of

the verifiable credentials from the users that they present to the platforms. This

component must be implemented within any platform to allow the verification of the

verifiable presentation from the users that use a compliant wallet. Once the verifier API is

integrated within any platform it can interact directly with the userʼs wallet and with the

wallet kit API in order to verify if a verifiable credential is valid or not and then the platform

can use the data of the verifiable credentials to perform any actions within the platform.

8 Standards used

8.1 W3C Decentralized Identifiers

Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable,

decentralized digital identifiers. A DID refers to any subject (e.g., a person, organization,

thing, data model, abstract entity, etc.)

netidee Call 17 | Developer Documentation | Project-ID 6344 10

2

DIDs are the cornerstone of self-sovereign identity (SSI). DIDs are URL-based identifiers

associated with an entity; a DID is just a long string that does not provide any meaningful

information about a natural or legal entity. DIDs and DID Documents are generated by their

owners with their wallet or back-office systems, these identifiers are most o�en used in a

verifiable credential and they are associated with subjects such that a verifiable

credential itself can be easily ported from one repository to another without the need to

reissue the credential.

The DIDs are composed of the schema or “did:” which is the first part of the definition of a

DID, the method that is a mechanism or protocol used to create andmanage unique and

decentralized identifiers and the DIDmethod-specific identifier that is a completely unique

random number that follows method-specific generation rules.

8.2 W3C Verifiable Credentials Data Model

Credentials are a part of our daily lives; driver's licenses are used to assert that we are

capable of operating a motor vehicle, university degrees can be used to assert our level of

education, and government-issued passports enable us to travel between countries.

Verifiable credentials with DIDs are the core of the SSI paradigm, the verifiable credentials

provide amechanism to express these sorts of credentials digitally on the Web

normally in the format of JSON-LD or JWT in a way that is cryptographically secure,

privacy-respecting, andmachine-verifiable.

The verifiable credentials got features like:

2 Decentralized Identifier parts

netidee Call 17 | Developer Documentation | Project-ID 6344 11

● Portability: due they are digital documents that can be safely shared with third

parties.

● Interoperability: because they are created in the same formats like JSON-LD or

JWT and the definition is based on a schema that can be a public standard.

● Security: VCs use asymmetric encryption and signatures to keep safe and

tamper-proof the credentials.

● Selective disclosure: the individual has control over which pieces of information

they share in a given context. They can selectively disclose specific attributes

without revealing unnecessary personal data.

9 Verifiable credentials security

The verifiable credentials are secure and tamper-proof due to the use of asymmetric

cryptography (PKI) in which the issuer signs the VC that will be issued to any user with its

private key and also a hash of the content of the verifiable credential, this way the

verifiable credential can be verified by any third party just by seeking for the DID and public

key of the issuer of the VC, in the case of European Blockchain Services Infrastructure

(EBSI) ecosystem, the verifier will retrieve the public key and the DID of the issuer from the

EBSI ledger. The verifier with the public key that it has just retrieved from the EBSI ledger

can decrypt the content of the VC. Then it can hash the content in order to obtain a new

hash and compare both two to check if it is the same hash. If the hashes are equal and the

verifier can decrypt the content of the VC then the VC is valid3.

When a user creates a VP (verifiable presentation) this will create a wrapper of VCs that will

be signed with the private key of the user. The verifier is able to get the public key of the

user that is encoded on her/his DID and can decrypt the content of the VP.

3 Decentralised Identifiers DIDs - Walt.id. Available at:
https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/decentralised-identifiers-dids
(last accessed: 15 jul 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 12

10 Architecture and deployment

The system is divided into twomain applications:Wallet and Demo application. Each of

them is divided into smaller components as described below.

4

10.1WebWallet proof of concept

The demo web wallet application provided within the project can be replaced with any

other web wallet solution compatible with ESSIF/EBSI5 standards. There are many wallet

solutions compatible with our system. For example, the commercial wallet from

ValidatedID6 was successfully tested with the project.

The goal of this project is not to develop a new standalone wallet application, but an

open-source wallet solutionwas still needed in order to proceed with the

implementation and be able to provide a full stack proof of concept of the whole project.

6 ValidatedId Validated ID - electronic signature and digital identity providers, Validated ID - Electronic
Signature and Digital Identity Providers. Available at: https://www.validatedid.com/en (last accessed: 08 July
2023).

5 Pastor Matut, C. and Du Seuil, D. Understanding the European self-sovereign identity framework (ESSIF), PPT.
Available at:
https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identity-framework-essifl
ast accessed:d: 08 July 2023).

4 Demo application architecture

netidee Call 17 | Developer Documentation | Project-ID 6344 13

https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identity-framework-essif
https://www.validatedid.com/en/vidchain/vidwallet

An extension of walt.id Wallet Kit7 was implemented and the source code was made

available as a public git repository SSI EduWallets/Wallet Proof Of Concept8.

This web wallet application is integrated with the Demo Application using links, but it is

just a proof of concept, it is intended for demo purposes only and it should not be used in

production settings.

Wallet deployment

This demo application is divided into frontend and backend. Both components are

dockerized and can be run and deployed using Kubernetes 9and the Helm chart10

provided in the git repository. This allows easy deployment and test of the whole

application.

The main file with the configuration of the Helm chart is located on the path

helm/wallet/values.yaml of the repository. In this file, the key wallet.issuer.url should be

changed to the domain where the demo verifier application is going to be served.

Wallet backend

The wallet backend is a plain deployment of walt.id Wallet Kit. A publicly available image is

available in walt.id dockerhub11 under the tag waltid/walletkit:latest

11 Walt.idWallet Kit Image, Docker. Available at: https://hub.docker.com/r/waltid/walletkit/tags (last
accessed: 08 July 2023).

10 Helm Helm. Available at: https://helm.sh/ (last accessed: 09 July 2023).

9 Kubernetes Production-grade container orchestration, Kubernetes. Available at: https://kubernetes.io/ (last
accessed: 09 July 2023).

8 SSI EduWallets / Wallet Proof Of Concept. Available at:
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept (last accessed: 08 July 2023).

7 Walt.id,Walt.id Wallet Kit,walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last accessed: 08
July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 14

https://walt.id/wallet-kit
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept
https://kubernetes.io
https://helm.sh
https://helm.sh
https://walt.id/wallet-kit
https://hub.docker.com/r/waltid/walletkit/tags
https://github.com/walt-id/waltid-walletkit

For extra configuration or more details, refer to the official documentation12 from

wallet-kit.

Demowallet UI

The demo wallet front-end is awhitelabel extension of thewebwallet provided by

Walt.id13. It is written using the Nuxt14 framework and the source code is available in the git

repository of the git repository SSI EduWallets/Wallet Proof Of Concept15.

A docker image is available on the container registry of the same repository and can be

pulled publicly: docker pull

registry.gitlab.com/ssi-edu-wallets/wallet-proof-of-concept:wallet-ui-0.5

10.2Demo Application

Two different use cases were implemented in this application.

On one hand, the issuer will be able to issue VCs (verifiable credentials16) that can be

stored in the userʼs wallet. The issuer could be getting the information stored in a 3rd party

API, for example, an LMS in order to obtain the data that is going to be contained in the VC.

In the implemented issuance use case, the demo application is getting a list of learning

resources experienced by the authenticated user and it is issuing a VC (type

UserLearningOutcomes) containing the list of learning resources.

16 Sporny , M., Longley , D. and Chadwick , D. Verifiable credentials data model V1.1,W3C. Available at:
https://www.w3.org/TR/vc-data-model/#abstract (Accelast accessedssed: 08 July 2023).

15 SSI EduWallets / Wallet Proof Of Concept. Available at:
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept (last accessed: 08 July 2023).

14 Nuxt The intuitive web framework, Nuxt. Available at: https://nuxt.com/ (last accessed: 12 July 2023).

13 Walt.idWalt.id Web wallet,walt.id. Available at: https://github.com/walt-id/waltid-web-wallet (last
accessed: 08 July 2023).

12 Walt.id Introduction, Docs. Available at: https://docs.walt.id/v/web-wallet/wallet-kit/readme (last accessed:
08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 15

https://docs.walt.id/v/web-wallet/wallet-kit/readme
https://github.com/walt-id/waltid-web-wallet
https://github.com/walt-id/waltid-web-wallet
https://nuxt.com
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept
https://www.w3.org/TR/vc-data-model/#abstract

On the other hand, the verifier that will request VPs (verifiable presentations) from the

verify UI that will request a specific type of VCs to the userʼs wallet, and then once the user

chose the VCs to share it sends the VP to the verifier and then it will check the

cryptographic signatures. The data from the VC should be processed andmay be

forwarded a 3rd party application. It is the responsibility of the 3rd party application to do

whatever is required with the data contained in the VP.

In the implemented verifier use case, the demo application is getting a VP (type

UserLearningOutcomes, the same type generated by the issuer workflow) and it is

processing the data in order to build a basic profile from the user.

Both use cases were implemented on the same backend API, but they are independent

from each other. This means that they could run on different 3rd party platforms in order

to exchange verifiable credentials between both of them. They can also be extended to

generate any type of verifiable credential in order to store any data under the W3C VCs

specification.

The Demo Application is divided into 2 main components: the UI and the API. The API is

also connected to a standalone instance of thewalletkit API in order to use basic functions

already implemented like verification of credentials, issuance or exchange of verifiable

credentials through the protocol OIDC (OpenID Connect)17 and it is also connected to a 3rd

party API to provide information to be stored in the VCs a�er issuance.

Demo Application UI

The UI of the demo application is a development in order to implement a graphical

interface (UI) through which the users can interact with the demo API (Open API) to

perform both the verifiable credential issuance and the verification of verifiable

presentations.

17 T. Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpenID for Verifiable Credential Issuance. Available at:
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction.

netidee Call 17 | Developer Documentation | Project-ID 6344 16

https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction

Unset

Architecture

The implementation of this UI application has been done using Vue.js18 frontend

framework, which generates a scaffolding of a frontend application divided into directories

and configuration files that compose the whole UI application with the finality of running

over a Node.js19 server.

Once the UI application is ready to be deployed it is compiled within a Node.js server and

then dockerized in order to be deployed using Kubernetes. This UI application is part of a

set of applications that form a stack in order to build the final system (Demo application).

UI pages, workflows & requests

The implementation of the Demo Application UI is composed of the following pages or

views under the "views" directory:

Issuance page

The first is the issuance page, fromwhich the flow of issuance of verifiable credentials to

the users is carried out. Once the user reaches this page, anHTTP GET request is made to

the demo application API in order to obtain the types of verifiable credentials that the

issuer can issue to users. The request is made to the domain that this UI establishes in its

configuration such as:

https://proto.example.com/edu/api/v1/wallet/users/3/issuance

This last one is the endpoint on which the demo application API is listening. The response

from this endpoint will be an array of objects in JSON format, each of these objects

corresponding to the type of verifiable credentials that can be issued.

19 Node.js Node.js. Available at: https://nodejs.org/en (last accessed: 12 July 2023).

18 Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework | Vue.js. Available
at: https://vuejs.org/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 17

https://vuejs.org/
https://nodejs.org/en

20

Once the different types of verifiable credentials that can be issued have been obtained,

the UI shows a series of radio buttons with the information of the verifiable credentials that

it can be issued and a disabled button that performs the issuance over the web flow. Some

of these verifiable credentials already exist within the wallet kit API by default the only one

that was totally implemented for us through the demo application API is the

“userLearningOutcomes” verifiable credential in order to showcase a proof of concept of

the project over the issuance and verification of an educational verifiable credential.

21

When the user selects an option, anHTTP POST request is sent to the same endpoint as

before of the demo application API, this time, the request contains a JSON objectwith

certain parameters as payload, such as the id of the verifiable credential to be issued

and the type of issuance flow that can be the web wallet "xDevice: false" or cross-device

"xDevice: true", in the first case this field is sent with the value true and the response of

the demo API will be a JSON object that will contain a redirection URI in order to encode

21 Issuer portal UI

20 Request to get the VC types that can be issued.

netidee Call 17 | Developer Documentation | Project-ID 6344 18

this URI in theQR code that is generated by the UI, so just by scanning this QR code from a

compatible wallet such as "ValidateID22" the verifiable credential will be issued and

exchanged with the userʼs wallet using theOIDC4VC23 protocol and then in the userʼs

wallet it will receive a verifiable credential issuance request from the issuer where the user

can check and read the content of the verifiable credential before accepting it on the

wallet.

24

In the issuance UI, once the verifiable credential to be issued is chosen, an issue button is

shown which is in charge of making the same previous request but changing the value of

the "xDevice" field to false, this way the demo application API behaves differently if the

user clicks the button then an issuance web wallet flow is started.

24 Issuance request for the cross device flow

23 T. Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpenID for Verifiable Credential Issuance. Available at:
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction.

22 ValidatedId Validated ID - electronic signature and digital identity providers, Validated ID - Electronic
Signature and Digital Identity Providers. Available at: https://www.validatedid.com/en (last accessed: 08 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 19

https://www.validatedid.com/en
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction

25

26

Once the redirection URI is obtained from the response of the request, the issuer UI

redirects the user to this URI, which is in the pre-configuredwebwallet, so the verifiable

credential will be issued and exchanged with the userʼs wallet using theOIDC4VC protocol.

Then the userʼs wallet will start the verifiable credential issuance request and the user

needs to approve it.

The issuer will retrieve the information needed to add it to the credential. For example, in

case of the issuance of the verifiable credential is of type "UserLearningOutcomes" then

the demo application API internally gets the information about the completed courses by

the user and creates the VC with them formatting the data according to the VC schema.

26 Issuance request payload from the web wallet flow

25 Issuance portal UI, issuance process

netidee Call 17 | Developer Documentation | Project-ID 6344 20

Unset

Unset

Verify page

The secondmain workflow starts with the verify page, fromwhich the verification flow is

carried out. Once the user will be displayed with an “import” button that will start the

verification of a "userLearningOutcomes'' credential through the verification of a

verifiable presentation.

As soon as the flow is started, the user is redirected to the verifier UI on the page (by

default /verify/success and this is not configurable at the moment) with an access token

as a parameter in the URL, the response of the demo application API redirects to the next

URL:

https://proto.example.com/assess/en/verify/success/?access_token=8WuadndvTYKN

MxL1I1SyNA

From this page, the verification UI reads the access token from the redirection URL then it

will send aHTTP Post request to the demo application API to the endpoint

https://proto.example.com/edu/api/v1/wallet/verifier/store

27

The API will use the access token of the URL parameter to verify the VP, if the VP is valid, it

will retrieve the data from the VP and process it to store it as an “imported” user profile.

The response of the request is a JSON object with the content of the VP.

27 Verification presentation payload

netidee Call 17 | Developer Documentation | Project-ID 6344 21

https://proto.example.com/assess/en/verify/success/?access_token=8WuadndvTYKNMxL1I1SyNA
https://proto.example.com/assess/en/verify/success/?access_token=8WuadndvTYKNMxL1I1SyNA
https://proto.example.com/edu/api/v1/wallet/verifier/store

28

In this case, the content of the response is not displayed to the user through the

verification UI, instead, just a success message is displayed together with a button which

will show the newly imported profile.

28 Verification presentation response

netidee Call 17 | Developer Documentation | Project-ID 6344 22

29

If the token is not valid then the verification UI will show an error message.

30

UI components, workflows & requests

Three UI components have been created using the Javascript framework Vue.js31, two of

them in the form of a button. They are in charge of starting the flows of issuance and

verification of verifiable credentials. The third component displays a modal in which the

user can check their learning outcomes profile and perform the verification and

importation of data from a “userLearningOutcomes” verifiable credential type from the

user's wallet. These components can be imported anywhere else on the platform, such as a

custom view or page.

The "issueCredentialsBtn" component

1. The "issueCredentialsBtn" component shows a button that, when clicked on,

redirects to the "issuance" view.

31 Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework | Vue.js. Available
at: https://vuejs.org/ (last accessed: 12 July 2023).

30 Invalid verifiable presentation message in the verification UI

29 Valid verifiable presentation message in the verification UI

netidee Call 17 | Developer Documentation | Project-ID 6344 23

https://vuejs.org/

Unset

Unset

The "VerifyCredentialsBtn" component

2. The "VerifyCredentialsBtn" component shows a button with an icon which is

currently a link that, when clicked on, makes anHTTP GET request to the demo API.

This request is made towards an established URL such as

https://proto.example.edu/api/v1/wallet/verifier/present?walletId=YOUR_WA

LLET_ID&vcType=VerifiableUserLearningOutcomes

This request includes the id of the wallet used and the type of the verifiable credential

to be verified, in this case, the parameter of the wallet is configured within the

configuration of the API wallet kit through the file verifier-config.json in the field

“wallets” and the type of verifiable credential is “VerifiableUserLearningOutcomes”

which is hardcoded in the redirection URL. The demo application was intended to

simulate the flow of the issuance and verification of this type of verifiable credential

but it can be easily extended in order to use any other credential type.

A�er this request, the user will be redirected to the web wallet, in order to create a

verifiable presentation of the selected verifiable credential that was in the” vcType”

parameter. Once the user from her/his wallet choose the VC that she/he wants to

present to the verifier and accepts the creation of the verifiable presentation then,

he/she is redirected to the verifier platform into the verification UI in

verify/success/?access_token=7vT6I4iDSLej-XYbisKAVw

The “userProfileDialog” component

3. The “userProfileDialog” component is composed of a button that, when clicked

on, will open amodal window that will show a series of fields related to the ESCO

skills obtained through courses that the user has been completing. When this

modal is opened, a request is made to the third-party API in order to obtain the

user profile data that has been created using the data imported previously of a

netidee Call 17 | Developer Documentation | Project-ID 6344 24

"userLearningOutcomes" verifiable credential from the userʼs wallet. Also, if there

are defined ESCO skills, other requests will be executed to a third-party API in order

to obtain information about the possible occupations of each ESCO skill.

In addition to these fields, the modal window contains two buttons at the bottom,

the first is related to the import and validation of the "userLearningOutcomes”

verifiable credentials that will be imported from the user's wallet, this button is the

"verifyCredentialsBtn" component, which is in charge of perform verifiable

credentials verification flow. The other button is in charge of saving the changes

that are performed within the fields of this UI component, so once it is clicked it will

send anHTTP request to the third-party API.

32

How to run

In order to access the issuance and verification graphical interface andmake use of the UI

components, it is necessary to put in production this repository that can be found here

running under a node.js server in a docker33 container for which the project must be

33 Docker (2023) Accelerated Container Application Development, Docker. Available at:
https://www.docker.com/ (last accessed: 12 July 2023).

32 User profile UI

netidee Call 17 | Developer Documentation | Project-ID 6344 25

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-ui
https://www.docker.com/

Unset

compiled using the yarn package manager with the "yarn build" command or “yarn

generate” in order to create a static project and then deploy it over a docker container, at

the end it is only needed to run the container and execute the command “yarn start” to

use the application.

The other option as a developer is to run the repository in developmentmode, for this it

can be done by opening a terminal in the root of the repository and already with node

installed at least with version 16.19.1 and with the yarn package manager34 we execute the

"yarn install" commands if it is the first time that we run the project, so that the

appropriate dependencies will be installed and the set up it is done. Once the last

command is finished, the "yarn dev" command will be launched to launch the project in

development mode.

Once it is running, we can access the pages by putting in the url the next:

{ YOUR_DOMAIN }/assess/ { CURRENT_LANG }/issuance or /verify/success

so that the UIs implemented for certain cases will be displayed to the user.

Demo Application API

The API of the demo application is a development in order to implement anOpen API

that acts as an intermediary between the user and theWallet Kit API this implementation

was necessary in order to customize andmanage the request that is forwarded to the

Wallet Kit API, this provides an additional abstraction layer and security because the

Wallet Kit API has no private endpoints.

Functionalities

The Demo Application API performs the following tasks:

● Receive users' issuance requests and forward them to theWallet Kit API in order to

issue the different verifiable credentials types that it allows:

34 Yarn Home Page, Yarn. Available at: https://yarnpkg.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 26

https://yarnpkg.com/

○ Europass

○ ProofOfResidence

○ UserLearningOutcomes

● Receive user verifiable presentation with the VC type of “userLearningOutcomes”

requests and forward it to the Wallet Kit API.

● Receive users' requests in order to return the verifiable credential schemas linked

to each VC type.

● Send requests to third parties APIs in order to manage user profiles.

Architecture

The implementation of the Demo Application API has been done through the use of Cake

PHP 4 35 backend framework which generates a scaffolding of a backend application

divided into directories and configuration files that compose the whole API application

with the finality of running it over a Nginx36 server within a docker container in order to

manage the user request. The Demo Application API is served under the directory “Wallet”

which is within “app_rest” and within “plugins” directories, the configurations to run the

API and the documentation related can be found on the demo-api repository.

Once the Demo Application API is ready to be deployed it is dockerized and running within

an Nginx server, and then it is deployed using Kubernetes. This Demo Application API is

part of a set of applications that form a stack in order to build the final system (Demo

application).

So�ware components

The Demo Application API orOpen API is made up of a series of so�ware components

that implement the necessary endpoints for users to make use of theseHTTP network

requests through a UI (Demo Application UI). These components called controllers are in

36 Nginx (2023) Advanced load balancer, web server, & reverse proxy, NGINX. Available at:
https://www.nginx.com/ (last accessed: 12 July 2023).

35 Cake PHP. CakePHP cookbook Archivo de Documentación, creado por, Bienvenido - 4.x. Available at:
https://book.cakephp.org/4/es/index.html (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 27

https://book.cakephp.org/4/es/index.html
https://book.cakephp.org/4/es/index.html
https://www.nginx.com/
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api

charge of defining the routing andmanaging of the network requests within the API in

order to interact with the correct data model. These controllers are a part of the Model

View Controller (MVC) design pattern.

Main controllers and workflows should be:

● Issuance flow:

○ WalletIssuanceController: This controller is responsible for the handling of

the issuance requests and perform the next requests:

■ WalletIssuance: List and issue VCs

■ WalletIssuerOIDC: Set of endpoints to enable OIDC issuer flow

(proxy forwarded to Wallet Kit API)

● Verifier flow:

○ VerifierPresentProxyController: This controller is responsible for the

handling of the verifiable presentation requests:

■ VerifierPresentProxy: Init VPs in order to forward to the Wallet Kit

API.

○ VerifierVerifyProxyController: This controller is responsible for the

handling of the verification requests:

■ VerifierVerifyProxy: Forward verification requests to Wallet Kit API.

○ VerifierStoreController: This controller is responsible for the handling of

the verifiable presentations in order to manage the data of the VCs and store

them in a third-party API and perform the next requests:

■ VerifierStore: Process and store the data of a

“userLearningOutcomes” verifiable credential in a third party API.

● Other controllers:

○ WalletCredentialsSchemaController: This controller is responsible for the

handling of the verifiable credentials schema 37requests:

37 Cohen, G. and Steele, O. (2023) Verifiable credentials JSON schema specification,W3C. Available at:
https://www.w3.org/TR/vc-json-schema/ (last accessed: 09 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 28

https://www.w3.org/TR/vc-json-schema/

■ WalletCredentialSchema: Retrieve the schema definition of a

verifiable credential.

● UserProfiles: Simple CRUD endpoint of a third party API in order to manage user

profiles.

Endpoints can be found documented in Open API documentation

Some of the endpoints are directly forwarded to the standalone deployment of Wallet Kit

API. SinceWallet Kit does not perform any kind of authentication, all walletkit

endpoints must be running in a private network. A simple kubectl yaml is included in

the repository to allow easier deployment.

The controllers with the name “Proxy” perform a simple forward of the request via PHP.

Besides this, a proxy forward needs to be set up for the endpoint /issuer-api/default/oidc.

This can be easily accomplished using so�ware like Nginx or using an ingress controller

within Kubernetes. The rules definition will look similar to:

- path: /issuer-api/default/oidc/.*$

pathType: Prefix

backend:

service:

name: walletkit-api-svc

port:

number: 80

How to run

To run the Demo Application API, first it is needed to put it into production running under

an Nginx server which, through docker, is encapsulated in a container where it can be

configured and run, to perform the production ready deployment of the API it has been

used docker, kubernetes and helm technologies to achieve this, the deployment of the

Demo Application API is carried out on a server in the cloud fromwhere the API services

netidee Call 17 | Developer Documentation | Project-ID 6344 29

https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/kubernetes/issuer-verifier-api.yaml?ref_type=heads
https://www.nginx.com

will be provided. To launch or configure the API locally, it can be done through the

"docker-compose-dev.yaml" file that is located in the root of the repository.

for further information about how to configure and run the API a more detailed

documentation can be found on the Demo Application API repository.

Demo Application Webwallet

The demo application webwallet is a pre-built frontend application that performs the

tasks of a userʼs web wallet application, it handles issuance of verifiable credentials,

verifiable presentations, performs the VC exchanging process between issuers,verifiers

and the web wallet itself and stores the VCs andmanages them. This demo application

was customized in order to display the information of the new verifiable credential that

was created, the “userLearningOutcomes”, this pre-built solution that acts as a demo web

wallet in which a user canmake use of it accessing a login UI which the login process is

mocked up, in order to test a real workflow.

The demo application web wallet UI implementation and the documentation attached to it

can be found in the WebWallet38 repository provided byWalt.id to make changes and

customize.

Architecture

This UIwas implemented within theWallet Kit API from “walt.id”,39 this way the Wallet Kit

API provides some UIs in order to perform a full solution, in this case the issuance and

verification UI portals was skipped and only the web wallet UI was customized, this UI

perform requests directly to the Wallet Kit API which it also acts as its own API. In the

implementation of the Demo Application the demo web wallet was customized and a

image of it was built and it is available in the repository

https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept/container_registry/4437224

39 Walt.id,Walt.id Wallet Kit,walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last accessed:
08 July 2023).

38 Walt.id,Walt.id Web wallet,walt.id. Available at: https://github.com/walt-id/waltid-web-wallet (last
accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 30

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api
https://github.com/walt-id/waltid-web-wallet
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept/container_registry/4437224
https://github.com/walt-id/waltid-walletkit

with the tag wallet-ui-0.5, this image it is being used within the configuration of theWallet

Kit API in order to use this web wallet UI.

The image below displays the architecture of the demo web wallet UI and the other

pre-built UI components within the Wallet Kit API:

40

Issuance workflow & requests

The issuance flow starts once a user clicks the issuance button from the issuance UI, then

aHTTP POST requestwill be sended to the Demo Application API in order to start the

issuance flow and then the response of this request that is a redirection URL will redirect

the user to web wallet UI that the issuer platform configure.

Then from the web wallet UI the URL from the previously request response it is sended to

the Wallet Kit API and the response of it is a redirection to the “initiateIssuance” page of

the web wallet UI with the parameter “sessionId”, the request is like the next one:

40 Walt.id Architecture - Demo web wallet architecture, Docs. Available at:
https://docs.walt.id/v/web-wallet/wallet-kit/issuer-and-verifier-portals/architecture (last accessed: 12 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 31

Unset

Unset

Unset

Unset

Unset

Unset

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.ex

ample.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-a

uthorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5ODhlMjJlZC04M

Tc4LTQ1YmUtYTllNi0xM2ZjY2NmNWJhNDUiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.iYwaTegQ4J

oesfyigDNqNoy5AgIKkrAqSIn1qVuqhUA&user_pin_required=false

and the response is like this:

https://wallet.example.com/InitiateIssuance/?sessionId=8b450ebe-eb6d-4b16-8bb

7-768cc37c7519

Then the web wallet UI send another HTTP GET request in order to retrieve the list of the

DIDs:

https://wallet.example.com/api/wallet/did/list

and the response of it:

["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p"]

Also it is sending another HTTP GET request in order to retrieve the information of the VC

that it has been issued

https://wallet.example.com/api/wallet/issuance/info?sessionId=8b450ebe-eb6d-4

b16-8bb7-768cc37c7519

and the response of it:

{

"credentialTypes" : ["UserLearningOutcomes"],

"credentials" : null,

netidee Call 17 | Developer Documentation | Project-ID 6344 32

"did" : null,

"id" : "8b450ebe-eb6d-4b16-8bb7-768cc37c7519",

"isIssuerInitiated" : true,

"isPreAuthorized" : true,

"issuerId" : "https://proto.example.com/issuer-api/default/oidc/",

"lastTokenUpdate" : null, "nonce" : "81d50896-43b3-4280-9f06-37485b604461",

"opState" : null,

"preAuthzCode" :

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5ODhlMjJlZC04MTc4LTQ1YmUtYTl

lNi0xM2ZjY2NmNWJhNDUiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.iYwaTegQ4JoesfyigDNqNoy5

AgIKkrAqSIn1qVuqhUA",

"tokenNonce" : null,

"tokens" : null,

"user" : null,

"userPinRequired" : false,

"walletRedirectUri" : null

}

Then the web wallet UI displays the “Issuance initiation” view.

netidee Call 17 | Developer Documentation | Project-ID 6344 33

Unset

Unset

41

Once the user accepts the issuance initiation the nextHTTP GET request is sended to the

Wallet Kit API in order to save the VC in the web wallet,retrieve the session id of the

transaction and the page of the web wallet UI

GET

https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuanc

e?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=424d

5584-8e4f-41e9-9563-84a70a2d10a9

And the response is the next:

/ReceiveCredential/?sessionId=424d5584-8e4f-41e9-9563-84a70a2d10a9

Then the user is redirected to the web wallet page from the response of the request.

41Walt.id,Walt.id Web wallet - issuance initiation,walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 34

Unset

Unset

Also anotherHTTP GET request is sended to the Wallet Kit API in order to retrieve the data

of the VC that has been issued.

https://wallet.example.com/api/wallet/issuance/info?sessionId=424d5584-8e4f-4

1e9-9563-84a70a2d10a9

And the response of it is the next:

{

"credentialTypes": ["UserLearningOutcomes"],

"credentials": [{"The VC that has been issued"}],

"did":"did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"id":"424d5584-8e4f-41e9-9563-84a70a2d10a9",

"isIssuerInitiated": true,

"isPreAuthorized": true,

"issuerId": "https://proto.example.com/issuer-api/default/oidc/",

"lastTokenUpdate": {},

"nonce": "dd07002b-c7ec-4711-9f50-be7ff00e0729",

"opState": null,

"preAuthzCode":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJmNDdmNzhiOC0wMzIzLTQ0YWQtOGZ

lMS0zMWQ4NTM0ODg0NjEiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.bVwZBDTUxpVUoLvukX_aznr0

FW0f1-IguWecvJdZdM8",

"tokenNonce": "322b3880-1099-4b56-9f6f-0991d7ffcb0a",

"tokens": {},

"user": {"Web wallet user data"},

"userPinRequired": false,

"walletRedirectUri": null

}

netidee Call 17 | Developer Documentation | Project-ID 6344 35

https://proto.example.com/issuer-api/default/oidc/

Unset

Unset

Then in the Web wallet UI we can check the VC that has been issued.

42

Once the user accepts the VC it is redirected to the “Credentials ” page of the web wallet

UI, and then aHTTP GET request is sended in order to retrieve the VCs that the user has

stored in her/his wallet.

GET

https://wallet.example.com/api/wallet/credentials/list

and the response is a list of VCs that the user has stored in the web wallet.

{

"list": [

{

42Walt.id ,Walt.id Web wallet - received credentials, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 36

"type":

["VerifiableCredential","VerifiableAttestation","VerifiableUserLearningOutcom

es"],

"@context": ["https://www.w3.org/2018/credentials/v1"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmB9mWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

"issuanceDate": "2023-07-18T16:23:35Z",

"issued": "2023-07-18T16:23:35Z",

"validFrom": "2023-07-18T16:23:35Z",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/v1/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

},

"credentialSubject": {

"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"title": "User learning outcomes",

"performed": [

{

"title": "Test1",

"startedAtTime": "2023-07-12T17:28:16+02:00",

"specifiedBy": {

"teaches": {

"learningOutcome": {

"name": "chemische Laboruntersuchungen an Metallen vornehmen",

"relatedESCOSkill":

"http://data.europa.eu/esco/skill/2b60c0cf-6ce6-4f04-9748-0e6d883673d8"

}

}

}

}

]

}

}

]

}

netidee Call 17 | Developer Documentation | Project-ID 6344 37

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

Unset

The image below displays the VCs that an user has stored in her/his wallet:

43

Verification workflow & requests

The verification flow starts once a user clicks the verification button from the verification

UI, then aHTTP GET requestwill be sended to the Demo Application API in order to start

the verification flow and then the response of this request that is a redirection URL will

redirect the user to webwallet UI that the verifier platform has configure.

Once the user is redirected to web wallet UI, this one send anHTTP GET request to Wallet

Kit API in order to start the verification process, the request is the next:

https://wallet.example.com/api/siop/initiatePresentation/?scope=openid&presen

tation_definition={"format" : null, "id" : "1", "input_descriptors" :

43Walt.id,Walt.id Web wallet - verifiable credentials stored / owned by a user,walt.id.
Available at: https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 38

Unset

Unset

Unset

Unset

[{"constraints" : {"fields" : [{"filter" : {"const":

"VerifiableUserLearningOutcomes"}, "id" : null, "path" : ["$.type"],

"purpose" : null}]}, "format" : null, "group" : null, "id" : "1", "name" :

null, "purpose" : null, "schema" : null}], "name" : null, "purpose" : null,

"submission_requirements" :

null}&response_type=vp_token&redirect_uri=https://proto.example.com/edu/api/v

1/wallet/verifier/verify&state=1iP0k21YRPGp1CmPPwIILQ&nonce=1iP0k21YRPGp1CmPP

wIILQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&r

esponse_mode=form_post

The response of this request is a redirection to the “CredentialRequest” page of the web

wallet UI with a parameter called “sessionId”, the response is similar to this one:

https://wallet.example.com/CredentialRequest/?sessionId=eb5fda12-5c26-4e11-89

e3-fce0444e729f

Once this request is sended another one it is also sended in order to retrieve the list of

DIDs:

https://wallet.example.com/api/wallet/did/list

and the response is a list of DIDs:

did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p

Then anotherHTTP GET request is sended in order to continue with the VP of the VCs and

obtain a redirection URL in order to verify the VCs that the VP contains:

netidee Call 17 | Developer Documentation | Project-ID 6344 39

Unset

Unset

https://wallet.example.com/api/wallet/presentation/continue?sessionId=eb5fda1

2-5c26-4e11-89e3-fce0444e729f&did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNU

fvqa4rG5G6x1p

And the response of this request is the next:

{

"availableIssuers": null,

"did": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"id": "eb5fda12-5c26-4e11-89e3-fce0444e729f",

"presentableCredentials": [

{

"claimId": "1",

"credentialId": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

}

],

"presentationDefinition": {

"format": null,

"id": "1",

"input_descriptors": [{}],

"name": null,

"purpose": null,

"submission_requirements": null

},

"redirectUri":

"https://proto.example.com/edu/api/v1/wallet/verifier/verify"

}

Then the web wallet UI send another HTTP GET request in order to retrieve all VC of the

“userLearningOutcomes” type through the next request:

https://wallet.example.com/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3

461-4b99-a5f9-aac84792a4d5

netidee Call 17 | Developer Documentation | Project-ID 6344 40

Unset

The response to this request is a list of VC of the “userLearningOutcomes” type

{

"list": [

{

"type":

["VerifiableCredential","VerifiableAttestation","VerifiableUserLearningOutcom

es"],

"@context": ["https://www.w3.org/2018/credentials/v1"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmB9mWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

"issuanceDate": "2023-07-18T16:23:35Z",

"issued": "2023-07-18T16:23:35Z",

"validFrom": "2023-07-18T16:23:35Z",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/v1/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

},

"credentialSubject": {

"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"title": "User learning outcomes",

"performed": [

{

"title": "Test1",

"startedAtTime": "2023-07-12T17:28:16+02:00",

"specifiedBy": {

"teaches": {

"learningOutcome": {

"name": "chemische Laboruntersuchungen an Metallen vornehmen",

"relatedESCOSkill":

"http://data.europa.eu/esco/skill/2b60c0cf-6ce6-4f04-9748-0e6d883673d8"

}

}

}

}

]

netidee Call 17 | Developer Documentation | Project-ID 6344 41

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

}

}

]

}

These request represent the connection request between a verifier and the userʼs wallet,

the image below display the UI of the userʼs web wallet:

44

Once the user accepts the verifiable presentation then a HTTP POST request is sended to

the Wallet Kit API in order to present the selected “userLearningOutcomes” VC through the

next endpoint:

44Walt.id,Walt.id Web wallet -verified presentation from web wallet,walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 42

Unset

Unset

Unset

https://wallet.example.eu/api/wallet/presentation/fulfill?sessionId=24c1f6b0-

1b6b-460e-820a-4f11fbfc0012

with the next payload:

[

{

"claimId":"1",

"credentialId":"urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

}

]

and the next response:

{

"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map" :

[{"format" : "jwt_vp", "id" : "0", "path" : "$", "path_nested" : {"format" :

"jwt_vc", "id" : "0", "path" : "$.verifiableCredential[0]"}}], "id" : "1"}",

"rp_response": null,

"state": "f1tEmlanQ1G_bfm8WtRmMA",

"vp_token": "JWT"

}

At last the userʼs web wallet redirects to the verifier platform in order to complete the

verification flow.

How to run

In order to run the demowebwallet UI in production theWallet Kit APIwith the other

system components like the Demo application API and the Demo application UImust be

deployed. Once the whole application stack is deployed then from the issuer or verifier

portal UIs a user can reach the web wallet, also with the configured domain fromwhich

netidee Call 17 | Developer Documentation | Project-ID 6344 43

any user can access through an URL. The web wallet UI is builded within the Wallet Kit API

so in order to run it, the Wallet Kit API must be running.

It is also possible to run the web wallet UI in a standalone or development mode, once the

repository of the web wallet UI it is downloaded then from a command line interface it can

be run over a Node.js server with the version of 16.19.1 and using the "yarn install"

command in order to install all the dependencies of the web wallet UI and then using the

"yarn dev" in order to run the UI locally.

11 Development Environment Setup

In order to carry out the development of this project, it is necessary to establish the

development environment adequately, following some steps to follow in order to use the

entire stack that makes up the project.

11.1System Requirements

This is a list of the system requirements in order to be able to develop and start the

application stack:

● A text editor or an IDE like “PhpStorm” to be able to open and edit the project's

code.

● GIT as a version control system in order to track the changes in the code.

● Docker in order to execute a container with the project implementation

● Docker-compose45 in order to create and execute a multi-container application.

● A Node.js environment, version 16.19.1 in order to execute the Demo-UI in

development mode.

45 Docker (2023b) Overview of docker compose, Docker Documentation. Available at:
https://docs.docker.com/compose/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 44

https://docs.docker.com/compose/

● Optionally, Node Version Manager (NVM)46 in order to manage the versions of

Node.js installed or used.

● Optionally, an API development platformwith a Rest client like ”Insomnia” or

“Postman” to design, debug, and send requests to the Demo API without a

frontend.

● Yarn package manager in order to set up and run the project.

● Kubectl in order to manage docker clusters and deploy the application

● Helm in order to manage the packages for Kubernetes

● Aweb browser like “Mozilla Firefox” or “Google Chrome” in order to execute the

application and use the developer tools for the development process.

More information can be found inside the repositories.

11.2Dependency Installation

The following dependencies will be required in order to use the implementation:

● Vue.js Framework: The main frontend framework used for the development of the

Demo-UI frontend as a single-page application.

● Cake PHP 4 Framework: The main backend framework used for the development of

the Demo-API or Open API.

● Vuetify 2 UI Framework47: The main UI framework used for the development of UI

elementswithin the Vue.js framework.

● Pug48: A template engine focused onmakingHTML coding faster.

● Axios49: A promise-basedHTTP Client for node.js.

49 Axios Axios, Starting | Axios Docs. Available at: https://axios-http.com/en/docs/intro (last accessed: 12 July
2023).

48 Pug Getting started, Pug. Available at: https://pugjs.org/api/getting-started.html (last accessed: 12 July
2023).

47 Vuetify A material design framework for vue.js, Vuetify. Available at: https://v2.vuetifyjs.com/en/ (last
accessed: 02 July 2023).

46 Node(no data),Node version manager. Available at: https://github.com/nvm-sh/nvm (last accessed: 12 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 45

https://github.com/nvm-sh/nvm
https://vuejs.org/
https://book.cakephp.org/4/es/index.html
https://v2.vuetifyjs.com/en/
https://pugjs.org/api/getting-started.html
https://axios-http.com/es/docs/intro

● Qrious50: A library forQR code generation using canvas.

● Vue-i18n51: A plugin that allows the internationalization of a platform using

multi-languages.

● Vue router52: A plugin that allows routing between different pages over the Vue.js

framework.

● Vuex53: A state management pattern + library for Vue.js.

● Sass54: A CSS preprocessor compatible with all its versions.

● Eslint55: A static code analysis tool for identifying problematic patterns found in

JavaScript code.

● Typescript:56 A strongly typed programming language that builds on JavaScript.

More information can be found inside the repositories.

11.3System Configuration

The configurations necessary for the implementation of the project are defined in each

README.md file of the used repositories. For more configurations related to the

deployment and resources, there exists a Helm chart file "issuer-verifier-api.yaml" in order

to manage the whole stack of applications provided once they are deployed.

56 Typescript JavaScript with syntax for types., TypeScript. Available at: https://www.typescriptlang.org/ (last
accessed: 14 July 2023).

55 Nicholas C. Zakas 11 Aug et al. (1970) Find and fix problems in your JavaScript code - eslint -
pluggable JavaScript linter, ESLint. Available at: https://eslint.org/ (last accessed: 10 July 2023).

54 sass CSS with superpowers, Sass. Available at: https://sass-lang.com/ (last accessed: 10 July 2023).

53 VueWhat is Vuex?, Vuex. Available at: https://vuex.vuejs.org/ (last accessed: 12 July 2023).

52 Vue Vue Router, Vue Router | The official Router for Vue.js. Available at: https://router.vuejs.org/ (last
accessed: 10 July 2023).

51 Vue) Vue I18n. Available at: https://kazupon.github.io/vue-i18n/ (last accessed: 12 July 2023).

50 Qrious Qrious, npm. Available at: https://www.npmjs.com/package/qrious (last accessed: 10 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 46

https://www.npmjs.com/package/qrious
https://kazupon.github.io/vue-i18n/
https://router.vuejs.org/
https://vuex.vuejs.org/
https://sass-lang.com/
https://eslint.org/
https://www.typescriptlang.org/

Unset

11.4Repositories needed

To run the project it is necessary to download certain repositories into which the

application is divided:

● Demo application: This is the main repository of the project implementation in

which there is a Kubernetes configuration file: This file is intended to provide the

configuration and setup of the whole Demo application in order to deploy and

run the whole stack of applications under the same context. This file will create the

architecture necessary for the implementation of the whole stack and the

configuration of the containers that Kubernetes handles. In this file, it is defined the

configuration files of theWallet Kit API and the image to download and use to

perform the SSI operations. Also, other configurations like the ports, mount points,

or volumes are defined here.

apiVersion: v1

kind: ConfigMap

metadata:

name: wallet-config

data:

issuer-config.json: |

{

"issuerUiUrl": "https://proto.example.com/assess/en/issuance",

"issuerApiUrl": "https://proto.example.com/issuer-api/default",

"wallets": {

"walt.id": {

"id": "EduProto",

"url": "https://wallet.example.com",

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "EduProto walt.id based web wallet"

}

netidee Call 17 | Developer Documentation | Project-ID 6344 47

https://gitlab.com/ssi-edu-wallets/demo-application.git
https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/kubernetes/issuer-verifier-api.yaml

}

}

verifier-config.json: |

{

"verifierUiUrl": "https://proto.example.com/assess/en/verify",

"verifierApiUrl":

"https://proto.example.com/edu/api/v1/wallet/verifier",

"wallets": {

"walt.id": {

"id": "walt.id",

"url": "https://wallet.walt.id",

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "walt.id web wallet"

},

"EduProto": {

"id": "EduProto",

"url": "https://wallet.example.com",

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "EduProto prototype wallet"

}

}

}

verifier-config.json "verifierApiUrl":

"https://proto.example.com/verifier-api/default",

https://proto.example.com/edu/api/v1/wallet/verifier

kind: Deployment

apiVersion: apps/v1

metadata:

name: walletkit

spec:

replicas: 1

selector:

matchLabels:

netidee Call 17 | Developer Documentation | Project-ID 6344 48

app: walletkit

template:

metadata:

labels:

app: walletkit

annotations:

deployment/id: "_DEFAULT_DEPLOYMENT_"

spec:

containers:

- name: walletkit

image: waltid/walletkit:1.2305151432.0

volumeMounts:

- name: wallet-config

mountPath: "/app/dataRoot/config/"

readOnly: true

env:

- name: WALTID_DATA_ROOT

value: "/app/dataRoot"

- name: WALTID_WALLET_BACKEND_BIND_ADDRESS

value: 0.0.0.0

args:

- run

ports:

- containerPort: 8080

name: http-api

volumes:

- name: wallet-config

configMap:

name: wallet-config

kind: Service

apiVersion: v1

metadata:

name: walletkit-api-svc

spec:

ports:

netidee Call 17 | Developer Documentation | Project-ID 6344 49

- name: http

port: 80

targetPort: http-api

protocol: TCP

selector:

app: walletkit

Also there are some repositories that they are in charge of provide a frontend and a

backend to the implementation:

○ Demo API: This is the repository on which a public API has been implemented, the

Open API,which is in charge of handling the requests made from the

implementation of the Demo UI, it is acting as an intermediary API between the

Demo-UI and the Wallet Kit API. This Open API manages the requests in order to

carry out the issuance flows and verifications of verifiable credentials. Inside this

repository exist a README.md file which is a more detailed documentation.

○ Demo UI: This repository has implemented a frontend using the Vue.js and Vuetify

UI framework in order to provide a graphical interface (UI) so that users can carry

out the processes of claiming and submitting verifiable credentials. . Inside this

repository exist a README.md file which is a more detailed documentation.

12 Open API documentation

Once the design, development, implementation, integration and start-up of the demo

application API has been completed, the final points resulting from its implementation will

be documented using theOpen API specification bymeans of a file in JSON format that is

netidee Call 17 | Developer Documentation | Project-ID 6344 50

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api

available on the Demo Application repository which will be available to download and

imported on tools such as Swagger Editor 57or Postman58 to serve as data input and

visualize the documentation graphically and intuitively.

13 Wallet kit API

The Wallet Kit APi is an open source solution made by a third party specifically "Walt.id59"

with the purpose of providing a Self-Sovereign Identity (SSI) that enable decentralized

identity and digital wallet infrastructure to the developers and businesses in order to

implement the SSI paradigm of theWeb 3.

The Wallet Kit provides the backend infrastructure to build a customwallet solution (Demo

web wallet) and provides the services of the SSI Kit API60. This API is the core of the whole

SSI functionalities that make it possible to create DIDs61, keys, VC and perform the

issuance and verification of verifiable credentials.

The Wallet Kit API is built on top of the SSI Kitwhich is in charge of performing all the

SSI-related tasks. The Wallet Kit just extends the SSI Kit In order to extend the functionality

providing some components like the demowebwallet, an issuance portal UI, and a

verification portal UI.

The Wallet Kit API enables to use of different identity ecosystems like Europeʼs emerging

identity ecosystem (ESSIF/EBSI62) in anticipation of a multi-ecosystem future.

62 European Commission European Blockchain Services Infrastructure, Home - EBSI -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed: 09 July 2023).

61 Sporny, M. et al. Decentralized identifiers (DIDs) v1.0,W3C. Available at: https://www.w3.org/TR/did-core/
(last accessed: 08 July 2023).

60 Walt.id SSI Kit, Docs. Available at: https://docs.walt.id/v/ssikit/ssi-kit/readme (last accessed: 13 July 2023).

59Walt.id Identity and NFT infrastructure for developers.,walt.id. Available at: https://walt.id/ (last
accessed: 08 July 2023).

58 Postman Postman. Available at: https://www.postman.com/ (last accessed: 13 July 2023).

57 Swagger Swaggereditor, SwaggerEditor. Available at: https://editor-next.swagger.io/ (last accessed: 08 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 51

https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/demo-api/docs/opeapi.json
https://editor-next.swagger.io
https://www.postman.com
https://walt.id/
https://docs.walt.id/v/ssikit/ssi-kit/readme
https://www.w3.org/TR/did-core/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

The Wallet Kit API and the documentation can be found on the GitHub repository from

“walt.id” in waltid-walletkit63.

Functionalities

The Wallet Kit provides various high-level functionalities. For example:

● Webwallet app (Demowebwallet application)

○ Web-based user interface (UI) for managing credentials and DIDs.

● User context separation

○ Separation of user contexts in the data stores (key store, credential store,

DID store).

● User datamanagement

○ DIDs

○ VCs

● Ecosystems integrations

○ did:ebsi

■ DID creation

■ DID registration

○ did:web

■ DID creation

■ DID web registry

○ did:key

■ DID creation

● Verifiable Credential Issuance and Presentation exchange

○ Support for verifiable credential issuance and presentation exchange based

on the OIDC and SIOP specs

■ 64OIDC4CI - OIDC for credential issuance

64 Kristina Yasuda, Dr. Torsten Lodderstedt, OpenID Connect for SSI, Available at:
https://openid.net/wordpress-content/uploads/2021/09/OIDF_OIDC4SSI-Update_Kristina-Yasuda-Torsten-Lo
dderstedt.pdf.

63 GitHub - walt-id/waltid-walletkit - Walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last
accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 52

https://github.com/walt-id/waltid-walletkit
https://openid.net/wordpress-content/uploads/2021/09/OIDF_OIDC4SSI-Update_Kristina-Yasuda-Torsten-Lodderstedt.pdf

■ OIDC4VP - OIDC for verifiable presentations (SIOP)

■ Credential issuance via SIOP protocol (custom protocol)

Architecture

The Wallet Kit API architecture is displayed on the following image:

65

There exists a layerwhere the Wallet Kit API stores all the data related to the issuer,

verifier and the users, here it stores information like the key pairs, DIDs, VCs and VPs. This

layer is part of the SSI Kit API, which is composed of three different APIs, the custodian

API (Demo web wallet), the signatory API (issuer platform) and the auditor API (verifier

platform). Normally the Issuer and the verifier of the implementation are the same.

65 Walt.id ,Walt.id Wallet Kit - Architecture,walt.id. Available at: https://github.com/walt-id/waltid-walletkit
(last accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 53

https://github.com/walt-id/waltid-walletkit

Over these layers, itʼs built theWallet Kitwhich is connected to the SSI Kit in order to

provide the whole SSI stack and its own implementation of the three high-level APIs that

compose it, thewallet backend (Demo web wallet), the issuer backend (issuer platform)

and the verifier backend (verifier platform). These high-level APIs serve the different UI

that the wallet kit implements, thewebwallet UI (Demo web wallet), the issuer portal UI

(not used in this implementation), and the verifier portal UI (not used in this

implementation). All of these UI components are pre-builded and ready to work, but in

this Demo Application it is only used the “Web wallet UI (Demo web wallet)” in order to

perform the issuance and verification flow using a web wallet. The pre-builded issuance

and verification UI were skipped in order to use the Demo Application UI to work as an

issuer and verifier UI, within this frontend in some components are implemented the

necessary request in order to perform the issuance and verification flow.

Once the repository of Wallet Kit API is downloaded under the directory “docker” we can

find the “config” directory in which the configurations for the issuer, verifier and wallet are

defined. Also in the “data” directory, we can find all the information related to the issuer,

users, and verifiers stored like the DIDs and the key pairs. There is also a

“docker-compose.yaml” file which defines all the images, ports, volumes, and containers

that will be used in order to run and build the Wallet Kit API stack in a standalone or

development mode. Once this file is running it will run the containers that are displayed

below:

66

66 Wallet Kit API running locally

netidee Call 17 | Developer Documentation | Project-ID 6344 54

Unset

Integration with the Demo Application

The integration of theWallet Kit APIwith the other components that compose the

implementation of the Demo Application is done by configuring the

"issuer-verifier-api.yaml" file in the "kubernetes" directory found in the Demo application

repository also within this configuration file is possible to manage the configuration of the

issuer and verifier from the Wallet Kit API.

spec:

containers:

- name: walletkit

image: waltid/walletkit:1.2305151432.0

volumeMounts:

- name: wallet-config

mountPath: "/app/dataRoot/config/"

readOnly: true

env:

- name: WALTID_DATA_ROOT

value: "/app/dataRoot"

- name: WALTID_WALLET_BACKEND_BIND_ADDRESS

value: 0.0.0.0

args:

- run

ports:

- containerPort: 8080

name: http-api

volumes:

- name: wallet-config

configMap:

name: wallet-config

netidee Call 17 | Developer Documentation | Project-ID 6344 55

https://gitlab.com/ssi-edu-wallets/demo-application
https://gitlab.com/ssi-edu-wallets/demo-application

HowWallet Kit verify a verifiable presentation67

“The verifier in order to verify any verifiable presentation that a user present to it will go

through the following steps to make sure the certificate is valid:

1. Before the validation of the content of the certificate can take place, the VC needs to

be parsed from the support JSON-LD or the JWT format. Depending on the

ecosystem used, there will also be a validation of the schema of the verifiable

credential.

2. Validate that the DID of the holder, stated in the certificate, is the person

presenting the VC.

3. Checking if all the state values are valid (expiration date and if the certificate is

revoked or not in the case that the system is within any decentralized ecosystem

that records the issuance of the VCs).

4. Checking the claims about the subject and if they match the requirements to give

the person access to the service they are requesting to get access to.

5. Checking the signatures of the issuer and the holder, by getting the DID of the

issuer from the registry (in the case that the system is within a decentralized

ecosystem like EBSI) and the DID from the holder in their wallet and validating it

using the public keys presented in the related DID documents.”

67 Walt.id Verifiable credentials (VCS), Docs. Available at:
https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/verifiable-credentials-vcs-and-ver
ifiable-presentations-vps (last accessed: 14 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 56

Unset

14 Wallet Kit configuration

Once we have integrated theWallet Kit API into our system, the next step is to configure it

to perform a correct integration so that it works correctly. For this, this API provides the

following configuration files:

● docker-compose.yaml: In this file that is only available under the “docker”

directory on theWallet Kit API repository they can be found the configurations to

run the Wallet Kit API in a standalone mode or development mode, this file set a

bunch of directives in order to launch theWallet Kit API, the containers of

"wallet-ui", "verifier-ui", "issuer-ui" and the ingresswhich make use of a Nginx

server in order to setup in which ports the previous containers are served. There is

also defined which images are used.

version: "3.3"

services:

walletkit:

image: waltid/walletkit:latest # backend docker image

command:

- run

environment:

WALTID_DATA_ROOT: ./data-root

WALTID_WALLET_BACKEND_BIND_ADDRESS: 0.0.0.0

EXTERNAL_HOSTNAME: localhost

WALTID_WALLET_BACKEND_PORT: 8080

volumes:

- .:/app/data-root # data store volume incl. config files.

extra_hosts:

- "localhost:host-gateway"

wallet-ui:

image: ssi-wallet-ui:alex7 # wallet web ui docker image

verifier-ui:

netidee Call 17 | Developer Documentation | Project-ID 6344 57

image: waltid/ssikit-verifier-portal:latest # verifier web ui docker image

issuer-ui:

image: waltid/ssikit-issuer-portal:latest # issuer web ui docker image

ingress:

image: nginx:1.15.10-alpine

ports:

- target: 80

published: 8080 # wallet ui publish port

protocol: tcp

mode: host

- target: 81

published: 8081 # verifier ui publish port

protocol: tcp

mode: host

- target: 82

published: 8082 # issuer ui publish port

protocol: tcp

mode: host

volumes:

- ./ingress.conf:/etc/nginx/conf.d/default.conf # API gateway

configuration

● issuer-config.json: In this file, it is possible to change to different configurations of

the issuer platform like the UI URL, API URL, the default DID of the issuer, and the

web wallets that the issuer platform will support, within each wallet it is possible to

set the paths for the issuance and verification flow. The configuration of this file,

can be found under the “docker” directory on the Wallet Kit API repository, once the

Wallet Kit API is integrated on the application stack this files can be found on under

the directory “kubernetes” within the “issuer-verifier-api.yaml” file of the Demo

Application repository.

netidee Call 17 | Developer Documentation | Project-ID 6344 58

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

Unset

Unset

issuer-config.json: |

{

"issuerUiUrl": "https://proto.example.com/assess/en/issuance",

"issuerApiUrl": "https://proto.example.com/issuer-api/default",

"wallets": {

"walt.id": {

"id": "EduProto",

"url": "https://wallet.example.com",

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "EduProto walt.id based web wallet"

}

}

}

● wallet-config.json: In this file, it is possible to change to different configurations of

the web wallet like the UI URL, API URL and the issuers' platforms that it will

support, within each issuer, it is possible to set the path for the URL of the issuer.

The configuration of this file can be found under the “docker” directory on the

Wallet Kit API repository, once the Wallet Kit API is integrated into the application

stack this file can be found under the directory “kubernetes” within the

“issuer-verifier-api.yaml” file of the Demo Application repository.

{

"walletUiUrl": "http://wallet.example.com",

"walletApiUrl": "http://wallet.example.com/api",

"issuers": {

"walt.id": {

"id": "EduProto",

"url": "http://proto.example.com/issuer-api/default/oidc",

netidee Call 17 | Developer Documentation | Project-ID 6344 59

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

Unset

"description": "EduProto walt.id Issuer Portal"

}

}

}

● verifier-config.json: In this file, it is possible to change to different configurations

of the verifier platform like the UI URL, API URL and the web wallets that the verifier

platform will support, within each wallet it is possible to set the paths for the

issuance and verification flow. The configuration of this file, can be found under the

“docker” directory on the Wallet Kit API repository, once the Wallet Kit API is

integrated on the application stack this files can be found on under the directory

“kubernetes” within the “issuer-verifier-api.yaml” file of the Demo Application

repository.

verifier-config.json: |

{

"verifierUiUrl": "https://proto.example.com/assess/en/verify",

"verifierApiUrl": "https://proto.example.com/edu/api/v1/wallet/verifier",

"wallets": {

"walt.id": {

"id": "walt.id",

"url": "https://wallet.walt.id",

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "walt.id web wallet"

},

"EduProto": {

"id": "EduProto",

"url": "https://wallet.example.com",

netidee Call 17 | Developer Documentation | Project-ID 6344 60

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

Unset

"presentPath": "api/siop/initiatePresentation/",

"receivePath" : "api/siop/initiateIssuance/",

"description": "EduProto prototype wallet"

}

}

}

● ingress.conf: This file is intended to perform the configuration of the routes to the

containers that compose theWallet Kit API, this file can be found under the

“docker” directory on the Wallet Kit API repository, this not directly available once it

is integrated on the application stack.

server {

listen 80;

location ~* /(api|webjars|verifier-api|issuer-api)/ {

proxy_pass http://walletkit:8080;

proxy_redirect default;

}

location / {

proxy_pass http://wallet-ui:80/;

proxy_redirect default;

}

}

server {

listen 81;

location ~* /(api|webjars|verifier-api|issuer-api)/ {

proxy_pass http://walletkit:8080;

proxy_redirect default;

}

location / {

netidee Call 17 | Developer Documentation | Project-ID 6344 61

proxy_pass http://verifier-ui:80/;

proxy_redirect default;

}

}

server {

listen 82;

location ~* /(api|webjars|verifier-api|issuer-api)/ {

proxy_pass http://walletkit:8080;

proxy_redirect default;

}

location / {

proxy_pass http://issuer-ui:80/;

proxy_redirect default;

}

}

More info related to the Wallet Kit API can be found on the GitHub repository.

15 DID and keys creation

The creation of DIDs and keys is done within the Wallet Kit API, which endpoints are

private to the rest of the network, so that only those that are only open through the Open

API can be accessed. In this implementation, no endpoint related to the management and

creation of keys or DIDs has been developed, so the use of these is limited to the

configuration scope of the Wallet Kit API or its previous creation also through the Wallet Kit

API directly.

By default the Wallet Kit API already has a preconfigured DID and its keys with which the

verifiable credentials will be issued also it is possible once a DID is generated to the issuer

netidee Call 17 | Developer Documentation | Project-ID 6344 62

https://github.com/walt-id/waltid-walletkit

to set it up in the configuration file issuer-config.json adding the field with the next value

"issuerDid": "did:key:example” the image below shows the file with the configuration.

68

In this implementation the DIDmethod used is the "key" method because the project is

outside of any blockchain ecosystem yet. In order to use this DID method, first a key pair

is generated through theWallet Kit API.

69

Then to create the DID it is necessary to provide the method and a key alias (that is the

response of the generated key pair), then it is created the DIDwith the associated public

key through the Wallet Kit API.

70

70 DID generation with associated key through Wallet Kit API

69 Key generation through Wallet Kit API

68 Issuer DID configuration file

netidee Call 17 | Developer Documentation | Project-ID 6344 63

Unset

This DID method is composed of the corresponding public key, which makes it especially

useful in scenarios where a simpler andmore direct resolution is needed because a

verifier will only need the public key of the owner of the DID to verify the authenticity of

the verifiable credential and this public key is encoded in the DID normally in a base58

format.

16 Creation of VC schema

To issue a personalized verifiable credential, it is first necessary to create a datamodel or

schema. For the use case of this demo, a verifiable credential of the

"userLearningOutcomes" type has been implemented, which conforms to a data schema

in JSON-LD format.

This scheme describes the structure, fields and restrictions that the verifiable credential

must follow once it is created. This schema can be published in a public repository so that

once a user with a verifiable credential of this type presents it to a third party or verifier,

the verifier will be in charge of extracting the content of the “id” field within the field

"credentialSchema" from the body of the verifiable credential, this is a URI that

references the schema of the verifiable credential.

So that the verifier will perform a check on whether the verifiable credential conforms to

the scheme that defines it, this is configured by the verifier in its verification policies by

default the policy applied is “JsonSchemaPolicy” which check that the body of the VC

matches the schema, which in this implementation no endpoint has been created over the

Demo Application API that is in charge of modifying the settings of these policies, the

default policies that are configured on theWallet Kit API have been le�.

The schema belonging to the verifiable credential created "userLearningOutcomes" has

been generated within the implementation of the Demo application API, and it has the

body of the code below:

{

"$schema": "https://json-schema.org/draft/2020-12/schema",

netidee Call 17 | Developer Documentation | Project-ID 6344 64

https://json-schema.org/draft/2020-12/schema

"title": "User learning outcomes verifiable accreditation",

"description": "Schema of a user learning outcomes verifiable accreditation",

"type": "object",

"allOf": [{

"$ref":

"https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d81312643

27f3cbc5ddba9c69cb9afd34732b3b787e4b3e3507a25d3079e9"

},

{

"properties": {

"credentialSubject": {

"description": "Defines additional properties on

credentialSubject to describe the body of the verifiable credential",

"type": "object",

"properties": {

"id": {

"description": "Defines the did of

the credential subject",

"type": "string"

},

"title": {

"description": "Title of the

credential subject",

"type": "string"

},

"performed": {

"description": "Defines the learning

activity that a person participated in or attended",

"type": "array",

"items": {

"$ref": "#/$defs/performed"

}

}

},

"required": ["id", "title", "performed"]

netidee Call 17 | Developer Documentation | Project-ID 6344 65

https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d8131264327f3cbc5ddba9c69cb9afd34732b3b787e4b3e3507a25d3079e9
https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d8131264327f3cbc5ddba9c69cb9afd34732b3b787e4b3e3507a25d3079e9

}

}

}],

"$defs": {

"performed": {

"description": "Defines the learning activity that a

person participated in or attended",

"type": "object",

"properties": {

"title": {

"description": "Defines a title of the

learning achievement",

"type": "string"

},

"startedAtTime": {

"description": "The date the learner

started the activity",

"type": "DateTime"

},

"endedAtTime": {

"description": "The date the learner ended

the activity",

"type": "DateTime"

},

"specifiedBy": {

"definition": "The specification of this

learning activity",

"type": "object",

"properties": {

"teaches": {

"definition": "The expected

learning outcomes this learning activity specification can lead or contribute

to",

"type": "array",

"items": {

netidee Call 17 | Developer Documentation | Project-ID 6344 66

"$ref":

"#/$defs/teaches"

}

}

}

}

},

"required": ["title"]

},

"teaches": {

"definition": "The expected learning outcomes this

learning activity specification can lead or contribute to",

"type": "object",

"properties": {

"learningOutcome": {

"description": "The learning outcome of the

learning specification",

"type": "object",

"properties": {

"name": {

"description": "A legible,

descriptive name for the learning outcome",

"type": "string"

},

"relatedESCOSkill": {

"description": "A URI to the

related ESCO Skill",

"type": "object",

"items": {

"description": "A URI

to the related ESCO Skills",

"type": "string",

"format": "uri"

}

}

netidee Call 17 | Developer Documentation | Project-ID 6344 67

},

"required": ["name", "relatedESCOSkills"]

}

},

"required": ["learningOutcome"]

}

}

}

17 Creation of the verifiable credential

During the development of this project, the creation of an own verifiable credential called

"userLearningOutcomes" has been carried out in relation to the use case of the issuance

of educational credentials. This verifiable credential has been created with the purpose

of demonstrating the knowledge and skills that a user of an educational platform has

achieved through the course of different educational courses that they have carried out.

This verifiable credential was designed following the schema of the Verifiable Diploma

Schema71 that is defined for EBSI use cases.

This verifiable credential is intended to document certain basic aspects related to the

educational courses that the user has taken, also this verifiable credential was created

with the purpose of making use of the European Skills, Competences, Qualifications and

Occupations (ESCO)72 classification in order to classify the learnings outcomes of the user

under a European standard framework.

72 ESCO About Esco, ESCO. Edited by the European Commission. Available at:
https://esco.ec.europa.eu/en/about-esco (last accessed: 08 July 2023).

71 European Commission Verifiable diploma schema, Verifiable Diploma Schema - EBSI
Specifications -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema (last
accessed: 09 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 68

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema
https://esco.ec.europa.eu/en/about-esco
https://esco.ec.europa.eu/en/about-esco

The verifiable credential template is created through the Demo application APIwhich will

create the schema linked to it and the verifiable credential body if it doesn't exist yet

within theWallet Kit API.

The verifiable credential is made up of the following fields:

Field Description

id Contains the DID of the user receiving the verifiable

credential.

title Title of the course taken.

performed Defines the learning activities that a person participated in

or attended, within this list we have the different parts of

which the course is made up.

Fields within
“performed” field

Description

title Contains the DID of the user receiving the verifiable

credential.

startedAtTime The date the learner started the activity

endAtTime The date the learner ended the activity

specifiedBy The specification of this learning activity, within this field

we have more fields inside.

netidee Call 17 | Developer Documentation | Project-ID 6344 69

Unset

Fields within
“specifiedBy” field

Description

teaches The expected learning outcomes this learning activity

specification can lead or contribute to, this list contains

more fields inside.

Fields within “teaches”
field

Description

learningOutcome The learning outcome of the learning specification, which

has more fields inside.

Fields within
“learningOutcome” field

Description

name A readable, descriptive name for the learning outcome

relatedESCOSkill A URI to the related ESCO Skill

below it is displayed an example of the content of a verifiable credential of the type

"userLearningOutcomes"

{

"credentialSubject": {

"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"title": "User learning outcomes",

"performed": [{

netidee Call 17 | Developer Documentation | Project-ID 6344 70

Unset

"title": "Test1",

"startedAtTime": "2023-08-09T14:39:17+02:00",

"specifiedBy": {

"teaches": [{

"learningOutcome": {

"name": "Web-Designer/Web-Designerin",

"relatedESCOSkill":

"http://data.europa.eu/esco/occupation/c40a2919-48a9-40ea-b506-1f34f693496d"

}

}]

}

}]

}

}

18 Verifiable credentials issuance

https://docs.walt.id/v/web-wallet/concepts/oidc/oidc

During the flow of verifiable credentials issuance, the following requests will be made in

the following order:

● The user access to the issuance UI, the first request performed is related to

retrieving the verifiable credentials types that the issuer can issue to the users.

○ https://proto.example.com/edu/api/v1/wallet/users/{ UID }/issuance

○ Response:

{

"data":[

{

netidee Call 17 | Developer Documentation | Project-ID 6344 71

GET

https://docs.walt.id/v/web-wallet/concepts/oidc/oidc

Unset

"id":"1",

"name":"DigComp2.1 (Demo Ausschnitt)",

"type":"Europass",

"description":"Europass DigComp2.1 (Demo Ausschnitt) from 08.08.23,

19:38"

},

{

"id":"2",

"name":"Great tutor",

"type":"ProofOfResidence",

"description":"Lorem ipsum dolor sit amet, consectetur adipiscing elit"

},

{

"id":"3",

"name":"User learning outcome",

"type":"UserLearningOutcome",

"description":"Verifiable credential of an user learning outcome"

}

]

}

● The user from the issuer UI choose a VC in order to be issued and perform the next

HTTP request in order to obtain a URL where the users will be redirected to a web

wallet :

○ https://proto.example.com/edu/api/v1/wallet/users/{ UID

}/issuance

○ Payload:

{

"vc_id":"3",

"isPreAuthorized":true,

netidee Call 17 | Developer Documentation | Project-ID 6344 72

POST

Unset

"xDevice":false

}

○ Response:

{

"data":{

"redirect_uri":"https://wallet.example.com/api/siop/initiateIssuance/?

issuer=https%3A%2F%2Fproto.example.com%2Fissuer-api%2Fdefault%2Foidc%2

F&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJ

KV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00

MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAA

PJeXvN-CELCaIo6JIIGMk&user_pin_required=false"

}

}

This request once it reach the Demo Application API, will forward to the next

endpoint of the Wallet Kit

“/issuer-api/default/credentials/issuance/request?walletId={

YOUR_WALLET_ID}&isPreAuthorized=true&xDevice:false” in order to obtain a

response and then forward it to the Demo Application API to manage it and send it

back to the user.

● Once the user is redirected to a web wallet from the previous response of the the

HTTP request, it obtains a URL fromwhere the user will be redirected in order to

start the issuance process and obtain a new URL with a sessionId as a param in the

headers of the request where to be redirected, the next request is sended:

○

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://prot

o.example.com/issuer-api/default/oidc/&credential_type=UserLearningO

utcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.e

yJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiL

netidee Call 17 | Developer Documentation | Project-ID 6344 73

GET

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false

Unset

Unset

Unset

CJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXv

N-CELCaIo6JIIGMk&user_pin_required=false

○ Response:

https://wallet.example.com/InitiateIssuance/?sessionId=fcbace6d-e7d3-4

1a9-ad8c-ac7aee163f51

● Then from the userʼs web wallet a new request is sended to the Wallet Kitin order to

retrieve a list of DIDs.

○ https://wallet.example.com/api/wallet/did/list

○ Response:

["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p"]

● Also from the userʼs web wallet it is sended a request in order to get the informa

tion of the issuance initiation.

○

https://wallet.example.com/api/wallet/issuance/info?sessionId=fcbace6d-

e7d3-41a9-ad8c-ac7aee163f51

○ Response:

{

"credentialTypes" : ["UserLearningOutcomes"],

"credentials" : null,

"did" : null,

"id" : "fcbace6d-e7d3-41a9-ad8c-ac7aee163f51",

"isIssuerInitiated" : true,

"isPreAuthorized" : true,

netidee Call 17 | Developer Documentation | Project-ID 6344 74

GET

GET

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/wallet/did/list
https://wallet.example.com/api/wallet/issuance/info?sessionId=fcbace6d-e7d3-41a9-ad8c-ac7aee163f51
https://wallet.example.com/api/wallet/issuance/info?sessionId=fcbace6d-e7d3-41a9-ad8c-ac7aee163f51

Unset

"issuerId" :

"https://proto.example.com/issuer-api/default/oidc/",

"lastTokenUpdate" : null,

"nonce" : "65fed870-e447-4abb-96b9-7a4daa1384be",

"opState" : null,

"preAuthzCode" :

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05O

WUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1

ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk", "tokenNonce" :

null, "tokens" : null, "user" : null,

"userPinRequired" : false,

"walletRedirectUri" : null

}

● Then once the user accepts to receive the VC that was issued a new request it is sent

to the Wallet Kit in order to obtain a page of the web wallet and a sessionId to

perform the VC exchange between the issuer and userʼs wallet.

○

https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIs

suance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G

6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980

○ Response:

/ReceiveCredential/?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980

● Then once again the web wallet UI sends a request in order to obtain the issuance

information about the VC that has been issued and stored on the userʼs web wallet.

netidee Call 17 | Developer Documentation | Project-ID 6344 75

GET

https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980

Unset

○

https://wallet.example.eu/api/wallet/issuance/info?sessionId=b8f052c8-d

b29-410e-9937-1d744e4ea980

○ Response:

{

"credentialTypes" : ["UserLearningOutcomes"],

"credentials" : null,

"did" : null,

"id" : "8b450ebe-eb6d-4b16-8bb7-768cc37c7519",

"isIssuerInitiated" : true,

"isPreAuthorized" : true,

"issuerId" : "https://proto.example.com/issuer-api/default/oidc/",

"lastTokenUpdate" : null, "nonce" : "81d50896-43b3-4280-9f06-37485b604461",

"opState" : null,

"preAuthzCode" :

"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5ODhlMjJlZC04MTc4LTQ1YmUtYTl

lNi0xM2ZjY2NmNWJhNDUiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.iYwaTegQ4JoesfyigDNqNoy5

AgIKkrAqSIn1qVuqhUA",

"tokenNonce" : null,

"tokens" : null,

"user" : null,

"userPinRequired" : false,

"walletRedirectUri" : null

}

● At last once the VC is stored on the userʼs wallet a new request is sent in order to

fetch the VC that the user own or has stored on the web wallet

○ https://wallet.example.com/api/wallet/credentials/list

○ Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 76

GET

GET

https://wallet.example.eu/api/wallet/issuance/info?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.eu/api/wallet/issuance/info?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/credentials/list

Unset

{

"list": [

{

"type":

["VerifiableCredential","VerifiableAttestation","VerifiableUserLearningOutcom

es"],

"@context": ["https://www.w3.org/2018/credentials/v1"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmB9mWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

"issuanceDate": "2023-07-18T16:23:35Z",

"issued": "2023-07-18T16:23:35Z",

"validFrom": "2023-07-18T16:23:35Z",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/v1/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

},

"credentialSubject": {

"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"title": "User learning outcomes",

"performed": [

{

"title": "Test1",

"startedAtTime": "2023-07-12T17:28:16+02:00",

"specifiedBy": {

"teaches": {

"learningOutcome": {

"name": "chemische Laboruntersuchungen an Metallen vornehmen",

"relatedESCOSkill":

"http://data.europa.eu/esco/skill/2b60c0cf-6ce6-4f04-9748-0e6d883673d8"

}

}

}

}

]

}

}

netidee Call 17 | Developer Documentation | Project-ID 6344 77

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

Unset

]

}

19 Verifiable presentation

During the flow of verifiable presentation, the following requests will be made in the

following order:

● The user access to the verifier UI and open her/his user profile in order to list or load

the data of the profile that was extracted from the “userLearningOutcomes”

verifiable credential, if it is the first time that the user open the modal of the profile

then she/he can click in the le� button from the bottom of the modal, that is called

“Import fromwallet”, this button will make a request in order to start the creation

of a verifiable presentation of a “userLearningOutcomes” VC.

○

https://proto.example.com/edu/api/v1/wallet/verifier/present?walletId=Y

OUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes

○ Response:

https://wallet.example.com/api/siop/initiatePresentation/?scope=openid

&presentation_definition={"format" : null, "id" : "1", "input_descriptors"

: [{"constraints" : {"fields" : [{"filter" : {"const":

"VerifiableUserLearningOutcomes"}, "id" : null, "path" : ["$.type"],

"purpose" : null}]}, "format" : null, "group" : null, "id" : "1", "name" :

null, "purpose" : null, "schema" : null}], "name" : null, "purpose" : null,

"submission_requirements" :

null}&response_type=vp_token&redirect_uri=https://proto.examle.com/edu

/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUF

netidee Call 17 | Developer Documentation | Project-ID 6344 78

GET

https://proto.example.com/edu/api/v1/wallet/verifier/present?walletId=YOUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes
https://proto.example.com/edu/api/v1/wallet/verifier/present?walletId=YOUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes

KVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wall

et/verifier/verify&response_mode=form_post

Once the Demo Application API handles the request for this endpoint, then this API

will create a new HTTP request in order to forward it to the endpoint of the

“/verifier-api/default/present?walletId={YOUR_WALLET_ID}&vcType=VerifiableUs

erLearningOutcomes” Wallet Kit and the response of it, it will forward to the Demo

Application API in order to send it back to the user.

● With the response of the previous request then the user is redirected to the userʼs

web wallet, which executes an HTTP request in order to obtain a page of the

configured web wallet and a sessionId and the response of it is a redirection URL in

the headers of the request.

○

https://wallet.example.com/api/siop/initiatePresentati

on/?scope=openid&presentation_definition={"format" :

null, "id" : "1", "input_descriptors" : [{"constraints" :

{"fields" : [{"filter" : {"const":

"VerifiableUserLearningOutcomes"}, "id" : null, "path" :

["$.type"], "purpose" : null}]}, "format" : null, "group" :

null, "id" : "1", "name" : null, "purpose" : null, "schema" :

null}], "name" : null, "purpose" : null,

"submission_requirements" :

null}&response_type=vp_token&redirect_uri=https://prot

o.examle.com/edu/api/v1/wallet/verifier/verify&state=K

hUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&cli

ent_id=https://proto.example.com/edu/api/v1/wallet/ver

ifier/verify&response_mode=form_post

○ Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 79

GET

https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post

Unset

Unset

Unset

https://wallet.example.com/CredentialRequest/?sessionId=5b149306-33fa-

4505-a065-249e4dc20aed

● Then from the userʼs web wallet a request to fetch a list of DIDs is submitted to the

Wallet Kit.

○ https://wallet.example.com/api/wallet/did/list

○ Response:

["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p"]

● Also from the userʼs web wallet it is sended another request to the Wallet Kit in

order to continue with the VP of the VCs and obtain a redirection URL in order to

verify the VCs that the VP contains

○

https://wallet.example.com/api/wallet/presentation/continue?sessionId=

5b149306-33fa-4505-a065-249e4dc20aed&did=did:key:z6MkhhosB653LLTz

R6k6gUbMi3K24czgyNUfvqa4rG5G6x1p

○ Response:

{

"availableIssuers": null,

"did": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"id": "eb5fda12-5c26-4e11-89e3-fce0444e729f",

"presentableCredentials": [

{

"claimId": "1",

"credentialId": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

netidee Call 17 | Developer Documentation | Project-ID 6344 80

GET

GET

https://wallet.eduplex.eu/api/wallet/did/list

Unset

}

],

"presentationDefinition": {

"format": null,

"id": "1",

"input_descriptors": [{}],

"name": null,

"purpose": null,

"submission_requirements": null

},

"redirectUri":

"https://proto.example.com/edu/api/v1/wallet/verifier/verify"

}

● Then from the userʼs web wallet it is also send a request in order to retrieve all VC of

the “userLearningOutcomes” type through the next request

○

https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06

f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4

c9a6e49b7c1

○ Response:

{

"list": [

{

"type":

["VerifiableCredential","VerifiableAttestation","VerifiableUserLearningOutcom

es"],

"@context": ["https://www.w3.org/2018/credentials/v1"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmB9mWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

netidee Call 17 | Developer Documentation | Project-ID 6344 81

GET

https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://www.w3.org/2018/credentials/v1

"issuanceDate": "2023-07-18T16:23:35Z",

"issued": "2023-07-18T16:23:35Z",

"validFrom": "2023-07-18T16:23:35Z",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/v1/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

},

"credentialSubject": {

"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",

"title": "User learning outcomes",

"performed": [

{

"title": "Test1",

"startedAtTime": "2023-07-12T17:28:16+02:00",

"specifiedBy": {

"teaches": {

"learningOutcome": {

"name": "chemische Laboruntersuchungen an Metallen vornehmen",

"relatedESCOSkill":

"http://data.europa.eu/esco/skill/2b60c0cf-6ce6-4f04-9748-0e6d883673d8"

}

}

}

}

]

}

}

]

}

● Then when the user accepts to create the verifiable presentation with the VC within

it is sent a request to the Wallet Kit in order to fulfill verifiable credentials

presentation with the selected verifiable credentials.

netidee Call 17 | Developer Documentation | Project-ID 6344 82

https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

Unset

Unset

○

https://wallet.example.eu/api/wallet/presentation/fulfill?sessionId=7038

2f32-5f47-40b4-abef-05e50687c550

○ Payload:

[

{

"claimId":"1",

"credentialId":"urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

}

]

○ Response:

{

"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map" :

[{"format" : "jwt_vp", "id" : "0", "path" : "$", "path_nested" : {"format" :

"jwt_vc", "id" : "0", "path" : "$.verifiableCredential[0]"}}], "id" : "1"}",

"rp_response": null,

"state": "f1tEmlanQ1G_bfm8WtRmMA",

"vp_token": "JWT"

}

● Then from the userʼs web wallet it is sended a form request with the data of the

response of the previous request to the Demo Application API in order to verify the

VP and obtain a redirection.

○ https://proto.example.eu/edu/api/v1/wallet/verifier/verify

○ Payload:

netidee Call 17 | Developer Documentation | Project-ID 6344 83

POST

POST

https://proto.example.eu/edu/api/v1/wallet/verifier/verify

Unset

Unset

Unset

{

"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map" :

[{"format" : "jwt_vp", "id" : "0", "path" : "$", "path_nested" : {"format" :

"jwt_vc", "id" : "0", "path" : "$.verifiableCredential[0]"}}], "id" : "1"}",

"rp_response": null,

"state": "f1tEmlanQ1G_bfm8WtRmMA",

"vp_token": "JWT"

}

○ Response:

http://proto.example.com/assess/en/verify/success/?access_token=HgCfBB

iLSSywg2T-mihLQA

Once the Demo Application API handles the previous request then, it will forward a request

to the Wallet Kit endpoint “/verifier-api/default/verify” in order to verify the VP and obtain

a redirection to the page of the verifier platform with an access_token, then the response

of the Wallet Kit will be forwarded to the Demo Application API in order to send it back to

the users.

● Finally once the user is redirected to the verification UI with a valid access_token

then it is sended a request to a third party API in order to store the VC in the

database of the third party API.

○ http://proto.example.com/edu/api/v1/wallet/verifier/store

○ Payload:

{"wallet_token":"HgCfBBiLSSywg2T-mihLQA"}

○ Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 84

POST

http://localhost:8083/assess/en/verify/success/?access_token=HgCfBBiLSSywg2T-mihLQA
http://localhost:8083/assess/en/verify/success/?access_token=HgCfBBiLSSywg2T-mihLQA
http://proto.example.com/edu/api/v1/wallet/verifier/store

Unset

{

"data": {

"vps": [

{}

]

}

}

20 Documental sources
Axios Axios, Starting | Axios Docs. Available at: https://axios-http.com/en/docs/intro (last

accessed: 12 July 2023).

Cake PHP .. CakePHP cookbook Archivo de Documentación, creado por, Bienvenido - 4.x.

Available at: https://book.cakephp.org/4/es/index.html (last accessed: 12 July 2023).

Cohen, G. and Steele, O. (2023) Verifiable credentials JSON schema specification,W3C.

Available at: https://www.w3.org/TR/vc-json-schema/ (last accessed: 09 July 2023)

Docker (2023) Accelerated Container Application Development, Docker. Available at:

https://www.docker.com/ (last accessed: 12 July 2023).

Docker (2023b) Overview of docker compose, Docker Documentation. Available at:

https://docs.docker.com/compose/ (last accessed: 12 July 2023).

ESCO About Esco, ESCO. Edited by the European Commission. Available at:

https://esco.ec.europa.eu/en/about-esco (last accessed: 08 July 2023).

European Commission European Blockchain Services Infrastructure, Home - EBSI -.Available

at: https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed:

09 July 2023).

European Commission Verifiable diploma schema, Verifiable Diploma

Schema - EBSI Specifications -. Available at:

netidee Call 17 | Developer Documentation | Project-ID 6344 85

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+S

chema (last accessed: 09 July 2023).

Helm Helm. Available at: https://helm.sh/ (last accessed: 09 July 2023).

https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identit

y-framework-essif

Kristina Yasuda, Dr. Torsten Lodderstedt ,OpenID Connect for SSI, Available at:

https://openid.net/wordpress-content/uploads/2021/09/OIDF_OIDC4SSI-Update_Kristina-

Yasuda-Torsten-Lodderstedt.pdf.

Kubernetes Production-grade container orchestration, Kubernetes. Available at:

https://kubernetes.io/ (last accessed: 09 July 2023).

Nginx (2023) Advanced load balancer, web server, & reverse proxy, NGINX. Available at:

https://www.nginx.com/ (last accessed: 12 July 2023).

Nicholas C. Zakas 11 Aug et al. (1970) Find and fix problems in your JavaScript code -

eslint - pluggable JavaScript linter, ESLint. Available at: https://eslint.org/ (last accessed: 10

July 2023).

Node.js Node.js. Available at: https://nodejs.org/en (last accessed: 12 July 2023).

Node(no data),Node version manager. Available at: https://github.com/nvm-sh/nvm (last

accessed: 12 July 2023).

Nuxt The intuitive web framework, Nuxt. Available at: https://nuxt.com/ (last accessed: 12

July 2023).

Postman Postman. Available at: https://www.postman.com/ (last accessed: 13 July 2023).

Pug Getting started, Pug. Available at: https://pugjs.org/api/getting-started.html (last

accessed: 12 July 2023).

Qrious Qrious, npm. Available at: https://www.npmjs.com/package/qrious (last accessed:

10 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 86

sass CSS with superpowers, Sass. Available at: https://sass-lang.com/ (last accessed: 10 July

2023).

Sporny , M., Longley , D. and Chadwick , D. Verifiable credentials data model V1.1,W3C.

Available at: https://www.w3.org/TR/vc-data-model/#abstract (last accessed: 08 July

2023).

Sporny, M. et al. Decentralized identifiers (DIDs) v1.0,W3C. Available at:

https://www.w3.org/TR/did-core/ (last accessed: 08 July 2023).

Swagger Swaggereditor, SwaggerEditor. Available at: https://editor-next.swagger.io/ (last

accessed: 08 July 2023).

T. Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpenID for Verifiable Credential Issuance.

Available at:

https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introdu

ction.

Typescript JavaScript with syntax for types., TypeScript. Available at:

https://www.typescriptlang.org/ (last accessed: 14 July 2023).

ValidatedId Validated ID - electronic signature and digital identity providers, Validated ID -

Electronic Signature and Digital Identity Providers. Available at:

https://www.validatedid.com/en (last accessed: 08 July 2023).

ValidatedId Validated ID - electronic signature and digital identity providers, Validated ID -

Electronic Signature and Digital Identity Providers. Available at:

https://www.validatedid.com/en (last accessed: 08 July 2023).

Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework

| Vue.js. Available at: https://vuejs.org/ (last accessed: 12 July 2023).

Vue Vue I18n. Available at: https://kazupon.github.io/vue-i18n/ (last accessed: 12 July

2023).

VueWhat is Vuex?, Vuex. Available at: https://vuex.vuejs.org/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 87

Vue Vue Router, Vue Router | The official Router for Vue.js. Available at:

https://router.vuejs.org/ (last accessed: 10 July 2023).

Vuetify A material design framework for vue.js, Vuetify. Available at:

https://v2.vuetifyjs.com/en/ (last accessed: 02 July 2023).

Walt.id ,Walt.id Wallet Kit,walt.id. Available at: https://github.com/walt-id/waltid-walletkit

(last accessed: 08 July 2023).

Walt.id ,Walt.id Web wallet,walt.id. Available at:

https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

Walt.id ,Walt.id Web wallet,walt.id. Available at:

https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

Walt.id Architecture - Demo web wallet architecture, Docs. Available at:

https://docs.walt.id/v/web-wallet/wallet-kit/issuer-and-verifier-portals/architecture (last

accessed: 12 July 2023).

Walt.id Identity and NFT infrastructure for developers.,walt.id. Available at: https://walt.id/

(last accessed: 08 July 2023).

Walt.id Introduction, Docs. Available at:

https://docs.walt.id/v/web-wallet/wallet-kit/readme (last accessed: 08 July 2023).

Walt.id SSI Kit, Docs. Available at: https://docs.walt.id/v/ssikit/ssi-kit/readme (last accessed:

13 July 2023).

Walt.id Verifiable credentials (VCS), Docs. Available at:

https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/verifiable-crede

ntials-vcs-and-verifiable-presentations-vps (last accessed: 14 July 2023).

Walt.idWallet Kit Image, Docker. Available at:

https://hub.docker.com/r/waltid/walletkit/tags (last accessed: 08 July 2023).

Yarn Home Page, Yarn. Available at: https://yarnpkg.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 88

https://github.com/walt-id/waltid-walletkit

