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1. Einführung
Software verification is ubiquitous in computing. While automating verification in 
undecidable fragments is hard, it is a worthwhile goal to establish safe security-
critical virtual infrastructures. This work investigates and promotes the use of full first-
order theorem provers for software verification for programs containing (recursive) 
data structures and (recursive) function calls.  

Automated software verification is a realm mainly depending on satisfiability modulo 
theories (SMT)-solvers, thus limiting the logical representation of programming 
language semantics as well as safety properties to the expressiveness of such 
solvers. However, most automated verification approaches depend on SMT-solvers 
to discharge verification conditions. Consequently they are mostly restricted to 
universal quantification, rarely some existential quantification, but almost no 
quantifier alternations. Automated first-order theorem provers, in contrast, are not 
limited in the use of quantification and can work with formulas of universal, existential 
but also alternating quantification which promotes alternative ways of automated 
verification. While winning many competitions in first-order reasoning, they are rarely 
promoted for verification purposes.  

In this dissertation, I’m aiming to make first-order theorem proving more applicable to 
automated program reasoning and verification. Specifically, we want to improve the 
automation of inductive reasoning over loops and recursive functions with first-order 
theorem provers. The integral part of this work is automating inductive reasoning 
which is famously hard as verifying the correctness of any formula containing un- or 
semi-decidable theories such as integer arithmetic is an semi-decidable problem in 
mathematics. Thus, mathematically speaking verification heavily depends upon 
finding either decidable fragments of logic, or, as we do in this work, find ways to 
make our approaches applicable to a wide set of problems even in the sight of 
undecidability of the underlying logical framework. 
We achieve this goal through multiple works expanding on inductive reasoning for 
trace logic, invariant generation as well as investigating functional programming 
paradigms and provide a proof of concept of proving functional sorting algorithms 
correct.  

We already introduced our verification framework Rapid based on expressing 
semantics in trace logic, a many-sorted first-order logic with built-in equality, integers 
and natural numbers. Our original efforts have been relying on manually identified 
lemmas - coined trace lemmas - that are applicable to a wide range of programs 
containing loops and unbounded data structures as arrays over integer arithmetic. 
However, these are limited to certain types of reasoning and are not always enough 
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to find a proof. Additionally instantiating trace lemmas for a growing number of 
program variables results in many unnecessary lemmas added due to automation, 
thus making the search space for a proof bigger and bigger.  
A massive improvement was achieved by relying less on trace lemmas for inductive 
reasoning but leveraging inductive reasoning directly in the underlying first-order 
theorem prover Vampire. To this end, we exploited inductive inferences in the first-
order superposition calculus for reasoning about loops in trace logic. That is, we 
adopted built-in induction schemes for bounded induction over loop iterations in the 
underlying calculus, thus verifying inductive reasoning steps during proof search. Our 
results show that such a method of inductive reasoning is superior to our prior works 
using trace lemmas.  
Beyond trace logic, we also tackle functional programming paradigms with built-in 
induction: our most recent efforts focus on inductive/functional semantics of 
algorithms transforming lists of multiple types, that is we do not only prove program 
correctness for lists of integers or naturals, but we can handle programs containing 
lists of any data type that provides a partial order. This is powered by type 
parameterisation for list data types. Additionally, we formalize the first-order 
semantics of functional programs and provide a proof of concept of verifying partial 
correctness with computation induction on functional sorting algorithms. More details 
on recent developments are summarized below.  

2. Allgemeines 
The core of my PhD thesis is to make first-order theorem proving based on the 
superposition inference calculus more usable for software verification purposes. 
Specifically, we investigate how we can automate inductive reasoning that is 
necessary for verification with regards to program loops or recursive function calls. 

In the first part of my thesis, we adopted trace logic for reasoning in full first-order 
logic with built-in equalities and theories. We adapted the inductive reasoning to 
lemmaless reasoning built-in into the automated theorem prover, thus increasing the 
degree of automation even more and making trace logic more applicable to programs 
that contain (consecutive, as well as nested) loops.  

While the original goal was to extend trace logic and its first-order semantics to 
function calls, we realized that making use of lemmaless reasoning through inductive 
inferences in the underlying prover is a more fruitful mission on the long run. That is, 
adapting inductive inferences to reason about functional programs that contain 
inductive function definitions and potentially many recursive calls, including mutual 
recursion, is the more powerful solution. Moreover, we also came to the conclusion 
that while trace logic is a powerful tool for reasoning about loops due to this inherent 
notion of time, it is less so for functional algorithms. Extending the semantics in trace 
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logic to function calls thus proved to be too convoluted and simply too big for the 
prover to effectively pursue proof search in reasonable time. Moreover, we realised 
that a purely functional programming paradigm leads to very simple program 
semantics in first-order logic when using inductive definitions.  

In our latest work, we thus adapted a first-order semantics for functional programs 
and showed how structural and computation induction schemes can be adapted for 
inductive inferences during proof search, specifically during saturation. We 
showcased how we can reason about such programs by verifying a purely functional 
version of the famous QuickSort algorithm, among other sorting algorithms, for this 
work.  
The crux of this work lies in compositional reasoning: rather than relying on a priori 
(user-provided) inductive annotations such as invariants, we split the proof into 
multiple proof obligations whenever necessary. This is the case when the reasoner 
can only find induction axioms that are too strong to be proven correct within a 
certain time limit. However each of these proof splits is established, i.e. lemma 
correctness is verified, in the underlying automated theorem prover with built-in 
induction. In contrast to most verification tools, we automate the inductive reasoning 
rather than just assuming it.  

3. Ergebnisse
In the course of the netidee stipend, three scientific publications were created of 
which one is still under peer review. All of the works below further the use of first-
order theorem provers to showcase its efficiency and possibilities of usage when it 
comes to automated software verification. They are listed below:  

(1)Bhayat, A., Georgiou, P., Eisenhofer, C., Kovács, L., & Reger, G. (2022, 
September). Lemmaless induction in trace logic. In International Conference on 
Intelligent Computer Mathematics—CICM 2022 (pp. 191-208). Cham: Springer 
International Publishing. 

(2)Georgiou, P., Gleiss, B., Bhayat, A., Rawson, M., Kovács, L., & Reger, G. (2022, 
October). The RAPID Software Verification Framework. In Conference on Formal 
Methods in Computer-aided Design—FMCAD 2022 (p. 255). 

(3)Georgiou, P., Hajdu, M., Kovács, L. (2023, July). Sorting without Sorts. In 
EasyChair Preprint no. 10632—EasyChair 2023 (currently under review at the 
25th International Conference on Verification, Model Checking, and Abstract 
Interpretation—VMCAI 2024) 

Specifically (1) shows how in-built inductive inference rules can be adjusted towards 
trace logic for lemmaless reasoning to verify complex properties of programs 

5
netidee Call 16 Endbericht Stipendium-ID 5761     



containing loops and arrays that may contain quantifier alternations fully 
automatically with first-order theorem proving.  

(2) summarizes the capabilities of the underlying tool RAPID that allows for the 
automated translation of while-language programs and their properties into first-order 
reasoning problems in trace logic while performing lightweight static analysis to equip 
the reasoning problems with further information for the prover in the form of trace 
lemmas. Additionally, we introduce symbol elimination for trace logic to provide a 
further use case and enable invariant generation with first-order theorem provers.  

In (3) we investigate in-built inductive inferences in first-order theorem provers further 
and highlight its capabilities by proving (among others) the functional version of the 
quick sort algorithm correct, even in the sight of recursive data structures and 
recursive function calls - an algorithm that is notoriously known to be hard to be 
proved correct in an automated way. To the best of our knowledge, no fully 
automated proof of this algorithm exists which emphasises the impact of our method 
presented in this paper. Moreover, this work shows that first-order theorem proving 
can be used to efficiently find necessary induction axioms automatically in practice. 
The paper is currently under review for publication at FASE 2024.  

All three publications are attached to this final report.  

4. Geplante weiterführende Aktivitäten 
In terms of my PhD thesis, my contributions towards automating induction in first-
order theorem provers for software verification will be summarised in a coherent 
thesis amplifying the motivation for the work during and prior to my netidee 
scholarship.  
During the writing process, I will also review prior works on verifying security relevant 
properties, known as hyper-properties, and evaluate our current state of work on 
these benchmarks. 
Lastly, I’m planning to defend my thesis in March 2024.  

5. Anregungen für Weiterführung durch Dritte
My thesis will show that first-order theorem (FOL) proving is a widely underrated tool 
when it comes to software verification. There is a lot of opportunity still to be 
exploited towards automating the verification process even more.  

An immediate continuation of the work lies in building a framework for functional 
programming languages/algorithms based on our most recent work, similar to the 
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RAPID framework for while-based languages. Another question is how we can 
automate the proof splits necessary in our latest work based on some heuristics.  

A more general open question in automated theorem proving is how to find 
counterexamples. One of the major drawbacks of using FOL provers is that they 
mostly check validity of formulae but, due to semi-decidability of first-order logic with 
(undecidable) theories, rarely offer the possibility to produce counterexamples to 
validity. They simply diverge and run until the process times out. Thus, 
counterexample/model finding in FOL proving would be a major step to look into 
when it comes to using FOL provers for more large-scale software verification 
processes. While there are certainly many open questions that can be investigated, 
this is in my opinion the most prevalent one to make automated theorem proving 
more convincing for verification purposes. There is prior research on this subject in 
the paramodulation community, however, none of them are particularly investigating 
software correctness counterexample finding in such calculi.  
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Abstract. We present a novel approach to automate the verification
of first-order inductive program properties capturing the partial correct-
ness of imperative program loops with branching, integers and arrays.
We rely on trace logic, an instance of first-order logic with theories, to
express first-order program semantics by quantifying over program exe-
cution timepoints. Program verification in trace logic is translated into
a first-order theorem proving problem where, to date, effective reason-
ing has required the introduction of so-called trace lemmas to establish
inductive properties. In this work, we extend trace logic with generic
induction schemata over timepoints and loop counters, reducing reliance
on trace lemmas. Inferring and proving loop invariants becomes an induc-
tive inference step within superposition-based first-order theorem prov-
ing. We implemented our approach in the Rapid framework, using the
first-order theorem prover Vampire. Our extensive experimental anal-
ysis shows that automating inductive verification in trace logic is an
improvement compared to existing approaches.

1 Introduction

Automating the verification of programs containing loops and recursive data
structures is an ongoing research effort of growing importance. While different
techniques for proving the correctness of such programs are in place [5,6,10,13],
most existing tools in this realm are heavily based on satisfiability modulo theo-
ries (SMT) backends [4,8] that come with strong theory reasoning but have lim-
itations in quantified reasoning. In contrast, first-order theorem provers enable
quantified reasoning modulo theories [19,24,25], such as linear integer arithmetic
and arrays. First-order reasoning can thus complement the aforementioned veri-
fication efforts when it comes to proving program properties with complex quan-
tification, as evidenced in our original work on the Rapid framework [11] which
utilised the Vampire theorem prover [2,20].

At a high level, the Rapid framework [11] works by translating a program
into trace logic, adding a number of ad hoc trace lemmas, asserting a desired
property, and then running an automated theorem prover on the result. The
effectiveness of this approach depends on the underlying trace lemmas. This
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Buzzard and T. Kutsia (Eds.): CICM 2022, LNAI 13467, pp. 191–208, 2022.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16681-5_14&domain=pdf
http://orcid.org/0000-0002-1343-5084
http://orcid.org/0000-0003-4856-4596
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-6353-952X
https://doi.org/10.1007/978-3-031-16681-5_14


192 A. Bhayat et al.

paper focuses on building induction support into the Vampire theorem prover
to reduce reliance on these lemmas.

To understand the role of these trace lemmas (and therefore, what support
must be added to the theorem prover) we briefly overview trace logic and the
Rapid framework in a little more detail. Trace logic is an instance of first-order
logic with theories, such that the program semantics of imperative programs
with loops, branching, integers, and arrays can be directly encoded in trace
logic. A key feature of this encoding is tracking program executions by quan-
tifying over execution timepoints (rather than only over single states), which
may themselves be parameterised by loop iterations. In principle, we can check
whether a translated program entails the desired property in trace logic using an
automated theorem prover for first-order logic. In our case, we make use of the
saturation-based theorem prover Vampire which implements the superposition
calculus [3]. However, a straightforward use of theorem proving often fails in
establishing validity of program properties in trace logic, as the proof requires
some specific induction, in general not supported by superposition-based reason-
ing.

In our previous work [11], we overcame this challenge by introducing so-
called trace lemmas capturing common patterns of inductive loop properties
over arrays and integers. Inductive loop reasoning in trace logic is then achieved
by generating and adding trace lemma instances to the translated program.
However, there are two significant limitations to using trace lemmas:

1. Trace lemmas capture inductive patterns/templates that need to be manually
identified, as induction is not expressible in first-order logic. As such, they
cannot be inferred by a first-order reasoner, implying that the effectiveness
of trace logic reasoning depends on the expressiveness of manually supplied
trace lemmas.

2. When instantiating trace lemmas with appropriate inductive program
variables, a large number of inductive properties are generated, causing
saturation-based proof search to diverge and fail to find program correctness
proofs in reasonable time.

In this paper we address these limitations by reducing the need for trace lemmas.
We achieve this by introducing a couple of novel induction inferences. Firstly,
multi-clause goal induction which applies induction in a goal oriented fashion as
many safety program assertions are structurally close to useful loop invariants.
Secondly, array mapping induction which covers certain cases where the required
loop invariant does not stem from the goal. Specifically, we make the following
contributions:

Contribution 1. We introduce two new inference rules, multi-clause goal
and array mapping induction, for lemmaless induction over loop iterations
(Sects. 5–6). The inference rules are compatible with any saturation-based
inference system used for first-order theorem proving and work by carrying
out induction on terms corresponding to final loop iterations.
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Fig. 1. Copying elements from arrays a and b to even/odd positions in array c.

Contribution 2. We implemented our approach in the first-order theorem
prover Vampire [20]. Further, we extended the Rapid framework [11] to
support inductive reasoning in the automated backend (Sect. 7). We carry
out an extensive evaluation of the new method (Sect. 8) comparing against
state-of-the-art approaches SeaHorn [12,13] and Vajra/Diffy [5,6].

2 Motivating Example

We motivate our work with the example program in Fig. 1. The program iterates
over two arrays a and b of arbitrary, but fixed length length and copies array
elements into a new array c. Each even position in c contains an element of a,
while each odd position an element of b. Our task is to prove the safety assertion
at line 14: at the end of the program, every element in c is an element from a
or b. This property involves (i) alternation of quantifiers and (ii) is expressed in
the first-order theories of linear integer arithmetic and arrays. Note that in the
safety assertion, the program variable length is modeled as a logical constant of
the same name of sort integer, whilst the constant arrays a and b are modeled
as logical functions from integers to integers. The mutable array variable c is
additionally equipped with a timepoint argument main end, indicating that the
assertion is referring to the value of the variable at the end of program execution.

Proving the correctness of this example program remains challenging for most
state-of-the-art approaches, such as [5,6,10,12], mainly due to the complex quan-
tified structure of our assertion. Moreover, it cannot be achieved in the current
Rapid framework either, as existing trace lemmas do not relate the values of
multiple program variables, notably equality over multiple array variables. In
fact, to automatically prove the assertion, we need an inductive property/trace
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lemma formalizing that each element at an even position in c is an element of a
or b at each valid loop iteration, thereby also restricting the bounds of the loop
counter variable i. Näıvely adding such a trace lemma would be highly ineffi-
cient as automated generation of verification conditions would introduce many
instances that are not required for the proof.

3 Related Work

Most of recent research in verifying inductive properties of array-manipulating
programs focuses on quantified invariant generation and/or is mostly restricted
to proving universally quantified program properties. The works [10,13] generate
universally quantified inductive invariants by iteratively inferring and strength-
ening candidate invariants. These methods use SMT solving and as such are
restricted to first-order theories with a finite model property. Similar logical
restrictions also apply to [23], where linear recurrence solving is used in combi-
nation with array-specific proof tactics to prove quantified program properties.
A related approach is described in [6], where relational invariants instead of
recurrence equations are used to handle universal and quantifier-free inductive
properties. Unlike these, our work is not limited to universal invariants but can
infer and prove inductive program properties with alternations of quantifiers.

With the use of extended expressions and induction schemata, our work
shares some similarity with template-based approaches [16,21,26]. These works
infer and prove universal inductive properties based on Craig interpolation, for-
mula slicing and/or SMT generalizations over quantifier-free formulas. Unlike
these works, we do not require any assumptions on the syntactic shape of the
first-order invariants. Moreover, our invariants are not restricted to the shape
of our induction schemata. Rather, we treat inductive (invariant) inferences as
additional rules of first-order theorem provers, maintaining thus the efficient
handling of arbitrary first-order quantifiers. Our framework can be used in arbi-
trary first-order theories, even with theories that have no interpolation property
and/or a finite axiomatization, as exemplified by our experimental results using
inductive reasoning over arrays and integers.

Inductive theorem provers, such as ACL2 [17] and HipSpec [7], implement
powerful induction schemata and heuristics. However these provers, to the best
of our knowledge, automate inductive reasoning for only universally quantified
inductive formulas using a goal/subgoal architecture, for which user-guidance
is needed to split conjectures into subgoals. In contrast, our work can prove
formulas of full first-order logic by integrating and fully automating induction
in saturation-based proof search. By combining induction with saturation, we
allow these techniques to interleave and complement each other, something that
pure induction provers cannot do. Unlike tools such as Dafny [22], our approach
is fully automated requiring no user annotations.

First-order theorem proving has been used to derive invariants with alterna-
tions of quantifiers in our previous work [11]. Our current work generalizes the
inductive capabilities of [11] by reducing the expert knowledge of [11] in intro-
ducing inductive lemmas to guide the process of proving inductive properties.
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4 Preliminaries

Many-Sorted First-Order Logic. We consider standard many-sorted first-order
logic with built-in equality, denoted by ! . By s = F [u] we indicate that the
term u is a subterm of s surrounded by (a possibly empty) context F .

We use x, y to denote variables, l, r, s, t for terms and sk for Skolem symbols.
A literal is an atom A or its negation ¬A. A clause is a disjunction of literals
L1 ∨ ... ∨ Ln, for n ≥ 0. Given a formula F , we denote by CNF(F ) the clausal
normal form of F .

For a logical variable x of sort S we write xS . A first-order theory denotes
the set of all valid formulas on a class of first-order structures. Any symbol in
the signature of a theory is considered interpreted. All other symbols are unin-
terpreted. In particular, we use the theory of linear integer arithmetic denoted
by I and the boolean sort B. We consider natural numbers as the term algebra
N with four symbols in the signature: the constructors 0 and successor suc, as
well as pred and < respectively interpreted as the predecessor function and less-
than relation. Note that we do not define any arithmetic on naturals. We assume
familiarity with the basics of saturation theorem proving.

4.1 Trace Logic L

Trace logic, denoted as L, is an instance of many-sorted first-order logic with
theories. Its signature is Σ(L) := SN ∪ SI ∪ SL ∪ SV ∪ Sn, includes respectively
the signatures of the theory of natural numbers N (as a term algebra), the in-
built integer theory I, a set SL of timepoints (also referred to as locations), a
set of symbols representing program variables SV , as well as a set of symbols
representing last iteration symbols Sn. For more details on trace logic, refer
to [11].

4.2 Programming Model W

We consider programs written in a while-like programming language W, as
given in the (partial) language grammar of Fig. 2. Programs in W contain muta-
ble and immutable integer as well as integer-array program variables and consist
of a single top-level function main comprising arbitrary nestings of while-loops
and if-then-else branching. We consider expressions over booleans and integers
without side effects.

4.3 Translating Expressions to Trace Logic

Locations and Timepoints. We consider programs as sets of locations over
time: given a program statement s, we denote its location by ls of type L,
the location/timepoint sort, corresponding to the line of the program where
the statement appears. When s is a while-loop the corresponding location is
revisited at multiple timepoints of the execution. Thus, we model such locations
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Fig. 2. Grammar of W.

as functions over loop iterations ls : N %→ L, where the argument of sort N
intuitively corresponds to the number of loop iterations. Further, for each loop
statement s we model the last loop iteration by a symbol nls ∈ Sn of target sort
N. Let p be a program statement or context. We use startp to denote the location
at which the execution of p has started and endp to denote the location that
occurs just after the execution of p. We use main end to denote the location at
the end of the main function.

Example 1. Consider line 6 of our running example in Fig. 1. Term l6 corre-
sponds to the timepoint of the first assignment of 0 to program variables i while
l8(0) and l8(nl8) denote the timepoints of the loop at the first and last loop iter-
ation respectively. Further, we can quantify over all executions of the loops by
quantifying over all iterations smaller than the last e.g. ∀itN.it < nl8 → F [l8(it)]
where F [l8(it)] is some first-order formula.

Program Variables. Program variable are expressed as functions over time-
points. We express an integer variable v as a function v : L %→ I, where v ∈ SV .
Let tp be a term of sort L. Then, v(tp) denotes the value of v at timepoint tp.
We model numeric array variables v with an additional argument of sort I to
denote the position of an array access. We obtain v : L× I %→ I. Immutable vari-
ables are modelled as per their mutable counterparts, but without the timepoint
argument.

Example 2. To denote program variable i at the location of the assignment in
line 6, we use the equation i(l6)! 0. For the first assignment of c within the
loop, we write c(l8(it), 2 × i(l8(it)))! a(i(l8(it))) for some iteration it. As a is a
constant array, the timepoint argument is omitted.

Program Expressions. Let e be an arbitrary program expression. We write
!e"(tp) to denote the logical denotation of e at timepoint tp. We do not provide
the full inductive definition of the denotation function ! "(tp) here, just a few
of its cases. If e is an integer variable v, then !e"(tp) = v(tp). If e is an integer
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array access of the form v[e1], then !e"(tp) = v(tp, !e1"(tp)). If e is an expression
of the form e1 + e2, then !e"(tp) = !e1"(tp) + !e2"(tp).
Common Abbreviations. Let e, e1, e2 be program expressions, tp1, tp2 be two
timepoints and v ∈ SV denote the functional representation of a program vari-
able. The trace logic formula v(tp1)! v(tp2) asserts that the variable v has the
same value at timepoints tp1 and tp2. We introduce definitions for two formu-
las that are widely used in defining the axiomatic semantics of W in the next
section. To ease the notational burden, we ignore array variables in the defini-
tions provided. Firstly, we introduce a definition for the formula that expresses
that the value of a variable v changes between timepoints tp1 and tp2 whilst the
values of all other variables remain the same.

Update(v, e, tp1, tp2) := v(tp2)! !e"(tp1) ∧
∧

v′∈SV \{v} v
′(tp1)! v′(tp2),

Secondly, we introduce a definition for the formula that expresses that the value
of all variables stays the same between timepoints tp1 and tp2

EqAll(tp1, tp2) :=
∧

v∈SV

v(tp1)! v(tp2)

4.4 Axiomatic Semantics of W in L
The semantics of a program in W is given by the conjunction of the respective
axiomatic semantics of each program statement of W occurring in the program.
In general, we define reachability of program statements over timepoints rather
than program states. We briefly recall the axiomatic semantics of assignments
and while-loops respectively, again ignoring the array variable case.

Assignments. Let s be an assignment v = e, where v is an integer-valued pro-
gram variable and e is an expression. The evaluation of s is performed in one
step such that, after the evaluation, the variable v has the same value as e before
the evaluation while all other variables remain unchanged. We obtain

!s" := Update(v, e, starts, ends) (1)

While-Loops. Let s be the while-statement while(Cond){c} where Cond is the
loop condition. The semantics of s is given by the conjunction of the following
properties: (2a) the iteration nls is the first iteration where Cond does not hold
anymore, (2b) jumping into the loop body does not change the values of the
variables, (2c) the values of the variables at the end of evaluating the loop s are
equal to the values at the loop condition location in iteration nls. As such, we
have

!s" := ∀itsN. (its < nls → !Cond"(tps(its)))
∧ ¬!Cond"(tp(nls)) (2a)
∧ ∀itN. (it < nls → EqAll(startc, tps(it)) (2b)
∧ EqAll(ends, tps(nls)) (2c)
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4.5 Trace Lemma Reasoning

Trace logic L allows one to naturally express common program behavior over
timepoints. Specifically, it allows us to reason about (i) all iterations of a loop,
and (ii) the existence of specific timepoints. In [11], we leveraged such reasoning
with the use of so-called trace lemmas, capturing common inductive properties of
program loops. Trace lemmas are instances of the schema of bounded induction
for natural numbers

(
P (bl) ∧ ∀xN.

(
(bl ≤ x < br ∧ P (x)) → P (suc(x))

))
→

∀xN.
(
bl ≤ x < br ∧ P (x)

) (3)

An example of a trace lemma would be the statement formalising that a
certain program variable’s value remains unchanged from a specific iteration
to the end of loop execution. In this work, instead of adding instances of (3)
statically to strengthen loop semantics, we move induction into the first-order
prover. The advantage of adding instances of (3) dynamically is that during proof
search we have more information available and can thus perform induction in a
more controlled and goal oriented fashion.

Nonetheless, due to some limitations in our first-order prover, we are unable
to completely do away with additional lemmas. Specifically, we need to nudge
the prover to deduce that a loop counter expression will, at the end of loop
execution, have the value of the expression it is compared against in the loop
condition.

(A) Equal Lengths Trace Lemma We define a common property of loop
counter expressions. We call a program expression e dense at loop w if:

Densew,e := ∀itN.
(
it < nlw →

(
!e"(tpw(suc(it)))! !e"(tpw(it)) ∨
!e"(tpw(suc(it)))! !e"(tpw(it)) + 1

) )
.

Let w be a while-statement, Cw := e < e’ be the loop condition where e’
is a program expression that remains constant during iterations of w. The equal
lengths trace lemma of w, e and e’ is defined as

(
Densew,e ∧ !e"(tpw(0)) ≤ !e’"(tpw(0))

)
→ (A)

!e"(tpw(nlw))! !e’"(tpw(nlw)).

Trace lemma A states that a dense expression e smaller than or equal to some
expression e’ that does not change in the loop, will eventually, specifically in
the last iteration, reach the same value as e’. This follows from the fact that we
assume termination of a loop, hence we assume the existence of a timepoint nlw
where the loop condition does not hold anymore. As a consequence, given that
the loop condition held at the beginning of the execution, we can derive that
the loop counter value immediately after the loop execution !e"(tpw(nlw)) will
necessarily equate to !e’"(tpw(0)) = !e’"(tpw(nlw)). Note that a similar lemma
can just as easily be added for dense but decreasing loop counters.
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5 Multi-Clause Goal Induction for Lemmaless Induction

As mentioned above, the main focus of our work is moving induction into the
saturation prover. We achieve this by adding inference rules that apply induction
to loop counter terms. We leverage recent theorem proving effort on bounded
(integer) induction in saturation [14,15]. However, as illustrated in the following,
these recent efforts cannot be directly used in trace logic reasoning since we
need to (i) adjust bounded induction for the setting of natural numbers, and
(ii) generalise to multi-clause induction. We discuss these steps using Fig. 1.
Verifying the safety assertion of Fig. 1 requires proving the trace logic formula:

∀posI.∃jI. (0 ≤ pos < (2 × length) (4)
→ (c(main end, pos)! a(j) ∨ c(main end, pos)! b(j))

For proving (4), it suffices to prove that the following, slightly modified statement
is a loop invariant of Fig. 1:

∀itN. it < nlw → ∀posI.∃jI. (0 ≤ pos < (2 × i(tpw(it)))) (5)
→ (c(tpw(it), pos)! a(j) ∨ c(tpw(it), pos)! b(j))

where w refers to the loop statement in Fig. 1. As part of the program semantics
in trace logic, we have formula (6) which links the value of c at the end of the
loop to its value at the end of the program. Moreover, using the trace lemma A,
we also derive formula (7) in trace logic:

∀posI.c(tpw(nlw), pos)! c(main end, pos) (6)
i(tpw(nlw))! length (7)

It is tempting to think that in the presence of these clauses (6)–(7), a saturation-
based prover would rewrite the negated conjecture (4) to

¬(∀posI.∃jI. (0 ≤ pos < (2 × i(tpw(nlw))))
→ (c(tpw(nlw), pos)! a(j) ∨ c(tpw(nlw), pos)! b(j)))

from which a bounded natural number induction inference (similar to the
IntInd< rule of [15]) would quickly introduce an induction hypothesis with (5)
as the conclusion, by induction over nlw. However, this is not the case, as most
saturation provers work by first clausifying their input. The negated conjecture
(4) would not remain a single formula, but be split into the following clauses
where sk is a Skolem symbol:

a(x) -! c(main end, sk) b(x) -! c(main end, sk)
¬(sk ≤ 0) sk ≤ 2 × length

These clauses can be rewritten using (6)–(7). For example, the first clause
can be rewritten to a(x) -! c(tpw(nlw, sk)). However, attempting to prove the
negation of any of the rewritten clauses individually via induction would merely
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result in the addition of useless induction formulas to the search space. For
example, attempting to prove ∀itN. it < nlw → (∃xI. a(x)! c(tpw(it), sk)), is
pointless as it is clearly false. The solution we propose in this work is to use multi-
clause induction, whereby we attempt to prove the negation of the conjunction
of multiple clauses via a single induction inference. For our running example
Fig. 1, we can use the following rewritten versions of clauses from the negated
conjecture a(x) -! c(tpw(nlw, sk)), b(x) -! c(tpw(nlw, sk)), and sk ≤ 2×i(tpw(nlw)),
with induction term nlw, to obtain the induction formula:

¬
(

∀xI. a(x) -! c(i(tpw(0)), sk)
∧ ∀xI. b(x) -! c(i(tpw(0), sk))
∧ sk ≤ 2 × i(tpw(0))

)

∧ StepCase

→

∀itN. it < nlw →
¬

(
∀xI. a(x) -! c(i(tpw(it), sk)

∧∀xI. b(x) -! c(i(tpw(it), sk)
∧ sk ≤ 2 × i(tpw(it))

)

(8)
where StepCase is the formula:

∀itN. it < nlw ∧
¬

(
∀xI. a(x) -! c(i(tpw(it)), sk)

∧ ∀xI. b(x) -! c(i(tpw(it)), sk)
∧ sk ≤ i(tpw(y)

)
→

¬
(

∀xI. a(x) -! c(i(tpw(suc(it)), sk)
∧ ∀xI. b(x) -! c(i(tpw(suc(it)), sk)
∧ sk ≤ 2 × i(tpw(suc(it)))

)

Using the induction formula (8), a contradiction can then easily be derived,
establishing validity of (4). In what follows, we formalize the multi-clause induc-
tion principle we used above. To this end, we introduce a generic inference rule,
called multi-clause goal induction and denoted as MCGLoopInd.

C1[nlw] C2[nlw] . . . Cn[nlw]

CNF








¬(C1[0] ∧ C2[0] ∧ . . . ∧ Cn[0]) ∧

∀itN.
(
((it < nlw) ∧ ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it])) →
¬(C1[suc(it)] ∧ C2[suc(it)] ∧ . . . ∧ Cn[suc(it)]))

)




→ (∀itN. (it < nlw) → ¬(C1[it] ∧ C2[it] ∧ . . . ∧ Cn[it]))





For performance reasons, we mandate that the premises C1 . . . Cn be derived
from trace logic formulas expressing safety assertions and not from formulas
encoding the program semantics. The MCGLoopInd rule is formalised only as
an induction inference over last loop iteration symbols. While restricting to nlw
terms is of purely heuristic nature, our experiments justify the necessity and
usefulness of this condition (Sect. 8).

6 Array Mapping Induction for Lemmaless Induction

Multi-clause goal induction neatly captures goal-oriented application of induc-
tion. Nevertheless, there are verification challenges where MCGLoopInd fails to
prove inductive loop properties. This is particularly the case for benchmarks
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Fig. 3. Adding and subtracting n to every element of array a.

containing multiple loops, such as in Fig. 3. We first discuss the limitations of
MCGLoopInd using Fig. 3, after which we present our solution, the array mapping
induction inference.

Let w1 be the first loop statement of Fig. 3 and w2 be the second loop. Using
MCGLoopInd, we would attempt to prove

∀itN. it ≤ nlw2 →
∀posI. (0 ≤ pos < j(tpw2(it))) → (a(tpw2(it), pos)! a(main start, pos) (9)

However, formula (9) is not a useful invariant for proving the assertion. Rather,
for w2 we need a loop invariant similar to

∀itN. it ≤ nlw2 → ∀posI. (0 ≤ pos < j(tpw2(it)))
→ (a(tpw2(it), pos)! a(tpw2(0), pos) − n

(10)

and a similar loop invariant for loop w1. The loop invariant (10) is however not
linked to the safety assertion of Fig. 3, and thus multi-clause goal induction is
unable to infer and prove with it. To aid with the verification of benchmarks such
as Fig. 3, we introduce another induction inference which we call array mapping
induction. In this case, we trigger induction not on clauses and terms coming
from the goal, but on clauses and terms appearing in the program semantics.

The array mapping induction inference rule, denoted as AMLoopInd is given
below. Essentially, AMLoopInd involves analysing a clause set to heuristically
devise a suitable loop invariant. Guessing a candidate loop invariant is a difficult
problem. The AMLoopInd inference is triggered if clauses of the shapes of C1 and
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C2 defined below are present in the clause set. Intuitively, C2 can be read as
saying that on each round of some loop w, some array a at position i is set to some
function F of its previous value at that position. Clause C1 states that i increases
by m in each round of the loop. Together the two clauses suggest that the loop is
mapping the function F to each mth location of the array starting from the array
cell located at i(tpw(0)). This is precisely what the induction formula attempts
to prove. Note that for ease of notation, we present the inference for the case
where the indexing variable is increasing. It is straightforward to generalise to
the decreasing case. The AMLoopInd rule is1

C1 = i(tpw(suc(x)))! i(tpw(x)) +m ∨ ¬(x < nlw)
C2 = a

(
tpw(suc(x)), i(tpw(x))

)
!F [a

(
tpw(x), i(tpw(x))

)
] ∨ ¬(x < nlw)

CNF(StepCase → Conclusion)

where w is some loop and F an arbitrary non-empty context. Let i0 be an abbre-
viation for i(tpw(0)). Then:

StepCase : ∀itN.
(
∀yI. it < nlw ∧

y < i(tpw(it)) − i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(it), i0 + y)!F [a(tpw(0), i0 + y)]
)

→
(∀yI. y < i(tpw(suc(it))) − i0 ∧ y ≥ 0 ∧ y mod m = 0

→ a(tpw(suc(it)), i0 + y)!F [a(tpw(0), i0 + y)])
Conclusion : ∀xI. x < i(tpw(nlw)) − i0 ∧ x ≥ 0 ∧ x mod m = 0

→ a(tpw(nlw), i0 + x)!F [a(tpw(0), i0 + x)]

To prove StepCase, it is necessary to be able to reason that positions in the
array a remain unchanged until visited by the indexing variable. This can be
achieved via the addition of another induction to the conclusion of the inference.
We do not provide details of this induction formula here, but it is added to the
conclusion by our implementation which we present in Sect. 7. The AMLoopInd
inference is thus sufficient to prove the assertion of Fig. 3. While AMLoopInd
is a limited approach for guessing inductive loop invariants, we believe it can
be extended towards further, more generic methods to guess invariants, as dis-
cussed in Sect. 9. We conclude this section by noting that our induction rules
are sound, based on trace logic semantics. Since both rules merely add instances
of the bounded induction schema for natural numbers (3) to the search space,
soundness is trivial and we do not provide a proof.

7 Implementation

Our approach is implemented as an extension of the Rapid framework, using
the first-order theorem prover Vampire.
1 In the conclusion we ignore the base case of the induction formula as it is trivially
true.
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Extensions to Rapid. Rapid takes as an input a W program along with a
property expressed in L. It outputs the semantics of the program expressed in L
using smt-lib syntax along with the property to be proven. For our “lemmaless
induction” framework, we have extended Rapid as follows. Firstly, we prevent
the output of all trace lemmas other than trace lemma A (Sect. 4.5). We added
custom extensions to the smt-lib language to identify trace logic symbols, such
as loop iteration symbols, program variables, within the Rapid encodings. This
way, trace logic symbols to be used for induction inferences are easily identified
and can also be used for various proving heuristics. We refer to this version
(available online2) as Rapidl−.

Extensions to Vampire.We implemented the MCGLoopInd inference rule and a
slightly simplified version of the AMLoopInd rule in a new branch of Vampire3.
The main issue with the induction inferences MCGLoopInd and AMLoopInd is
their explosiveness which can cause proof search to diverge. We have, there-
fore, introduced various heuristics in the implementation to try and control
them. For MCGLoopInd we not only necessitate that the premises are derived
from the conjecture, but that their derivation length from the conjecture is
below a certain distance controlled by an option. The premises must be unit
clauses unless another option multi literal clauses is toggled on. The option
induct all loop counts allows MCGLoopInd induction to take place on all loop
counter terms, not just final loop iterators. In order for the MCGLoopInd and
AMLoopInd inferences to be applicable, we need to rewrite terms not containing
final loop counters to terms that do. However, rewriting in Vampire is based on
superposition, which is parameterised by a term order preventing smaller terms
to be rewritten into larger ones. In this case, the term order may work against
us and prevent such rewrites from happening. We implemented a number of
heuristics to handle this problem. One such heuristic is to give terms represent-
ing constant program variables a large weight in the ordering. Then, equations
such as alength ! i(tpw(nlw)) will be oriented left to right as desired. We com-
bined these options with others to form a portfolio of strategies4 that contains
13 strategies each of which runs in under 10s.

8 Experimental Results

Benchmarks. For our experiments, we use a total of 111 examples whose
verification involved proving safety assertions of different logical complexity
(quantifier-free, only universally/existentially quantified, and with quantifier
alternations). Our benchmarks are divided into four groups, as indicated in
Table 1: (i) the first 13 problems have quantifier-free proof obligations; (ii) the
majority of benchmarks, in total 68 examples, contain universally quantified
2 See commit 285e54b7e of https://github.com/vprover/rapid/tree/ahmed-induction-
support.

3 See commit 4a0f319f of https://github.com/vprover/vampire/tree/ahmed-rapid.
4 --mode portfolio --schedule rapid induction..

https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/rapid/tree/ahmed-induction-support
https://github.com/vprover/vampire/tree/ahmed-rapid
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Table 1. Experimental results.
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safety assertions; (iii) 7 problems come with the task of verifying existentially
quantified assertions; (iv) and the last 23 programs contain assertions with alter-
nation of quantifiers. The examples from (i)-(ii), a total of 81 programs, come
from the array verification benchmarks of SV-COMP repository [1], with most
of these examples originating from [9,13].5 These examples correspond to the set
of those SV-COMP benchmarks which use the C fragment supported by Rapid;
specifically, when selecting examples (i)-(ii) from SV-COMP, we omitted exam-
ples containing pointers or memory management. All SV-COMP examples from
(i)-(ii) are adapted to our input format, as for example arrays in trace logic
are treated as unbounded data structures. Further, the examples (iii)-(iv) are
new examples crafted by us, in total 30 new examples. They contain existential
and alternating quantification in safety assertions. We intend to submit these 30
examples from (iii)-(iv) to SV-COMP.

Experimental Setting. We used two versions of Rapid in our experiments.
First, (1) Rapidl− denotes our Rapid approach, using lemmaless induction
MCGLoopInd and AMLoopInd in Vampire. Further, (2) Rapidl+ uses trace lem-
mas for inductive reasoning, as described in [11]. We also compared Rapidl−

with other verification tools. In particular, we considered (3) SeaHorn and
(4) Vajra (and its extension Diffy that produced for us exactly the same
results as Vajra). SeaHorn converts the program into a constrained horn
clause (CHC) problem and uses the SMT solver Z3 for solving. Vajra and
Diffy implement inductive reasoning and recurrence solving over loop coun-
ters; in the background, they also use Z3.

Rapid Experiments. Table 1 shows that Rapidl− is superior to Rapidl+, as
it solves a total of 93 problems, while Rapidl+ only proved 78 assertions cor-
rect. Particularly, Rapidl− can solve benchmark merge interleave 2 corre-
sponding to our motivating example 1, and other challenging problems such as
find max local 1 also containing quantifier alternations.

While Rapidl− can solve a total of ten problems more than Rapidl+, it is
interesting to look into which problems can now be solved. Many of the newly
solved problems are structurally very close to the loop invariants needed to prove
them. This is where multi-clause goal-oriented induction MCGoalInd makes the
biggest impact. For instance, this allows Rapidl− to prove the partial correctness
of find max from second 0 and find max from second 1.

On the other hand, Rapidl− also lost two challenging benchmarks that were
previously solved by Rapidl+, namely swap 0 and partition 5. This could be
for two reasons: (1) the strategies in the induction schedule of Rapidl− are
too restrictive for such benchmarks, or (2) the step case of the induction axiom
introduced by our two rules are too difficult forVampire to prove. Strengthening
lemmaless induction with additional trace lemmas fromRapidl+ is an interesting
line of further work.

5 Artifact evaluation: in order to reproduce the results reported in this section, please
follow the instructions at https://github.com/vprover/vampire publications/tree/
master/experimental data/CICM-2022-RAPID-INDUCTION.

https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION
https://github.com/vprover/vampire_publications/tree/master/experimental_data/CICM-2022-RAPID-INDUCTION
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Comparing with other tools. Both, SeaHorn and Vajra/Diffy require
C code as input, whereas Rapid uses its own syntax. We translated our bench-
marks to C code expressing the same problem. However, a direct comparison of
Rapid, and in particular Rapidl−, with most other verifiers requiring standard
C code as an input is not possible as we consider slightly different semantics. In
contrast to SeaHorn andVajra/Diffy, we assume that integers and arrays are
unbounded and that all array positions are initialized by arbitrary data. Further,
we can read/write at any array position without allocating the accessed memory
beforehand. Apart from semantic differences, Rapid can directly express asser-
tions and assumptions containing quantifiers and put variable contents from
different points in time into relation. In order to deal with the latter, we intro-
duced history variables in the code provided to SeaHorn and Vajra/Diffy.
Quantification was simulated by non-deterministically assigned variables and by
loops. As a result, SeaHorn verified 13 examples, whereas Vajra/Diffy 47
of our benchmarks. As Vajra/Diffy restrict their input programs to contain
only loops having very specific loop-conditions, several of our benchmarks failed.
For example, i < length is permitted, whereas a[i] -= 0 is not. Vajra/Diffy
could prove correctness for nearly all the programs satisfying these restrictions.
SeaHorn, on the other hand, has problems with the complexity introduced by
the arrays. It could solve especially those benchmarks whose correctness do not
depend on the arrays’ content.

9 Future Directions and Conclusion

We introduced lemmaless induction to fully automate the verification of induc-
tive properties of program loops with unbounded arrays and integers. We intro-
duced goal-oriented and array mapping induction inferences, triggered by loop
counters, in superposition-based theorem proving. Our results show that lem-
maless induction in trace logic outperforms other state-of-the-art approaches
in the area. There are various ways to further develop lemmaless induction in
trace logic. On larger benchmarks, particularly those containing multiple loops,
our approach struggles. For loops where the required invariant is not connected
to the conjecture, we introduced array mapping induction. However, the array
mapping induction inference is limited in the form of invariants it can generate.
We would like to investigate other methods, such as machine learning for syn-
thesising loop invariants that are not too prolific. A completely different line of
research that we are currently working on, is updating the trace logic syntax
and semantics of W to deal with memory and memory allocation, aiming to
efficiently reason about loop operations over the memory.

As shown in [18], the validity problem for first-order formulas of linear arith-
metic extended with non-theory function symbols is Π1

1-complete. Therefore,
we do not expect any completeness result for inductive theorem proving. Prov-
ing relative completeness results for our verification framework is an interesting
question.
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19. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning.
In: POPL, pp. 260–270 (2017)

20. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1
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Abstract—We present the RAPID framework for automatic soft-
ware verification by applying first-order reasoning in trace
logic. RAPID establishes partial correctness of programs with
loops and arrays by inferring invariants necessary to prove
program correctness using a saturation-based automated theorem
prover. RAPID can heuristically generate trace lemmas, common
program properties that guide inductive invariant reasoning.
Alternatively, RAPID can exploit nascent support for induction
in modern provers to fully automate inductive reasoning without
the use of trace lemmas. In addition, RAPID can be used as an
invariant generation engine, supplying other verification tools
with quantified loop invariants necessary for proving partial
program correctness.

I. INTRODUCTION

State-of-the-art deductive verification tools for programs con-
taining inductive data structures ([1], [2], [3], [4], [5]) largely
depend on satisfiability modulo theories (SMT) solvers to dis-
charge verification conditions and establish software correct-
ness. These approaches are mostly limited to reasoning over
universally-quantified properties in fragments of first-order
theories: arrays, integers, etc. In contrast, RAPID supports
reasoning with arbitrary quantifiers in full first-order logic with
theories [6]. Program semantics and properties are directly
encoded in trace logic by quantifying over timepoints of pro-
gram execution. This allows simultaneous reasoning about sets
of program states, unlike model-checking approaches [2][7].
The gain in expressiveness is beneficial for reasoning about
programs with unbounded arrays [6] or to prove security
properties [8], for example.
This paper presents what RAPID can do, sketches its design
(Section III), and describes its main components and imple-
mentation aspects (Sections IV–VII). Experimental evaluation
using the SV-COMP benchmark [9] shows RAPID’s efficacy
in verification (Section VIII).
Given a program loop annotated with pre/post-conditions,
RAPID offers two modes for proving partial program correct-
ness. In the first, RAPID relies on so-called trace lemmas,
apriori-identified inductive properties that are automatically
instantiated for a given program. In the second, RAPID

delegates inductive reasoning to the underlying first-order
theorem prover [10][11], without instantiating trace lemmas.
In either mode, the automated theorem prover used by RAPID
is VAMPIRE [12]. RAPID can also synthesize quantified invari-
ants from program semantics, complementing other invariant-
generation methods.

1 func main() {
2 const Int[] a;
3 const Int alength;
4 Int[] b, c;
5 Int blength, clength, i = 0, 0, 0;
6 while(i < alength) {
7 if(a[i] >= 0) {
8 b[blength] = a[i];
9 blength = blength+1;

10 } else {
11 c[clength] = a[i];
12 clength = clength+1;
13 } i = i+1;
14 }
15 }

Fig. 1: Program partitioning an array a into two arrays b, c
containing positive and negative elements of a respectively.

Related Work: Verifying programs with unbounded data struc-
tures can use model checking for invariant synthesis. Tools like
Spacer/Quic3 ([4], [2]), SEAHORN [1] or FREQHORN [7] are
based on constrained horn clauses (CHC) and use either fixed-
point calculation or sampling/enumerating invariants until a
given safety assertion is proved. These approaches use SMT
solvers to check validity of invariants and are limited to
quantifier-free or universally-quantified invariants. Recurrence
solving and data-structure-specific tactics can be used to infer
and prove quantified program properties [3]. DIFFY [13] and
VAJRA [5] derive relational invariants of two mutations of a
program such that inductive properties can be enforced over
the entire program, without invariants for each individual loop.

II. MOTIVATING EXAMPLE

We motivate RAPID using the program in Figure 1, written in a
standard while-like programming language W . Each program
in W consists of a single top-level function main, with arbi-
trary nestings of if-then-else and while statements. W includes
optionally-mutable integer (array) variables, and standard side-
effect-free expressions over Booleans and integers.
Semantics and properties of W-programs are expressed in
trace logic L, an instance of many-sorted first-order logic with
theories and equality [6]. A timepoint in trace logic is a term of
sort L that refers to a program location. For example, l5 refers
to line 5 in Figure 1. If a program location occurs in a loop,
a timepoint is represented by a function l : N 7! L, where the
argument is a natural number representing a loop iteration.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_32 This article is licensed under a Creative
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Fig. 2: Overview of the RAPID verification framework.

For example, l6(0) denotes the first iteration of the loop before
entering the loop body. A mutable scalar variable v is modeled
as a function over time v : L 7! I. An array variable is
modeled as a function v : L ⇥ I 7! I, where array indices
are represented by integer arguments. For constant variables
we omit the timepoint argument. We use a constant nli : N to
denote the last iteration of the loop starting at li. When a loop
is nested within other loops, the last iteration is a function over
timepoints of all enclosing loops; lend denotes the timepoint
after program execution. For Figure 1, l6(nl6) denotes the
program location of the loop at its last iteration, when the loop
condition no longer holds. We assume that programs terminate,
and hence RAPID focuses on partial correctness.
Figure 1 creates two new arrays, b and c, containing positive
and negative elements from the input array a respectively. Note
that the arrays are unbounded, and we use the symbolic, non-
negative constant alength to bound the length of the input
array a. The constraint that alength be non-negative can be
expressed within a conjecture (see (1) below for example). A
safety property we want to check is that for any position in
b there exists a position in a such that both values are equal
within the respective array bounds (and similarly for c). This
equates to the following conjecture expressed in trace logic1:

8posI. 9pos0I. 0  pos < blength(lend) ^ alength � 0 !
0  pos0 < alength ^ b(lend, pos) = a(pos0),

(1)
To the best of our knowledge other verification approaches
cannot automatically validate (1) due to quantifier alternation,
but RAPID proves this property for Figure 1.

III. THE RAPID FRAMEWORK

The RAPID framework consists of approximately 10,000 lines
of C++ 2. Figure 2 summarizes the RAPID workflow. Inputs to
RAPID are programs P written in W along with properties
F expressed in L. Preprocessing in RAPID applies program
transformations for common loop-altering programming con-

1we write 8xS . F or 9xS . F to mean that x has sort S in F
2available at https://github.com/vprover/rapid

1 while(i < alength) {
2 if (a[i] == x) {
3 break;
4 }
5 i = i + 1;
6 }
7

1 Bool break = false;
2 while(i < alength && !break ) {
3 if (a[i] == x) {
4 break = true;
5 }
6 if (!break) {
7 i = i + 1;
8 }
9 }

10

Fig. 3: Loop tranformation for break-statement.

structs, as well as timepoint inlining to obtain a simplified
program P 0 from P (see Section IV).
Next, RAPID performs inductive verification (see Section V)
by generating the axiomatic semantics [[P 0]] expressed in L
and instantiating a set L1, ..., Ln of inductive properties —
so-called trace lemmas — for the respective program variables
of P 0. For establishing some property F , RAPID supports
two modes of inductive verification: standard and lemmaless
mode. The difference in both versions relates to the underlying
support for automating inductive reasoning while proving F .
The standard verification mode equips the verification task
with the trace lemmas L1, ..., Ln, providing the necessary
induction schemes for proving F . The lemmaless verification
mode uses built-in inductive reasoning and relies less, or
not at all, on trace lemmas. In either mode, the verification
tasks of RAPID are encoded in the SMT-LIB format. Finally,
a third and recent RAPID mode can be used for invariant
generation (see Section VII). In this mode, RAPID “only”
outputs quantified invariants using the SMT-LIB syntax; these
invariants can further be used by other verification tools.

IV. PREPROCESSING IN RAPID

a) Program Transformations: We use standard program trans-
formations to translate away break, continue and return
statements. For these, RAPID introduces fresh Boolean pro-
gram variables indicating whether a statement has been ex-
ecuted. The program is adjusted accordingly: return state-
ments end program execution; break statements invalidate
the first enclosing loop condition; and for continue the
remaining code of the first enclosing loop body is not executed.
Example 1: Figure 3 shows a standard transformation for a
break-statement.
b) Timepoint Inlining: RAPID uses SSA-style inlining [14],
[15], [16] for timepoints to simplify axiomatic program se-
mantics and trace lemmas of a verification task. Specifically,
RAPID caches (i) for each integer variable the current program
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1 a = a + 2;
2 b = 3;
3 c = a + b;
4

5 assert (a(lend) < c(lend))

(a) block assignments

1 if (x < 1) {
2 x = 0;
3 } else {
4 skip;
5 }
6 while (y > 0) {
7 y = y - 1;
8 }
9

10 assert (x(lend) � 0)

(b) simple branching

Fig. 4

expression assigned to it, and (ii) for each integer-array
variable the last timepoint where it was assigned. Cached
values are used during traversal of the program tree to simplify
later program expressions. Thus we avoid defining irrelevant
equalities of program variable values over unused timepoints,
and only reference timepoints relevant to the property. We
illustrate this on two examples:
Example 2 (Inlining assigned integer expressions): The effect
of inlined semantics can be observed when we encounter block
assignments to integer variables: we can skip assignments and
use the last assigned expression directly in any reference to
the original program variable. Consider the partial program in
Figure 4a. Our axiomatic semantics in trace logic [6] would
result in

a(l2) = a(l1) + 2 ^ b(l2) = b(l1) ^
c(l2) = c(l1) ^ a(l3) = a(l2) ^

b(l3) = 3 ^ c(l3) = c(l2) ^
a(lend) = a(l3) ^ b(lend) = b(l3) ^

c(lend) = a(l3) + b(l3)

whereas the inlined version of semantics is drastically shorter:

a(lend) = a(l1) + 2 ^ c(lend) = (a(l1) + 2) + 3.

In contrast to the extended semantics that define all program
variables for each timepoint, the inlined version only considers
the values of referenced program variables at the timepoint of
their last assignment. Thus, when c is defined, RAPID directly
references the (symbolic) values assigned to a and b. While
b is not defined at all, note that a is defined as a(lend) is ref-
erenced in the conjecture. Furthermore, the inlined semantics
only make use of two timepoints, l1, and lend, as the remaining
timepoints are irrelevant to the conjecture.
Example 3 (Inlining equalities with branching.): Figure 4b
shows another program that benefits from inlining equalities,

as well as only considering timepoints relevant to the con-
jecture. The original semantics defines program variables x
and y for all program locations: l1, l2, l3, l4, l6(it), l6(nl6),
lend, for some iteration it and final iteration nl6. While the
program contains two variables x and y, only x is used in the
property we want to prove. Since no assignments to x contain
references to y, the loop semantics do not interfere with x, so
we have

x(l3) < 1 ! x(l6(0)) = 0 ^
x(l3) � 1 ! x(l6(0)) = x(l3) ^
x(lend) = x(l6(0))

where the semantics of the loop defining y are omitted. Note
that all timepoints of the if-then-else statements are flattened
into the timepoint at the beginning of the loop at l6 in iteration
0. The axiomatic semantics thus reduce to three conjuncts
defining the value of x throughout the execution. However,
x is not defined in any loop iteration other than the first as
they are irrelevant to the property.
c) User-defined input: RAPID is fully automated. However, it
may still benefit from manually-defined invariants to support
the prover. Users can therefore extend the input to RAPID with
first-order axioms written in the SMT-LIB format.

V. INDUCTIVE VERIFICATION IN RAPID

As mentioned above, RAPID implements two verification
modes; in the default standard mode, RAPID uses trace lem-
mas to prove inductive properties of programs. In its lemmaless
mode RAPID relies on built-in induction support in saturation-
based first-order theorem proving. In this section we elaborate
on both modes further.

A. Standard Verification Mode: Reasoning with Trace Lemmas
RAPID’s standard mode relies on trace lemma reasoning to
automate inductive reasoning. Trace lemmas are sound for-
mulas that are: (i) derived from bounded induction over loop
iterations; (ii) represent common inductive program properties
for a set of similar input programs; and (iii) are automatically
instantiated for all relevant program variables of a specific
input program during its translation to trace logic; see [6].
In all of our experiments from Section VIII, including the
example from Figure 1, we only instantiate three generic
inductive trace lemmas to establish partial correctness. One
such trace lemma asserts, for example, that a program variable
is not mutated after a certain execution timepoint.
Example 4: Consider the safety assertion (1) of our running
example from Figure 1. In its standard verification mode,
RAPID proves correctness of (1) by using, among others, the
following trace lemma instance

8jI. 8bLN. 8bRN.

✓

8itN.
⇣
(bL  it < bR ^ b(l9(bL), j) = b(l9(it), j))

! b(l9(bL), j) = b(l9(s(it)), j)
⌘

!
�
bL  bR ! b(l9(bL), j) = b(l9(bR), j)

�◆
,
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stating that the value of b at some position j is unchanged
between two bounds bL and bR if, for any iteration it and its
successor s(it), values of b are unchanged.
Multitrace Generalization: RAPID can also be used to prove
k-safety properties over k traces, useful for security-related
hyperproperties such as non-interference and sensitivity [8].
For such problems it is sufficient to extend program variables
to functions over time and trace, such that program variables
are represented as (L⇥T 7! I). Program locations, and hence
timepoints, are similarly parameterized by an argument of sort
T to denote the same timepoint in different executions.

B. Lemmaless Verification Mode
When in lemmaless mode RAPID does not add any trace
lemma to its verification task but relies on first-order theorem
proving to derive inductive loop properties. An extended
version of SMT-LIB (see Section VI) is used to provide the un-
derlying prover with additional information to guide the search
for necessary inductive schemes, such as likely symbols for
induction. We further equip saturation-based theorem proving
with two new inference rules that enable induction on such
terms; see [17] for details. Multi-clause goal induction takes
a formula derived from a safety assertion that contains a final
loop counter, that is a symbol denoting last loop iterations,
and inserts an instance of the induction schema for natural
numbers with the negation of this formula as its conclusion
into the proof search space. For example, consider the formula
x(l5(nl5)) < 0. Multi-clause goal induction introduces the
induction hypothesis x(l5(0)) � 0 ^ 8itN. (it < nl5 ^
x(l5(it)) � 0) ! x(l5(s(it))) � 0 ! x(l5(nl5)) � 0. If
the base and step cases can be discharged, a contradiction can
be easily produced from the conclusion and original clause.
Array mapping induction also introduces an instance of the
induction schema to the search space, but is not based on
formulas derived from the goal. Instead, this rule uses clauses
derived from program semantics to generate a suitable con-
clusion for the induction hypothesis.

VI. VERIFYING PARTIAL CORRECTNESS IN RAPID

For proving the verification tasks of Section V, and thus veri-
fying partial program correctness, RAPID relies on saturation-
based first-order theorem proving. To this end, each verifica-
tion mode of RAPID uses the VAMPIRE prover, for which we
implemented the following, RAPID-specific adjustments.
a) Extending SMT-LIB: Each verification task of RAPID is
expressed in extensions of SMT-LIB, allowing us to treat some
terms and definitions in a special way during proof search:

(i) declare-nat: The VAMPIRE prover has been extended
with an axiomatization of the natural numbers as a term
algebra, especially for RAPID-style verification purposes.
We use the command (declare-nat Nat zero s p
Sub) to declare the sort Nat, with constructors zero and
successor s, predecessor p and ordering relation Sub.

(ii) declare-lemma-predicate: Our trace lemmas are
usually of the form (P1 ^ ... ^ Pn) ! ConclusionL for
some trace lemma L with premises P1^ ...^Pn. In terms

of reasoning, it makes sense for the prover to derive the
premises of such a lemma before using its conclusion
to derive more facts, as we have many automatically
instantiated lemmas of which we can only prove the
premises of some from the semantics. To enforce this, we
adapt literal selection such that inferences from premises
are preferred over inferences from conclusions. Lemmas
are split into two clauses (P1 ^ ... ^ Pn) ! PremiseL
and PremiseL ! ConclusionL, where PremiseL
is declared as a lemma literal. We ensure our literal
selection function selects either a negative lemma literal3
if available, or a positive lemma literal only in combina-
tion with another literal, requiring the prover to resolve
premises before using the conclusion.

The lemmaless mode of RAPID introduces the following
additional declarations to SMT-LIB:

(i) declare-const-var: assign symbols representing con-
stant program variables a large weight in the prover’s
term ordering, allowing constant variables to be rewritten
to non-constant expressions.

(ii) declare-timepoint: distinguish a symbol representing
a timepoint from program variables, guiding VAMPIRE to
apply induction upon timepoints.

(iii) declare-final-loop-count: declare a symbol as a
final loop count symbol, eligible for induction.

b) Portfolio Modes: We further developed a collection of
RAPID-specific proof options in VAMPIRE, using for example
extensions of theory split queues [18] and equality-based
rewritings [19]. Such options have been distilled into a RAPID
portfolio schedule that can be run with --mode portfolio
-sched rapid. Moreover, the multi-clause goal induction
rule and the array mapping induction inference of RAPID
have been compiled to a separate portfolio mode, accessed
via --mode portfolio -sched induction_rapid.

VII. INVARIANT GENERATION WITH RAPID

RAPID can also be used as an invariant generation engine,
synthesizing first-order invariants using the VAMPIRE theorem
prover. To do so, we use a special mode of VAMPIRE to
derive logical consequences of the semantics produced by
RAPID. Some of these consequences may be loop invariants.
The symbol elimination approach of [20] defined some set of
program symbols undesirable, and only reports consequences
that have eliminated such symbols from their predecessors. In
RAPID, we adjust symbol elimination for deriving invariants
in trace logic using VAMPIRE. These invariants may contain
quantifier alternations, and some conjunction of them may well
be enough to help other verification tools show some property.
When RAPID is in invariant generation mode, the encoding
of the problem is optimized for invariant generation. We limit
trace lemmas to more specific versions of the bounded induc-
tion scheme. We also remove RAPID-specific symbols such as
lemma literals so that they do not appear in consequences.

3Note that lemma literals become negative in the premise definition after
CNF-transformation.
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Symbol Elimination: Loop invariants should only contain
symbols from the input loop language, with no timepoints.
To remove such constructs, we apply symbol elimination: any
symbol representing a variable v used on the left-hand side
of an assignment is eliminated. However, we still want to
generate invariants containing otherwise-eliminated variables
at specific locations, so for each eliminated variable v we de-
fine v_init = v(l1) and v_final = v(l2) for appropriate
locations l1, l2: these new symbols need not be eliminated.
We further adjusted symbol elimination in RAPID to output
fully-simplified consequences during proof search in VAMPIRE
(the so-called active set [12]) at the end of a user-specified
time limit. Consequences that contain undesirable symbols or
are pure consequences of theories are removed at this stage.
Reasoning with Integers vs. Naturals: In the standard setting,
RAPID uses natural numbers (internally Nat) to describe loop
iterations. However, in some situations it is advantageous to
use the theory of integers: loop counter variable i of sort I will
have the same numerical value as nl of sort N at the end of
a loop. Integer-based timepoints allow deriving i(l(nl)) = nl.
Such a clause can be very helpful for invariant generation, as
shown in Example 5.
Example 5: Consider the property 8xI.0  x  alength !
a(x) = b(x). The property essentially requires us to prove
that two arrays a, b are equal in all positions between 0 and
alength. Such a property might for example be useful to
prove when we copy from an array b into array a in a loop
with loop condition i < alength where i is the loop counter
variable incremented by one in each iteration. Now when we
run RAPID in the invariant generation mode, we might be
able to derive a property 8x.0  x  nl ! a(x) = b(x),
essentially stating that the property holds for all iterations of
the loop. The prover can further easily deduce that i(l(nl)) �
alength thanks to our semantics.
However, in case of natural numbers we cannot deduce that
i(l(nl)) = nl since the sorts of i and nl differ. In order to
derive an invariant strong enough to prove the postcondition
we depend upon the prover to find the invariant 8x.0  x 
i(l(nl)) ! a(x) = b(x) directly which cannot be deduced by
the prover as our loop semantics are bounded by loop iterations
rather than the loop counter values.
When using -integerIterations on we can circumvent
this problem as the prover can then simply deduce the equality
i(l(nl)) = nl which makes the conjunction of clauses strong
enough to prove the desired postcondition.

VIII. EXPERIMENTAL EVALUATION

We evaluated the two verification modes of RAPID and com-
pare against the state-of-the-art solvers DIFFY and SEAHORN,
as summarized below.
Benchmark Selection: Our benchmarks4 are based on the
c/ReachSafety-Array category of the SV-COMP reposi-
tory [21], specifically from the array-examples/* subcat-
egory5 as it contains problems suitable for our input language.

4https://github.com/vprover/rapid/tree/main/examples/arrays
5https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

TABLE I: Experimental Results

Total RAPIDstd RAPIDlemmaless DIFFY SEAHORN
140 91 (5) 103 (10) 61 (1) 17 (0)

Other examples are not yet expressible in W due to the
presence of function calls and/or unsupported memory access
constructs. We manually translate all programs to W and
express pre/post-conditions as trace logic properties. Addition-
ally, we extend some SV-COMP examples with new conjec-
tures containing existential and alternating quantification.
In general SV-COMP benchmarks are bounded to a certain
array size N . By contrast, we treat arrays as unbounded
in RAPID and reason using symbolic array lengths. Some
benchmarks in the original SV-COMP repository are minor
variations of each other that differ only in one concrete integer
value, e.g to increment a program variable by some integer.
Instead of copying each such variation for different digits,
we abstract such constant values to a single symbolic integer
constant such that just one of our benchmark covers numerous
cases in the original SV-COMP setup.
Results: We compare our two RAPID verification modes, in-
dicated by RAPIDstd and RAPIDlemmaless respectively, against
SEAHORN and DIFFY. All experiments were run on a cluster
with two 2.5GHz 32-core CPUs with a 60-seconds timeout.
Note that DIFFY produced the same results as its precursor
VAJRA in this experiment. Table I summarizes our results,
parentheticals indicating uniquely solved problems. Of a total
of 140 benchmarks, RAPIDstd solves 91 problems, while
RAPIDlemmaless surpasses this by 12 problems. Particularly,
RAPIDlemmaless could solve more variations with quantifier
alternations of our running example 1, as property-driven
induction works well for such problems. A small number
of instances, however, was solved by RAPIDstd but not by
RAPIDlemmaless within the time limit, indicating that trace
lemma reasoning can help to fast-forward proof search. In
total, RAPID solves 112 benchmarks, whereas SEAHORN and
DIFFY could respectively prove 17 and 61 problems (with
mostly universally quantified properties). For more detailed
experimental data on subsets of these benchmarks we refer to
[6], [17].

IX. CONCLUSION

We described the RAPID verification framework for proving
partial correctness of programs containing loops and arrays,
and its applications towards efficient inductive reasoning and
invariant generation. Extending RAPID with function calls, and
automation thereof, is an interesting task for future work.
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Abstract. We present a reasoning framework in support of software
quality ensurance, allowing us to automatically verify the functional cor-
rectness of programs with recursive data structures. Specifically, we focus
on functional programs implementing sorting algorithms. We formalize
the semantics of recursive programs in many-sorted first-order logic while
introducing sortedness/permutation properties as part of our first-order
formalization. Rather than focusing on sorting lists of elements of spe-
cific first-order theories such as integer arithmetic, our list formalization
relies on a sort parameter abstracting (arithmetic) theories and, hence,
concrete sorts. Software validation is powered by automated theorem
proving: we adjust recent efforts for automating inductive reasoning in
saturation-based first-order theorem proving. Importantly, we advocate
a compositional reasoning approach for fully automating the verification
of functional programs implementing and preserving sorting and per-
mutation properties over parameterized list structures. We showcase the
applicability of our framework over recursive sorting algorithms, includ-
ing Mergesort and Quicksort; to this end, we turn first-order theorem
proving into an automated verification engine by guiding automated in-
ductive reasoning with manual proof splits.

1 Introduction

Sorting algorithms are integrated parts of any modern programming language
and, thus, ubiquitous in computing. Ensuring software quality thus naturally
triggers the demand of validating the functional correctness of sorting routines.
Such routines typically implement recursive/iterative operations over unbounded
data structures, for instance lists or arrays, combined with arithmetic manipula-
tions of numeric data types, such as naturals, integers or reals. Automating the
formal verification of sorting routines therefore brings the challenge of automat-
ing recursive/inductive reasoning in extensions and combinations of first-order
theories, while also addressing the reasoning burden arising from design choices
made for the purpose of efficient sorting. Most notably, Quicksort [8] is known
to be easily implemented when making use of recursive function calls, for ex-
ample, as given in Figure 1, whereas procedural implementations of Quicksort
require additional recursive data structures such as stacks. While Quicksort and
other sorting routines have been proven correct by means of manual efforts [5],
proof assistants [17], abstract interpreters [6], or model checkers [9], to the best
of our knowledge such correctness proofs so far have not been fully automated.



1 datatype a’ list = nil | cons(a’, (a’ list))
2
3 quicksort :: a’ list ! a’ list
4 quicksort(nil) = nil
5 quicksort(cons(x, xs)) =
6 append(
7 quicksort(filter<(x, xs)) ,
8 cons(x, quicksort(filter�(x, xs))))
9

10 append :: a’ list ! a’ list ! a’ list
11 append(nil, xs) = xs
12 append(cons(x, xs), ys) = cons(x, append(xs, ys))

Fig. 1: Recursive functional algorithm of Quicksort, using the recursive function
definitions append, filter< and filter� over lists of sort a. The datatype list
is inductively defined by the list constructors nil and cons. Here, xs, ys denote
lists whose elements are of sort a, whereas x is a list element of sort a. The
append function concatenates two lists. The filter< and filter� functions
return lists of elements y of xs such that y < x and y � x, respectively.

In this paper we aim to verify the partial correctness of functional programs with
recursive data structures, in a fully automated manner by using first-order theo-
rem proving. The crux of our approach is a compositional reasoning setting based
on superposition-based first-order theorem proving [12] with native support for
induction [7] and first-order theories of recursively defined data types [11]. We
extend this setting to support the first-order theory of list data structures pa-
rameterized by an abstract background theory/sort a and induction on recursive
function calls - computation induction. We thus introduce a software reasoning
framework that integrates the automation of induction with first-order theorem
proving. Our framework allows us to automatically discharge verification con-
ditions of sorting/permutation programs, without requiring manually proven or
a priori given loop invariants. In particular, we automatically derive induction
axioms to establish the functional correctness of the recursive implementation
of Quicksort from Figure 1. In a nutshell, we proceed as follows.

(i) We formalize the semantics of functional programs in extensions of the first-
order theory of lists (Section 3). Rather than focusing on lists with a specific
background theory, such as integers/naturals, our formalization relies on a pa-
rameterized sort/type a abstracting specific (arithmetic) theories. To this end,
we impose that the sort a has a linear order . We then express program seman-
tics in the first-order theory of lists parameterized by a, allowing us to quantify
over lists of sort a as they are domain elements of our first-order theory.

(ii) We revise inductive reasoning in first-order theorem proving (Section 4) and
introduce computation induction as a means to tackle recursive sorting algo-
rithms. We, therefore, extend the first-order reasoner with an inductive infer-



ence based on the computation induction schema and outline its necessity for
recursive sorting routines.
(iii) We leverage first-order theorem proving for compositional proofs of recursive
parameterized sorting algorithms (Section 5), in particular of Quicksort from
Figure 1. Our proofs do not rely on manually proven invariants or other forms
of inductive annotations. Rather, we embed the application of induction directly
in saturation proving and manually split (sorting) verification conditions into
multiple proof obligations when necessary. Each such condition represents a first-
order lemma, and hence a proof step, that is proved by saturation with induction.
Specifically, all our lemmas/verification conditions are automatically proven by
means of structural and/or computation induction during the saturation process.
Thanks to the automation of induction in saturation, we turn first-order theorem
proving into a powerful approach to guide human reasoning about recursive
properties. We do not rely on user-provided inductive properties, but generate
inductive hypotheses/invariants via inductive inferences as logical consequences
of our program semantics.
(iv) We note that sorting algorithms often follow a divide-and-conquer approach
(see Figure 2). We show how proof search can be guided via compositional proof
splitting for such routines, and provide a generalized set of lemmas that is ap-
plicable to functional sorting algorithms on recursive data structures, such as
lists (Section 6). Doing so, we remark that one of the major reasoning burdens
towards establishing the correctness of sorting algorithms comes with formaliz-
ing permutation properties, for example that two lists are permutations of each
other. Universally quantifying over permutations of lists is, however, not a first-
order property and hence reasoning about list permutation requires higher-order
logic. While counting and comparing the number of list elements is a viable
option to formalize permutation equivalence in first-order logic, the necessary
arithmetic reasoning adds an additional burden to the underlying prover. We
overcome this challenge by introducing an effective first-order formalization of
permutation equivalence over parameterized lists. Our permutation equivalence
property encodes multiset operations over lists, eliminating the need of counting
list elements, and therefore arithmetic reasoning, or fully axiomatizing (higher-
order) permutations.
Contributions. In summary, we bring the following main contributions.
(i) We introduce the formal foundations for formalizing the semantics of func-

tional programs with recursive data structures in the first-order theory of
lists with parameterized sorts. Doing so, we capture the correctness of sort-
ing routines via two properties over lists, namely the sortedness property
and the permutation equivalence property, and introduce a first-order for-
malization of these properties (Section 3).

(ii) We extend first-order theorem proving to include inductive inferences based
on computation induction, enabling automated inductive reasoning with
first-order provers over recursive functions (Section 4).

(iii) We showcase compositional reasoning via first-order theorem provers with
built-in induction and provide a fully automated compositional correctness
proof of the recursive Quicksort algorithm of Figure 1 (Section 5). We em-



phasize that the only manual effort in our framework comes with splitting
formulas into multiple lemmas (Section 6.1); each lemma is established au-
tomatically by means of automated theorem proving with built-in induction.

(iv) We generalize our inductive lemmas to prove correctness of multiple func-
tional sorting algorithms (Section 6.2), including Mergesort and Insertionsort.

(v) We demonstrate our findings (Section 7) by implementing our approach on
top of the Vampire theorem prover [12], providing thus a fully automatd tool
support towards validating the functional correctness of sorting algorithms.

2 Preliminaries

We assume familiarity with standard first-order logic (FOL) and briefly introduce
saturation-based proof search in first-order theorem proving [12].
Saturation. Rather than using arbitrary first-order formulae G, most first-order
theorem provers rely on a clausal representation C of G. The task of first-order
theorem proving is to establish that a formula/goal G is a logical consequence of
a set A of clauses, including assumptions. Doing so, first-order provers clausify
the negation ¬G of G and derive that the set S = A [ {¬G} is unsatisfiable1.
To this end, first-order provers saturate S by computing all logical consequences
of S with respect to some sound inference system I. A sound inference system
I derives a clause D from clauses C such that C ! D. The saturated set of S
w.r.t. I is called the closure of S w.r.t. I, whereas the process of deriving the
closure of S is called saturation. By soundness of I, if the closure of S contains
the empty clause ⇤, the original set S of clauses is unsatisfiable, implying the
validity of A ! G; in this case, we established a refutation of ¬G from A, hence
a proof of validity of G.
The superposition calculus is a common inference system used by saturation-
based provers for FOL with equality [18]. The superposition calculus is sound
and refutationally complete: for any unsatisfiable formula ¬G, superposition-
based saturation derives the empty clause ⇤ as a logical consequence of ¬G.
Parameterized Lists. We use the first-order theory of recursively defined
datatypes [11]. In particular, we consider the list datatype with two construc-
tors nil and cons(x, xs), where nil is the empty list and x and xs are respectively
the head and tail of a list. We introduce a type parameter a that abstracts the
sort/background theory of the list elements. Here, we impose the restriction that
the sort a has a linear order <, that is, a binary relation which is reflexive, an-
tisymmetric, transitive and total. For simplicity, we also use � and  as the
standard ordering extensions of <. As a result, we work in the first-order theory
of lists parameterized by sort a, allowing us to quantify over lists as domain
elements of this theory. For simplicity, we write xsa, ysa, zsa to mean that the
lists xs, ys, zs are parameterized by sort a; that is their elements are of sort a.
Similarly, we use xa, ya, za to mean that the list elements x, y, z are of sort a.
Whenever it is clear from the context, we omit specifying the sort a.

1 for simplicity, we denote by ¬G the clausified form of the negation of G



Function definitions. We make the following abuse of notation. For some func-
tion f in some program P, we use the notation f(arg1, ...) to refer to function
definitions/calls appearing in the input algorithm, while the mathematical no-
tation f(arg1, ...) refers to its pendant in our logical representation, that is the
function call semantics in first-order notation as introduced in Section 3.

3 First-Order Semantics of Functional Sorting Algorithms

We outline our formalization of recursive sorting algorithms in the full first-order
theory of parameterized lists.

3.1 Recursive Functions in First-Order Logic

We investigate recursive algorithms written in a functional coding style and
defined over lists using list constructors. That is, we consider recursive functions
f that manipulate the empty list nil and/or the list cons(x, xs).
Many recursive sorting algorithms, as well as other recursive operations over
lists, implement a divide-and-conquer approach: let f be a function following
such a pattern, f uses (i) a partition function to divide lista, that is a list of sort
a, into two smaller sublists upon which f is recursively applied to, and (ii) calls
a combination function that puts together the result of the recursive calls of f.
Figure 2 shows such a divide-and-conquer pattern, where the partition function
partition uses an invertible operator �, with ��1 being the complement of �; f is
applied to the results of � before these results are merged using the combination
function combine.

1 f :: a’ list ! ... ! a’ list
2 f(nil, ...) = nil
3 f(cons(y, ys), ...)=
4 combine(
5 f(partition�(cons(y, ys))),
6 f(partition��1(cons(y, ys)))
7 )
8

Fig. 2: Recursive divide-and-conquer approach.

Note that the recursive func-
tion f of Figure 2 is de-
fined via the declaration f ::
a0list ! ... ! a0list, where
... denotes further input pa-
rameters. We formalize the
first-order semantics of f via
the function f : (lista ⇥ ...) 7!
lista, by translating the in-
ductive function definitions f
to the following first-order formulas with parameterized lists (in first-order logic,
function definitions can be considered as universally quantified equalities):

f(nil) = nil
8xa, xsa . f(cons(x, xs)) = combine( f(partition�(cons(x, xs))),

f(partition��1(cons(x, xs)))).
(1)

The recursive divide-and-conquer pattern of Figure 2, together with the first-
order semantics (1) of f, is used in Sections 5-6 for proving correctness of the



Quicksort algorithm (and other sorting algorithms), as well as for applying
lemma generalizations for divide-and-conquer list operations. We next introduce
our first-order formalization for specifying that f implements a sorting routine.

3.2 First-Order Specification of Sorting Algorithms

We consider a specific function instance of f implementing a sorting algorithm,
expressed through sort :: a0list ! a0list. The functional behavior of sort needs
to satisfy two specifications implying the functional correctness of sort: (i) sort-
edness and (ii) permutations equivalence of the list computed by sort.
(i) Sortedness: The list computed by the sort function must be sorted w.r.t.
some linear order  over the type a of list elements. We define a parameterized
version of this sortedness property using an inductive predicate sorted as follows:

sorted(nil) = >
8xa, xsa . sorted(cons(x, xs)) = (elemlist(x, xs) ^ sorted(xs)),

(2)

where elemlist(x, xs) specifies that x  y for any element y in xs. Proving
correctness of a sorting algorithm sort thus reduces to proving the validity of:

8xsa . sorted(sort(xs)). (3)

(ii) Permutation Equivalence: The list computed by the sort function is a
permutation of the input list to the sort function. In other words the input
and output lists of sort are permutations of each other, in short permutation
equivalent.
Axiomatizing permutations requires quantification over relations and is thus not
expressible in first-order logic [14]. A common approach to prove permutation
equivalence of two lists is to count the occurrence of elements in each list respec-
tively and compare the occurrences of each element. Yet, counting adds a burden
of arithmetic reasoning over naturals to the underlying prover, calling for addi-
tional applications of mathematical induction. We overcome these challenges of
expressing permutation equivalence as follows. We introduce a family of func-
tions filterQ manipulating lists, with the function filterQ being parameterized
by a predicate Q and as given in Figure 3.

1 filterQ :: a’ ! a’ list ! a’ list
2 filterQ(x, nil) = nil
3 filterQ(x, cons(y, ys))=
4 if (Q(y, x)){
5 cons(y,filterQ(x, ys))
6 } else {
7 filterQ(x, ys)
8 }

Fig. 3: Functions filterQ filtering elements of a list,
by using a predicate Q(y, x) over list elements x, y.

In particular, given an
element x and a list
ys, the functions filter=,
filter<, and filter� com-
pute the maximal sub-
lists of ys that contain
only equal, resp. smaller
and greater-or-equal ele-
ments to x. Analogously
to counting the multiset
multiplicity of x in ys via



counting functions, we compare lists given by filter=, avoiding the need to count
the number of occurrences of x and hence prolific axiomatizations of arithmetic.
Thus, to prove that the input/output lists of sort are permutation equivalent,
we show that, for every list element x, the results of applying filter= to the
input/output list of sort are the same over all elements. Formally, we have the
following first-order property of permutation equivalence:

8xa, xsa . filter=(x, xs) = filter=(x, sort(xs)). (4)

4 Computation Induction in Saturation

In this section, we describe our reasoning extension to saturation-based first-
order theorem proving, in order to support inductive reasoning for recursive
sorting algorithms as introduced in Section 3. Our key reasoning ingredient comes
with a structural induction schema of computation induction, which we directly
integrate in the saturation proving process.
Inductive reasoning has recently been embedded in saturation-based theorem
proving [7], by extending the superposition calculus with a new inference rule
based on induction axioms:

L[t] _ C
(Ind)

cnf(¬F _ C)
where (1) L[t] is a quantifier-free (ground) literal,

(2) F ! 8x.L[x] is a valid induction axiom,
(3) cnf(¬F_C) is the clausal form of ¬F_C.

An induction axiom refers to an instance of a valid induction schema. In our
work, we use structural and computational induction schemata.
In particular, we use the following structural induction schema over lists:

�
F [nil] ^ 8x, ys.(F [ys] ! F [cons(x, ys)])

�
! 8zs.F [zs] (5)

Then, considering the induction axiom resulting from applying schema (5) to L,
we obtain the following Ind instance for lists:

L[t] _ C

L[nil] _ L[�ys] _ C
L[nil] _ L[cons(�x,�ys)] _ C

where t is a ground term of sort list, L[t] is ground, and �x and �ys are fresh
constant symbols. The above Ind instance yields two clauses as conclusions and
is applied during the saturation process.
Sorting algorithms, however, often require induction axioms that are more com-
plex than instances of structural induction (5). Such axioms are typically in-
stances of the computation/recursion induction schema, arising from divide-
and-conquer strategies as introduced in Section 3.1. Particularly, the complexity
arises due to the two recursive calls on different parts of the original input list
produced by the partition function that have to be taken into account by the



induction schema. We therefore use the following computation induction schema
over lists:

✓
F [nil] ^ 8x, ys.

✓✓
F [partition�(x, ys)]^
F [partition��1(x, ys)]

◆
! F [cons(x, ys)])

◆◆
! 8zs.F [zs] (6)

yielding the following instance of Ind that is applied during saturation:

L[t] _ C

L[nil] _ L[partition�(�x,�ys)] _ C
L[nil] _ L[partition��1(�x,�ys)] _ C

L[nil] _ L[cons(�x,�ys)] _ C

where t is a ground term of sort list, L[t] is ground, �x and �ys are fresh constant
symbols, and partition� and its complement refer to the functions that partition
lists into sublists within the actual sorting algorithms.

5 Proving Recursive Quicksort

We now describe our approach towards proving the correctness of the recursive
parameterized version of Quicksort, as given in Figure 1. Note that Quicksort
recursively sorts two sublists that contain respectively smaller and greater-or-
equal elements than the pivot element x of its input list. We reduce the task
of proving the functional correctness of Quicksort to the task of proving the
(i) sortedness property (3) and (ii) the permutation equivalence property (4) of
Quicksort. As mentioned in Section 3.2, a similar reasoning is needed for most
sorting algorithms, which we evidence in Sections 6–7.

5.1 Proving Sortedness for Quicksort

Given an input list xs, we prove that Quicksort computes a sorted list by
considering the property (3) instantiated for Quicksort. That is, we prove:

8xsa . sorted(quicksort(xs)) (7)

The sortedness property (7) of Quicksort is proved via compositional reasoning
over (7). Namely, we enforce the following two properties that together imply (7):

(S1) By using the linear order  of the background theory a, for any element
y in the sorted list quicksort(filter<(x, xs)) and any element z in the sorted
list quicksort(filter�(x, xs)), we have y  x  z.

(S2) The functions filter< and filter� of Figure 3 are correct. That is, filter-
ing elements from a list that are smaller, respectively greater-or-equal, than an
element x results in sublists only containing elements smaller than, respectively
greater-or-equal, than x.



Similarly to (2) and to express property (S2), we introduce the inductively
defined predicates elemlist :: a0 ! a0list ! bool and listlist :: a0list !
a0list ! bool:

8xa . elemlist(x, nil) = >
8xa, ya, ysa . elemlist(x, cons(y, ys)) = x  y ^ elemlist(x, ys),

(8)

and

8ysa . listlist(nil, ys) = >
8xa, xsa, ysa . listlist(cons(x, xs), ys) = (elemlist(x, ys) ^ listlist(xs, ys)).

(9)

Thus, for some element x and lists xs, ys, we express that x is smaller than or
equal to any element of xs by elemlist(x, xs). Similarly, listlist(xs, ys) states
that every element in list xs is smaller than or equal to any element in ys.
The inductively defined predicates of (8)–(9) allow us to express necessary lem-
mas over list operations preserving the sortedness property (7), for example, to
prove that appending sorted lists yields a sorted list.
Proving properties (S1)–(S2), and hence deriving the sortedness property (7)
of Quicksort, requires three first-order lemmas in addition to the first-order
semantics (1) of Quicksort. Each of these lemmas is automatically proven by
saturation-based theorem proving using the structural and/or computation in-
duction schemata of (5) and (6); hence, by compositionality, we obtain (S1)–
(S2) implying (7). We next discuss these three lemmas and outline the complete
(compositional) proof of the sortedness property (7) of Quicksort.
• In support of (S1), lemma (10) expresses that for two sorted lists xs, ys and
a list element x, such that elemlist(x, xs) holds and all elements of the con-
structed list cons(x, xs) are greater than or equal to all elements in ys, the result
of concatenating ys and cons(x, xs) yields a sorted list. Formally, we have

8xa, xsa, ysa .
�
sorted(xs) ^ sorted(ys) ^ elemlist(x, xs)^
listlist(ys, cons(x, xs))

�

! sorted(append(ys, cons(x, xs)))
(10)

• In support of (S2), we need to establish that filtering greater-or-equal elements
for some list element x results in a list whose elements are greater-or-equal than
x. In other words, the inductive predicate of (8) is invariant over sorting and
filtering operations over lists.

8xa, xsa . elemlist(x, quicksort(filter�(x, xs))). (11)

• Lastly and in further support of (S1)–(S2), we establish that all elements
of a list xs are “covered” with the filtering operations filter� and filter<
w.r.t. a list element x of xs. Intuitively, a call of filter<(x,xs) results in a
list containing all elements of xs that are smaller than x, while the remaining
elements of xs are those that are greater-or-equal than x and hence are contained
in cons(x, filter�(x, xs)). By applying Quicksort over the input list xs, we get:



8xa, xsa . listlist(
quicksort(filter<(x, xs)),
cons(x, quicksort(filter�(x, xs)))).

(12)

The first-order lemmas (10)–(12) guide saturation-based proving to instantiate
structural/computation induction schemata and derive the following induction
axiom necessary to prove (S1)–(S2), and hence sortedness of Quicksort:
⇣
sorted(quicksort(nil))^

8xa, xsa .
⇣ sorted(quicksort(filter�(x, xs)))^
sorted(quicksort(filter<(x, xs)))

⌘
! sorted(quicksort(cons(x, xs))

⌘

! 8xsa . sorted(quicksort(xs)),
(13)

where axiom (13) is automatically obtained during saturation from the computa-
tion induction schema (6). Intuitively, the prover replaces F by sorted(quicksort(t))
for some term t, and uses filter< and filter� as partition� and partition��1

respectively to find the necessary computation induction schema. We emphasize
that this step is fully automated during the saturation run.
The first-order lemmas (10)–(12), together with the induction axiom (13) and
the first-order semantics (1) of Quicksort, imply the sortedness property (4) of
Quicksort; this proof can automatically be derived using saturation-based rea-
soning. Yet, the obtained proof assumes the validity of each of the lemmas (10)–
(12). To eliminate this assumption, we propose to also prove lemmas (10)–(12)
via saturation-based reasoning. Yet, while lemma (10) is established by satura-
tion with structural induction (5) over lists, proving lemmas (11)–(12) requires
further first-order formulas. In particular, for proving lemmas (11)–(12) via sat-
uration, we use four further lemmas, as follows.
• Lemmas (14)–(15) indicate that the order of elemlist and listlist is pre-
served under quicksort, respectively. That is,

8xa, xsa . elemlist(x, xs) ! elemlist(x, quicksort(xs)) (14)

and

8xsa, ysa . listlist(ys, xs) ! listlist(quicksort(ys), xs). (15)

• Proving lemmas (14)–(15), however, requires two further lemmas that follow
from saturation with built-in computation and structural induction, respectively.
Namely, lemmas (16)–(17) establish that elemlist and listlist are also invari-
ant over appending lists. That is,

8xa, ya, xsa, ysa .
�
y  x ^ elemlist(y, xs) ^ elemlist(y, ys)

�

! elemlist(y, append(cons(x, ys), xs))
(16)

and
8xsa, ysa, zsa .

�
listlist(ys, xs) ^ listlist(zs, xs)

�

! listlist(append(ys, zs), xs)
(17)



With lemmas (14)–(17), we automatically prove lemmas (10)–(12) via saturation-
based reasoning. The complete automation of proving properties (S1)–(S2),
and hence deriving the sortedness property (7) of Quicksort in a compositional
manner, requires thus altogether seven lemmas in addition to the first-order se-
mantics (1) of Quicksort. Each of these lemmas is automatically established
via saturation with built-in induction. Hence, unlike interactive theorem prov-
ing, compositional proving with first-order theorem provers can be leveraged to
eliminate the need to a priori specifying necessary induction axioms.

5.2 Proving Permutation Equivalence for Quicksort

In addition to establishing the sortedness property (7) of Quicksort, the func-
tional correctness of Quicksort also requires proving the permutation equiva-
lence property (4) for Quicksort. That is, we prove:

8xa, xsa . filter=(x, xs) = filter=(x, quicksort(xs)). (18)

In this respect, we follow the approach introduced in Section 3.2 to enable first-
order reasoning over permutation equivalence (18). Namely, we use filter= to
filter elements x in the lists xs and quicksort(xs), respectively, and build the cor-
responding multisets containing as many x as x occurs in xs and quicksort(xs).
By comparing the resulting multisets, we implicitly reason about the number
of occurrences of x in xs and quicksort(xs), yet, without the need to explicitly
count occurrences of x. In summary, we reduce the task of proving (18) to com-
positional reasoning again, namely to proving following two properties given as
first-order lemmas which, by compositionality, imply (18):
(P1) List concatenation commutes with filter=, expressed by the lemma:

8xa, xsa, ysa . filter=(x, append(xs, ys)) = append( filter=(x, xs),
filter=(x, ys)).

(19)

(P2) Appending the aggregate of both filter-operations results in the same
multisets as the unfiltered list, that is, permutation equivalence is invariant over
combining complementary reduction operations. This property is expressed via:

8xa, ya, xsa . filter=(x, xs) = append( filter=(x, filter<(y, xs)),
filter=(x, filter�(y, xs))).

(20)

Similarly as in Section 5.1, we prove lemmas ((P1))–((P2)) by saturation-based
reasoning with built-in induction. In particular, investigating the proof output
shows that lemma ((P1)) is established using the structural induction schema (5)
in saturation, while the validity of lemma ((P2)) is obtained by applying the
computation induction schema (6) in saturation.
By proving lemmas ((P1))–((P2)), we thus establish validity of permutation
equivalence (18) for Quicksort. Together with the sortedness property (7)
of Quicksort proven in Section 5.1, we conclude the functional correctness of
Quicksort in a fully automated and compositional manner, using saturation-
based theorem proving with built-in induction and altogether nine first-order
lemmas in addition to the first-order semantics (1) of Quicksort.



6 Lemma Generalizations for Guided Proof Splits

Establishing the functional correctness of Quicksort in Section 5 uses nine first-
order lemmas that express inductive properties over lists in addition to the first-
order semantics (1) of Quicksort. While each of these lemmas is proved by satu-
ration using structural/computation induction schemata, coming up with proper
inductive lemmas remains crucial in reasoning about inductive data structures.
That is, we need effective ways to split the proof so that the first-order theorem
prover can automatically discharge all proof steps with built-in induction.
In Section 6.1, we describe when and how we split proof obligations into lemmas,
so that each of these lemmas can further be proved automatically using first-
order theorem proving. In Section 6.2, we next demonstrate that the lemmas of
Section 5 can be generalized and leveraged to prove correctness of other divide-
and-conquer list sorting algorithms, in particular within the Mergesort routine
of Figure 5. The generality of our inductive lemmas from Section 5 also helps
reasoning about sorting routines that do not necessarily follow a divide-and-
conquer strategy, such as the Insertionsort algorithm of (Figure 4).

6.1 Guided Proof Splitting

Contrary to automated approaches that use inductive annotations to alleviate
inductive reasoning, our approach synthesizes the correct induction axioms au-
tomatically during saturation runs. However, there is still a manual limitation
to our approach, namely proof splitting. That is, deciding when a lemma is nec-
essary or helpful for the automated reasoner.
Splitting the proof into multiple lemmas is necessary to guide the prover to find
the right terms to apply the inductive inferences of Section 4. This is particu-
larly the case when input problems, such as the sorting algorithms, contain calls
to multiple recursive functions - each of which has to be shown to preserve the
property that is to be verified.
We next illustrate and examine the need for proof splitting using lemma (10).

Example 1 (Compositional reasoning over sortedness in saturation). Consider
the following stronger version of lemma (10) in the proof of Quicksort:

8xa, xsa, ysa .�
sorted(xs) ^ sorted(ys)

�
! sorted(append(ys, cons(x, xs))).

(21)

This formula could automatically be derived by saturation with computation
induction (6) while trying to prove sortedness of the algorithm. However, for-
mula (21) is not helpful with regards to the specification of Quicksort since
the value of x is not correctly restricted w.r.t.  to xs, ys (e.g. concatenating
a sorted xs with an arbitrary x not necessarily yields a sorted list). The prover
needs additional information to verify sortedness. Therefore, the assumptions
elemlist(x, xs) and listlist(ys, cons(x, xs)) are needed in addition to (21),
resulting in lemma (10). Yet, lemma (10) from Section 5 can be automatically



1 insertsort :: a’ list ! a’ list
2 insertsort(nil) = nil
3 insertsort(cons(x, xs)) = insert(x, insertsort(xs))
4
5 insert :: a’ ! a’ list ! a’ list
6 insert(x, nil) = cons(x, nil)
7 insert(x, cons(y, ys)) =
8 if (x  y) {
9 cons(x, cons(y, ys))

10 } else {
11 cons(y, insert(x, ys))
12 }
13

Fig. 4: Recursive algorithm of Insertionsort using the recursive function def-
inition insertsort and auxiliary (recursive) function insert. Insertionsort
recursively sorts the list by inserting single elements in the correct order with
the helper function insert.

derived via saturation with compositional reasoning, based on computation in-
duction (6). That is, we manually split proof obligations based on missing infor-
mation in the saturation runs: we derive (21) from (6) via saturation, strengthen
the hypotheses of (21) with missing necessary conditions elemlist(x, xs) and
listlist(ys, cons(x, xs)), and prove their validity via saturation, yielding (10).

Manual Formula Splits for Automated Proofs. Contrary to loop invariants
or other inductive annotations that are rarely proven correct by means of the
underlying verification technique itself, our approach automatically proves each
lemma correct by synthesizing the correct induction axioms during proof search.
In case a proof fails, we investigate and manually strengthen the synthesized
induction axioms and verify their validity in turn again with the theorem prover
and built-in induction. That is, we do not simply assume inductive lemmas but
also provide a formal argument of their validity. We emphasize that we manually
split the proof into multiple verification conditions such that inductive reasoning
can fully be automated in saturation.

6.2 Lemma Generalizations for Sorting

The lemmas from Section 5 represent a number of common proof splits that
can be applied to various list sorting tasks. In the following we generalize their
structure and apply them to two other sorting algorithms, namely Mergesort
and Insertionsort.
Common Patterns of Inductive Lemmas for Sorting Algorithms. Con-
sider the computation induction schema (6). When using (6) for proving the sort-
edness (7) and permutation equivalence (18) of Quicksort, the inductive formula
F of (6) is, respectively, instantiated with the predicates sorted from (7) and
filter= from (18). The base case F [nil] of schema (6) is then trivially proved by
saturation for both properties (7) and (18) of Quicksort.



1 mergesort :: a’ list ! a’ list
2 mergesort(nil) = nil
3 mergesort(xs) =
4 merge(
5 mergesort(take((xslength div 2), xs)) ,
6 mergesort(drop((xslength div 2), xs))
7 )
8
9 merge :: a’ list ! a’ list ! a’ list

10 merge(nil, ys) = ys
11 merge(xs, nil) = xs
12 merge(cons(x, xs), cons(y, ys)) =
13 if (x  y) {
14 cons(x, merge(xs, cons(y, ys)))
15 } else {
16 cons(y, merge(cons(x, xs), ys))
17 }
18

Fig. 5: Recursive Mergesort using the recursive functions merge, take, and drop
over lists of sort a. Mergesort splits the input list xs into two halves by using
take and drop that respectively take and drop the first half of elements of the
input list (corresponding to partition functions of Figure 2). Both halves are
recursively sorted and combined by the merge function, yielding a sorted list
(corresponding to combine of Figure 2).

Proving the induction step case of schema (6) is however challenging as it relies
on partition-functions which are further used by combine functions within the
divide-and-conquer patterns of Figure 2. Intuitively this means, that proving the
induction step case of schema (6) for the sortedness (7) and permutation equiv-
alence (18) properties requires showing that applying combine functions over
partition functions preserve sortedness (7) and permutation equivalence (18),
respectively. For divide-and-conquer algorithms of Figure 2, the step case of
schema (6) requires thus proving the following lemma:

✓
8xa, ysa.

✓
combine

✓
F [partition�(x, ys)]^
F [partition��1(x, ys)]

◆
! F [cons(x, ys)])

◆◆
. (22)

We next describe generic instances of lemma (22) to be used within proving
functional correctness of sorting algorithms, depending on the partition/combine
function of the underlining divide-and-conquer sorting routine.
(i) Combining sorted lists preserves sortedness. For proving the inductive
step case (22) of the sortedness property (3) of sorting algorithms, we require
the following generic lemma (23):

8xsa, ysa .
�
sorted(xs) ^ sorted(ys)

�
! sorted(combine(xs, ys)), (23)



ensuring that combining sorted lists results in a sorted list. Lemma (23) is used
to establish property (S1) of Quicksort, namely used as lemma (10) for proving
the preservation of sortedness under the append function.
We showcase that generality of lemma (23), by using it upon sorting routines
different than Quicksort. Consider, for example, Mergesort as given in Figure
5. The sortedness property (3) of Mergesort can be proved by using saturation
with lemma 23; note that the merge function of Mergesort acts as a combine
function of (23). That is, we establish the sortedness property of Mergesort via
the following instance of (23):

8xsa, ysa . sorted(xs) ^ sorted(ys) ! sorted(merge(xs, ys)) (24)

Finally, lemma (23) is not restricted to divide-and-conquer routines. For exam-
ple, when proving the sortedness property (3) of the Insertionsort algorithm
of Figure 4, we use saturation with lemma (23) applied to insert. As such,
sortedness of Insertionsort is established by the following instance of (23):

8xa, xsa . sorted(xs) ! sorted(insert(x, xs)) (25)

(ii) Combining reductions preserves permutation equivalence. Similarly
to Section 5.2, proving permutation equivalence (4) over divide-and-conquer sort-
ing algorithms of Figure 2 is established via the following two properties:
• As in (P1) for Quicksort, we require that combine commutes with filter=:

8xa, xsa, ysa . filter=(x, combine(xs, ys)) = combine(filter=(x, xs),

filter=(x, ys))
(26)

• Similarly to (P2) for Quicksort, we ensure that, by combining (complemen-
tary) reduction functions, we preserve (4). That is,

8xa, xsa . filter=(x, xs) = combine(filter=(x, partition�(xs)),

filter=(x, partition��1(xs)))
(27)

Note that lemmas (P1) and (P2) for Quicksort are instances of (26) and (27)
respectively, as the append function of Quicksort acts as a combine function
and the filter< and filter� functions are the partition functions of Figure 2.
To prove the permutation equivalence (4) property of Mergesort, we use the
functions take and drop as the partition functions of lemmas (26)–(27). Doing
so, we embed a natural number argument n in lemmas (26)–(27), with n control-
ling how many list elements are taken and dropped, respectively, in Mergesort.
As such, the following instances of lemmas (26)–(27) are adjusted to Mergesort:

8xa, xsa, ysa . filter=(x,merge(xs, ys)) = append(filter=(x, xs),

filter=(x, ys))
(28)

and

8xa, nN, xsa . filter=(x, xs) = append(filter=(x, take(n, xs)),

filter=(x, drop(n, xs))),
(29)



with lemmas (28)–(29) being proved via saturation. With these lemmas at hand,
the permutation equivalence (4) of Mergesort is established, similarly to Quicksort.

Finally, the generality of lemmas (26)–(27) naturally pays off when proving the
permutation equivalence property (4) of Insertionsort. Here, we only use a
simplified instance of (26) to prove (4) is preserved by the auxiliary function
insert. That is, we use the following instance of (26):

8xa, ya, ysa . filter=(x, cons(y, ys)) = filter=(x, insert(y, ys)), (30)

which is automatically derivable by saturation with computation induction (6).
We conclude by emphasizing the generality of the lemmas (23) and (26)–(27) for
automating inductive reasoning over sorting algorithms in saturation-based first-
order theorem proving: functional correctness of Quicksort, Mergesort, and
Insertionsort are proved using these lemmas in saturation with induction.
Moreover, each of these lemmas is established via saturation with induction.
Thus, compositional reasoning in saturation with computation induction enables
proving challenging sorting algorithms in a fully automated manner.

7 Implementation and Experiments

Implementation. Our work on saturation with induction in the first-order the-
ory of parameterized lists is implemented in the first-order prover Vampire [12].
In support of parameterization, we extended the SMT-LIB parser of Vampire
to support parametric data types from SMT-LIB [1] – version 2.6. In particular,
using the par keyword, our parser interprets (par (a1 ... an) ...) similar
to universally quantified blocks where each variable ai is a type parameter.
Appropriating a generic saturation strategy, we adjust the simplification order-
ings (LPO) for efficient equality reasoning/rewrites to our setting. For example,
the precedence of function quicksort is higher than of symbols nil, cons, append,
filter< and filter�, ensuring that quicksort function terms are expanded to
their functional definitions.
We further apply recent results of encompassment demodulation [3] to improve
equality reasoning within saturation (–drc encompass). We use induction on
data types (–ind struct), including complex data type terms (–indoct on).
Experimental Evaluation. We evaluated our approach over challenging re-
cursive sorting algorithms taken from [17], namely Quicksort, Mergesort, and
Insertionsort. We show that the functional correctness of these sorting rou-
tines can be verified automatically by means of saturation-based theorem proving
with induction, as summarized in Table 1.
We divide our experiments according to the specification of sorting algorithms:
the first column PermEq shows the experiments of all sorting routines w.r.t. per-
mutation equivalence (4), while Sortedness refers to the sortedness (3) property,
together implying the functional correctness of the respective sorting algorithm.
Here, the inductive lemmas of Sections 5–6 are proven in separate saturation



PermEq
Benchm. Pr. T Required lemmas
IS-PE X 0.02 {IS-PE-L1}
IS-PE-L1 X 0.13 ;
MS-PE X 0.06 {MS-PE-L1, MS-PE-L2}
MS-PE-L1 X* 0 -
MS-PE-L2 X 0.03 ;
MS-PE-L3 X 0.15 ;
QS-PE X 0.5 {QS-PE-L1, QS-PE-L2}
QS-PE-L1 X 0.05 ;
QS-PE-L2 X 0.09 ;

Table 1: Experimental evaluation of
proving properties of sorting algorithms,
using a time limit of 5 minutes on ma-
chine with AMD Epyc 7502, 2.5 GHz
CPU with 1 TB RAM, using 1 core and
16 GB RAM per benchmark.

Sortedness
Benchm. Pr. T Required lemmas
IS-S X 0.01 {IS-S-L1}
IS-S-L1 X 8.28 -
MS-S X 0.08 ;
MS-S-L1 X* 0 -
MS-S-L2 X 0.02 ;

QS-S X 0.09
{QS-S-L1, QS-S-L2,
QS-S-L3}, {QS-S-L1,
QS-S-L3, QS-S-L4}

QS-S-L1 X 0.27 ;
QS-S-L2 X 0.04 {QS-S-L4}
QS-S-L3 X 11.82 {QS-S-L4, QS-S-L5}
QS-S-L4 X 8.28 {QS-S-L6}
QS-S-L5 X 0 {QS-S-L7}
QS-S-L6 X 0.02 ;
QS-S-L7 X 0.02 ;

IS, MS and QS correspond to Insertionsort, Mergesort and Quicksort; S and PE
respectively denote sortedness (3) and permutation equivalence (4), and Li stands for
the i-th lemma of the problem.

runs of Vampire with structural/computation induction; these lemmas are then
used as input assumptions to Vampire to prove validity of the respective bench-
mark.2 A benchmark category SA-PR[-Li] indicates that it belongs to proving
the property PR for sorting algorithm SA, where PR is one of S (sortedness (3))
and PE (permutation equivalence (4)) and SA is one of IS (Insertionsort), MS
(Mergesort) and QS (Quicksort). Additionally, an optional Li indicates that
the benchmark corresponds to the i-th lemma for proving the property of the
respective sorting algorithm.
For our experiments, we ran all possible combinations of lemmas to determine
the minimal lemma dependency for each benchmark. For example, the sortedness
property of Quicksort (QS-S) depends on seven lemmas (see Section 5.1), while
the third lemma for this property (QS-S-L3) depends on four lemmas (see Sec-
tion 5.2). The second column Pr. indicates that Vampire solved the benchmark,
by using a minimal subset of needed lemmas given in the fourth column. The
third column T shows the running time in seconds of the respective saturation
run using the first solving strategy identified during portfolio mode.
To identify the successful configuration, we ran Vampire in a portfolio setting
for 5 minutes on each benchmark, with strategies enumerating all combinations
of options that we hypothesized to be relevant for these problems. In accor-
dance with Table 1, Vampire compositionally proves permutation equivalence
of Insertionsort and Quicksort and sortedness of Mergesort and Quicksort.
Note that sortedness of Mergesort is proven without any lemmas, hence lemma

2 Link to experiments upon request due to anonymity.



MS-S-L1 is not needed. The lemmas MS-PE-L1 for the permutation equivalence of
Mergesort and IS-S-L1 for the sortedness of Insertionsort could be proven
separately by more tailored search heuristics in Vampire (hence X⇤), but our
cluster setup failed to consistently prove these in the portfolio setting. Further
statistics on inductive inferences are provided in Appendix A.

8 Related Work

While Quicksort has been proven correct on multiple occasions, not many have
investigated a fully automated proof of the algorithm. One partially automated
proof of Quicksort, closest to our work, relies on Dafny [15], where loop invari-
ants are manually provided [2]. While [2] claims to prove some of these lemmas,
not all invariants are proved correct (only assumed to be so). Similarly, the Why3
framework [4] has been leveraged to prove the correctness of Mergesort [16] over
parameterized lists and arrays. These proofs also rely on manual proof splitting
with the additional overhead of choosing the underlying prover for each subgoal
as Why3 is interfaced with multiple automated and interactive solvers.
The work of [19] establishes the correctness of permutation equivalence for mul-
tiple sorting algorithms based on separation logic through inductive lemmas.
However, [19] does not address the correctness proofs of the sortedness prop-
erty. Contrarily, we automate the correctness proofs of sorting algorithms, using
compositional first-order reasoning in the theory of parameterized lists.
Verifying functional correctness of sorting routines has also been explored in
the abstract interpretation and model-checking communities, by investigating
array-manipulating programs [6,9]. In [6], the authors automatically generate
loop invariants for standard sorting algorithms of arrays of fixed length; the
framework is, however, restricted solely to inner loops and does not handle re-
cursive functions. Further, in [9] a priori given invariants/interpolants are used
in the verification process. Unlike these techniques, we do not rely on a user-
provided inductive invariant, nor are we restricted to inner loops.
There are naturally many examples of proofs of sorting algorithms using in-
teractive theorem proving (ITP), see e.g. [10,13]. The work of [10] establishes
correctness of Insertionsort. Similarly, the setting of [13] proves variations of
Introsort and Pdqsort – both using Isabelle/HOL [20]. However, ITP relies on
users to provide induction schemata, a burden that we eliminate in our approach.
When it comes to the landscape of automated reasoning, we are not aware of
other techniques enabling fully automated verification of such sorting routines.
To the best of our knowledge, the formal verification of Quicksort has so far
not been automated, an open challenge which we solve in this paper.

9 Conclusion and Future Work

We present an integrated formal approach to establish program correctness over
recursive programs based on saturation-based theorem proving. We automati-
cally prove recursive sorting algorithms, particularly the Quicksort algorithm,



by formalizing program semantics in the first-order theory of parameterized lists.
Doing so, we expressed the common properties of sortedness and permutation
equivalence in an efficient way for first-order theorem proving. By leveraging
common structures of divide-and-conquer sorting algorithms, we advocate com-
positional first-order reasoning with built-in structural/computation induction.

We believe the implications of our work are twofold. First, integrating inductive
reasoning in automated theorem proving to prove (sub)goals during interactive
theorem proving can significantly alleviate the use of proof obligations to be
shown manually, since automated theorem proving from our work can synthe-
size induction hypotheses to verify these conditions. Second, finding reasonable
strategies to automatically split proof obligations on input problems can tremen-
dously enhance the degree of automation in proofs that require heavy inductive
reasoning. We hope that our work to open up future directions in combining
interactive/automated reasoning, by further decreasing the amount of manual
work in proof splitting, allowing thus superposition frameworks better applicable
to a wider range of recursive algorithms. Proving further recursive sorting/search
algorithms in future work, with improved compositionality, is therefore an inter-
esting challenge to investigate.
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A Generated Inductive Inference during Proof Search

For all conjectures and lemmas that were proved in portfolio mode, we summa-
rized the applications of inductive inferences with structural and computation
induction schemata in Table 2. Specifically, Table 2 compares the number of
inductive inferences performed during proof search (column IndProofSearch)
with the number of used inductive inferences as part of each benchmark’s proof
(column IndProof). While most safety properties and lemmas required less than
50 inductive inferences, thereby using mostly one or two of them in the proof,
some lemma proofs exceeded this by far. Most notably IS-S-L1 and QS-S-L1,
Insertionsort’s and Quicksort’s first lemma respectively, depended on many
more inductive inferences until the right axiom was found. Such statistics point
to areas where the prover still has room to be finetuned for software verification
and quality assurance purposes, here especially towards establishing correctness
of functional programs.
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