
Formal Methods in Computer-Aided Design 2022

The RAPID Software Verification Framework

Pamina Georgiou a, Bernhard Gleiss a, Ahmed Bhayat b, Michael Rawson a, Laura Kovács a, Giles Reger b

a TU Wien, Vienna, Austria
b University of Manchester, Manchester, United Kingdom

{ pamina.georgiou, bernhard.gleiss, michael.rawson, laura.kovacs }@tuwien.ac.at, { ahmed.bhayat, giles.reger }@manchester.ac.uk

Abstract—We present the RAPID framework for automatic soft-
ware verification by applying first-order reasoning in trace
logic. RAPID establishes partial correctness of programs with
loops and arrays by inferring invariants necessary to prove
program correctness using a saturation-based automated theorem
prover. RAPID can heuristically generate trace lemmas, common
program properties that guide inductive invariant reasoning.
Alternatively, RAPID can exploit nascent support for induction
in modern provers to fully automate inductive reasoning without
the use of trace lemmas. In addition, RAPID can be used as an
invariant generation engine, supplying other verification tools
with quantified loop invariants necessary for proving partial
program correctness.

I. INTRODUCTION

State-of-the-art deductive verification tools for programs con-
taining inductive data structures ([1], [2], [3], [4], [5]) largely
depend on satisfiability modulo theories (SMT) solvers to dis-
charge verification conditions and establish software correct-
ness. These approaches are mostly limited to reasoning over
universally-quantified properties in fragments of first-order
theories: arrays, integers, etc. In contrast, RAPID supports
reasoning with arbitrary quantifiers in full first-order logic with
theories [6]. Program semantics and properties are directly
encoded in trace logic by quantifying over timepoints of pro-
gram execution. This allows simultaneous reasoning about sets
of program states, unlike model-checking approaches [2][7].
The gain in expressiveness is beneficial for reasoning about
programs with unbounded arrays [6] or to prove security
properties [8], for example.
This paper presents what RAPID can do, sketches its design
(Section III), and describes its main components and imple-
mentation aspects (Sections IV–VII). Experimental evaluation
using the SV-COMP benchmark [9] shows RAPID’s efficacy
in verification (Section VIII).
Given a program loop annotated with pre/post-conditions,
RAPID offers two modes for proving partial program correct-
ness. In the first, RAPID relies on so-called trace lemmas,
apriori-identified inductive properties that are automatically
instantiated for a given program. In the second, RAPID

delegates inductive reasoning to the underlying first-order
theorem prover [10][11], without instantiating trace lemmas.
In either mode, the automated theorem prover used by RAPID
is VAMPIRE [12]. RAPID can also synthesize quantified invari-
ants from program semantics, complementing other invariant-
generation methods.

1 func main() {
2 const Int[] a;
3 const Int alength;
4 Int[] b, c;
5 Int blength, clength, i = 0, 0, 0;
6 while(i < alength) {
7 if(a[i] >= 0) {
8 b[blength] = a[i];
9 blength = blength+1;

10 } else {
11 c[clength] = a[i];
12 clength = clength+1;
13 } i = i+1;
14 }
15 }

Fig. 1: Program partitioning an array a into two arrays b, c

containing positive and negative elements of a respectively.

Related Work: Verifying programs with unbounded data struc-
tures can use model checking for invariant synthesis. Tools like
Spacer/Quic3 ([4], [2]), SEAHORN [1] or FREQHORN [7] are
based on constrained horn clauses (CHC) and use either fixed-
point calculation or sampling/enumerating invariants until a
given safety assertion is proved. These approaches use SMT
solvers to check validity of invariants and are limited to
quantifier-free or universally-quantified invariants. Recurrence
solving and data-structure-specific tactics can be used to infer
and prove quantified program properties [3]. DIFFY [13] and
VAJRA [5] derive relational invariants of two mutations of a
program such that inductive properties can be enforced over
the entire program, without invariants for each individual loop.

II. MOTIVATING EXAMPLE

We motivate RAPID using the program in Figure 1, written in a
standard while-like programming language W . Each program
in W consists of a single top-level function main, with arbi-
trary nestings of if-then-else and while statements. W includes
optionally-mutable integer (array) variables, and standard side-
effect-free expressions over Booleans and integers.
Semantics and properties of W-programs are expressed in
trace logic L, an instance of many-sorted first-order logic with
theories and equality [6]. A timepoint in trace logic is a term of
sort L that refers to a program location. For example, l5 refers
to line 5 in Figure 1. If a program location occurs in a loop,
a timepoint is represented by a function l : N 7→ L, where the
argument is a natural number representing a loop iteration.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_32 This article is licensed under a Creative
Commons Attribution 4.0 International License

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of the RAPID verification framework.

For example, l6(0) denotes the first iteration of the loop before
entering the loop body. A mutable scalar variable v is modeled
as a function over time v : L 7→ I. An array variable is
modeled as a function v : L × I 7→ I, where array indices
are represented by integer arguments. For constant variables
we omit the timepoint argument. We use a constant nli : N to
denote the last iteration of the loop starting at li. When a loop
is nested within other loops, the last iteration is a function over
timepoints of all enclosing loops; lend denotes the timepoint
after program execution. For Figure 1, l6(nl6) denotes the
program location of the loop at its last iteration, when the loop
condition no longer holds. We assume that programs terminate,
and hence RAPID focuses on partial correctness.
Figure 1 creates two new arrays, b and c, containing positive
and negative elements from the input array a respectively. Note
that the arrays are unbounded, and we use the symbolic, non-
negative constant alength to bound the length of the input
array a. The constraint that alength be non-negative can be
expressed within a conjecture (see (1) below for example). A
safety property we want to check is that for any position in
b there exists a position in a such that both values are equal
within the respective array bounds (and similarly for c). This
equates to the following conjecture expressed in trace logic1:

∀posI. ∃pos′I. 0 ≤ pos < blength(lend) ∧ alength ≥ 0 →
0 ≤ pos′ < alength ∧ b(lend, pos) = a(pos′),

(1)
To the best of our knowledge other verification approaches
cannot automatically validate (1) due to quantifier alternation,
but RAPID proves this property for Figure 1.

III. THE RAPID FRAMEWORK

The RAPID framework consists of approximately 10,000 lines
of C++ 2. Figure 2 summarizes the RAPID workflow. Inputs to
RAPID are programs P written in W along with properties
F expressed in L. Preprocessing in RAPID applies program
transformations for common loop-altering programming con-

1we write ∀xS . F or ∃xS . F to mean that x has sort S in F
2available at https://github.com/vprover/rapid

1 while(i < alength) {
2 if (a[i] == x) {
3 break;
4 }
5 i = i + 1;
6 }
7

1 Bool break = false;
2 while(i < alength && !break) {
3 if (a[i] == x) {
4 break = true;
5 }
6 if (!break) {
7 i = i + 1;
8 }
9 }

10

Fig. 3: Loop tranformation for break-statement.

structs, as well as timepoint inlining to obtain a simplified
program P ′ from P (see Section IV).
Next, RAPID performs inductive verification (see Section V)
by generating the axiomatic semantics [[P ′]] expressed in L
and instantiating a set L1, ..., Ln of inductive properties —
so-called trace lemmas — for the respective program variables
of P ′. For establishing some property F , RAPID supports
two modes of inductive verification: standard and lemmaless
mode. The difference in both versions relates to the underlying
support for automating inductive reasoning while proving F .
The standard verification mode equips the verification task
with the trace lemmas L1, ..., Ln, providing the necessary
induction schemes for proving F . The lemmaless verification
mode uses built-in inductive reasoning and relies less, or
not at all, on trace lemmas. In either mode, the verification
tasks of RAPID are encoded in the SMT-LIB format. Finally,
a third and recent RAPID mode can be used for invariant
generation (see Section VII). In this mode, RAPID “only”
outputs quantified invariants using the SMT-LIB syntax; these
invariants can further be used by other verification tools.

IV. PREPROCESSING IN RAPID

a) Program Transformations: We use standard program trans-
formations to translate away break, continue and return
statements. For these, RAPID introduces fresh Boolean pro-
gram variables indicating whether a statement has been ex-
ecuted. The program is adjusted accordingly: return state-
ments end program execution; break statements invalidate
the first enclosing loop condition; and for continue the
remaining code of the first enclosing loop body is not executed.
Example 1: Figure 3 shows a standard transformation for a
break-statement.
b) Timepoint Inlining: RAPID uses SSA-style inlining [14],
[15], [16] for timepoints to simplify axiomatic program se-
mantics and trace lemmas of a verification task. Specifically,
RAPID caches (i) for each integer variable the current program

256

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

1 a = a + 2;
2 b = 3;
3 c = a + b;
4

5 assert (a(lend) < c(lend))

(a) block assignments

1 if (x < 1) {
2 x = 0;
3 } else {
4 skip;
5 }
6 while (y > 0) {
7 y = y - 1;
8 }
9

10 assert (x(lend) ≥ 0)

(b) simple branching

Fig. 4

expression assigned to it, and (ii) for each integer-array
variable the last timepoint where it was assigned. Cached
values are used during traversal of the program tree to simplify
later program expressions. Thus we avoid defining irrelevant
equalities of program variable values over unused timepoints,
and only reference timepoints relevant to the property. We
illustrate this on two examples:
Example 2 (Inlining assigned integer expressions): The effect
of inlined semantics can be observed when we encounter block
assignments to integer variables: we can skip assignments and
use the last assigned expression directly in any reference to
the original program variable. Consider the partial program in
Figure 4a. Our axiomatic semantics in trace logic [6] would
result in

a(l2) = a(l1) + 2 ∧ b(l2) = b(l1) ∧
c(l2) = c(l1) ∧ a(l3) = a(l2) ∧

b(l3) = 3 ∧ c(l3) = c(l2) ∧
a(lend) = a(l3) ∧ b(lend) = b(l3) ∧

c(lend) = a(l3) + b(l3)

whereas the inlined version of semantics is drastically shorter:

a(lend) = a(l1) + 2 ∧ c(lend) = (a(l1) + 2) + 3.

In contrast to the extended semantics that define all program
variables for each timepoint, the inlined version only considers
the values of referenced program variables at the timepoint of
their last assignment. Thus, when c is defined, RAPID directly
references the (symbolic) values assigned to a and b. While
b is not defined at all, note that a is defined as a(lend) is ref-
erenced in the conjecture. Furthermore, the inlined semantics
only make use of two timepoints, l1, and lend, as the remaining
timepoints are irrelevant to the conjecture.
Example 3 (Inlining equalities with branching.): Figure 4b
shows another program that benefits from inlining equalities,

as well as only considering timepoints relevant to the con-
jecture. The original semantics defines program variables x

and y for all program locations: l1, l2, l3, l4, l6(it), l6(nl6),
lend, for some iteration it and final iteration nl6. While the
program contains two variables x and y, only x is used in the
property we want to prove. Since no assignments to x contain
references to y, the loop semantics do not interfere with x, so
we have

x(l3) < 1 → x(l6(0)) = 0 ∧
x(l3) ≥ 1 → x(l6(0)) = x(l3) ∧
x(lend) = x(l6(0))

where the semantics of the loop defining y are omitted. Note
that all timepoints of the if-then-else statements are flattened
into the timepoint at the beginning of the loop at l6 in iteration
0. The axiomatic semantics thus reduce to three conjuncts
defining the value of x throughout the execution. However,
x is not defined in any loop iteration other than the first as
they are irrelevant to the property.
c) User-defined input: RAPID is fully automated. However, it
may still benefit from manually-defined invariants to support
the prover. Users can therefore extend the input to RAPID with
first-order axioms written in the SMT-LIB format.

V. INDUCTIVE VERIFICATION IN RAPID

As mentioned above, RAPID implements two verification
modes; in the default standard mode, RAPID uses trace lem-
mas to prove inductive properties of programs. In its lemmaless
mode RAPID relies on built-in induction support in saturation-
based first-order theorem proving. In this section we elaborate
on both modes further.

A. Standard Verification Mode: Reasoning with Trace Lemmas

RAPID’s standard mode relies on trace lemma reasoning to
automate inductive reasoning. Trace lemmas are sound for-
mulas that are: (i) derived from bounded induction over loop
iterations; (ii) represent common inductive program properties
for a set of similar input programs; and (iii) are automatically
instantiated for all relevant program variables of a specific
input program during its translation to trace logic; see [6].
In all of our experiments from Section VIII, including the
example from Figure 1, we only instantiate three generic
inductive trace lemmas to establish partial correctness. One
such trace lemma asserts, for example, that a program variable
is not mutated after a certain execution timepoint.
Example 4: Consider the safety assertion (1) of our running
example from Figure 1. In its standard verification mode,
RAPID proves correctness of (1) by using, among others, the
following trace lemma instance

∀jI. ∀bLN. ∀bRN.

(
∀itN.

(
(bL ≤ it < bR ∧ b(l9(bL), j) = b(l9(it), j))

→ b(l9(bL), j) = b(l9(s(it)), j)
)

→
(
bL ≤ bR → b(l9(bL), j) = b(l9(bR), j)

))
,

257

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

stating that the value of b at some position j is unchanged
between two bounds bL and bR if, for any iteration it and its
successor s(it), values of b are unchanged.
Multitrace Generalization: RAPID can also be used to prove
k-safety properties over k traces, useful for security-related
hyperproperties such as non-interference and sensitivity [8].
For such problems it is sufficient to extend program variables
to functions over time and trace, such that program variables
are represented as (L×T 7→ I). Program locations, and hence
timepoints, are similarly parameterized by an argument of sort
T to denote the same timepoint in different executions.

B. Lemmaless Verification Mode

When in lemmaless mode RAPID does not add any trace
lemma to its verification task but relies on first-order theorem
proving to derive inductive loop properties. An extended
version of SMT-LIB (see Section VI) is used to provide the un-
derlying prover with additional information to guide the search
for necessary inductive schemes, such as likely symbols for
induction. We further equip saturation-based theorem proving
with two new inference rules that enable induction on such
terms; see [17] for details. Multi-clause goal induction takes
a formula derived from a safety assertion that contains a final
loop counter, that is a symbol denoting last loop iterations,
and inserts an instance of the induction schema for natural
numbers with the negation of this formula as its conclusion
into the proof search space. For example, consider the formula
x(l5(nl5)) < 0. Multi-clause goal induction introduces the
induction hypothesis x(l5(0)) ≥ 0 ∧ ∀itN. (it < nl5 ∧
x(l5(it)) ≥ 0) → x(l5(s(it))) ≥ 0 → x(l5(nl5)) ≥ 0. If
the base and step cases can be discharged, a contradiction can
be easily produced from the conclusion and original clause.
Array mapping induction also introduces an instance of the
induction schema to the search space, but is not based on
formulas derived from the goal. Instead, this rule uses clauses
derived from program semantics to generate a suitable con-
clusion for the induction hypothesis.

VI. VERIFYING PARTIAL CORRECTNESS IN RAPID

For proving the verification tasks of Section V, and thus veri-
fying partial program correctness, RAPID relies on saturation-
based first-order theorem proving. To this end, each verifica-
tion mode of RAPID uses the VAMPIRE prover, for which we
implemented the following, RAPID-specific adjustments.
a) Extending SMT-LIB: Each verification task of RAPID is
expressed in extensions of SMT-LIB, allowing us to treat some
terms and definitions in a special way during proof search:

(i) declare-nat: The VAMPIRE prover has been extended
with an axiomatization of the natural numbers as a term
algebra, especially for RAPID-style verification purposes.
We use the command (declare-nat Nat zero s p

Sub) to declare the sort Nat, with constructors zero and
successor s, predecessor p and ordering relation Sub.

(ii) declare-lemma-predicate: Our trace lemmas are
usually of the form (P1 ∧ ... ∧ Pn) → ConclusionL for
some trace lemma L with premises P1∧ ...∧Pn. In terms

of reasoning, it makes sense for the prover to derive the
premises of such a lemma before using its conclusion
to derive more facts, as we have many automatically
instantiated lemmas of which we can only prove the
premises of some from the semantics. To enforce this, we
adapt literal selection such that inferences from premises
are preferred over inferences from conclusions. Lemmas
are split into two clauses (P1 ∧ ... ∧ Pn) → PremiseL
and PremiseL → ConclusionL, where PremiseL
is declared as a lemma literal. We ensure our literal
selection function selects either a negative lemma literal3

if available, or a positive lemma literal only in combina-
tion with another literal, requiring the prover to resolve
premises before using the conclusion.

The lemmaless mode of RAPID introduces the following
additional declarations to SMT-LIB:

(i) declare-const-var: assign symbols representing con-
stant program variables a large weight in the prover’s
term ordering, allowing constant variables to be rewritten
to non-constant expressions.

(ii) declare-timepoint: distinguish a symbol representing
a timepoint from program variables, guiding VAMPIRE to
apply induction upon timepoints.

(iii) declare-final-loop-count: declare a symbol as a
final loop count symbol, eligible for induction.

b) Portfolio Modes: We further developed a collection of
RAPID-specific proof options in VAMPIRE, using for example
extensions of theory split queues [18] and equality-based
rewritings [19]. Such options have been distilled into a RAPID
portfolio schedule that can be run with --mode portfolio
-sched rapid. Moreover, the multi-clause goal induction
rule and the array mapping induction inference of RAPID
have been compiled to a separate portfolio mode, accessed
via --mode portfolio -sched induction_rapid.

VII. INVARIANT GENERATION WITH RAPID

RAPID can also be used as an invariant generation engine,
synthesizing first-order invariants using the VAMPIRE theorem
prover. To do so, we use a special mode of VAMPIRE to
derive logical consequences of the semantics produced by
RAPID. Some of these consequences may be loop invariants.
The symbol elimination approach of [20] defined some set of
program symbols undesirable, and only reports consequences
that have eliminated such symbols from their predecessors. In
RAPID, we adjust symbol elimination for deriving invariants
in trace logic using VAMPIRE. These invariants may contain
quantifier alternations, and some conjunction of them may well
be enough to help other verification tools show some property.
When RAPID is in invariant generation mode, the encoding
of the problem is optimized for invariant generation. We limit
trace lemmas to more specific versions of the bounded induc-
tion scheme. We also remove RAPID-specific symbols such as
lemma literals so that they do not appear in consequences.

3Note that lemma literals become negative in the premise definition after
CNF-transformation.

258

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

Symbol Elimination: Loop invariants should only contain
symbols from the input loop language, with no timepoints.
To remove such constructs, we apply symbol elimination: any
symbol representing a variable v used on the left-hand side
of an assignment is eliminated. However, we still want to
generate invariants containing otherwise-eliminated variables
at specific locations, so for each eliminated variable v we de-
fine v_init = v(l1) and v_final = v(l2) for appropriate
locations l1, l2: these new symbols need not be eliminated.
We further adjusted symbol elimination in RAPID to output
fully-simplified consequences during proof search in VAMPIRE
(the so-called active set [12]) at the end of a user-specified
time limit. Consequences that contain undesirable symbols or
are pure consequences of theories are removed at this stage.
Reasoning with Integers vs. Naturals: In the standard setting,
RAPID uses natural numbers (internally Nat) to describe loop
iterations. However, in some situations it is advantageous to
use the theory of integers: loop counter variable i of sort I will
have the same numerical value as nl of sort N at the end of
a loop. Integer-based timepoints allow deriving i(l(nl)) = nl.
Such a clause can be very helpful for invariant generation, as
shown in Example 5.
Example 5: Consider the property ∀xI.0 ≤ x ≤ alength →
a(x) = b(x). The property essentially requires us to prove
that two arrays a, b are equal in all positions between 0 and
alength. Such a property might for example be useful to
prove when we copy from an array b into array a in a loop
with loop condition i < alength where i is the loop counter
variable incremented by one in each iteration. Now when we
run RAPID in the invariant generation mode, we might be
able to derive a property ∀x.0 ≤ x ≤ nl → a(x) = b(x),
essentially stating that the property holds for all iterations of
the loop. The prover can further easily deduce that i(l(nl)) ≥
alength thanks to our semantics.
However, in case of natural numbers we cannot deduce that
i(l(nl)) = nl since the sorts of i and nl differ. In order to
derive an invariant strong enough to prove the postcondition
we depend upon the prover to find the invariant ∀x.0 ≤ x ≤
i(l(nl)) → a(x) = b(x) directly which cannot be deduced by
the prover as our loop semantics are bounded by loop iterations
rather than the loop counter values.
When using -integerIterations on we can circumvent
this problem as the prover can then simply deduce the equality
i(l(nl)) = nl which makes the conjunction of clauses strong
enough to prove the desired postcondition.

VIII. EXPERIMENTAL EVALUATION

We evaluated the two verification modes of RAPID and com-
pare against the state-of-the-art solvers DIFFY and SEAHORN,
as summarized below.
Benchmark Selection: Our benchmarks4 are based on the
c/ReachSafety-Array category of the SV-COMP reposi-
tory [21], specifically from the array-examples/* subcat-
egory5 as it contains problems suitable for our input language.

4https://github.com/vprover/rapid/tree/main/examples/arrays
5https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

TABLE I: Experimental Results

Total RAPIDstd RAPIDlemmaless DIFFY SEAHORN
140 91 (5) 103 (10) 61 (1) 17 (0)

Other examples are not yet expressible in W due to the
presence of function calls and/or unsupported memory access
constructs. We manually translate all programs to W and
express pre/post-conditions as trace logic properties. Addition-
ally, we extend some SV-COMP examples with new conjec-
tures containing existential and alternating quantification.
In general SV-COMP benchmarks are bounded to a certain
array size N . By contrast, we treat arrays as unbounded
in RAPID and reason using symbolic array lengths. Some
benchmarks in the original SV-COMP repository are minor
variations of each other that differ only in one concrete integer
value, e.g to increment a program variable by some integer.
Instead of copying each such variation for different digits,
we abstract such constant values to a single symbolic integer
constant such that just one of our benchmark covers numerous
cases in the original SV-COMP setup.
Results: We compare our two RAPID verification modes, in-
dicated by RAPIDstd and RAPIDlemmaless respectively, against
SEAHORN and DIFFY. All experiments were run on a cluster
with two 2.5GHz 32-core CPUs with a 60-seconds timeout.
Note that DIFFY produced the same results as its precursor
VAJRA in this experiment. Table I summarizes our results,
parentheticals indicating uniquely solved problems. Of a total
of 140 benchmarks, RAPIDstd solves 91 problems, while
RAPIDlemmaless surpasses this by 12 problems. Particularly,
RAPIDlemmaless could solve more variations with quantifier
alternations of our running example 1, as property-driven
induction works well for such problems. A small number
of instances, however, was solved by RAPIDstd but not by
RAPIDlemmaless within the time limit, indicating that trace
lemma reasoning can help to fast-forward proof search. In
total, RAPID solves 112 benchmarks, whereas SEAHORN and
DIFFY could respectively prove 17 and 61 problems (with
mostly universally quantified properties). For more detailed
experimental data on subsets of these benchmarks we refer to
[6], [17].

IX. CONCLUSION

We described the RAPID verification framework for proving
partial correctness of programs containing loops and arrays,
and its applications towards efficient inductive reasoning and
invariant generation. Extending RAPID with function calls, and
automation thereof, is an interesting task for future work.

Acknowledgements. This research was partially supported by
the ERC consolidator grant ARTIST 101002685, the FWF
research project LogiCS W1255-N23, the TU Wien SecInt
doctoral program, and the EUProofNet Cost Action CA20111.
Our research was partially funded by the Digital Security by
Design (DSbD) Programme delivered by UKRI to support the
DSbD ecosystem.

259

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn
verification framework,” in CAV, 2015, pp. 343–361.

[2] A. Gurfinkel, S. Shoham, and Y. Vizel, “Quantifiers on demand,” in
ATVA, 2018, pp. 248–266.

[3] P. Rajkhowa and F. Lin, “Extending viap to handle array programs,” in
VSTTE, 2018, pp. 38–49.

[4] H. G. V. Krishnan, Y. Chen, S. Shoham, and A. Gurfinkel, “Global
guidance for local generalization in model checking,” in CAV. Springer,
2020, pp. 101–125.

[5] S. Chakraborty, A. Gupta, and D. Unadkat, “Verifying array manipulat-
ing programs with full-program induction,” in TACAS, 2020, pp. 22–39.

[6] P. Georgiou, B. Gleiss, and L. Kovács, “Trace logic for inductive loop
reasoning,” in FMCAD. IEEE, 2020, pp. 255–263.

[7] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quantified
invariants via syntax-guided synthesis,” in CAV, 2019, pp. 259–277.

[8] G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács, and M. Maffei,
“Verifying relational properties using trace logic,” in FMCAD, 2019, pp.
170–178.

[9] D. Beyer, “Software verification: 10th comparative evaluation (SV-
COMP 2021),” in TACAS, 2021, pp. 401–422.

[10] P. Hozzová, L. Kovács, and A. Voronkov, “Integer induction in satura-
tion,” in CADE, 2021, pp. 361–377.

[11] G. Reger and A. Voronkov, “Induction in saturation-based proof search,”
in CADE, 2019, pp. 477–494.

[12] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in CAV, 2013, pp. 1–35.

[13] S. Chakraborty, A. Gupta, and D. Unadkat, “Diffy: Inductive reasoning
of array programs using difference invariants,” in CAV, 2021.

[14] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
ACM SIGPLAN Notices, vol. 29, no. 6, pp. 159–170, 1994.

[15] A. W. Appel, “SSA is functional programming,” ACM SIGPLAN No-
tices, vol. 33, no. 4, pp. 17–20, 1998.

[16] ——, Modern compiler implementation in C. Cambridge university
press, 2004.

[17] A. Bhayat, P. Georgiou, C. Eisenhofer, L. Kovács, and G. Reger, “Lem-
maless induction in trace logic,” Preprint, https://github.com/vprover/
vampire_publications/blob/master/paper_drafts/rapid_induction.pdf.

[18] B. Gleiss and M. Suda, “Layered clause selection for theory reasoning,”
in IJCAR, 2020, pp. 297–315.

[19] B. Gleiss, L. Kovács, and J. Rath, “Subsumption demodulation in first-
order theorem proving,” in IJCAR, 2020, pp. 297–315.

[20] L. Kovács and A. Voronkov, “Finding loop invariants for programs over
arrays using a theorem prover,” in FASE, 2009, pp. 470–485.

[21] SV-COMP. https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks.

260

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 29,2023 at 20:02:32 UTC from IEEE Xplore. Restrictions apply.

