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3. Abstract  

The rise of digitalization has brought with it numerous issues, including online threats, 

insults, incitement, and hate speech [1]. The use of counter speech by internet users is 

becoming increasingly important to combat the mentioned issues. As a result, the 

monitoring of social media and its online activity is necessary for a save internet use and 

earns great importance in today's world [2]. Several machine learning models have been 

used for text classification and detection tasks in the past. Especially newer Transformer 

models like BERT [6] show state-of-the-art results in identifying hateful content on social 

media. These networks are capable to handle large amounts of data by achieving high 

accuracy scores in the evaluation procedure [1]. However, due to their complex structure, 

these models often lack explainability and interpretability. Even though explainability has 

become one of the most present topics in Artificial Intelligence over the past few years [2]. 

The research in counter speech detection combined with explainability approaches are 

limited. Based on this, after a thorough research of suitable datasets and the training of 

BERT Transformer models for the detection of hate- and counter speech, different 

explainability methods to explain the decisions of the model are compared [5]. The 

evaluation focuses on three distinct explainability methods: the well-established LIME [9] 

and Integrated Gradients [10], and two emerging techniques, GlobEnc [11] and ProtoTEx 

[12]. 

Three BERT Transformer models have been fine-tuned on two counter speech related 

tasks. Also, one BERT model for language detection task was used to evaluate the 

ProtoTEx model. However, early evaluation of this method showed that the ProtoTEx model 

was not suitable for this comparative study and was discharged from further evaluation. The 

other three methods are evaluated regarding their faithfulness, plausibility, 

understandability, sufficiency, trustworthiness, satisfaction, and help-/usefulness. Even 

though, all the remaining three methods can be considered as plausible, none of them 

fulfilled the other criteria to a sufficient extend. Only the LIME methods showes some 

tendencies in satisfying the understandability and the sufficiency criteria.  

 
  



 

  

 
 



 

  

 
Kurzfassung 

Die zunehmende Digitalisierung hat zahlreiche Probleme mit sich gebracht wie online 

Übergriffen, welche oft mit Drohungen, Beleidigungen und Hassreden einher gehen [1]. Der 

Einsatz von Gegenrede durch Internetnutzer*innen wird immer wichtiger, um den 

genannten Problemen entgegenzuwirken. Folglich ist die Überwachung sozialer Medien 

und ihrer Online-Aktivitäten für eine sichere Internetnutzung notwendig und wird immer 

wichtiger [2]. In der Vergangenheit wurden verschiedene Modelle des maschinellen 

Lernens für Textklassifizierungs- und Erkennungsaufgaben verwendet. Insbesondere 

neuere Transformer-Modelle wie BERT [6] zeigen besonders hervorstechende Ergebnisse 

bei der Erkennung von hasserfüllten Inhalten in sozialen Medien. Diese Netzwerke sind in 

der Lage, große Datenmengen zu verarbeiten und erreichen hohe Performanz im 

Evaluierungsverfahren [1]. Aufgrund ihrer komplexen Struktur mangelt es diesen Modellen 

jedoch häufig an Erklärbarkeit und Interpretierbarkeit. Dabei ist die Erklärbarkeit in den 

letzten Jahren zu einem der aktuellen Themen in der Künstlichen Intelligenz geworden [2]. 

Die Forschung auf dem Gebiet der Erkennung von Gegenredner*innen in Kombination mit 

Erklärungsansätzen ist jedoch begrenzt. Folglich wurden nach einer gründlichen 

Recherche zu geeigneten Datensätze und dem Trainieren von BERT-Transformer-

Modellen zur Erkennung von Hass- und Gegenrede verschiedene Erklärbarkeitsmethoden 

miteinander verglichen, um die Entscheidungen der Modelle besser verständlich und für 

den Menschen interpretierbar zu machen [5]. Die Evaluierung konzentriert sich auf drei 

verschiedene Erklärungsmethoden: die bewährten LIME [9] und Integrated Gradients [10] 

method sowie zwei neue Techniken, GlobEnc [11] und ProtoTEx [12]. Drei BERT-

Transformer-Modelle wurden für zwei Aufgaben bezüglich der Erkennung von Gegenrede 

feinabgestimmt. Eines der BERT-Modelle wurde dafür trainiert, um zwischen Deutscher und 

Englischer Sprache in Texten zu unterscheiden, um mit diesem Modell die ProtoTEx-

Methode zu bewerten. Die frühe Bewertung dieser Methode zeigte jedoch, dass das 

trainierte ProtoTEx-Modelle für diese vergleichende Studie nicht geeignet sind, und wurden 

aus der weiteren Bewertung ausgeschlossen. Die anderen drei Methoden wurden 

hinsichtlich mehrerer Kriterien wie Treue, Plausibilität, Verständlichkeit, Suffizienz, 

Vertrauenswürdigkeit, Zufriedenheit und Nützlichkeit mit Hilfe einer Ablationsstudie und 

einer Benutzer*innenstudie bewertet. Obwohl alle drei verbleibenden Methoden als 

plausibel angesehen werden können, erfüllte keine von ihnen die verbleibenden Kriterien 

im ausreichenden Maße. Lediglich die LIME-Methode zeigte gewisse Tendenzen, die 

Kriterien der Verständlichkeit und der Suffizienz zu erfüllen. 
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5. Introduction  

5.1. Motivation 

Threats, insults, incitement, and hate-filled postings - they are among the biggest problems 

that comes with digitalization [1]. Countering hate is one strategy for combating hate 

speech. Therefore, counter speakers on social media play a significant role in the dynamic 

and safety of social media platforms like Twitter, Instagram and TikTok. As these platforms 

become increasingly prominent in today's society, monitoring them is growing in importance 

[3]. However, manually monitoring such websites is time-consuming, requires significant 

human resources, and exposes monitors to potentially traumatizing content. Therefore, 

additionally to countering such hateful content, it is of special interest to develop Machine 

Learning (ML) methods which support filtering such controversial posts in the first place 

when it comes to detecting hate speech itself. Additionally, to hate speech monitoring, 

detecting counter speakers can be beneficial for promoting them to continue and even 

produce more counter speech [1]. This can even lead to the dynamic that they motivate and 

recruit new counter speakers to combat against the hate on social media. Also, finding 

persons which already do counter hateful postings, but in an inappropriate way (e.g.: using 

insults or hate) can be found and provided with examples for more ethically correct and 

better counter responses [4].  

 

Recent automatic monitoring approaches only focus on detecting hateful content in social 

media. However, this is a quite difficult task for ML models since the information that can 

be obtained by such online mediums is often short, noisy, unstructured and lack of proper 

manner [5]. Traditional methods often lack in capturing the complex and diverse features 

present in social media data. Therefore, such traditional methods may not fully capture the 

significance or structure of words and sentences in comments, which makes them often 

unsuitable for the complex task of hate speech detection and in the following, the detection 

of counter speech. However, research has demonstrated that more advanced models using 

attention mechanisms can selectively focus on important and unimportant parts of text [6]. 

For text classification tasks, such attention-based models currently provide the best results. 

One of the most popular models are Bidirectional Encoder Representations from 

Transformers (BERT) [7], which became increasingly popular for classification and 

detection tasks in social media due to their ability to effectively capture the context and 

semantic meaning of texts. These models can handle large amounts of data and have 

achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. 

BERT is more adaptable for the use case since it does not need as much computational 

power as other Transformer models, which it is particularly interesting for the task of 

detecting counter speech in social media posts and is therefore the model architecture 

chosen within this thesis.  

 

However, one of the major problems of such complex Transformer models and their 

decisions is that they are often not explainable and/or traceable. This means that their inner 
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workings and decisions are not reasonable and understandable for humans which is 

extremely important in real life applications and for building trust in the algorithm [2]. 

Depending on the ethical significance of the task, it is essential to know on what basis the 

algorithm makes its decision on in order to verify its trustworthiness and for making sure 

that their decisions are fair and unbiased [8]. Several papers have been used for comparing 

explainability methods for models using textual data. However, none of them focuses of the 

explainability for models with the focus on counter speech detection.  

Due to these circumstances, the scope of this thesis is to fine-tune BERT Transformer 

models for detecting counter speech and to investigate in different explainability methods 

to make its decisions more explainable to humans. For this comparative study, four 

explainability methods, LIME [9] Integrated Gradients [10], GlobEnc [11] and ProtoTEx [12] 

have been chosen and evaluated by an ablation study and a user study.  

 

5.2. Research Questions 

The main research questions to be answered in this thesis are:  

 

• Which explainability methods can be used to explain the decisions of Transformer-

based language models? 

The field of XAI is a broad one ranging from traditional methods to more advanced 

deep learning models. Especially Transformer models consist of highly complex 

architectures and their decisions are often not interpretable for humans. Therefore, 

investigation in well working explainability techniques for Transformer models is 

needed.   

To answer this question, a comprehensive literature review on existing XAI 

methodologies suitable for Transformer architectures is pursued.  The aim is to 

determine four distinct methods, each based on a unique strategy. These selected 

methods will be evaluated on BERT Transformer models that will be fine-tuned for the 

purpose of detecting counter speech in text. 

 

• Which explainability methods are most helpful in result interpretation for humans? 

The need of transparency in the decision-making process of ML architectures is crucial 

especially for sensitive tasks. Therefore, ensuring that humans can understand the 

behavior of a ML model is paramount to build trust in the model. This question focuses 

on examining which explainability concepts are most beneficial for human users. The 

chosen explainability methods will be assessed by evaluating them through both an 

ablation study and a user study. The evaluation is based on criteria predefined in the 

context of this research, focusing on making interpreting the results of the classifier 

more interpretable for humans.  
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• How do different explainability concepts differ and what are the strengths and 

weaknesses? 

As the field of XAI grows, several concepts have emerged to make models in NLP 

(especially Transformer models) more explainable. The variety of methods make it 

necessary to evaluate their strengths and weaknesses to not only gather knowledge of 

the restrictions and benefits, but also for developing further and more advances 

techniques in the future. According to a previously done literature review and the 

comparative study, the advantages and disadvantaged of the chosen explainability 

concepts and the four chosen methods are analyzed.  

5.3. Methodological Approach  

For answering the stated research questions mentioned in the previous section, an in-depth 

literature research and a comparison of four explainability methods which can be adapted 

to BERT-like Transformers is pursued. The chosen methods include one attention-based 

(GlobEnc [11]) one gradient-based (Integrated Gradients [10]), one perturbation-based 

(LIME [9]) and one approach based on prototypes (ProtoTEx [12]). 

 

At the beginning, a literature review on existing approaches on counter speech detection 

and related datasets will be conducted. A state-of-the-art analysis of different XAI methods 

for Transformer models will be done. A thorough literature research on Google and 

databases like IEEE, ScienceDirect, SpringerLink, GoogleScholar and ACM was 

performed. For essential coding resources, datasets, and models, huggingface.co and 

Github.com are considered. Even though no particular language restriction is set, the focus 

is on English and German resources. The main keywords/phrases and wildcards that are 

used within the search strategy include:  

BERT, Transformer, explainable AI (XAI), explainab*, interpretab*, Natural Language 

Processing, NLP, counter speech detection, hate speech detection, gradient based, 

attention based, attribution methods, prototypes, text classification/detection. ChatGPT was 

used during the writing process of the master thesis to paraphrase some quotations. 

 

Even though there are several studies which conduct comparisons of XAI methods [13]–

[17] (for other tasks then counter speech detection), only two of the found papers include a 

prototype-based  approach in their experiments for Transformer explainability [12], [18]. 

Also, previous papers claim that recent, traditional techniques come with certain difficulties 

and limitation which makes it important that newer and more variations of approaches get 

developed and evaluated. Some of these limitations are mentioned and evaluated in the 

course of this thesis.  

Four methods have been chosen of four different methodological concepts, an attention-

based method, a gradient-based method, a perturbation-based method, and a method that 

utilizes the use of prototypes are selected for the comparative study. The method based on 

gradients is Integrated Gradients [19] and the perturbation-based approach is LIME [9]. The 

attention-based method which is used is GlobEnc [11], which is different than recent 

attention-based approaches, since it integrated all the elements that are part of the encoder 

block and accumulates them throughout all layers. For the prototype-based approach, 
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representative examples for each provided class in the dataset are generated in order to 

provide the user a better understanding in why a certain prediction is made by the model 

[12]. For this approach, the implementation of ProtoTEx [12] is adapted to the BERT model 

for counter speech detection.  

 

A comprehensive assessment of methods to evaluate the advantages and disadvantages 

of explaining BERT Transformers to humans is carried out. This evaluation will hinge on 

several criteria regarding to the explainability of ML models. To verify the criteria of 

plausibility [20], a ablation study is employed. To evaluate the criteria of faithfulness [20], 

understandability and trustworthiness [21], [22], sufficiency [23], satisfaction [24] and 

usefulness/helpfulness [24] a user study is performed. This study comprises two primary 

tasks: a forward prediction task and a comparative analysis. The participants include 

persons with a certain knowledge of Artificial Intelligence (AI) and explainable AI. 

 

Since the use case of this thesis is the detection of counter speech in text, a literature review 

on appropriate datasets is pursued. The chosen counter speech related datasets are the 

Thou Shalt Not Hate dataset [25] and the HateCounter dataset [26], where the Thou Shalt 

Not Hate dataset includes the classes “counter” and “non-counter” and the HateCounter 

one consists of the classes “hate speech” and counter speech”. To account for weaknesses 

in the evaluation of ProtoTex, a third dataset, the Europarl dataset [13] is included. This 

dataset is considered for the straightforward task of distinguishing between the German and 

English languages. A well-balanced subsample of this data is created. Each of the datasets 

is used to fine-tune a BERT model for the respective task. 

 

The fine-tuned Transformer models are evaluated using several metrics, including 

accuracy, F1-Score, recall, and precision [24]. For the ablation study, we will calculate and 

visualize the Pearson correlation and the changes in prediction performance. The user 

study will be assessed based on standard deviation, effect size (Cohen's d), and confidence 

intervals. Furthermore, an additional ANOVA analysis is planned to provide deeper insights 

into the results. 

5.4. Structure of the Thesis 

After stating the problem and the approach of this paper, the following will describe the 

structure of the thesis in more detail. Chapter 6 offers a theoretical overview of ML models 

in NLP, transitioning from traditional to deep learning models. Within this, the spotlight is on 

the introduction and various concepts of attention mechanisms. After discussing the forward 

pass and backpropagation functions in ML, an introduction to BERT Transformer models 

and their architectures is presented. Subsequently, pivotal terminologies and criteria in 

explainable AI (XAI) are addressed, encompassing topics like global and local explanations, 

post-hoc, ante-hoc, and self-explanation. The chapter concludes with a comprehensive 

literature review on different explainability approaches, particularly those employed for 

textual data and Transformer models.  
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The following chapter 6.3.3 focuses on the concepts of XAI methods that can be applied on 

Transformer models and its decisions. The four concepts selected in this thesis are 

thoroughly described. Each of these concepts aligns with a method tailored for the 

classification models discussed in this paper. These four methodologies, alongside their 

functionalities, are further elaborated in section 6.3.3. After the theoretical background the 

experimental setup is described in section 8. At first, the use case of counter speech 

detection and its significance is elaborated. This leads to a detailed discourse on selected 

datasets, training strategies for BERT-based classifiers, and the technical implementation—

including hardware, software, and package selections. 

The evaluation procedure is described in detail and employs several metrics for comparing 

the classification results, a user study and an ablation study for accessing the results of the 

XAI methods. The results of this evaluation are found in chapter 9, accompanied by a 

thorough discussion on the results and insights garnered during implementation and 

evaluation. The last chapter 10 gives an overview of the discoveries, addressing the 

research questions and weighting pros and cons of the various methodologies of the 

different approaches. Finally, future work for upcoming future research topics is stated.  
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6. Background and State-of-the-Art 

This section provides an introduction of the background of Natural Language Processing 

(NLP) in terms of text classification and explores the state-of-the-art of current explainability 

methods in NLP. 

At the beginning, the background and developments in terms of text classification are 

discussed including traditional as well as deep learning approaches. Light is shed on the 

training functionality of ML models by providing information on the forward pass and the 

backpropagation. Also, an introduction on attention mechanisms and the variations of the 

concept of computing attention in a deep learning model are given. By the end of this 

chapter, the Transformer architecture and its concepts are explained.  

6.1. Background on Text Classification 

Text classification is an essential task in NLP. It includes tagging text with predefined 

classes or labels, which are determined by the model from the content. Numerous practical 

applications are based on text classification including sentiment analysis, spam detection 

or counter- and hate- speech detection on social media. In the past, traditional as well as 

deep learning-based methods have been introduced for the task of text classification as 

shown in Fig. 1.   

 

In the initial stage, the textual data usually underwent preprocessing steps including word 

segmentation, data cleaning, and statistics. Traditional ML methods are in the need of 

suitable, often manually extracted features from the samples since these methods’ 

efficiency is significantly constrained by the quality of the extracted features. Deep Learning 

models can extract the features by themselves and do not need any further intervention. 

More detail on the traditional and the Deep Learning Methods can be found in the following 

chapters 6.1.1 and 6.1.2.  After training the chosen models on the classification task the 

models are tested on an unseen data split of their respective task. According to the 

predicted label and the true label of the dataset the model can be evaluated by computing 

several evaluation metrics e.g., accuracy or F1-score [27]. 

 

 

Fig. 1. Flowcharts of text classification approaches showing traditional methods with  

essential feature extraction and deep leaning methods. Adapted from [27]. 
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6.1.1. Traditional Text Classification Methods 

Traditional models typically rely on the manual extraction of meaningful features from the 

text samples which are afterwards processed by classical classification algorithms. In the 

early stages of text classification, traditional ML algorithms like Bag-of-Words (BoW) [28], 

N-gram [29]  or TF-IDF (Term Frequency-Inverse Document Frequency) [30] were 

introduced to extract these features. The extracted features where then used as input to 

train a classification model.  

In the early stages, rule-based methods were used which consist of conditional statements 

or “if-then” statements which define different relationships between the variables of the 

features. These algorithms are particularly useful, and they are also often interpretable by 

design [27], [31]. After this rule-based approaches, classical statistical algorithms like Naïve 

Bayes (NB) [32], Support Vector Machines (SVM) [33], K-Nearest Neighbours (KNNs) [34] 

and Decision Trees (DT) [33] were introduced. Compared to the rule-based approaches, 

these methods tend to have benefits regarding their stability and accuracy since their 

vocabularies might be incomplete due to the variation in different languages. But still, these 

methods rely on feature engineering which needs domain knowledge and tend to show 

issues in their scalability, which make these methods less feasible when large amounts of 

data are used. Also, traditional methods lack in understanding the semantic meaning of the 

given input sentences since they focus more on the syntactic representation of words. This 

behavior can cause them to miss out on understanding the context in which words are used, 

making them less effective for tasks that require a nuanced understanding of text [35]. Since 

2010, people have started using deep learning models to classify text rather than using the 

traditional methods mentioned before [27].  

6.1.2. Deep Learning Models 

The use of Deep Neural Networks (DNNs) comes with the benefit that these methods can 

determine and learn semantic relationships in the data by their own without the need of 

human input. A variety of different input data can be analysed using these models including 

single label, multi label, unsupervised and unbalanced data.   

 

With the rise of deep learning models, Neural Networks (NN) became popular in the field of 

NLP especially for the task of text classification. Convolution Neural Networks (CNNs) [36], 

Recurrent Neural Networks (RNNs) [37], including their more advanced variant, the Long-

Short-Term Memory networks (LSTMs)  had a rise withing the NLP community [38], [39]. 

RNNs are among the most popular networks for text classification since they can capture 

sequential dependencies of textual data and can retain information from earlier parts of the 

text during processing which leads to a certain understanding of the semantics of the text. 

However, a common issue that arises during the training of these RNNs is the vanishing 

gradient problem, which occurs especially in long sentences when the gradients of earlier 

parts become more insignificant for the RNN unit than later parts as illustrated in Fig. 2.  
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Fig. 2. Vanishing gradients in RNN units. Adapted from [40]. 

 

This issue usually occurs during the backpropagation process of the RNN architecture. 

During backpropagation, the weights of the model are adjusted by gradients which are 

computed by continuous multiplications of derivates.  

 

Forward Pass  

During the forward pass, the input data is presented as feature vector or a sequence of 

features in the input layer of the NN. This data flows through one or more hidden layers 

composed of neurons (nodes). These neurons are interconnected by weighted connections. 

The mathematical representation of this process in a single neuron can be given as: 

 

 
Where: 

• 𝑧𝑗 represents the weighted sum for the neuron 𝑗 

• 𝑤𝑗 is the weight of neuron 𝑗 

• 𝑥 is the input data 

• 𝑏𝑗 is the bias of neuron 𝑗 

 

Following this, each neuron applies an activation function to its weighted sum to produce 

its output. Activation functions introduce non-linearity into the network, enabling it to learn 

complex patterns and form non-linear mappings between inputs and outputs. Commonly 

used activation functions include ReLU (Rectified Linear Units), sigmoid, tanh, and softmax 

[41]. 

 

 

For a given weighted sum 𝑧𝑗 , the output using an activation function (e.g., sigmoid 𝜎(𝑧𝑗) =) 

is: 

𝑧𝑗 = 𝛴𝑖𝑤𝑗𝑖  × 𝑥𝑗𝑖 +  𝑏𝑗 (1) 



22 

  

 
The final outputs from these hidden layers are passed to the network's output layer, which 

produces the prediction of the network. Upon completion of the forward pass, the network's 

predicted output is compared to the target class, commonly referred to as the ground truth. 

This comparison uses a loss function C  to quantify the difference between the predicted 

and actual values. One popular choice for this is the Mean Squared Error (MSE) [41], 

represented as: 

 
Where:  

• 𝑁 is the number of data points 

• 𝑦𝑖 is the actual output 

• �̂�𝑖 is the predicted label of the model 

 

For simplicity we will use a general formulation of the loss function C, where 𝑦𝑖  is the output 

label:  

 

 

The factor 
1

2
 is introduced to the squared error term so that when differentiated, the factor 

of 2 from the power rule cancels out the factor, leaving the gradient as just the difference 

between the predicted and actual value [42]. The primary goal during training is to minimize 

this loss [43], [44]. 

 

Backpropagation 

Backpropagation, or the backward pass, is the method used to compute the gradients of 

the loss function C  with respect to the parameters (weights and biases) of the network. The 

gradients provide both the magnitude and direction of changes required to minimize the 

loss—underlying the concept of gradient descent. During backpropagation, at first the 

gradient of the loss function is calculated with respect to the activations of the output layer 

where 
𝜕𝐶

𝜕𝑦𝑗
 partial derivative of 𝐶 with respect to the output 𝑦𝑗 of the neuron 𝑗. 

 
This information about the gradients is then propagated backward through all the layers of 

the network. The gradients of the loss function C concerning the weighted sums and outputs 

of the activation function for each neuron are computed. Using the chain rule, this gradient 

concerning the weight 𝑤𝑗 is: 

 

 

𝜎(𝑧𝑗) =  
1

1 + 𝑒−𝑧𝑗
 (2) 

𝐶 = 𝑀𝑆𝐸 =
1

𝑁
𝛴𝑖ሶ(𝑦𝑖 − �̂�𝑖)2  (3) 

𝐶 =
1

2
(𝑦𝑖 − 𝑡𝑎𝑟𝑔𝑒𝑡)2  (4) 

𝜕𝐶

𝜕𝑦𝑗
= ൫𝑦𝑗 − 𝑡𝑎𝑟𝑔𝑒𝑡൯  (5) 

𝜕𝐶

𝜕𝑤𝑗
=

𝜕𝐶

𝜕𝑦𝑗
×

𝜕𝑦𝑗

𝜕𝑧𝑗
×

𝜕𝑧𝑗

𝜕𝑤𝑗𝑖
  (6) 
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Which can be simplified to: 

   

 
 

Upon computing the gradients for the network parameters, optimizers, such as Stochastic 

Gradient Descent (SGD), use these gradients to update the parameters in the direction 

opposite to the gradient: 

 
Where 𝜂 denotes the learning rate. During training, the forward pass and the 

backpropagation are iterative processed with the goal of gradually improving the network. 

The goal is to reach the point where the model converges. At this point the loss of the model 

minimized and the prediction of the model should improve and get more accurate [41].  

 

One issue of RNNs is that they are limited in the information that can be captured of a text 

since they are only capable of accessing the past information because they process the 

sequences in a single direction. This is why they are also referred as unidirectional RNNs. 

A variant which tackles this issue are bidirectional RNNs. Bidirectional RNNs include two 

separate RNNs that process sequenced in both directions: one processed the sequence 

from the beginning to the end (forward), and the other one from the end to the beginning of 

the sequence (backward). These architectures can therefore capture contextual 

dependencies in texts and are particularly useful in tasks where understanding the future 

context is crucial [45]. Another issue of RNNs is the gradient vanishing problem which 

occurs when the calculated derivates are extremely small [46]. One contribution for tackling 

this vanishing gradient problem was the introduction of Long Short-Term Memory (LSTM). 

LSTMs are based on the idea of RNNs but include a cell which has the purpose of 

remembering values over arbitrary time intervals. They also consist of three gate structures 

to control the information flow of the network. Therefore, when compared to RNNs, LSTMs 

can capture longer context than RNNs [46].  

Another important approach to improve RNNs was to add an encoder and a decoder to the 

model. These architectures were initially introduced for sequence-to-sequence tasks like 

text translation to improve capturing the long- and short- term dependencies between 

words. This is possible because these architectures can process input sequences 

sequentially [47]. However, a primary limitation with the basic encoder-decoder approach 

lies in the requirement for the encoder to compress all relevant information into a fixed-

length vector. This compression becomes problematic, particularly for longer sentences, 

leading to a decline in performance as the input sentence length increases. Also, the 

needed high computational power of those models is an issue. To overcome these issues, 

researchers introduced the attention mechanism [48] which enables the model to 

dynamically focus of specific parts of the input sentence. Therefore, the need of 

compressing all relevant information into a fixed-length vector can be avoided. The attention 

mechanism used in the architecture of Transformer models has become one of the most 

relevant inventions in the past few years [48].  

𝜕𝐶

𝜕𝑤𝑗
=

𝜕𝐶

𝜕𝑧𝑗
×

𝜕𝑧𝑗

𝜕𝑤𝑗𝑖
  (7) 

𝑤𝑗 = 𝑤𝑗 −  𝜂 × 𝑥 +  
𝜕𝐶

𝜕𝑤𝑗
 (8) 
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6.1.3. Attention Mechanism  

Initially, the attention mechanism was introduced to enhance various architectures to allow 

them to focus on the most crucial parts of an input text. The attention mechanism was first 

introduced in Bahdanau et al. [48] for enhancing a RNN model with an added encoder and 

decoder and stacked RNN layers for the task of machine translation. The author proposed 

a solution to enable the decoder to focus on relevant input words of the sentence and to 

overcome the issue of fixed length encoding vectors. The attention mechanism addresses 

this problem by dynamically adjusting the focus on relevant parts of the input during 

decoding, enabling the decoder to access and use the information more efficiently, 

regardless of the input sequence's length or complexity. The calculation of the hidden states 

is shown in Eq. (9) where 𝑥𝑡 is the source input and ℎ𝑡 is the hidden state at step 𝑡 and f  is 

a non-linear activation function.  

 

 

 

For the decoder, the notion of the hidden states is 𝑠𝑡 and the notion of the target output is 

𝑦𝑡. The length of the sequence is denoted as t. 

 

 

 

The decoder includes a context vector 𝑐𝑖 which calculates a weighted sum (using the 

alignment scores) of the encoders hidden states of the input sequence ℎ𝑖 (10).  

 

 

 

 

 

The alignment model calculates a score, 𝛼𝑡,𝑖 (weights) for every pair of input i and each 

output at position t (𝑦𝑡, 𝑥𝑖), according on how well they match (12).    

 

 
 

The collection of weights {𝛼𝑡,𝑖}, illustrate the significance of each source hidden state in 

relation to each output. In the study of Bahdanau et al. [48],  the alignment score 𝛼 is 

parametrized by a feedforward network containing a singular hidden layer. This network is 

simultaneously trained with other model sections. The scoring function utilises tanh as non-

linear activation function (13). 

 

 

 

 

The final scoring function 𝑠𝑐𝑜𝑟𝑒 (𝑠𝑡 , ℎ𝑖), describes the alignment score between the target 

hidden state (st) and the specific source hidden state ℎ𝑖. The vector of weights vα  and the 

𝛼𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑦𝑡 , 𝑥𝑖) =  
𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖))

෌ 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖′))
𝑛

𝑖′=1

 (12) 

ℎ𝑡 = 𝑓(𝑥𝑡 , ℎ𝑡−1), 𝑡 = 2, 3, … , 𝑛 (9) 

) 

𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡), 𝑡 = 1, … , 𝑚 (10) 

𝑐𝑡 = ෍ 𝛼𝑡,𝑖ℎ𝑖

𝑛

𝑗=1

 (11) 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡 , ℎ𝑖) =  𝑣𝛼
𝑇𝑡𝑎𝑛ℎ (𝑊𝛼ሾ𝑠𝑡; ℎ𝑖ሿ) (13) 
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weight matrix 𝑊𝛼 which linearly combines the target hidden state 𝑠𝑡 and the source hidden 

state ℎ𝑖 are learned during the training of the network [48], [49]. 

 

Attention mechanisms have become a popular subject in academic research, with 

numerous studies exploring its nuances and potential applications, distinguishing attention 

mechanism with different attributions. Common attributions that include different attention 

scoring functions are local/global and soft/hard and self-attention [50]–[52]. More 

information of the self-attention functionality can be found in the following chapter 6.1.4.  

6.1.4. Self-Attention Networks and Scaled Dot-Product Attention  

The attention mechanism in machine and deep learning enables models to concentrate 

selectively on particular segments of the input data during a task. It allocates different levels 

of focus to diverse portions of the input. Several types of attention mechanisms have been 

introduced in the past. The three main types are:  

• Self-attention: this type of attention is often referred as intra-attention or internal 

attention. This mechanism operates within a single sequence by capturing the 

relationships and inter-dependencies among words and sub-words, allowing models 

to grasp the context and associations within data. 

• Encoder-decoder attention: this attention mechanism operates between separate 

sequences; the encoder interprets the input while the decoder generates the output. 

Often referred to as inter-sequence attention, its core functionality is to seamlessly 

connect and transfer information from the input sequence to the output sequence. 

• Multi-head attention: This approach uses several concurrent attention operations 

to look at different parts of the data at the same time, allowing the model to capture 

various aspects simultaneously [53]. 

 

This chapter focuses on the self-attention mechanism, particularly its variant, the scaled dot 

product attention, and the multi-head attention. An Introductions in the architectures, the 

mathematical concepts and processed in these attention mechanisms is given within this 

chapter.  

 

Scaled Dot-Product Attention 

This variant is a refinement of the traditional dot-product attention, which incorporates a 

scaling technique. This scaling aims to enhance training efficiency and model stability by 

ensuring optimal data utilization during the training process [53]. The most popular 

architecture that relies on self-attention is the Transformer architecture that has been 

introduced by Vaswani et al. [54]. In self-attention, the importance, and the meaning of a 

word in a sentence is calculated by relating it to different other words in the sentence.  

In the architecture of Transformers, the mentioned above “scaled dot-product attention” is 

implemented for determining on which word the Transformer should focus on [53].  

In Fig. 3, the illustration showcases the methodology behind computing the scaled dot-

product attention. The subsequent sections will provide a comprehensive breakdown of 

each step involved. 
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Fig. 3. Scaled Dot-Product Attention. Adapted from [43]. 

 

The process starts with the input sentence which is divided into individual word tokens. 

Tokens are individual pieces or units of a text, obtained by breaking down the text during 

the process of tokenization. In the context of NLP and text analysis, tokens are typically 

words, but they can also be phrases, sentences, or even individual characters, depending 

on the specific requirements of the task. Tokenization turns a series of characters into 

specific units that can later be represented numerically as vectors for NN analysis [55]. 

These vectors are called “embeddings”. In the embedding layer of the model, a 

transformation process unfolds. For every token in the input sequence ti, individual 

embedding vectors xi are generated as shown in Fig. 4 [43].  

 

 

Fig. 4. Illustration of transforming the tokens ti  to embedding vectors xi , and calculating the query vectors qi, 

key vectors ki and value vectors vi for each token of the sequence. Variable d donates the dimensionality of 

the embeddings and T is the sequence length. Adapted from [56]. 

 

The next step is to derive the query vectors qi, the key vectors ki and the value vectors Vi. 

The terms "queries", "keys", and "values" are originated from the context of database and 

information retrieval. In traditional databases, a "query" searches for a "key" to retrieve a 

"value". In attention mechanisms, the "query" vector identifies relevant "key" vectors from 

the input, and the corresponding "value" vectors provide the necessary information for the 

output [57]. 
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Each of the embeddings xi is multiplied with its weight matrix as shown in Fig. 4 to obtain 

the query vectors qi, the key vectors ki and the value vectors vi. 

In theory, the three distinct matrices, the query matrix Q, the key matrix K, and the value 

matrix V are calculated as followed:  

 

• Query Matrix (Q): is obtained from the current focus point of the attention 

mechanism. The query vectors qi are computed by multiplying the embedding 

vectors xi with the value weight matrix Wq. After that, all query vectors qi for every 

token are stacked together to get the value matrix of Q (Q = [q1; q2; …; qi ]). 

• Key Matrix (K): originates from each position within the input. It is computed by 

multiplying the embedding vector xi with the learned value weight matrix Wk and 

stacking all key vectors ki for every token together to get the value matrix of K (K= 

[k1; k2; …; ki ]). 

Value Matrix (V): it holds information about each position in the input sequence. It 

is computed by multiplying the embeddings xi with the learned value weight matrix 

Wv and stacking all query vectors vi for every token together to get the value matrix 

of V (V = [v1; v2; … ; vi ]) [43]. 

  

In practice, the embedding vectors of xi  are stacked together into a matrix of X, where every 

row of X corresponds to a token in the input sequence. This matrix X is then multiplied with 

the trained weight matrices Wk, Wk  and Wv [58]. 

 

 

Fig. 5. Matrix multiplication of Q, K and V. Adapted from [52]. 

 

In the first matrix multiplication the similarities between the query matrix Q, the key matrix K 

and the value matrix V are calculated by the dot-product operation. To calculate a dot-

product, the query vector's column size should match the key vector's row size. To achieve 

this the key vector gets transposed. After multiplying, we get the compatibility matrix as 

illustrated in Fig. 6. 
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Fig. 6. First matrix multiplication of scaled dot-product attention. Adapted from [56]. 

 

The scaled dot-product of Vaswani et al. [54] is similar to the initial attention calculation of 

Luong et al. [51]. The only difference is that in the Transformer architecture the scaling 

factor is a factor of  
1

√𝑑𝑘
  

to resolve the issue that the dot-products of QK can grow large in magnitude for large values 

of dk. This would cause a vanishing gradient problem, since the softmax would return 

extremely small gradients. Scaling the matrix helps to minimize the risk of this vanishing 

gradients. The author also claimed that the dot-product attention is more space-efficient 

and fast in practise due to its highly optimized matrix multiplication code.  

 

A softmax function is applied to normalize the scores over every key corresponding to a 

particular query, making sure the attention weights sum up to a total of 1. Softmax plays a 

key role in the scaled dot-product attention by emphasizing which sections of the input are 

most relevant, assigning higher probabilities to those significant parts. The softmax is 

applied to each of the rows of the scaled compatibility matrix. The resulting matrix is the 

attention matrix A. Each of the rows of this matrix will sum up to 1. In the final step, the 

attention matrix A (of size TxT) is multiplied with the value matrix V (size Txd) resulting in 

Eq. (14).  

 

 

 

 

 

This yields the attention layer's output matrix (size Txd). The scaled dot-product attention's 

result, a combination of values shaped by how similar the queries are to the keys, is then 

passed to the next NN layer [56]. 
  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾𝑇

√𝑑𝑘

ቇ 𝑉 (14) 
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Multi-head Attention 

Based on the scaled dot-product attention, the authors also introduced a multi-head 

attention architecture (Fig. 7) which projects a different learned projection of the queries q, 

keys k and values v for each head h. Instead of using a singular set of weight matrices WQ, 

WK, WV to transform the input embedding X to Q, K, and V, the multi-head attention multiplies 

the weight matrices using h different sets. These are then concatenated and afterwards 

projected once more to produce the final output (the weighted representation of the input 

data) of the specific layer.  

 

 

Fig. 7. Multi-Head Attention. Adapted from [54]. 

 

 

The multi-head attention function can be depicted as:  

 

 

 

 

Where the projection matrix of the multi-head output is 𝑊𝑂. Like all other weight matrices 

in the network, 𝑊𝑂 is initialized (often with small random values) and then trained via 

backpropagation and gradient descent during the model’s training process. 

Each of the heads (ℎ𝑒𝑎𝑑𝑖, 𝑖, … , ℎ) uses a single attention function, each defined by its distinct 

learned projection matrices. 

 

 

 

The Qi, Ki, and Vi matrices are therefore calculated by multiplying the embeddings Xi with 

their specific weight matrices (𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉) for each ℎ𝑒𝑎𝑑𝑖. After the Qi, Ki, and Vi matrices 

for each ℎ𝑒𝑎𝑑𝑖, are calculated, they get scaled, and softmax is added just as in the scaled 

dot-product attention mentioned above. All the resulting output heads Zi are then 

concatenated (ℎ𝑒𝑎𝑑𝑖, 𝑖, … , ℎ).  
  

𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (15) 

 

ℎ𝑒𝑎𝑑𝑖 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

 

(16) 
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The output of the layer is then generated by multiplying the combined outputs with the 

weight matrix 𝑊𝑂 in a linear projection operation [59]. An illustration of the process is shown 

in Fig. 8. 

 

 

Fig. 8. Matrix multiplications of multi-head attention. Adapted from [52]. 
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6.2. Bidirectional Encoder Representations from Transformers 
(BERT) 

Bidirectional Encoder Representations from Transformers (BERT) is a language model first 

introduced in Devlin et al. in 2019 [7] which utilizes the Transformer architecture proposed 

by Vaswani et al. [54]. The initial Transformer architecture as shown in Fig. 9 consists of an 

encoder and a decoder. In comparison, the BERT model only consists of the encoder part. 

In this section the Architecture of the initial Transformer architecture as well as the 

architecture of BERT are explained.  

6.2.1. Initial Transformer Architecture 

First, the training functionality of the general Transformer architecture will be explained on 

the example of translating a German text to English.  

 

 

 

 

Fig. 9. Initial Transformer architecture by Vaswani et al. [54]. Adapted from [60]. 

 

 

Encoder 

The preparation procedure for the input text is the same as for the scaled dot-product 

attention described in section 6.1.4. At first, the German sentence gets tokenized and fed 

into the encoder of the model. The encoder layer generates three embeddings for each 

word: the word embedding, positional embedding, and context embedding. The generated 

embeddings enter a multi-head attention layer. This layer generates attention vectors by 
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considering the relevance of all other words in the sentence. In creates a weighted 

contextual representation for each word. The attention mechanism (“multi-head attention”) 

operates using multiple heads to capture different types of relationships. Information about 

the functionality of this attention mechanism is also provided in section 6.1.4. Over each of 

the heads a weighted average of the attention vectors is computed to get the final attention 

vector which represent each word's comprehensive context in the sentence. The attention 

vectors are passed to a feedforward network, each token at a time. The feedforward network 

further transforms the representation vectors to make them more nuanced and capable of 

capturing complex relationships in the data. Each of the attention sets are independent from 

each other and can be parallelised. So, all words can be put at once in the encoder block 

and the result will be a set of vectors for every word. 

 

Decoder 

The same input preparation as in the encoder is done with the English sentence in the 

decoder. Here, the input sequence is shifted right, which means that each word position will 

only have access to previous words in the sequence, not the current or future words. The 

three obtained embeddings are put through a masked multi-head attention layer. While 

creating the English translation, this attention layer-block has access to all the words from 

the original German sentence, but it can only consider the English words that have been 

translated up to that point, not any words that come after. This limitation is important 

because it helps the model to actually learn to translate. Without it, the model might just 

immediately reveal the next word without really understanding the context. To achieve this, 

the "masking" technique is introduced, where future English words are hidden (or "masked") 

during the learning process. This is pursued using certain mathematical operations, which 

turn the values representing those future words to zero, making them invisible to the model 

at that step. This way, the model is encouraged to focus on the words it has seen so far, 

helping it to learn and generate better translations step by step. The obtained vectors, along 

with the attention vectors created by the encoder, are passed to an encoder-decoder 

attention block. The encoder-decoder attention block assesses the relationship between 

each English and German word vector and enables the translation process. At this point, 

each word captures its relationships and engagements with every other word in the 

respective sentences. Like in the encoder, the vectors are then passed through a 

feedforward network. The output layer is a linear layer (another feedforward layer) that 

expands the dimensions of the vectors to match the number of words in the English 

vocabulary, which then undergo a softmax operation to form a probability distribution. The 

word with the highest probability is chosen as the output for that timestep. The decoder 

iterates through these steps, predicting one word at a time, until it generates an end-of-

sentence token, indicating the completion of the translation [54], [61]. 
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6.2.2. BERT-Transformer Architecture 

The architecture of BERT consists of a stack of encoder layers where each of those 

comprises a self-attention mechanism, specifically a multi-head attention (section 6.1.4), 

and a linear feedforward network, just as the architecture in 6.2.1. The BERT architecture 

in shown in Fig. 10.  

 

 

Fig. 10. BERT architecture by Devlin et al. in 2019 [7] with illustrated possible  

downstream tasks (word prediction or classification). Adapted from [62]. 

 

 

The multi-head attention block enables the BERT model to capture relationships between 

words in a text depending on the words surrounding. Also, for the BERT model the input 

text needs to be tokenized first before being put into the embedding layer. In tokenization, 

the words are split into sub-word tokens and additional special tokens are added. BERT 

uses the word-piece tokenizers concept for breaking down (unknown-) words into words the 

model might have in its vocabulary. For example, the word “reading” might be unknown to 

the model. When the word is tokenized to the sub-words “read” and “##ing”, “read” might 

be in the vocabulary of the model. “##” indicates that the sub-word is the part of another 

larger words. If the tokenizer is not able to break a unknown word down into sub-word 

tokens a special token [UNK] is added [63], [64]. The special tokens [CLS] and [SEP] are 

added to mark the beginning and the end of a sentence. The tokenized input text is 

transformed into token embeddings, segment encodings, and positional encodings within 

BERT's embedding layer as shown in Fig. 11. 
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Fig. 11. BERT input representation. Adapted from [7]. 

 

These combined embeddings are then fed into the BERT model and processed in the 

encoder including its multi-head attention layer just as in the encoder block of the original 

Transformer architecture described in chapter 6.2.1. 

 

Pre-training of BERT 

Pre-training is a process where the model learns the underlying patterns, structures, and 

complexities in the data without being given explicit guidance or labelled examples. This is 

why it is also referred as “unsupervised”. Unsupervised pre-training enables BERT to enrich 

its language knowledge and to better generalize language representations capturing 

semantic and syntactic information of the data.  

In the original paper of Devlin et al., [7] two pre-training strategies are proposed: Masked 

Language Modelling (MLM) and Next Sentence Prediction (NSP). In Masked Language 

Modelling (MLM) (Fig. 12), the idea is that a specific percentage of the tokens from the input 

sentence are randomly replaced (“masked”) with [MASK] tokens.  

 

 

Fig. 12. BERT Training - Masked Language Modelling. Adapted from [65]. 

 

 

During training, BERT tries to predict the replaced token by considering all the other 

surrounding tokens of the text. In Next Sentence Prediction (NSP), pairs of sentences are 

presented to BERT (sentence A and sentence B) which are separated with [SEP] tokens. 

The segment encoding of the BERT encoder maintains the record of which token belongs 

to which sentence (A or B) and the position encoding stores the sentence numerical position 

for each token. BERT should predict whether the second one (sentence B) logically follows 
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the first sentence (sentence A) or not. However, in this training strategy, in some cases 

sentence B is not the actual next sentence of sentence A, but a randomly chosen sentence 

from a different part of the input sequence is. The idea is that the model should correctly 

determine if sentence B in indeed the next following sentence of A or not [7].   

The initial BERT model is trained unlabelled texts from the BooksCorpus [66] that consists 

of 800M words and English Wikipedia texts consisting of 2,500M words. These texts 

provided the model with a strong foundation of language understanding.    

 

Fine-tuning of BERT 

To utilize BERT for a downstream task like text classification, an additional task-specific 

classification layer is added on top of the encoder stack. The generated word embeddings 

from the BERT encoder are then put through the classification layer and are mapped to the 

target classes. Depending on the task, the classification layer can differ in its architecture. 

A common practice is employing a fully connected layer followed by a softmax activation 

function for a multiclass problem. For a binary classification task, a sigmoid activation 

function is often used instead [67]. The main difference is that sigmoid is applied 

elementwise and produces an output of 0 to 1. The softmax function serves as normalization 

which takes a vector as input and outputs a vector of probabilities between 0 and 1 which 

always sum up to 1. During fine-tuning, a labelled dataset specific to the classification task 

is used to update the parameters (weights) of the models.  

 

BERT is a highly complex architecture with many heavily interconnected individual 

components. Thus, one of the main challenges with BERT (as with other deep learning 

models) is that they are difficult to interpret, making it hard to understand the reasoning 

behind their predictions. To tackle this issue, various methods for XAI have been developed 

to clarify the decision-making process of Transformers [14], [68]. In the following sections, 

we will elaborate on the idea and concepts of explainable ML and how it can be applied to 

Transformer architectures.  

6.3. Explainability in Machine Learning 

The research of explainability in the field of ML is broad and the use of its definitions is not 

always clearly distinguishable. Especially the definitions of interpretability and explainability 

are often used in similar contexts. The following chapter focuses on the terminologies and 

taxonomies found in the field of XAI. Additionally, it highlights common criteria and 

categories of explainability approaches such as post-hoc, ante-Hoc, self-explanatory, and 

global and local explanations. 

6.3.1. Terminology 

Chakraborty et al. [69] utilize the concept of explainability of evaluating the thoroughness of 

the model's output, which includes not only the prediction but also the reasoning behind it. 

In this context, thoroughness refers to whether all pertinent aspects of the input are included 

in the explanation. Additionally, they suggest using the term interpretability to evaluate the 
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quality of the explanation based on how easily it can be understood by humans. This 

definition coincides with that of Doshi-Velez & Kim, who define interpretability as “the ability 

to explain or to present in understandable terms to a human” [70]. Arrieta et al. [71] also 

gives definitions for explainability, interpretability, and also comprehensibility. These 

definitions are adapted within this thesis: 

 

• Comprehensibility: refers to the ability of a learning algorithm to present its learned 

knowledge in a manner that is understood by humans. It is often directly related to the 

complexity of the model, therefore, the more complex the model becomes, the negative 

influence it has on the user’s understandability.  

• Interpretability: is about the ability to explain or provide the underlying reasons or 

meanings behind the model's decisions in understandable terms to a human. It leans 

more towards articulating the reasons or logic behind the model's decisions, rather than 

just presenting the outcomes in an understandable fashion. 

• Explainability: is linked to the concept of providing an explanation that serves as a 

bridge between humans and decision-making systems, allowing for a better 

understanding of the reasoning behind the model's decisions. 

 

In essence, comprehensibility, interpretability, and explainabiity all aim to make complex 

models more understandable to humans. Comprehensibility focuses on presenting the 

model's learned knowledge in digestible chunks. Interpretability goes a step further by 

elucidating the underlying processes or reasons behind the model's decisions. Meanwhile, 

explainability serves as a bridge, presenting an interface that not only accurately represents 

the decision-making entity but also makes its decisions and processes comprehensible to 

humans, thereby integrating the aspects of both comprehensibility and interpretability for a 

more intuitive understanding and interaction [71]. These are just some of the various 

attempts that have been made to provide clear definitions for these terms. It should be noted 

that these definitions are often informal and lack a level of mathematical precision [72].  

 

Explainable AI refers to the ability of an AI system to provide humans with clear and 

understandable explanations for its decisions and actions. This encompasses both "model 

explanation," which illuminates the overall workings of the AI system, and "decision 

explanation," which clarifies specific predictions made by the system. In this paper, 

"explainability" mainly refers to "decision explanation", focusing more on the rationale 

behind individual predictions instead of a comprehensive analysis of the whole model. 

 

Several criteria are used in the topic of explainability in past literature [73]. These are often 

used for evaluating such systems. The definitions of some of the most relevant ones are as 

followed:  

 

• Robustness: an explainability approach is considered robust if the explanation 

provides reliable and consistence explanations through variance is the data, like in the 

presence of noise, errors or adversarial attacks [74], [75].  

• Faithfulness: is the ability to accurately represent the depiction of the underlying 

reasoning process behind the prediction of the model [20]. 
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• Plausibility: refers to the ability to provide explanations that are persuasive to humans 

[20].  

• Understandability: refers to the ability to illustrate the connection from the input to the 

output of the model in relation to the systems parameters. It is often defined as the 

user’s cognitive conception of the model and the underlying functionality, the reasoning 

why a model has predicted a certain output or the ability to reason why a model failed 

in a particular task [13], [21], [22].  

• Satisfaction: refers on the level of how well users perceive the understanding of the 

system that is being explained [24].  

• Sufficiency: refers to the provision of adequate information to the end user to establish 

causation [23].  

• Trustfulness/Trustworthiness: is a factor that is directly shaped by the interaction of 

the user with the system over time and through use. It affects the user’s level of comfort 

when using the system. The perception of the person is directly linked to the beliefs of 

the user in the output of the system [21], [22].  

• Usefulness/Helpfulness: in this thesis, usefulness is defined as the ability to provide 

the user explanation that helps to make the decision of the model more reasonable for 

the person [24], [21]. 

 

These terms can definitions are just a guideline to understand these terms. However, 

precise definitions and interpretations may vary based on the context of use and the specific 

research field [22].  

 

Developing universally accepted taxonomies in the domain of XAI has been challenging 

due to inconsistent terminology and varied focus among different studies. While efforts to 

classify XAI concepts and methods exist, they often diverge notably in their terminology and 

classification categories, creating confusion both for experts and beginners in the XAI field 

[76]–[79]. Despite these issues, several criteria have been suggested to distinguish 

methods more effectively, as mentioned in [76] which are:  

  

• The functioning-based approach: focuses on the underlying architecture and 

structure of the methods and how the XAI method can extract explanations/information 

from the model.  

• The results-based approach: focuses on the output of the explainability method. 

• The conceptual approach: distinguishes explainability methods due to conceptual 

dimensions and hierarchical levels.  

• The mixed approach: which is a hybrid of the mentioned approaches above.  

 

These approaches are not described in detail within this thesis. However, it is highly 

recommended to refer to [76] for more in-depth information. Based on taxonomies of 

previous literature, [76] combined several past approaches and proposed a new taxonomy 

which is shown in Fig. 13. 
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Fig. 13. Taxonomy of XAI methods. Adapted from [76].  

 

 

 

The proposed taxonomy is built upon six main criteria: 

 

• Scope: determines if the method in general and can be applied to any model or only 

to a specific type of model. The differences of global and local methods are described 

later in this section. 

• Stage: whether the method is applied during the building stage (ante-hoc) or after the 

model is already build (post-hoc). The post-hoc category also includes model-specific 

and model-agnostic methods which are also described later in this section. 

• Output Format: refers to in which format the output is presented. 

• Functioning: focuses on how the model works. This could be by simplifying a complex 

model or by highlighting the importance of different features. 

• Result: This criterion refers to the specific types of outputs generated by the 

explanation method. It could encompass prototypes that offer representative examples, 

heat maps that visualize attributions, or surrogate models that approximate the original 

model's behaviors, aiding in clearer interpretation and analysis.  

• Other: the author also introduces a catch-all category for all the methods that do not 

clearly fit in the mentioned categories above [76].  
 

Global & Local Explanations 

Global explanations focus on the entire logic of a model, with the goal of understanding the 

inner workings for an input through the entire reasoning process of the model to the output. 

This category includes models that are designed to be explainable, such as Decision Trees 

and other rule-based systems that use algorithms that learn logical relationships between 

data [80]. For Decision Trees, the interpretable part could be the selected features and the 

cut-off points as well as the leaf node predictions. For linear models these parts could be 

the weights. In essence, while linear models offer some clarity in understanding features, 

each feature doesn't stand alone; it's often connected to others. These connections are 

clearer in linear models than in more complex ones like DNNss [81]. Local explanations 
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focus on the individual predictions made by the model, often used to explain how a model 

behaves in a certain scenario or for specific input instances. These local explanations are 

often used by users which are directly impacted by the decision of the model [82].  

 

Post-hoc, Ante-Hoc and Self-Explanation  

Post-hoc explainability methods are techniques used to analyse and interpret a ML model 

after it has been trained. They can be divided in model-agnostic and model-specific 

methods. Model-specific methods focus on the structures and parameters of the underlying 

models and are used in models which are often explainable by design. These methods are 

beneficial if the goal is to get a deeper insight and understanding of the decisions and the 

internal workings of the model. Model-agnostic explainability methods are independent of 

the underlying structure of the model and are usually applied on the output of the model. 

This is why they can be applied to any underlying model architecture. They can handle 

different feature representations like word embedding vectors for text models and the 

explanations can be adapted to specific use cases which makes them flexible. As 

mentioned, these methods are applied to the model's output, rather than the model itself, to 

gain a deeper understanding of the model's decision-making process. Some examples of 

post-hoc explainability methods include feature attribution, which examines the importance 

of different features in the model's predictions. Other techniques are example-based 

analysis, which looks at individual instances (examples) to understand how the model is 

making its predictions [9], [81], [82]. Another approach is the use of surrogate models, which 

are simpler, more reasonable models that are used to approximate the behavior of a more 

complex model. One common post-hoc explainability method based on the concept of 

surrogate models is LIME [9]. More information about that technique is provided in section 

7.3.  

Ante-hoc methods are often explainable by design aligning with “glass-box” approaches, 

where the internal workings of the model are transparent and easily interpretable. Common 

examples are Linear Regression or Decision Trees. Ante-hoc methods showed noticeable 

results because of their scalability and applicability in various domains including medicine, 

where unexpected data patterns are common. They still match the accuracies of more 

complex but less interpretable models [83].  

Self-explaining methods, provide the explanation simultaneously with the prediction by 

utilizing the information generated by the model during the prediction process. Global self-

explanatory models include Decision Trees and other rule-based models, while local self-

explanatory models include for example feature saliency techniques using the models 

attention mechanism [84].  

 

In this chapter, we delve into common terms and principles used in XAI. We found that this 

field suffers from inconsistent terminology and categorization of explainability approaches, 

which makes formulating effective taxonomies a challenging task. Moving forward, in the 

next section we will focus on recent developments in XAI in the field of NLP. 
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6.3.2. State-of-the-Art on Explainability for NLP Approaches 

Neural networks for NLP are complex in their architecture which leads to better performance 

but poor transparency regarding the model decisions. Especially architectures like 

Transformers make it hard to resonate the model’s decision by humans. When such 

networks are used for sensitive content where the decision of a model could have serious 

consequences, the understanding of why a model has made a certain decision is essential. 

Several recent approaches have attempted to implement methods to explain the decision 

of Transformers [13]-[16], [85]. In this section, we will examine the latest developments in 

XAI methodologies within the realm of NLP.   

 

In the review of existing literature, special attention was directed towards exploring XAI 

approaches within the domain of NLP, with a particular focus on text classification. The 

subsequent table highlights a variety of advanced techniques widely recognized in the NLP 

field, each with an outline of its respective use case. 

 

Table 1 State-of-the-art resources and papers on XAI for NLP approaches 

 

Author Year Use Case Model XAI Method(s) Ref. 

Attanasio et al. 2022 

 

Misogyny 

Detection 

BERT - Gradients [86] 

- Integrated Gradients (IG) [19] 

- SHapley Additive Explanations 

(SHAP) [87] 

- Sampling-And-Occlusion 

(SOC) [88] 

 

[13] 

Wu and Ong 2021 Sentiment 

Analysis 

BERT - Gradient Sensitivity (GS) [89] 

- Gradient*Input(GI) [90] 

- Layerwise Relevance 

Propagation (LRP) [91] 

- Layerwise Attention (LAT) 

[92], [93] 

[14] 

Bodria et al. 2020 Sentiment 

Analysis 

BERT - Integrated Gradients (IG) [19] 

- LIME [9] 

- Attention Weights [15] 

 

[15] 

Krishna et al. 2022 No specific 

Use Case 

LSTM - LIME [9] 

- KernelSHAP [87] 

- SmoothGrad [94] 

- Gradient*Input[95] 

- Integrated Gradients (IG) [19] 

- GradCAM [96] 

 

[16] 

Brasoveanu 

and Andonie 

al. 

2020 Summary of 

XAI 

BERT - Subject focused visualizations: [85] 
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Approaches 

and Tools 

o relation between attention 

and model outputs [92], 

[97]–[99] 

o analysis of captured 

linguistic information via 

probing [99], [100] 

o interpretation of information 

interaction [101], [102] 

o multilingualism [100], [103] 

- Holistic visualisations: 

o BertViz [104]–[109]  

o Clark [105] 

o VisBERT [110] 

o ExBERT [107] 

o AttViz [108] 

o Kobayashi [109] 

- BERT Lang Street [111] 

 

Velampalli et 

al. 

2023 Sentiment 

Analysis 

SBERT 

and USE 

+ FCNN 

and LSTM 

 

- LIME [9] 

 

 

[112

] 

Ansari et al. 2022 Hate 

Speech 

Detection 

 

LSTM, 

CNN 

- LIME [9] 

- Integrated Gradients (IG) [19] 

[113

] 

Sebbaq and 

Faddouli 

2023 Cognitive 

Text 

Classif. 

 

MTBERT-

Attention 

- Own explainable classifer 

- LIME [9] 

 

[114

] 

Mehta and 

Passi 

2022 Hate 

Speech 

Detection 

 

DT, LSTM, 

BERT + 

variants  

- LIME [9] [115

] 

Das et al.  2022 Propaganda 

Detection  

BERT, 

BART, 

KNN-

BART 

- ProtoTEx [12] [12] 

Sourati et al.  2023 Local 

Fallacy 

Identificatio

n 

Electra, 

BERT, 

DeBERTa, 

RoBERTa, 

DistilBERT 

- ProtoTEx [12] 

- Case-based reasoning 

framework 

- Knowledge Injection 

Framework 

[18] 

* FCNN. = Fully Connected Neural Network  
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A hate speech related approach was done by Attanasio et al. [13]. They performed a post-

hoc interpretability approach for Transformer-based detection of misogyny in tweets. In their 

paper, they focused on using a BERT Transformer for this task. They also compared four 

different feature attribution explainability-methods: Gradients [86]  and Integrated Gradients 

[19], Shapley values-based methods (SHAP [87] ) and Sampling-And-Occlusion (SOC [88]). 

They evaluated their experiments by plausibility and faithfulness as defined in Jacovi and 

Goldberg [20]. In their case, the definition of plausibility applies to if a highlighted words in 

a sentence can convince humans if the prediction of the classifier is misogyny or not. The 

faithfulness got evaluated by measuring the changes of the model prediction when erasing 

input tokens and observing if the model prediction changes. They claim that the 

explainability results of their gradient and attention-based methods are not faithful and that 

the gradient-approaches were inconsistent [13]. 

Similar results have been found in previous work [85], finding that LIME is more vulnerable 

to adversarial attacks than SHAP and concluding that the use of post hoc explainability 

methods like SHAP and LIME are not recommended for sensitive applications. However, 

their attention-based approaches did not provide any useful insights regarding their 

classification. Comparing to those, the explanations of the SHAP and the SOC approach 

were more faithful and plausible and therefore preferred for explaining their misogyny task 

than LIME or their attention-based method.  

 

Wu and Ong [14] focused on comparing attribution methods like Gradient Sensitivity (GS) 

[89], Gradient*Input (GI) [116], [90], Layerwise Relevance Propagation (LRP) [91] and 

Layerwise Attention (LAT) [92], [93] for their sentiment classification task using BERT. They 

study the validity as well as the robustness of these four attribution methods. Since they do 

not explain their definition of validity, it is assumed that they mean the same as 

“faithfulness”. For evaluating the validity, they performed an Ablation study where words 

from text were removed successively and in a defined order. The relevance scores are 

compared after the changes. The experiments showed that performance and validity of the 

GS, GI and LRP changed similarly, whereas LAT was not suggested for retrieving relevance 

scores since it seemed to get distracted by irrelevant words.  

The robustness of their model is evaluated by retraining their model under two different 

random initializations and by computing the relevance scores afterwards. Their results show 

that random initialisation does change the results of the model to a limited extend. They 

also mention that longer sentences suffer more from random initialisation than longer ones. 

They conducted experiments to see if the attribution methods work the same across 

different similar datasets. According to them, these experiments showed that the weights 

acquired in BERT could potentially be applicable to other tasks with comparable semantics. 

 

Bodria et al. [15] trained a BERT Transformer for sentiment analysis and conducted 

explainability experiments using IG [19], LIME [9] and Attention Weights [15]. The 

explanation scores computed by the three approaches got compared with the ground truth 

labels and the BERT predictions. For their Attention Weight approach, they multiplied the 

attention scores (which are the output of the softmax) with the weights of the classifier to 

overcome that the resulting values are all positive. Fidelity [117] was applied to compare 

the explainability behavior of the black-box model to the XAI technique. Also, the similarity 

of their explanation scores to the ground truth label was measured by calculating ROC and 
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AUC scores. They claim das IG was the best method in their experiments but has high 

computational costs. However, comparing the computation time, LIME performed even 

worse. The attention-based method was the fastest even though it comes with a 

performance trade-off. Some of their experiments showed that the explanation scores 

contradict with the model predictions. It is essential to note that according to them, the 

agreement between the model predictions and the explanation scores are not always 

certain and the agreement in between the XAI techniques cannot always be guaranteed. 

 

Brasoveanu and Andonie [85] provide a great overview of current state-of-the-art 

libraries/visualisation tools for explaining Transformers like BERT, mainly focusing of on 

attention-based approaches. They differentiate between subject focused visualization for 

visualizing just one specific aspect of the model and holistic visualizations which include 

tools used to explore the architecture of the models more in depth. Some, but not all 

mentioned libraries include: BertViz [104], Clark [105], VisBERT [106], ExBERT [107], 

ATTViz [108], and Kobayashi [109]. Due to them, future tools should focus on components 

like the embeddings, attention heads and the additional NNs of the Transformer as well as 

the used corpora. Also, summarizing the models’ state through the architecture by using 

visualizations as averaged attention heatmaps as well as visualisations of the model states 

at various levels should be developed. The development of automatic and model specific 

visualizations for complex models is also mentioned as future work.  

 

Krishna et al. [16] used tabular data, texts and images for comparing six post-hoc XAI 

methods using eight different models depending of the used dataset for prediction. For the 

textual dataset, an LSTM model was used. The focus of this study was to conduct a 

comparison to find out which method works the best, but also to tackle the problem of 

disagreement between explanations of the chosen techniques. The explanation methods 

used are perturbation-based (LIME [9], KernelSHAP [87]) and gradient-based (SmoothGrad 

[94], Gradient*Input[95], Integrated Gradients [19], GradCAM [96]). They organized user 

studies pursued by data scientists for the evaluation as well as additional statistical 

analyses. The results of the user studies as well as the heuristic evaluation showed 

conflicting explanations and disagreements comparing the explanation results of the 

different techniques. Additionally, they discovered that the participating data scientists 

frequently tended to choose their preferred explainability technique when asked which one 

worked better for them during the evaluation procedure. Some of the participants even 

reported experiencing this issue of disagreement in real-world applications, with a portion 

of them admitting to being unsure of how to address the problem. 

 

Velampalli et al. [112]  evaluated the performance of different AI models for sentiment 

analysis on datasets consisting text and emojis. They initialised Sentence-BERT (SBERT) 

and Universal Sentence Encoder (USE) for generating sentence embeddings and a 

standard fully connected NN as well as a LSTM model for the classification task. They 

afterwards used SHAP for explainability. They found that their LSTM model worked the best 

in both, the text, and the emoji dataset. The sentence embeddings generated from USE 

and SBERT improved the performance of the models. They used SHAP to validate if their 

models were discriminating or biases against users. They found that the SHAP explanation 
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were effective in identifying the strengths and weaknesses of the model. However, the 

authors did not mention any quantitative evaluation metric for the SHAP algorithm.  

 

Ansari et al. [113] investigated in improving hate speech detection through data 

augmentation. 

For their data augmentation task, they used easy data augmentation (EDA), Bidirectional 

Encoder Representations from Transformers (BERT) and back translation (BT). They used 

LIME and Integrated Gradients for explainability and measure their explainability techniques 

on random chosen test samples as well as on original and augmented data. The metrics 

applied were area over the perturbation curve (AOPC), log-odds, and coherence scores. 

They found that their augmented datasets improved the performances of their classification 

models which were a LSTM and a CNN. They also performed a post-hoc analysis of their 

models using the attribution scores of the explainability methods and found that they were 

useful in identifying strong features (features which resulted in a correct prediction of the 

model and neutral words that resulted in an incorrect predictions). A comparison of LIME 

and Integrated Gradients (IG) showed that Integrated Gradients tend to assign different 

attribution scores to a token if it occurs multiple times in a sentence depending on the 

surrounding context. LIME assigned the same attribution score to the same words 

regardless of the context.  However, they did not make a recommendation which of the two 

methods is preferred. They claim that for future work, perturbation-based methods could be 

used for global model explanations.   

 

Sebbaq and Faddouli [114] proposed a unique and explainable classification model called 

MTBERT-Attention which is based on BERT, multi-task learning (MTL) and the co-attention 

mechanism. The indent of the model is on cognitive text classification. They also 

investigated in an explainability framework based on the attention mechanism of the model 

which aims to provide explanations through the model’s prediction. The found that adding 

a co-attention mechanism is beneficial not only for the classification task, but also for the 

explainability framework. The BERT tokenizer tends to split words into multiple sub-word-

tokens which can be a problem for interpretability. The co-attention layer combines attention 

scores of split tokens, producing a consolidated score for the whole word. 

To compare the explanation scores to the ground truth of their black-box model they trained 

a simple classifier using a softmax activation function which aims to make predictions based 

on the explanation scores. They adapted LIME to fit their multi-task learning using it as a 

benchmark for evaluating their explainability framework. They used the fidelity metric (F) 

and a computational cost calculation to evaluate their results. They found that even though 

their explainability framework showed high fidelity and was computationally efficient, there 

were instances where tokens like adverbs or prepositions got high attention scores, making 

the attention mechanism challenging to interpret. These issues arise from the global nature 

of their explanations. In comparison, the LIME explanations focus on local explanations 

which might be more beneficial for a detailed insight for specific instances.  

 

Mehta and Passi [115] discusses the use of XAI in detecting hate speech on social media. 

They conducted an in-depth literature research of several classification and explainability 

tasks.  
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The authors utilized two datasets and implemented different models, including Decision 

Trees (DT) and LSTM. The employed LIME and introduced variations of BERT (like BERT 

+ MLP (Multi-Layer Perceptron) and BERT + ANN (Artificial Neural Network). They found 

that their BERT variants performed better than their linear explainable model. They used 

various measures from the ERASER benchmark to evaluate their results. BERT + MLP 

showed the best results in their experiments in plausibility according to the IOU (Intersection 

Over Union), F1-score, token F1-score, and AUPRC (Area Under the Precision-Recall 

Curve) metrics, indicating a convincing interpretation to humans. 

Overall, the BERT variants demonstrated better performance and explainability compared 

to the linear models. They also evaluated the models on several bias metrics which are not 

further mentioned in this paper. Also, in this case the BERT variant models performed better 

in reducing unintended model bias for all these bias metrics compared to the other models. 

However, the researchers highlight the need for further investigation into reducing 

unintended model bias. 

The authors highlighted the need of more diverse metrics to understand the model 

explanations better and that the impact of model performance on individual communities 

should be considered in further experiments. The study points out the difficulties when it 

comes to detecting hate speech, especially when sarcasm is present. The authors 

suggested to enhance in the identification of sarcastic elements in the texts which could 

lead to better performance of the models.  

 

Das et al. [118] introduced a white-box classification architecture based on prototype 

networks as in Li et al. [119] that was first introduced for vision tasks. Their concept is based 

on generating prototype tensors from encoded latent clusters that are received from their 

used training samples. The underlying architecture is based on Transformer encoders. They 

experimented with the use case of propaganda detection in text and trained a ProtoTEx 

model with an underlying BART encoder (BART-large [120]) and compared it to a KNN- 

BART baseline and a BERT-large [7] black-box classification model. Their ProtoTEx model 

based on the BART model demonstrated equivalent performances to the BERT model and 

even slightly surpassed the performance of the KNN-BART baseline.  Even though their 

ProtoTEx architecture is called a white-box model, according to their explanations received 

with the ProtoTEx model they claimed that their prototypes may not be beneficial for users 

if all prototypes are close to only a few training samples. An in-depth explanation of the 

functionality of ProtoTEx is provided in section 7. 

 

Sourati et al. [18] adapted the ProtoTEx architecture of [118] for the use case of fallacy 

detection, coarse-grained and fine-grained classification. They also combined their 

techniques with approaches for data augmentation and curriculum learning. They did not 

only focus on prototypes, but also other concepts adapted from instance-based reasoning 

and knowledge-injection. BERT [85], They used several models for their classification 

experiments like DeBERTa [121], DistilBERT [122], Electra [123] and RoBERTa [124]. They 

adapted the Electra model [125] for their prototype -based experiments. In their 

experiments, they noted that their models had issues with understanding the broader 

concepts of the classes, which leaded to inconsistent prototypes, a varied relevance in 

instance-based examples and occasionally misleading results retrieved by their knowledge-
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injection approach. They claimed that these results might be due to the challenging task of 

facility detection and recommend testing their methods in more realistic settings.  

 

After this in-depth review of both the foundational concepts and recent developments in the 

field of XAI for text analysis and classification, we will delve deeper into a detailed discussion 

regarding the background and the most important aspects highlighted in the previous 

sections. 

 

Discussion 

 

The evaluation of various explainability approaches in recent years reveals a diverse range 

of strengths and shortcomings that are critical in choosing a XAI method depending on the 

underlying model and the specific use cases. A concise analysis of these methods, which 

serves as a basis for the selection of the method used within this thesis, is presented below: 

 

• Gradient-based methods:  

Despite potential inconsistencies and vulnerability to threats, making them less ideal 

for critical tasks, they are emerging as notable alternatives to attention-based 

approaches. Integrated Gradients, offers a promising avenue for further exploration, 

despite noted issues regarding faithfulness and inconsistencies [13], [126], [85]. 

• Attention-based methods:  

These approaches, commonly found in models like BERT, use attention weights to 

focus more on the surrounding context than on the actual words themselves. This can 

cause a lack of detailed information showing how individual input elements (tokens) 

affect the predictions. They also encounter issues with being easily distracted by 

irrelevant words and inconsistent explanations [14], [127]. Enhancements to these 

methods are necessary to overcome issues of interpretability due to tokenization. The 

addition of a co-attention mechanism, has shown potential in addressing this issue by 

computing a score for the whole word instead of potentially generated subword tokens 

[114].  

• Perturbation-based methods:  

While methods like LIME offer simplicity, they often lack context sensitivity [113]. This 

is a drawback that other techniques like IG tend to address more effectively. The 

selection of such methods should depend on the specific requirements of the use case, 

the problem and the model, balancing efficiency, performance, and interpretability [15], 

[16]. The SHAP and SOC methods have demonstrated a higher level of plausibility and 

faithfulness in their explanations compared to methods like LIME or attention-based 

techniques [13], [85]. Moreover, LIME and SHAP are both not recommended as a XAI 

methods for applications with sensitive content [85]. 

• Prototype-based methods:  

These methods, originated from vision tasks were utilized in studies by Das et al. [118] 

and Sourati et al. [18] employ prototype tensors generated from latent clusters in 

training samples for tasks such as propaganda and facility detection. Despite 

showcasing potential in terms of performance and explanation capabilities, they exhibit 

certain limitations. There's a notable tendency for prototypes to cluster close to a limited 

number of training samples, restricting their explanatory reach [118]. Since this 
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prototype architecture is functioning as a white-box model and has great potential for 

being used for making decisions of classification models more explainable, more 

investigation regarding this concept is needed.  

 

Some further research directions and conclusions emerging from the literature review are: 

• There is no one-size-fits-all method; the selection depends greatly on the specific 

requirements of the application and the necessary trade-offs  [13], [14]–[16], [85], [113], 

[114], [126]. 

• Future developments should focus on creating sophisticated tools to better interpret 

and visualize complex models like Transformers, including a deeper exploration of 

attention and co-attention mechanisms [114]. 

• Developing robust post-hoc explainability methods and exploring new or alternative 

methods, potentially borrowed from other domains such as computer vision, should be 

a considered [118].  

 

After taking a close look at the different types of XAI methods, finding the best method is 

not straightforward and depends a lot on the specific details of each case. The methods 

chosen for this study - LIME, Integrated Gradients, ProtoTEx, and GlobEnc - represent a 

varied mix of common and new XAI strategies. After the knowledge earned from the 

precious sections, in the next section 6.3.3 a more detailed insight in the concepts that are 

used in the field of XAI for Transformers is given, focusing on the four categories of the 

chosen XAI methods used for the comparative study of this thesis.  
 

6.3.3. Concepts of Explainability for Transformers 

A variety of different methods have been utilised in the past to provide explanations of text 

models.  

Since Transformers have complex and non-transparent architectures, additional methods 

for providing explanations are needed. The focus in this section is on providing an overview 

on explainability techniques that can be applied on Transformer models. The research 

includes conducting several methods from many different sources like already ready-to go 

tools and other XAI methods which can be used but are not limited to Transformers [10] - 

[12], [75], [76], [80], [92], [96], [128], [129] -[12], [92], [96], [130]. 

A visual representation of the found concepts and methods that can be used for Transformer 

is shown in Fig. 14. five main concepts were found during the research for NLP tasks: 

gradient-based, perturbation-based, attention-based, prototypes and counterfactuals. Even 

though, counterfactuals can also be used for Transformer explainability [131], this concept 

is not considered within this thesis and is just mentioned in the illustration for completeness. 

The four chosen concepts are described in more detail within this chapter.  
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Fig. 14. Explainability methods for text Transformer based on [7], [10], [75], [76], [80], [92], [93], [94], [95], [96]. 

 

 

Perturbation-based 

Perturbation-based methods, acknowledged as post-hoc and primarily local methods, 

involve modifying the model inputs and observing the changes in the predictions. 

Dropping words in a text as well as the use of adversarial examples for modifying the 

inputs so that the model is likely to misclassify the text are common approaches [87], 

[132], [133]. According to the survey of Ivanovs et al. [134], utilizing perturbation methods 

on text data is currently in the early stages of development. This might be due to the 

specific obstacles presented by text data, due to the individualized nature of words like 

meaning of the words in a sentence depending on its position and context. This XAI 

concept is more commonly used in other ML domains working with image data [134].  

 

There are two ways to implement perturbation-based methods: feature omission and 

feature occlusion. In the context of explainable AI, omission means the concept of leaving 

out certain features of the input data (for example words in a sentence) when making 

predictions with a model. This strategy helps to understand the importance and 

significance of the selected features in the decision-making process of the model. It 

particularly allows to analyse how the absence of the missing feature influences the 

prediction. Occlusion involves hiding or masking parts of the input data to observe how 

the model responds to these changes. The contribution of a feature is positive when it 

pushed the prediction towards a certain class. The feature has a negative effect on the 

prediction when it diverts the prediction away from that class [135]. Removing different 

combinations of features could be beneficial to determine which part of the input affects 

the results the most. However, doing this for all possible feature combinations requires 

high computational power and is time consuming. A significant benefit of perturbation-

based methods is their flexibility. Unlike many other methods that study the model as a 
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fixed entity, perturbation-based approaches can continuously interact with the model, 

forming and testing theories about it in real time. Additionally, they are versatile and can 

work with any model, no matter its structure. Being model-agnostic, they don not rely on 

the internal architecture of a model, allowing them to explain predictions from nearly all 

kinds of ML models including DNNs [134]. Utilizing perturbations on text data can be 

particularly challenging due to the distinct characteristics of words. Unlike image data 

where a minor change to a pixel generally doesn't affect a classifier's decision greatly, 

even slight adjustments to words can radically alter the overall meaning of a sentence, 

consequently having a substantial impact on the model's output [136]. One popular 

technique which is based on input perturbation is Local Interpretable Model-agnostic 

Explanations (LIME) [9]. This approach has been chosen for the experiments within this 

thesis. Therefore, more information on that LIME method can be found in section 7.3. 

 

Gradient-based 

Gradient-based approaches function as both local and global post-hoc methods which 

focus on the inner workings of complex NNs like Transformer models. They analyse the 

relationship between input features and predictions, either on individual instances (local) 

or across the dataset as a whole (global). These methods primary focus on examining the 

gradients of the model’s output with respect to its input to evaluate the importance of each 

token in the input sequence [126]. Therefore, attribution scores are calculated via 

backpropagation from the gradients of the output (logits or softmax probabilities) to the 

extracted features of the input. More information on the backpropagation functionality is 

given in section  6.1.2. A variety of methods have been proposed to interpret models 

through the use of gradients [137].  However, since particularly complex deep learning 

models like Transformer models are non-linear, gradient-based approaches may not 

directly measure the effects of input perturbations. However, gradient-based approaches 

may not directly capture the multifaceted impacts of input perturbations. This limitation 

stems from the complex, non-linear relationships established between inputs and outputs 

in DNNs. In these networks, inputs undergo numerous transformations through layers of 

non-linear functions, resulting in a high-dimensional computational space where even 

minor changes can have a significant effect on the outputs. To better cope with the non-

linearity, several variants of gradient-based explanation with modified backpropagation 

techniques have been proposed [138].  Examples of common gradient-based approaches 

are: Integrated Gradients (IG), Gradient*Input (GI), Layer-wise Relevance Propagation 

(LRP) and Gradient Sensitivity (GS) [93], [137]. One of the advantages of gradient-based 

methods is that they are fast since some of them (e.g., Gradient*Input) only require a 

single forward and backwards pass to calculate attribution maps. However, Integrated 

Gradients tends to be slower because more backward passes (50-200) are needed since 

computing the average gradient involves performing a numerical integration. But still, in 

comparison to other explanation methods it is still considered as efficient. Moreover, these 

methods scale relatively easily since the number of network evaluations, which are the 

processes of feeding an input through the network to obtain an output, are independent of 

the number of input features. Gradients tend to be noisy which can lead to attribution 

maps that appear to focus on irrelevant features, this is also likely due to the non-linearity 

and the high-dimensional representations of the features (e.g., in high-frequency 

variational pixels in image classification or word embeddings in large language models) 
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[138]. Integrated Gradients has been chosen as the gradient-based method within this 

thesis because it is robust as it provides a more stable and accurate attribution of feature 

importance by averaging gradients over a series of inputs, reducing the influence of 

complex, nonlinear relationships in the model. The method is explained in more detail in 

section 7.4. 

 

Attention-based 

Since Transformers are based on an attention mechanism, some studies using attention-

based models, typically operating as local and global post-hoc methods, visualize the 

attention weights for interpretability directly [104]. Considering these attention weights as 

relevancy scores is often done in single attention layers where the attention heads of the 

Transformers are analysed. With these scores, the most relevant part of an input 

sentence that led to a certain prediction of the model can be highlighted. Simply 

visualizing the attention weights is one approach for explainability. Additionally, it is 

possible to highlight the attention scores not just only from the top-most attention heads, 

but also by using the attention scores from the underlying layers and heads. Clark et al., 

2019 [105] found that visualizing the attention scores at different layers reveals linguistic 

correlations within the layers. Another technique to obtain such scores is to combine 

multiple layers. However, when the attention scores for each token get averaged, the 

obtained output will be blurry, and the role of the different layers are lost. An alternative 

approach is the rollout method, where attention points get reallocated by examining 

pairwise attentions. It is assumed that the attentions in the subsequent contexts can be 

combined linearly. This approach often gives better results than just using one single 

attention layer for generating explanation scores. However, this techniques also has its 

issues since it tends to highlight irrelevant tokens [68]. Also, research has shown that 

gradient-based approaches can often provide more accurate explanations, as opposed to 

methods based on attention mechanisms [126]. A more detailed information on the 

attention mechanism is provided in section 6.1.3 and 6.1.4. The attention-based method 

used within this thesis is GlobEnc [11] and is described in section 7.6. 

 

Prototype-based 

The literature review showed that the research regarding the use of prototype tensors, 

primarily functioning as global ante-hoc methods, for text classification explainability is 

rare [12], [130]. The concept of prototype classification is a traditional approach that is 

based on case-based reasoning, which is based on solving problems based on similar 

past problems [139]. The idea of prototypes, when thinking on a classification problem, is 

on creating representative examples for each provided class in the dataset. Therefore, 

data points are categorized according to how closely they resemble a representative or 

model example within the dataset. In this context, a prototype is similar to a data point 

(sentence) in the training set. Collectively, these prototypes aim to offer a good 

representation of the entire dataset. However, in some scenarios the authors of [119] 

claim that prototypes do not necessarily have to match a specific example from the 

training data but could be a combined representation of multiple data points. The chosen 

methods in this paper is called ProtoTEx [12], which builds upon the white-box 

classification method of Li et al. [119], enhancing it with the use of large-scale pre-trained 

language Transformers. More detailed information on this approach can be found in 
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section 7.5. Since the predictions of the model are based on the prototypes which are 

derived directly from similar examples in the training example, this model enables 

predictions to be faithful during the inference process. 

 

In the sections we've covered so far, we took a deep dive into the approaches of text 

classification and ML. We started in section 6 with the basics of text classification, going 

through both traditional and more recent deep learning approaches. We also delved into 

the mathematical foundations of attention mechanisms. We then focused on the initial 

Transformer architecture and the structure of the BERT model in section 6.2, which a 

special focus on the pre-training and fine-tuning techniques. This led us to section 6.3 

were we opened the conversation about XAI techniques in NLP, focusing on the terms 

and latest trends particularly in the field of text classification.  A closer look on how 

Transformers can be explained, discussing main concepts like perturbation-based, 

gradient-based, attention-based and methods based on prototypes in detail is given in 

section 6.3.3. In the next section, we will narrow down our focus to explore the selected 

XAI methods chosen for the comparative study of this thesis. 
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7. Methodology 

Building on the theoretical background, discussions and analyses in the preceding 

sections, the study centres around leveraging the BERT Transformer for text classification 

tasks. This choice is grounded in BERT's advanced capabilities in understanding 

language semantics. The goal is to choose one method of each of the mentioned 

concepts mentioned in section 6.3.3 to ensure an objective analysis and comparison of 

the chosen methods. The leveraged pre-trained BERT model and the selection of the 

chosen XAI methods is stated in this section.  

7.1. BERT 

For the experiments, a BERT Transformer, namely the bert-base-uncased model from 

Huggingface [140] has been fine-tuned on the three datasets described in section 8.2. This 

BERT Transformer is an English model, which got initially pre-trained using a Masked 

Language Modelling (MLM) and a Next Sentence Prediction (NSP) objective as described 

in section 6.2. This model is not case sensitive, which means that it makes no difference if 

a word is written in upper or lower case. This model also removes accent markers from the 

input texts. The initially pretrained bert-base-uncased model consist for 12 layer, 768-

hidden layers, 12 heads and a total of about 110M parameters. 

7.2. Selected XAI Methods 

Depending on the previous state-of-the-art analysis and the introduction of different XAI 

concept, four XAI methods have been chosen. The concise reasons behind selecting 

them for the comparative study of the thesis are: 

 

• LIME [9]: is the perturbation-based method. Despite its known shortcomings, it 

remains a simple and interpretable, and well-established choice suitable as a 

baseline [13], [85]. Its perturbation-based approach can offer valuable insights in 

cases where simplicity and interpretability are more critical, possibly acting as a 

benchmark for the newer, more sophisticated methods. 

• Integrated Gradients (IG) [10]: is the gradient-based method. This method is chosen 

for its potential to overcome some drawbacks found in other gradient-based methods, 

offering more comprehensive analysis. While its faithfulness and consistency have 

been critiqued, the approach holds promise for further exploration since unlike some 

other gradient-based methods, it considers the entire path of changes in inputs, 

allowing for a more nuanced understanding of the model's behavior [137], [138]. 

• ProtoTEx [12]: is the prototype-based method. A response to observed need for new 

or alternative methods for post-hoc explainability, ProtoTEx's prototype-based 

approach offers a new perspective. Prototypes in ProtoTEx are representative 
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examples extracted from the training data. These prototypes serve as key reference 

points that the model uses to understand and explain its predictions. 

This aligns with the aim of seeking fresh concepts, which might be adapted from 

different domains, to improve the model's interpretability.  

• GlobEnc [11]: is the attention-based method. As an enhancement to attention-based 

methods, it aims to rectify the shortcomings found in traditional attention-based 

methods by integrating various elements of the encoder block in its explanation 

strategy. This choice was made because of the need of sophisticated tools that can 

provide a more detailed attribution analysis, especially improving interpretability in 

Transformer models, aligning with future directions highlighted in the literature review. 

 

After explaining the selection of the four XAI methods building on the theoretical 

background, discussions and analyses in the preceding sections, the study centres 

around leveraging the BERT Transformer for text classification tasks. This choice is 

grounded in BERT's advanced capabilities in understanding language semantics. After 

examining various explainability concepts which were discussed in previous sections, I 

have selected four XAI methods for our study: LIME [9], which is based on input 

perturbations, Integrated Gradients [10], which is a representative of gradient-based 

approaches, a prototype-based approach called ProtoTEx [12], and GlobEnc [11], which 

represents an attention-based approach. The technical background of the selected 

method to get an understanding of their functionality and how they assist in making the 

BERT Transformer more transparent in text classification tasks is discussed in the 

upcoming sections. 

7.3. LIME 

One of the most popular techniques using input perturbation is Local Interpretable Model-

agnostic Explanations (LIME) [9]. LIME creates a local surrogate model to explain the 

predictions of the original model. It does this by perturbing the input data and observing the 

changes in predictions. The local model tries to approximate the predictions of the original 

model as closely as possible within a local neighborhood around the considered data point. 

In Fig. 15., the global, complex model and its non-linear decision boundaries are illustrated.   

                           Fig. 15. LIME – Global model. Adapted from [90].  
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LIME utilizes locally linear models that are constructed around the predictions of the 

complex model. These linear models, as illustrated in Fig. 16. LIME – Local model. Adapted 

from [90]., are the so called “surrogate models”. Due to their simple and linear architecture, 

they are considered as easily explainable models since in such models, the effect of a 

variable is directly dependent of another variable. These surrogate models aim to mimic the 

classifiers predictions to explain the decision-making process of the complex model by 

identifying the specific input features that are driving the predictions depending on where 

the datapoint is in the decision boundary. 

 

 
LIME produces new datapoints around the input datapoints, also called “perturbations” 

which are weighted to the distance of the input data point as shown in Fig. 17. LIME - Data 

perturbations. Adapted from [90]. These weights are needed since just the local points 

around the input data are important for the explanation. The perturbations can be achieved 

by a normal distribution with the mean and standard variation for each of the features. 

Afterwards, the predictions for the perturbations are made by the complex model, in our 

case the Transformer. 

 
 

By that we get the labels for each of the new datapoints. Using that data, a linear 

interpretable model can be trained. The calculated loss during training is also dependent on 

the distance of the new data points to the input point by a given weight. The more important 

the data point is, the higher is its weight. This dependency is visualised as a simple heat 

map in Fig. 18.  

Fig. 16. LIME – Local model. Adapted from [90]. 

Fig. 17. LIME - Data perturbations. Adapted from [90]. 
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For keeping the model as simple as possible, for the loss, an additional sparse linear model 

is used to produce as many serial weights as possible to ensure its simplicity. The 

importance of each word in a sentence can be observed by attribution scores or in this case, 

the prediction probabilities of the features or tokens (as in textual data). These can be 

visualised using saliency-/heat-maps. Since the explanations provided by LIME are local, 

they are considered as locally faithful but not necessarily globally faithful, since the focus is 

only on the local surrounding of the prediction. Also, prior knowledge of the topic can create 

more trust since humans can validate the explanation [9] . 

 

LIME is computationally expensive, and the surrogate model is depended on the set 

parameters which can highly influence the results of the model and the needed 

computational capacities. However, LIME is model-agnostic and can be therefore used to 

explain the decision of any underlying ML model. It can be easily implemented, is flexible 

and easy to use, which makes it a versatile tool. Also, since LIME can generate local 

explanations by creating a surrogate model, it can be used for generating explanations for 

specific features/data points. LIME is sensitive to input perturbations since it needs to 

perturb instances by definition to generate a dataset of similar instances, which makes the 

method less robust to input changes [141].  

7.4. Integrated Gradients 

As mentioned in section 6.3.2, gradients-based methods suffer from a break in their 

sensitivity (how much of the output changes with respect the small input changes), since 

this metric relies on the assumption that the output of the model is a linear function. 

Depending on the model, these linear relationships are not always given [57]. However, 

Integrated Gradients relies on a modified version of calculating the backpropagation which 

makes the method more capable of dealing with this issue.  

In Integrated Gradients, the input features are calculated by accumulating the gradients 

through the models path integral from the baseline to the output. The baseline is defined as 

the input without the presence of a particular feature which in theory should lead to a neutral 

prediction [19], [142].   

 

To address the non-linearity inherent in DNNs, a distinctive strategy is utilized during 

backpropagation. Specifically, to calculate the attribution values via Integrated Gradients, 

Fig. 18. LIME - Distance of the data points.  

Adapted from [90]. 
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the baseline undergoes gradual transformation towards the input of interest, with one token 

being added sequentially at each stage. During each of these steps, the gradients (which 

are the partial derivatives of the output with respect to each input feature) are computed. 

These gradients represent how much each feature is contributing to the change in the 

model's prediction at each step. Instead of simply using the gradients at the final input, these 

gradients are averaged (integrated) across all the steps. This integration is done to capture 

the overall contribution of each feature across the entire path from the baseline to the input 

of interest which results in the desired attribution values. The attribution values represent 

the contribution of each input feature to the difference in the output between the baseline 

and the input of interest now can be used (e.g., visualized) to understand the model's 

prediction for the input of interest in terms of its input features [19].  

 

Integrated Gradients tends to be slower than other gradient based methods (e.g., 

Gradients x Input, LRP) since it requires more backward passes (30-200). As mentioned 

above, computing the average gradient involves performing a numerical integration. But 

still, in comparison to other explanation methods (e.g., LIME), it is still considered as 

efficient [138]. Moreover, gradient-based methods in general scale relatively easily since 

the number of network evaluations, which are the processes of feeding an input through 

the network to obtain an output, are independent of the number of input features. Also, 

Integrated Gradients is model-agnostic, and can therefore be applied to any model and is 

easy to use. Even though IG tackles the problem of nonlinearity issue, the strategy does 

not completely resolve it. Therefore, due to the non-linearity as well as the high-

dimensional representations of features (e.g., in high-frequency variational pixels in image 

classification or word embeddings in large language models) IG as well as other gradient-

based methods tend to be noisy which can lead to attribution maps that may focus on 

irrelevant features [138].  

7.5. ProtoTEx 

Das et al. [12] introduce ProtoTEx, a classification architecture which uses prototype tensors 

for explaining the decisions of an NLP model. In their approach they integrate encoders 

from pretrained language models on top of the prototype classification network based on 

the implementation of Li et al. [119]. Their architecture of the ProtoTEx model consist of an 

encoder and an additionally added linear prototype layer. Within this layer, individual units 

hold weight vectors that bear similarities to prototypical examples [18]. The prototype layer 

consists of positive and negative prototypes, which are designed to aid models in 

differentiating between the presence and absence of features that contribute to a particular 

class. The network learns to create prototype tensors which represent latent clusters of 

training examples chosen by the model which are similar to the given input sentence. Since 

the classification itself is done by the linear layer which takes the distances to the prototype 

tensors as input, the network can be considered as a white-box model since the global 

explanations are directly linked to clusters that were learned from the training data [12].  

The training process begins with the initialization of a set of prototypes, which are 

representative examples that the model will learn from. These instances are first put into an 

encoder which can be of any kind of architecture, to transform the input into a latent 
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representation. This representation shares the same space as the input data and the 

prototype layer. For each prototype 𝑗, the prototype layer computes the L2 distance (also 

known as Euclidean distance) between its representation 𝑝𝑗 and the input 𝑥𝑖, i.e., ∣∣ 𝑥𝑖 −  

𝑝𝑗 ∣∣2
2. This results in a distance vector (matrix of these L2 distances). 

Additionally, a distance mask layer is used to mask the distance vector for the purpose of 

guiding the model to optimize the closeness of input examples to a specific set of prototypes 

that belong to the particular class. The masked distance vectors are then passed through a 

fully connected layer and a softmax layer to classify a data point. To ensure that the 

prototype vectors are interpretable, the model is optimized by using additional losses 

explained later in this section. The linear layer learns a weight matrix of dimension K×m for 

K classes and m prototypes. The weights learned for each prototype indicate that 

prototype's relative affinity to each of the K classes. Classification is then performed via a 

softmax function, which is a type of function that can convert a vector of arbitrary real-valued 

scores into a vector of probabilities. 

 

The total loss is a weighted sum of three terms:  

 

 

In this formular, λs are hyperparameters, 𝐿𝑐𝑒 is the standard classification cross-entropy 

loss, and 𝐿𝑝1 and 𝐿𝑝2 are the two additional auxiliary prototype loss terms. The auxiliary 

loss terms are introduced to maintain the interpretability of the prototype vectors. 𝐿𝑝1 

minimizes the average squared distance (L1 norm, also known as Manhattan distance) 

between each of the m prototypes and at least one encoded input. 𝐿𝑝2 (L2 norm, also known 

as Euclidean distance) encourages training examples to cluster around prototypes in the 

latent space by minimizing the average squared distance (L2 norm) between every encoded 

input and at least one prototype. These additional loss terms, aid a minor role in the model's 

optimization. A unique aspect of the ProtoTEx model is the use of an interleaved training 

procedure. This procedure alternates between optimizing the model's parameters and 

updating the prototype representations. This iterative process helps balance competing loss 

terms, encouraging each learned prototype to be similar to at least one training example 

(𝐿𝑝1) and encouraging training examples to cluster around prototypes (𝐿𝑝2). To encourage 

segregation among the prototypes, instance normalization is performed for all distances. 

This ensures that the prototypes represent more subtle patterns within the training 

examples belonging to the same class. 

 

As already mentioned, a benefit of the model is that it provides global explanations directly 

linked to the learned clusters of the training data during inference, thereby functioning as a 

white-box model. Moreover, its case-based reasoning strategy lends itself to being 

considered as faithful [12], [18].  

7.6. GlobEnc 

The GlobEnc [11] method, is a novel approach to global token attribution analysis in 

Transformer based models. This method is designed to incorporate all components of the 

encoder block and aggregates this information throughout the layers of the model. GlobEnc 

𝐿 = 𝐿𝑐𝑒 +  λ1𝐿𝑝1 + λ1𝐿𝑝2 (17) 
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is based on the output of the encoding layer of the underlying model and includes the 

second layer normalization in the norm-based analysis of each encoding layer. To 

aggregate attributions over all layers, the method applies a modified attention rollout 

technique, returning global scores. This approach significantly improves this method over 

existing techniques for quantifying global token attributions. 

 

The proposed method enhances the norm-based analysis technique introduced by 

Kobayashi et al.  [109]. In their approach, RNES (Fig. 20) is the method for analysing the 

residual connection of the attention block which includes the attention block’s Layer 

Normalization (LN#1) and the Residual Connection (RES#1). However, the encoders 

feedforward layers, RES#2 and the output LN#2 were not considered in their approach. 

RNESLN refers to the degree of impact that the input token j has on its output token i in the 

encoder layer.  

Since the encoder layer of a BERT Transformer consists of multiple components, the 

attribution analysis method GlobEnc (NENC) considers almost every of those for computing 

the aggregated attribution scores. So, in GlobEnc, the encoder layer components got 

included additionally from the attention block outputs (�̃�)𝑖 up to the output representation 

(�̃�𝑖). 

 

 

Fig. 20. Components that are included in each of the proposed token attribution analysis method within a 

Transformer encoder layer. The proposed GlobEnc method integrates the entire encoder layer (NENC). Adapted 

from [11]. 

 

 

 

For computing the multilayer attention, the layer wise analysis methods where aggregated 

by slightly modifying the rollout technique [92]. Where A is the attention map and 𝑙 are the 

layers. In this method, all residual connections and multi-head attentions are assumed as 
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contributing equally. The attention rollout of layer 𝑙 with respect to the inputs is computed 

using Eq. (18): 

 

 

 

In GlobEnc, raw attention map over all heads in layer �̅�𝑙 got replaced with the desired attribution matrix in 

layer 𝑙. For methods without residual connection a fixed residual effect is used (19) 

 

 

(5)(6) (𝑟𝑖 ≈ 0.5) for calculating the aggregated attribution scores (19) 

 

 

(5)(6).  

The GlobEnc method has been shown to produce faithful and meaningful results, with 

high correlations with gradient-based methods in global settings. Also, the authors claim 

that norm-based methods achieve higher correlations than weight-based methods, 

incorporating residual connections plays an essential role in token attribution, considering 

the two-layer normalizations improve the analysis only if coupled together, and 

aggregation across layers is crucial for an accurate whole-model attribution analysis. The 

authors claim that their GlobEnc model produces meaningful results with high correlations 

to gradient-based methods. They mention their method to be faithful and robust. Even 

though the method needs to aggregate the attributions over all layers of the model, the 

needed computational time is rather fast.  

 

In this section we have explored the four chosen explainability methods for the 

comparative study to enhance our understanding of machine learning model decisions. 

Moving to the next section 8, I will describe how the chosen XAI methods have been 

implemented in the real-world scenario of counter and hate speech detection. In this 

following chapter, an in-depth description of the utilized datasets and the training 

strategies of the models is given. This chapter also includes the evaluation strategies of 

the classification models as well as the evaluation procedure of the XAI models. 
 

8. Experimental Setup 

In this section, the use case of the comparative study is stated at the beginning, followed 

by a description of the identified datasets. Subsequently, we delve into the training 

procedure of the classification models, highlighting the application of BERT Transformer 

models for text classification. Afterwards, the evaluation approach of to assess the 

performances of the classification models as well as the evaluation procedure of the XAI 

methods are described.   

𝑙 > 1 

𝑙 = 1 
𝐴ሚ𝑙 = ቊ

𝐴መ𝑙𝐴ሚ𝑙−1

𝐴መ𝑙

 

 

𝐴መ𝑙 = 0.5�̅�𝑙 + 0.5𝐼 

 

(18) 

 

(19) 

 

 

(5)(6) 
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8.1. Use Case  

In the ever-evolving landscape of online communication, hate speech (HS) and its 

counterpart, counter (CS) speech, have emerged as significant areas of research and 

intervention. This thesis resonates with the “Counter Speech: Young People Against Online 

Hate” project1, emphasizing the critical role of counter speech in combating the pervasive 

issue of online hate speech among youth. By fostering active participation in counter 

speech, the project aims to transform the online space into a more respectful and safer 

environment. Since many countries are implementing laws to reduce the amount of hatred 

found on the internet, social media platforms like Facebook and Twitter introduce monitoring 

systems to combat such content [3]. If hateful content is found, simply banning or deleting 

such comments is controversial since each deletion also restricts a person's freedom of 

expression to a certain extent [1]. Benesch [143] also states that censorship and 

punishment can cause inflammation regarding the conversation making the situation even 

worse.  

 

Alternatively, to deleting comments, the use of counter speech also referred as “counter 

narrative” has shown great affect when it comes to combat online hate [25], [104]–[108]. By 

counter speech, the comment can be directly managed by the users independently from the 

internal monitoring system of a social media site. Thus, the users themselves act as 

moderators. This approach can be beneficial since automatic methods often need some 

time to find and categorise controversial input. Also, in some platforms, content needs to be 

reported first to get checked by monitoring staff. In conclusion, counter speakers can act 

more quickly to response to such content than the proposed moderation techniques. 

However, according to [144], several parameters have to be considered when measuring 

the effects of counter speech. One of those parameters is the proportional size of the group 

of counter speakers to the group of hate speakers [145]. Also, just like the size of the group 

of hateful speakers, the tone of the counter speech, the number of people which are in the 

conversation and who the audience is also influence the success of counter speech [146], 

[147].  

Even though [148] stated that in their experiments on responding with counter speech to 

hateful postings did not stop haters from posting hateful content, it still had a positive effect 

in the means of reaching a larger audience to encourage more counter speech in general. 

However, Schieb and Preuss [145] found in their research that counter speech had indeed 

an effect on the original, hateful speaker. Moreover, there is not only counter speech with 

positive sentiment found on the internet, but also counter speech with negative sentiment 

as introduced in some papers. The authors of [4] is referring this type of speech "counter 

hate". Even though counter hate might not ease the inflamed situation, detecting such 

counter hate can still bring some benefits. For example, users who engage in counter hate 

still have tendencies to combat the hate in the first place. Such persons could be identified 

in social media platforms and subsequently encouraged to engage in more and/or 

appropriate counter speech. Building upon the foundational understanding of HS and CS, 

this thesis aims to bridge the gap between the theory and real-life interventions by focusing 

on the automatic detection of such content on social media platforms. The main use case 

 
1 https://research.fhstp.ac.at/en/projects/counterspeech-young-people-against-online-hate  

https://research.fhstp.ac.at/en/projects/counterspeech-young-people-against-online-hate
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of this work, therefore, pivots to the development of tools capable of identifying and 

categorizing HS/CS content. This initiative not only seeks to enhance the visibility and 

effectiveness of counter speech but also serves as a vital step towards fostering a safer 

and more inclusive online environment by encouraging more users to actively oppose 

hateful content. This highlights the urgent need for automated tools to assist in the quick 

recognition and promotion of counter speech, laying the groundwork for a more proactive 

and educated strategy to combat online hate speech. After explaining the use case of this 

thesis, we will move forward to the next chapter exploring the considered datasets for 

training the classification models.  

8.2. Datasets  

To carry out a comprehensive study, we require annotated data. Crafting a new dataset 

from scratch is not only complex but also falls beyond the scope of this thesis. Therefore, a 

thorough literature search was undertaken to identify existing datasets suitable for the 

analysis of HS/CS. Specifically, three particularly promising datasets were uncovered, 

which are outlined in Table 2. For this research, datasets were selected that help to identify 

CS in two specific situations: comparing CS against non-CS and comparing CS (which can 

also include hate) against HS (which supports a hateful comment in a hateful way).  

 

For the study, three datasets were selected: "Thou Shalt Not Hate" [25] and 

"HateCounter" [26], which are related to counter speech, and the language classification 

dataset "Europarl" [149]. The Europarl dataset was chosen specifically for evaluating the 

ProtoTEx approach because of its large size and the relative simplicity of the tasks it 

involves. This makes it an excellent baseline for our study, as it can potentially yield high-

quality solutions. In contrast, the tasks in the other datasets are more complex, which 

might restrict the effectiveness of the model's explainability. Utilizing Europarl as a 

baseline helps to mitigate any negative impacts on explainability that might arise with the 

use of the more complex datasets, ensuring that our model maintains a high degree of 

accuracy and effectiveness throughout the study.      

 

Table 2 Overview of the used datasets 

Dataset Name Labels Platform Number Samples Ref. 

Thou Shalt Not 

Hate 
CS, non-CS Youtube 13,924 comments [25] 

HateCounter HS, CS Twitter 

1,290 HS-CS 

pairs 

223 HS-HS pairs 

[26] 

Europarl 

21 

European 

languages 

Proceedings of 

european 

parliament 

~ 2M sentences 

per language 

(English & 

German) 

[149] 
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8.2.1. Thou Shalt Not Hate Dataset 

The Thou Shalt Not Hate dataset [25] is an English dataset which includes comments from 

Youtube. The dataset has one counter speech (CS) and one non-counter speech (non-CS) 

class. The class distribution is relatively balanced with 7,024 samples for counter speech 

and 6,898 for non-counter speech. This makes a total of 13,922 samples. The distribution 

of the dataset splits can be found in Table 3.  

 

Table 3 Dataset splits of the Thou Shalt Not Hate Dataset 

 

The resulting training dataset had a size of 8,909 samples, the validation dataset a size of 

2,228 samples and the test dataset a size of 2,785 samples. The test set underwent 

additional pre-processing since it was also used for the user study. For more details on the 

pre-processing are provided in section 8.4.3. Therefore, links and user references were 

replaced with “<LINK>” and “<USER>” for the human evaluation and the ablation study. An 

insight in some examples of the dataset is given in the following table: 
  

 Training Split Validation Split Test Split 

Full Split Size 8,909 samples 2,228 samples 2,785 samples 

Split Size Class 0 (CS) 4,426 samples 1,109 samples 1,363 samples 

Split Size Class 1 (non-

CS) 

4,483 samples 1,119 samples 1,422 samples 
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Table 4  Example texts of TSNH dataset 

 

8.2.2. HateCounter Dataset 

The HateCounter dataset [26] consists of 1,290 hate speech - counter speech pairs (the 

starting point is hate speech and the response is counter speech which can also be hateful) 

and 223 hate speech - hate speech pairs (were the starting point is hate speech and the 

answer is supporting hate speech). In this work, only the responses were used for the 

experiments. The splits of the datasets can be found in Table 5Table 5 Dataset splits of the 

HateCounter Dataset. 

Table 5 Dataset splits of the HateCounter Dataset 

 

The splits result in a training dataset size of 1,059 samples, a validation dataset size of 302 

samples and a test dataset size of 152 samples. Links and user references were replaced 

with “<LINK>” and “<USER>” for the human evaluation and the ablation study.  
  

Nr.  Class Text 

1 0 (CS) it's illegal for African Americans to sit down now? 

2 1 (non-CS) The girl hardly said anything or flinched rather 

than back him up! 

3 0 (CS) My boyfriend is Jewish and I'm an atheist and 

German. We get a shit load of remarks. But if anyone 

said something like that to him, I would slap them 

so hard, I swear... 

4 0 (CS) Unnatural? Lol, he obviously hasn't studied any 

biology... Homosexuality is ubiquitous throughout 

nature 

5 1 (non-CS) i don't know why Christians are shocked. i am 

guessing christians don't read their bible. 

 Training Split Validation Split Test Split 

Full Split Size 1,059 samples 302 samples 152 samples 

Split Size Class 0 

(CS) 

903 samples 257 samples 130 samples 

Split Size Class 1 

(HS) 

156 samples 45 samples 22 sample 
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Some examples of the dataset are displayed here: 

 

Table 6 Example texts of HateCounter dataset 

Nr.  Class Text 

1 1 (CS) Read the first sentence to yourself slowly 

2 1 (CS) @user You are a bitch you know that damn one day 

karmas gonna come back 3x harder and I hope it 

hurts like a bitch you fucker 

3 1 (CS) @user Twitter please don't let satan have a Twitter 

account 

4 0 (HS) bitch wat am i 

5 0 (HS) I'm a left sjw and i can't agree with you more! 

 

 

8.2.3. Europarl Dataset  

The Europarl dataset [149] is a summary of proceedings of the European parliament 

including 21 European languages. In this thesis, the dataset was simplified to a binary and 

balanced dataset with only German (DE) and English (EN) texts to obtain a maximally easy 

classification dataset to assess the baseline performance of the selected explainability 

methods. On the dataset homepage [150], several versions of the parallel corpus are 

available. In this thesis, version 7 of the parallel corpus including the languages German-

English was considered. To make sure to get a dataset on sentence level, the texts were 

then transformed into one sentence per line which resulted in a German dataset of 

2.111.448 sentences and an English one of 1.948.874 sentences. For the German dataset, 

the first 15.000 were considered and the sentences 15.000 - 30.000 were used for the 

English dataset. This step is taken to ensure that the sentences in both splits contain distinct 

information, as they share the same content but are written in two different languages. After 

shuffling both, each of the German sentences got labelled as “0” and the English ones as 

“1”. The splits sizes are shown in Table 7.  

 

Table 7 Dataset Splits of the Europarl Dataset 
 

 

  

 Training Split Validation Split Test Split 

Full Split Size 21,600  samples 5,400  samples 3,000  samples 

Split Size Class 0 

(DE) 

10,858  samples 2,734  samples 1,524  samples 

Split Size Class 1 

(EN) 

10,742  samples 2,666  samples 1,476  samples 
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A selection of some samples of the dataset are displayed in the following table:    
 

Table 8 Example texts of Europarl dataset 

Nr.  Class Text 

1 1 (EN) In contrast to how things are done here in the 

European Parliament and in Parliament' s 

committees, where rapporteurs are nominated and 

appointed to produce reports, there are no 

regulations whatsoever applied within this 

delegation to the Joint Assembly 

2 0 (DE) Unsere Vorschläge betreffen vor allem das Alter der 

Öltanker 

3 0 (DE) Ich bin dankbar dafür, daß die Kommission ein 

Aktionsprogramm angenommen hat. 

4 1 (EN) This is already happening. 

5 1 (EN) Moving onto another point: the Commission has 

passed a long list of its intentions to Parliament. 

 

On each of the three selected datasets, BERT Transformers got fine-tuned to the specific 

classification task. In the following chapter, the training strategies and the resulting 

Transformer models are described. 

8.3. Training Classification Models  

BERT Transformer models can be trained in two fashions, including unsupervised pre-

training and supervised task-specific fine-tuning. A detailed description about how these 

training strategies work is given in section 6.2. For the experiments in this thesis, an already 

pre-trained BERT model (see section 7.1) is employed and adapted to the dataset-specific 

tasks by fine-tuning them.   

 

Each of the models followed the same fine-tuning objective using the respective dataset of 

their task, namely the Thou Shalt Not Hate dataset, which fine-tuned model is referred as 

TSNH-BERT, the HateCounter Dataset which model is named HC-BERT and the Europarl 

dataset, which fine-tuned model is called EP-BERT. In Fig. 21the process of adapting the 

pre-trained BERT model for creating the three task-specific classification BERT models 

using the mentioned datasets is displayed.  
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Fig. 21. Fine-tuning procedure of the three BERT classification models with their respective datasets.  

 

 

The three BERT models EP-BERT, TSNH-BERT and HS-BERT got trained with a training 

batch size of 8 and an evaluation batch size of 16. The learning rate was set to 3e-5. Early 

stopping was initialized with a patience of 5. The default AdamW [151] optimizer from the 

Huggingface Trainer Class [152] was used. The three models were trained for 6 epochs 

before early stopping set in. The results on the performances of the models on the test set 

can be found in Table 10 Evaluation results of classification models 

 

Upon discussing the training strategies of classification models EP-BERT, TSNH-BERT, 

and HC-BERT, the subsequent section 8.3.1 sheds light on the implementation, including 

an overview of the chosen hardware and software packages.  
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8.3.1. Implementation of Explainability Approaches 

The classification and explainability approaches got implemented using the Pytorch [153] 

framework. 

The hardware for the experimental setup consists of an Intel® Core™ i7-6900K Processor 

with a CPU with 3.20GHz, 128 GB RAM, and a GTX 1080 Founders Edition graphic card. 

Also, a 1 TB Samsung EVO SSD hard drive was part of the setup. Since the ablation study 

of the LIME method is computationally expensive, some of these experiments have been 

done on Google Colab [154] using Googles TPU.  

 

The four explainability approaches for the experiments (LIME, Integrated Gradients, 

ProtoTEx and GlobEnc) have been implemented the following:  

 

• LIME: The LIME package [155] was used for implementation which is based on the 

approach of Ribeiro et al. [156]. This package also supports visualisations of the 

prediction probabilities per token and their weighted importance visualised by using 

color gradients. Due to the high computational power that is needed for the LIME 

method, the number of used features for training the surrogate model was set to 10 

and the number of training samples was set to 200.  

• Integrated Gradients: Captum [128], which is an extensible interpretability library built 

on PyTorch [153]  was chosen for the Integrated Gradients approach. For the 

implementation, the class LayerIntegratedGradients from Captum was used 

which provides two different ways of how the attributions for the embedding layers can 

be computed: 

1. Apply LayerIntegratedGradients and calculate the attributions in relation to 

the BertEmbedding layer of the model. 

2. Apply LayerIntegratedGradients for individual word_embeddings, 

token_type_embedding and positional_embedding and compute the 

attributions for each of these embeddings. 

Within this thesis, the first method of computing the attributions with respect to the 

BertEmbedding has been considered since this method is a higher abstraction where 

the individual word embeddings, token type embeddings, and positional embeddings 

are combined. It is used to get the overall impact of the initial input embeddings on the 

model's decision. 

• ProtoTEx: The original implementation of Das et al. [12] as well as an implementation 

of Zhivar Sourati [18] have been adapted for training the ProtoTEx models based on 

BERT Transformers. Both mentioned implementations are publicly available at Github 

[118], [157]. The exact parameters tested in implementing this method can be found in 

chapter 8.4.2. 

• GlobEnc: The original code of the paper of Modarressi et al. [11] which is available at 

Github [158] has been adapted. 
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The code of this thesis is publicy available at Github2. The subsequent section will delve 

into an evaluation of the classification model's performance and a critical analysis of the 

XAI methods utilized. 

8.4. Evaluation Approach 

The evaluation strategy in this study is designed to provide a comprehensive 

understanding of the XAI methods applied, incorporating both qualitative and quantitative 

approaches. Initially, the performance of the classification models undergoes a 

quantitative evaluation. In this phase, the performance of the three BERT models—TSNH-

BERT, HC-BERT, and EP-BERT—that have been fine-tuned with three distinct datasets is 

done. Utilizing metrics such as accuracy, recall, precision and F1 score, their task-specific 

test sets are analysed to objectively assess their performances. Further insights into the 

fine-tuning approach and the datasets utilized can be found in sections 0 and 8.2 with 

detailed results of this quantitative evaluation outlined in section 9.1. Since ProtoTEx is 

not an ad-hoc method as the other chosen methods, it was pre-evaluated first. This 

evaluation can be found in the following section 8.4.2. 

The faithfulness of the other XAI approaches is critically evaluated through an ablation 

study, a method inspired by similar analyses highlighted in [13]. After the quantitative 

analysis, a qualitative evaluation is conducted. Here, a user study is employed to delve 

deeper into several key aspects of the XAI methods: plausibility [20], understandability 

and trustfulness [21], [22], as well as the help-/usefulness [24] which are further described 

in section 6.3.1. This qualitative evaluation seeks to gather in-depth understanding of 

users' experiences and views regarding the XAI methods, presenting a comprehensive 

viewpoint. In-depth explanations the evaluation of the of this quantitative and qualitative 

method and the derived findings will be elaborated in the subsequent sections of this 

chapter. 

8.4.1. Evaluation of Classification Performance 

For the classification objective, three BERT models using three different datasets have been 

fine-tuned which are referred as TSNH-BERT, HC-BERT and EP-BERT within this paper. 

More information on the fine-tuning approach and the datasets can be found in section 8.2 

and 0. 

These models underwent evaluation based on their task-specific test set using the following 

metrics: 

 

• Accuracy: This metric indicates the proportion of correctly classified instances out of 

the total instances. 

• Recall (Macro): This indicates the average ability of the models to correctly identify 

true cases in each respective class. 

• Precision (Macro): This denotes the average measure of the correctness of the 

models in classifying positive instances across different classes. 

 
2 https://github.com/JaquJaqu/masterthesis_XAI  

https://github.com/JaquJaqu/masterthesis_XAI
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• F1-Score (Macro): This represents the harmonic mean of macro precision and macro 

recall, providing a balanced view of the model's performance across different classes 

[159]. 

 

 Detailed information on the results of the evaluation can be found in section 9.1.  

8.4.2. Pre-Evaluation of ProtoTEx 

In this part of the study, the evaluation procedure of the ProtoTEx model is described. This 

ProtoTEx method stands out from the other XAI methods since it is a prototype-based 

method and not a post-hoc method as the other three XAI methods. Unlike the other 

methods, which analyze data after the model has made its predictions (post-hoc), ProtoTEx 

is trained separately and creates and uses its own prototypes to help explain its own 

predictions. Because of this unique approach, it's necessary to assess ProtoTEx in a 

distinctive manner, separate from the other methods. In inference, the model considers the 

five nearest training samples of five determined prototypes by calculating the L2 distances 

in the latent space. It is essential to delve deeper into analyzing these nearest training 

samples to verify whether they are logical and can truly contribute to clarifying the 

predictions made during inference. 

 

For this preliminary evaluation, a series of experiments are carried out using two specific 

datasets to assess the quality and relevance of the prototypes produced by ProtoTEx. The 

same pre-trained BERT model (bert-base-uncased) that was used for the classification 

approaches was used for training the ProtoTEx models. Along with the Thou Shalt Not Hate 

(TSNH) dataset, which is the counter speech related one, the Europarl (EP) dataset is 

considered since it includes data of a relatively easy task of detecting German and English 

language. The training schedules of [12] and [18] are followed for both of the models. In 

these settings, the number of positive and negative prototypes can be individually chosen. 

Regarding to the papers, 19 positive and 1 negative, and 49 positive and 1 negative 

prototype are recommended. As considered in the provided implementation, early stopping 

is used during training. One ProtoTEx model is trained on the TSNH dataset (TSNH_20t_P) 

for 23 epochs. Three ProtoTEx models are trained on the EP dataset (EP_50t_PT, 

EP_20t_PT, EP_20t_PT_2). Where EP_50t_PT trained for 50 epochs, EP_20t_PT trained 

also for 50 epochs and EP_20t_PT_2 trained for 169 epochs until early stopping terminated 

the process.  
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The notion of the names of the models that were trained for the experiments are as followed: 

Table 9 Notation for ProtoTEx models 

Notation Description 

<DATASET>… Short name of the used dataset 

<NUM_TRAIN>t Total number of prototypes for training 

<PT> Stands for the method “ProtoTEx” 

<NUM> Serial number that is added when more 

than one model with the same configuration is 

trained (same number of prototypes for training) 

 

<DATASET>_<NUM_TRAIN>t_<PT>_<NUM> 

 

Different numbers of positive and negative prototypes (number of negative prototypes = 

number of prototypes - number of positive prototypes) have been considered during 

inference to observe how the number of prototypes changes the evaluation performance in 

different settings. Also, some of the runs were done multiple times to observe if the predicted 

training samples remain constant or changed when the experiments were redone. The 

different experimental settings are displayed in section 9.2 which is placed next to the 

results in Table 15 to help understanding the displayed notation of the utilized settings in 

the result table better.  

 

After introducing the evaluation procedure of the ProtoTEx method we will continue with the 

quantitative evaluation of the remaining three XAI methods.  

8.4.3. Quantitative Evaluation of XAI approaches 

For the quantitative evaluation of LIME, Integrated Gradients and GlobEnc, an ablation 

study has been performed. The goal of the ablation study is to observe how the prediction 

probability of the classification model drops when words (or tokens3) that are considered 

particularly important by the respective XAI method are removed from the input. The 

expectation is that removing words which are considered highly important by the XAI 

methods, will result in a stronger change in performance (positive prediction drop) than 

removing less important words or tokens. By this evaluation the faithfulness of the individual 

methods is evaluated (see also section 6.3.1).  

 

Preparation of the dataset 

The ablation study has been done using the TSNH-BERT and the HC-BERT with their 

corresponding task-specific datasets. Only sentences with 10 to 30 words have been 

considered to ensure that the sentences consist of a sufficiently large number of words and 

to reduce the computational resources that are needed for the study. The prepared test set 

consist of 1040 sentences in total for the TSNH dataset. The HateCounter dataset consisted 

 
3 Note that tokens do not always have to be on a word level since the BERT tokenizer splits some 
unknown words into sub-word tokens. Therefore, the ablation study was conducted on token level 
and not on word level. 
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of relatively long sentences which resulted in a sample size of 57 sentences after pre-

processing. Usernames and links were replaced with “<USER>” and “<LINK>”.   

 

Ablation study 

After the first iteration, which was the baseline for calculating the prediction probabilities 

without any token removal, the attribution scores have been calculated and the scores with 

their corresponding tokens were sorted in descending order. The top four positive attribution 

scores were then considered for the ablation study. In the following four iterations one of 

the four determined tokens with positive attribution scores were removed from the original 

text. The drop in prediction probability of the model was calculated in every iteration (after 

every token removal). The removed tokens were added again after calculating the 

prediction probability and therefore the probability drop, to make sure to just get the changes 

according to one removed token.  

 

For the TSNH dataset, the attribution scores of the 1040 test sentences have been first 

calculated using Integrated Gradients and GlobEnc. Since LIME is computationally 

expensive, the data for the TSNH dataset was computed in chunks. For the HC dataset, the 

whole prepared test dataset consisting of 57 instances was used. Since GlobEnc can 

calculate attribution scores for all the 12 layers of the BERT Transformer, just the last layer 

was taken under consideration for calculating the scores. The steps of the attribution score 

calculations of the HS dataset followed the same procedure as the TSNH dataset 

mentioned above. 

 

Comparison of the methods 

Due to certain data instances having fewer than four positive attribution scores determined 

by the XAI methods, adjustments were made to ensure comparative results. The attribution 

scores and the predicted probabilities from each method were synchronized to include 

identical instances. This synchronization guaranteed that each list contained a minimum of 

four positive attribution scores that were used for ablation. However, this adjustment 

resulted in a reduced number of data instances available for comparison. Therefore, in the 

end a final number of 525 sentences were compared for the TSNH dataset and 38 for the 

HC dataset. The drop in probability and the corresponding attribution scores of the 

tokens/words and the Pearson correlation of the datapoint have been calculated for all the 

remaining test sentences. These results of the evaluation can be found in section 0.     

8.4.4. Qualitative Evaluation of XAI approaches  

For a qualitative evaluation, a user study was pursued by accessing the criteria of 

plausibility, understandability, sufficiency, trustworthiness, satisfaction, and helpfulness. 

The definitions of those within this work can be found in section 6.3.1. The results of the 

user study are displayed in chapter 9.4. The study is done using an online questionnaire 

consisting of two tasks:  

 

Task 1 – Forward Simulation/Prediction:  

For each of the three methods (LIME, Integrated Gradients and GlobEnc) attribution scores 

for five sentences are calculated. In this task, just correctly classified sentences were 
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considered to ease the interpretation of the explanations for the study participants. 

Additional added tokens (e.g. [SEP] and [CLS] tokens) which are added by the tokenizers 

were removed beforehand. In this setting, all the three explainability methods are visualized 

in the same standardized way: For each sentence, a heatmap is created by considering the 

calculated attribution scores. Before visualizing the attribution scores, they got normalized 

to -1 and 1 to ensure that the intensity of the visualized colors is the same as in the original 

visualizations of the methods. The colors green and violet have been chosen to show a 

positive (green) and negative (violet) attribution towards the models’ prediction, since this 

color combination is not used in any of the original visualizations of the three methods and 

thereby avoids a visual bias to any of the methods. The more vibrant the colors are 

visualized, the higher the attribution is towards the prediction. An intense green color refers 

to a high attribution towards the predicted class and an intense violet color refers to a high 

negative attribution towards the predicted class. In the GlobEnc method, only the attribution 

scores from the last layer were considered for the explanations. Examples of all of the three 

methods showing the original and the standardized visualizations are shown in Fig. 22 (IG), 

Fig. 23 (LIME) and Fig. 24 (GlobEnc).  

 

 

Fig. 22. Original and standardized Integrated Gradients visualization for Task 1. 
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Fig. 23. Original and standardized LIME visualization for Task 1. 
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Fig. 24. Original and standardized GlobEnc visualization for Task 1. 

 

In Task 1, the participants have to guess which prediction the model is going to make by 

considering the explanation/highlighted words (or tokens). In this blind study setup, the 

participants are not provided with the actual prediction and are not aware of the underlying 

methods. The texts used in the study were manually picked and the methods where 

randomly shown to the participants without a predefined concept. This evaluation faces the 

plausibility criteria. Furthermore, the participants had to answer how confident they were 

with their answer on a Likert scale from 1 to 5 as shown in Fig. 25. 
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Fig. 25. Example of Task 1: Forward Prediction. 

  

In the beginning of the task, one baseline approach for each of the five texts without any 

color-coding was pursued  The beginning of the task started with a baseline approach where 

each participant were shown five texts without any color-coding. This initial phase is pivotal, 

allowing us to gauge the natural predictive abilities of the users without the assistance of 

XAI. Following this, it is possible to evaluate how much the XAI methods contribute to 

improving the predictive accuracy. 
 

Task 2 – Comparative Study:  

During this task of the study, participants were presented with five distinct texts (which were 

different ones than those from Task 1), along with the respective explanations generated 

by three XAI methods: IG, LIME, and GlobEnc. Also in this setting, the texts were chosen 

manually and the randomisation of the methods during the study was done without a 

concrete randomization process. To facilitate a more comprehensive evaluation, both the 

true label and the model's predicted label were provided to the participants. The participants 

were aware that they were shown different methods and that they must assess them on 

several criteria. The aim is to conduct a comprehensive analysis, thoroughly exploring the 

strengths and weaknesses inherent in each approach. To achieve this, an assessment was 

conducted using a Likert scale, ranging from 1 to 5, across five essential dimensions: 

understandability, sufficiency, trustworthiness, satisfaction, and help-/usefulness of the 

provided explanations. To illustrate, Fig. 26 provides a concrete example of this task, 

showcasing how it was executed using the LIME method.  
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Fig. 26. Example of Task 2: Comparative Study. 
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After assessing the evaluation procedures of the classification models, evaluating the the 

ProtoTEx method as well as the ablation study and Task 1 and Task 2 of the user study to 

get a deeper understanding in the unique characteristics of each method, we will transition 

to the next chapter were the results and findings of the research are addressed.  

 

9. Results 

This chapter presents the results of the classification task, followed by a focus on 

ProtoTEx's preliminary evaluation which was conducted due to its unique functionality. 

Subsequently, we delve into the results of the ablation study and the user study, both of 

which were conducted for the evaluation of the XAI methods, including LIME, Integrated 

Gradients, and GlobEnc. 

9.1. Classification  

The three fine-tuned BERT models were evaluated on the test splits of their respective 

datasets. Also for each of the dataset a baseline was generated using the 

DummyClassifier [160] of sklearn setting the classification strategy to “uniform” which 

implements random baseline. The classification results of the TSNH-BERT, the HC-BERT 

and the EP-BERT as well as the according baselines are summarized in Table 10. 

 

Table 10 Evaluation results of classification models 

Model Name Accuracy 
Precision 

(macro) 

Recall 

(macro) 

F1-score 

(macro) 

TSNH-BERT 0.7268 0.7554 0.7230 0.7166 

TSNH-

Baseline 
0.4959 0.4958 0.4958 0.4958 

HC-BERT 0.8618 0.7153 0.6360 0.6610 

HC-Baseline 0.4539 0.4679 0.4353 0.3847 

EP-BERT 0.9967 0.9967 0.9966 0.9967 

EP-Baseline 0.5033 0.5034 0.5034 0.5033 

 

As can be observed from the table, each of the fine-tuned BERT models performed better 

than their respective baselines. The TSNH-BERT model showcases better balance in 

performance compared to the HC-BERT model, particularly in terms of precision and recall, 

which are relatively close to each other. Having precision and recall values close to each 

other indicates that the model is proficient at accurately identifying a majority of the true 

positive cases while minimizing the number of false positives. In contrast, the EP-BERT 

model achieved near-perfect scores, exceeding 99.66%. This was expected given that the 

dataset was large, perfectly balanced, and purposely simplified to facilitate a straightforward 

solution. 

Looking at the confusion matrices in Fig. 27, for the TSNH-BERT model there is a noticeable 

number of false positives (614) and false negatives (147), indicating the model is making 
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errors in both directions. While the HC-BERT model demonstrates high accuracy, it appears 

to be less balanced in terms of precision and recall, with a particularly lower recall. The 

confusion matrix indicates that the model may be biased towards predicting the positive 

class, and it may struggle with identifying true negatives. 

 

 

Fig. 27. Confusion matrices of fine-tuned TSNH-BERT and HC-BERT evaluated on the respective test split. 

 

 

 

The following tables, Table 11 Examples of misclassified indices of TSNH-BERT and HC-

BERTTable 11 and Table 12 showcase correct as well as misclassified texts from TSNH-

BERT and the HS-BERT. 

 

Table 11 Examples of misclassified indices of TSNH-BERT and HC-BERT 

Model 

Name 

True 

Label  

Predicted 

Label 

Sentence 

TSNH-

BERT 

1 (non-CS) 0 (CS)  Those are two disgusting swines!

!! 

"To serve and protect." 

Whatever!!! 

 

TSNH-

BERT 

0 (CS) 1 (non-CS) And you don't like pussies, do y

ou? Thought not. 

 

TSNH-

BERT 

0 (CS) 1 (non-CS) us jews are Gods chosen people. 

If you don't like it you are cur

sed. We are better than you. Ame

ricans you will need to keep dyi

ng for our prosperity. Now go ki

ll some arabs you servant. 

HC-BERT 0 (HS) 1 (CS) the truth is: arab countries are

n't a proper place to live in! n

o humans nor animals can live in 

peace here! (same thing goes wit

h iran) 
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HC-BERT 0 (HS) 1 (CS) I CANT BREATHE GOD BLESS YOU OVE

RWATCH RANDOM GUY 

 

HC-BERT 1 (CS) 0 (HS) @user fckkk you too  

 

Table 12  Examples of correctly classified indices of TSNH-BERT and HC-BERT 

Model 

Name 

True 

Label  

Predicted Label Sentence 

TSNH-

BERT 

0 (CS) 0 (CS) plesae take this down youtube. 

 

TSNH-

BERT 

1 (non-CS) 1 (non-CS) Smack that bih 

TSNH-

BERT 

1 (non-CS) 1 (non-CS) Damn after 4years and it popped 

up in my recommendation today??

? But anyway that bitch would b

e dead right now if she said al

l that to me.And big ups to you 

brother for being cool infront 

of that bitch. 

HC-BERT 1 (CS) 1 (CS) They're gonna beat your ass wit

h chop sticks 

HC-BERT 0 (HS) 0 (HS)  They are so irritating  

HC-BERT 1 (CS) 1 (CS) How about you stick to your own 

country before trying to overth

row a democratically elected ma

yor, Arj. 

 

As can be observed from the examples, both classification tasks pose significant 

challenges, primarily because the underlying meanings of the texts are often unclear, and 

the labels are not always intuitive. Despite these inherent difficulties, the methods achieved 

noteworthy performances.  
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9.2. ProtoTEx  

In this initial evaluation, a series of experimental tests was conducted using two distinct 

datasets to evaluate the effectiveness and applicability of the prototypes generated by 

ProtoTEx. The objective was to evaluate both the quality and relevance of these 

prototypes, setting a foundational basis for further analysis and development. The notion 

of the model names of the experiments is displayed in the following table:  

 

Table 13 Notation for ProtoTEx Experiments 

Notation Description 

<DATASET>… Short name of the used dataset 

<NUM_TRAIN>t Total number of prototypes for training 

<NUM_TEST>t Total number of prototypes for testing 

<PT> Stands for the method “ProtoTEx” 

<NUM> Serial number that is added when more 

than one model with the same configuration is 

trained (same number of prototypes for training) 

 

<DATASET>_<NUM_TRAIN>t_<NUM_TEST>t_<PT>_<NUM> 

 

As mentioned in section 8.4.2 multiple settings regarding the numbers of considered 

prototypes for training and testing are done which are displayed in the following table:  

 

Table 14 Training and test settings of ProtoTEx models 

Setting Name Training Setting Test Setting 

SET1 
n.p = 20 

n.p.p = 19 

n.p = 20 

n.p.p = 19 

SET2 
n.p = 20 

n.p.p = 19 

n.p = 30 

n.p.p = 10 

SET3 
n.p = 20 

n.p.p = 19 

n.p = 50 

n.p.p = 49 

SET4 
n.p = 50 

n.p.p = 49 

n.p = 20 

n.p.p = 19 

SET5 
n.p = 50 

n.p.p = 49 

n.p = 50 

n.p.p = 49 

 
*n.p. = Number of prototypes 
*n.p.p. = Number of positive prototypes 
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The results from the various settings are shown in the in Table 15. 

 

Table 15 Results of trained ProtoTEx models with different configurations. 

Model Name Data Setting Run Accuracy Precision  Recall  F1  

TSNH_20t_20t_PT TSNH SET 1 1 0.4654 0.4231 0.4582 0.3915 

TSNH_20t_20t_PT TSNH SET 1 2 0.4654 0.4231 0.4582 0.3915 

  

TSNH_20t_30t_PT TSNH SET 2 1 0.5088 0.4947 0.4991 0.3717 

TSNH_20t_30t_PT TSNH SET 2 2 0.5153 0.5425 0.5225 0.4552 

        

EP_50t_20t_PT EP SET 4 1 0.508 0.254 0.5000 0.3369 

EP_50t_20t_PT EP SET 4 1 0.508 0.254 0.5000 0.3369 

        

EP_50t_50t_PT EP SET 5 1 0.377 0.2532 0.3828 0.2876 

EP_50t_50t_PT EP SET 5 2 0.377 0.2532 0.3828 0.2876 

        

EP_20t_20t_PT EP SET 1 1 0.8707 0.8959 0.8727 0.8690 

EP_20t_20t_PT EP SET 1 2 0.8707 0.8959 0.8727 0.8690 

        

EP_20t_20t_PT_2 EP SET 1 1 0.9803 0.9804 0.9803 0.9803 

EP_20t_20t_PT_2 EP SET 1 2 0.9803 0.9804 0.9803 0.9803 

        

EP_20t_50t_PT EP SET 3 1 0.508 0.254 0.5 0.3369 

EP_20t_50t_PT EP SET 3 2 0.492 0.2460 0.5000 0.3298 

        
* TSNH. = Thou Shalt Not Hate 
* EP. = Europarl 
* All metrics are macro 

 

As can be observed from the results displayed in the tables above, the ProtoTEx models 

seem sensitive to the number of prototypes considered during inference, illustrating that the 

influence of the number of prototypes has a significant impact on the performance. 

Unfortunately, with different numbers of prototypes, the performance sometimes drops 

significantly below the random baseline of 50%, which is quite concerning given that these 

tasks are fundamentally 99% solvable in according to the classification results of the 

EP_BERT model (section 9.1). This fluctuating performance across different settings calls 

the methodology into question, as it seems to engender a decline in the models' capabilities, 

essentially causing them to degenerate. Except of the TSNH_20t_30t_PT model, the 

prediction results were always the same over multiple runs. This behavior of changing 

results was also observed in further experiments with other models when the number of 

prototypes varied. However, these experiments are not shown in the table and can be found 

in the Excel files of the ProtoTEx models provided at the Github repository4 of this thesis.  

The method’s goal during inference is to find sentences from the training data that are 

close to the predicted prototypes. Notably, it was observed that the closest training 

examples to the prototypes often belonged to a different class than the original test 

 
4 https://github.com/JaquJaqu/masterthesis_XAI 

https://github.com/JaquJaqu/masterthesis_XAI
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sample. This phenomenon, where ProtoTEx selects training samples from a class 

different than the predicted one, has also been documented in  [18]. In their paper, they 

claimed that this behavior could occur because of the similarity of the classes in their task. 

However, especially in the case of a binary language classification task, this should not be 

the issue since distinguishing between two different languages should be an easy task 

and mentioned, the classification performance of the EP_BERT model was nearly perfect. 

This indicates that the underlying BERT Transformer should not have a problem with 

classifying the texts.  

For a quantitative evaluation, the percentage of matches between the classes predicted 

for the test samples and the classes of the selected training samples representing the 

prototypes is calculated. This is done for the TSNH_20t_30t_PT, the EP_50t_20t_PT, 

EP_20t_20t_PT and the EP_20t_20t_PT_2 models, since those showed the best results 

on the test sets. The results are shown in Table 16. 

 

Table 16 Matching class percentages of ProtoTEx model. 

Model Name 
Matching Class Percentage (True 

Class to Classes of Prototypes) 

TSNH_20t_30t_PT 10.00% 

EP_50t_20t_PT 60.87% 

EP_20t_20t_PT 37.58% 

EP_20t_20t_PT_2 51.85% 

 

Unfortunately, the matching class percentages of the true label to the classes of the 

nearest training sample are low. The highest match can be observed in the 

EP_50t_20t_PT model with a percentage of 60.87%. Also, the model with the best 

performance EP_20t_20t_PT_2 showed this behaviour with a matching class percentage 

of just 51.85%. This observation raises further questions about the reliability of the 

selected training samples that should represent the prototypes. Unfortunately, this 

behavior undermines the ability to understand the models’ prediction for humans, making 

this method less reliable and not suitable for gaining insight in the explainability of the 

model. Since we could not extract robust prototypes and meaningful explanations in our 

experiments (even not for the simple task of language classification), we excluded 

ProtoTEx from the further evaluation.  

9.3. Ablation Study 

As described is section 8.4.3, the four most important positive attribution scores according 

to each of the XAI methods LIME, Integrated Gradients and GlobEnc for each text were 

computed. Each of the determined tokens was then removed and the prediction probability 

of the model was calculated. At the beginning, a baseline approach where no tokens are 

removed was done first. Using this baseline, for every ablated token the drop in prediction 

probability could be calculated. The probability drop is then visualized using scatterplots to 

compare the attribution score of the reference token to observe how important a high or low 

attribution score is for the actual change in probability. This procedure was pursued for each 

of the two datasets, using the pre-processed test data which is described in more detail in 
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section 8.2. The results of the ablated sentences of the two datasets for the three XAI 

methods LIME, Integrated Gradients and GlobEnc are shown in the following visualizations: 

 

TSNH-BERT (Thou Shalt Not Hate dataset):  

 

Fig. 28. TSNH-BERT: Attribution scores vs drops in prediction probability for all three XAI methods. 
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Fig. 29. TSNH-BERT: Pearson correlations for all three XAI methods. 
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HC-BERT (HateCounter dataset):  

 

 

 

 

 

 

Fig. 30. HC-BERT: Attribution scores vs. drop in prediction probability for all three XAI methods. 
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Fig. 31. HC-BERT: Pearson correlations for all three XAI methods of all three XAI methods. 

 

 

A positive prediction drop indicates that the removed token has a positive impact on the 

prediction on the model, therefore, if the token is removed, the prediction probability of the 

model should decrease. However, if the probability drop appears to be a negative value, 
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the removed token has a negative impact on the model’s decision, which indicates that the 

prediction probability of the model would be higher if the token would not be part of the 

reference sentence.  

 

Also, the Pearson correlations are visualized to get a more in-depth insight into the results.  

The Pearson correlation coefficient (r) is a measure for the linear relationship of data points 

which is a number between -1 and 1. A positive correlation (number between 0 and 1) 

means as one variable changes, the other also changes in the same direction. If the 

correlation is negative, the changes go in the opposite directions. A number of 0 means that 

there is no relationship between the data points [161]. The goal of the methods would be a 

positive correlation towards all the data points since a removal of a token with a positive 

attribution should cause a prediction drop. As can be observed in Fig. 29 and Fig. 31 the IG 

and the GE methods show diverse results. Just the LIME method shows some correlations 

and therefore better results with just a few outliers with negative attributions.  

 

Since the set goal of the ablation study was to determine the four most important positive 

attribution scores, which have a positive attribution towards the prediction of the model, the 

case of negative attributions towards the predicted label should not occur. Interestingly, all 

the three methods in the experiments with both models show negative probability drops and 

negative Pearson correlations. This indicates that some of the chosen tokens have a 

negative impact towards the predicted label even though their attribution score is positive. 

However, only tokens which positive attribution scores were removed which should 

decrease the performance of the model and increase the probability drop. After examining 

the methods with this ablation study, we move forward to the results obtained by the user 

study. 

9.4. User study 

In this section the results of the user study are shown. All additional information like the user 

study itself, the results as well as the code for the evaluation is provided in the GitHub 

repository5 of this thesis. 

 

For evaluating Task 1 (forward prediction), the ratio of the wrong and the right predictions 

of the participants are calculated. For the question regarding the confidence of the 

participants with their answer to Task 1 as well as for all the questions in Task 2 

(comparative study) the average Likert scores per XAI method and per XAI method per 

text sample have been calculated to evaluate which of the score values was chosen most 

likely by the participants. The standard deviation of the average Likert score (also XAI 

method-wise and XAI method per text sample-wise) were computed. Also, the confidence 

intervals (CI) and the effect size (ES) (Cohen’s d) have been calculated to examine the 

differences in the results. For a more comprehensive understanding of the obtained 

results, a type II ANOVA analysis was chosen since the significance of multiple factors 

 
5 https://github.com/JaquJaqu/masterthesis_XAI 

https://github.com/JaquJaqu/masterthesis_XAI
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(different XAI methods, several participants, and texts) should be analysed but not their 

interactions. A description of the considered metrics is given below: 

 

Confidence Intervals:  

A confidence interval gives a range around an average prediction, indicating where the 

true value likely lies if a study is repeated, based on a set confidence level. In this paper, 

the chosen confidence level is 95%. These number gives a range in which the true 

population mean is likely to lie. If the confidence intervals of two methods do not overlap, 

this indicates that there is a significant difference regarding their averaged scores [162].  

 

Cohen’s d: 

Cohen’s d is an effect size measure that quantifies the magnitude of difference between 

two group means which are standardized by the pooled standard deviation. Its value 

offers insights into the practical significance of an observed difference, with common 

benchmarks being: 0.2 (small effect), 0.5 (medium effect), and 0.8 (large effect). The 

magnitude of Cohen’s d indicates how large the difference between the groups is. The 

direction of the effect size (positive or negative sign) tells which of both group has the 

higher mean [163].  

 

 

ANOVA analysis 

This analysis aims to identify how different factors affect the ratings and to determine if the 

observed differences are statistically significant. For that the ANOVA method is used to 

test the differences on two or more groups of means. The null hypothesis H0 in the 

ANOVA test states that all the group means are equal. Three components (C) were 

evaluated: 

 

• C(Method): This component was introduced to assess the effect of the three XAI 

methods (A (IG), B (LIME), C (GE)) on the given scores. A significant effect here 

would indicate that at least one method leads to different scores when compared with 

the others. 

• C(Text): This aspect of the analysis looks at how the choice of text influences the 

scores. If significant, this would suggest that some texts were rated differently than 

others, regardless of the method used or the individual participant. 

• C(Participants): This component analyses the variations in text ratings among 

different participants. It acknowledges that individual preferences and opinions may 

lead to diverse ratings, even when evaluating the same texts. 

 

The test was implemented in python using the statsmodel ANOVA package [164] which 

provides the following variables per component as result: 

 

• Sum of Squares: This variable represents the total variation in the data. 

• Degree of Freedom: The number of values in the calculations that are free to vary. 

It's used to calculate the mean squares. 



89 

  

• F-Statistic: Is used to test if the means across different groups are equal. It 

calculated a ratio of the variance between the groups to the variance within the 

groups. 

• PR(>F) (p-Value): Is the probability of observing an F-statistic as extreme as the one 

from the sample data, under the null hypothesis.  

• Small p-value (e.g., less than 0.05) → reject the null hypothesis (there is enough 

evidence to believe that an effect or difference exists) 

• High p-value (e.g., higher than 0.05) → fail to reject the null hypothesis (there is no 

evidence to believe that an effect or difference exists) 

• Residual: This row reflects the within-group variation, showing the variability that is 

not explained by the factors that are considered in the analysis.  

 

By examining these components, the analysis helps to identify the separate effects of the 

method, text, and participant on the ratings. This offers a clearer understanding of what is 

causing the differences we see in the evaluations [165], [166], [167]. For the ANOVA test 

within this paper a significance level alpha of 0.05 (or 5%) has been chosen. 

9.4.1. Participants 

In the user study, 14 persons contributed to the qualitative evaluation in this thesis. Most of 

the participants had full-time positions, were students or part-time workers. Of these, 8 

possessed master's degrees, 4 had completed further education or held bachelor's 

degrees, and 2 were advanced graduates or held PhDs. All the 14 participants had some 

understanding of AI. Additionally, all were familiar with XAI concepts. The age distribution 

ranged from 18 to 44, with the majority falling between 25 to 35 years. In terms of gender, 

there were 4 females, 9 males, and 1 non-binary person. None of the participants exhibited 

colour blindness, which was critical for being able to contribute to the user study.  

9.4.2. Task 1 – Forward Simulation/Prediction: 

In Task 1 where the participants were asked to guess what the model will predict based on 

the given explanation, it can be observed from Table 17, Table 18 and  Fig. 32 that each of 

the explanations lead to the participants to make a right prediction more often, compared to 

the baseline without explanation. 

 

Table 17 Percentage of correctly predicted classes by the participants of Task 1 of the user study 

Right Predicted Baseline A (IG) B (LIME) C (GE) 

Total Score 27 38 36 36 

Percentage 38,57% 54,29% 51,43% 51,43% 

Table 18 Percentage of wrong predicted classes by the participants of Task 1 of the user study 

Wrong Predicted Baseline A (IG) B (LIME) C (GE) 

Total Score 43 32 34 34 

Percentage 61,43% 45,71% 48,57% 48,57% 
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Fig. 32. Right vs wrong classified instances of Task 1 of the user study. 

 

Without the help of the explanations only 38,57% of the samples where correctly classified 

(Baseline). However, the right forward prediction using IG was 54,29%, using LIME was 

51,43% and GlobEnc also helped the participants to achieve a percentage of 51,43% of 

correctly predicted samples.  

 

The following graphs illustrate the calculations done for the additional question about the 

confidence of the participants giving their answer in the evaluation.   

 

Additional Question - Confidence:  

Question: “I am confident with my answer.” (1 = Strongly disagree, 5 = Strongly agree)” 

 

 

Fig. 33. Comparison of the average Likert scores for the confidence of the participants during Task 1. 
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Fig. 34. Comparison of boxplots showing the average Likert scores for the confidence of the participants 

during Task 1. 

 

 

Fig. 35. Comparison of the effect size (Cohen's d) for the confidence of the participants while answering Task 

1. 

 

Fig. 36. Comparison of the standard deviation of the average Likert scores of the confidence of the 

participants while answering Task 1 of the user study. 
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Table 19 ANOVA - Test of Task 1 of the user study (Confidence). 

 
Average Likert score: 

Since the Likert scale is ordinal by nature, not the percentage but the average Likert 

scores are shown in the visualizations. These are visualized to get a better understanding 

in which score was chosen more likely by the participants. Interestingly, the results show 

that the participants were more confidence in their forward prediction without any 

additional explanations since the average Likert score of the baseline (BASE) reached the 

highest score. The GlobEnc method was given most likely a higher score in providing 

confidence compared to LIME and Integrated Gradients. The median and quartiles from 

IG and LIME were similar. Also, the results of GlobEnc to the baseline showed similar 

outcomes.  
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 

It is noteworthy that in terms of the standard deviation and the effect size of the average 

Likert score during model-wise comparison, the baseline (BASE) and GlobEnc (GE) 

showed minimal differences. Nevertheless, the text-wise comparison showed some 

inconsistency across the five texts. The highest effects were shown in the comparison of 

IG vs GE (ES = -0.89) and IG and BASE (ES = -1.03). 

 
ANOVA-Test:  

The ANOVA analysis in Table 19 ANOVA - Test of Task 1 of the user study 

(Confidence).shows that the method, text and the participants have all a statistically 

significant effect on the dependent variable, which are the raw inputs of the participants. 

This conclusion is made because of the low p-values of each of the methods which are 

below the set 5% alpha threshold. 
 

9.4.3. Task 2 – Comparative Study 

As described in chapter 8.4.4, in Task 2, the three original representations of the 

explainability methods were analysed. The participants of the user study were asked for 

their opinions to gain insight into how understandable, sufficient, trustworthy, satisfactory, 

and help-/useful the explanations are on a Likert scale ranging from 1 (= strongly 

disagree) to 5 (= strongly agree). 

The computed graphs according to the results of this analysis regarding the mentioned 

criteria are displayed and the highlights shown are commented in this chapter. 

 

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 41.15 3.0 14.24 1.288416e-08 
C(Text) 12.55 4.0 3.26 1.252486e-02 

C(Participants) 171.18 13.0 13.67 5.251104e-23 
Residual 249.55 259.0 NaN NaN 
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Question 1 - Understandability:  

Question: “I understand why the model classified the text as 0 (Non-Counter speech)/ 1 

(Counter speech) (1 = Strongly disagree, 5 = Strongly agree)” 

 

Fig. 37. Comparison of the average Likert scores for the understandability criteria of the XAI methods. 

 

Fig. 38. Comparison of boxplots showing the average Likert scores for the understandability criteria of the XAI 

methods. 

 

Fig. 39. Comparison of the effect size (Cohen's d) for the understandability criteria of the XAI methods.  
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Fig. 40 Comparison of the standard deviation of the average Likert scores for the understandability criteria of 

the XAI methods. 

 
 

Table 20 ANOVA - Test of Task 2 of the user study (Understandability) 

  
Average Likert score: 
The average Likert score of the three methods was the highest for LIME with a Likert 
score 3.43, followed by IG with 3 and GE with 2.79. 
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 
In the pairwise comparisons the results of the approach comparing the IG and the GE 
method showed the least differences with a total percentage of 3% in SD. However, LIME 
and IG showed in comparison the highest difference of 6%.  
 
 
ANOVA-Test:  
The ANOVA analysis highlights that differences in the methods used in the study 
contribute to statistically significant variations in ratings (p = 1.742858e-03, F = 6.57). This 
confirms that the choice of method matters to the ratings of the participants. In contrast, 
the text factor was found to have no significant effect on ratings (p = 0.4857, F = 0.87). 
Importantly, individual differences among participants were found to be a strong 
contributing factor to the variations in ratings (p = 8.913304e-08, F = 5.12). This may 
emphasize the role of personal preferences and biases in the given scores. 
  

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 15.00 2.0 6.57 1.742858e-03 
C(Text) 3.95 4.0 0.87 4.857063e-01 

C(Participants) 76.07 13.0 5.12 8.913304e-08 
Residual 216.91 190.0 NaN NaN 
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Question 2 - Sufficiency:  

Question: “I think the visualization is sufficient for explaining why the model classified the 

text as 0 (Non-Counter speech)/ 1 (Counter speech) (1 = Strongly disagree, 5 = Strongly 

agree)” 

 

Fig. 41 Comparison of the average Likert scores for the sufficiency criteria of the XAI methods. 

 

 

Fig. 42. Comparison of boxplots showing the average Likert scores for the sufficiency criteria of the XAI 

methods.

 

Fig. 43. Comparison of the effect size (Cohen's d) for the sufficiency criteria of the XAI methods. 
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Fig. 44  Comparison of the standard deviation of the average Likert scores for the sufficiency criteria of the 

XAI methods. 

 

 

Table 21 ANOVA - Test of Task 2 of the user study (Sufficiency) 

 
Average Likert score: 
For evaluating the sufficiency of the methods, the average Likert score of the three 
methods was the highest in the LIME model with 3.07, followed by IG with 2.76 and GE 
with 2.24. By observing the average Likert scores for each text and method a trend which 
is followed by each of the texts can be observed. 
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 
The pairwise comparison of LIME and GE showed the most differences with a standard 
derivation of 8% and an effect size of 0.94.  
 
ANOVA-Test:  

The ANOVA analysis revealed significant variations in ratings regarding the methods used 

in the study (p = 3.766463e-06, F = 13.35), confirming the influence of different methods on 

the observed ratings. However, differences in the texts used did not result in statistically 

significant variations in the given scores (p = 0.5575, F = 0.75). Additionally, a strong 

significance was found among the factor of the participants (p =7.983725e-12, F = 7.48), 

illustrating the important role of individual differences in rating behavior among the 

participants 
  

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 24.50 2.0 13.35 3.766463e-06 
C(Text) 2.76 4.0 0.75 5.574899e-01 

C(Participants) 89.28 13.0 7.48 7.983725e-12 
Residual 174.34 190.0 NaN NaN 
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Question 3 - Trustworthiness:  

Question: “I think the visual explanations increases my trust in the model (1 = Strongly 

disagree, 5 = Strongly agree)” 

 

Fig. 45. Comparison of the average Likert scores for the trustworthiness criteria of the XAI methods. 

 

 

Fig. 46. Comparison of boxplots showing the average Likert scores for the trustworthiness criteria of the XAI 

methods. 

 

Fig. 47. Comparison of the effect size (Cohen's d) for the trustworthiness criteria of the XAI methods. 
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Fig. 48.  Comparison of the standard deviation of the average Likert scores for the trustworthiness criteria of 

the XAI methods. 

 

Table 22 ANOVA - Test of Task 2 of the user study (Trustworthiness) 

 

 
Average Likert score: 
A similar trend as in the evaluation of the sufficiency can be observed here. The average 
Likert score of the three methods was the highest in the LIME model with 2.89, followed 
by IG with 2.54 and GE with 2.24. By observing the average Likert scores for each text 
and method a trend which is followed by each of the texts can be observed. 
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 
LIME and GE showed the most differences with a standard derivation of 6% in the 
pairwise comparison of these both and an effect size of 0.67.  
 
ANOVA-Test:  

The results of the ANOVA analysis highlighted significant differences in the ratings between 

the methods used (p = 1.225463e-04, F = 9.45), which shows the influence of the 

methodological differences on the given scores. In contrast, the specific texts utilized in the 

study were found not to affect the ratings in a statistically significant manner (p = 0.2549, F 

= 1.34). The strong significance in the participants' factor (p = 5.727276e-20, F = 12.80) 

shows individual differences in the rating behavior among the participants. 

 

 

Question 4 - Satisfaction:  

Question: “I am satisfied with the explanation why the model classified the text as 0 (Non-

Counter speech)/ 1 (Counter speech) (1 = Strongly disagree, 5 = Strongly agree)” 

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 14.49 2.0 9.45 1.225463e-04 
C(Text) 4.12 4.0 1.34 2.548708e-01 

C(Participants) 127.55 13.0 12.80 5.727276e-20 
Residual 145.66 190.0 NaN NaN 
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Fig. 49. Comparison of the average Likert cores for the satisfaction criteria of the XAI methods. 

 

 

Fig. 50. Comparison of boxplots showing the average Likert scores for the Satisfaction criteria of the XAI 

methods.

 

Fig. 51. Comparison of the effect size (Cohen's d) for the satisfaction criteria of the XAI methods. 
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Fig. 52  Comparison of the standard deviation of the average Likert scores for the satisfaction criteria of the 

XAI methods. 

 

 

Table 23 ANOVA - Test of Task 2 of the user study (Understandability) 

 
Average Likert score: 
The average Likert score of the three methods was the highest in the LIME model with 
2.79, followed by IG with 2.47 and GE with 2.00.  
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 
LIME and GE showed the most differences with a standard derivation of 7% in the 
pairwise comparison of these both (ES = 0.83), followed by a 5% deviation of the IG 
compared to the GE method (ES = 0.53).  
 
 
ANOVA-Test:  

The ANOVA analysis revealed that the method used significantly affected the ratings (p = 

5.699372e-05, F = 10.29), indicating differences in the ratings between different methods. 

However, the text itself did not show a significant impact on the ratings (p = 0.4772, F = 

0.88), suggesting that the specific texts used in the study did not lead to variations in ratings. 

Moreover, the analysis indicated a significant difference among participants (p = 2.161911e-

10, F = 6.63), reflecting individual variations in rating behavior. 

 
  

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 19.78 2.0 10.29 5.699372e-05 
C(Text) 3.38 4.0 0.88 4.771778e-01 

C(Participants) 82.86 13.0 6.63 2.161911e-10 
Residual 182.57 190.0 NaN NaN 
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Question 5 – Help-/Usefulness:  

Question: “I find the explanation helpful (1 = Strongly disagree, 5 = Strongly agree)” 

 

Fig. 53 Comparison of the average Likert scores for the help-/usefulness criteria of the XAI methods. 

 

 

Fig. 54. Comparison of boxplots showing the average Likert scores for the help-/usefulness criteria of the XAI 

methods. 

 

Fig. 55. Comparison of the effect size (Cohen's d) for the help-/usefulness criteria of the XAI methods. 
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Fig. 56. Comparison of the standard deviation of the average Likert scores for the help-/usefulness criteria of 

the XAI methods. 

 

 

Table 24 ANOVA - Test of Task 2 of the user study (Helpfulness) 

 
Average Likert score: 
Also here, the average Likert score of the three methods is the highest in the LIME model 
with 3.26, followed by IG with 2.79 and GE with 2.19.  
 
Standard deviation (SD) of average Likert score in % and effect size (ES): 
LIME and GE also showed again the most differences with a standard derivation of 
10.71% in the pairwise comparison (ES = 0.92), followed by a 6% deviation of the IG 
compared to the GE method (ES = 0.49).  
 
ANOVA-Test:  

The ANOVA analysis revealed a statistically significant effect of the chosen method on the 

ratings (p < 0.0001, F = 18.50), indicating that different methods led to different chosen 

scores. However, the effect of different texts on the ratings was not significant (p = 0.4722, 

F = 0.89), suggesting that the specific text did not influence the ratings. Additionally, there 

was again a significant effect of participants on the scores (p < 0.0001, F = 9.90). 
 
The goal of this section is to display the results of the classification approaches, the 
ProtoTEx pre-evaluation, the ablation study as well as the user study. In the evaluation of 
the user study, the aim of the textual descriptions of the different metrics are to highlight 
the most important observation shown in the graphs. A detailed discussion of the 
observation made in the evaluation of the classification tasks as well as the evaluation 
regarding the XAI methods follows in the next chapter.   

 Sum of Squares Degree of Freedom (df) F-Statistic PR(>F) (p-Value) 

C(Method) 40.37 2.0 18.50 4.575318e-08 
C(Text) 3.88 4.0 0.89 4.722049e-01 

C(Participants) 140.51 13.0 9.90 1.056391e-15 
Residual 207.35 190.0 NaN NaN 
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9.5. Discussion  

After detailing the methodology, outlining the evaluation strategy, and presenting the 

results, this section delves into dissecting and interpreting the observed outcomes. The 

observations regarding the fine-tuned classification models and the conducted 

experiments, the evaluation of the ProtoTEx method, the ablation study as well as the 

results of the user study are described in more detail. 

9.5.1. Classification  

This section continues with discussing the results of the classification approaches of the 

fine-tuned BERT models. Upon analysing the results, it was shown that all the fine-tuned 

models outperformed their task specific random baseline as displayed in Table 25. 

 

Table 25 Evaluation results of classification models 

Model Name Accuracy 
Precision 

(macro) 

Recall 

(macro) 

F1-score 

(macro) 

TSNH-BERT 0.7268 0.7554 0.7230 0.7166 

TSNH-

Baseline 
0.4959 0.4958 0.4958 0.4958 

HC-BERT 0.8618 0.7153 0.6360 0.6610 

HC-Baseline 0.4539 0.4679 0.4353 0.3847 

EP-BERT 0.9967 0.9967 0.9966 0.9967 

EP-Baseline 0.5033 0.5034 0.5034 0.5033 

 

 

Also, it was evident that the fine-tuned TSNH-BERT model outperformed other counter-

/hate speech related models in key performance metrics like precision, recall, and F1-score 

when evaluated on its respective dataset. However, despite these advantages, its accuracy 

was slightly inferior to that of the HC-BERT model. The TSNH-model had achieved an 

accuracy of 72.68%. It is assumed that the accuracy of 86.18% in the HC-BERT model is 

higher in comparison with the other metrics because of the high-class imbalances in the 

dataset.  Furthermore, the high classification results of the EP-BERT with an accuracy of 

99.67% were expected since the task of language classification is considered as easy, and 

the used dataset was relatively large and perfectly balanced. The performances were 

considered as good enough to use the models for evaluating the XAI methods which 

discussion follows in the next chapter. 

9.5.2. XAI Methods  

ProtoTEx 

The evaluation of the XAI methods, especially for the ProtoTEx model was experimental as 

described in detail in section 8.4.2. This method was from special interest since it provides 

explanations during inference by providing trained sentences from the trained clusters as 
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explanation. The method is also considered as faithful due to its case-based reasoning 

strategy. 

Several experiments with different model settings where done. Especially the EP dataset 

was considered more intensively for the evaluation because of its high evaluation 

performances in the trained EP-BERT model, and since distinguishing between two 

languages is a simpler task than classifying e.g., counter and non-counter speech. So, any 

errors regarding the classification behavior of the model which would affect the performance 

of the explanations should be better prevented. As mentioned, the ProtoTEx method aims 

to identify sentenced from the training data that align closely with the predicted prototypes. 

However, the determined prototypes kept belonging to different classes (the opposite class 

in binary classification) compared to the original test sample. As noted in [18], a similar 

behavior was observed where they found overlapping prototypes related to a specific label. 

They mentioned that this might occur due to the similarities between the classes of their 

approach. Even though the language detection task was introduced to prevent this problem, 

it did not show any significant benefit. Since the matching class percentages (as shown in 

Table 16 Matching class percentages of ProtoTEx ) of the evaluated models were too low, 

the ProtoTEx method was excluded from any further evaluation and is considered as not 

beneficial for the understanding of the models behavior for humans. Another finding was 

that, since it is not a post-hoc method and lacks dedicated libraries for its implementation, 

the time needed for its implementation and training can be time-consuming, depending on 

the complexity of the underlying model. Nevertheless, previous research has shown that 

the classification accuracy remains comparable to the underlying models. This implies that 

the generation of explanations has little to no impact on the model's performance [12], [18]. 

This observation could also be pursued in some, but not all the experiments within this 

thesis. However, the findings of this research showed that the performance of the model is 

highly depended on the total number of prototypes and the considered amount of positive 

and negative prototypes.  

 

The other three XAI methods Integrated Gradients, LIME and GlobEnc were evaluated by 

an ablation study and user study. For that, attribution scores of the tokens of the texts where 

calculated using the methods. These should in theory indicate which tokens have a positive 

or negative attribution towards the predicted label of the model. This approach is discussed 

below. 

 

Ablation study 

The ablation study was introduced to evaluate the faithfulness criteria of the methods. In 

this case, a method can be considered as faithful when the removal of a token has an 

influence on the prediction depending on the value of the attribution score. In theory, a high 

attribution score should lead to a prediction drop when the respective token is removed from 

the sentence.  

 

The results displayed in section 8.4.3 which were evaluated using TSNH-BERT and the 

HC-BERT show, that all the methods had negative probability drops even though all the 

chosen tokens should have a positive impact towards the model prediction. Therefore, a 

removal of those should increase the probability drop in any case. The Integrated Gradients 

and the GlobEnc methods both tend to select tokens which have little or no impact on the 
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predicted probability of the model. In contrast, the LIME method shows slightly better results 

since the ablated datapoints showed some correlation in the scatter plot. This indicates that 

tokens with higher attribution scores cause indeed a higher drop in the probability of the 

models when removed. This means that the chosen tokens are relevant for the decision of 

the model. However, the results of each of the methods are relatively poor. Especially 

Integrated Gradients and GlobEnc show no significant benefit on the importance of the 

chosen tokens based on the attribution scores. The findings indicate that all the methods 

should not be considered as faithful, even though LIME showed the best results in 

comparison to Integrated Gradients and GlobEnc.  

 

User study 

The user study was considered to evaluate the criteria of plausibility, understandability, 

sufficiency, trustworthiness, satisfaction and help-/usefulness. Two tasks were introduced 

in this assessment: Task 1, the forward prediction task and Task 2, the comparative study. 

 

Task 1 was the forward prediction task which faces the plausibility criteria. In this task, the 

participants were shown the sample texts with and without standardized explanations (the 

tokens were highlighted in the same way regarding the attribution scores of the 

methods).The results displayed in chapter 9.4 indicate that all of the provided 

explanations had indeed a benefit in helping the participants to choose the right 

prediction, even though the results show that their confidence decreased when 

explanations were provided. In comparison, the GlobEnc explanation gave them a slightly 

higher level of confidence compared to the Integrated Gradients and the LIME method. 

However, since the attribution scores indeed helped the participants to make right forward 

predictions, all the methods can be considered as plausible.  

 

The results of Task 2, which was the comparative study shows that for each of the five 

remaining criteria, LIME reached the highest chosen average Likert scores, followed by 

Integrated Gradients and afterwards the GlobEnc method. During pairwise comparisons of 

the methods, the highest standard deviation of the average Likert score per method were 

shown in the LIME and the GE method ranging of 6-8% which shows that the participants' 

choices varied more in these methods. A lower standard deviation would suggest they often 

chose the same value in different settings. 

 

Also, the ANOVA test showed in all cases that the chosen methods have a significant 

influence on the given Likert scores. The texts did not cause statistically significant 

variations. This indicates that the text are valid candidates for the evaluation. The factors 

among the participants where strongly significant which confirms different rating behaviors 

among the participants. Since the Likert scale had a length of 1 (= Strongly disagree) to 5 

(= Strongly agree), a positive influence on the specific criteria is given when the average 

Likert score of the models in greater than 3. However, only the criteria of understandability 

and sufficiency reached higher scores than 3. The results of the questions regarding the 

other criteria were below this threshold. For the understandability criteria, LIME reached an 

average Likert score of 3.42 followed by Integrated Gradients with 3.00. For the sufficiency 

criteria, only the LIME method reached a Likert score close but still slightly higher than the 

mid which is a score of 3.07. The other criteria were rated below 3 with the lowest score of 
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2 of GlobEnc regarding the satisfaction criteria. It is noticeable that LIME performed best 

and the GlobEnc method performed the worst in all 5 cases. 

These results show that regarding to the set threshold of 3, only two of the criteria are 

slightly fulfilled. Those are the understandability and the sufficiency criteria by the LIME 

method. However, the chosen confidence intervals as well as the visualized boxplots of the 

average Likert scores show that the results of the methods are not clearly distinguishable. 

Consequently, the findings indicate certain tendencies rather than definitive outcomes.  

 

These results conclude that the standardized explanation of Task 1 had a benefit for making 

better decision towards the forward prediction task. However, when the participants were 

shown the original visualizations of the methods only the LIME method has a certain benefit 

for the participants. One of the reasons for this result could be that the participants have 

used the LIME method before and are more experienced using it since it is a common 

technique. However, this assumption is not measured within this thesis. 

The task of counter- and/or hate speech detection is a difficult one for humans as well as 

for ML models. Some of the participants reached out afterwards and described what their 

problems were during the study. Some of them claimed that they find it hard to make choices 

during the user study since they missed a context for the provided text and had some issue 

understanding the exact intention of the shown text. Therefore, even though the results of 

Task 2 are poor, it can’t be said that the explainability methods are the primary concern.  

However, except of the LIME methods which showed a little benefit in making the model 

more explainable and interpretable, the others, ProtoTEx, Integrated Gradients and 

GlobEnc are not suitable for the task of hate-/counter speech detection.  

 

  

 

 
  



107 

  

 

10. Conclusio and Future Work 

The study investigated in an extensive literature research in the methods of XAI in BERT 

classifiers in the use case of counter- and/or hate speech detection in text, as well as in a 

comparison of four different XAI methods that can be used to explain such models.  

The research questions to be answered are:  

 

• Which explainability methods can be used to explain the decisions of Transformer-

based language models? 

• How do different explainability concepts differ and what are the strengths and 

weaknesses? 

• Which methods are most helpful in result interpretation for humans? 

 

To answer the first question, the variety of attempts to explain the decisions of a 

Transformer-based model are diverse. The most popular methods which have been 

studied for Transformer models are gradient-based, perturbation-based, attention-based 

and the use of counterfactuals. But also, the use of prototypes has found some but little 

interest in research in the past years. Among the most classical methods are for sure 

LIME and SHAP, but also variants of those are getting more popular (e.g., DeepLiftSHAP, 

KernelSHAP), Attention-based methods have been from special interest in the past few 

years since the attention-mechanism is an inherently part of the Transformer architecture, 

making it a seemingly good candidate for the use for interpretability and explainability 

purposes.  

 

To answer the second question, the concepts, and functionalities of the different methods 

of explainability techniques are not always clearly distinguishable since some of the 

concepts can be found in other methods. In perturbation-based methods the input 

features get altered and the shift in the models’ prediction gets observed. The more the 

prediction changes, the more influence it has on the prediction. These methods, especially 

the often-used method LIME is computationally expensive. The advantage of LIME is that 

it is a well explored method which can be easily adapted using several open-source 

libraries. Attention-based methods use the power of the built- in attention mechanism by 

considering the attention weights for determining which features the model finds crucial for 

a decision. Even though these techniques are considered as rather fast, the literature 

showed that the attention mechanism may not necessarily highlight the exact reasoning 

behind a model's decision. The often lack of directional information and can sometimes be 

misled by the context rather than the actual content, making their explanations not always 

trustworthy. Gradient-based methods show more promising results regarding Transformer 

models. In these methods, the gradients from input to output features get explored 

throughout the model. However, the application to Transformers, as demonstrated in the 

literature review, is not without its challenges, particularly in terms of faithfulness and 

consistency. Prototypes, on the other hand, seek to provide explanations by identifying 

instances from the training data that closely resemble the given input, hoping to give a 

more intuitive understanding through examples. Even though this method is considered 
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faithful by design, it is found that current methods often lack in being useful for human 

interpretability since the determined prototypes do not always have to be from the same 

class as the predicted class of the model. Also, since there are no libraries for this 

prototype-based approach, the implementation could be time consuming and difficult 

depending on the underlying model structure. There is clearly no one-fits all solution for all 

models and use cases.  

 

To answer the last question, four methods of the mentioned categories have been chosen 

and further explored. The chosen methods were Integrated Gradients, LIME, GlobEnc and 

ProtoTEx. However, after some initial experiments with ProtoTEx, this method had to be 

discarded from further evaluation since the chosen prototypes kept being from other 

classes than the target or predicted class. This behavior made it non-beneficial for this 

comparison.  The results of the evaluation of the remaining methods showed, that even 

though all the three methods can be considered as plausible in the use case of counter 

speech detection, none of the methods gave sufficient results regarding the five criteria of 

understandability, sufficiency, trustworthiness, satisfaction, and use-/helpfulness. 

However, the LIME methods showed at least some tendencies for being beneficial 

regarding the understandability and the sufficiency criteria.  

 

The result show that the explainability in Transformer models in such complex tasks as 

hate- and counter speech detection has still plenty of room for improvement. Since the 

complexity of Transformer models is complicated and gets even more complex in newer 

models, the development of sophisticated tools to interpret and visualize the model 

components, architecture, and underlying data is needed. Even though there are already 

some tools available, more investigation should be made in evaluating the benefits of this 

methods. Given the observed strengths and weaknesses of current methods, future 

studies should consider combining multiple explainability techniques to potentially harness 

their collective strengths and offset individual limitations. Since gradient-based methods 

seemed promising in past literature, more research in combinations of gradient- and 

attention-based approach should be explored. The combination of different model 

architectures could also be beneficial for more consistence and more faithful explanations. 

Although the ProtoTEx method was not included in subsequent evaluations, it warrants 

further investigation. Future research should emphasize determining prototypes 

exclusively from the target class to gain a clearer comprehension of the provided 

prototypes. This could give users a more intuitive understanding of the chosen prototypes. 

Given the feedback of the user study, it is evident that interpretability is also a challenge 

for user experience. Therefore, future research should focus more on a user-centred 

approach, which investigated in the users’ needs, expectations, and prior knowledge. This 

could be in comprehension to a more intuitive and insightful design in XAI interfaces.  

Applying XAI techniques in more diverse real-work tasks, especially those with ethical or 

societal implications are crucial for providing insight in the strengths and limitations of 

existing methods. Even though some methods work well in easy made-up tasks does not 

necessarily mean that they serve the same benefits in a more complex task. Therefore, 

future work should also focus in comparing XAI methods based on more diverse tasks to 

get a better understanding in where the limitations of the XAI method are and to determine 

if the task itself poses challenges.   
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