
Lemmaless Induction in Trace Logic

Ahmed Bhayat1(B) , Pamina Georgiou2 , Clemens Eisenhofer2 ,
Laura Kovács2 , and Giles Reger1

1 University of Manchester, Manchester, UK
{ahmed.bhayat,giles.reger}@manchester.ac.uk

2 TU Wien, Vienna, Austria
{pamina.georgiou,clemens.eisenhofer,laura.kovacs}@tuwien.ac.at

Abstract. We present a novel approach to automate the verification
of first-order inductive program properties capturing the partial correct-
ness of imperative program loops with branching, integers and arrays.
We rely on trace logic, an instance of first-order logic with theories, to
express first-order program semantics by quantifying over program exe-
cution timepoints. Program verification in trace logic is translated into
a first-order theorem proving problem where, to date, effective reason-
ing has required the introduction of so-called trace lemmas to establish
inductive properties. In this work, we extend trace logic with generic
induction schemata over timepoints and loop counters, reducing reliance
on trace lemmas. Inferring and proving loop invariants becomes an induc-
tive inference step within superposition-based first-order theorem prov-
ing. We implemented our approach in the Rapid framework, using the
first-order theorem prover Vampire. Our extensive experimental anal-
ysis shows that automating inductive verification in trace logic is an
improvement compared to existing approaches.

1 Introduction

Automating the verification of programs containing loops and recursive data
structures is an ongoing research effort of growing importance. While different
techniques for proving the correctness of such programs are in place [5,6,10,13],
most existing tools in this realm are heavily based on satisfiability modulo theo-
ries (SMT) backends [4,8] that come with strong theory reasoning but have lim-
itations in quantified reasoning. In contrast, first-order theorem provers enable
quantified reasoning modulo theories [19,24,25], such as linear integer arithmetic
and arrays. First-order reasoning can thus complement the aforementioned veri-
fication efforts when it comes to proving program properties with complex quan-
tification, as evidenced in our original work on the Rapid framework [11] which
utilised the Vampire theorem prover [2,20].

At a high level, the Rapid framework [11] works by translating a program
into trace logic, adding a number of ad hoc trace lemmas, asserting a desired
property, and then running an automated theorem prover on the result. The
effectiveness of this approach depends on the underlying trace lemmas. This
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Buzzard and T. Kutsia (Eds.): CICM 2022, LNAI 13467, pp. 191–208, 2022.
https://doi.org/10.1007/978-3-031-16681-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16681-5_14&domain=pdf
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0003-4856-4596
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-6353-952X
https://doi.org/10.1007/978-3-031-16681-5_14

192 A. Bhayat et al.

paper focuses on building induction support into the Vampire theorem prover
to reduce reliance on these lemmas.

To understand the role of these trace lemmas (and therefore, what support
must be added to the theorem prover) we briefly overview trace logic and the
Rapid framework in a little more detail. Trace logic is an instance of first-order
logic with theories, such that the program semantics of imperative programs
with loops, branching, integers, and arrays can be directly encoded in trace
logic. A key feature of this encoding is tracking program executions by quan-
tifying over execution timepoints (rather than only over single states), which
may themselves be parameterised by loop iterations. In principle, we can check
whether a translated program entails the desired property in trace logic using an
automated theorem prover for first-order logic. In our case, we make use of the
saturation-based theorem prover Vampire which implements the superposition
calculus [3]. However, a straightforward use of theorem proving often fails in
establishing validity of program properties in trace logic, as the proof requires
some specific induction, in general not supported by superposition-based reason-
ing.

In our previous work [11], we overcame this challenge by introducing so-
called trace lemmas capturing common patterns of inductive loop properties
over arrays and integers. Inductive loop reasoning in trace logic is then achieved
by generating and adding trace lemma instances to the translated program.
However, there are two significant limitations to using trace lemmas:

1. Trace lemmas capture inductive patterns/templates that need to be manually
identified, as induction is not expressible in first-order logic. As such, they
cannot be inferred by a first-order reasoner, implying that the effectiveness
of trace logic reasoning depends on the expressiveness of manually supplied
trace lemmas.

2. When instantiating trace lemmas with appropriate inductive program
variables, a large number of inductive properties are generated, causing
saturation-based proof search to diverge and fail to find program correctness
proofs in reasonable time.

In this paper we address these limitations by reducing the need for trace lemmas.
We achieve this by introducing a couple of novel induction inferences. Firstly,
multi-clause goal induction which applies induction in a goal oriented fashion as
many safety program assertions are structurally close to useful loop invariants.
Secondly, array mapping induction which covers certain cases where the required
loop invariant does not stem from the goal. Specifically, we make the following
contributions:

Contribution 1. We introduce two new inference rules, multi-clause goal
and array mapping induction, for lemmaless induction over loop iterations
(Sects. 5–6). The inference rules are compatible with any saturation-based
inference system used for first-order theorem proving and work by carrying
out induction on terms corresponding to final loop iterations.

Lemmaless Induction in Trace Logic 193

Fig. 1. Copying elements from arrays a and b to even/odd positions in array c.

Contribution 2. We implemented our approach in the first-order theorem
prover Vampire [20]. Further, we extended the Rapid framework [11] to
support inductive reasoning in the automated backend (Sect. 7). We carry
out an extensive evaluation of the new method (Sect. 8) comparing against
state-of-the-art approaches SeaHorn [12,13] and Vajra/Diffy [5,6].

2 Motivating Example

We motivate our work with the example program in Fig. 1. The program iterates
over two arrays a and b of arbitrary, but fixed length length and copies array
elements into a new array c. Each even position in c contains an element of a,
while each odd position an element of b. Our task is to prove the safety assertion
at line 14: at the end of the program, every element in c is an element from a
or b. This property involves (i) alternation of quantifiers and (ii) is expressed in
the first-order theories of linear integer arithmetic and arrays. Note that in the
safety assertion, the program variable length is modeled as a logical constant of
the same name of sort integer, whilst the constant arrays a and b are modeled
as logical functions from integers to integers. The mutable array variable c is
additionally equipped with a timepoint argument main end, indicating that the
assertion is referring to the value of the variable at the end of program execution.

Proving the correctness of this example program remains challenging for most
state-of-the-art approaches, such as [5,6,10,12], mainly due to the complex quan-
tified structure of our assertion. Moreover, it cannot be achieved in the current
Rapid framework either, as existing trace lemmas do not relate the values of
multiple program variables, notably equality over multiple array variables. In
fact, to automatically prove the assertion, we need an inductive property/trace

194 A. Bhayat et al.

lemma formalizing that each element at an even position in c is an element of a
or b at each valid loop iteration, thereby also restricting the bounds of the loop
counter variable i. Näıvely adding such a trace lemma would be highly ineffi-
cient as automated generation of verification conditions would introduce many
instances that are not required for the proof.

3 Related Work

Most of recent research in verifying inductive properties of array-manipulating
programs focuses on quantified invariant generation and/or is mostly restricted
to proving universally quantified program properties. The works [10,13] generate
universally quantified inductive invariants by iteratively inferring and strength-
ening candidate invariants. These methods use SMT solving and as such are
restricted to first-order theories with a finite model property. Similar logical
restrictions also apply to [23], where linear recurrence solving is used in combi-
nation with array-specific proof tactics to prove quantified program properties.
A related approach is described in [6], where relational invariants instead of
recurrence equations are used to handle universal and quantifier-free inductive
properties. Unlike these, our work is not limited to universal invariants but can
infer and prove inductive program properties with alternations of quantifiers.

With the use of extended expressions and induction schemata, our work
shares some similarity with template-based approaches [16,21,26]. These works
infer and prove universal inductive properties based on Craig interpolation, for-
mula slicing and/or SMT generalizations over quantifier-free formulas. Unlike
these works, we do not require any assumptions on the syntactic shape of the
first-order invariants. Moreover, our invariants are not restricted to the shape
of our induction schemata. Rather, we treat inductive (invariant) inferences as
additional rules of first-order theorem provers, maintaining thus the efficient
handling of arbitrary first-order quantifiers. Our framework can be used in arbi-
trary first-order theories, even with theories that have no interpolation property
and/or a finite axiomatization, as exemplified by our experimental results using
inductive reasoning over arrays and integers.

Inductive theorem provers, such as ACL2 [17] and HipSpec [7], implement
powerful induction schemata and heuristics. However these provers, to the best
of our knowledge, automate inductive reasoning for only universally quantified
inductive formulas using a goal/subgoal architecture, for which user-guidance
is needed to split conjectures into subgoals. In contrast, our work can prove
formulas of full first-order logic by integrating and fully automating induction
in saturation-based proof search. By combining induction with saturation, we
allow these techniques to interleave and complement each other, something that
pure induction provers cannot do. Unlike tools such as Dafny [22], our approach
is fully automated requiring no user annotations.

First-order theorem proving has been used to derive invariants with alterna-
tions of quantifiers in our previous work [11]. Our current work generalizes the
inductive capabilities of [11] by reducing the expert knowledge of [11] in intro-
ducing inductive lemmas to guide the process of proving inductive properties.

Lemmaless Induction in Trace Logic 195

4 Preliminaries

Many-Sorted First-Order Logic. We consider standard many-sorted first-order
logic with built-in equality, denoted by � . By s = F [u] we indicate that the
term u is a subterm of s surrounded by (a possibly empty) context F .

We use x, y to denote variables, l, r, s, t for terms and sk for Skolem symbols.
A literal is an atom A or its negation ¬A. A clause is a disjunction of literals
L1 ∨ ... ∨ Ln, for n ≥ 0. Given a formula F , we denote by CNF(F) the clausal
normal form of F .

For a logical variable x of sort S we write xS . A first-order theory denotes
the set of all valid formulas on a class of first-order structures. Any symbol in
the signature of a theory is considered interpreted. All other symbols are unin-
terpreted. In particular, we use the theory of linear integer arithmetic denoted
by I and the boolean sort B. We consider natural numbers as the term algebra
N with four symbols in the signature: the constructors 0 and successor suc, as
well as pred and < respectively interpreted as the predecessor function and less-
than relation. Note that we do not define any arithmetic on naturals. We assume
familiarity with the basics of saturation theorem proving.

4.1 Trace Logic L
Trace logic, denoted as L, is an instance of many-sorted first-order logic with
theories. Its signature is Σ(L) := SN ∪ SI ∪ SL ∪ SV ∪ Sn, includes respectively
the signatures of the theory of natural numbers N (as a term algebra), the in-
built integer theory I, a set SL of timepoints (also referred to as locations), a
set of symbols representing program variables SV , as well as a set of symbols
representing last iteration symbols Sn. For more details on trace logic, refer
to [11].

4.2 Programming Model W
We consider programs written in a while-like programming language W, as
given in the (partial) language grammar of Fig. 2. Programs in W contain muta-
ble and immutable integer as well as integer-array program variables and consist
of a single top-level function main comprising arbitrary nestings of while-loops
and if-then-else branching. We consider expressions over booleans and integers
without side effects.

4.3 Translating Expressions to Trace Logic

Locations and Timepoints. We consider programs as sets of locations over
time: given a program statement s, we denote its location by ls of type L,
the location/timepoint sort, corresponding to the line of the program where
the statement appears. When s is a while-loop the corresponding location is
revisited at multiple timepoints of the execution. Thus, we model such locations

196 A. Bhayat et al.

Fig. 2. Grammar of W.

as functions over loop iterations ls : N �→ L, where the argument of sort N

intuitively corresponds to the number of loop iterations. Further, for each loop
statement s we model the last loop iteration by a symbol nls ∈ Sn of target sort
N. Let p be a program statement or context. We use startp to denote the location
at which the execution of p has started and endp to denote the location that
occurs just after the execution of p. We use main end to denote the location at
the end of the main function.

Example 1. Consider line 6 of our running example in Fig. 1. Term l6 corre-
sponds to the timepoint of the first assignment of 0 to program variables i while
l8(0) and l8(nl8) denote the timepoints of the loop at the first and last loop iter-
ation respectively. Further, we can quantify over all executions of the loops by
quantifying over all iterations smaller than the last e.g. ∀itN.it < nl8 → F [l8(it)]
where F [l8(it)] is some first-order formula.

Program Variables. Program variable are expressed as functions over time-
points. We express an integer variable v as a function v : L �→ I, where v ∈ SV .
Let tp be a term of sort L. Then, v(tp) denotes the value of v at timepoint tp.
We model numeric array variables v with an additional argument of sort I to
denote the position of an array access. We obtain v : L× I �→ I. Immutable vari-
ables are modelled as per their mutable counterparts, but without the timepoint
argument.

Example 2. To denote program variable i at the location of the assignment in
line 6, we use the equation i(l6)� 0. For the first assignment of c within the
loop, we write c(l8(it), 2 × i(l8(it)))� a(i(l8(it))) for some iteration it. As a is a
constant array, the timepoint argument is omitted.

Program Expressions. Let e be an arbitrary program expression. We write
�e�(tp) to denote the logical denotation of e at timepoint tp. We do not provide
the full inductive definition of the denotation function � �(tp) here, just a few
of its cases. If e is an integer variable v, then �e�(tp) = v(tp). If e is an integer

Lemmaless Induction in Trace Logic 197

array access of the form v[e1], then �e�(tp) = v(tp, �e1�(tp)). If e is an expression
of the form e1 + e2, then �e�(tp) = �e1�(tp) + �e2�(tp).

Common Abbreviations. Let e, e1, e2 be program expressions, tp1, tp2 be two
timepoints and v ∈ SV denote the functional representation of a program vari-
able. The trace logic formula v(tp1)� v(tp2) asserts that the variable v has the
same value at timepoints tp1 and tp2. We introduce definitions for two formu-
las that are widely used in defining the axiomatic semantics of W in the next
section. To ease the notational burden, we ignore array variables in the defini-
tions provided. Firstly, we introduce a definition for the formula that expresses
that the value of a variable v changes between timepoints tp1 and tp2 whilst the
values of all other variables remain the same.

Update(v, e, tp1, tp2) := v(tp2)� �e�(tp1) ∧ ∧
v′∈SV \{v} v′(tp1)� v′(tp2),

Secondly, we introduce a definition for the formula that expresses that the value
of all variables stays the same between timepoints tp1 and tp2

EqAll(tp1, tp2) :=
∧

v∈SV

v(tp1)� v(tp2)

4.4 Axiomatic Semantics of W in L
The semantics of a program in W is given by the conjunction of the respective
axiomatic semantics of each program statement of W occurring in the program.
In general, we define reachability of program statements over timepoints rather
than program states. We briefly recall the axiomatic semantics of assignments
and while-loops respectively, again ignoring the array variable case.

Assignments. Let s be an assignment v = e, where v is an integer-valued pro-
gram variable and e is an expression. The evaluation of s is performed in one
step such that, after the evaluation, the variable v has the same value as e before
the evaluation while all other variables remain unchanged. We obtain

�s� := Update(v, e, starts, ends) (1)

While-Loops. Let s be the while-statement while(Cond){c} where Cond is the
loop condition. The semantics of s is given by the conjunction of the following
properties: (2a) the iteration nls is the first iteration where Cond does not hold
anymore, (2b) jumping into the loop body does not change the values of the
variables, (2c) the values of the variables at the end of evaluating the loop s are
equal to the values at the loop condition location in iteration nls. As such, we
have

�s� := ∀its
N
. (its < nls → �Cond�(tps(its)))

∧ ¬�Cond�(tp(nls)) (2a)
∧ ∀itN. (it < nls → EqAll(startc, tps(it)) (2b)
∧ EqAll(ends, tps(nls)) (2c)

198 A. Bhayat et al.

4.5 Trace Lemma Reasoning

Trace logic L allows one to naturally express common program behavior over
timepoints. Specifically, it allows us to reason about (i) all iterations of a loop,
and (ii) the existence of specific timepoints. In [11], we leveraged such reasoning
with the use of so-called trace lemmas, capturing common inductive properties of
program loops. Trace lemmas are instances of the schema of bounded induction
for natural numbers

(
P (bl) ∧ ∀xN.

(
(bl ≤ x < br ∧ P (x)) → P (suc(x))

)) →
∀xN.

(
bl ≤ x < br ∧ P (x)

) (3)

An example of a trace lemma would be the statement formalising that a
certain program variable’s value remains unchanged from a specific iteration
to the end of loop execution. In this work, instead of adding instances of (3)
statically to strengthen loop semantics, we move induction into the first-order
prover. The advantage of adding instances of (3) dynamically is that during proof
search we have more information available and can thus perform induction in a
more controlled and goal oriented fashion.

Nonetheless, due to some limitations in our first-order prover, we are unable
to completely do away with additional lemmas. Specifically, we need to nudge
the prover to deduce that a loop counter expression will, at the end of loop
execution, have the value of the expression it is compared against in the loop
condition.

(A) Equal Lengths Trace Lemma We define a common property of loop
counter expressions. We call a program expression e dense at loop w if:

Densew,e := ∀itN.
(
it < nlw →

(
�e�(tpw(suc(it)))� �e�(tpw(it)) ∨
�e�(tpw(suc(it)))� �e�(tpw(it)) + 1

))
.

Let w be a while-statement, Cw := e < e’ be the loop condition where e’
is a program expression that remains constant during iterations of w. The equal
lengths trace lemma of w, e and e’ is defined as

(
Densew,e ∧ �e�(tpw(0)) ≤ �e’�(tpw(0))

) → (A)
�e�(tpw(nlw))� �e’�(tpw(nlw)).

Trace lemma A states that a dense expression e smaller than or equal to some
expression e’ that does not change in the loop, will eventually, specifically in
the last iteration, reach the same value as e’. This follows from the fact that we
assume termination of a loop, hence we assume the existence of a timepoint nlw
where the loop condition does not hold anymore. As a consequence, given that
the loop condition held at the beginning of the execution, we can derive that
the loop counter value immediately after the loop execution �e�(tpw(nlw)) will
necessarily equate to �e’�(tpw(0)) = �e’�(tpw(nlw)). Note that a similar lemma
can just as easily be added for dense but decreasing loop counters.

Lemmaless Induction in Trace Logic 199

5 Multi-Clause Goal Induction for Lemmaless Induction

As mentioned above, the main focus of our work is moving induction into the
saturation prover. We achieve this by adding inference rules that apply induction
to loop counter terms. We leverage recent theorem proving effort on bounded
(integer) induction in saturation [14,15]. However, as illustrated in the following,
these recent efforts cannot be directly used in trace logic reasoning since we
need to (i) adjust bounded induction for the setting of natural numbers, and
(ii) generalise to multi-clause induction. We discuss these steps using Fig. 1.
Verifying the safety assertion of Fig. 1 requires proving the trace logic formula:

∀posI.∃jI. (0 ≤ pos < (2 × length) (4)
→ (c(main end, pos)� a(j) ∨ c(main end, pos)� b(j))

For proving (4), it suffices to prove that the following, slightly modified statement
is a loop invariant of Fig. 1:

∀itN. it < nlw → ∀posI.∃jI. (0 ≤ pos < (2 × i(tpw(it)))) (5)
→ (c(tpw(it), pos)� a(j) ∨ c(tpw(it), pos)� b(j))

where w refers to the loop statement in Fig. 1. As part of the program semantics
in trace logic, we have formula (6) which links the value of c at the end of the
loop to its value at the end of the program. Moreover, using the trace lemma A,
we also derive formula (7) in trace logic:

∀posI.c(tpw(nlw), pos) � c(main end, pos) (6)
i(tpw(nlw)) � length (7)

It is tempting to think that in the presence of these clauses (6)–(7), a saturation-
based prover would rewrite the negated conjecture (4) to

¬(∀posI.∃jI. (0 ≤ pos < (2 × i(tpw(nlw))))
→ (c(tpw(nlw), pos)� a(j) ∨ c(tpw(nlw), pos)� b(j)))

from which a bounded natural number induction inference (similar to the
IntInd< rule of [15]) would quickly introduce an induction hypothesis with (5)
as the conclusion, by induction over nlw. However, this is not the case, as most
saturation provers work by first clausifying their input. The negated conjecture
(4) would not remain a single formula, but be split into the following clauses
where sk is a Skolem symbol:

a(x) � c(main end, sk) b(x) � c(main end, sk)
¬(sk ≤ 0) sk ≤ 2 × length

These clauses can be rewritten using (6)–(7). For example, the first clause
can be rewritten to a(x) � c(tpw(nlw, sk)). However, attempting to prove the
negation of any of the rewritten clauses individually via induction would merely

200 A. Bhayat et al.

result in the addition of useless induction formulas to the search space. For
example, attempting to prove ∀itN. it < nlw → (∃xI. a(x)� c(tpw(it), sk)), is
pointless as it is clearly false. The solution we propose in this work is to use multi-
clause induction, whereby we attempt to prove the negation of the conjunction
of multiple clauses via a single induction inference. For our running example
Fig. 1, we can use the following rewritten versions of clauses from the negated
conjecture a(x) � c(tpw(nlw, sk)), b(x) � c(tpw(nlw, sk)), and sk ≤ 2×i(tpw(nlw)),
with induction term nlw, to obtain the induction formula:

¬
(

∀xI. a(x) � c(i(tpw(0)), sk)
∧ ∀xI. b(x) � c(i(tpw(0), sk))
∧ sk ≤ 2 × i(tpw(0))

)

∧ StepCase

→
∀itN. it < nlw →

¬(∀xI. a(x) � c(i(tpw(it), sk)
∧∀xI. b(x) � c(i(tpw(it), sk)
∧ sk ≤ 2 × i(tpw(it))

)

(8)
where StepCase is the formula:

∀itN. it < nlw ∧
¬

(
∀xI. a(x) � c(i(tpw(it)), sk)

∧ ∀xI. b(x) � c(i(tpw(it)), sk)
∧ sk ≤ i(tpw(y)

)
→

¬
(

∀xI. a(x) � c(i(tpw(suc(it)), sk)
∧ ∀xI. b(x) � c(i(tpw(suc(it)), sk)
∧ sk ≤ 2 × i(tpw(suc(it)))

)

Using the induction formula (8), a contradiction can then easily be derived,
establishing validity of (4). In what follows, we formalize the multi-clause induc-
tion principle we used above. To this end, we introduce a generic inference rule,
called multi-clause goal induction and denoted as MCGLoopInd.

C1[nlw] C2[nlw] . . . Cn[nlw]

CNF

⎛

⎜
⎜
⎝

⎛

⎝
¬(C1[0] ∧ C2[0] ∧ . . . ∧ Cn[0]) ∧

∀itN.

(
((it < nlw) ∧ ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it])) →
¬(C1[suc(it)] ∧ C2[suc(it)] ∧ . . . ∧ Cn[suc(it)]))

)
⎞

⎠

→ (∀itN. (it < nlw) → ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it]))

⎞

⎟
⎟
⎠

For performance reasons, we mandate that the premises C1 . . . Cn be derived
from trace logic formulas expressing safety assertions and not from formulas
encoding the program semantics. The MCGLoopInd rule is formalised only as
an induction inference over last loop iteration symbols. While restricting to nlw
terms is of purely heuristic nature, our experiments justify the necessity and
usefulness of this condition (Sect. 8).

6 Array Mapping Induction for Lemmaless Induction

Multi-clause goal induction neatly captures goal-oriented application of induc-
tion. Nevertheless, there are verification challenges where MCGLoopInd fails to
prove inductive loop properties. This is particularly the case for benchmarks

Lemmaless Induction in Trace Logic 201

Fig. 3. Adding and subtracting n to every element of array a.

containing multiple loops, such as in Fig. 3. We first discuss the limitations of
MCGLoopInd using Fig. 3, after which we present our solution, the array mapping
induction inference.

Let w1 be the first loop statement of Fig. 3 and w2 be the second loop. Using
MCGLoopInd, we would attempt to prove

∀itN. it ≤ nlw2 →
∀posI. (0 ≤ pos < j(tpw2(it))) → (a(tpw2(it), pos)� a(main start, pos) (9)

However, formula (9) is not a useful invariant for proving the assertion. Rather,
for w2 we need a loop invariant similar to

∀itN. it ≤ nlw2 → ∀posI. (0 ≤ pos < j(tpw2(it)))
→ (a(tpw2(it), pos)� a(tpw2(0), pos) − n

(10)

and a similar loop invariant for loop w1. The loop invariant (10) is however not
linked to the safety assertion of Fig. 3, and thus multi-clause goal induction is
unable to infer and prove with it. To aid with the verification of benchmarks such
as Fig. 3, we introduce another induction inference which we call array mapping
induction. In this case, we trigger induction not on clauses and terms coming
from the goal, but on clauses and terms appearing in the program semantics.

The array mapping induction inference rule, denoted as AMLoopInd is given
below. Essentially, AMLoopInd involves analysing a clause set to heuristically
devise a suitable loop invariant. Guessing a candidate loop invariant is a difficult
problem. The AMLoopInd inference is triggered if clauses of the shapes of C1 and

202 A. Bhayat et al.

C2 defined below are present in the clause set. Intuitively, C2 can be read as
saying that on each round of some loop w, some array a at position i is set to some
function F of its previous value at that position. Clause C1 states that i increases
by m in each round of the loop. Together the two clauses suggest that the loop is
mapping the function F to each mth location of the array starting from the array
cell located at i(tpw(0)). This is precisely what the induction formula attempts
to prove. Note that for ease of notation, we present the inference for the case
where the indexing variable is increasing. It is straightforward to generalise to
the decreasing case. The AMLoopInd rule is1

C1 = i(tpw(suc(x)))� i(tpw(x)) + m ∨ ¬(x < nlw)

C2 = a
(
tpw(suc(x)), i(tpw(x))

) � F [a
(
tpw(x), i(tpw(x))

)
] ∨ ¬(x < nlw)

CNF(StepCase → Conclusion)

where w is some loop and F an arbitrary non-empty context. Let i0 be an abbre-
viation for i(tpw(0)). Then:

StepCase : ∀itN.
(∀yI. it < nlw ∧

y < i(tpw(it)) − i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(it), i0 + y)� F [a(tpw(0), i0 + y)]
) →

(∀yI. y < i(tpw(suc(it))) − i0 ∧ y ≥ 0 ∧ y mod m = 0
→ a(tpw(suc(it)), i0 + y)� F [a(tpw(0), i0 + y)])

Conclusion : ∀xI. x < i(tpw(nlw)) − i0 ∧ x ≥ 0 ∧ x mod m = 0
→ a(tpw(nlw), i0 + x)� F [a(tpw(0), i0 + x)]

To prove StepCase, it is necessary to be able to reason that positions in the
array a remain unchanged until visited by the indexing variable. This can be
achieved via the addition of another induction to the conclusion of the inference.
We do not provide details of this induction formula here, but it is added to the
conclusion by our implementation which we present in Sect. 7. The AMLoopInd
inference is thus sufficient to prove the assertion of Fig. 3. While AMLoopInd
is a limited approach for guessing inductive loop invariants, we believe it can
be extended towards further, more generic methods to guess invariants, as dis-
cussed in Sect. 9. We conclude this section by noting that our induction rules
are sound, based on trace logic semantics. Since both rules merely add instances
of the bounded induction schema for natural numbers (3) to the search space,
soundness is trivial and we do not provide a proof.

7 Implementation

Our approach is implemented as an extension of the Rapid framework, using
the first-order theorem prover Vampire.
1 In the conclusion we ignore the base case of the induction formula as it is trivially

true.

Lemmaless Induction in Trace Logic 203

Extensions to Rapid. Rapid takes as an input a W program along with a
property expressed in L. It outputs the semantics of the program expressed in L
using smt-lib syntax along with the property to be proven. For our “lemmaless
induction” framework, we have extended Rapid as follows. Firstly, we prevent
the output of all trace lemmas other than trace lemma A (Sect. 4.5). We added
custom extensions to the smt-lib language to identify trace logic symbols, such
as loop iteration symbols, program variables, within the Rapid encodings. This
way, trace logic symbols to be used for induction inferences are easily identified
and can also be used for various proving heuristics. We refer to this version
(available online2) as Rapidl−.

Extensions to Vampire. We implemented the MCGLoopInd inference rule and a
slightly simplified version of the AMLoopInd rule in a new branch of Vampire3.
The main issue with the induction inferences MCGLoopInd and AMLoopInd is
their explosiveness which can cause proof search to diverge. We have, there-
fore, introduced various heuristics in the implementation to try and control
them. For MCGLoopInd we not only necessitate that the premises are derived
from the conjecture, but that their derivation length from the conjecture is
below a certain distance controlled by an option. The premises must be unit
clauses unless another option multi literal clauses is toggled on. The option
induct all loop counts allows MCGLoopInd induction to take place on all loop
counter terms, not just final loop iterators. In order for the MCGLoopInd and
AMLoopInd inferences to be applicable, we need to rewrite terms not containing
final loop counters to terms that do. However, rewriting in Vampire is based on
superposition, which is parameterised by a term order preventing smaller terms
to be rewritten into larger ones. In this case, the term order may work against
us and prevent such rewrites from happening. We implemented a number of
heuristics to handle this problem. One such heuristic is to give terms represent-
ing constant program variables a large weight in the ordering. Then, equations
such as alength � i(tpw(nlw)) will be oriented left to right as desired. We com-
bined these options with others to form a portfolio of strategies4 that contains
13 strategies each of which runs in under 10s.

8 Experimental Results

Benchmarks. For our experiments, we use a total of 111 examples whose
verification involved proving safety assertions of different logical complexity
(quantifier-free, only universally/existentially quantified, and with quantifier
alternations). Our benchmarks are divided into four groups, as indicated in
Table 1: (i) the first 13 problems have quantifier-free proof obligations; (ii) the
majority of benchmarks, in total 68 examples, contain universally quantified
2 See commit 285e54b7e of https://github.com/vprover/rapid/tree/ahmed-induction-

support.
3 See commit 4a0f319f of https://github.com/vprover/vampire/tree/ahmed-rapid.
4 --mode portfolio --schedule rapid induction..

https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/vampire/tree/ahmed-rapid

204 A. Bhayat et al.

Table 1. Experimental results.

Lemmaless Induction in Trace Logic 205

safety assertions; (iii) 7 problems come with the task of verifying existentially
quantified assertions; (iv) and the last 23 programs contain assertions with alter-
nation of quantifiers. The examples from (i)-(ii), a total of 81 programs, come
from the array verification benchmarks of SV-COMP repository [1], with most
of these examples originating from [9,13].5 These examples correspond to the set
of those SV-COMP benchmarks which use the C fragment supported by Rapid;
specifically, when selecting examples (i)-(ii) from SV-COMP, we omitted exam-
ples containing pointers or memory management. All SV-COMP examples from
(i)-(ii) are adapted to our input format, as for example arrays in trace logic
are treated as unbounded data structures. Further, the examples (iii)-(iv) are
new examples crafted by us, in total 30 new examples. They contain existential
and alternating quantification in safety assertions. We intend to submit these 30
examples from (iii)-(iv) to SV-COMP.

Experimental Setting. We used two versions of Rapid in our experiments.
First, (1) Rapidl− denotes our Rapid approach, using lemmaless induction
MCGLoopInd and AMLoopInd in Vampire. Further, (2) Rapidl+ uses trace lem-
mas for inductive reasoning, as described in [11]. We also compared Rapidl−

with other verification tools. In particular, we considered (3) SeaHorn and
(4) Vajra (and its extension Diffy that produced for us exactly the same
results as Vajra). SeaHorn converts the program into a constrained horn
clause (CHC) problem and uses the SMT solver Z3 for solving. Vajra and
Diffy implement inductive reasoning and recurrence solving over loop coun-
ters; in the background, they also use Z3.

Rapid Experiments. Table 1 shows that Rapidl− is superior to Rapidl+, as
it solves a total of 93 problems, while Rapidl+ only proved 78 assertions cor-
rect. Particularly, Rapidl− can solve benchmark merge interleave 2 corre-
sponding to our motivating example 1, and other challenging problems such as
find max local 1 also containing quantifier alternations.

While Rapidl− can solve a total of ten problems more than Rapidl+, it is
interesting to look into which problems can now be solved. Many of the newly
solved problems are structurally very close to the loop invariants needed to prove
them. This is where multi-clause goal-oriented induction MCGoalInd makes the
biggest impact. For instance, this allows Rapidl− to prove the partial correctness
of find max from second 0 and find max from second 1.

On the other hand, Rapidl− also lost two challenging benchmarks that were
previously solved by Rapidl+, namely swap 0 and partition 5. This could be
for two reasons: (1) the strategies in the induction schedule of Rapidl− are
too restrictive for such benchmarks, or (2) the step case of the induction axiom
introduced by our two rules are too difficult for Vampire to prove. Strengthening
lemmaless induction with additional trace lemmas from Rapidl+ is an interesting
line of further work.

5 Artifact evaluation: in order to reproduce the results reported in this section, please
follow the instructions at https://github.com/vprover/vampire publications/tree/
master/experimental data/CICM-2022-RAPID-INDUCTION.

https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION
https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION

206 A. Bhayat et al.

Comparing with other tools. Both, SeaHorn and Vajra/Diffy require
C code as input, whereas Rapid uses its own syntax. We translated our bench-
marks to C code expressing the same problem. However, a direct comparison of
Rapid, and in particular Rapidl−, with most other verifiers requiring standard
C code as an input is not possible as we consider slightly different semantics. In
contrast to SeaHorn and Vajra/Diffy, we assume that integers and arrays are
unbounded and that all array positions are initialized by arbitrary data. Further,
we can read/write at any array position without allocating the accessed memory
beforehand. Apart from semantic differences, Rapid can directly express asser-
tions and assumptions containing quantifiers and put variable contents from
different points in time into relation. In order to deal with the latter, we intro-
duced history variables in the code provided to SeaHorn and Vajra/Diffy.
Quantification was simulated by non-deterministically assigned variables and by
loops. As a result, SeaHorn verified 13 examples, whereas Vajra/Diffy 47
of our benchmarks. As Vajra/Diffy restrict their input programs to contain
only loops having very specific loop-conditions, several of our benchmarks failed.
For example, i < length is permitted, whereas a[i] = 0 is not. Vajra/Diffy
could prove correctness for nearly all the programs satisfying these restrictions.
SeaHorn, on the other hand, has problems with the complexity introduced by
the arrays. It could solve especially those benchmarks whose correctness do not
depend on the arrays’ content.

9 Future Directions and Conclusion

We introduced lemmaless induction to fully automate the verification of induc-
tive properties of program loops with unbounded arrays and integers. We intro-
duced goal-oriented and array mapping induction inferences, triggered by loop
counters, in superposition-based theorem proving. Our results show that lem-
maless induction in trace logic outperforms other state-of-the-art approaches
in the area. There are various ways to further develop lemmaless induction in
trace logic. On larger benchmarks, particularly those containing multiple loops,
our approach struggles. For loops where the required invariant is not connected
to the conjecture, we introduced array mapping induction. However, the array
mapping induction inference is limited in the form of invariants it can generate.
We would like to investigate other methods, such as machine learning for syn-
thesising loop invariants that are not too prolific. A completely different line of
research that we are currently working on, is updating the trace logic syntax
and semantics of W to deal with memory and memory allocation, aiming to
efficiently reason about loop operations over the memory.

As shown in [18], the validity problem for first-order formulas of linear arith-
metic extended with non-theory function symbols is Π1

1-complete. Therefore,
we do not expect any completeness result for inductive theorem proving. Prov-
ing relative completeness results for our verification framework is an interesting
question.

Lemmaless Induction in Trace Logic 207

Acknowledgements. This research was partially supported by the ERC consolidator
grant ARTIST 101002685, the FWF research project LogiCS W1255-N23, the TU Wien
SecInt doctoral program, and the EUProofNet Cost Action CA20111. Our research was
partially funded by the Digital Security by Design (DSbD) Programme delivered by
UKRI to support the DSbD ecosystem.

References

1. SV-comp repository. https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
2. Vampire website. https://vprover.github.io/
3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,

Voronkov, A. (Eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19–99.
Elsevier Science (2001)

4. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

5. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs
with full-program induction. In: TACAS 2020. LNCS, vol. 12078, pp. 22–39.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5 2

6. Chakraborty, S., Gupta, A., Unadkat, D.: Diffy: inductive reasoning of array
programs using difference invariants. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 911–935. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9 42

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2 27

8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

9. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11957-6 14

10. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 259–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 14

11. Georgiou, P., Gleiss, B., Kovács, L.: Trace logic for inductive loop reasoning. In:
2020 Formal Methods in Computer Aided Design (FMCAD), pp. 255–263. IEEE
(2020)

12. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

13. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 248–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 15

14. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.)

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://vprover.github.io/
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-030-45190-5_2
https://doi.org/10.1007/978-3-030-81688-9_42
https://doi.org/10.1007/978-3-030-81688-9_42
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-11957-6_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-01090-4_15

208 A. Bhayat et al.

CICM 2020. LNCS (LNAI), vol. 12236, pp. 123–137. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53518-6 8

15. Hozzová, P., Kovács, L., Voronkov, A.: Integer induction in saturation. In: Platzer,
A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 361–377.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 21

16. Karpenkov, E.G., Monniaux, D.: Formula slicing: inductive invariants from precon-
ditions. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 169–185.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 11

17. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic
based on common Lisp. In: IEEE Transactions on Software Engineering, pp. 203–
213 (1997)

18. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8 19

19. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.
In: POPL, pp. 260–270 (2017)

20. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

21. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 12

22. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

23. Rajkhowa, P., Lin, F.: Extending VIAP to handle array programs. In: Piskac, R.,
Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 38–49. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03592-1 3

24. Bjoner, N., Reger, G., Suda, M., Voronkov, A.: AVATAR modulo theories. In:
GCAI, pp. 39–52 (2016)

25. Reger, G., Schoisswohl, J., Voronkov, A.: Making theory reasoning simpler. In:
TACAS 2021. LNCS, vol. 12652, pp. 164–180. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72013-1 9

26. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI, pp. 223–234 (2009)

https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-030-79876-5_21
https://doi.org/10.1007/978-3-319-49052-6_11
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-03592-1_3
https://doi.org/10.1007/978-3-030-72013-1_9
https://doi.org/10.1007/978-3-030-72013-1_9

	Lemmaless Induction in Trace Logic
	1 Introduction
	2 Motivating Example
	3 Related Work
	4 Preliminaries
	4.1 Trace Logic L
	4.2 Programming Model W
	4.3 Translating Expressions to Trace Logic
	4.4 Axiomatic Semantics of W in L
	4.5 Trace Lemma Reasoning

	5 Multi-Clause Goal Induction for Lemmaless Induction
	6 Array Mapping Induction for Lemmaless Induction
	7 Implementation
	8 Experimental Results
	9 Future Directions and Conclusion
	References

