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Kurzfassung

Serverless Computing ist ein neues Paradigma für die Bereitstellung von Anwendungen
in der Cloud. Seine Ausweitung auf den Bereich des Machine Learning (ML) ist seit
einigen Jahren ein Forschungsthema—insbesondere in der Community des Serverless Edge-
Computing. Die nahtlose Integration von Machine Learning-Modellen für den Einsatz in
Serverless Computing-Umgebungen ist immer noch eine Herausforderung. Die Auswahl
geeigneter Modelle für bestimmte Anwendungsfälle ist entscheidend für die Leistung des
gesamten Systems. In anderen Bereichen wurden Dienstauswahl und Load Balancing unter
Berücksichtigung der Quality-of-Service (Dienstqualität) eingesetzt, um die Leistung
von Anwendungen zu verbessern. Die aktuellen Ansätze zur Dienstauswahl und zum
Load Balancing berücksichtigen jedoch weder die Besonderheiten von Machine Learning-
Modellen noch die Latenzzeiten von Edge-Knoten. Daher müssen Entwickler:innen von
Serverless Anwendungen derzeit das beste Modell für ihren Anwendungsfall manuell
auswählen oder sich auf suboptimale Modellauswahlansätze verlassen. Die manuelle
Auswahl der Modelle schränkt die Flexibilität der Anwendung ein und setzt voraus, dass
Entwickler:innen über Kenntnisse der zugrunde liegenden Infrastruktur verfügen. In dieser
Arbeit schlagen wir eine Lösung vor, die automatisch und transparent das beste Modell für
einen bestimmten Anwendungsfall aus der zugrunde liegenden Infrastruktur von Serverless
Plattformen auswählt und dabei Machine Learning und Edge Computing-spezifische
Belange berücksichtigt. Die Anwendungsentwickler:innen müssen dann nur noch die Daten
und die gewünschten Leistungsmerkmale (z. B. Latenz, Genauigkeit usw.) des Modells
bereitstellen. Wir evaluieren unsere Lösung, indem wir sie mit gängigen Basisansätzen
für die Auswahl und dem Load Balancing von Diensten vergleichen. Zunächst führen wir
Fallstudien durch, um die Leistung unserer Lösung in verschiedenen Anwendungsfällen zu
bewerten. Anschließend vergleichen wir die Leistung unserer Lösung in einer simulierten
Umgebung mit den grundlegenden Ansätzen. Die Ergebnisse zeigen, dass unsere Lösung
in den meisten Fällen besser abschneidet als die Basislösungen.
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Abstract

Serverless computing is a new paradigm for the deployment of applications in the cloud.
Its extension to the field of Machine Learning (ML) has been a topic of research for
the past few years—especially in the serverless edge computing community. Seamless
integration of Machine Learning models for usage in serverless computing environments
is still a challenge. Selecting approriate models for particular use cases is crucial for the
performance of the whole system. In other domains, service selection and load balancing
with quality-of-service consideration have been used to improve the performance of
applications. However, current approaches to service selection and load balancing either
do not take into account the specifics of Machine Learning models or the latency of edge
nodes. So, developers of serverless applications currently have to manually select the
best model for their use case or rely on subpar model selection approaches. Manually
selecting the models limits the flexibility of the application and requires the developer
to have knowledge about the underlying infrastructure. In this thesis, we propose a
solution that automatically and transparently selects the best model for a given usecase
provided in the underlying infrastructure of serverless platforms while taking into account
Machine Learning and edge computing-specific concerns. Application developers then
only have to provide the data and the desired performance traits (e.g., latency, accuracy,
etc.) of the model. We evaluate our solution by comparing it to common baseline
approaches for service selection and balancing. First, we conduct case studies to evaluate
the performance of our solution in different use cases. Then, we compare the performance
of our solution to the baseline approaches in a simulated environment. The results show
that our solution outperforms the baseline approaches in most cases.
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CHAPTER 1
Introduction

1.1 Motivation
Through the rise of cloud computing, the way in which software is developed and
deployed has changed significantly. Instead of managing ever-changing hardware and
software stacks and dealing with scalability concerns, system administrators can now rely
on the infrastructure provided by cloud providers and use virtualized resources. This
new paradigm is commonly referred to as Infrastructure-as-a-Service (IaaS) [SGH15].
Serverless computing is a paradigm that expands on this idea. It not only eliminates
the need of managing hardware resources but also the whole context and state from the
developer’s end. By offering the deployment of short-lived containerized or virtualized
applications—Function-as-a-Service (FaaS)—developers can focus on the business logic of
their applications. This way, they do not have to worry about the underlying infrastructure.
These commonly stateless functions react to event triggers from services the cloud provider
offers. The stateless nature of serverless functions is a key aspect of the paradigm. It
allows cloud customers to scale the functions automatically based on demand and only
pay for the actual resource consumption. However, similar to the invocation triggers,
functions rely on external backend services for data storage and retrieval This represents
the second part of the serverless paradigm: Backend-as-a-Service (BaaS) [JSSS+19].

Even though cloud computing, and more specifically serverless computing, managed to
solve problems of scalability and availability, there are still limitations to the paradigm.
For instance, latency sensitive applications are unsuitable for serverless computing as the
data transmission between the cloud and the end user is slow. Computation therefore
needs to happen closer to the end user, at the edge of the network. Serverless edge
computing is a paradigm which tries to close this gap by bringing the ease-of-use of
serverless computing to heterogeneous environments at the edge of the network. This
enables the development of novel applications which previously were either not possible to
develop on plain serverless platforms or were too complex to manage in edge environments.
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1. Introduction

One class of applications benefitting from the synthesis of these paradigms is Edge
Intelligence (EI), a combination of Artificial Intelligence (AI) and edge computing
[RND23].

A paradigm which also gained popularity with cloud computing and can gain further sig-
nificance through the combination with serverless edge computing is Machine Learning
Operations (MLOps). MLOps is a set of practices and tools to automate the develop-
ment, deployment and maintenance of machine learning models and applications. MLOps
platforms can thereby oversee machine learning models during their entire lifecycle. This
starts from data collection and model training and continues to the deployment, inference
and monitoring of the models [KKH23]. An example of such a platform is Amazon
SageMaker1 which includes detailed management of the models and their deployment,
and subsequent monitoring with other Amazon Web Services.

1.2 Problem Statement
Serverless edge computing has shown to be useful for dealing with the heterogeneity
of edge environments. Serving model inference on serverless edge computing platforms
enables the development of Edge Intelligence applications. However, the separation of
infrastructure and application logic in serverless computing, while reducing complexity
for application developers, leads to a lack of domain-specific Machine Learning knowledge
such as the accuracy of the served models. This makes it hard to optimize applications
along Quality-of-Service concerns such as latency or accuracy and to balance the trade-off
between them and the utilization of the underlying infrastructure. Therefore, serverless
edge computing platforms need an extension for intelligent model selection able to
take into account domain-specific knowledge about the models and their execution
environments.

We propose an efficient and transparent selection system for machine learning models
in heterogeneous execution environments. For this, we utilize the operational benefits
of serverless computing for model serving in edge environments. This model selection
system is able to deal with data-intensive workloads by being conscious of the data
sizes transferred between clients and distributed execution nodes. Through continuous
measurement of Quality-of-Service metrics such as latency or accuracy, the system not
only enables the selection of the most suitable model for a given task. It also improves
the resource utilization of the underlying infrastructure.

1https://aws.amazon.com/sagemaker
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1.2. Problem Statement

Research Questions
The research questions which shape the work of this thesis and their descriptions are as
follows.

RQ1 Which benefits can be achieved for latency-sensitive applications by
using a weighted model selector compared to a round-robin, random or
plain-net-latency model selector?
Edge Intelligence applications are often latency-sensitive as they need to react to
events in real time. Selecting fast-running models on a nearby node is crucial for such
applications. We compare our approach to simple solutions like round-robin and
random selection, as they represent selection without Quality-of-Service concerns.
We also deliver a comparison with an approach only considering the network latency
between the client and the execution node without further knowledge of the model.
All other research questions are against the same baselines.

RQ2 Which benefits can be achieved for accuracy-sensitive applications by
using a weighted model selector compared to a round-robin, random or
plain-net-latency model selector?
Some Artificial Intelligence applications have no hard latency requirements but
instead require high accuracy. For such applications, selecting the most accurate
model is crucial and a consideration of the latency is superfluous.

RQ3 What differences in behavior can we expect for applications with varied
latency and accuracy preferences between the different use cases in the
weighted selection compared to the baselines?
In the average case, applications require a trade-off between latency and accuracy.
We first evaluate how our approach and the baselines handle cases with equal
preference for latency and accuracy. Then, we evaluate how they handle cases with
changing preferences over time.

RQ4 How does the selection scale with increasing message sizes for the
different selection algorithms?
Increasing the size of data to be transferred between the client and the execution
node can have a significant impact on the latency. By independently increasing
the size of the data transferred, we can evaluate the scalability of the selection
algorithms for data-intensive workloads.

RQ5 How does the selection scale with an increasing number of concurrent
requests served by the platform for the different selection algorithms?
Increasing the overall load on the platform can also have a significant impact on the
latency. By only increasing the amount of concurrent messages, we can evaluate
the scalability of the selection algorithms for compute-intensive workloads.

3



1. Introduction

1.3 Methodology
The methodological approach we follow in this thesis is as follows.

1. Literature Review
We gather the existing adaptations of the serverless paradigm for machine learning
and present it in a comparison matrix. We further analyze related fields such as
cloud service selection and data-intensive workloads in serverless computing. The
findings of the literature review contribute to the requirements elicitation and the
design of our prototype and its evaluation.

2. Requirements Elicitation
Based on different machine learning use cases, we generate design goals for the
platform which we need to meet to offer the benefits of the serverless paradigm
for machine learning applications effectively. This elicitation includes the findings
from the literature review and delivers requirements in terms of performance and
feature set. We construct use cases which both aim to show the fulfillment of the
design goals as well as helping to answer the research questions.

3. Prototype Implementation within a Serverless-Capable Runtime
We provide a prototypical implementation built atop a platform capable of following
the serverless paradigm, in accordance with our design goals. This section of
the thesis includes modeling of the meta representation of the functions and
models, development of a simple API for automated selection of ML models, and
implementation of components that enable this selection.
These components, which also describe the main contribution of the thesis,primarily
include:

• an object storage solution for the models along with a way to launch those
models manually in a containerized environment,

• monitoring components for measuring the QoS metrics of the models,
• a metadata storage schema for storing the QoS metrics of the models and

their general characteristics,
• a service for automated selection of models based on the QoS metrics and the

characteristics of the models,
• and client implementations of the use cases utilizing the automated selection

service.

4. Case Study
We base our case study on the use cases from the requirements elicitation and
their client implementations. The case study is both qualitative and quantitative
in nature as we analyze the results in a cumulative manner as well as looking at
single experiment runs in more detail. The main performance metric is the latency

4
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experienced during invocation and the accuracy of results as it directly impacts
the service quality of end users. The testing environment for the case study offers
heterogeneity in latency between execution nodes. This helps in evaluating the
performance of the platform in edge environments.

5. Scalability analysis
We use the same mechanisms as in the case study to evaluate the scalability of the
platform. However, instead of analyzing QoS metrics based on use case, we analyze
how these metrics change for the same use case when increasing different types of
load on the platform.

1.4 Structure
The remainder of this thesis is structured similarly to our methodology and is as follows.
Chapter 2 provides an overview of the theoretical background of the thesis. We first
introduce the serverless paradigm, its challenges, its extension to the edge of the network
and an implementation base commonly used for building serverless platforms. We also
discuss the concept of Machine Learning Operations, the tasks it encompasses and an
example platform.
Chapter 3 relates our research with works in the field of serverless computing, machine
learning and service selection. We first compare our work with approaches for tackling
data-intensive workloads in serverless computing. Then, we present existing work com-
bining serverless computing with Machine Learning and how our work relates to those.
Finally, we discuss the research field of cloud service selection further contextualizing our
work for enabling automated selection of Machine Learning models.
Chapter 4 details our approach and the design of the prototype platform. We first define
the platform’s design goals, followed by appropriate use cases. Then, we present the
architecture of the prototype platform and the implementation details.
Chapter 5 lays out how we evaluate our prototype. We first describe the testing en-
vironment and additional components used for the evaluation. Then, we describe the
evaluation methodology and how we answer the research questions, both for the case
studies and the scalability analysis.
Chapter 6 then presents the results of the evaluation. We go through each of the research
questions and discuss the results of the case studies and the scalability analysis. After-
wards, we summarize the findings to give a holistic view on the results.
Finally, Chapter 7 concludes the thesis and gives an outlook on future work.

5





CHAPTER 2
Background

In this chapter, we present the background concepts on which we base the work in this
thesis. We present the concepts of serverless computing and its challenges in Section 2.1.
Furthermore, we discuss applications of this paradigm at the edge in Section 2.2 and
Kubernetes as a facilitator for serverless computing in Section 2.3. Another concept that
has gained popularity through the rise of cloud computing in recent years is Machine
Learning Operations (MLOps) which we discuss in Section 2.4.

2.1 Serverless Computing
The emergence of large-scale cloud providers (e.g.,Amazon Web Services (AWS)1, Mi-
crosoft Azure2 and Google Cloud3) has enabled developers to build and deploy appli-
cations with a higher degree of abstraction than before. Virtualizing the underlying
infrastructure abstracted away the need to manage hardware and led to the models of
Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) [SGH15]. Developers
can therefore now scale their applications quasi infinitely and only pay for the resources
they actually use. However, managing the resulting virtual machines still requires a
lot of operational overhead. This is impractical for smaller applications with limited
purposes (e.g., thumbnail generation [Ama23c]). Serverless computing is a paradigm
further abstracting away even the virtual infrastructure and allows developers to focus
on the business logic of their applications.
As the name suggests, serverless computing platforms completely remove the notion of
servers from the developer’s perspective. Instead, developers implement their application
logic as short-running virtualized or containerized packages which get executed in re-
sponse to events. The events can either be specific triggers like HTTP requests, actions

1https://aws.amazon.com
2https://azure.microsoft.com
3https://cloud.google.com
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2. Background

in databases or specifically designed scheduled events from other services in the offering
of the cloud provider. The packages are called functions and the platforms which execute
them are called Function-as-a-Service (FaaS) platforms. The functions also do not hold
any long-lasting state which means that they need to store and retrieve data from external
sources. Cloud providers therefore offer Backend-as-a-Services (BaaSs) that are used
in conjunction with FaaS to build complex applications. The combination of FaaS and
BaaS is what constitutes serverless computing. Furthermore, the serverless computing
platforms also need to handle the scaling of the functions and offer pay-as-you-go pricing
models [JSSS+19].

A demonstrative example of a platform offering serverless computing is Amazon Web
Services (AWS), offering FaaS, BaaS, auto-scaling and a pay-as-you-go pricing model. It
is also, by market share, the most popular cloud platform offering serverless computing
[Ric23]. However, other cloud providers like Azure and Google Cloud also offer similar
services with different branding but the same underlying components. As for AWS,
for Function-as-a-Service it offers AWS Lambda which can act on events from other
services such as DynamoDB, S3, API Gateway, AppSync. DynamoDB being a NoSQL
database and S3 being a storage service are examples of Amazon’s Backend-as-a-Service
offering. Instead of having to manage a storage server, a database server and a web
server, Amazon’s customers use these services to relay requests to their functions and to
store and access data.

Shafiei et al. [SKM22] argue that the existence of such providers opens up previously
unavailable opportunities for developers As mentioned before, utilizing serverless comput-
ing does away with large parts of the operations overhead of distributed applications like
managing server hardware, dealing with scaling and handling request contexts. Cloud
providers can, e.g., offer more competitive pricing for scaling because they can host
multiple customers on the same physical hardware. They can also use older hardware
for less demanding workloads and can therefore extend the lifecycle of their hardware.
Developers do not need to concern themselves with these operational details and instead
can focus on making their own product better. On top of that, they also have more
opportunities to deliver their product to those who need it via cloud provider market-
places. To that end, they can develop generalized solutions to common problems and
package them tightly into functions. Several existing domains are active fields of research
for serverless computing, as surveyed by Shafiei et al. [SKM22]. Especially fields with
parallelism concerns like data analytics, video streaming, scientific computing, IoT and
edge computing are promising application domains for serverless computing.

Despite the advantages of serverless computing, there are still challenges to overcome. The
following sections will discuss the current challenges of serverless computing in general
and in the context of data-intensive applications, such as Machine Learning. Shafiei
et al. [SKM22] provide a comprehensive overview of the current challenges developers
face when using serverless computing. We divide these challenges into three categories:
development, execution infrastructure and cross-cutting concerns. Furthermore, we
describe the findings of the survey, discuss related work to those findings and highlight

8



2.1. Serverless Computing

the connection to our work where applicable.

2.1.1 Developing serverless computing Applications
Regarding the development of serverless computing applications, Shafiei et al. the
fundamental lack of mature development tools and practices, and the difficulty
of predicting the cost of serverless computing as core challenges [SKM22].

Due to its novelty, they argue that serverless computing is still lacking ways to properly
test and debug applications. We interject that there are novel solutions to this problem,
like LocalStack4 for local testing of serverless applications by containerizing an extensive
subset of the service offering of AWS. However, we concede that tools like LocalStack are
not yet available for all cloud providers and are still gaining traction among developers.
The authors further argue that the serverless model inherently makes it more difficult to
verify and reason about the correctness of applications since they are composed of many
small functions which are often stateless. This is exacerbated by the fact that serverless
computing is often used in combination with other cloud services for storage and trigger
events. However, there are also approaches to address this problem [APRS21].

Since cloud providers utilize the heterogeneity of their infrastructure to keep costs low
[RDC+17], the cost of serverless computing is highly dependent on the current load of
the cloud provider. Developers can work around that by automatically searching for the
cheapest cloud provider, since it is easier to switch providers with serverless computing
than with traditional data center computing. However, the biggest cloud providers use
static pricing to counteract the volatility of their infrastructure cost.

2.1.2 Executing Serverless Computing Applications
After development, the next challenge is the actual execution of the serverless computing
applications. The challenges Shafiei et al. identify here are efficient scheduling, data
management and communication [SKM22].

In the context of serverless computing, scheduling refers to the allocation of resources to
functions—i.e. when and where to execute the function—and the distribution of load
[Ste18]. When scheduling functions, cloud providers need to consider multiple constraints,
both from the function developer and from the underlying infrastructure. This increases
the complexity of scheduling functions and makes it difficult to find an optimal solution.
To address this problem, serverless platform providers can follow multiple scheduling
strategies either in isolation, or more often in combination with each other. All these
strategies base themselves on some kind of awareness of infrastructure or application
constraints. Platform engineers can implement these strategies in existing tools, such as
Kubernetes5 [RRD21] or Apache Mesos6 [SSM20].

4https://localstack.cloud
5https://kubernetes.io
6https://mesos.apache.org
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For strategies involving infrastructure constraints, approaches like energy-aware scheduling
or resource-aware scheduling are possible. Being energy-aware means that the cloud
provider tries to minimize the energy consumption of the infrastructure. Putting function
containers into hibernation when they are not needed or delaying their execution when
the load is smaller are examples of energy-aware scheduling. However, this can lead to the
problem of cold starts, which means that the function container needs to be initialized
before it can be executed. Waiting on this initialization can lead to increased latency for
the function invocation. Combined with the short actual runtime of functions, Li et al.
argue that this can incur unnecessary costs and contributes to the difficulty of predicting
the cost of serverless computing [LLW+23] . Mitigating this cold-start problem is an
active area of research with approaches involving pre-warming of function containers
[SAG23] or utilizing machine learning [VFA23, ARB21].
For resource-aware scheduling, the cloud provider tries to maximize the utilization of the
infrastructure. The goal here can either be to maximize the utilization on every single
execution node (by, e.g., capping CPU load per function [KHLZ20]), or to optimize the
overall distribution of load across all nodes while respecting quality of service constraints.
Adding on auto-scaled VMs to the infrastructure to perform some kind of Serverless and
serverful hybrid scheduling is also an example of infrastructure-based scheduling.

Beyond the infrastructure, platform engineers can also decide to base their scheduling on
application constraints. Here, schedulers can consider serverless application concepts like
workflows [XGT+23], packing and caching. Workflows describe how functions interact
with each other and which functions are dependent on each other to form a coherent
application. Workflow-aware scheduling aims to find these dependencies and tries to
schedule them close to each other to minimize latency.
Packing is the concept of packing multiple functions together on the same node to minimize
the number of nodes needed to execute the application. The difficulty in packing arises
when multiple functions need the same data, or one function needs multiple data sets.
Here, the cloud provider needs to decide which functions to pack together and which data
to pack with them. A further extension to this is the inclusion of available packages in the
packing decision [ZLL+23, CAS23]. For example, if one function needs a specific package
(e.g., Tensorflow7), the cloud provider can decide to pack it with another function which
already has the package installed or schedule it on a node already containing the package.
Data placement decisions like these go hand in hand with caching decisions inside the
platform. Compared to serverful applications, data stores in serverless computing are
more decoupled from the functions which use them. Therefore caching strategies from
serverful applications are not directly applicable to serverless computing. Considering
workflows and multiple reads across functions can, e.g., lead to more efficient caching
strategies [HFC+23].
Migrating these data is also more expensive, since the functions are stateless and can be
executed on any node. This can lead to the cloud provider choosing a suboptimal node for
a function to avoid data migration costs [LLW+23]. Combining all these considerations

7https://tensorflow.org
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leads to dataflow-aware scheduling and in the case of packaging also to package-aware
scheduling.

Apart from infrastructure and application constraints, Raith et al. also present a
scheduling approach based on user circumstances: mobility-aware scheduling [RRD+22].
This approach is especially important for edge computing, where users can move around
and therefore change their proximity to the edge nodes. The authors define the concept of
“pressure”, an abstract metric which models the load on the edge nodes and their relation
to themselves and the user. With different underlying metrics for pressure, Raith et al.
achieve improvements in terms of latency as well as in terms of resource consumption.

Since serverless functions are typically stateless, they need to communicate over the
network to exchange data. They also are short-lived and multiple instances of the
same function definition can run simultaneously. Li et al. mention that execution
time of functions can vary from milliseconds to minutes. This means that finding ways
to address each other is difficult. The increased barrier between the functions makes
parallelization over multiple functions less efficient than parallelization inside a single
function [LLW+23]. We address this point in our work by keeping the communication
between client applications and the platform as simple and transparent as possible,
utilizing only stateless HTTP requests to the selector and models. This is also a solution
model which Shafiei et al. discuss: using an external coordinator and stateless API
[SKM22].

Cross-Cutting Concerns

Furthermore, Shafiei et al. also mention cross-cutting concerns like security, pri-
vacy and monitoring as big challenges for serverless computing as they are for other
computation paradigms [SKM22].

For monitoring, external services such as AWS Cloudwatch8, Datadog9 or Dynatrace10

are available. However, these services are restricted in the metrics they can monitor,
since they are not aware of the internal state of the application. The survey states that
the services often miss metrics such as the data dependencies, invocation rate, cache
states, data formats. Often, developers need to go through the vast amount of log data
to find the metrics they need [MKW19].

Regarding security and privacy, the survey authors argue that serverless computing is
especially susceptible to replay attacks, since functions are stateless and can be invoked
multiple times. Strong authentication and authorization mechanisms are therefore
necessary—not only for manual invocation, but also for trigger events. A challenge for
serverless computing is also the multi-tenancy of the underlying infrastructure and the
handling of isolation between functions. To achieve isolation, cloud providers usually
employ some kind of virtualization or containerization techniques or isolated language

8https://aws.amazon.com/cloudwatch
9https://datadoghq.com

10https://dynatrace.com
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runtimes [LLW+23]. Underlying infrastructure vulnerabilities, like Meltdown [LSG+18] or
Spectre [KHF+19], however, could still lead to data leakage between functions. Contextual
information, such as the data format, can also leak through the invocation of functions.
Lastly, large scale invocation attacks are another problem for serverless computing
according to Shafiei et al., since functions can scale to high numbers of instances.
Without any protection mechanisms, this can lead to high costs for the function developer
[SKM22].

2.2 Serverless Computing at the Edge
Edge computing is a paradigm that stands in stark contrast to the centralized nature of
cloud computing. Instead of performing all tasks inside few data centers, edge computing
aims to distribute computation and storage to heterogeneous devices the edge of the
network [CLMS20]. As we mention in Section 2.1, serverless computing is a paradigm
which arose from the cloud computing paradigm. However, there are also approaches
to combine serverless computing with edge computing, as Raith et al. discuss in detail
[RND23]. They argue that the serverless paradigm can be used to manage the diverse set
of devices in the edge-cloud continuum. The combination of these two domains—serverless
and edge computing—can be used to create a new generation of applications.
They specifically mention Edge Intelligence (EI) as a promising application domain for
serverless edge computing. Edge Intelligence describes the usage of AI on the edge of
the network. This can mean to use edge devices to run AI applications to utilize AI for
managing the edge of the network [DZF+20]. In the case of serverless edge computing
for EI the focus is on the former, i.e. the usage of AI on the edge of the network. The
challenges of EI lie mainly in (1) making data available to the vast number of devices,
(2) selecting the proper models in regards to accuracy and latency, and (3) coordination
of training and inference tasks between heterogeneous devices [DZF+20]. To handle these
challenges, Raith et al. argue that specific criteria need to be met for developing and
executing EI applications [RND23]. For the development and design of these applications,
they argue that serverless edge computing frameworks need:

• Extensive support for the handling of application state and data. This ranges
from enabling checkpointing, to implementing data management APIs, to failure
handling.

• The awareness of the handled resources and the network state in order to be able
to meet service level objectives (SLOs) defined in a service level agreement (SLA).

• General support for the development of AI workloads. This ranges from supporting
programming languages commonly used for AI (e.g. Python) to offering their own
abstractions for such workloads.

• The ability to compose and orchestrate multiple functions into a single application
via some API, configurations files or a UI.
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Furthermore, for the execution of EI applications, they argue that serverless edge
computing frameworks need:

• Reliable invocations and a way to handle failed invocations. Ideally, invocations
happen in transactions able to handle errors gracefully.

• Stateful functions that retain their state between invocations. The implementation
of this feature should take into account the heterogeneity of the network conditions
and the devices.

• Advanced ways to trigger function executions. These can range from simple HTTP
requests to more complex triggers inside an event handling system.

• Distributed gateways for routing requests.

• Intelligent handling of performance goals. The platforms should be able to optimize
for multiple goals and should be able to handle the trade-offs between them and
their cost.

2.3 Kubernetes and its Use for Serverless Computing
To implement serverless computing, cloud providers need to manage the underlying
infrastructure and the execution of functions. As we discuss in Section 2.1, this includes
scheduling functions, managing their state and handling their communication. Building
a platform from scratch to handle these tasks is a big challenge and requires a lot of
resources.
However, container orchestration platforms like Kubernetes (K8S)11 already offer many
of the features needed to implement serverless computing.
K8S supports automatic deployment of pods (virtual machines hosting application
containers), scaling and management of containerized applications. For communication,
it offers internal services discoverable via DNS and external ingresses for communication
with the outside world. Persistent storage is also available via K8S volumes [MPK+22].
Through these features, Kubernetes already offers enough functionality to implement at
least the Backend-as-a-Service (BaaS) part of serverless computing. Decker et al. even
argue that K8S can be described as “accidentally serverless” [DKK22]. However, to add on
the Function-as-a-Service part of serverless computing several extensions emerged for K8S
such as KNative12, Fission13, Nuclio14 and the most popular OpenFaaS15 [DKK22, KF22].

Utilizing serverless platforms based on K8S has shown to be both suitable for high
performance applications [DKK22] and for edge computing scenarios [KF22]. However,

11https://kubernetes.io
12https://knative.dev
13https://fission.io
14https://nuclio.io
15https://openfaas.com
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regarding high performance applications, future work can be done to improve the perfor-
mance of the platforms, like supporting more hardware accelerators [DKK22]. For edge
computing scenarios, specific Kubernetes distributions like K3S16 can be used to reduce
the resource footprint of the platform [KF22]. With these performance characteristics,
developing a platform based on K8S is a viable option for high-performance and serverless
edge computing applications. In Chapter 4, we present our prototypical implementation
of a serverless edge computing platform which can be deployed on Kubernetes. Through
Kubernetes our implementation can inherit these performance characteristics and FaaS
capabilities of extensions to form a full machine learning platform for serverless edge
computing.

2.4 Machine Learning Operations (MLOps)
The development of Machine Learning models rarely happens in a vacuum and ends
with the training of the model. Models mostly have a specific purpose and are therefore
deployed in production environments to be used by other applications. To facilitate this
process, Machine Learning Operations (MLOps) is a set of principles and components for
managing the lifecycle of ML models. The principles of MLOps include the automation
of the ML lifecycle, continuous training, monitoring and evaluation of deployed models.
As for the components that enable the principles, MLOps includes tools for continuous
integration and deployment, feature storage, model training, model registration, metadata
storage and model serving and monitoring [KKH23].
Relevant to this thesis are the components for metadata storage and model registration,
serving and monitoring, which we discuss in our approach in Chapter 4.

We present an example of a MLOps pipeline in the SageMaker17 offering of Amazon Web
Services (AWS). Figure 2.1 shows the workflow of SageMaker MLOps18 which utilizes the
components mentioned above. The platform has both graphical interfaces for business
analysts, as well as technical interfaces for data scientists to develop and train new
models.

We discuss the components of SageMaker MLOps, relevant to our work in the following.
These specific implementations inspire our prototypical implementation in Chapter 4 and
are therefore useful to highlight. The model registry is how SageMaker stores models
for further development and deployment. For each ML problem (i.e. application), the
registry creates a “model group” with each new training of a model being a versioned
“model package” inside that group. The versions start from 1 and increase by 1 per
training of the model. The registry exists as an alternative to the AWS marketplace
where pre-trained models can be selected instead of custom trained models. The registry
features an approval mechanism where models can be tested before they are deployed for
inference.

16https://k3s.io
17https://aws.amazon.com/sagemaker
18https://aws.amazon.com/sagemaker/mlops

14

https://k3s.io
https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker/mlops
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Model Development

Experimentation

Training Registration

Review

Deployment
Configuration

Lineage
Tracking

Deployment

Continuous
Monitoring

Figure 2.1: Workflow of SageMaker MLOps, adapted from [Ama23a]

For the deployment of models, SageMaker offers three options: (1) Real-time inference
which hosts models continuously and scales them based on need. (2) Serverless inference
which launches the models themselves on demand. (3) Asynchronous inference for requests
with large bodies (at Gigabyte scale) with long processing times.
To maintain reliability of the deployed ML services, AWS provides tools for monitoring
the deployed models. This offering is based on a range of common AWS services like
CloudWatch for tracking metrics and creating dashboards, CloudWatch Logs for storing
the logs of model runs, Cloudtrail for capturing API calls and subsequent events, and
CloudWatch Events for keeping track of status changes in training jobs.
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CHAPTER 3
Related Work

In this chapter, we present related work in the areas of serverless computing, Machine
Learning Operations, and the combination of both. We discuss how these approaches
deal with the challenges we present in Chapter 2 and how they relate to our approach.
Section 3.1 deals with existing approaches to using serverless computing with data-
intensive workloads, to which Machine Learning also belongs. Section 3.2 presents
approaches to combining serverless computing with Machine Learning in particular
and especially approaches combining model inference and operations with serverless
computing. Section 3.3 is a further discussion of approaches to QoS-based cloud service
selection, which is a key component of our approach while not being specific to Machine
Learning or serverless computing.

3.1 Approaches Dealing with Data-Intensive Workloads
In Chapter 2 we discuss the challenges of serverless computing, including these in
executing serverless applications. We further explain how packing of functions along
with caching is used to optimize performance and cost of serverless applications. These
are data management aspects of serverless computing which enable dataflow-aware and
package-aware scheduling.

Applications with data-intensive workloads can benefit from dataflow-aware scheduling
and related techniques in the space of data management. However, the current industrial
offerings of serverless computing do not offer enough techniques in this direction to
optimize data-intensive workloads. Hellerstein et al. [HFG+19] argue that state-of-the-
art serverless platforms, like AWS Lambda1, suffer from constraints that limit their ability
to support data-intensive applications. The authors list constraints such as the lack of
support for long-running functions, high-bandwidth data transfers, caching of client data

1https://aws.amazon.com/lambda
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for subsequent invocations, and the consideration of hardware heterogeneity. They further
argue that these constraints are slowing innovation in the fields of distributed computing,
hardware-accelerated software and the open source data systems community. Nevertheless,
there are also approaches to overcome some of these constraints and challenges, which
we will discuss in this section.

First, we present approaches to overcome the lack of support for high-bandwidth data
transfers. To our best knowledge, this is the challenge with the most research in literature
concerning data-intensive serverless computing. We believe this is the case since it is
also most important to data-intensive workloads. One approach to overcome this issue is
to reverse the data flow and move the code to the data instead of moving the data to
the code [SABG23]. Sethi et al. [SABG23] justify their approach first by showing that
the latency of function invocations scales with the size of the data transferred and with
the distance of the code from the data. They further validate their approach through
mathematical analysis in which they show that after considering basic assumptions about
the network, the cost of transferring data to the code is always higher than the cost of
transferring code to the data. To the best of our knowledge, the assumptions made in this
analysis are not further validated by the authors. After validating their approach, the
authors present a prototype implementation of their approach using Kubernetes (K8S)
and Fission (which we both present in Section 2.3). They compare this prototype to a
baseline implementation using AWS Lambda and show that their approach can reduce
the latency of function invocations by up to 50% for large data sizes.
Cheng et al. [CFSS19] also follow the reverse data flow approach but still keep the regular
data flow as an option. Their goal is a flexible solution which works for both cloud and
edge computing in the context of IoT. They not only offer the reverse data flow approach,
but also optimize function orchestration by considering the contextual information such
as the locality of the invocation. Through this mechanism, they gain mobility awareness
and can optimize the function orchestration for the current context via migrations. Their
approach can scale to large numbers of nodes and manages to minimize traffic between
nodes and therefore reduce service latency.
Pheromone [YCWC23] is another approach to overcome the lack of support for high-
bandwidth data transfers. However, Yu et al. do not reverse the data flow, but rather
decouple it from the function flow. They argue that the orchestration of serverless
functions should follow the data flow instead of treating functions as independent units.
Pheromone achieves this by offering a new programming model for serverless computing,
which allows developers to specify the data flow between functions and the data depen-
dencies between functions. With what they call a “data-centric” programming model, the
authors achieve improvements in the latency of function invocations and data exchange.

Besides the large body of work on the lack of support for high-bandwidth data transfers,
there are also approaches to overcome the other challenges of serverless computing for
data-intensive applications. Duo by Huang et al. [HFC+23] presents an approach to
overcome the caching challenges of serverless computing (see Section 2.1) additionally to
the lack of support for high-bandwidth data transfers. The authors present a caching
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mechanism considering the data dependencies between stateful functions invocations by
employing two cache lists. The first cache list, which they call “Leader List” only accepts
data which is read more than once by never taking in data which is read for the first
time. To facilitate this they have a second cache list, called “Wingman List” and which
caches the rejected data. They are able to reduce cache misses and improve data sharing
between functions with their approach. This way they avoid unnecessary data transfers
and lower the latency of function invocations inside stateful workflows.
Rausch et al. [RRD21] present an approach to overcome the lack of support for het-
erogeneity of devices in serverless computing, especially in the edge computing domain.
They achieve this by introducing a novel container scheduling algorithm which considers
data and computation flow additionally to hardware constraints like GPU availability.
Their approach is flexible since the weights of the scheduling algorithm are adjustable
and can change the focus between latency, traffic and execution cost. In their evaluation
they show that given a specific set of weights, they are able to trade off between latency
and execution cost. They further bring up another limitation of serverless computing, in
form of the centralized nature of the control plane that is at odds with the distributed
nature of edge computing.
[HTZT21] discusses workload consolidation in the context of data-intensive serverless
applications. Workload consolidation is the process of combining multiple workloads on
a single server to improve resource utilization. While doing so, the different workloads
should not interfere with each others resource demands since this would lead to perfor-
mance degradation. The authors present a resource controller which takes into account
Quality-of-Service (QoS) concerns to guarantee underlying hardware performance to all
running workloads. This way they are able to consolidate data-intensive workloads while
reducing violations of QoS requirements.

Finally, we discuss how our approach in Chapter 4 relates to the approaches presented in
this section. The data-intensive workloads we consider for this thesis are Machine Learning
workloads, which experience big data transfers during model launches and inference.
Our approach currently does not factor in automated scheduling or orchestration of
those workloads, but rather offers an automated selection for accessing already deployed
ML models. Nevertheless, by factoring in the size of request data in our selection
algorithm our approach considers the data flow from client applications to the ML
models. Therefore, it does alleviate the challenge of high-bandwidth data transfers in
the context of ML workloads. Furthermore, our approach is also not limited to a specific
set of selection criteria, but rather offers a flexible selection algorithm extensible to
consider other criteria. This way, we could factor in the heterogeneity of devices and
the availability of caches in our selection algorithm. Through these criteria resource
utilization also can be balanced with QoS requirements. Overall, while not especially
designed for generalized data-intensive workloads, our approach can be extended to also
consider other data-intensive workloads besides Machine Learning.
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3.2 Combining Serverless Computing with Machine
Learning Operations and Inference

After discussing the challenges of serverless computing and how they are addressed in
the context of data-intensive workloads, we now delve into the combination of serverless
computing with Machine Learning. Machine Learning in itself is a data-intensive workload,
making the approaches discussed in Section 3.1 also relevant for Machine Learning.
However, there are also approaches which combine specifically Machine Learning with
serverless computing in a more specific way, especially in the context of Machine Learning
Operations.
Barrak et al. [BPJ22] provide a systematic mapping study of the literature on the
combination of Machine Learning and serverless computing considering 53 publications.
We will use this work as a basis for our discussion of the approaches to combining
Machine Learning and serverless computing. To this end, we will first present the results
of their mapping study, then present a matrix of recent approaches relevant to our work.
These approaches are partly to be found in the mapping study, but we also include some
approaches published after the study or otherwise not considered in the study. Then, we
discuss these approaches in more detail, and finally discuss how our approach relates to
the approaches discussed in this section.

Barrak et al. show that the combination of Machine Learning and serverless computing
is a recent research area with a growing number of publications. They argue that this is
connected to the growing popularity of serverless computing and the growing importance
of MLOps in the industry. In this growing body of research, they identify multiple
distinction criteria for the approaches.
First, they distinguish between the different stages of the ML lifecycle, which they define
as data processing, model training, hyperparameter tuning, and model inference. More
than half of the approaches they identify focus on model inference—the stage of the ML
lifecycle most relevant to our work. After this follow model training and hyperparameter
tuning, while data processing is the least considered stage of the ML lifecycle.
Second, they found that AWS Lambda is the most used serverless computing platform in
the approaches they identified, followed by other popular frameworks such as Apache
OpenWhisk. We do not implement the Function-as-a-Service aspect in our approach, but
rather focus on the Backend-as-a-Service aspect of serverless computing. By utilizing
Kubernetes for our evaluation however, any extension which adds Function-as-a-Service
functionality would be possible (see Section 2.3).
Third, they present the different challenges the approaches address or solve. Here, cost
optimization is the most prioritized challenge, followed by resource scalability, inference
latency, batching, cold starts and service level objectives (SLOs). Our work is most related
to the approaches addressing the challenges of inference latency, and SLOs. Regarding
machine learning frameworks, the approaches mostly use industry standard frameworks
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like Tensorflow2, Keras3, MXNet4 and PyTorch5. Our approach follows this trend and
uses Tensorflow as the machine learning framework. However, any other framework would
be easy to add, as long as it can run in an application container and receive model data
from storage.
Regarding the type of ML models, the approaches mostly use neural networks, followed
by supervised learning models like logistic regression and random forests. While our
approach is only limited by models available in Tensorflow, our evaluation is limited to
simulated models which aim to show a variety of latency and accuracy characteristics.

Table 3.1 presents a matrix of significant approaches discussed by Barrak et al. [BPJ22]
and some additional approaches which are relevant to our work. We separate the
approaches by their focus on Backend-as-a-Service or Function-as-a-Service, and by their
focus on model inference or other aspects of MLOps. The columns of the matrix show
the different aspects of the approaches, which we will discuss in the following:

• Approach: The name of the approach if available and the reference to the
publication.

• BaaS / FaaS: Whether the approach focuses on the BaaS or FaaS aspect of
serverless computing, or both.

• ML Aspect: The stage of the ML lifecycle the approach focuses on, like model
inference or model training.

• Edge: Whether the approach considers the edge computing domain.

• Main Contribution: The contribution of the approach which we deem as the
most significant of the work, such as a new scheduling algorithm, model selection
algorithm, benchmark results.

Starting from the top, Rausch et al. [RHM+19] present a proposal for combining
Edge Intelligence and serverless computing. The authors argue that for enabling EI
applications, serverless computing needs new concepts, such as abstractions of the device
heterogeneity at the edge, awareness of device context, treatment of models and data as
first-class citizens, and detailed policy mechanisms. For this, they present a prototype
implementation of a serverless computing platform which is aware of the device context
and can schedule functions according to hard and soft constraints. They also present a
programming model for the notion of model selectors in the form of function decorators.
Next, InFaaS [RLYK21] is a serverless computing platform specializing ML inference
serving. The authors argue that current ML inference serving platforms do not handle
the variety of ML models well and therefore put the burden of selecting the right

2https://tensorflow.org
3https://keras.io
4https://mxnet.apache.org
5https://pytorch.org
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Approach BaaS / FaaS ML aspect Edge Main Contribution
[RHM+19] both whole pipeline ✓ scheduling, program-

ming model
InFaaS [RLYK21] FaaS inference selection, scheduling
[JGL+21] FaaS training benchmarking
MLLess [SA22] FaaS training cost analysis
[CPMS21] FaaS inference burst offloading
INFless [YZL+22] FaaS inference scheduling, batching
[BTK22] FaaS whole pipeline ✓ edge-cloud scheduling
[WDF+23] FaaS training, tuning cost-efficient scaling
Sagemaker Serverless
[Ama23b]

FaaS inference industry standard

MuLambda (ours) BaaS inference ✓ selection

Table 3.1: Comparison matrix of the approaches to combining Machine Learning and
serverless computing

model variant on the user. Their approach can automatically select the right model
variant given performance and accuracy requirements. Furthermore, they present a
scheduling algorithm able to scale ML inference serving functions based on demand
and hardware requirements. Introducing this serverless approach increased throughput
in their evaluation by up to 1.3× compared to a baseline approach and reduced SLO
violations by 1.6×.
The work of Jiang et al. [JGL+21] compares the performance of ML training on FaaS
platforms to the performance of ML training on IaaS platforms. They implement a
prototype for ML training on the FaaS platform AWS Lambda and compare it to a
baseline implementation on the IaaS platform EC2. Their results show that utilizing
regular (i.e., without any optimizations) FaaS platforms for ML training is only feasible
for models with low data transfer requirements and low training times.
MLLess [SA22] is another approach to ML training on FaaS platforms. The authors argue
that FaaS platforms can be more cost-effective than serverful platforms for ML training
and support this argument with a cost analysis on a prototype implementation. They
come to a similar conclusion as Jiang et al. [JGL+21] and argue that FaaS platforms are
only cost-effective for ML training for fast-converging models and when communication
is kept low. They introduce the idea to not update the weights of the model until a
significance threshold is reached, thus reducing the communication overhead. Chahal et
al. [CPMS21] present an approach to ML inference serving with awareness of service level
objectives (SLOs). The motivation for this approach is that ML inference serving is often
subject to bursty request patterns, which can lead to SLO violations in IaaS platforms.
In order to avoid these violations, the authors suggest to offload requests to a FaaS
platform during bursts. However, the main benefit they present is the decreased cost. In
regards to SLO violations, they mention that cold starts still can lead to violations.
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As many others Yang et al. [YZL+22] argue that current general-purpose FaaS platforms
are not suitable for ML inference serving. They mention the problems of high latency,
lack of performant batch processing, unsuitable balance between memory and compute
availability, and the singular nature of function deployments. They introduce a new
platform, INFless, an aim to solve these problems by incorporating a scaling engine
capable of batching while considering SLAs. Their evaluation shows that their approach
can reduce the latency and cost of ML inference serving compared to industry standard
FaaS platforms.
Bac et al. [BTK22] highlight the importance of privacy concerns in the context of MLOps
pipelines additionally to the latency aspect. They propose a multi-layered approach
consisting of the cloud as a global aggregator, edge nodes as local execution platforms, and
IoT devices as data sources. Inside the edge layer, they propose a serverless computing
platform which is aware of the heterogeneity of the devices and can schedule functions
for training and serving accordingly. Their evaluation shows promising results in regards
to latency and cost inside their testbed.
Wu et al. [WDF+23] tackle the problem of cost-efficient scaling of model training and
hyperparameter tuning on FaaS platforms. They achieve this by greedily partitioning the
available resources between the different tuning jobs. During model training, they use
an online prediction to adjust the available resources. Their approach is able to reduce
the cost and increase performance of both model training and hyperparameter tuning
compared to a baseline approach.
Last, we want to highlight that there is an industry solution for serverless ML inference
serving, which is Sagemaker Serverless [Ama23b]. It provides standardized inference
containers which can be deployed on-demand and scale automatically. The containers
support the most common ML frameworks such as Tensorflow and PyTorch. However,
users can also bring their own containers. As this offering is quite new, we were not able
to find performance evaluations of this service.

Finally, we discuss how our approach in Chapter 4 relates to the approaches we present in
this section. In our comparison, we first want to highlight that the idea of our approach
resulted from the programming model presented by Rausch et al. [RHM+19]. They
present the idea of model selectors for edge functions which guided the implementation
of our approach as the authors did not present a prototype implementation.

Looking at the matrix in Table 3.1, we see that our approach is the only one solely focusing
on the BaaS aspect of serverless computing. This might be because the interpretation of
what constitutes serverless computing varies in the literature. The definition we use in
this thesis is the one we present in Section 2.1, which is the interpretation of serverless
computing as a combination of BaaS and FaaS. In our approach, we do not intend to
scale ML models as functions, but rather offer machine learning models for application
functions to use. This is analogous to the approach of offering a database as a service,
which is also not scaled as a function, but rather offered as a service to other functions. As
we mention in Section 2.3 by using Kubernetes as the underlying platform, our approach
could be extended to also include the FaaS aspect of serverless computing which would
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invoke the models returned by our selection algorithm. Other approaches however, scale
ML models as functions, which is also a valid interpretation of the combination of model
inference with serverless computing. In other words, our work combines MLOps with the
BaaS part of serverless computing, while there are also approaches combining MLOps
with the FaaS part of serverless computing.
Apart from that, we can see that there are approaches all along the ML lifecycle, with
our approach fitting into the model inference stage. Since our main contribution is
the selection algorithm, we do not intend to offer a full MLOps platform, but rather a
component which can be integrated into existing serverless MLOps platforms.
Regarding the edge computing domain, we see that there are approaches which consider
the edge computing domain, but most approaches do not. Since our approach takes QoS
requirements into account and is aware of the latency of nodes, it is suitable for the edge
computing domain. Regarding the main contribution of the approaches, we see that
there are many approaches presenting new scheduling or scaling algorithms.
However, there is only one other approach for a model selection algorithm—InFaaS
[RLYK21]. The main difference between our approach and InFaaS is that InFaaS does
not consider heterogenous devices and therefore does not consider the latency of nodes
in an edge computing environment.
This presents the research gap which our approach aims to fill: an efficient and transparent
model selection system suitable for serverless machine learning with a consideration of
heterogeneous nodes.

3.3 Cloud Service Selection utilizing Quality-of-Service
Metrics

In this thesis we aim to better utilize Machine Learning models in the context of Serverless
Computing by offering smart model selection. The research body of smart service selection
inside serverless machine learning is still small, which is why we also consider approaches
to smart service selection in other domains. We will discuss some of these approaches in
this section and examine how they relate to our approach.

To begin with, we discuss the work of Thakur et al. [TSS22], who present a systematic
review of the literature on service selection. By service selection, they mean the selection
of a service from a set of services offering the same functionality but with different
Quality-of-Service (QoS) attributes. This meshes well with our notion of model selection,
which is the selection of a model from a set of models offering the same functionality but
with different QoS. The authors present two groups of approaches to service selection,
multi-criteria decision making and recommender systems. Our work is most related to
the approaches in the group of multi-criteria decision making, which we will discuss in
the following.

• Scoring methods are approaches assigning a score to each service based on the
weighted sums of QoS attributes. This score can then be used to rank the services
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and select the best one. In our own literature research we found that this is the
most common approach to service selection [BMZ+22, NJ21].

• Divergence methods are approaches calculating the distance between the QoS
attributes of the services and the QoS requirements of the user. The service with
the shortest distance to the requirements is then chosen.

• Outranking methods are approaches which compare the QoS attributes of the
services to each other and create a ranking of the services for each attribute, even
with partial data. Depending on the requirements of the user, the services are then
ranked and the best one is selected. An approximate example for such an approach
is [WL22] since it uses a ranking of the services for each attribute. However, the
approach is more advanced and includes a genetic algorithm to find the best service.

• Pair-wise comparison methods aim to find the best service by comparing the
services to each other in a pair-wise fashion. This comparison, however, depends
on the knowledge of the decision maker.

• Utility methods are similar to scoring methods, but instead of assigning a score
to each service, they assign a utility value to each service. This means, that for
each attribute they rate how well the service performs in this attribute. As an
example for this we found [ZR11].

Our approach relates most to the scoring and utility methods, since we also assign a
score to each model based on the QoS attributes. For each attribute, we normalize the
scores of the models, which then represent a form of utility rating, and then calculate the
weighted sum of the normalized scores. Based on this score, we select the best model.

Thakur et al. [TSS22] also present current issues with the approaches to service selection.
We discuss the issues which fit our domain (MLOps) in the following and discuss how
our approach relates to them. These relevant issues are a lack of standardization of QoS
attributes, a lack of fully automated attribute evaluation, and a lack of methods to deal
with uncertainty. In our work, we also notice the lack of standardization of QoS attributes
for ML models. Since the focus of our work is on providing a serverless platform for ML
inference and not on the classification of ML models, we do not address this issue in our
work. However, we provide simulated models with different QoS attributes to evaluate
our approach. To solve the issue of lack of fully automated attribute evaluation, future
work could include automated benchmarking of models after they have been trained.
The results can then supply the QoS attributes to our approach. In our evaluation, we
encounter the issue of uncertainty in the QoS attributes of the models. Before inferencing
a model for the first time, we do not know the end-to-end latency of the model as that
data has not yet been collected. However, to deal with that uncertainty, we use the
latency of the node running the model as a proxy for the total latency of the model. This,
however, leads to temporary performance degradations, which we discuss in Chapter 6.
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CHAPTER 4
MuLambda: Efficient and

Transparent Model Selection for
Serverless Machine Learning

Inference

This chapter describes the design and implementation of a serverless machine learning
inference platform prototype. Specifically, we focus on the automated selection of suitable
machine learning models for a given task. First, we explain the platform’s goals and the
use cases that we will use to assess the platform’s suitability to accomplish those goals in
Section 4.1. Based on these use cases we evaluate the platform in Chapter 5. Section 4.2
in detail describes the architecture of the platform and the function and implementation
of its components. Throughout the chapter we use the terms platform and MuLambda
(i.e. the name of the prototypical implementation publicly available on GitHub1) to refer
to the serverless machine learning inference platform prototype.

4.1 Design Goals
We aim to design a platform which makes it easy for application developers to use
machine learning models in their projects. To this end, we assume that developers do not
necessarily have extensive knowledge about how to train, deploy and manage machine
learning models themselves. Furthermore, developers using the platform also do not
require knowledge which specific models are available for them to use. In general, users
of the platform should only have to know the task they are trying to solve with machine
learning, e.g., image recognition, and the performance they expect from the underlying

1https://github.com/silv-io/mulambda
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model that performs the given task. Thus, to satisfy the needs of such users, the platform
needs to meet the following design goals (DGs):

DG1 Requesting a model should be reasonably easy to add for a variety of applications
and not require extensive knowledge of the architecture of the platform or any
specific non-standard technology.

DG2 Hosting of machine learning models should use an industry-standard solution with
an existing large set of available models.

DG3 Developers of client applications running on the platform should be able to request
a model for their specific task with a minimal latency, while also maximizing the
accuracy of the model. As those two aspects describe a trade-off, developers need
to define which one is more important to them.

DG4 The platform should serve multiple developers and thus aim to maximize the
performance for all clients. Therefore, the load sent to the platform should be
balanced between the different available underlying execution nodes.

DG5 The platform should be able to run in heterogeneous environments, such as edge
computing, where latency between models and client is variable and can rise and
fall based on location. It should therefore not rely on a specific infrastructure or
network topology, such as all computation nodes being in the same data center or
server rack.

We also explicitly define non goals (NGs) of the prototype. These aspects can be added
on in future work but are not part of the implementation and evaluation in this thesis.
Each item also includes a reason for its omission in the design goals.

NG1 The platform maintains a repository of a large quantity of various machine learning
models. Reason: Creating and maintaining a suitable set of machine learning
models for proper use should be done by experienced professionals in fields relevant
to the users of the platform. The platform itself should only provide the means of
facilitating the execution of a large variety of models (see DG2).

NG2 The platform schedules model executors automatically on suitable nodes in the
execution cluster. Reason: The focus of this thesis lies in the experience of the
application developer. We will evaluate different manually established schedules for
the executors. Future work can explore the optimization of the schedule itself.
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4.1.1 Use Cases
We propose use cases in the space of smart public services to evaluate the platform as
there we can find a variety of different requirements for machine learning models. In
the literature we can find machine learning use cases for Smart-City Pedestrian Safety
(SCP) [RHS+21], Medical Diagnosis Assistance (MDA) [LWL+23], Public Sentiment
Analysis (PSA) [KAMM23] and Environmental Monitoring (ENV) [HKH+19]. These
use cases have different requirements on the latency and accuracy of the models and also
different request patterns. Varying all those aspects helps us investigate whether our
implementation meets DG3, DG4 and DG5 from Section 4.1 effectively.

Table 3.1 shows a comparison matrix of the use cases in terms of latency and accuracy
importance and request patterns. These aspects take on the following values with the
following meanings:

Latency importance:

• High: It is important to deliver results as fast as possible.

• Low: It is unnecessary to deliver fast results.

• Balanced: It is important to deliver fast results but to also consider other require-
ments (i.e. accuracy).

Accuracy importance:

• High: It is important to deliver the best possible (i.e. the most accurate) results.

• Low: It is unnecessary to deliver the most accurate results.

• Balanced: It is important to deliver accurate results but to also consider other
requirements (i.e. latency).

Request pattern:

• Batched: Requests arrive as a group with non-varying requirements.

• Streamed: Requests change their requirements over time.

For the evaluation of these use cases we do not use real-world models. We instead create
approximated simulations of models with a wide variety of performance characteristics
(see Chapter 5) and subject them to the loads we can expect from the use cases. In the
following we describe the use cases in more detail.
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Acronym Latency importance Accuracy importance Requirements

SCP High Low Batched
MDA Low High Batched
PSA Balanced Balanced Batched
ENV Balanced Balanced Streamed

Table 4.1: Comparison matrix of the use cases

Smart-City Pedestrian Safety (SCP)

To keep pedestrians safe, smart-city operators can use ML to identify unsafe situations
(e.g., traffic accidents, crowded areas, speeding cars, etc.) and instruct traffic participants
to act accordingly by sending information to personal devices or smart cars. Because the
pedestrians or smart cars need to get the information quickly in order to reduce reaction
time, we need to minimize the latency of the model. The actions which the smart city
takes based on these results are precautionary and therefore do not need to be 100%
accurate. In real life, models for this use case are for tasks such as image classification
or object detection. An example of this is CognitiveXR [RHS+21], a system capable of
using ML models to detect unsafe situations and then sending warnings to pedestrians
on their virtual reality headsets.

Medical Diagnosis Assistance (MDA)

Actions taken by medical practitioners can have a huge impact on the life of their
patients. Therefore, they need the most accurate information achievable with the current
state-of-the-art models. Even though it is important to get timely results, practitioners
do not need to get results in real time. This domain includes Machine Learning models
such as regression models or classification models. An example of this are ML tools to
help with the diagnosis of patients via image data [LWL+23].

Public Sentiment Analysis (PSA)

Certain decisions taken by public officials impact many lives and therefore lead to a
general sentiment in the public (e.g. in social media or news articles) [KAMM23]. By
understanding this sentiment via ML models, officials can evaluate the impact of their
decisions. This evaluation can then serve as input for future decisions. Public sentiment
needs to both be evaluated as fast as possible and as accurately as possible, therefore
requiring an equal trade-off between latency and accuracy. For this use case, models
would be specifically trained to evaluate sentiment in text.
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Environmental Monitoring (ENV)

Smart cities employ a variety of sensors to monitor the environment (e.g., air quality,
noise pollution, etc.) [HKH+19]. Using ML to analyze the sensor data can help decision
makers to plan for the future and react to current situations. Here, similarly to the Public
Sentiment Analysis, we need to trade-off latency and accuracy. The main difference
is the constant stream of data which needs to be analyzed, instead of a batch of data.
Therefore, priorities can change over time and the platform needs to be able to adapt to
those changes.

4.2 Architecture
To meet the design goals in Section 4.1 for the use-cases in Section 4.1.1 we propose the
architecture in Figure 4.1.

In general, the architecture supports the following workflow, including the two main
actors administrator and developer and the auxiliary actor consumer :

1. Administrators upload saved model files to the platform.

2. Administrators launch model executors which load the models from the storage and
make them available for inference. When launching the model executors, metadata
about the model is inserted into the metadata store. While the model executor
is running, it periodically monitors the latency between model and clients and
updates the metadata in the metadata store.

3. Developers launch clients on the platform, which register themselves in the metadata
store and serve consumers. The developer defines the criteria by which the platform
selects a model for the client.

4. Consumers send requests to clients that then query the platform for a suitable
model and then send the request to the model.

5. Upon receiving the result from the model, the client documents the latency and
accuracy performance of the request for further use in the system.

The architecture could be deployed in any sort of execution platform capable of hosting
containerized applications and distribute them across multiple nodes. As discussed
in Section 2.3, Kubernetes is a suitable platform for the implementation of serverless
systems. Therefore, we implement the components as deployments and services inside of
a Kubernetes cluster. Especially the concept of pods is useful for the implementation
of the model executors, as they can be deployed as pods consisting of two containers:
the model serving container and the companion container. Through the deployment of
the architecture inside of a Kubernetes cluster, we implement the BaaS portion of a
serverless system. Utilizing extensions to add support for FaaS clients would complete
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Figure 4.1: Architecture of the Serverless Machine Learning Inference Platform prototype
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the system to a full serverless system. However, as our research focus lies on the “Model
Selector” component of the architecture, we leave this extension to future work. The
cluster runs on multiple nodes with different network latency separated into controller
and worker nodes. More details on the concrete cluster setup are described in Chapter 5.
The client, selector, metadata store and model storage run on the controller node, while
the model executors run on the worker nodes. The following subsections describe the
components used in the workflow in more detail.

4.2.1 Model Data Storage
The first step of making models available on the platform is to upload them to the
storage. For this, we use MinIO2, an open-source object storage server compatible with
the Amazon S3 API. Amazon S3 is often used as the storage backend for serverless
applications (see Section 2.1) which makes an S3 API compatible storage a good fit for
the platform. This API is widely used in the industry and therefore provides a large set
of tools for interacting with the storage.
The models are stored as Tensorflow SavedModels3, which is a format for storing machine
learning models. This format is widely used in the industry and therefore provides a
large set of tools which can be used to interact with the models. Therefore, we meet
DG2 from Section 4.1.

In our evaluation the model data is stored centrally on the controller node because we
do not schedule the model executors automatically in our experiments. Therefore, all
models are already running on the cluster and do not need to be transferred between
nodes during experiments. In future work however, we need to adapt the platform to use
MinIO in a distributed configuration [Min23], which would then reduce the transfer time
of model data to execution nodes.

The storage also offers the possibility to easily launch the models with Tensorflow Serving4,
a widely used framework for serving machine learning models and easy to integrate with
the platform. Other formats like TorchScript5 can be added in future work. As described
in Section 4.1 in NG1, the platform does not maintain a repository of models. Instead,
administrators can select and upload models to the storage which they deem suitable for
the applications developers will deploy on the platform.

4.2.2 Model Executor
After administrators have uploaded model data to the storage, they can launch model
executors with it. The model executors are Kubernetes pods and consist of two containers:
the model serving container and the companion container. The model serving container
is a Tensorflow Serving container which loads the model from the storage and makes it

2https://min.io
3https://www.tensorflow.org/guide/saved_model
4https://www.tensorflow.org/tfx/guide/serving
5https://pytorch.org/docs/stable/jit.html
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available for inference. The loaded model is kept in memory by the serving container and
therefore it does not need to be loaded from the storage for every request. The serving
container is accessible via a REST API and a gRPC endpoint which are both exposed by
the Kubernetes pod. However, for the purposes of this thesis we will only use the REST
API in the evaluation, as it is easier to use and integrate into the processes of the platform.
Next to the serving container, the model executor also contains a companion container.
The purpose of the companion container is to insert metadata about the model execution
into the metadata store. To this end, the companion first inserts general information
about the model into the metadata store and then periodically updates the plain network
latency between the model and the clients. This metadata includes information such as
the model type, the input and output format of the model, the accuracy of the model
and the latency between the model and the clients. We describe the metadata in more
detail in Section 4.2.3.

For the model selector in Section 4.2.4 we need to create scoring values for the models.
The companion container helps us to create such scoring values for the latency of the
models. The latency is measured by the companion container by periodically sending
requests to all registered clients and measuring the time it takes to receive a response
from each. As the network latency often can be assumed to be symmetric, we can use the
latency from the model to the client as an approximation for the latency from the client
to the model. However, the network latency alone is only part of the latency occurring
when sending a request to the model. We notice that the latency depends on three main
factors: the network latency, the model itself (different models have different execution
durations) and the data which we send to the model. Through continuous measuring
we already have the network latency and for each request we also have the data which
we send to the model. Additionally we also have the Round-Trip Time (RTT) of each
request. Therefore, we can approximate how long the model itself takes to generate
a result by subtracting the network latency from the RTT, receiving the model delay.
Finally, we also have to take into account the size of the data input into account. Larger
inputs have an impact on the processing time of the model which is why we need to
factor in some value which represents this size. In our evaluation we send strings of
different lengths to models which simulate the processing time (see Section 5.2). In real
world scenarios, we could derive this data length from the binary size of the input data.
Having this representation of input size, we can simply divide the model delay by the
data length, receiving the Model Data Delay (MDD).

MDD = RTT − network latency
data length

If we then want to estimate the latency for a given request, we can use the the data
length, the model data delay, and the network latency like this:

estimation = network latency + data length × MDD
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Figure 4.2: Model Request and Update Process

Note that this formula does neither factor the data length with the network latency nor
consider how heavily it impacts the model delay. Therefore it does not portray the real
world latency that will happen for the request under estimation. However, as it is only
a rough scoring estimation, we can use this formula to estimate the latency for a given
request. Figure 4.2 illustrates how the platform processes a request. It shows how the
model data, like the MDD, gets updated by the client on each request.

Additionally to scores for the latency, the system also measures the accuracy of the model
to create a score. As a reminder, we need both the latency and the accuracy to create a
score for the model to enable efficient model selection for different use cases. Here, we
assume that the model returns a confidence value for each prediction. We can use this
confidence value to approximate an accuracy score for the model. Models which are more
confident in their results therefore receive a higher accuracy score. As the confidence
value depends on what kind of features the input contains, we cannot simply use the
latest confidence value as the accuracy score. Instead, we need to calculate the average
confidence value for each model.

Since the platform is a continuously running system, we cannot assume that the model
accuracy will remain the same over time. Model drifts can occur and change the accuracy
of the model over time [MCS23]. Therefore, we need to have a running average of the
confidence score. However, this score should not be influenced too heavily by older results
and therefore we use a window of the last 10 results. The window size can be adjusted
in future work to evaluate the impact of the window size on the performance of the
platform.

The process of launching model executors is not automated in the prototype and therefore
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not part of the evaluation. Instead, we will launch model executors manually and then
evaluate the impact of different selection strategies on the performance of the platform.
In future work, we can automate the scaling of model executors by using a scheduler
similar to the works described in [RLYK21] and [RRD+22]. This can serve as further
input for future work, which can then focus on the scheduling of model executor pods.

4.2.3 Metadata Storage
The metadata storage is a Redis6 API compatible key-value store which stores metadata
about the models and clients. An external high-performance storage like this is necessary
because the metadata receives updates very frequently and therefore needs to be able
to handle a high throughput of requests. The prototype uses DragonflyDB7 which
implements all the needed Redis API functions and promises better performance than
Redis itself. However, the prototype can be easily adapted to use Redis (or any other
compatible key-value store) instead of DragonflyDB.

We describe the data model of the metadata store in Table 4.2 and further show which
data is stored for each model in Table 4.3.

Key Description

mulambda:models The set of all models which are currently available
on the platform

mulambda:clients The set of all clients which currently run in the
platform

mulambda:models:<model_id> A hash containing metadata about the model with
the id model_id. ... shows the fields it consists
of

Table 4.2: Keys in the metadata store

4.2.4 Model Selector
The selection of models is one of the components which contributes to the automatization
aspect of the platform. Because the platform is able to automatically select the best
model given specific criteria, developers do not need to explicitly choose a model for
their application. This is especially useful for applications which do not have many
hard requirements on the model, but instead want a general kind of functionality and
performance characteristics. The approach to use machine learning models based on their
traits instead of their identity therefore lets developers focus on their product instead of
the underlying models, of which there is a vast amount. The usefulness of this is evident

6https://redis.io
7https://dragonflydb.io
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Field Description

id The identifier of the model executor, which is also the name
of the Kubernetes service associated with the model executor

name The name of the model identifying the model data in the
model data storage

type The type of the model, such as classification, regression
input The format of the input data which the model expects
output The format of the output data which the model produces
accuracy A value between 0 and 1, where 1 is the highest possible

accuracy. In Section 4.2.2 we explain how we produce this
data

latency:<client_id> The network latency between the model executor and the
client with a given client_id in milliseconds. We describe
how we measure this value in Section 4.2.2

mdd The Model Data Delay value we introduce in Section 4.2.2
... Other values which help in addressing the model once it is

selected—information such as the path or the port which
clients need to access

Table 4.3: Fields in mulambda:models:<model_id>

for applications which just want to receive the best possible output for a given input, but
do not care which model generated this output. Furthermore, distributed systems benefit
by automatically receiving co-located models which can lead to an overall decrease in
latency.

To even be able to perform model selection, we first need to devise a classification scheme
across the models that the platform serves. Based on this classification scheme, developers
can specify criteria by which the platform should select the best model.

Hard criteria Soft criteria

Model Type Latency
Input Format Accuracy
Output Format

Table 4.4: Criteria for model selection

In Table 4.4 we can see that we have to consider two different kinds of criteria:
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Hard Criteria are criteria essential to the client application to function as intended.
The platform will never select a model which does not meet these criteria. The available
hard criteria are:

• Model Type: The main function of the model. Here, we distinguish between
models for tasks such as classification and regression. This is a hard criterion
because the outputs of different types of models are not compatible with each other.

• Input Format: The kind of data client applications infer the model with (i.e.
text, image, audio, etc.). Those inputs are in general incompatible with each other
and therefore this is a hard criterion.

• Output Format: The kind of data the client application expects as output (i.e.
text, image, audio, etc.). Client applications have a specific purpose and work on a
specific kind of data which is mostly non-negotiable. Thus, this is a hard criterion.

Soft Criteria are criteria which let the client application signal what kind of performance
it expects—i.e. if it wants faster or better results. Based on the requested performance
profile given by the soft criteria, the platform will select the most suitable model meeting
the hard criteria. The available soft criteria are:

• Latency: The time it takes for the model to deliver an output to the client for
a given input. Even though we always want to be as fast as possible, latency
performance can be traded off for better accuracy. This trade-off makes latency
a soft criterion. With latency, we also consider the different components which
contribute to the overall latency. Those components are the network latency, the
model delay and the data length and are described in detail in Section 4.2.2.

• Accuracy: The quality of the output of the model. Analogous to latency, higher
accuracy can be traded off for worse latency, making accuracy a soft criterion.

To achieve the design goals, we need to make different considerations regarding those
soft criteria.

Model Selection Algorithm

To perform model selection on the hard and soft criteria, we use a weighted sum model
selection algorithm. We showcase the algorithm by providing simplified listings of the
functions used in the algorithm. We leave out implementation details irrelevant for the
understanding of the algorithm. These are only relevant to the specific infrastructure we
use in the prototype. Listing 1 shows the auxiliary functions we use in the algorithm.

The function estimate_performance calculates the performance that we can expect
of a given model for a specific request length with a specific request client. It utilizes
the inversion of the Model Data Delay which we describe in Section 4.2.2 to calculate
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def estimate_performance(model: Model,
data_length: int,
request_client_id: str
) -> (float, float):

latency = (model.mdd * data_length) \
+ model.current_latency_with(request_client_id)

accuracy = model.latest_accuracy()
return latency, accuracy

def normalize_latency(latency: int) -> float:
pass

def normalize_accuracy(accuracy: float,
max_accuracy: float) -> float:

return accuracy / max_accuracy

def score(soft_criteria: Dict[str, float],
normalized_latency: float,
normalized_accuracy: float) -> float:

return - soft_criteria["latency"] * normalized_latency \
+ soft_criteria["accuracy"] * normalized_accuracy

Listing 1: Auxiliary functions for model selection

the expected latency for a given request length. It also uses the data the infrastructure
provides on the network latency between the model and the client. For estimating
the accuracy, we use the moving average of the confidence value that we describe in
Section 4.2.2. To be able to compare different performance values to each other we
normalize the values between 0 and 1. For the latency, we use predefined buckets which
we can adjust to the needs of the application and infrastructure. These buckets are
intervals of latency values which we map to a normalized value between 0 and 1. Future
work can explore automated adjustment of the buckets.

The centerpiece of the selection is the weighted scoring we defined in the function score.
It takes into account the soft criteria which we describe above and calculates a weighted
sum of the performance values. Note, that we use the negative of the latency as the
performance value for latency as we want to decrease the latency, as opposed to the
accuracy which we want to increase.

In Listing 2 we can see (a simplified representation of) the actual model selection algorithm
and how we utilize the auxiliary functions above. We base our selection on multi-criteria
decision making approaches, utilizing the weighted sum of utility values. We discussed
these approaches in Section 3.3 where they were presented in [TSS22]. It takes as input
the set of models available to the platform, the hard and soft criteria, the length of the
request and the id of the client which sent the request. We take the available models from
the metadata store before we start the selection. The function then first takes out all the

39



4. MuLambda: Efficient and Transparent Model Selection for Serverless
Machine Learning Inference

models which do not meet the hard criteria. Then, all the models receive a performance
estimation, by utilizing the estimate_performance function. We then normalize the
performance values to increase comparability. Finally, we calculate the weighted sum of
the performance values for each model and select the model with the highest score.

4.2.5 Client implementation
Clients are meant to be implemented by developers of applications which utilize the
platform. For the purpose of this thesis, we implement a client which can be used to
simulate different request patterns. Those request patterns correspond to the different
use cases in Section 4.1.1. For example, the use case for pedestrian safety involves a
client which requires low latency responses and does not need high accuracy. We describe
the simulation for this in Chapter 5. To test out higher accuracy requirements as in
the medical diagnosis use case, we can adjust the weights that are sent to the selector
accordingly in the client. For the platform to function properly, clients also need to send
updated performance data (i.e. latency and accuracy) to the platform.

The evaluation client is implemented as a Python web application which uses the FastAPI
framework to expose a REST API. The web application runs as a Kubernetes pod which
makes it easy to deploy it to the platform. On startup the client registers itself in the
metadata store so that the companion containers of the models can measure the network
latency between the client and the model.

Interfacing with the platform is low-friction and can be easily integrated into existing
applications. In Listing 3 we can see a simple example of how a client can request
a model from the platform. Clients just need to send simple HTTP requests to the
platform, containing the hard and soft criteria which they want to use for model selection,
the length of the data they want to send, and the URL of the selector. The result of
the request then contains all the information needed to send the request to the model,
including the endpoint, the port and the path.

After receiving the result from the model, the client sends the performance data to the
platform. This is also as frictionless as possible as we can see in Listing 4. Clients
just need to supply the model ID and the performance data to the platform. From the
total elapsed time and the most recent network latency measurement, the platform can
calculate the model delay and the MDD we defined before in Section 4.2.2. Along with
that, the client also sends the current rolling average of the confidence value of the model
via a Redis connection to the metadata storage.

Using those simple components, it is easy to create low-effort APIs for applications which
utilize the platform. In Python for example, those components can easily be hidden
behind a decorator to result in a low-footprint API like in Listing 5. Here, user-defined
functions can be decorated with the @inject_model decorator which then injects
a ModelConnector in the arguments of the function. This ModelConnector then
handles the retrieval of a suitable model and the sending of the performance data to the
platform.

40



4.2. Architecture

However, for the evaluation of the platform, we will not use such an API but instead use
the lower level API described in Listing 3 and Listing 4.
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def select_model(available_models: List[Model],
hard_criteria: Dict[str, Any],
soft_criteria: Dict[str, float],
data_length: int,
request_client_id: str) -> Model:

# Filter out all models which do not fit the hard criteria
suitable_models = [

model
for model in available_models
if model.fits(hard_criteria)

]

# Estimate the performance of each model
# for a request of the given length and client id
model_performance = [

(model, estimate_performance(model,
data_length,
request_client_id))

for model in suitable_models
]

# Find the highest possible accuracy
max_accuracy = max(model_performance,

key=lambda x: x[1][1])[1][1]

# Normalize the latency and accuracy for each model
normalized_performance = [

(
model,
(normalize_latency(latency),
normalize_accuracy(accuracy, max_accuracy))

)
for (model, (latency, accuracy)) in model_performance

]

# Calculate the score for each model
# and select the highest score
selected = max(normalized_performance,

key=lambda x: score(soft_criteria,
x[1][0],
x[1][1]))

return selected

Listing 2: Weighted sum model selection algorithm
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def get_model(
hard_criteria: Dict[str, Any],
soft_criteria: Dict[str, float],
data_length: int,
selector_url: str

) -> (str, Dict):
response = httpx.post(

selector_url,
json={

"required": hard_criteria,
"desired": soft_criteria,
"data_length": data_length,

}
)

traits = response.json()["model"]
return (

f"http://{response.json()['endpoint']}"
f":{traits['port']}{traits['path']}",
traits,

)

Listing 3: Simple HTTP request for receiving a model endpoint

def send_performance(model_id: str,
data_length: int,
elapsed: float,
net_latency: float,
avg_accuracy: float):

mdd = max(elapsed - net_latency, 0) / data_length
metadata = get_metadata_server()
metadata.hset(model_id, {"mdd": mdd, "accuracy": avg_accuracy})

Listing 4: Sending of performance data to the platform

@inject_model(hard_criteria, soft_criteria)
def user_function(model: ModelConnector):

result = model(data)
...

Listing 5: Low footprint API for using the platform
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CHAPTER 5
Experimental Setup

This chapter describes the experimental setup for the evaluation of the platform prototype
we describe in Chapter 4. First, we showcase the evaluation environment in Section 5.1.
Then, we explain the structure of our evaluation. The evaluation is split into two
parts: a qualitative evaluation based on the use cases in Chapter 4 and a quantitative
evaluation based on benchmarking the platform. The qualitative evaluation is described
in Section 5.2 and the quantitative evaluation in Section 5.3.

As a reminder we note that the evaluation investigates the following research questions:

RQ1 Which benefits can be achieved for latency-sensitive applications by using a weighted
model selector compared to a round-robin, random or plain-net-latency model
selector?

RQ2 Which benefits can be achieved for accuracy-sensitive applications by using a
weighted model selector compared to a round-robin, random or plain-net-latency
model selector?

RQ3 What differences in behavior can we expect for applications with varied latency
and accuracy preferences between the different use cases in the weighted selection
compared to the baselines?

RQ4 How does the selection scale with increasing message sizes for the different selection
algorithms?

RQ5 How does the selection scale with an increasing number of concurrent requests
served by the platform for the different selection algorithms?
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5.1 Evaluation Environment
To answer the research questions we evaluate the platform prototype in a partially
simulated environment. The platform prototype is deployed on a Kubernetes cluster,
with the models being deployed to different nodes. This technology stack resembles
deployments already used in existing research [RLYK21, RRD+22]. In a real world
deployment though, the models would be deployed to different regions or on the edge,
which would result in different latencies. To simulate those different latencies between
the models and the selector, we use the Linux Traffic Control (tc) tool [Hub01]. This tool
allows us to simulate different network conditions between the nodes. To test different
latency scenarios at once, we deploy the platform onto four nodes, with the selector and
the client being deployed to the same node. The other three nodes host the models, with
the latency between the selector and the models increasing with each node.

The Kubernetes cluster runs in a virtualized environment made available by the Dis-
tributed Systems Group at the TU Wien. All nodes are virtual machines running Rocky
Linux1 9.1 with 8 vCPUs and 16 GB of RAM. For experiment monitoring, we use
the extended Galileo framework introduced in [RRP+22]. It is capable of monitoring
experiment events for applications running on Kubernetes clusters. Raith et al. also
demonstrate the use of the framework in the domain of Edge Intelligence, making the
framework a good fit for our evaluation.

Model Simulation
To cover the different use cases, we deploy different models to the nodes. To achieve
significant variety between the models, we simulate their characteristics with a dummy
model. Using real world models for the evaluation is not feasible, as the variety would
be too low and the models would be to difficult to fine-tune for the different scenarios.
Therefore, we create a web server which simulates the execution of a machine learning
model based on two main values: the delay and the confidence.

• Delay of model m for input i (Dmi):
The delay is the time it takes for the model to reach a result. It consists of (1) an
inherent base delay of the model Dm (2) the size of input i (Si) times the delay
data size impact of the model αm (3) the amount of concurrently served requests
(Nmi) times the concurrency impact of the model βm and (4) a random jitter Jm.

Dmi = Dm + Si × αm + Nmi × βm + Jm

• Confidence of model m for input i (Cmi):
The confidence is the probability that the result of the model is accurate. To
generalize across all different types of models, we consider that models act on inputs
i which contain features f ∈ F . The confidence is the probability that the model

1https://rockylinux.org
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m is correct for a feature fk in input i. It consists of (1) the maximum confidence
(Cmk) that m can have for a specific feature fk (2) the total amount of features
m supports Fm (3) the confidence feature set size impact of the model γm (i.e.
how exact can the model act on different features with an increasing amount of
supported features).
The idea behind that is that some features are more actionable than others, leading
to a higher maximum confidence for those features. Additionally, the more features
a model supports, the less confident it can be about each individual feature.
Depending on the quality of the model this confidence descent can be more or
less steep. To keep the dimensionality of the experiment low, we assume that all
models support the same features, but only differ in their confidence feature set size
impact and the maximum confidence score for each feature. To illustrate this, we
consider models which support three features Fm = {f1, f2, f3}, all with different
sets Cmk. For the purpose of the experiments we choose the maximum confidence
for each feature per model in a way that f1 is the most actionable feature, f2 is
less actionable and f3 is the least actionable.

Cmi =

��
0 if Fm = 0

Cmk ∗ 1
F γm

m
otherwise

See Table 5.1 for an overview of the models and their performance traits. We choose
these values to simulate the different performance characteristics of real-world models,
such as image recognition models or natural language processing models. Models can
vary in their execution time and accuracy. In general, the more accurate a model is, the
longer it takes to execute.

Name m Dm αm βm γm max Jm[ms] Cmk

FastBad 1 10 0.001 0.1 0.1 5 [0.5, 0.3, 0.1]
FastOK 2 15 0.002 0.35 0.2 5 [0.8, 0.5, 0.3]
FastGood 3 20 0.004 0.7 0.3 5 [0.9, 0.7, 0.5]
MidBad 4 50 0.01 0.1 0.4 30 [0.55, 0.35, 0.15]
MidOK 5 75 0.02 0.35 0.5 30 [0.85, 0.55, 0.35]
MidGood 6 100 0.04 0.7 0.6 30 [0.95, 0.75, 0.55]
SlowBad 7 150 0.06 0.1 0.7 60 [0.6, 0.4, 0.2]
SlowOK 8 175 0.07 0.35 0.8 60 [0.9, 0.6, 0.4]
SlowGood 9 200 0.08 0.7 0.9 60 [1.0, 0.8, 0.6]

Table 5.1: The models used in the evaluation and their performance traits
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We explore different schedules for the models to get a better understanding of the behavior
of the model selector. The behavior that we observe can then be used to inform the design
of an automated scheduler like in [RLYK21] or [RRD+22] in the future. See Table 5.2
for an overview of the different schedules of models m ∈ M . We remind the reader that
nodes 1 to 4 have increasing latency to the selector—specifically [10, 30, 100, 300]ms.

Schedule Node 1 Node 2 Node 3 Node 4

Logical {1, 2, 6, 9} {4, 5, 6, 9} {6, 7, 8, 9} {1, 7, 8, 9}
Arbitrary {3, 7, 2, 9} {5, 1, 8, 4} {6, 9, 2, 1} {4, 8, 7, 3}
Parity {1, 5, 6, 9} {1, 5, 6, 9} {1, 5, 6, 9} {1, 5, 6, 9}
Hyperlocal M ∅ ∅ ∅

Table 5.2: The model schedules tested in the evaluation

The Logical schedule contains logical assumptions about a useful schedule for the use
cases in Chapter 4. We put the fastest models on the nearest node and the slower models
on the farther nodes, in order to maximize the latency of the results. Furthermore, we
put the most accurate, but also slowest model on every node, to maximize the accuracy
of the results. This way we assume that the selector has good targets to choose from
regardless of the client’s preferences.

The Arbitrary schedule is a schedule which is not based on any assumptions. We generated
it by randomly shuffling the models and assigning them to the nodes. We do not use
random schedules every time, as we want to be able to compare multiple experiment
runs to each other.

The Parity schedule is an edge case where all nodes have the same models deployed.
These models offer a range from the fastest possible model to the most accurate model.

The Hyperlocal schedule is an edge case where we deploy all models from Table 5.1 to
the first node. This way, we remove network latency as a factor for the model selector
and can observe the other performance aspects separately.

5.2 Qualitative Evaluation - Case Studies
The results of these case studies answer the research questions RQ1, RQ2 and RQ3.
Each case study presents a different implementation of the client implementation described
in Chapter 4. For each case study, we run experiments sending requests ranging from 500
requests to 1000 requests, with the data length (i.e. the abstract size) of the requests
being 10, and the concurrency of the requests being 5 (i.e. 5 requests are sent at the
same time). Furthermore, each concurrent stream of request goes through their requests
serially, i.e. the next request is only sent after the previous request has finished. Therefore,
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choosing models which take long to process slows the arrival rate of requests to the
selector.

The research questions are matched to the different use cases as follows:

• RQ1 ties into the Smart-City Pedestrian Safety use case. To answer it, we
implement a client which strongly prefers low latency (weight is -1 to minimize)
over high accuracy (weight is 0). We use models with different execution times to
simulate the different latencies. We analyze, over the course of the simulation, how
the latency of the client changes, depending on the model schedule for each of the
different model selectors. We also monitor the side effects to the accuracy of the
results and resource utilization of the platform.

• RQ2 ties into the Medical Diagnosis Assistance use case. Here, we implement
a client which strongly prefers high accuracy (weight is 1 to maximize) over low
latency (weight is 0). The models that we schedule for this experiment have different
static accuracies associated to them. We label each result with the accuracy of the
model that produced it. We then analyze how the accuracy of the results changes
over time for each of the different model selectors. As with RQ1, we also monitor
the side effects to the latency of the results and resource utilization of the platform.

• RQ3 connects well to the use cases Public Sentiment Analysis (PSA) and Envi-
ronmental Monitoring (ENV), but the previous two use cases would also apply, as
we monitor the side effects to the latency and accuracy of the results. For both
the PSA as well as the ENV use case, we implement a client with a balanced
preference for latency and accuracy. We differ these use cases by having the PSA
use case maintain a perfectly balanced preference (weights -0.5 for latency and 0.5
for accuracy) and having the ENV use case change its preference over time (latency
in the interval (-1,0) and accuracy in (0,1) with abs(latency) + abs(accuracy) = 1).
We then analyze how the latency and accuracy of the results changes over time for
each of the different model selectors in both use case implementations. As with
RQ1 and RQ2, we also monitor the resource utilization of the platform.

Table 5.3 summarizes the four different clients which directly correspond to the use cases.

5.3 Quantitative Evaluation - Benchmarking
The results of the benchmarks answer the research questions RQ4 and RQ5. The goal
of the benchmarks is to analyze the scalability of the platform. While the case studies in
Section 5.2 analyze the behavior of the platform in different scenarios, the benchmarks
analyze how performance metrics change with an increasing load on the platform. Since
our approach is able to react to changes in the environment, we want to analyze how
the platform behaves when model performance degrades due to increased load. Each
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client RQ request pattern

SCP RQ1 batched
MDA RQ2 batched
PSA RQ3 batched
ENV RQ3 streamed

Table 5.3: Summary of the different clients and their request patterns

benchmark analyzes the three core performance metrics of the platform: latency, accuracy
and resource utilization. We perform the benchmarks on the same Kubernetes cluster as
the case studies.

The first benchmark analyzes the scalability of the platform with an increasing size of
messages and aims to answer RQ4. For this benchmark, we change the abstract message
size that we send to the models and analyze how the latency and accuracy of the results
change for each of the different model selectors. We use the Logical schedule from the
case studies. The size of the messages increases on a fibonacci-like scale, that being
[1, 3, 5, 8, 13, 21, 34, 55, 89]. With the way in which we design the model simulation, those
sizes result in different execution times for the models. For the other request parameters,
we reduce the load to 100 requests and the concurrency to 1, i.e. we send 100 requests
one after the other. We want to avoid increasing the load through competing aspects
of the platform, such as the concurrency of the requests. Also, increasing the load too
much would result in benchmarks that take too long to run.

The second benchmark analyzes the scalability of the platform with an increasing number
of concurrent requests and aims to answer RQ5. Here, we have a fixed number of models
deployed to the platform (we use the Logical schedule from the case studies) and increase
the number of clients which send requests to the platform. As with the first benchmark,
we analyze how the latency and accuracy of the results changes for each of the different
model selectors. The amount of concurrent requests follow the same fibonacci-like scale
as the message sizes in the first benchmark. Again, the way in which we design the model
simulation causes the models to have increasing execution times with more concurrently
handled requests. To reduce the interference between different kinds of loads, we use a
fixed message size of 10 for all requests. We also only send concurrent requests in one
shot. That means, we send all requests at the same time and do not send any further
requests to achieve a stable amount of concurrent requests. With this benchmark, we
also need to remain mindful of the time it takes to run the benchmark to be able to run
it multiple times.
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CHAPTER 6
Results and Discussion

This chapter presents and discusses the results of the case studies and benchmarks
presented in Chapter 5. We contextualize the results with respect to the research
questions from the same chapter. Section 6.1 discusses the results of the case studies and
answers research questions 1-3, while Section 6.2 discusses the results of the benchmarks
and answers research questions 4-5. We answer each research question individually, and
then summarize the results in Section 6.3.

6.1 Case Study Results
RQ1 - Which benefits can be achieved for latency-sensitive applications
by using a weighted model selector compared to a round-robin, random
or plain-net-latency model selector?
As we state in Chapter 5 we answer this research question by analyzing the results of
the latency-focused use case (SCP). To evaluate how well the weighted model selector
performs in terms of latency compared to the other selectors, we look at the Empirical
Cumulative Distribution Function of request latencies.

Figure 6.1 shows the cumulative distribution of latencies for all clients in the Logical and
Arbitrary schedules. Overall, the weighted model selector has the lowest median latency
of all selectors. This holds true for the hand-picked Logical schedule as well as for the
Arbitrary schedule we randomly pre-generated (see Section 5.1). Most of the requests are
served in less than 300 ms, with the 95th percentile being at around half a second. We
can also notice a clear distinction to the distributions of the other selection algorithms.
The algorithm producing the second most requests with a latency of less than half a
second is the selector which chooses solely based on host latency. However, we can notice
that the distribution of the plain network latency selector is much more spread out. The
95th percentile of the plain network latency selector is the worst of all selectors. For
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Figure 6.1: Cumulative distribution and box plots of latencies for all clients for Logical
and Arbitrary schedules in the SCP use case

the remaining two selectors we notice a very similar distribution between them, having
a median latency of around a second and a 95th percentile of around 1.8 seconds per
request.

For better understanding of these ECDFs we can also look at the time series data of the
latencies in a given experiment in Figure 6.2. The experiment ran in the Logical schedule
with all of the selectors and with a total of 1000 requests sent to each of them (see
Section 5.2 for further details on the experiment setup). The first difference we can notice
is the length of the different experiments. The weighted model selector experiment took
roughly 450 seconds—so around 0.45 seconds per request—while the other experiments
took more than double the time. We can also see the reason for that in the time series
data, as the weighted model selector has a much lower average round trip time than the
other selectors.

The second noticeable difference is in the confidence intervals of the data. The weighted
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Figure 6.2: Rolling average time series of latencies for all clients for the Logical schedule
in the SCP use case with a 90% confidence interval

model selector has much more stable latencies than the other selectors. The time series
also shows the reason for the increased amount of low-latency response times for the
plain network latency selector. The variance of the results of this selector is much higher
than the other selectors, which leads to a lower median. This comes at the cost of having
a significantly increased amount of high latency results.

To gain deeper understanding of the results we can also look at the accuracy of the
different selectors in this use case. In the ECDF of the accuracies in Figure 6.4 the
weighted model selector performs worst in terms of accuracy because its curve is above
the other selectors. This, however, is not the goal in this scenario, as the optimization
should go into the latency of the requests. When we compare the time series results of
the accuracy in Figure 6.3 with the time series results of the latency in Figure 6.2 we can
see that the points of lowest accuracy for the plain network latency selector are also the
points of lowest latency (e.g., around 550 seconds into the experiment). This is trivial
because we designed the models in such a way that they have a higher model delay when
they also deliver more accurate results. We can therefore deduce that the weighted model
selector is able to achieve the lowest latencies by sacrificing accuracy. This is exactly
what we want to achieve with the weighted model selector, since we set the weights to
just focus on the latency without caring about the accuracy.

We also look at the edge cases in terms of scheduling, i.e. how do the different selectors
perform when there is only a single node, or when the nodes contain the same models.
In Figure 6.5 the results for the Hyperlocal schedule are very similar to the results of the
Logical schedule.
However, the benefits gained by the weighted model selector are less pronounced in this

53



6. Results and Discussion

0 200 400 600 800 1000 1200

Time since start [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

c
c
u
ra

c
y
 [

%
]

Time Series of Accuracy for Smart-City Pedestrian Safety
in Logical schedule

Weighted

Plain Network Latency

Random

Round Robin

Figure 6.3: Rolling average time series of accuracies for all clients for Logical schedule in
the SCP use case with a 90% confidence interval

schedule. The reason for this is that there is less variance in the latency of the models
because they all run on the same node. Therefore the possible gain of selecting a model
with a lower latency is lower.
On the other hand, the plain network latency selector has worsened results since the
network latency of all models is around the same—they all run on the same host. This
should theoretically deliver similar results to the random selector. However, we can see
that the random selector performs better in this case. A possible explanation is that
the network latency is updated in 5 second intervals, which means that the latency of
the models is not always up to date. This can lead to the plain network latency selector
overloading a model and therefore increase its delay while keeping the network latency
the same. Also, the distribution of the latencies is possibly not uniform and could be
skewed by milliseconds towards models with a higher delay. This leads to the random
selector having a higher chance of selecting a model with a lower latency than the plain
network latency selector.
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Figure 6.4: Cumulative distribution and boxplots of accuracies for all clients for Logical
and Arbitrary schedules in the SCP use case
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Figure 6.5: Cumulative distribution of latencies and accuracies for all clients for the
Hyperlocal schedule in the SCP use case
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Figure 6.6: Cumulative distribution of latencies and accuracies for all clients for the
Parity schedule in the SCP use case

For the edge case where all nodes contain the same models (Parity) we can see in
Figure 6.6 that the results resemble these of the Logical schedule. That is, the weighted
model selector performs best in terms of latency in all regards, while the plain network
latency selector has a high amount of low latency results, but also a high amount of high
latency results. The reason for this is that by going strictly with the lowest network
latency, this selector will always choose the models on the same node. By over-utilizing
one node, the latency of the models will increase, which leads to the high amount of high
latency results. This does not happen with the random and round-robin selectors, as
they distribute the load more evenly over the nodes. It also does not happen with the
weighted model selector, as it does not only consider the network latency, but also the
model delay and therefore prefers only the fast models on each node.

We can further compare the utilization of nodes by the different selectors in the Logical
schedule in Figure 6.7. This figure shows which nodes get utilized the most by the
different selectors at given points in time in a given experiment. We use handled requests
as a proxy for utilization, as the more requests a node handles, the more utilized it is.
The nodes are separated by shades, with the darkest shade being the node with the lowest
network latency and the lightest shade being the node with the highest network latency.
With both the random and round-robin selector we can see the predictable pattern of
the load being distributed evenly over the nodes. There is a slight increase in the load of
the node with the highest latency (the lightest shade), as requests arriving at this node
take longer to process. Because of this increased processing time there are more requests
in the queue of this node, which leads to a higher utilization. The plain network latency
selector, however, has a strong focus on the node with the lowest network latency (the
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Figure 6.7: Resource Utilization in the SCP usecase

darkest shade). There is only a small amount of requests being handled by other nodes.
These requests most likely arrived at the beginning of the experiment and took longer to
process. At the beginning there is not sufficient latency data sent from the models to the
metadata storage yet. This error tapers out over time, as the latency data gets updated.
With the weighted model selector we can see that it also has a focus on the node with the
lowest network latency, however, it also distributes the load over the next nodes more.
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Answer to RQ1 “Which benefits can be achieved for latency-sensitive
applications by using a weighted model selector compared to a round-
robin, random or plain-net-latency model selector?”

The main benefit of using the weighted model selector is that putting the focus
on latency leads to a noticeable improvement in latency compared to the other
selectors. In general, the weighted model selector produces the lowest average
latencies, the lowest median latencies and the lowest 95th percentile latency of
all selectors under test. This holds true for a variety of schedules, but it is most
noticeable for schedules with special considerations for improved latency (e.g,
having the fastest models on the nearest node). Using only the host latency
as a metric can lead to better average latencies. However, in schedules where
low-latency hosts serve models with a high delay this can produce worse results
than all other selectors. This can happen for schedules with a single node, where
the plain network latency selector has a higher average latency than the random
selector.
We also can note that the weighted model selector achieves these low latencies
specifically by sacrificing accuracy, which is its implementation goal in the smart-
city pedestrian safety use case.

RQ2 - Which benefits can be achieved for accuracy-sensitive
applications by using a weighted model selector compared to a
round-robin, random or plain-net-latency model selector?
This research question is very similar to the previous one. However, it focuses on the
accuracy of the selectors instead of the latency. Again, we answer this research question
by analyzing its corresponding use case from Chapter 5—Medical Diagnosis Assistance
(MDA). To evaluate how well the weighted model selector performs in terms of accuracy
compared to the other selectors, we look at the empirical cumulative distribution of result
accuracies.

Figure 6.8 shows that the curve of the weighted model selector ECDF lies significantly
below the curves of the other selectors in both displayed schedules. This means that a
higher share of the requests receives results with a higher accuracy. Looking at the box
plots shows as well that the weighted model selector has the highest median accuracy of
all selectors in both schedules. Its median accuracy is above the third quartile of both the
random and the round-robin selector in the Logical schedule. In the Arbitrary schedule
the median accuracy of the weighted model selector is above the third quartile of all
other selectors. This means that the weighted model selector is able to achieve a higher
accuracy than the other selectors in general cases. The plain-network-latency selector
achieves slightly better accuracy results than the random and round-robin selectors.
This is especially prevalent in the Arbitrary schedule where the median accuracy of the
plain-network-latency selector is around the third quartile of the random and round-robin
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Figure 6.8: Cumulative distribution of accuracies for all clients for Logical and Arbitrary
schedules in the MDA use case

selectors. The Arbitrary schedule has a higher amount of high-accuracy models on the
nearest nodes which means that choosing only the nearest models leads to better accuracy
results than choosing uniformly between all models on all nodes. As with the previous use
case, the round-robin and random selectors perform very similarly in terms of accuracy.

To better understand the results we further investigate the time series data of the
accuracies in Figure 6.9. This is again an experiment in the Logical schedule with all
of the selectors. However, here we have a total of 500 requests sent to each client to
compensate for the longer request duration when focusing on accuracy in the weighted
selector. As with the previous use case, the durations of the experiments are different.
However, here the weighted model selector took the longest to finish, while the other
selectors took roughly the same amount of time. As we discussed in the previous use
case, the reason for this is that results with higher accuracy take longer to compute.
Furthermore, we can see that the weighted model selector achieves the highest accuracy

59



6. Results and Discussion

0 20 40 60 80 100 120 140 160

Time since start [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u
ra

c
y
 [

%
]

Time Series of Accuracy for Medical Diagnosis Assistance
in Logical schedule

Weighted

Plain Network Latency

Random

Round Robin

Figure 6.9: Rolling average time series of accuracies for all clients for the Logical schedule
in the MDA use case with a 90% confidence interval

of all selectors. This is true for the average line in the time series as well as for the
confidence intervals.

We need to note that the confidence intervals of the weighted model selector are wider
than the confidence intervals of the other selectors. This might be because of how we
designed the simulated models, since their accuracy is multiplied by a factor based on
the input data. If the base accuracy is higher this factor has a bigger impact on the
final accuracy, which leads to a higher variance in the results. Furthermore, only the
plain network latency selector has short periods where it can match the accuracy of the
weighted model selector in the average value. At some periods though, this selector also
has a lower accuracy than the random and round-robin selectors. We explain this with
the fact that the plain network latency selector only considers the network latency and
has no notion of accuracy at all. This makes it sometimes choose high accuracy models
on near nodes.

We can also cross-reference these accuracy results with the latency results for the same use
case. For this purpose, we investigate the cumulative data of the latencies in Figure 6.11.
Here, the weighted model selector has the highest median latency of all selectors in both
schedules. The first and third quartile of the weighted model selector are also above the
first and third quartile of the other selectors. Dissimilar to the previous use case, low
latency is not the goal of the weighted model selector for medical diagnosis assistance.
Instead, we want to have the best possible, not the fastest possible results. So, having a
higher latency does not pose a problem here. Other than that, the results for latency are
similar for the other selectors as in the previous use case. These selectors do not take
into account the preferences for use cases which is why their results do not vary between
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Figure 6.10: Rolling average time series of latencies for all clients for the Logical schedule
in the MDA use case with a 90% confidence interval

them as with the weighted model selector. We can again compare the time series data
of the accuracies in Figure 6.9 to the time series data of the latencies in Figure 6.10 in
the same experiment. Additionally, we analyze the cumulative data for the accuracies in
Figure 6.11.

The latency of the round-robin and random selectors remains fairly stable throughout the
experiment. Compared to that we see high spikes in the latency for both the weighted
model selector and the plain network latency selector. This is because we defined the
simulation models in such a way that they increase their latency when they receive more
concurrent requests. This does not affect the random and round-robin selectors as they
distribute the load evenly over all available models. Only slight increases in the top
percentiles are noticeable for these selectors for limited periods of time. On the other
hand, both the weighted model selector and the plain network latency selector have the
possibility of overloading a single model. For the plain network latency selector this
happens because it reduces its selection space to only the models on the nearest node.
Therefore, if the nearest node is overloaded, the plain network latency selector will also
overload the models on that node. For the weighted model selector this happens because
of our chosen selection weight. When we advise the selector to only focus on accuracy,
then it will choose the most accurate model, even if it is overloaded. This inevitably leads
to spikes in latency. However, as we already discussed, we do not consider latency in this
use case, but accuracy. An easy fix for this problem would be to increase the selection
weight for latency, which would lead the selector to choose a less accurate model, but
one which is not overloaded.

Next, we again look at the scheduling edge cases—Hyperlocal and Parity. First, in
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Figure 6.11: Cumulative distribution and box plots of latencies for all clients for Logical
and Arbitrary schedules in the MDA use case

Figure 6.12, which shows the Hyperlocal schedule, we notice an even more pronounced
difference between the weighted model selector and the other selectors than in the Logical
schedule. The difference is mainly in the latency of the weighted model selector being
even higher than in the Logical schedule. This is because instead of having the best
possible model on all nodes, like in the Logical schedule, we only have the best possible
model on one node. This leads to more overloading of the model, which leads to higher
latencies. The changes in the other selectors are mainly to be attributed to the fact
that all models are only available once instead of the uneven distribution of the Logical
schedule. This means that the plain network latency selector has similar accuracy to the
random and round-robin selectors, as it chooses virtually randomly between the same
models. The latency behavior of the baseline selectors is also similar to the Logical
schedule, as they do not take into account the preferences of the use case.
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Figure 6.12: Cumulative distribution of latencies and accuracies for all clients for the
Hyperlocal schedule in the MDA use case

The results for the Parity schedule in Figure 6.13 are similar to those of the Arbitrary
schedule. Here, the weighted model selector outperforms all the other selectors in terms
of accuracy, while having a higher latency.
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Figure 6.13: Cumulative distribution of latencies and accuracies for all clients for the
Parity schedule in the MDA use case

Finally, we compare the utilization of nodes by the different selectors in the Logical
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schedule in Figure 6.14. As a reminder, this graphic shows which nodes get utilized the
most by the different selectors at given points in time in a given experiment. There
again is a predictable pattern of the random and round-robin providers with the equal
distribution of load over all nodes. Notable, again, is that the plain network latency
selector has a strong focus on the node with the lowest network latency (the darkest
shade). Since the configuration did not change for those selectors between the use cases
those are the expected results. However, the weighted model selector shifts the load more
evenly over the nodes than in the previous use case. As we do not consider latency in
this use case, the weighted model selector does not have a strong focus on the node with
the lowest network latency. For the Logical schedule we put the most accurate model on
all the nodes to increase its availability. This means that in terms of highest possible
accuracy, all the nodes are equal. The shifts here mainly happen because of slight changes
in the rolling average accuracy of the models on the nodes which we calculate for the
selection weight. As soon as the accuracy of the high-accuracy model on a node drops
below the accuracy of the high-accuracy model on another node, the weighted model
selector shifts the load to the other node.
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Figure 6.14: Resource Utilization in the MDA use case
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Answer to RQ2 “Which benefits can be achieved for accuracy-sensitive
applications by using a weighted model selector compared to a round-
robin, random or plain-net-latency model selector?”

For accuracy-sensitive applications, the benefit of using the weighted model selector
is that it noticeably improves the accuracy of results compared to other selectors.
Generally, the weighted model selector produces the highest accuracies of all
selectors under test. This holds true for the average, as well as the median
accuracies and the lower 90% confidence bound of the accuracies. However, the
weighted model selector can—similarly to the plain network latency selector—
experience high spikes in latency. This happens because of overloading of a single
model as well as selecting a high-accuracy model running on a further away node.
This again shows the trade-off between accuracy and latency and how the weighted
model selector can be used to tune this trade-off. The weighted model selector
exactly achieves this maximized accuracy, by disregarding other factors, like latency
or preventing overloads.

RQ3 - What differences in behavior can we expect for applications with
varied latency and accuracy preferences between the different use cases
in the weighted selection compared to the baselines?

In the previous two research questions we looked at how good the weighted model selector
can react to requirements strictly focusing on either latency or accuracy. However, in
real-world applications we will most likely have a mix of both requirements. To evaluate
the differences between the weighted model selector and the baselines in this case, we
have two separate use cases. The first use case is the Public Sentiment Analysis (PSA)
use case, which requires equal focus on both latency and accuracy. The second use case
is the Environmental Monitoring (ENV) use case, which has periodical shifts in the
requirements between latency and accuracy.

First, we analyze the results of the PSA use case, beginning with the effects on latency.
Like with the previous use cases, we look at the cumulative distribution of latencies in
Figure 6.15.

For the Logical schedule, the weighted model selector has a similar median latency to
the random and round-robin selectors. However, it has—similarly to the plain network
latency selector—a broader range of latencies. In the Arbitrary use case the latency
performance is even worse, as the median latency is significantly above the upper bounds
of the other selectors. The ECDF also displays differences in the curves of the selectors.
While the curves of the baseline selectors all have a clear concave shape to them, the
curve of the weighted model selector is only slightly convex in the Arbitrary schedule and
S-shaped (first slightly concave, and then convex) in the Logical schedule. This hints
at the fact that the weighted model selector has a more uniformly distributed latency
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Figure 6.15: Cumulative distribution and box plots of latencies for all clients for Logical
and Arbitrary schedules in the PSA use case

than the other selectors. This would correspond to the idea that the weighted model
selector does not focus on a specific latency range, but instead tries to perfectly balance
it with the accuracy. To this end, Figure 6.16 further shows the cumulative distribution
of accuracies.

The weighted model selector has the highest median accuracy of all selectors in both
schedules. Regardless of that, for the Logical schedule we can also see that the weighted
model selector has the broadest range of accuracies as well as the most uniform distribution
of accuracies. We can say this because the distance between each of the quartiles for
our selector is the most equal among all selectors. This does not hold true for the
Arbitrary schedule, where the plain network latency selector has the best distribution
and the weighted selector is more top heavy. We attribute this to the fact that the
average possible accuracy across all models is higher in the Arbitrary schedule than in
the Logical schedule, where we hand-crafted a more even distribution of accuracies. This
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Figure 6.16: Cumulative distribution and box plots of accuracies for all clients for Logical
and Arbitrary schedules in the PSA use case

means that setting the selection weight to 50% focus on accuracy will lead to a higher
average accuracy in the Arbitrary schedule than in the Logical schedule. Nevertheless,
the maximum possible accuracy is still the same for both schedules, as they both contain
the same models. This makes the weighted model selector in the Arbitrary schedule more
biased towards the top values.

Combining the findings from the latency and accuracy results we can say that the
weighted model selector is able to achieve a more uniform distribution of latencies and
accuracies than the other selectors. We can also say that the schedules have an inherent
focus on either latency or accuracy, which means that round-robin and random selection
cannot deliver a perfect balance between the two. Instead those selectors will always
have a bias towards either latency or accuracy, depending on the schedule. Furthermore,
increasing the variety of models in the schedules can also help to achieve a more uniform
distribution of latencies and accuracies for the weighted model selector.
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Figure 6.17: Cumulative distribution of latencies and accuracies for all clients for the
Hyperlocal schedule in the PSA use case

To further understand the impact of the schedules on the uniformity of the results we
investigate the edge cases. Figure 6.17 shows the limits of the weighted approach. Having
all models on the same node means that the latency impact of choosing the highest
accuracy model is higher. This is exacerbated by the fact that the highest accuracy
model skews the distribution of accuracies towards the top which makes it more likely
to be chosen. We therefore notice the importance of having a variety of models in the
schedules. Another fix for that top-heaviness would be to adapt the latency buckets to
each schedule.

For the Parity schedule in Figure 6.18 the results are the best of all schedules when
considering uniformity. With the equal distribution of models over the nodes, the
inherent distribution of latency and accuracy in the schedule is also more uniform. This
is noticeable in the increased linearity of the curves in the ECDFs for both latency and
accuracy. A slight bias towards top latencies is still noticeable, which is because the
highest accuracy model which also has the highest model delay is present on all nodes.
Therefore, the distribution of model delay per node is less uniform in the top end.

Shifting the focus between latency and accuracy

The power of the weighted model selector not only lies in its ability to balance latency
and accuracy, but also in its ability to adapt to changing requirements. Therefore, we
look at the results of the Environmental Monitoring use case, which has a periodical shift
in requirements between latency and accuracy. First, we present the shift in weights we
use for the use case in Figure 6.19 more visually. We can mentally overlay this shape
onto the time series data of the latency in Figure 6.20 and the accuracy in Figure 6.21.
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Figure 6.18: Cumulative distribution of latencies and accuracies for all clients for the
Parity schedule in the PSA use case
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Figure 6.19: Shifts of the absolute values of the selection weights in the ENV use case
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Figure 6.20: Rolling average time series of latencies for all clients for Logical schedule in
the ENV use case with a 90% confidence interval
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Figure 6.21: Rolling average time series of accuracies for all clients for Logical schedule
in the ENV use case with a 90% confidence interval
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The shifts in weights correspond to events in both time series. For the latency, each
decrease in the absolute weight leads to an increase in latency. However, the latency
does not hold steady between the shifts. In fact, the latency even drops to the same level
as before the shift. We observe this behavior because of insufficient latency data at the
beginning of the shift. Before having any knowledge of the Model Data Delays (MDDs) of
the models, the weighted model selector will choose the models with the lowest network
latency. After calling these models, the selector gains knowledge of the MDDs and after
some time chooses a model with enough—but lower—accuracy but also a lower MDD.

For the second shift, however, the highest accuracies and the highest latencies of the
experiment occur. Since the weights are set to 100% accuracy, the selector will choose
the most accurate model, regardless of its MDD. At the next shift to 20% accuracy and
80% latency, the selector opts for models with similar performance characteristics as
in the shift to 80% accuracy and 20% latency. This indicates that in the less extreme
shifts, the results tend to be very similar. An ever bigger variety of models might lead to
better distinctions between those in-between states. The infrastructure available for our
experiments however was limited in terms of the number of nodes and the number of
models it can handle. Therefore, exploring the effects of an even higher variety of models
is left for future work.

Right around the last shift to 100% latency focus, we can see that the latency peaks
again. We can explain this again by models which have yet been called by the selector.
After this peak, however, the weighted model selector gains knowledge of their MDDs
and refrains from using those models further. The result is a significant drop in latency,
which is also the lowest latency of the experiment.

So, the weighted model selector is able to adapt to the changing requirements of the use
case. It has difficulties in the beginning of the shifts, but after some time it is able to
adapt to the new requirements once it gains enough knowledge of the MDDs and receives
updated accuracy information. Over a long period of time, which is the time frame for
use cases like Environmental Monitoring, the weighted model selector will have enough
data to make informed decisions.

To further understand the effect of weight shifts, we investigate the resource utilization
of the different selectors in the Logical schedule in Figure 6.22.

As with the previous use cases, this graphic shows which nodes get utilized the most by
the different selectors at given points in time in a given experiment. The baseline selectors
continue to behave in the same way as in the previous use cases. For the weighted model
selector we can see how it reacts to shifts in focus. Right at the start, with an even
focus, like for the Public Sentiment Analysis use case, the weighted model selector uses
a variety of nodes. As soon as the focus starts shifting towards accuracy, the weighted
model selector first starts to select models on node 3. After some time, however, it shifts
to node 1, which contains the most accurate model as well. Shifting the focus further
towards accuracy however pushes the selection again to the further away node. The
model there probably had a better rolling average accuracy at this time. We also note
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Figure 6.22: Resource Utilization in the ENV use case

that similarly to the Medical Diagnosis Assistance use case, the weighted model selector
can cause overloads of a single model when not taking into account latency aspects at all.
As soon as the there is some focus on latency again, the weighted model selector shifts
back to the nearest node. Then, as we pointed out before, the weighted model selector
has difficulties in the beginning of the shift, because it chooses the models with the lowest
network latency. After gaining knowledge of all the MDDs, the weighted model selector
chooses the fastest models on the nearest node and quickly finishes the remaining 20% of
the requests.

73



6. Results and Discussion

Answer to RQ3 “What differences in behavior can we expect for ap-
plications with varied latency and accuracy preferences between the
different use cases in the weighted selection compared to the baselines?”

The weighted model selector offers multiple benefits for applications with varied
latency and accuracy preferences. For applications which try to balance latency and
accuracy the weighted model selector is able to achieve a more uniform distribution
of latencies and accuracies than the other selectors. We also observe that the
schedules themselves have an inherent bias towards either latency or accuracy.
This means that approaches which balance the load evenly across all models, like
random and round-robin selection, do not also balance the latency and accuracy
evenly. Instead, those selectors will always portray the bias inherent to a given
schedule. Furthermore, increasing the variety of models in the schedules should
also help to achieve a more uniform distribution of latencies and accuracies for the
weighted model selector.

For applications which change their requirements over time, the weighted model
selector is able to adapt to the changing requirements. This is not possible with the
other selectors, as they do not take into account the Quality-of-Service requirements
of the use case. We note that it has difficulties in the beginning of the shifts,
but after some time it is able to adapt to the new requirements once it gains
enough knowledge of underlying infrastructure. It can cause further problems
with overloading a single model when not taking into account latency aspects at
all—as observed in the previous research question. Over a longer period of time
the weighted model selector has enough data to make informed decisions.

6.2 Benchmark Results
To further understand the performance of the different selection algorithms, we discuss
the results of the benchmarking experiments. Here, we scale the size of the messages and
the number of concurrent requests independently of each other (see Section 5.3). Both
these aspects have an impact on the performance of the models and therefore the clients
using the different selectors.

RQ4 - How does the selection scale with increasing message sizes for
the different selection algorithms?

In order to understand how the selection scales with increasing message sizes, we investi-
gate the results of the message size benchmarks. The message sizes are abstract values
representing the size of the input data for the models. The simulated models use these
abstract values to calculate the time it takes to process the input data. The sizes increase
in a fibonacci-like sequence, which means that the difference between each size increases
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exponentially. For better comparability with the baselines we use the Public Sentiment
Analysis (PSA) use case on the Logical schedule for this research question. The weighted
selector has the most similar characteristics to the baselines in this setup. We remind
the reader that the PSA use case does not focus on one of the two performance goals,
but instead tries to balance them. We also note that for the experiments for increasing
size, we do not increase the number of concurrent requests.

First, Figure 6.23 displays the results for the latency. The figure shows the average
latency for each message size for all selectors. It also shows the 90% confidence interval
for each of those averages.
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Figure 6.23: Latency for different message sizes for the PSA use case on the Logical
schedule

For the baselines, increasing the message size leads to a linear increase in latency. For the
round-robin and random selectors the average latency growth is almost identical, with the
averages matching each other and both having quite wide confidence intervals. The plain
network latency selector has a similar growth in latency, but with a narrower confidence
interval. This is because the plain network latency selector chooses models from the
nearest node, which all have a closer average latency than the entire set of models. With
the weighted model selector we can see that the latency growth is almost non-existent.
The average latency stays almost the same for all message sizes. The weighted model
selector considers message size in its calculations, which means that it chooses models
which are faster for larger messages. It stays with the same models for all message sizes,
which leads to the almost constant latency.
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Figure 6.24: Accuracy for different message sizes for the PSA use case on the Logical
schedule

In Figure 6.24 the accuracy behavior stays the same for all selectors. However, the
weighted model selector has a higher average accuracy than the other selectors. We
already saw this behavior in the previous research question, where we looked at the
results for the PSA use case. This means, increasing the message size does not have an
impact on the accuracy of the weighted model selector or any other selector whatsoever.
The baseline selectors continue to portray the bias of the schedule, and the weighted
model selector continues to balance the latency and accuracy as much as possible.

Answer to RQ4 “How does the selection scale with increasing message
sizes for the different selection algorithms?”

The weighted model selector scales better with increasing message sizes than the
other selectors. While the latency of the other selectors increases linearly with
the message size, the latency of the weighted model selector almost does not
increase at all. This is because the weighted model selection takes message size
into consideration in its calculations.
Regarding the accuracy, we see that increasing the message size does not have
an impact on the accuracy of the weighted model selector or any other selector.
Message size is not a factor in the accuracy of the models, which means that the
weighted model selector continues to balance the latency and accuracy as much as
possible. Also, the baseline models continue to portray the bias of given schedules
as we have already seen for RQ3.
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6.2. Benchmark Results

RQ5 - How does the selection scale with an increasing number of
concurrent requests served by the platform for the different selection
algorithms?
Similarly to the previous research question, we look at the results of our benchmarks to
understand how the selection scales with an increasing number of concurrent requests.
The simulated models use the number of concurrently handled requests in the calculations
for the time it takes to handle input data. Like the sizes, the number of concurrent
requests also increases in a fibonacci-like sequence. We again use the PSA use case on
the Logical schedule for this research question.

Figure 6.25 shows the average latency for each number of concurrent requests for all
selectors along with the corresponding 90% confidence intervals.
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Figure 6.25: Latency for an increasing amount of concurrent messages for the PSA use
case on the Logical schedule

Here, we observe an increase in latency for all selectors. However, the lowest increase
in latency can be observed for the round-robin and random selectors. As they balance
the load evenly over all models, they are able to handle the increasing load better than
the other selectors. Therefore overloading a single model is the least likely to happen.
The plain network latency selector and the weighted model selector on the other hand
degrade faster in latency performance. They both limit their selection space, with the
plain network latency selector only choosing models on the nearest node and the weighted
model selector choosing models with average latencies and average accuracies. This
means that the plain network latency selector will overload the models on the nearest
node, while the weighted model selector overloads average models until they become too
slow.

77



6. Results and Discussion

0 20 40 60 80

Number of concurrent requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A
v
e
ra

g
e
 A

c
c
u
ra

c
y
 [

%
]

Average Accuracy when scaling Concurrency

Weighted

Plain Network Latency

Random

Round Robin

Figure 6.26: Accuracy for an increasing amount of concurrent messages for the PSA use
case on the Logical schedule

In Figure 6.26 the accuracy of all the selectors remains stable. However, there might be
a slight downward trend towards the upper end of the spectrum for the weighted model
selector. As it overloads average models, it might have to choose models with lower
accuracies than before. Other than that, the baseline selectors again portray the bias of
the schedule and the weighted model selector again balances the latency and accuracy as
much as possible.

Answer to RQ5 “How does the selection scale with an increasing number
of concurrent requests served by the platform for the different selection
algorithms?”

While all selectors increase in latency with an increasing number of concurrent
requests, the weighted model selector degrades in latency performance faster and
scales worse than round-robin and random selection. This is because of the limited
selection space, which the weighted model selector and the plain network latency
selector both have. This leads to overloads of models which in turn increases the
average latencies.
For the accuracy, the weighted model selector continues to balance the latency and
accuracy as much as possible. However, overloading of average models might shift
the selection window towards lower accuracies in the long run which can decrease
the accuracy of the weighted selection results towards the baselines.
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6.3 Summary
The overall goal of our approach is to provide a platform which can be used to deploy
and run machine learning models in a Serverless environment. This platform should be
able to handle the requirements of real-world applications. The research questions we
presented in this chapter are designed to evaluate the performance of our approach in
terms of latency, accuracy and scalability. In the following we list the main findings of
the research questions.

• Increased Latency Performance: As we have seen in the experiments we
conducted for answering RQ1 and RQ3, setting a focus on latency leads to a
noticeable improvement in latency compared to the other selectors. Regardless of
the schedule, the weighted model selector improves latency performance on average
and also inside the inter-quartile range.

• Increased Accuracy Performance: The experiments we conducted for answering
RQ2 and RQ3 show that focusing on accuracy performance leads to a noticeable
improvement thereof. This again, holds true for all schedules and against all other
selectors.

• Balancing Improvements: Our experiments for answering RQ3 show that
the weighted model selector is able to balance the improvements in latency and
accuracy. By setting the selection weight to 50% for both latency and accuracy, the
weighted model selector is able to achieve a more uniform distribution of latencies
and accuracies than the other selectors. The other selectors either only focus on
latency or just relay the inherent bias of the schedule.

• Change Reactivity: The experiments in RQ3 also show that the weighted model
selector is able to adapt to changing requirements. When instructing the selector
to shift its focus between latency and accuracy, it is able to adapt to the new
requirements. Depending on which focus is set, the weighted model selector will
either deliver more accurate results or faster results than the other selectors.

• Data Size Scalability: The experiments we conducted for answering RQ4 show
that the weighted model selector handles increasing message sizes better than the
other selectors. Because the weighted model selector takes the message size into
account in the selection decision, it chooses models which are faster for larger
messages. This selection does not change for different message sizes, which leads to
the almost constant latency.
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CHAPTER 7
Conclusions

Serverless computing is a growing research field that has been gaining a lot of attention
in the last few years. Especially its combination with edge computing and Machine
Learning has been the focus of many research papers, as we have seen in Chapters 2
and 3. Such a combination is very promising and can open up new applications and
use cases. However, there are still challenges which need to be addressed regarding the
utilization of serverless computing for data-intensive workloads, for Machine Learning
Operations tasks and for the edge computing domain.

In our work, we have focused on the combination of serverless edge computing with
MLOps and have proposed a novel architecture that combines them. In this architecture
we implemented an efficient and transparent model selection system suitable for serverless
machine learning with a consideration of heterogeneous nodes. We evaluated our system
with use cases lent from real world scenarios and have answered our research questions.

In our evaluation we were able to show that utilizing a weighted model selector can
lead to latency and accuracy improvements in the platform, depending on the set focus.
The baseline approaches could not achieve those improvements as they are not able to
take the different selection criteria of the clients into account. Balancing accuracy and
latency is also improved by the weighted model selector, while baseline approaches only
show the bias inherent to the schedule of models on the nodes. Shifts in focus are also
handled better by the weighted model selector, as it is able to react to those shifts and
adapt to them. Again, without a notion of the different selection criteria of the clients,
the baseline approaches are not able to react to those shifts. Regarding scalability we
were able to show increased consideration of data-intensive workloads by the improved
handling of data size through incorporation in the selection process.
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7.1 Limitations
Regardless of the positive results we have achieved, there are still some limitations to
our approach. Those limitations and how they impact the performance of the weighted
model selector are as follows.

• Schedule Dependence: As we have seen in all experiments the schedules impact
the performance of all selectors. The weighted model selector is no exception to
this. If there is not enough variety in the models on the nodes, the weighted model
selector will, e.g., not be able to achieve a uniform distribution of latencies and
accuracies when instructed to do so. Also, when the platform does not offer enough
alternatives which fit the hard and soft criteria of running serverless applications,
the weighted model selector will have difficulties in keeping up with the requirements
over time. This leads to the next limitation.

• Tendency to Over-Utilize Single Models: When there is not enough variety
in the models on the nodes, the weighted model selector will tend to over-utilize
a single model. This mainly happens when the selection weight is set to 100%
accuracy. When the weighted selector does not take into account the latency at all,
then it will not be able to react to a model degrading in latency performance. The
selector will continue to use that single model, which leads to high spikes in latency.

• Concurrency Scalability: This over-utilization of single models turns into a
bigger problem when the number of concurrent requests increases. When the load
on the platform increases, the weighted model selector will tend to overload a single
model. This will in turn lead to higher latencies for the requests. It can also impact
the accuracies of the models down the line, as the weighted model selector will
choose models with lower accuracies to prevent overloading if instructed to do so.

• Impact of Missing Data: When not having enough dynamic data about the
models, the weighted model selector will choose models based on static data. For
the accuracy this means it will choose the maximum base accuracy of the models.
When latency data is missing it will choose the minimum network latency of the
models. Those data points are not necessarily representative of the actual dynamic
performance of the models. This can lead to sub-optimal results when first using
those models in the platform. First usages of specific models in the platform happen
at the beginning of using the platform and also after shifts in focus. This leads to
spikes in latency or troughs in accuracy at those points in time. Even though this
balances out over time, it still is a limitation of our current implementation.
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7.2 Future Work
Finally, we discuss possible future work to improve the weighted model selector and the
platform and to overcome the limitations we discuss in Section 7.1.

Incorporation of a Model-Aware Scheduler

In our approach we only evaluated four pre-defined schedules. We chose two average
cases, one of which we considered to be a logical default schedule, and two edge cases.
In our work we were able to show that schedules have a big impact on all selection
approaches, as they define the models which are available for selection.

The insights we have gained from our evaluation of the different schedules can be used to
create a model-aware scheduler. Such a scheduler would be able to create schedules that
emphasize models with high demand from the clients. Through analysis of the weights
sent to the weighted model selector and the resulting selection decisions, the scheduler
would be able to scale up models which get selected often and scale down models which
get selected rarely. This would help mitigate the problem of over-utilization of single
models, as the scheduler would be able to react to the increased load on the platform.

Real-World Evaluation

Our evaluation of the weighted model selector was done in a simulated environment.
This offered us a lot of control over the experiments and the ability to repeat them. For
example, we were able to tightly control the network latency between nodes and the
performance traits of the models.

However, this also means that the results we have achieved are not necessarily represen-
tative of a real-world scenario. To achieve this, we would need to deploy our system in a
real-world environment and evaluate it there. This means, we need to use real edge nodes
and use real world machine learning models. The machine learning models would need
to trained with enough variety so that the weighted model selector can choose between
them. The edge nodes have to be connected to a real distributed network, which would
introduce network latency and bandwidth constraints. Furthermore, the edge nodes
should have different hardware configurations, so that the weighted model selector can
choose between them.

Utilization of FaaS clients

While our implementation of the weighted model selector and the backend models fits
the Backend-as-a-Service aspect of serverless computing, the clients in our evaluation are
not deployed as Function-as-a-Service functions. As the focus of our evaluation was on
the efficiency of the weighted model selector, we did not want to introduce additional
overhead by using FaaS clients.
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However, to have a holistic view of the model selection process inside a serverless edge
computing platform, we would need to use FaaS clients. This way, we would be able to
evaluate the implications of weighting decisions on short-lived functions.
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