SSI EduWallets

Developer documentation

SSI EduWallets

Developer Documentation | Call 17 | Project ID 6344

License CC BY-SA

M netidee

Contents
1 Course of the WOrk Packages....cccecveerrecreciresraecreccrestsesrescsesssessescsssssessescssssssssnscsnss 4
2 Introduction to SSI EdUWallets......cccccvuiineireicieninncrenceesiacrescsessscsescsesssssssssssssnsssnns 4
3 What is SSI EAUWaALletS...ccciueiuiiniiaiincinniecieniecisciectsscsccescssssscsscsssssssssssssssssssssssssssass 4
4 What is the purpose of SSI EdUWallets.....cccceeecereecencecececencecsececsecessececsecacsecassecsnses 5
5 How Web 3.0 & SSI (Self Sovereign Identity) paradigm works........ccccceeceuccneccnecennnnes 5
6 Why to use the new paradigm of Web 3.0.....cccccucirniinnrncirncincrnccnecsncreccsesssccsocsnnes 7
7 SSI EduWallets COMPONENtS....cccuiieiriieiriiecicecscessecassecsssecsssecsssesssssssssssssssssesssseses 9
WALLEES. ottt ettt e st e sttt e e st e s be e be e s aeessbe e baenaaeeateeneaan 9
USEI INEEITACE. c.tititeeteecteeeeeeee ettt ettt et e s et e s e e be s s esaassenseens 9
WALLEE KT APL ..ttt ettt ettt et s e st e e bt e st s be e be s bt e sssessbessbaessaesasesnsenn 9
ISSUEE API (OPEN APttt et te et teeaesre st e s se e s e s seesaessa e b e sseesaessaensesseenns 10
Verifiable AP (OPEN APL)...uc ettt ettt ete et eeseeeaeesba e s e e s saesnbaessaaes 10
8 StaNdards US@d......ccuciuiuiniiniraiianiacianinstestssissnssns 10
8.1 W3C Decentralized Identifiers........ucceeeeceeeeeeceeeceecee et 10
8.2 W3C Verifiable Credentials Data MOdELl.......cccoeeiineriieniieieneeienccieseesese e see s 11
9 Verifiable credentials SECUNitY....cccceuiiuiieiieiiniincieniecieciecieciestessecsssessssssasssssssssssanss 12
10 Architecture and deployment.....ccccccvccreiiecnecnecnecnecncnecsecsecsecsecsecsecsecsecsessecsecsesne 13
10.1 Web Wallet proof of CONCEPL......uieiiiiieiececeeececteee et 13
Wallet dePloyMENt..ottt st st s ae e be e ssaasneaes 14
Wallet DACKENA.......oiiiieieececeee ettt et re s st e e b e e s e e s e e be e baesneans 14
DEMO WAllET Ul ettt ettt ettt saa e s e e s b e s ba e anesane 15
10.2 DEMO APPLICAtION...cuiiiiieiieteeeee ettt ettt b e s b e ae e s saesnaaan 15
DeMO APPLICALION Ul..uiiiiiieeieeieecteeeeeeeeete ettt et r e et e v e e s s sae s beenseas 16
ATCIITECTUN. ..ttt ettt st e et sat e st e s be s beesanessbessaens 17
Ul pages, WOrkflOWS & rEQUESES.......ccuevererierierienienenieriesesesiesie st 17
Ul components, WOrkflows & reqUESES.......ccueeierieeiiieniecieciecrece e 23
The "issueCredentialsBtn" component.............cccoooiiiiiiiiiiiiieieeee 23
The "VerifyCredentialsBtn" component.............cccoooiiiiiiiiiiiiinic e 24
The “userProfileDialog” COmMPONENt...........uvvviiiiiiiiiiiieeiieeeeeeeeeeeeeeeee e 24
HOW TO MUN ettt ettt st e srae e s saba e e s sarae e s e 25
DeMO APPLICATION APL....iiiiiiieiieeiterteeteee ettt ettt ae e st e b e s sbaessaesanessbaens 26
FUNCLIONALITIES.ueetteeieeieeteecece ettt st be e b e s aa e st e e beesanas 26
ATCNITECIUIE. oottt ettt e a e et sa e s b e be s b esaesssenes 27
SOftWare COMPONENTS.....ccuiiieeieiecteteet ettt a e be e s e reeneas 27
HOW B0 FUN L.ttt ettt e e e s s snre e e e e e s s nreeneessssennnnnenaenns 29

netidee Call 17 | Developer Documentation | Project-ID 6344 2

M netidee

Demo Application Web Wallet........couiiiiiinieiteecce e 30
ATCNITECTUNE...c ittt ettt ettt te e s e e st e e be e s aeesabeesbesbaesssasssesnsaans 30
Issuance WOrKflOW & re@QUESES.........ccueeeieeieeieeeecte ettt se e e reeve e e eaae s 31
Verification WOrkflow & reqUESES.......c.ccveviieieniecieeceeces e 38
HOW B0 FUN L.ttt e e s eerer e e e e e s s snreee e e e s ssnsnsaeneessssensnssesaenns 43

11 Development ENVironment SetUP....ccccucircirecneceecacacscscscscscscscscsecscsecsecsess 44

11.1 SysStem REQUITEMENTS......uiiieieiieieieeete ettt e sre e s e e ssaeessbaesssaeessnessaseesaneas 44
11.2 Dependency INStallation........c.uecveeieeiiieiiecieciecece et e 45
11.3 System CoONfigUIAtiON.....cciiviirieriieiereetere ettt sttt e st e s s e s se e s e saeesaeseeens 46
11.4 RePOSItOrieS NEEUEM.......cccueiiiiiiiiieeiteeeeteete ettt s e e s sae s beesbe e ssae st e e saeaseas 47

12 Open APl documentation.....cccceiecencecencecnaceceececeacessececsscessecascscassecassassssessssasnns 50
13 Wallet Kit APL...ccciuiieiieiinnienieniecieciestestestestessesssnssnssnss 51
FUNCEIONALITIES. vt evieeieeeeeeeeeeee ettt st e st e s e e s beebeesanessnaens 52
ATCIITECEUTE. ..ttt sttt s et s e b e sba e besaaessessnesbesnnans 53
Integration with the Demo AppliCation.......cccuevvviiiiinieniieeteececeee e 55

How Wallet Kit verify a verifiable presentation..........ccccceeceeieveeciecesceeceeeeceeeeee 56

14 Wallet Kit configuration.....ccccccereirniincinccrecenenraccseccsessscssccsesssesssscsssssscsssssssses 57
15 DID and Keys CreatioN......cccceciecieiiecianiencacacaccascesacssssssssssssssssssssssssssssssssssssnss 62
16 Creation of VC SChema.....ccciuiiieiinniiniiienieicieiinesiaccsescsessssssessssssssssssssssssssssssssssnns 64
17 Creation of the verifiable credential........cccccccereciuiiniinecincirnccnecincreccrecencreceseess .68
18 Verifiable credentials iSSUANCE......cccirviireiinirniineniaiieiineciaciesiaectascsestaessesssessanes 71
19 Verifiable presentation.......ccccceeceiincecincecincectececcecaccecaececscecscessecessecessecsssssssans 78

20 DOCUMENTAl SOUICES..ccueeereeeerececercesercesercesssessscossssessssessssossssesssssssssessssessssosssce O

netidee Call 17 | Developer Documentation | Project-ID 6344 3

M netidee

The Developer's Manual for Self-Sovereign Identity (SSI) EduWallets provides guidelines
and best practices for developing a stack of applications for the Web 3.0 related to the SSI
for the issuance, verification, and exchange of verifiable credentials. This manual is
designed to assist developers in understanding how the SSI paradigm works and the
process of issuance and verification of the verifiable credentials and ensuring the proper

implementation of related specifications and standards.

The SSI EduWallets project was born with the purpose of transforming the issuance of
traditional educational certificates into cryptographically secure and interoperable
digital documents called verifiable credentials (VCs), thus eliminating problems such as
the low interoperability of the credentials and the forgery of physical documents which
are easy to falsify but difficult to verify their authenticity. Adjusting to the new generation
of Web 3.0 and the Self-Sovereign Identity (SSI) paradigm through the European
Self-Sovereign Identity Framework (ESSIF).

SSI EduWallets is a software implementation made up of several components which, once
integrated into an e-learning platform, allow the use of self-sovereign identity wallets
within these platforms for the issuance, verification, and exchange of verifiable
credentials, thus allowing the exchange of verifiable credentials between the user’s wallets

and the platforms that implement this system.

netidee Call 17 | Developer Documentation | Project-ID 6344 4

M netildee

SSI EduWallets allows transforming any traditional elearning platform to the new
self-sovereign identity paradigm of Web 3.0, this allows users to be the owners of their

own information so they are the ones who manage their information and not third parties.

In addition, this implementation allows the exchange of verifiable credentials between
the user’s wallets and the platforms that implement the system, so that users can
present certain verifiable credentials to the platforms and then they can read and verify
them in order to use that information within the platforms streamlining some processes.
The platforms will also be able to issue educational verifiable credentials to the user’s
wallet, that certifies that a user has completed and achieved certain knowledge at the end

of a course or assessment.

These verifiable credentials will be stored in the user’s wallets to later be used at any
time when necessary. The implementation brings the advantages of issuing digital and
cryptographically secure certificates that can be easily verified by third parties and

interoperable between other SSI systems based on the same standards (ESSIF/EBSI*).

The new paradigm of Web 3.0 aims to revolutionize certain areas of previous generations of
the web; it represents a more decentralized, secure, and user-centered vision of the web,

where users have greater control over their data and digital experiences.

Specifically, SSI EduWallets focuses on the self-sovereign identity of the users, this means

that it is the user who stores and manages all their data in a single place, such as a digital

! European Commission European Blockchain Services Infrastructure, Home - EBSI -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed: 09 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 5

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

M netidee

wallet application installed on a smartphone. In such a way that it is the user who manages
what data to share and with whom, thus eliminating the third parties that store and decide

how to share this data.

In this new paradigm, users possess applications called self-sovereign identity wallets,
where they store verifiable credentials in a centralized and digital manner. These
applications function as virtual wallets where users hold different verifiable credentials
that attest to something, such as identity, driver's license, or academic certificates. These
digital verifiable credentials use asymmetric cryptography (Public Key Infrastructure) to

ensure their security and validity.

This approach does not imply that the data is directly, locally, and physically stored in the
wallet of the user. How data is actually stored, will depend on the implementation of the
chosen wallet. For instance, the data could be stored by the wallet in a cloud web service,

but this implementation detail does not change the following essential key points:

e Wallet solutions are interoperable. The user is able to choose which wallet service
to use and store the credentials in any wallet.
e The useris actively choosing which data to share with each third-party platform.

e Wallets and platforms are independent of each other.

These verifiable credentials are generated and issued by platforms implementing the SSI
EduWallets system using standards for the generation of Decentralized Identifiers (DIDs),
and Verifiable Credentials (VCs). DIDs are unique identifiers that each user can have and
generate within the wallets). VCs are documents in JSON-LD or JWT format that define the
information contained in a verifiable credential following a defined verifiable credential
schema. The credentials schema allows the creation of verifiable credentials with the

same body structure, this makes them interoperable with other SSI systems.

Once a verifiable credential of a certain type is created, it is shared with the requesting
party. The exchange between the issuer and the receiver, in this case, a learning platform

and the user’s wallet, is done using protocols such as OIDC and SIOP.

netidee Call 17 | Developer Documentation | Project-ID 6344 6

M netidee

When a verifiable credential is stored in the user's wallet, the user can subsequently
present it to another platform (verifier) or third party that requires a specific type of
verifiable credential. Through the verification Ul, the user makes a request to create a
verifiable presentation (VP), which is a document in JSON-LD or JWT format that acts as a
wrapper for the VCs that the user wants to deliver to the verifier. The VP includes the
user's signature performing the presentation. In this way, VPs contain two different
signatures as proof of the whole chain of custody, the original signature from the issuer

contained in the VC and the signature of the holder contained in the VP.

Once the verifier receives the verifiable presentation, it verifies the validity of the user's
signature in the VP body and then the signature of each VC within the VP ensuring that the
content has not been altered. In decentralized systems, this verification is typically done by
checking if the DID of the issuer of the verifiable credentials is registered on the ledger
along with their public key within the blockchain. This allows the verifier to authenticate a
verifiable credential and subsequently verify the correctness of the user's signature by

obtaining their public key, usually from the user's DID.

The SSI EduWallets provide a series of advantages, these advantages are given by a new
paradigm in which users are the ones who own their data and not third parties so that
users can unify their credentials in one single storage location, the wallet. Examples of
credentials could be the national identifier or educational diplomas. In this way, users can
choose which information they want to share and with whom increasing the user's

privacy.

The new paradigm also improves efficiency in tasks such as sending verifiable data to the
platforms for verification by eliminating third parties that were in charge of carrying out
the verification process so that now the recipient is directly in charge of carrying out the

verification and then using that information within the platforms, speeding up the

netidee Call 17 | Developer Documentation | Project-ID 6344 7

M netidee

process, saving costs and time. When working with digital educational certificates,
certain problems derived from the interoperability, mobility, and forgery can be
removed because once they’re digitized they can be shared easily with anyone anytime,
they are interoperable with other systems just because they are created with a structure
under certain standards and a common definition of the content that follows certain rules

and they are secure because asymmetric cryptography is used for it.

The educational verifiable credentials body definition follows the ELM v3 (European
Learning Model) data model in JSON-LD format to structure and describe the skills and
learning opportunities a user gains by completing a course or assessment. The ESCO
(European Skills, Competences, Qualifications, and Occupations) is used in conjunction
with ELM v3 to classify the learning outcomes of the users like the skills and the
occupations, and with that information, it is possible to classify the knowledge, learning
opportunities, and job occupations.

Within the educational verifiable credentials is intended to follow and integrate a
Qualification Metadata Schemata (QMS) which documents the skills and qualifications that
the person achieves once the course or assessment is completed. The ESCO classification
is integrated within the QMS that shows the learning outcomes of the users and with that
information it is possible to classify the knowledge, learning opportunities, and job

occupations under a European standard.

e Users own their personal data.

e Unify user information in one place.

e Users choose which data they want to share.

e Streamline platform processes like the presentation of documents.

e Achieve interoperability between different SSI systems that use educational
verifiable credentials.

e Issue educational verifiable credentials in a standardized manner following a

schema.

netidee Call 17 | Developer Documentation | Project-ID 6344 8

M netidee

e Security, the verifiable credentials are secure by Public Key Infrastructure (PKI)
encryption, so they’re tamper-proof.
e Provide the skills, competencies, qualifications, and occupations that a user has

attained upon completion of a course or assessment.

Wallets

Wallets are the applications where users store their DIDs and verifiable digital
credentials that users must use to support the SSI EduWallets implementation. Those
wallets are developed by third parties under European standards. In the implementation of
SSI EduWallets, it is provided a demo web wallet that acts as a real web wallet in order to
simulate the web wallet workflow, it was also tested the implementation with another
compliant wallet provider “ValidatedID” and the issuance flow was performed using the
cross-device workflow through the scanning of the QR code provided by the issuer

platform.

User Interface

The user interface is the part that is graphically displayed to the users on platforms that
implement SSI EduWallets. This is in charge of graphically showing users an abstraction of

the implementation so that users can easily interact with the platform.

The user interface is made up of several graphical components that show the steps of
issuing verifiable credentials and presenting verifiable presentations. These graphical

components make requests to the different APIs to interact and exchange data.

Wallet Kit API

The Wallet Kit APl is a third-party integration that uses the SSI EduWallets project to take
advantage of the implementation to handle the entire Web 3.0 and SSI stack. This APl is

responsible for DID creation, verifiable credential issuance, verifiable presentations,

netidee Call 17 | Developer Documentation | Project-ID 6344 9

M netidee

verifiable credential security, and the demo web wallet. All those responsibilities are

divided into different sets of APl endpoints.

This APl is not directly accessible but the issuer APl and the verifiable API are responsible

for communicating with it.

Issuer APl (Open API)

The issuer API (Application Programming Interface) is the main component in charge of
performing the issuance process of the verifiable credentials to the users. This component
must be implemented within any platform to allow the issuance of verifiable credentials to
the users using a compliant wallet. Once the issuer APl is integrated within any platform it
can interact directly with the user’s wallets and with the wallet kit API to issue an

educational verifiable credential to the users.

Verifiable APl (Open API)

The verifier APl is the main component in charge of performing the verification process of
the verifiable credentials from the users that they present to the platforms. This
component must be implemented within any platform to allow the verification of the
verifiable presentation from the users that use a compliant wallet. Once the verifier APl is
integrated within any platform it can interact directly with the user’s wallet and with the
wallet kit APl in order to verify if a verifiable credential is valid or not and then the platform

can use the data of the verifiable credentials to perform any actions within the platform.

8.1 W3C Decentralized Identifiers

Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable,
decentralized digital identifiers. A DID refers to any subject (e.g., a person, organization,

thing, data model, abstract entity, etc.)

netidee Call 17 | Developer Documentation | Project-ID 6344 10

M netidee

DID method

Schema DID method specific identifier

: :3499tgg4545gsdg5tghyy4.

DIDs are the cornerstone of self-sovereign identity (SSI). DIDs are URL-based identifiers
associated with an entity; a DID is just a long string that does not provide any meaningful
information about a natural or legal entity. DIDs and DID Documents are generated by their
owners with their wallet or back-office systems, these identifiers are most often used in a
verifiable credential and they are associated with subjects such that a verifiable
credential itself can be easily ported from one repository to another without the need to

reissue the credential.

The DIDs are composed of the schema or “did:” which is the first part of the definition of a
DID, the method that is a mechanism or protocol used to create and manage unique and
decentralized identifiers and the DID method-specific identifier that is a completely unique

random number that follows method-specific generation rules.

8.2 Wa3C Verifiable Credentials Data Model

Credentials are a part of our daily lives; driver's licenses are used to assert that we are
capable of operating a motor vehicle, university degrees can be used to assert our level of
education, and government-issued passports enable us to travel between countries.
Verifiable credentials with DIDs are the core of the SSI paradigm, the verifiable credentials
provide a mechanism to express these sorts of credentials digitally on the Web
normally in the format of JSON-LD or JWT in a way that is cryptographically secure,

privacy-respecting, and machine-verifiable.

The verifiable credentials got features like:

2 Decentralized Identifier parts

netidee Call 17 | Developer Documentation | Project-ID 6344 11

M netidee

e Portability: due they are digital documents that can be safely shared with third
parties.

e Interoperability: because they are created in the same formats like JSON-LD or
JWT and the definition is based on a schema that can be a public standard.

e Security: VCs use asymmetric encryption and signatures to keep safe and
tamper-proof the credentials.

e Selective disclosure: the individual has control over which pieces of information
they share in a given context. They can selectively disclose specific attributes

without revealing unnecessary personal data.

The verifiable credentials are secure and tamper-proof due to the use of asymmetric
cryptography (PKI) in which the issuer signs the VC that will be issued to any user with its
private key and also a hash of the content of the verifiable credential, this way the
verifiable credential can be verified by any third party just by seeking for the DID and public
key of the issuer of the VC, in the case of European Blockchain Services Infrastructure
(EBSI) ecosystem, the verifier will retrieve the public key and the DID of the issuer from the
EBSI ledger. The verifier with the public key that it has just retrieved from the EBSI ledger
can decrypt the content of the VC. Then it can hash the content in order to obtain a new
hash and compare both two to check if it is the same hash. If the hashes are equal and the

verifier can decrypt the content of the VC then the VC is valid®.

When a user creates a VP (verifiable presentation) this will create a wrapper of VCs that will
be signed with the private key of the user. The verifier is able to get the public key of the

user that is encoded on her/his DID and can decrypt the content of the VP.

® Decentralised Identifiers DIDs - Walt.id. Available at:
https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/decentralised-identifiers-dids
(last accessed: 15 jul 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 12

finetildee

The system is divided into two main applications: Wallet and Demo application. Each of

them is divided into smaller components as described below.

Front-end Wa"et UI D .(..............) Demo UI D Get credential data
l Gy l
Back-end WalletKit API &5 | <o > Demo API 3rd Party API &
Hore redentes l external.example.com
walletkit &
wallet.example.com

proto.example.com

10.1 Web Wallet proof of concept

The demo web wallet application provided within the project can be replaced with any
other web wallet solution compatible with ESSIF/EBSI® standards. There are many wallet
solutions compatible with our system. For example, the commercial wallet from

ValidatedID® was successfully tested with the project.

The goal of this project is not to develop a new standalone wallet application, but an
open-source wallet solution was still needed in order to proceed with the

implementation and be able to provide a full stack proof of concept of the whole project.

* Demo application architecture

® Pastor Matut, C. and Du Seuil, D. Understanding the European self-sovereign identity framework (ESSIF), PPT.
Available at:
https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identity-framework-essifl
ast accessed:d: 08 July 2023).

®ValidatedId Validated ID - electronic signature and digital identity providers, Validated ID - Electronic

Signature and Digital Identity Providers. Available at: https://www.validatedid.com/en (last accessed: 08 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 13

https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identity-framework-essif
https://www.validatedid.com/en/vidchain/vidwallet

finetildee

An extension of walt.id Wallet Kit" was implemented and the source code was made

available as a public git repository SSI EduWallets/Wallet Proof Of Concept?®.

This web wallet application is integrated with the Demo Application using links, but it is
just a proof of concept, it is intended for demo purposes only and it should not be used in

production settings.

Wallet deployment

This demo application is divided into frontend and backend. Both components are
dockerized and can be run and deployed using Kubernetes *and the Helm chart™
provided in the git repository. This allows easy deployment and test of the whole

application.

The main file with the configuration of the Helm chart is located on the path
helm/wallet/values.yaml of the repository. In this file, the key wallet.issuer.url should be

changed to the domain where the demo verifier application is going to be served.

Wallet backend

The wallet backend is a plain deployment of walt.id Wallet Kit. A publicly available image is

available in walt.id dockerhub' under the tag waltid/walletkit:latest

"Walt.id, Walt.id Wallet Kit, walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last accessed: 08
July 2023).

8 SSI EduWallets / Wallet Proof Of Concept. Available at:
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept (last accessed: 08 July 2023).

° Kubernetes Production-grade container orchestration, Kubernetes. Available at: https://kubernetes.io/ (last
accessed: 09 July 2023).

¥ Helm Helm. Available at: https://helm.sh/ (last accessed: 09 July 2023).

" Walt.id Wallet Kit Image, Docker. Available at: https://hub.docker.com/r/waltid/walletkit/tags (last
accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 14

https://walt.id/wallet-kit
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept
https://kubernetes.io
https://helm.sh
https://helm.sh
https://walt.id/wallet-kit
https://hub.docker.com/r/waltid/walletkit/tags
https://github.com/walt-id/waltid-walletkit

finetildee

For extra configuration or more details, refer to the official documentation® from

wallet-kit.

Demo wallet Ul

The demo wallet front-end is a whitelabel extension of the web wallet provided by

Walt.id". It is written using the Nuxt™*

repository of the git repository SSI EduWallets/Wallet Proof Of Concept™.

framework and the source code is available in the git

A docker image is available on the container registry of the same repository and can be
pulled publicly: docker pull

registry.gitlab.com/ssi-edu-wallets/wallet-proof-of-concept:wallet-ui-0.5

10.2Demo Application

Two different use cases were implemented in this application.

On one hand, the issuer will be able to issue VCs (verifiable credentials'®) that can be
stored in the user’s wallet. The issuer could be getting the information stored in a 3rd party

API, for example, an LMS in order to obtain the data that is going to be contained in the VC.

In the implemented issuance use case, the demo application is getting a list of learning
resources experienced by the authenticated user and it is issuing a VC (type

UserLearningOutcomes) containing the list of learning resources.

12 \Walt.id Introduction, Docs. Available at: https://docs.walt.id/v/web-wallet/wallet-kit/readme (last accessed:
08 July 2023).

B Walt.id Walt.id Web wallet, walt.id. Available at: https://github.com/walt-id/waltid-web-wallet (last
accessed: 08 July 2023).

% Nuxt The intuitive web framework, Nuxt. Available at: https://nuxt.com/ (last accessed: 12 July 2023).

> SSI EduWallets / Wallet Proof Of Concept. Available at:
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept (last accessed: 08 July 2023).

' Sporny, M., Longley, D. and Chadwick, D. Verifiable credentials data model V1.1, W3C. Available at:
https://www.w3.org/TR/vc-data-model/#abstract (Accelast accessedssed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 15

https://docs.walt.id/v/web-wallet/wallet-kit/readme
https://github.com/walt-id/waltid-web-wallet
https://github.com/walt-id/waltid-web-wallet
https://nuxt.com
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept
https://www.w3.org/TR/vc-data-model/#abstract

M netidee

On the other hand, the verifier that will request VPs (verifiable presentations) from the
verify Ul that will request a specific type of VCs to the user’s wallet, and then once the user
chose the VCs to share it sends the VP to the verifier and then it will check the
cryptographic signatures. The data from the VC should be processed and may be
forwarded a 3rd party application. It is the responsibility of the 3rd party application to do

whatever is required with the data contained in the VP.

In the implemented verifier use case, the demo application is getting a VP (type
UserLearningOutcomes, the same type generated by the issuer workflow) and it is

processing the data in order to build a basic profile from the user.

Both use cases were implemented on the same backend API, but they are independent
from each other. This means that they could run on different 3rd party platforms in order
to exchange verifiable credentials between both of them. They can also be extended to
generate any type of verifiable credential in order to store any data under the W3C VCs

specification.

The Demo Application is divided into 2 main components: the Ul and the APIL. The APl is
also connected to a standalone instance of the walletkit APl in order to use basic functions
already implemented like verification of credentials, issuance or exchange of verifiable

credentials through the protocol OIDC (OpenID Connect)' and it is also connected to a 3rd

party API to provide information to be stored in the VCs after issuance.

Demo Application Ul

The Ul of the demo application is a development in order to implement a graphical
interface (Ul) through which the users can interact with the demo API (Open API) to
perform both the verifiable credential issuance and the verification of verifiable

presentations.

T Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpenlD for Verifiable Credential Issuance. Available at:
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction.

netidee Call 17 | Developer Documentation | Project-ID 6344 16

https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction

Mfinetidee

Architecture

The implementation of this Ul application has been done using Vue.js'® frontend
framework, which generates a scaffolding of a frontend application divided into directories
and configuration files that compose the whole Ul application with the finality of running

over a Node.js* server.

Once the Ul application is ready to be deployed it is compiled within a Node.js server and
then dockerized in order to be deployed using Kubernetes. This Ul application is part of a

set of applications that form a stack in order to build the final system (Demo application).

Ul pages, workflows & requests

The implementation of the Demo Application Ul is composed of the following pages or

views under the "views" directory:
Issuance page

The first is the issuance page, from which the flow of issuance of verifiable credentials to
the users is carried out. Once the user reaches this page, an HTTP GET request is made to
the demo application APl in order to obtain the types of verifiable credentials that the
issuer can issue to users. The request is made to the domain that this Ul establishes in its
configuration such as:

Unset

https://proto.example.com/edu/api/v1/wallet/users/3/issuance

This last one is the endpoint on which the demo application APl is listening. The response
from this endpoint will be an array of objects in JSON format, each of these objects

corresponding to the type of verifiable credentials that can be issued.

¥ Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework | Vue.js. Available
at: https://vuejs.org/ (last accessed: 12 July 2023).

1 Node.js Node.js. Available at: https://nodejs.org/en (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 17

https://vuejs.org/
https://nodejs.org/en

f'netidee

EEE CET @ pr... issuance

ame: "Great tutor”, type: "ProofOFResidence”, .
kype: "UserLe

20

Once the different types of verifiable credentials that can be issued have been obtained,
the Ul shows a series of radio buttons with the information of the verifiable credentials that
it can be issued and a disabled button that performs the issuance over the web flow. Some
of these verifiable credentials already exist within the wallet kit API by default the only one
that was totally implemented for us through the demo application APl is the
“userLearningOutcomes” verifiable credential in order to showcase a proof of concept of

the project over the issuance and verification of an educational verifiable credential.

Issue wallet certificate

21

When the user selects an option, an HTTP POST request is sent to the same endpoint as
before of the demo application API, this time, the request contains a JSON object with
certain parameters as payload, such as the id of the verifiable credential to be issued
and the type of issuance flow that can be the web wallet "xDevice: false" or cross-device
"xDevice: true", in the first case this field is sent with the value true and the response of

the demo APl will be a JSON object that will contain a redirection URI in order to encode

* Request to get the VC types that can be issued.
2 |ssuer portal Ul

netidee Call 17 | Developer Documentation | Project-ID 6344 18

finetildee

this URI'in the QR code that is generated by the Ul, so just by scanning this QR code from a
compatible wallet such as "ValidatelD*" the verifiable credential will be issued and
exchanged with the user’s wallet using the OIDC4VC* protocol and then in the user’s
wallet it will receive a verifiable credential issuance request from the issuer where the user
can check and read the content of the verifiable credential before accepting it on the

wallet.

S... | Me | Demain | File

EEE POS @ pr... issuance

24

In the issuance Ul, once the verifiable credential to be issued is chosen, an issue button is
shown which is in charge of making the same previous request but changing the value of
the "xDevice" field to false, this way the demo application APl behaves differently if the

user clicks the button then an issuance web wallet flow is started.

> Validatedld Validated ID - electronic signature and digital identity providers, Validated ID - Electronic
Signature and Digital Identity Providers. Available at: https://www.validatedid.com/en (last accessed: 08 July
2023).

% T. Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpeniD for Verifiable Credential Issuance. Available at:
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction.

** |ssuance request for the cross device flow

netidee Call 17 | Developer Documentation | Project-ID 6344 19

https://www.validatedid.com/en
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introduction

f'netidee

Issue wallet certificate

Scan the Qr code to start the issuance

®

ISSUE WALLET CERTIFICATE

25

Me | Domain

EE ros @ pr.
382 GE wa

26

Once the redirection URI is obtained from the response of the request, the issuer Ul
redirects the user to this URI, which is in the pre-configured web wallet, so the verifiable
credential will be issued and exchanged with the user’s wallet using the OIDC4VC protocol.
Then the user’s wallet will start the verifiable credential issuance request and the user

needs to approve it.

The issuer will retrieve the information needed to add it to the credential. For example, in
case of the issuance of the verifiable credential is of type "UserLearningOutcomes" then
the demo application APl internally gets the information about the completed courses by

the user and creates the VC with them formatting the data according to the VC schema.

»|ssuance portal U, issuance process
% |ssuance request payload from the web wallet flow

netidee Call 17 | Developer Documentation | Project-ID 6344 20

f'netidee

Verify page

The second main workflow starts with the verify page, from which the verification flow is
carried out. Once the user will be displayed with an “import” button that will start the
verification of a "userLearningOutcomes'' credential through the verification of a

verifiable presentation.

As soon as the flow is started, the user is redirected to the verifier Ul on the page (by
default /verify/success and this is not configurable at the moment) with an access token
as a parameter in the URL, the response of the demo application API redirects to the next

URL:

MxL1I1SyNA

From this page, the verification Ul reads the access token from the redirection URL then it

will send a HTTP Post request to the demo application API to the endpoint

Unset
https://proto.example.com/edu/api/vl/wallet/verifier/store

Initiakor | Tyr Trans... Siz
EE Pos @ loc... store & xhrjs.. j.. S5.14kB 17

JSON

27

The API will use the access token of the URL parameter to verify the VP, if the VP is valid, it
will retrieve the data from the VP and process it to store it as an “imported” user profile.

The response of the request is a JSON object with the content of the VP.

7 Verification presentation payload

netidee Call 17 | Developer Documentation | Project-ID 6344 21

https://proto.example.com/assess/en/verify/success/?access_token=8WuadndvTYKNMxL1I1SyNA
https://proto.example.com/assess/en/verify/success/?access_token=8WuadndvTYKNMxL1I1SyNA
https://proto.example.com/edu/api/v1/wallet/verifier/store

M netidee

EE ros @ loc.. store

h e
w verifiableCredential: [
“eyJrawQiOilkawQeazv o2TWEYWTFUBUISbVAwVHJIIRFRMYU15T

ZQbVFISFlxQUEOFMZUDhI MCMEMK T rel

RUZmFNeU10MXF2UG1RYkhZc
1QILCIhbGEDIFZERTGS19.ey
bUISEVAwWVHIIRFRMYU15TXQXCXZQbVFiSFL
N1Yil6lmRpZDprZXkéejZNazhob3NCNjU
emd5TIVmdnFhNHIJHNU c2eDFwliwibmJmljoxMjg5Mjk3NDETLC)
0JE20Dk20TcOMTUsINZ]lipTINRScGUIOLSiVmVyaWEZp Y WsZUNyZWRIb
NRpYWwiLCIWZXJpZmlhYmxIQXROZXNOY XRpb24iLCIWZXJpZmlhYmx
VXN =
GIINDUIVNIE1 he3RlcilsinNOY X J0ZWRBdFRpbWUIOilyMDIyLTAZLTAZVD
EyQjUDOJESKzAyOjAwliwic3BIY2ImawvkQnkiOnsidGVhY2hlcyl6eylsZ
WFybmluZ091dGNvbWUiOnsibmFtZSI6lkRhdGVuLCBJbmZvem 1hdGlvb 28

In this case, the content of the response is not displayed to the user through the
verification Ul, instead, just a success message is displayed together with a button which

will show the newly imported profile.

% Verification presentation response

netidee Call 17 | Developer Documentation | Project-ID 6344 22

PROJEKTE

(! netidee

_Verify wallet certificate

0 _Valid credentia ‘

_OPEN USER PROFILE

29

If the token is not valid then the verification Ul will show an error message.

_Verify wallet certificate

A _Error verifying credential

30

Ul components, workflows & requests

Three Ul components have been created using the Javascript framework Vue.js*, two of
them in the form of a button. They are in charge of starting the flows of issuance and
verification of verifiable credentials. The third component displays a modal in which the
user can check their learning outcomes profile and perform the verification and
importation of data from a “userLearningOutcomes” verifiable credential type from the
user's wallet. These components can be imported anywhere else on the platform, such as a

custom view or page.

The "issueCredentialsBtn" component
1. The "issueCredentialsBtn" component shows a button that, when clicked on,

redirects to the "issuance" view.

»Valid verifiable presentation message in the verification Ul

¥ nvalid verifiable presentation message in the verification Ul

*'Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework | Vue.js. Available
at: https://vuejs.org/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 23

https://vuejs.org/

Mfinetidee

The "VerifyCredentialsBtn" component
2. The "VerifyCredentialsBtn" component shows a button with an icon which is
currently a link that, when clicked on, makes an HTTP GET request to the demo API.
This request is made towards an established URL such as

Unset

https://proto.example.edu/api/vi/wallet/verifier/present?walletId=YOUR_WA

LLET_ID&vcType=VerifiableUserLearningOutcomes

This request includes the id of the wallet used and the type of the verifiable credential
to be verified, in this case, the parameter of the wallet is configured within the
configuration of the APl wallet kit through the file verifier-config.json in the field
“wallets” and the type of verifiable credential is “VerifiableUserLearningOutcomes”
which is hardcoded in the redirection URL. The demo application was intended to
simulate the flow of the issuance and verification of this type of verifiable credential

but it can be easily extended in order to use any other credential type.

After this request, the user will be redirected to the web wallet, in order to create a
verifiable presentation of the selected verifiable credential that was in the” vcType”
parameter. Once the user from her/his wallet choose the VC that she/he wants to
present to the verifier and accepts the creation of the verifiable presentation then,

he/she is redirected to the verifier platform into the verification Ul in

Unset
verify/success/?access_token=7vT6I4iDSLej-XYbisKAVw

The “userProfileDialog” component
3. The “userProfileDialog” component is composed of a button that, when clicked
on, will open a modal window that will show a series of fields related to the ESCO
skills obtained through courses that the user has been completing. When this
modal is opened, a request is made to the third-party API in order to obtain the

user profile data that has been created using the data imported previously of a

netidee Call 17 | Developer Documentation | Project-ID 6344 24

finetildee

"userLearningOutcomes" verifiable credential from the user’s wallet. Also, if there

are defined ESCO skills, other requests will be executed to a third-party APl in order

to obtain information about the possible occupations of each ESCO skill.

In addition to these fields, the modal window contains two buttons at the bottom,

the first is related to the import and validation of the "userLearningOutcomes”

verifiable credentials that will be imported from the user's wallet, this button is the

"verifyCredentialsBtn" component, which is in charge of perform verifiable

credentials verification flow. The other button is in charge of saving the changes

that are performed within the fields of this Ul component, so once it is clicked it will

send an HTTP request to the third-party API.

_Personalize your experience

32

How to run

In order to access the issuance and verification graphical interface and make use of the Ul

n Uberblick, Gruppen Test, Test 4 WBS, Design Thinking,

components, it is necessary to put in production this repository that can be found here

running under a node.js server in a docker® container for which the project must be

3 User profile Ul
* Docker (2023) Accelerated Container Application Development, Docker. Available at:
https://www.docker.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344

25

SPEICHERN

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-ui
https://www.docker.com/

M netidee

compiled using the yarn package manager with the "yarn build" command or “yarn
generate” in order to create a static project and then deploy it over a docker container, at
the end itis only needed to run the container and execute the command “yarn start” to

use the application.

The other option as a developer is to run the repository in development mode, for this it
can be done by opening a terminal in the root of the repository and already with node

installed at least with version 16.19.1 and with the yarn package manager® we execute the

"yarn install" commands if it is the first time that we run the project, so that the
appropriate dependencies will be installed and the set up it is done. Once the last
command is finished, the "yarn dev" command will be launched to launch the project in

development mode.

Onceitisrunning, we can access the pages by putting in the url the next:

Unset
{ YOUR_DOMAIN } /assess/ { CURRENT_LANG }/issuanceor /verify/success

so that the Uls implemented for certain cases will be displayed to the user.

Demo Application API

The API of the demo application is a development in order to implement an Open API
that acts as an intermediary between the user and the Wallet Kit API this implementation
was necessary in order to customize and manage the request that is forwarded to the
Wallet Kit API, this provides an additional abstraction layer and security because the

Wallet Kit APl has no private endpoints.

Functionalities

The Demo Application API performs the following tasks:

e Receive users' issuance requests and forward them to the Wallet Kit APl in order to

issue the different verifiable credentials types that it allows:

*Yarn Home Page, Yarn. Available at: https://yarnpkg.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 26

https://yarnpkg.com/

M netidee

o Europass
o ProofOfResidence
o UserLearningOutcomes
e Receive user verifiable presentation with the VC type of “userLearningOutcomes”
requests and forward it to the Wallet Kit API.
® Receive users' requests in order to return the verifiable credential schemas linked
to each VC type.

e Send requests to third parties APIs in order to manage user profiles.

Architecture

The implementation of the Demo Application API has been done through the use of Cake
PHP 4 * backend framework which generates a scaffolding of a backend application
divided into directories and configuration files that compose the whole APl application
with the finality of running it over a Nginx®® server within a docker container in order to
manage the user request. The Demo Application APl is served under the directory “Wallet”
which is within “app_rest” and within “plugins” directories, the configurations to run the

APl and the documentation related can be found on the demo-api repository.

Once the Demo Application APl is ready to be deployed it is dockerized and running within
an Nginx server, and then it is deployed using Kubernetes. This Demo Application APl is
part of a set of applications that form a stack in order to build the final system (Demo

application).

Software components
The Demo Application APl or Open APl is made up of a series of software components
that implement the necessary endpoints for users to make use of these HTTP network

requests through a Ul (Demo Application Ul). These components called controllers are in

* Cake PHP. CakePHP cookbook Archivo de Documentacién, creado por, Bienvenido - 4.x. Available at:
https://book.cakephp.org/4/es/index.html (last accessed: 12 July 2023).

* Nginx (2023) Advanced load balancer, web server, & reverse proxy, NGINX. Available at:
https://www.nginx.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 27

https://book.cakephp.org/4/es/index.html
https://book.cakephp.org/4/es/index.html
https://www.nginx.com/
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api

M netidee

charge of defining the routing and managing of the network requests within the APl in
order to interact with the correct data model. These controllers are a part of the Model

View Controller (MVC) design pattern.
Main controllers and workflows should be:

e Issuance flow:
o WalletlssuanceController: This controller is responsible for the handling of
the issuance requests and perform the next requests:
m Walletlssuance: List and issue VCs
m WalletlssuerOIDC: Set of endpoints to enable OIDC issuer flow
(proxy forwarded to Wallet Kit API)
e Verifier flow:
o VerifierPresentProxyController: This controller is responsible for the
handling of the verifiable presentation requests:
m VerifierPresentProxy: Init VPs in order to forward to the Wallet Kit
API.
o VerifierVerifyProxyController: This controller is responsible for the
handling of the verification requests:
m VerifierVerifyProxy: Forward verification requests to Wallet Kit API.
o VerifierStoreController: This controller is responsible for the handling of
the verifiable presentations in order to manage the data of the VCs and store
them in a third-party APl and perform the next requests:
m VerifierStore: Process and store the data of a
“userLearningOutcomes” verifiable credential in a third party API.
e Other controllers:
o WalletCredentialsSchemaController: This controller is responsible for the

handling of the verifiable credentials schema *'requests:

" Cohen, G. and Steele, O. (2023) Verifiable credentials JSON schema specification, W3C. Available at:
https://www.w3.org/TR/vc-json-schema/ (last accessed: 09 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 28

https://www.w3.org/TR/vc-json-schema/

Mfinetidee

m WalletCredentialSchema: Retrieve the schema definition of a
verifiable credential.
e UserProfiles: Simple CRUD endpoint of a third party APl in order to manage user

profiles.

Endpoints can be found documented in Open APl documentation

Some of the endpoints are directly forwarded to the standalone deployment of Wallet Kit
API. Since Wallet Kit does not perform any kind of authentication, all walletkit
endpoints must be running in a private network. A simple kubectl yamlis included in

the repository to allow easier deployment.

The controllers with the name “Proxy” perform a simple forward of the request via PHP.
Besides this, a proxy forward needs to be set up for the endpoint /issuer-api/default/oidc.
This can be easily accomplished using software like Nginx or using an ingress controller
within Kubernetes. The rules definition will look similar to:
- path: /issuer-api/default/oidc/.*$
pathType: Prefix
backend:
service:
name: walletkit-api-svc
port:

number: 80

How to run

To run the Demo Application AP, first it is needed to put it into production running under
an Nginx server which, through docker, is encapsulated in a container where it can be
configured and run, to perform the production ready deployment of the API it has been
used docker, kubernetes and helm technologies to achieve this, the deployment of the

Demo Application API is carried out on a server in the cloud from where the API services

netidee Call 17 | Developer Documentation | Project-ID 6344 29

https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/kubernetes/issuer-verifier-api.yaml?ref_type=heads
https://www.nginx.com

Mfinetidee

will be provided. To launch or configure the API locally, it can be done through the

"docker-compose-dev.yaml" file that is located in the root of the repository.

for further information about how to configure and run the APl a more detailed

documentation can be found on the Demo Application API repository.

Demo Application Web wallet

The demo application web wallet is a pre-built frontend application that performs the
tasks of a user’s web wallet application, it handles issuance of verifiable credentials,
verifiable presentations, performs the VC exchanging process between issuers,verifiers
and the web wallet itself and stores the VCs and manages them. This demo application
was customized in order to display the information of the new verifiable credential that
was created, the “userLearningOutcomes”, this pre-built solution that acts as a demo web
wallet in which a user can make use of it accessing a login Ul which the login process is

mocked up, in order to test a real workflow.

The demo application web wallet Ul implementation and the documentation attached to it
can be found in the Web Wallet* repository provided by Walt.id to make changes and

customize.

Architecture

This Ul was implemented within the Wallet Kit API from “walt.id”*® this way the Wallet Kit
API provides some Uls in order to perform a full solution, in this case the issuance and
verification Ul portals was skipped and only the web wallet Ul was customized, this Ul
perform requests directly to the Wallet Kit APl which it also acts as its own API. In the
implementation of the Demo Application the demo web wallet was customized and a
image of it was built and it is available in the repository

https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept/container registry/4437224

*® Walt.id,Walt.id Web wallet, walt.id. Available at: https://github.com/walt-id/waltid-web-wallet (last
accessed: 08 July 2023).

¥ Walt.id,Walt.id Wallet Kit, walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last accessed:
08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 30

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api
https://github.com/walt-id/waltid-web-wallet
https://gitlab.com/ssi-edu-wallets/wallet-proof-of-concept/container_registry/4437224
https://github.com/walt-id/waltid-walletkit

finetildee

with the tag wallet-ui-0.5, this image it is being used within the configuration of the Wallet
Kit APl in order to use this web wallet Ul.

The image below displays the architecture of the demo web wallet Ul and the other

pre-built Ul components within the Wallet Kit API:

Wallet Architecture

O Q O
Web wallet (Ul) ™ Issuer porHJI (uny Verifief portal (Ul)

(Demo web wall\ét»q\ll (Not used) /"_,.-'("Not used)

wallet-backend /

Q.
High-evel APls .

-~ e

Wallet Backend Verifier Backend Issuer Backend

Wallet Context Manager

40

Issuance workflow & requests

The issuance flow starts once a user clicks the issuance button from the issuance Ul, then
a HTTP POST request will be sended to the Demo Application APl in order to start the
issuance flow and then the response of this request that is a redirection URL will redirect

the user to web wallet Ul that the issuer platform configure.

Then from the web wallet Ul the URL from the previously request response it is sended to
the Wallet Kit APl and the response of it is a redirection to the “initiatelssuance” page of

the web wallet Ul with the parameter “sessionld”, the request is like the next one:

“OWalt.id Architecture - Demo web wallet architecture, Docs. Available at:
https://docs.walt.id/v/web-wallet/wallet-kit/issuer-and-verifier-portals/architecture (last accessed: 12 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 31

M netidee

Unset

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.ex
ample.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-a
uthorized_code=eyJ0eXAi0iJKV1QiLCJhbGci0iJIUZITNiJ9.eyJzdWIi0iI50Dh1MjJ1ZCO4M
TcALTQ1YmUtYT11INiOxM2ZjY2NmNWJhNDUiLCJwemUtYXVBaG9yaXplZCI6dHJ1ZX0.iYwaTegQ4J

oesfyigDNgNoy5AgIKkrAgqSIn1gVughUA&user_pin_required=false

and the response is like this:

Unset
https://wallet.example.com/InitiateIssuance/?sessionId=8b450ebe-eb6d-4b16-8bb

7-768cc37¢7519

Then the web wallet Ul send another HTTP GET request in order to retrieve the list of the
DIDs:

Unset
https://wallet.example.com/api/wallet/did/list

and the response of it:

Unset
["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p" |

Alsoitis sending another HTTP GET request in order to retrieve the information of the VC

that it has been issued

Unset
https://wallet.example.com/api/wallet/issuance/info?sessionId=8b450ebe-eb6d-4

b16-8bb7-768cc37¢c7519

and the response of it:

Unset
{

"credentialTypes"” : ["UserLearningOutcomes"],

"credentials"” : null,

netidee Call 17 | Developer Documentation | Project-ID 6344 32

/ﬁ\ netidee

"did" : null,

"id" : "8b450ebe-eb6d-4b16-8bb7-768cc37c7519",

"isIssuerInitiated" : true,

"isPreAuthorized" : true,

"issuerId" : "https://proto.example.com/issuer-api/default/oidc/"
"lastTokenUpdate" : null, "nonce" : "81d50896-43b3-4280-9f06-37485b604461",
"opState"” : null,

"preAuthzCode" :
"eyJBeXAi0iJKV1QiLCJhbGciOiJIUZITNiJ9.eyJzdWIi0iI50Dh1MjJ1ZCO4AMTc4LTQTYmUtYTL
INi@xM2ZjY2NmNWJhNDUiLCJwemUtYXVBaG9yaXplZCI6dHJ1ZX0.iYwaTegQ4JoesfyigDNgNoy5
AgIKkrAgSInigVughUA",

"tokenNonce" : null,

"tokens" : null,

"user" :null,

"userPinRequired" : false,

"walletRedirectUri" : null

}

Then the web wallet Ul displays the “Issuance initiation” view.

netidee Call 17 | Developer Documentation | Project-ID 6344 33

M netidee

r —

Issuance initiation

A credential issuance request has been initiated
Issuer:
https://proto.example.com/issuer-api/default/oidc/

Offered credentials:
UserLearningQutcomes

Subject DID:
did:key:z6MkhhosB653LLTzR6k6gUDMI3K...

Reject

4

Once the user accepts the issuance initiation the next HTTP GET request is sended to the
Wallet Kit APl in order to save the VC in the web wallet,retrieve the session id of the

transaction and the page of the web wallet Ul

Unset
GET

https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuanc
e?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p&sessionId=424d
5584-8e4f-41e9-9563-84a70a2d10a9

And the response is the next:

Unset
/ReceiveCredential/?sessionId=424d5584-8e4f-41e9-9563-84a70a2d10a9

Then the user is redirected to the web wallet page from the response of the request.

“Walt.id,Walt.id Web wallet - issuance initiation, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 34

! netidee

Also another HTTP GET request is sended to the Wallet Kit APl in order to retrieve the data
of the VC that has been issued.

Unset
https://wallet.example.com/api/wallet/issuance/info?sessionId=424d5584-8e4f-4
1€9-9563-84a70a2d10a9

And the response of it is the next:

Unset
{

"credentialTypes": ["UserLearningOutcomes"”],

"credentials": [{"The VC that has been issued"}],

"did" :"did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",

"id" :"424d5584-8e4f-41€9-9563-84a70a2d10a9",

"isIssuerInitiated": true,

"isPreAuthorized": true,

"issuerId": "https://proto.example.com/issuer-api/default/oidc/"

"lastTokenUpdate": {},

"nonce": "dd@7002b-c7ec-4711-9f50-be7ff00e0729",

"opState": null,

"preAuthzCode" :
"eyJOeXAi0iJKV1QiLCJhbGciOiJIUZITNiJ9.eyJzdWIiOiJmNDdmNzhiOCOwWMzIzL TQOYWQtOGZ
1MSOzMWQ4NTMBODgONFEiLCJwemUtYXVBaG9yaXplZCI6dHJ1ZX0 . bVwZBDTUxpVUoLvukX_aznre
FWef1-IguWecvJdzdmM8",

"tokenNonce": "322b3880-1099-4b56-9f6f-0991d7ffcboa",

"tokens": {},

"user": {"Web wallet user data"},

"userPinRequired": false,

"walletRedirectUri": null

netidee Call 17 | Developer Documentation | Project-ID 6344 35

https://proto.example.com/issuer-api/default/oidc/

Mrnetidee

Then in the Web wallet Ul we can check the VC that has been issued.
r A |

Received credentials
Click "Accept” to add the credential(s) to your wallet

VerifiableUserLearningOutcomes
by did:key:z6MkjebSLtYn...

Reject

42

Once the user accepts the VC it is redirected to the “Credentials ” page of the web wallet
Ul, and then a HTTP GET request is sended in order to retrieve the VCs that the user has
stored in her/his wallet.

Unset
GET

https://wallet.example.com/api/wallet/credentials/list

and the response is a list of VCs that the user has stored in the web wallet.

Unset

{
"list": [
{

2 Walt.id ,Walt.id Web wallet - received credentials, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 36

(! netidee

PROJEKTE

"type" :
["VerifiableCredential", "VerifiableAttestation", "VerifiableUserLearningOutcom

es"],

"@context": [" "1,
"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmBOmWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",
"issuanceDate": "2023-07-18T16:23:35Z7",

"issued": "2023-07-18T16:23:35Z2",

"validFrom": "2023-07-18T16:23:35Z2",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/vi/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

o
"credentialSubject": {
"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",

"title": "User learning outcomes",

"performed": [

{
"title": "Test1",
"startedAtTime": "2023-07-12T17:28:16+02:00",
"specifiedBy": {
"teaches": {

"learningOutcome": {

"name" : "chemische Laboruntersuchungen an Metallen vornehmen",
"relatedESCOSkill":
"http://data.europa.eu/esco/skill/2h60cOcf-6ce6-4f04-9748-0e6d883673d8"
}
}
}
}
]
}
}

netidee Call 17 | Developer Documentation | Project-ID 6344 37

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

M netidee

The image below displays the VCs that an user has stored in her/his wallet:

r —
My credentials -

Search...

VerifiableUserLearningOutcomes H
by "did:key:z6Mkry1TmaB...

VerifiableUserLearningOutcomes
by "did-key:z6Mkjeb3LLY...

VerifiableUserLearningOutcomes H
by "did-key:z6MkjebILLtY. ..

+ Request Credential

43

Verification workflow & requests

The verification flow starts once a user clicks the verification button from the verification
Ul, then a HTTP GET request will be sended to the Demo Application APl in order to start
the verification flow and then the response of this request that is a redirection URL will

redirect the user to web wallet Ul that the verifier platform has configure.

Once the user is redirected to web wallet Ul, this one send an HTTP GET request to Wallet

Kit APl in order to start the verification process, the request is the next:

Unset
https://wallet.example.com/api/siop/initiatePresentation/?scope=openid&presen

tation_definition={"format" : null, "id" : "1", "input_descriptors" :

“ Walt.id,Walt.id Web wallet - verifiable credentials stored / owned by a user, walt.id.
Available at: https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 38

M netidee

[{"constraints" : {"fields" : [{"filter" : {"const":
"VerifiableUserLearningOutcomes"}, "id" : null, "path" : ["S.type"l],
"purpose” : null}]}, "format" : null, "group" : null, "id" : "1", "name"
null, "purpose" : null, "schema" : null}], "name" : null, "purpose" : null,

"submission_requirements”

null}&response_type=vp_token&redirect_uri=https://proto.example.com/edu/api/v
1/wallet/verifier/verify&state=1iPOk21YRPGp1CmPPwIILQ&nonce=1iPBk21YRPGp1CmPP
wIILQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&r

esponse_mode=form_post

The response of this request is a redirection to the “CredentialRequest” page of the web

wallet Ul with a parameter called “sessionld”, the response is similar to this one:

Unset
https://wallet.example.com/CredentialRequest/?sessionId=eb5fda12-5c26-4e11-89

e3-fceB444e729f

Once this request is sended another one it is also sended in order to retrieve the list of

DIDs:

Unset
https://wallet.example.com/api/wallet/did/list

and the response is a list of DIDs:

Unset
did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p

Then another HTTP GET request is sended in order to continue with the VP of the VCs and

obtain a redirection URL in order to verify the VCs that the VP contains:

Unset

netidee Call 17 | Developer Documentation | Project-ID 6344 39

M netidee

https://wallet.example.com/api/wallet/presentation/continue?sessionId=eb5fda1
2-5c26-4e11-89e3-fceB444e729f&did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNU
fvqa4rG5G6x1p

And the response of this request is the next:

Unset
{

"availableIssuers": null,
"did": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",
"id": "eb5fdal12-5c26-4e11-89e3-fce0444e729f",
"presentableCredentials”: |
{
"claimId": "1",
"credentialId": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

I

"presentationDefinition": {
"format": null,
"id": "1",
"input_descriptors": [{}]
“name": null,
"purpose"”: null,
"submission_requirements": null

3

“redirectUri":

"https://proto.example.com/edu/api/vi1/wallet/verifier/verify"

}

Then the web wallet Ul send another HTTP GET request in order to retrieve all VC of the

“userLearningOutcomes” type through the next request:

Unset
https://wallet.example.com/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3

461-4b99-a5f9-aac84792a4d5

netidee Call 17 | Developer Documentation | Project-ID 6344 40

/ﬁ\ netidee

'ROJEKTE

The response to this request is a list of VC of the “userLearningOutcomes” type

Unset

{
"list": [
{
"type":

["VerifiableCredential", "VerifiableAttestation", "VerifiableUserLearningOutcom
es"],

"@context": ["h L/ /www . w ra/291 r ntials/vi"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmBOmWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

"issuanceDate": "2023-07-18T16:23:35Z7",

"issued": "2023-07-18T16:23:35Z2",

"validFrom": "2023-07-18T16:23:352",

"credentialSchema": {

"id": "https://proto.example.com/edu/api/vi/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"

o
"credentialSubject": {
"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p”,

"title": "User learning outcomes",

"performed": [

{
"title": "Test1",
"startedAtTime": "2023-07-12T17:28:16+02:00",
"specifiedBy": {
“teaches": {

"learningOutcome": {

"“name" : "chemische Laboruntersuchungen an Metallen vornehmen",
"relatedESCOSkill":
"http://data.europa.eu/esco/skill/2b60cOcf-6ce6-4f04-9748-0e6d883673d8"
}
}
}
}

netidee Call 17 | Developer Documentation | Project-ID 6344 41

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

M netidee

These request represent the connection request between a verifier and the user’s wallet,

the image below display the Ul of the user’s web wallet:

r —

Connection request

VerifiableUserLearningOutcomes

Reject

a4

Once the user accepts the verifiable presentation then a HTTP POST request is sended to
the Wallet Kit APl in order to present the selected “userLearningOutcomes” VC through the

next endpoint:

“Walt.id,Walt.id Web wallet -verified presentation from web wallet, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023)

netidee Call 17 | Developer Documentation | Project-ID 6344 42

M netidee

Unset
https://wallet.example.eu/api/wallet/presentation/fulfill?sessionId=24c1f6b0-
1b6b-460e-8208a-4f11fbfco012

with the next payload:

Unset

[

“claimId":"1",

"credentialIld" :"urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

and the next response:

Unset

{
"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map"
[{"format" : "jwt_vp", "id" : "@", "path" : "S$", "path_nested" : {"format"
"jwt_vc", "id" : "@", "path" : "S.verifiableCredential[@]"}}], "id" : "1"}"

“rp_response": null,
"state": "f1tEmlanQ1G_bfm8WtRmMA",
"vp_token": "JWT"

At last the user’s web wallet redirects to the verifier platform in order to complete the

verification flow.

How to run

In order to run the demo web wallet Ul in production the Wallet Kit APl with the other
system components like the Demo application APl and the Demo application Ul must be
deployed. Once the whole application stack is deployed then from the issuer or verifier

portal Uls a user can reach the web wallet, also with the configured domain from which

netidee Call 17 | Developer Documentation | Project-ID 6344 43

M netidee

any user can access through an URL. The web wallet Ul is builded within the Wallet Kit API

so in order to run it, the Wallet Kit APl must be running.

Itis also possible to run the web wallet Ul in a standalone or development mode, once the
repository of the web wallet Ul it is downloaded then from a command line interface it can
be run over a Node.js server with the version of 16.19.1 and using the "yarn install"
command in order to install all the dependencies of the web wallet Ul and then using the

"yarn dev" in order to run the Ul locally.

In order to carry out the development of this project, it is necessary to establish the
development environment adequately, following some steps to follow in order to use the

entire stack that makes up the project.
11.1System Requirements

This is a list of the system requirements in order to be able to develop and start the

application stack:

e Atext editor or an IDE like “PhpStorm” to be able to open and edit the project's
code.

e GIT as a version control system in order to track the changes in the code.

e Docker in order to execute a container with the project implementation

e Docker-compose® in order to create and execute a multi-container application.

e ANode.js environment, version 16.19.1 in order to execute the Demo-Ul in

development mode.

*> Docker (2023b) Overview of docker compose, Docker Documentation. Available at:
https://docs.docker.com/compose/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 44

https://docs.docker.com/compose/

finetildee

e Optionally, Node Version Manager (NVM)* in order to manage the versions of

Node.js installed or used.

e Optionally, an APl development platform with a Rest client like ”Insomnia” or
“Postman” to design, debug, and send requests to the Demo APl without a
frontend.

e Yarn package manager in order to set up and run the project.

e Kubectlin order to manage docker clusters and deploy the application

e Helm in order to manage the packages for Kubernetes

e A web browser like “Mozilla Firefox” or “Google Chrome” in order to execute the

application and use the developer tools for the development process.

More information can be found inside the repositories.
11.2 Dependency Installation

The following dependencies will be required in order to use the implementation:

e \Vue.js Framework: The main frontend framework used for the development of the

Demo-Ul frontend as a single-page application.

e (Cake PHP 4 Framework: The main backend framework used for the development of

the Demo-API or Open API.

e Vuetify 2 Ul Framework*": The main Ul framework used for the development of Ul

elements within the Vue.js framework.
e Pug®: Atemplate engine focused on making HTML coding faster.

e Axios™: A promise-based HTTP Client for node.js.

*® Node(no data),Node version manager. Available at: https://github.com/nvm-sh/nvm (last accessed: 12 July
2023).

*Vuetify A material design framework for vue.js, Vuetify. Available at: https://v2.vuetifyjs.com/en/ (last
accessed: 02 July 2023).

*® Pug Getting started, Pug. Available at: https://pugjs.org/api/getting-started.html (last accessed: 12 July
2023).

* Axios Axios, Starting | Axios Docs. Available at: https://axios-http.com/en/docs/intro (last accessed: 12 July
2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 45

https://github.com/nvm-sh/nvm
https://vuejs.org/
https://book.cakephp.org/4/es/index.html
https://v2.vuetifyjs.com/en/
https://pugjs.org/api/getting-started.html
https://axios-http.com/es/docs/intro

Mfinetidee

Qrious™: A library for QR code generation using canvas.

e \Vue-i18n®: A plugin that allows the internationalization of a platform using
multi-languages.

e Vue router®: A plugin that allows routing between different pages over the Vue.js
framework.

e Vuex™: A state management pattern + library for Vue.js.

e Sass®: A CSS preprocessor compatible with all its versions.

e Eslint™: A static code analysis tool for identifying problematic patterns found in

JavaScript code.

e Typescript:* A strongly typed programming language that builds on JavaScript.

More information can be found inside the repositories.
11.3 System Configuration

The configurations necessary for the implementation of the project are defined in each
README.md file of the used repositories. For more configurations related to the
deployment and resources, there exists a Helm chart file "issuer-verifier-api.yaml" in order

to manage the whole stack of applications provided once they are deployed.

%% Qrious Qrious, npm. Available at: https://www.npmjs.com/package/qrious (last accessed: 10 July 2023).
' Vue) Vue 118n. Available at: https://kazupon.github.io/vue-i18n/ (last accessed: 12 July 2023).

*2Vue Vue Router, Vue Router | The official Router for Vue.js. Available at: https://router.vuejs.org/ (last
accessed: 10 July 2023).

3 Vue What is Vuex?, Vuex. Available at: https://vuex.vuejs.org/ (last accessed: 12 July 2023).
** sass CSS with superpowers, Sass. Available at: https://sass-lang.com/ (last accessed: 10 July 2023).

** Nicholas C. Zakas 11 Aug et al. (1970) Find and fix problems in your JavaScript code - eslint -
pluggable JavaScript linter, ESLint. Available at: https://eslint.org/ (last accessed: 10 July 2023).

*¢ Typescript JavaScript with syntax for types., TypeScript. Available at: https://www.typescriptlang.org/ (last
accessed: 14 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 46

https://www.npmjs.com/package/qrious
https://kazupon.github.io/vue-i18n/
https://router.vuejs.org/
https://vuex.vuejs.org/
https://sass-lang.com/
https://eslint.org/
https://www.typescriptlang.org/

M netidee

11.4Repositories needed

To run the project it is necessary to download certain repositories into which the

application is divided:

e Demo application: This is the main repository of the project implementation in

which there is a Kubernetes configuration file: This file is intended to provide the
configuration and setup of the whole Demo application in order to deploy and
run the whole stack of applications under the same context. This file will create the
architecture necessary for the implementation of the whole stack and the
configuration of the containers that Kubernetes handles. In this file, it is defined the
configuration files of the Wallet Kit APl and the image to download and use to
perform the SSI operations. Also, other configurations like the ports, mount points,

or volumes are defined here.

Unset
apiVersion: vi
kind: ConfigMap
metadata:
name: wallet-config
data:
issuer-config.json: |
{
"issuerUiUrl": "https://proto.example.com/assess/en/issuance",
"issuerApiUrl": "https://proto.example.com/issuer-api/default”,
"wallets": {
"walt.id": {
"id": "EduProto",
“url": "https://wallet.example.com",
"presentPath": "api/siop/initiatePresentation/"
"receivePath" : "api/siop/initiateIssuance/",

"description”: "EduProto walt.id based web wallet"

netidee Call 17 | Developer Documentation | Project-ID 6344 47

https://gitlab.com/ssi-edu-wallets/demo-application.git
https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/kubernetes/issuer-verifier-api.yaml

PROJEKTE

! netidee

}
}
verifier-config.json: |
{
"verifierUiUrl": "https://proto.example.com/assess/en/verify",
"verifierApiUrl":
"https://proto.example.com/edu/api/vi/wallet/verifier",
"wallets": {
"walt.id": {
"id": "walt.id",
“url": "https://wallet.walt.id",
"presentPath": "api/siop/initiatePresentation/",
"receivePath" : "api/siop/initiateIssuance/",
"description”: "walt.id web wallet"
[F
"EduProto": {
"id": "EduProto",
“url": "https://wallet.example.com",
"presentPath": "api/siop/initiatePresentation/",
"receivePath" : "api/siop/initiateIssuance/",
"description”: "EduProto prototype wallet"
}
}
}
#verifier-config.json "verifierApiUrl":
"https://proto.example.com/verifier-api/default"”,
https://proto.example.com/edu/api/vi1/wallet/verifier
kind: Deployment
apiVersion: apps/vi
metadata:
name: walletkit
spec:
replicas: 1
selector:

matchlLabels:

netidee Call 17 | Developer Documentation | Project-ID 6344 48

/ﬁ\ netidee

'ROJEKTE

app:walletkit
template:
metadata:
labels:
app:walletkit
annotations:
deployment/id: " _DEFAULT_DEPLOYMENT_"
spec:
containers:
- name:walletkit
image:waltid/walletkit:1.2305151432.0
volumeMounts:
-name: wallet-config
mountPath: "/app/dataRoot/config/"
readOnly: true
env:
- name : WALTID_DATA_ROOT
value: "/app/dataRoot"
-name: WALTID_WALLET_BACKEND_BIND_ADDRESS
value:0.0.0.0
args:
-run
ports:
- containerPort: 8080
name: http-api
volumes:
-name: wallet-config
configMap:
name : wallet-config
kind: Service
apiVersion: vi1
metadata:
name: walletkit-api-svc
spec:

ports:

netidee Call 17 | Developer Documentation | Project-ID 6344 49

M netidee

- name: http

port: 80

targetPort: http-api

protocol: TCP
selector:

app:walletkit

Also there are some repositories that they are in charge of provide a frontend and a

backend to the implementation:

o Demo API: This is the repository on which a public APl has been implemented, the
Open API, which is in charge of handling the requests made from the
implementation of the Demo Ul, it is acting as an intermediary APl between the
Demo-Ul and the Wallet Kit API. This Open APl manages the requests in order to
carry out the issuance flows and verifications of verifiable credentials. Inside this
repository exist a README.md file which is a more detailed documentation.

o Demo Ul: This repository has implemented a frontend using the Vue.js and Vuetify
Ul framework in order to provide a graphical interface (Ul) so that users can carry
out the processes of claiming and submitting verifiable credentials. . Inside this

repository exist a README.md file which is a more detailed documentation.

Once the design, development, implementation, integration and start-up of the demo
application API has been completed, the final points resulting from its implementation will

be documented using the Open API specification by means of a file in JSON format that is

netidee Call 17 | Developer Documentation | Project-ID 6344 50

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main/demo-api

finetildee

available on the Demo Application repository which will be available to download and

imported on tools such as Swagger Editor *or Postman® to serve as data input and

visualize the documentation graphically and intuitively.

The Wallet Kit APi is an open source solution made by a third party specifically "Walt.id>*"
with the purpose of providing a Self-Sovereign Identity (SSI) that enable decentralized
identity and digital wallet infrastructure to the developers and businesses in order to

implement the SSI paradigm of the Web 3.

The Wallet Kit provides the backend infrastructure to build a custom wallet solution (Demo
web wallet) and provides the services of the SSI Kit API*°. This API is the core of the whole
SSI functionalities that make it possible to create DIDs®, keys, VC and perform the

issuance and verification of verifiable credentials.

The Wallet Kit APl is built on top of the SSI Kit which is in charge of performing all the
SSl-related tasks. The Wallet Kit just extends the SSI Kit In order to extend the functionality
providing some components like the demo web wallet, an issuance portal Ul, and a

verification portal U

The Wallet Kit APl enables to use of different identity ecosystems like Europe’s emerging

identity ecosystem (ESSIF/EBSI®®) in anticipation of a multi-ecosystem future.

" Swagger Swaggereditor, SwaggerEditor. Available at: https://editor-next.swagger.io/ (last accessed: 08 July
2023).

*8 Postman Postman. Available at: https://www.postman.com/ (last accessed: 13 July 2023).

®Walt.id Identity and NFT infrastructure for developers., walt.id. Available at: https://walt.id/ (last
accessed: 08 July 2023).

o Walt.id SSI Kit, Docs. Available at: https://docs.walt.id/v/ssikit/ssi-kit/readme (last accessed: 13 July 2023).
® Sporny, M. et al. Decentralized identifiers (DIDs) v1.0, W3C. Available at: https://www.w3.org/TR/did-core/
(last accessed: 08 July 2023).

2 European Commission European Blockchain Services Infrastructure, Home - EBSI -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed: 09 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 51

https://gitlab.com/ssi-edu-wallets/demo-application/-/blob/main/demo-api/docs/opeapi.json
https://editor-next.swagger.io
https://www.postman.com
https://walt.id/
https://docs.walt.id/v/ssikit/ssi-kit/readme
https://www.w3.org/TR/did-core/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

Mfinetidee

The Wallet Kit APl and the documentation can be found on the GitHub repository from

“walt.id” in waltid-walletkit®.

Functionalities
The Wallet Kit provides various high-level functionalities. For example:

e Web wallet app (Demo web wallet application)
o Web-based user interface (Ul) for managing credentials and DIDs.
e User context separation
o Separation of user contexts in the data stores (key store, credential store,
DID store).
e User data management
o DIDs
o VCs
e Ecosystems integrations
o did:ebsi
m DID creation
m DID registration
o did:web
m DID creation
m DID web registry
o did:key
m DID creation
e Verifiable Credential Issuance and Presentation exchange

o Support for verifiable credential issuance and presentation exchange based

on the OIDC and SIOP specs

m **OIDCA4CI - OIDC for credential issuance

® GitHub - walt-id/waltid-walletkit - Walt.id. Available at: https://github.com/walt-id/waltid-walletkit (last
accessed: 12 July 2023).

& Kristina Yasuda, Dr. Torsten Lodderstedt, OpenID Connect for SSI, Available at:

https://openid.net/wordpress-content/uploads/2021/09/0IDF_OIDC4SSI-Update_Kristina-Yasuda-Torsten-Lo
dderstedt.pdf.

netidee Call 17 | Developer Documentation | Project-ID 6344 52

https://github.com/walt-id/waltid-walletkit
https://openid.net/wordpress-content/uploads/2021/09/OIDF_OIDC4SSI-Update_Kristina-Yasuda-Torsten-Lodderstedt.pdf

f'netidee

m OIDC4VP - OIDC for verifiable presentations (SIOP)

m Credential issuance via SIOP protocol (custom protocol)

Architecture

The Wallet Kit API architecture is displayed on the following image:

Wallet Architecture

Q. Q Q
Web wallet (Ul) ™ Issuer portal (Ul) Verifief portal (UI)
_wallet-backendJ ~. e

e -
High-fevel APIs ™

Wallet Backend Verifier Backend Issuer Backend

| __\..

Wallet Context Manager

SSIKit]
g
SSIKit Context
] (| a1
Custodian Signatory Auditor
Data store
User Stores]
€]] 1
User Store (A) Issuer Store Verifier Store
65

There exists a layer where the Wallet Kit API stores all the data related to the issuer,
verifier and the users, here it stores information like the key pairs, DIDs, VCs and VPs. This
layer is part of the SSI Kit API, which is composed of three different APIs, the custodian
API (Demo web wallet), the signatory API (issuer platform) and the auditor API (verifier

platform). Normally the Issuer and the verifier of the implementation are the same.

 Walt.id ,Walt.id Wallet Kit - Architecture, walt.id. Available at: https://github.com/walt-id/waltid-walletkit
(last accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 53

https://github.com/walt-id/waltid-walletkit

Mfinetidee

Over these layers, it’s built the Wallet Kit which is connected to the SSI Kit in order to
provide the whole SSI stack and its own implementation of the three high-level APIs that
compose it, the wallet backend (Demo web wallet), the issuer backend (issuer platform)
and the verifier backend (verifier platform). These high-level APIs serve the different Ul
that the wallet kit implements, the web wallet Ul (Demo web wallet), the issuer portal Ul
(not used in this implementation), and the verifier portal Ul (not used in this
implementation). All of these Ul components are pre-builded and ready to work, but in
this Demo Application it is only used the “Web wallet Ul (Demo web wallet)” in order to
perform the issuance and verification flow using a web wallet. The pre-builded issuance
and verification Ul were skipped in order to use the Demo Application Ul to work as an
issuer and verifier Ul, within this frontend in some components are implemented the

necessary request in order to perform the issuance and verification flow.

Once the repository of Wallet Kit APl is downloaded under the directory “docker” we can
find the “config” directory in which the configurations for the issuer, verifier and wallet are
defined. Also in the “data” directory, we can find all the information related to the issuer,
users, and verifiers stored like the DIDs and the key pairs. There is also a
“docker-compose.yaml” file which defines all the images, ports, volumes, and containers
that will be used in order to run and build the Wallet Kit API stack in a standalone or
development mode. Once this file is running it will run the containers that are displayed

below:

cervices
T Y M O+
B v & Docker

_ < 5, Docker-compose: docker
* g ingress

1ol

* s IssuUer-ui

+ i verifier-ui

e wallet-ui

- o walletkit
docker _default

66

% Wallet Kit API running locally
netidee Call 17 | Developer Documentation | Project-ID 6344 54

M netidee

Integration with the Demo Application

The integration of the Wallet Kit API with the other components that compose the
implementation of the Demo Application is done by configuring the
"issuer-verifier-api.yaml" file in the "kubernetes" directory found in the Demo application
repository also within this configuration file is possible to manage the configuration of the

issuer and verifier from the Wallet Kit API.

Unset
spec:
containers:
-name: walletkit
image: waltid/walletkit:1.2305151432.0
volumeMounts:
- name: wallet-config
mountPath: "/app/dataRoot/config/"
readOnly: true
env:
-name: WALTID_DATA_ROOT
value: "/app/dataRoot"
- name : WALTID_WALLET_BACKEND_BIND_ADDRESS
value:0.0.0.0
args:
-run
ports:
- containerPort: 8080
name: http-api
volumes:
- name: wallet-config
configMap:

name : wallet-config

netidee Call 17 | Developer Documentation | Project-ID 6344 55

https://gitlab.com/ssi-edu-wallets/demo-application
https://gitlab.com/ssi-edu-wallets/demo-application

M netidee

How Wallet Kit verify a verifiable presentation®

“The verifier in order to verify any verifiable presentation that a user present to it will go

through the following steps to make sure the certificate is valid:

1. Before the validation of the content of the certificate can take place, the VC needs to
be parsed from the support JSON-LD or the JWT format. Depending on the
ecosystem used, there will also be a validation of the schema of the verifiable
credential.

2. Validate that the DID of the holder, stated in the certificate, is the person
presenting the VC.

3. Checking if all the state values are valid (expiration date and if the certificate is
revoked or not in the case that the system is within any decentralized ecosystem
that records the issuance of the VCs).

4. Checking the claims about the subject and if they match the requirements to give
the person access to the service they are requesting to get access to.

5. Checking the signatures of the issuer and the holder, by getting the DID of the
issuer from the registry (in the case that the system is within a decentralized
ecosystem like EBSI) and the DID from the holder in their wallet and validating it

using the public keys presented in the related DID documents.”

" Walt.id Verifiable credentials (VCS), Docs. Available at:
https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/verifiable-credentials-vcs-and-ver
ifiable-presentations-vps (last accessed: 14 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 56

M netidee

Once we have integrated the Wallet Kit APl into our system, the next step is to configure it
to perform a correct integration so that it works correctly. For this, this API provides the

following configuration files:

e docker-compose.yaml: In this file that is only available under the “docker”
directory on the Wallet Kit API repository they can be found the configurations to
run the Wallet Kit APl in a standalone mode or development mode, this file set a

bunch of directives in order to launch the Wallet Kit API, the containers of

"wallet-ui", "verifier-ui", "issuer-ui" and the ingress which make use of a Nginx
server in order to setup in which ports the previous containers are served. There is

also defined which images are used.

Unset

version: "3.3"

services:

walletkit:
image: waltid/walletkit:latest #backend docker image
command :
-run
environment:
WALTID_DATA_ROOT: ./data-root
WALTID_WALLET_BACKEND_BIND_ADDRESS:0.0.0.0
EXTERNAL_HOSTNAME : localhost
WALTID_WALLET_BACKEND_PORT : 8686
volumes:
- .:/app/data-root #datastorevolumeincl. config files.
extra_hosts:
- "localhost:host-gateway"

wallet-ui:
image: ssi-wallet-ui:alex7 #wallet web uidocker image

verifier-ui:

netidee Call 17 | Developer Documentation | Project-ID 6344 57

M netidee

image:waltid/ssikit-verifier-portal:latest#verifier webuidocker image
issuer-ui:

image: waltid/ssikit-issuer-portal:latest#issuer webuidocker image
ingress:

image: nginx:1.15.10-alpine

ports:

- target: 80

published: 8080 #wallet uipublishport

protocol: tcp

mode : host

- target: 81

published: 8081 #verifier uipublishport

protocol: tcp

mode : host

- target: 82

published: 8082 # issuer uipublishport

protocol: tcp

mode : host

volumes:

- ./ingress.conf:/etc/nginx/conf.d/default.conf # API gateway

configuration

e issuer-config.json: In this file, it is possible to change to different configurations of
the issuer platform like the Ul URL, API URL, the default DID of the issuer, and the
web wallets that the issuer platform will support, within each wallet it is possible to
set the paths for the issuance and verification flow. The configuration of this file,
can be found under the “docker” directory on the Wallet Kit API repository, once the
Wallet Kit APl is integrated on the application stack this files can be found on under

the directory “kubernetes” within the “issuer-verifier-api.yaml” file of the Demo

Application repository.

netidee Call 17 | Developer Documentation | Project-ID 6344 58

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

M netidee

Unset
issuer-config.json: |
{
"issuerUiUrl": "https://proto.example.com/assess/en/issuance",
"issuerApiUrl": "https://proto.example.com/issuer-api/default"”,
"wallets": {
"walt.id": {
"id": "EduProto",
“url": "https://wallet.example.com",
"presentPath": "api/siop/initiatePresentation/"
"receivePath" : "api/siop/initiateIssuance/",
"description”: "EduProtowalt.id basedwebwallet"
}
}
}

e wallet-config.json: In this file, it is possible to change to different configurations of
the web wallet like the Ul URL, APl URL and the issuers' platforms that it will
support, within each issuer, it is possible to set the path for the URL of the issuer.
The configuration of this file can be found under the “docker” directory on the
Wallet Kit API repository, once the Wallet Kit APl is integrated into the application

stack this file can be found under the directory “kubernetes” within the

“issuer-verifier-api.yaml” file of the Demo Application repository.

Unset

{
"walletUiUrl": "http://wallet.example.com",

"walletApiUrl": "http://wallet.example.com/api",
"issuers": {
"walt.id": {
"id": "EduProto",

"url": "http://proto.example.com/issuer-api/default/oidc",

netidee Call 17 | Developer Documentation | Project-ID 6344 59

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

M netidee

"description”: "EduProtowalt.id Issuer Portal"

e verifier-config.json: In this file, it is possible to change to different configurations
of the verifier platform like the Ul URL, APl URL and the web wallets that the verifier
platform will support, within each wallet it is possible to set the paths for the
issuance and verification flow. The configuration of this file, can be found under the
“docker” directory on the Wallet Kit API repository, once the Wallet Kit APl is
integrated on the application stack this files can be found on under the directory

“kubernetes” within the “issuer-verifier-api.yaml” file of the Demo Application
repository.

Unset
verifier-config.json: |
{
"verifierUiUrl": "https://proto.example.com/assess/en/verify",
"verifierApiUrl": "https://proto.example.com/edu/api/v1/wallet/verifier"
"wallets": {
"walt.id": {
"id": "walt.id",
“url": "https://wallet.walt.id",
"presentPath": "api/siop/initiatePresentation/"
"receivePath" : "api/siop/initiateIssuance/",
"description”: "walt.idwebwallet"”
f
"EduProto": {
"id": "EduProto",

“url": "https://wallet.example.com",

netidee Call 17 | Developer Documentation | Project-ID 6344 60

https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main
https://gitlab.com/ssi-edu-wallets/demo-application/-/tree/main

M netidee

"presentPath": "api/siop/initiatePresentation/"
"receivePath" : "api/siop/initiateIssuance/",
"description”: "EduProtoprototypewallet"
}

}

}

e ingress.conf: This file is intended to perform the configuration of the routes to the
containers that compose the Wallet Kit API, this file can be found under the
“docker” directory on the Wallet Kit API repository, this not directly available once it

is integrated on the application stack.

Unset

server {

listen 80;

location ~* /(api|webjars|verifier-api|issuer-api)/ {
proxy_pass http://walletkit:8080;
proxy_redirect default;

}

location / {
proxy_pass http://wallet-ui:80/;

proxy_redirect default;

}

}

server {
listen 81;

location ~* /(api|webjars|verifier-api|issuer-api)/ {
proxy_pass http://walletkit:8080;

proxy_redirect default;

}

location / {

netidee Call 17 | Developer Documentation | Project-ID 6344 61

M netidee

proxy_pass http://verifier-ui:86/;

proxy_redirect default;

}

}

server {
listen 82;

location ~* /(api|webjars|verifier-api|issuer-api)/ {
proxy_pass http://walletkit:8080;
proxy_redirect default;

}

location / {
proxy_pass http://issuer-ui:80/;

proxy_redirect default;

More info related to the Wallet Kit APl can be found on the GitHub repository.

The creation of DIDs and keys is done within the Wallet Kit API, which endpoints are

private to the rest of the network, so that only those that are only open through the Open

API can be accessed. In this implementation, no endpoint related to the management and

creation of keys or DIDs has been developed, so the use of these is limited to the

configuration scope of the Wallet Kit API or its previous creation also through the Wallet Kit

API directly.

By default the Wallet Kit APl already has a preconfigured DID and its keys with which the

verifiable credentials will be issued also it is possible once a DID is generated to the issuer

netidee Call 17 | Developer Documentation | Project-ID 6344

https://github.com/walt-id/waltid-walletkit

M netidee

to set it up in the configuration file issuer-config.json adding the field with the next value

"issuerDid": "did:key:example” the image below shows the file with the configuration.

"issuerUilrl": "http://$EXTERNAL_HOSTNAME:8882",
"issuerApilrl": "http://$EXTERNAL_HOSTNAME:8082/issuver-api/default",

"issvuerDid": "did:key:example",
"wallets": {
"walt.id": {
"id": "walt.did",
"url": "http://$EXTERNAL_HOSTNAME:g8@888",
"presentPath": "api/siop/initiatePresentation/",
"receivePath" : "api/siop/initiateIssvance/",
"description": "walt.id web wallet"
}
+
} 68

In this implementation the DID method used is the "key" method because the project is
outside of any blockchain ecosystem yet. In order to use this DID method, first a key pair

is generated through the Wallet Kit API.

200 OK 286 ms 43 B

JSON = Bearer « Juer Headers Docs Preview «

{
": "dsec6babafe346bba4Bafae

Then to create the DID it is necessary to provide the method and a key alias (that is the
response of the generated key pair), then it is created the DID with the associated public

key through the Wallet Kit API.

fig/did/create Send | = 201 Created

Preview =

did:

70

% |ssuer DID configuration file
% Key generation through Wallet Kit API
" DID generation with associated key through Wallet Kit API

netidee Call 17 | Developer Documentation | Project-ID 6344 63

M netidee

This DID method is composed of the corresponding public key, which makes it especially
useful in scenarios where a simpler and more direct resolution is needed because a
verifier will only need the public key of the owner of the DID to verify the authenticity of
the verifiable credential and this public key is encoded in the DID normally in a base58

format.

To issue a personalized verifiable credential, it is first necessary to create a data model or
schema. For the use case of this demo, a verifiable credential of the
"userLearningOutcomes" type has been implemented, which conforms to a data schema
in JSON-LD format.

This scheme describes the structure, fields and restrictions that the verifiable credential
must follow once it is created. This schema can be published in a public repository so that
once a user with a verifiable credential of this type presents it to a third party or verifier,
the verifier will be in charge of extracting the content of the “id” field within the field
"credentialSchema" from the body of the verifiable credential, this is a URI that
references the schema of the verifiable credential.

So that the verifier will perform a check on whether the verifiable credential conforms to
the scheme that defines it, this is configured by the verifier in its verification policies by
default the policy applied is “JsonSchemaPolicy” which check that the body of the VC
matches the schema, which in this implementation no endpoint has been created over the
Demo Application API that is in charge of modifying the settings of these policies, the
default policies that are configured on the Wallet Kit API have been left.

The schema belonging to the verifiable credential created "userLearningOutcomes" has
been generated within the implementation of the Demo application API, and it has the
body of the code below:

Unset

{
"Sschema": "https://json-schema.org/draft/20206-12/schema"”,

netidee Call 17 | Developer Documentation | Project-ID 6344 64

https://json-schema.org/draft/2020-12/schema

PROJEKTE

! netidee

"title": "User learning outcomes verifiable accreditation”,

"description": "Schema of a user learning outcomes verifiable accreditation",
"type": "object",

"allof": [{

"Sref":
"https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d81312643
27f3cbc5ddba9c69chb9afd34732b3b787e4b3e3507a25d3079e9"

e

{

"properties": {
"credentialSubject": {
"description”: "Defines additional properties on
credentialSubject to describe the body of the verifiable credential",
"type": "object",

"properties": {

"id": |
"description”: "Defines the did of
the credential subject",
“type": "string"
[F
"title": {
"description”: "Title of the
credential subject",
“type": "string"
Vo

"performed”: {
"description”: "Defines the learning
activity that a person participated in or attended",
“type": "array",
"items": {

"Sref": "#/Sdefs/performed"

Jis

"required”: ["id", "title", "performed"]

netidee Call 17 | Developer Documentation | Project-ID 6344 65

https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d8131264327f3cbc5ddba9c69cb9afd34732b3b787e4b3e3507a25d3079e9
https://api-pilot.ebsi.eu/trusted-schemas-registry/v2/schemas/0xeb6d8131264327f3cbc5ddba9c69cb9afd34732b3b787e4b3e3507a25d3079e9

PROJEKTE

! netidee

H,
"Sdefs": {
"performed”: {
"description”: "Defines the learning activity that a
person participated in or attended",
“type": "object",
"properties": {
"title": {
"description”: "Defines a title of the
learning achievement",
"type": "string"
s
"startedAtTime" : {
"description”: "The date the learner
started the activity",
"type": "DateTime"
[F
"endedAtTime": {
"description”: "The date the learner ended
the activity",
"type": "DateTime"
i
"specifiedBy": {
"definition": "The specification of this
learning activity",
“type": "object",
"properties”: {
"teaches": {

"definition": "The expected
learning outcomes this learning activity specification can lead or contribute
to",

“type": "array",

"items": {

netidee Call 17 | Developer Documentation | Project-ID 6344 66

'ROJEKTE

/ﬁ\ netidee

"Sref":
"#/Sdefs/teaches”
}
}
}
}

H

"required”: ["title"]
3
"teaches": {

"definition": "The expected learning outcomes this

learning activity specification can lead or contribute to",
“type": "object",
"properties": {
"learningOutcome" : {
"description”: "The learning outcome of the
learning specification”,
“type": "object",
"properties": {
"name" : {
"description”: "A legible,
descriptive name for the learning outcome",
"type": "string"
i
"relatedESCOSkill": {
"description”: "A URI to the
related ESCO Skill",
“type": "object",
"items": {
"description”: "A URI
to the related ESCO Skills",
"type": "string",

“format": "uri"

netidee Call 17 | Developer Documentation | Project-ID 6344 67

finetildee

}l
"required”: ["name", "relatedESCOSkills"]

I

"required”: ["learningOutcome"]

During the development of this project, the creation of an own verifiable credential called
"userLearningOutcomes" has been carried out in relation to the use case of the issuance
of educational credentials. This verifiable credential has been created with the purpose
of demonstrating the knowledge and skills that a user of an educational platform has
achieved through the course of different educational courses that they have carried out.

This verifiable credential was designed following the schema of the Verifiable Diploma

Schema™ that is defined for EBSI use cases.

This verifiable credential is intended to document certain basic aspects related to the
educational courses that the user has taken, also this verifiable credential was created

with the purpose of making use of the European Skills, Competences, Qualifications and

Occupations (ESCO)™ classification in order to classify the learnings outcomes of the user

under a European standard framework.

™ European Commission Verifiable diploma schema, Verifiable Diploma Schema - EBS/
Specifications -. Available at:
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema (last
accessed: 09 July 2023).

™ ESCO About Esco, ESCO. Edited by the European Commission. Available at:
https://esco.ec.europa.eu/en/about-esco (last accessed: 08 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 68

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+Schema
https://esco.ec.europa.eu/en/about-esco
https://esco.ec.europa.eu/en/about-esco

M netidee

The verifiable credential template is created through the Demo application API which will
create the schema linked to it and the verifiable credential body if it doesn't exist yet

within the Wallet Kit API.

The verifiable credential is made up of the following fields:

Field Description

id Contains the DID of the user receiving the verifiable
credential.

title Title of the course taken.

performed Defines the learning activities that a person participated in

or attended, within this list we have the different parts of

which the course is made up.

Fields within Description
“performed” field

title Contains the DID of the user receiving the verifiable
credential.

startedAtTime The date the learner started the activity

endAtTime The date the learner ended the activity

specifiedBy The specification of this learning activity, within this field

we have more fields inside.

netidee Call 17 | Developer Documentation | Project-ID 6344 69

finetildee

Fields within Description
“specifiedBy” field

teaches The expected learning outcomes this learning activity
specification can lead or contribute to, this list contains

more fields inside.

Fields within “teaches” Description
field
learningOutcome The learning outcome of the learning specification, which

has more fields inside.

Fields within Description
“learningOutcome” field

name Areadable, descriptive name for the learning outcome

relatedESCOSKill A URI to the related ESCO Skill

below it is displayed an example of the content of a verifiable credential of the type

"userLearningOutcomes"

Unset

"credentialSubject": {
"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",
"title": "User learning outcomes",

"performed”: [{

netidee Call 17 | Developer Documentation | Project-ID 6344 70

M netidee

"title": "Test1",

"startedAtTime": "2023-08-09T14:39:17+02:00",

"specifiedBy": {

"teaches": [{
"learningOutcome"” : {
"name": "Web-Designer/Web-Designerin",
"relatedESCOSkill":
"http://data.europa.eu/esco/occupation/c40a2919-48a9-40ea-b506-1f34f693496d"

}
}H

}H

https://docs.walt.id/v/web-wallet/concepts/oidc/oidc

During the flow of verifiable credentials issuance, the following requests will be made in

the following order:

e The user access to the issuance Ul, the first request performed is related to
retrieving the verifiable credentials types that the issuer can issue to the users.
o https://proto.example.com/edu/api/vi/wallet/users/{ UID }/issuance

O Response:

Unset

"data":[

netidee Call 17 | Developer Documentation | Project-ID 6344 71

https://docs.walt.id/v/web-wallet/concepts/oidc/oidc

M netidee

tid": "1,
"name" :"DigComp2.1 (Demo Ausschnitt)"
“type" :"Europass"”,
"description"”:"EuropassDigComp2.1 (Demo Ausschnitt) from ©8.08.23,
19:38"
H
{
tid":"2",
"name" :"Great tutor",
"type" :"ProofOfResidence",
"description”:"Loremipsumdolor sit amet, consectetur adipiscing elit"
fs
{
"id":"3",
"name" :"User learning outcome",
"type" :"UserLearningOutcome",

"description":"Verifiable credentialof anuser learning outcome"

}

e The user from theissuer Ul choose a VC in order to be issued and perform the next
HTTP request in order to obtain a URL where the users will be redirected to a web
wallet :

o https://proto.example.com/edu/api/vi/wallet/users/{ UID
Vissuance

o Payload:

Unset

"ve_id":"3",

"isPreAuthorized" :true,

netidee Call 17 | Developer Documentation | Project-ID 6344 72

M netidee

"xDevice" :false

O Response:

Unset

"data" :{
"redirect_uri":"https://wallet.example.com/api/siop/initiateIssuance/?
issuer=https%3A%2F%2Fproto.example.com%2Fissuer-api%2Fdefault%2Foidc%2
F&credential_type=UserLearningOutcomes&pre-authorized_code=eyJOeXAi0iJ
KV1QiLCJhbGci0iJIUZITNiJ9.eyJzdWIiOiI5YjQ2NWQwWOCB50WUYLTRIMZzYtY jYXMS00
MjJjMWMyY jRmYjMiLCJwemUtYXVBaG9yaXplZCI6dHJ1ZX0 . qHB8WS9BUQkgmWH777LHAA
PJeXvN-CELCaIo6JIIGMk&user_pin_required=false"

}

This request once it reach the Demo Application API, will forward to the next
endpoint of the Wallet Kit
“/issuer-api/default/credentials/issuance/request?walletid={
YOUR_WALLET_ID}&isPreAuthorized=true&xDevice:false” in order to obtain a
response and then forward it to the Demo Application APl to manage it and send it

back to the user.

e Oncethe useris redirected to a web wallet from the previous response of the the
HTTP request, it obtains a URL from where the user will be redirected in order to
start the issuance process and obtain a new URL with a sessionld as a param in the
headers of the request where to be redirected, the next request is sended:

:
https://wallet.example.com/api/siop/initiatelssuance/?issuer=https://prot
o.example.com/issuer-api/default/oidc/&credential_type=UserLearningO
utcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1INiJ9.e
yJzdWIiOil5YjQ2NWQwOCO50 WUyYLTRIMZzYtYjYxMSO0MjJiMWMyYjRmYjMiL

netidee Call 17 | Developer Documentation | Project-ID 6344 73

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false

M netidee

CJwemUtYXV0aG9yaXplZCl6dHJ1ZX0.qHO8WS9BUQkgmWH777LHAAPJeXv
N-CELCalo6JIIGMk&user_pin_required=false

o Response:

Unset

https://wallet.example.com/InitiateIssuance/?sessionId=fcbace6d-e7d3-4

1a9-ad8c-ac7aee163f51

e Then from the user’s web wallet a new request is sended to the Wallet Kitin order to
retrieve a list of DIDs.

o https://wallet.example.com/api/wallet/did/list

O Response:

Unset
["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p" |

e Also from the user’s web wallet it is sended a request in order to get the informa
tion of the issuance initiation.
o
https://w. Xam m/api/w i nce/info?sessionld=fi -
e7d3-41a9-ad8c-ac7aeel63f51

O Response:

Unset

"credentialTypes"” : ["UserLearningOutcomes"],
"credentials"” : null,

"did" : null,

"id" : "fcbace6d-e7d3-41a9-ad8c-ac7aee163f51",
"isIssuerInitiated" : true,

"isPreAuthorized" : true,

netidee Call 17 | Developer Documentation | Project-ID 6344 74

https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/siop/initiateIssuance/?issuer=https://proto.example.com/issuer-api/default/oidc/&credential_type=UserLearningOutcomes&pre-authorized_code=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiI5YjQ2NWQwOC05OWUyLTRlMzYtYjYxMS00MjJjMWMyYjRmYjMiLCJwcmUtYXV0aG9yaXplZCI6dHJ1ZX0.qH08WS9BUQkgmWH777LHAAPJeXvN-CELCaIo6JIIGMk&user_pin_required=false
https://wallet.example.com/api/wallet/did/list
https://wallet.example.com/api/wallet/issuance/info?sessionId=fcbace6d-e7d3-41a9-ad8c-ac7aee163f51
https://wallet.example.com/api/wallet/issuance/info?sessionId=fcbace6d-e7d3-41a9-ad8c-ac7aee163f51

M netidee

"issuerId" :
"https://proto.example.com/issuer-api/default/oidc/"
"lastTokenUpdate" : null,

"nonce" : "65fed870-e447-4abb-96b9-7a4daa1384be",

"opState" : null,

"preAuthzCode" :
"eyJOeXAi0iJKV1QiLCJhbGci0iJIUZzITNiJ9.eyJzdWIi0iI5YjQ2NWQwOCO50
WUYLTR1IMzYtYjYxMSOOMjJjMWMyY jRmYjMiLCJwemUtYXVOaG9yaXplZCI6dHJ1
ZX0.qHe8WS9BUQkgmWH777LHAAPJeXvN-CELCaIlo6JIIGMk", "tokenNonce" :
null, "tokens" : null, "user" : null,

"userPinRequired" : false,

"walletRedirectUri" : null

e Then once the user accepts to receive the VC that was issued a new request it is sent
to the Wallet Kit in order to obtain a page of the web wallet and a sessionld to
perform the VC exchange between the issuer and user’s wallet.

:
https://wallet.example.com/api/wallet/issuance/continuelssuerinitiatedls

suance?did=did:key:z6 MkhhosB653LLTzR6k6qUbMi3K24czqyNUfvqa4rG5G

6x1p&sessionld=b8f052c8-db29-410e-9937-1d744e4ea980

O Response:

Unset
/ReceiveCredential/?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980

e Then once again the web wallet Ul sends a request in order to obtain the issuance

information about the VC that has been issued and stored on the user’s web wallet.

netidee Call 17 | Developer Documentation | Project-ID 6344 75

https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/issuance/continueIssuerInitiatedIssuance?did=did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p&sessionId=b8f052c8-db29-410e-9937-1d744e4ea980

! netidee

https://wallet.example.eu/api/wallet/issuance/info?sessionld=b8f052c8-d

b29-410e-9937-1d744e4ea980

O Response:

Unset

{

"credentialTypes" : ["UserLearningOutcomes"],

"credentials" : null,

"did" : null,

"id" : "8b450ebe-eb6d-4b16-8bb7-768cc37¢7519",

"isIssuerInitiated" : true,

"isPreAuthorized" : true,

"issuerId" : "https://proto.example.com/issuer-api/default/oidc/"
"lastTokenUpdate" : null, "nonce" : "81d50896-43b3-4280-9f06-37485b604461",
"opState" : null,

"preAuthzCode" :
"eyJBeXAi0iJKV1QiLCJhbGciOiJIUZzITNiJ9.eyJzdWIi0iI50Dh1MjJ1ZCO4AMTc4LTQT1YmUtYTL

INiOxM2ZjY2NmNWJhNDUiLCJwemUtYXVBaG9yaXplZCI6dHJ1ZX0.iYwaTegQ4JoesfyigDNgNoy5
AgIKkrAgSInigVughUA",

"tokenNonce" : null,
"tokens" : null,

"user" :null,
"userPinRequired" : false,

"walletRedirectUri" : null

}

e At last once the VCis stored on the user’s wallet a new request is sent in order to
fetch the VC that the user own or has stored on the web wallet
o https://wallet.example.com/api/wallet/credentials/list

O Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 76

https://wallet.example.eu/api/wallet/issuance/info?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.eu/api/wallet/issuance/info?sessionId=b8f052c8-db29-410e-9937-1d744e4ea980
https://wallet.example.com/api/wallet/credentials/list

(! netidee

PROJEKTE

Unset

"list": [
{
"type":

["VerifiableCredential", "VerifiableAttestation", "VerifiableUserLearningOutcom
es"],

"@context": ["https://www.w3.0rg/2018/credentials/v1"],

"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmBOmWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

"issuanceDate": "2023-07-18T16:23:35Z",
"issued": "2023-07-18T16:23:35Z2",
"validFrom": "2023-07-18T16:23:35Z2",
"credentialSchema": {

"id": "https://proto.example.com/edu/api/vi/wallet/credentialSchemas/3",

"type": "JsonSchemaValidator2018"
o
"credentialSubject": {
"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqa4rG5G6x1p",
"title": "User learning outcomes",
"performed”: [
{
"title": "Test1",
"startedAtTime": "2023-07-12T17:28:16+02:00",
"specifiedBy": {
"teaches": {

"learningOutcome" : {

“name" : "chemische Laboruntersuchungen an Metallen vornehmen",
"relatedESCOSkill":
"http://data.europa.eu/esco/skill/2b60cOcf-6ce6-4f04-9748-0e6d883673d8"
}
}
}
}
]
}
}

netidee Call 17 | Developer Documentation | Project-ID 6344 77

https://www.w3.org/2018/credentials/v1
https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

M netidee

During the flow of verifiable presentation, the following requests will be made in the

following order:

e The user access to the verifier Ul and open her/his user profile in order to list or load

the data of the profile that was extracted from the “userLearningOutcomes”

verifiable credential, if it is the first time that the user open the modal of the profile

then she/he can click in the left button from the bottom of the modal, that is called

“Import from wallet”, this button will make a request in order to start the creation

of a verifiable presentation of a “userLearningOutcomes” VC.

Unset

o

https://proto.example.com/edu/api/vl/wallet/verifier/present?walletid=Y

OUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes

O Response:

https://wallet.example.com/api/siop/initiatePresentation/?scope=openid
&presentation_definition={"format" : null, "id" : "1", "input_descriptors"
:[{"constraints" : {"fields" : [{"filter" : {"const":
"VerifiableUserLearningOutcomes"}, "id" : null, "path" : ["S.type"],
"purpose” :null}]}, "format" : null, "group” : null, "id" : "1", "name" :
null, "purpose" : null, "schema" : null}], "name" : null, "purpose" : null,
“submission_requirements" :
null}&response_type=vp_token&redirect_uri=https://proto.examle.com/edu

/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUF

netidee Call 17 | Developer Documentation | Project-ID 6344 78

https://proto.example.com/edu/api/v1/wallet/verifier/present?walletId=YOUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes
https://proto.example.com/edu/api/v1/wallet/verifier/present?walletId=YOUR_WALLET_ID&vcType=VerifiableUserLearningOutcomes

M netidee

KVf7RgSTTYelLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wall

et/verifier/verify&response_mode=form_post

Once the Demo Application APl handles the request for this endpoint, then this API
will create a new HTTP request in order to forward it to the endpoint of the
“/verifier-api/default/present?walletid={YOUR_WALLET_ID}&vcType=VerifiableUs
erLearningOutcomes” Wallet Kit and the response of it, it will forward to the Demo

Application APl in order to send it back to the user.

e With the response of the previous request then the user is redirected to the user’s
web wallet, which executes an HTTP request in order to obtain a page of the
configured web wallet and a sessionld and the response of it is a redirection URL in
the headers of the request.

.
https://wallet.example.com/api/siop/initiatePresentati
on/?scope=openid&presentation_definition={"format" :
null, "id" : "1", "input_descriptors" : [{"constraints" :
{"fields" : [{"filter" : {"const":
"VerifiableUserLearningOutcomes"}, "id" : null, "path" :
["S.type"], "purpose” : null}]}, "format" : null, "group" :
null, "id" : "1", "name" : null, "purpose"” : null, "schema” :
null}], "name" : null, "purpose” : null,
"submission_requirements" :
null}&response_type=vp_token&redirect_uri=https://prot
o.examle.com/edu/api/vi/wallet/verifier/verify&state=K
hUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&c1i
ent_id=https://proto.example.com/edu/api/vi/wallet/ver

ifier/verify&response_mode=form_post

o Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 79

https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post
https://proto.examle.com/edu/api/v1/wallet/verifier/verify&state=KhUFKVf7RgSTTYeLG9UDeQ&nonce=KhUFKVf7RgSTTYeLG9UDeQ&client_id=https://proto.example.com/edu/api/v1/wallet/verifier/verify&response_mode=form_post

M netidee

Unset
https://wallet.example.com/CredentialRequest/?sessionId=5b149306-33fa-

4505-a065-249e4dc20aed

e Then from the user’s web wallet a request to fetch a list of DIDs is submitted to the
Wallet Kit.
o https://wallet.example.com/api/wallet/did/list

O Response:

Unset
["did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p" |

e Also from the user’s web wallet it is sended another request to the Wallet Kit in
order to continue with the VP of the VCs and obtain a redirection URL in order to
verify the VCs that the VP contains

o
https://wallet.example.com/api/wallet/presentation/continue?sessionld=
5b149306-33fa-4505-a065-249e4dc20aed&did=did:key:z6 MkhhosB653LLTz
R6k6gUbMi3K24czgyNUfvqa4rG5G6x1p

o Response:

Unset

"availableIssuers": null,
"did": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",
"id": "eb5fdal12-5c26-4e11-89e3-fce0444e729f",
"presentableCredentials”: |
{
"claimId": "1",
"credentialId": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"

netidee Call 17 | Developer Documentation | Project-ID 6344 80

https://wallet.eduplex.eu/api/wallet/did/list

mMnetidee

I
"presentationDefinition": {
“format": null,
tid": "1",
"input_descriptors": [{}],
"name" : null,
"purpose"”: null,
“submission_requirements": null
o
“redirectUri":

"https://proto.example.com/edu/api/v1/wallet/verifier/verify"
}

e Then from the user’s web wallet it is also send a request in order to retrieve all VC of

the “userLearningOutcomes” type through the next request

0

f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4

c9a6e49b7cl

O Response:

Unset

"list": [
{
"type":
["VerifiableCredential", "VerifiableAttestation", "VerifiableUserLearningOutcom
es"],

"@context": ["https://www.w3.0org/20818/credentials/v1"],
"id": "urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5",

"issuer": "did:key:z6MkrY1TmBOmWpTrHDTfaMyMt1qvPmQbHYqAKc8S6SHbmyc4",

netidee Call 17 | Developer Documentation | Project-ID 6344 81

https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://wallet.example.eu/api/wallet/credentials/list?id=urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5&id=urn:uuid:8ca4510f-9072-4627-8f5f-4c9a6e49b7c1
https://www.w3.org/2018/credentials/v1

M netidee

"issuanceDate": "2023-07-18T16:23:35Z7",
"issued": "2023-07-18T16:23:35Z2",
"validFrom": "2023-07-18T16:23:352",
"credentialSchema": {
“id": "https://proto.example.com/edu/api/vi/wallet/credentialSchemas/3",
"type": "JsonSchemaValidator2018"
o
"credentialSubject": {
"id": "did:key:z6MkhhosB653LLTzR6k6gUbMi3K24czgyNUfvqadrG5G6x1p",
"title": "User learning outcomes",
"performed": [
{
"title": "Test1",
"startedAtTime": "2023-07-12T17:28:16+02:00",
"specifiedBy": {
"teaches": {
"learningOutcome": {
"“name" : "chemische Laboruntersuchungen an Metallen vornehmen",
"relatedESCOSkill":
"http://data.europa.eu/esco/skill/2b60cOcf-6ce6-4f04-9748-0e6d883673d8"
}

e Then when the user accepts to create the verifiable presentation with the VC within
it is sent a request to the Wallet Kit in order to fulfill verifiable credentials

presentation with the selected verifiable credentials.

netidee Call 17 | Developer Documentation | Project-ID 6344 82

https://proto.eduplex.eu/edu/api/v1/wallet/credentialSchemas/3

M netidee

o

https://wallet.example.eu/api/wallet/presentation/fulfill?>sessionld=7038
2f32-5f47-40b4-abef-05e50687¢550

o Payload:
Unset
[
{
"claimId":"1",
"credentialIld" :"urn:uuid:35ab06f9-3461-4b99-a5f9-aac84792a4d5"
}
]
o Response:
Unset
{

"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map" :
[{"format" : "jwt_vp", "id" : "@", "path" : "$", "path_nested" : {"format" :
"jwt_vc", "id" : "@", "path" : "S.verifiableCredential[@]"}}], "id" : "1"}"

“rp_response": null,
"state": "f1tEmlanQ1G_bfm8WtRmMA",
"vp_token": "JWT"

e Then from the user’s web wallet it is sended a form request with the data of the
response of the previous request to the Demo Application APl in order to verify the
VP and obtain a redirection.

o |POST| https://proto.example.eu/edu/api/vl/wallet/verifier/verify
o Payload:

netidee Call 17 | Developer Documentation | Project-ID 6344 83

https://proto.example.eu/edu/api/v1/wallet/verifier/verify

M netidee

Unset

"fulfilled": false,

"id_token": null,

"presentation_submission": "{"definition_id" : "1", "descriptor_map" :
[{"format" : "jwt_vp", "id" : "@", "path" : "$", "path_nested" : {"format" :
"jwt_vec", "id" : "@", "path" : "S.verifiableCredential[@]"}}], "id" : "1"}"

"“rp_response": null,
"state": "f1tEmlanQ1G_bfm8WtRmMA",
"vp_token": "JWT"

O Response:

Unset
LSS b

Once the Demo Application APl handles the previous request then, it will forward a request
to the Wallet Kit endpoint “/verifier-api/default/verify” in order to verify the VP and obtain
a redirection to the page of the verifier platform with an access_token, then the response
of the Wallet Kit will be forwarded to the Demo Application APl in order to send it back to

the users.

e Finally once the user is redirected to the verification Ul with a valid access_token
thenitis sended a request to a third party APl in order to store the VC in the
database of the third party API.

o htt ://proto.example.com/edu/api/vi/wallet/verifier/store

o Payload:

Unset
{"wallet_token":"HgCfBBiLSSywg2T-mihLQA" }

O Response:

netidee Call 17 | Developer Documentation | Project-ID 6344 84

http://localhost:8083/assess/en/verify/success/?access_token=HgCfBBiLSSywg2T-mihLQA
http://localhost:8083/assess/en/verify/success/?access_token=HgCfBBiLSSywg2T-mihLQA
http://proto.example.com/edu/api/v1/wallet/verifier/store

M netidee

Unset

"data": {
"vps": [
{}

Axios Axios, Starting | Axios Docs. Available at: https://axios-http.com/en/docs/intro (last
accessed: 12 July 2023).

Cake PHP .. CakePHP cookbook Archivo de Documentacion, creado por, Bienvenido - 4.x.

Available at: https://book.cakephp.org/4/es/index.html (last accessed: 12 July 2023).

Cohen, G. and Steele, O. (2023) Verifiable credentials JSON schema specification, W3C.

Available at: https://www.w3.0org/TR/vc-json-schema/ (last accessed: 09 July 2023)
Docker (2023) Accelerated Container Application Development, Docker. Available at:

https://www.docker.com/ (last accessed: 12 July 2023).

Docker (2023b) Overview of docker compose, Docker Documentation. Available at:

https://docs.docker.com/compose/ (last accessed: 12 July 2023).

ESCO About Esco, ESCO. Edited by the European Commission. Available at:

https://esco.ec.europa.eu/en/about-esco (last accessed: 08 July 2023).

European Commission European Blockchain Services Infrastructure, Home - EBSI -.Available

at: https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home (last accessed:

09 July 2023).

European Commission Verifiable diploma schema, Verifiable Diploma

Schema - EBSI Specifications -. Available at:

netidee Call 17 | Developer Documentation | Project-ID 6344 85

M netidee

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSIDOC/Verifiable+Diploma+S
chema (last accessed: 09 July 2023).
Helm Helm. Available at: https://helm.sh/ (last accessed: 09 July 2023).

https://www.slideshare.net/SSIMeetup/understanding-the-european-selfsovereign-identit
y-framework-essif

Kristina Yasuda, Dr. Torsten Lodderstedt ,0penID Connect for SSI, Available at:
https://openid.net/wordpress-content/uploads/2021/09/0IDF_OIDC4SSI-Update_Kristina-
Yasuda-Torsten-Lodderstedt.pdf.

Kubernetes Production-grade container orchestration, Kubernetes. Available at:

https://kubernetes.io/ (last accessed: 09 July 2023).

Nginx (2023) Advanced load balancer, web server, & reverse proxy, NGINX. Available at:
https://www.nginx.com/ (last accessed: 12 July 2023).

Nicholas C. Zakas 11 Aug et al. (1970) Find and fix problems in your JavaScript code -
eslint - pluggable JavaScript linter, ESLint. Available at: https://eslint.org/ (last accessed: 10
July 2023).

Node.js Node.js. Available at: https://nodejs.org/en (last accessed: 12 July 2023).

Node(no data),Node version manager. Available at: https://github.com/nvm-sh/nvm (last
accessed: 12 July 2023).

Nuxt The intuitive web framework, Nuxt. Available at: https://nuxt.com/ (last accessed: 12
July 2023).

Postman Postman. Available at: https://www.postman.com/ (last accessed: 13 July 2023).

Pug Getting started, Pug. Available at: https://pugjs.org/api/getting-started.html (last
accessed: 12 July 2023).

Qrious Qrious, npm. Available at: https://www.npmjs.com/package/qrious (last accessed:

10 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 86

M netidee

sass CSS with superpowers, Sass. Available at: https://sass-lang.com/ (last accessed: 10 July

2023).

Sporny, M., Longley, D. and Chadwick , D. Verifiable credentials data model V1.1, W3C.
Available at: https://www.w3.0rg/TR/vc-data-model/#abstract (last accessed: 08 July
2023).

Sporny, M. et al. Decentralized identifiers (DIDs) v1.0, W3C. Available at:
https://www.w3.org/TR/did-core/ (last accessed: 08 July 2023).
Swagger Swaggereditor, SwaggerEditor. Available at: https://editor-next.swagger.io/ (last
accessed: 08 July 2023).

T. Lodderstedt,K. Yasuda, T. Looker (03/02/2023), OpenlD for Verifiable Credential Issuance.
Available at:
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html#name-introdu
ction.
Typescript JavaScript with syntax for types., TypeScript. Available at:
https://www.typescriptlang.org/ (last accessed: 14 July 2023).

Validatedld Validated ID - electronic signature and digital identity providers, Validated ID -
Electronic Signature and Digital Identity Providers. Available at:

https://www.validatedid.com/en (last accessed: 08 July 2023).

Validatedld Validated ID - electronic signature and digital identity providers, Validated ID -
Electronic Signature and Digital Identity Providers. Available at:

https://www.validatedid.com/en (last accessed: 08 July 2023).

Vue.js The progressive javascript framework, Vue.js - The Progressive JavaScript Framework
| Vue.js. Available at: https://vuejs.org/ (last accessed: 12 July 2023).
Vue Vue 118n. Available at: https://kazupon.github.io/vue-i18n/ (last accessed: 12 July
2023).

Vue What is Vuex?, Vuex. Available at: https://vuex.vuejs.org/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 87

Mfinetidee

Vue Vue Router, Vue Router | The official Router for Vue.js. Available at:

https://router.vuejs.org/ (last accessed: 10 July 2023).

Vuetify A material design framework for vue.js, Vuetify. Available at:

https://v2.vuetifyjs.com/en/ (last accessed: 02 July 2023).

Walt.id ,Walt.id Wallet Kit, walt.id. Available at: https://github.com/walt-id/waltid-walletkit
(last accessed: 08 July 2023).

Walt.id ,Walt.id Web wallet, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

Walt.id ,Walt.id Web wallet, walt.id. Available at:
https://github.com/walt-id/waltid-web-wallet (last accessed: 08 July 2023).

Walt.id Architecture - Demo web wallet architecture, Docs. Available at:
https://docs.walt.id/v/web-wallet/wallet-kit/issuer-and-verifier-portals/architecture (last
accessed: 12 July 2023).
Walt.id Identity and NFT infrastructure for developers., walt.id. Available at: https://walt.id/
(last accessed: 08 July 2023).

Walt.id Introduction, Docs. Available at:

https://docs.walt.id/v/web-wallet/wallet-kit/readme (last accessed: 08 July 2023).

Walt.id SS/ Kit, Docs. Available at: https://docs.walt.id/v/ssikit/ssi-kit/readme (last accessed:
13 July 2023).

Walt.id Verifiable credentials (VCS), Docs. Available at:
https://docs.walt.id/v/ssikit/ssi-kit/what-is-ssi/technologies-and-concepts/verifiable-crede
ntials-vcs-and-verifiable-presentations-vps (last accessed: 14 July 2023).

Walt.id Wallet Kit Image, Docker. Available at:
https://hub.docker.com/r/waltid/walletkit/tags (last accessed: 08 July 2023).

Yarn Home Page, Yarn. Available at: https://yarnpkg.com/ (last accessed: 12 July 2023).

netidee Call 17 | Developer Documentation | Project-ID 6344 88

https://github.com/walt-id/waltid-walletkit

