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Abstract—Off-chain protocols constitute one of the most
promising approaches to solve the inherent scalability issue of
blockchain technologies. The core idea is to let parties transact
on-chain only once to establish a channel between them, lever-
aging later on the resulting channel paths to perform arbitrar-
ily many peer-to-peer transactions off-chain. While significant
progress has been made in terms of proof techniques for off-chain
protocols, existing approaches do not capture the game-theoretic
incentives at the core of their design, which led to overlooking
significant attack vectors like the Wormhole attack in the past.

In this work we take a first step towards a principled game-
theoretic security analysis of off-chain protocols by introducing
the first game-theoretic model that is expressive enough to reason
about their security. We advocate the use of Extensive Form
Games (EFGs) and introduce two instances of EFGs to capture
security properties of the closing and the routing of the Lightning
Network. Specifically, we model the closing protocol, which relies
on punishment mechanisms to disincentivize parties to upload
old channel states on-chain. Moreover, we model the routing
protocol, thereby formally characterizing the Wormhole attack, a
vulnerability that undermines the fee-based incentive mechanism
underlying the Lightning Network.

This work is the extended version of our CSF 2023 paper
”Towards a Game-Theoretic Security Analysis of Off-Chain
Protocols”.

Index Terms—game theory, off-chain protocols, security, ratio-
nal players, Lightning Network

I. INTRODUCTION

Blockchain technologies are emerging as a revolutionary

paradigm to perform secure decentralized financial applica-

tions. Nevertheless, a widespread adoption of cryptocurrencies,

such as Bitcoin [1] and Ethereum [2], is severely hindered by

their inherent limitations on transaction throughput [3], [4].

For instance, while Bitcoin can support tens of transactions per

second and the confirmation time is about an hour, traditional

credit networks like Visa can comfortably handle up to 47,000

transactions per second.

Off-chain protocols [5] are recognized as one of the most

promising scalability solutions, achieving a seemingly contra-

dictory property: the bulk of transactions is performed off-

chain, and yet in a secure fashion. The idea is to leverage the

blockchain only in case of disputes, resorting otherwise to off-

chain, peer-to-peer transactions. Bitcoin’s Lightning Network

[6] is the most widely adopted off-chain instantiation, hosting

at the time of writing bitcoins worth more than 170M USD,

in a total of more than 27,000 nodes and more than 76,000

channels. In a nutshell, parties deposit money in a shared

address, called channel, and can later on perform arbitrarily

many off-chain transactions with each other by redistributing

the deposit on the channel. In the end, the channel can be

closed and the latest state (i.e., deposit distribution) is posted

on-chain. Off-chain transactions are not limited to the end-

point of the channel, but they can be routed over paths

of channels (so-called multi-hop payments). Besides such

payment channel networks, an entire ecosystem of off-chain

protocols [5] (virtual channels, watchtowers, payment-channel

hubs, state channels, side-chains, etc.) is under development

for Bitcoin [7]–[12], Ethereum [13]–[16], as well as other

cryptocurrencies [17].

The cryptographic protocols underlying these off-chain con-

structions are rather sophisticated and, most importantly, rely

on game-theoretic arguments to discourage malicious behavior.

For instance, the Lightning Network relies on a punishment

mechanism to disincentivize parties to publish old states on-

chain and on an unlocking mechanism where parties first pay

a neighbor and then retrieve the paid amount from the other

to ensure the atomicity of multi-hop payments (i.e., either all

channels are consistently updated or none is).

Off-chain protocols are typically subject to rigorous secu-

rity analyses, which however concentrate on cryptographic

properties and do not capture the game-theoretic ones. In

particular, most protocols are proven secure in the Universal

Composability framework [18], proving that the cryptographic

realization simulates the ideal functionality. This framework,

however, was developed to reason about security in the classi-

cal honest/Byzantine setting: in particular, the ideal function-

ality has to model all possible parties’ behavior, rational and

irrational, otherwise it would not be simulatable, but reasoning

on whether or not certain behavior is rational is outside of the

model and thus left to informal arguments. This is not just a

theoretical issue, but a practical one, as there is the risk to

let attacks pass undetected: for instance, the Wormhole attack

[7] constitutes a rational behavior in the Lightning Network,

which is thus admitted in any faithful model thereof although

it undermines its incentive mechanism. The first step towards

closing this gap in cryptographic proofs is to come up with a

faithful game-theoretic model for off-chain protocols in order

to reason about security in the presence of rational parties.

We address this challenge in this paper, advocating the use of

Extensive Form Games (EFGs) for the game-theoretic security

analysis of off-chain protocols. In particular, we introduce two
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instances of EFGs to model the closing and the routing of the

Lightning Network.

A. Related Work

A game-theoretic model for off-chain protocols is initiated

and introduced in [19]. This work suffers, however, from

several limitations, which make it unsuitable to conduct faith-

ful security analyses. Firstly, the game model considers only

honest closing of channels, i.e., all deviations – such as posting

an old state – are ignored: this makes it impossible to reason

about the security of basic channel operations. Secondly,

the pay-offs are represented as constants, which neglects the

dependency of the channel’s balance on its security properties.

Further, fees are not considered at all, thereby ignoring their

impact on Lightning protocols. For instance, the routing game

to model the security of multi-hop payments fails to capture

already identified attacks in payment channel networks, like

the Wormhole attack [7] that targets the fee distribution among

players. Additionally, Lightning is vulnerable to the Griefing

attack [20], where a significant amount of money is locked.

In our work, we overcome the aforementioned limitations,

by defining a stronger closing phase model, by aligning the

utilities to the monetary outcome, by considering all possible

deviations of parties during closing, and by revising the

relevant security properties. We demonstrate the importance

of precision in game-theoretic protocol models by modeling

the Wormhole attack, as well as the Griefing attack.

Our work further complements other game-theoretic ad-

vancements in the area, most prominently the following lines

of research.

a) Incentivizing Watchtowers: A major drawback of

payment channel protocols is that channel participants must

frequently be online and watch the blockchain to prevent

cheating. To alleviate this issue, the parties can employ third

parties, or so-called watchtowers, to act on their behalf in

case their counterparty misbehaves. Correctly aligning the

incentives of watchtowers to yield a secure payment channel

protocol is, however, challenging. This is the main focus of

several works [11], [15], [16], [21]. As their objective is to

incentivize external parties, their models does not apply in

our work.

b) Payment Channel Network Creation Games: Avariki-

oti et al. [22], [23] study payment channel networks as network

creation games. Their goal is to determine which channels a

rational node should establish to maximize its profit. Ersoy

et al. [24] undertake a similar task; they formulate the same

problem as an optimization problem, show it is NP-hard, and

present a greedy algorithm to approximate it. Similarly to our

work, all these works assume rational participants. However,

we aim to model the security of the protocols, in contrast to

these works that study the network creation problem graph-

theoretically.

c) Blockchains with Rational Players: Blockchains in-

centivize miners to participate in the network via monetary

rewards [1]. Therefore, analyzing blockchains under the lens of

rational participants is critical for the security of the consensus

layer. There are multiple works in this direction: Badertscher

et al. [25] present a rational analysis of the Bitcoin protocol.

Eyal and Garay [26] introduce an attack on the Nakamoto

consensus, effectively demonstrating that rational miners will

not faithfully follow the Bitcoin protocol. This attack is

generalized in [27], [28]. Consequently, Kiayias et al. [29]

analyze how miners can deviate from the protocol to optimize

their expected outcome. Later, Chen et al. [30] investigate

the reward allocation schemes in longest-chain protocols and

identify Bitcoin’s allocation rule as the only one that satisfies

a specific set of desired properties. On a different note, several

works study the dynamics of mining pools from a game-

theoretic perspective [31], [32] or introduce network attacks

that may increase the profit of rational miners [33], [34]. An

overview of game-theoretic works on blockchain protocols can

be found in [35].

All these works, however, focus on the consensus layer

(Layer-1) of blockchains and as both the goals and assump-

tions are different from the application layer (Layer-2), the

models introduced there cannot be employed for our purposes.

For instance, payment channel protocols occur off-chain and

thus game-based cryptographic assumptions of the blockchain

do not apply. In addition, consensus protocols investigate the

expected reward of miners which is a probabilistic problem,

whereas we ask if any honest player could lose money,

which depends on the behavior of the other players and is

fundamentally deterministic.

Game-based definitions have also been proposed for the

security analysis of smart contracts [36], [37]. These models,

however, target an on-chain setting and are thus not suitable

to reason about the specifics of off-chain constructions (e.g.,

closing games, routing games, etc.).

B. Our Contributions

In this work, we take the first steps towards closing the

gap between security and game-theoretic analysis of off-chain

protocols. Specifically, we introduce the first game-theoretic

models that are expressive enough to reason about the security

of off-chain protocols. We model off-chain protocols as games

and then analyze whether or not certain security properties

are satisfied. The design of our models is driven by two

principles: (a) all possible actions should be represented and

(b) the utility function should mirror the monetary outcome

realistically. We aim to ensure that honest participants do not

suffer any damage (P1), whereas deviating from the protocol

yields a worse outcome for the adversary (P2) We will

use weak immunity (Definition II.4) to implement (P1), and

collusion resilience (Definition III.8) together with practicality

(Definition III.7) for (P2). While we believe that our approach

of implementing principles (a) and (b) is easily extensible

to other off-chain protocols, in this work we focus on the

Bitcoin Lightning Network, which constitutes the most widely

adopted off-chain protocol. Our technical contributions can be

summarized as follows:
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• We refine existing game-theoretical concepts in order to

reason about the security of off-chain protocols (Sec-

tion III).

• We introduce the Closing Game Gc, the first game-

theoretic security model that accurately captures the clos-

ing phase of Lightning channels, encapsulating arbitrary

deviations from the protocol specification (Section IV).

• We perform a detailed security analysis of Gc, formalize

folklore security corner cases of Lightning, and present

the strategy that rational parties should follow to close

their channels in order to maximize their expected out-

come relative to the current and previous distribution

states (Section V).

• We identify limitations in prior work [19] on game-

based modeling of multi-hop payments, putting forward

a new game-based definition that is precise enough to

cover the Wormhole and the Griefing attack (Section VI).

We further show how to model Fulgor protocol [38], a

variant of Lightning’s routing that prevents the Wormhole

attack. Our formalization leverages game theory concepts

introduced in Section III and Section IV, thereby demon-

strating the theoretical expressiveness of our framework

to analyze complex protocols. .

In conclusion, our work brings game-theoretical foundations

to enforce security of off-chain protocols, by providing a rigor-

ous analysis over security properties expressed through formal

requirements over game strategies. We believe, the provided

rigor in our paper opens up new venues for automating security

analysis via game-theoretic arguments, a challenge which we

aim to tackle in future work.1

II. BACKGROUND AND PRELIMINARIES

A. Payment Channel Networks

A payment channel [8] can be seen as an escrow (or multi-

signature), into which two parties Alice A and Bob B transfer

their initial coins with the guarantee that their coins are not

locked forever and the agreed balance can be withdrawn at

any time. After that, A and B can pay each other off-chain

by signing and exchanging messages that reflect the updated

balances in the escrow. These signatures can be used at any

time to close the channel and distribute the coins on-chain

according to the last channel state. In order to discourage

parties from posting an old state on-chain, a punishment

mechanism is in place. In particular, in Lightning [6], once

A closes the channel, she has to wait a mutually agreed time

before getting her coins. Meanwhile, B has the opportunity to

withdraw all the coins in the channel (by posting a so-called

revocation transaction), including the ones assigned to A, if the

state posted on-chain by A is not the last one they mutually

agreed on. Such a punishment mechanism is of game-theoretic

nature: parties can indeed post an old state on-chain, yet they

are discouraged to do so.

1We refer the interested reader to the appendix for the complete definitions
and proofs.

In particular, Lightning payment channels operate as fol-

lows: First, Alice and Bob create a funding transaction where

they input their respective coins; the funding transaction has

a single output that can only be spent if both A and B

provide their signature (2-out-of-2 multi-signature). Then, the

two parties create the first commitment transaction, i.e., a

transaction that spends the output of the funding transaction

and returns the initial coins to both parties. In other words,

the input of the commitment transaction is the output of the

funding transaction while the output of the first commitment

transaction is two-fold: the first output returns the coins to

A and the second output to B. However, the commitment

transaction each party holds is not the same. Specifically,

the commitment transaction of A has an additional spending

condition, a timelock t that signifies the revocation period and

is pre-agreed between the two parties; in A’s commitment

transaction B’s output is spendable immediately. Symmetri-

cally, in B’s commitment transaction B’s output has a timelock

t while A’s output is spendable immediately. Note that a

timelock t is a condition that allows the coins of the output

to be spent on-chain only after time t has elapsed from the

publication of the transaction. After A and B sign and exchange

the respective first commitment transactions, they proceed to

signing the funding transaction and publishing it on-chain.

This order is important to avoid hostage situations2. As soon

as the funding transaction is securely published on-chain, A

and B can transact off-chain by creating every time a new

commitment transaction that depicts the current balance of

the joint capital among the two parties. Every time a new

commitment transaction is created, the parties reveal a secret

to their counterparty that allows their counterparty to spend

their own coins immediately (e.g., A can spend B’s coins

from the previous commitment) if the previous commitment

transaction appears on chain (revocation transaction). To close

a Lightning channel, the two parties can either collaborate

and spend the output of the funding transaction, or each of

them can close the channel unilaterally by publishing the last

commitment transaction. Since the commitment transactions

each party hold have a timelock, in case of cheating, i.e.,

publication of a previous commitment transaction on-chain,

the counterpart can immediately spend the cheating party’s

coins, claiming all the coins of the channel, thus punish the

cheating party for misbehaving.

Technically, A and B do not just lock their initial funds

but also a certain small amount which will be used as a fee

for the closing transaction of the channel. Note that every on-

chain transaction requires such a fee f . The fee for the opening

transaction is paid upon the opening of the channel and is thus

irrelevant to our consideration. However, in case A posts an

old state on-chain and B performs the revocation transaction

– which is an on-chain transaction – to prove it, B has to

carry the additional transaction fee alone. These facts have an

important impact on our game-theoretic models.

2If the funding transaction is published on-chain before the first commit-
ment transactions are signed, a party may hold the other hostage since none
of the parties can close the channel unilaterally but only in collaboration.
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y
1.

(m+3 f ,y,t1)
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(m+2 f ,y,t2)

3.

(m+ f ,y,t3)
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(m,y,t4)

5.

x

6.

x

7.

x

8.

x

9.

Fig. 1. Routing in Lightning using HTLCs.

In the following, we refer to honest closing when a party

unilaterally closes the channel by posting the last commitment

transaction or when the parties close collaboratively, where

both parties sign to spend the funding transaction output

directly.

Off-chain transactions are not limited to the end-points of

a channel, as they can be performed whenever sender and

receiver are connected by a path of channels with enough

capacity. The cryptographic approach to do so exploits hash-

time-locked-contracts (HTLC) [12]. Assume players A and B

do not share a channel. Instead, A has a channel with E1; E1

has a channel with I; I has a channel with E2; and E2 has a

channel with B, as illustrated in Figure 1. Player A can now

send an amount m to player B via the intermediaries E1, I and

E2, where each intermediary charges a fee f for the routing

service, hence A should pay m+ 3 f . The core idea is that A

pays E1, E1 pays I, and so forth, until B gets paid.

A key security property in multi-hop payments is atomicity:

either all payments are successful, and the deposit in each

channel is updated accordingly, or none is. To achieve this

property, the Lighting protocol proceeds as follows. First, the

receiver B generates a secret x and sends its hash h(x) = y to

the sender A (see action 1 in Figure 1). Then A creates an

HTLC for E1, where she locks m+ 3 f with lock y and time-

out t1. That means only E1 can claim the money and only

by providing a value whose hash is y within time t1 (action

2 in Figure 1). Although E1 does not know such a value yet

and can therefore not unlock, E1 can nevertheless proceed by

creating another HTLC for I also locked with y and a time-

out t2 (action 3 in Figure 1). Thereafter, I and E2 continue

in the same way (actions 4 – 5 in Figure 1). Actions 1 – 5

of Figure 1 are called the locking phase. Note that in order

to allow everybody to unlock their HTLCs in the subsequent

steps, the time-outs have to be decreasing t1 > t2 > t3 > t4.

Once B receives the conditional payment, he can reveal x to E2

and the conditional payment is unlocked (action 6 in Figure 1).

The others can now unlock the HTLCs one after the other from

right to left (actions 7 – 9 in Figure 1), which is called the

unlocking phase. Finally, A paid m+ 3 f , B received m and

each intermediary was rewarded with f .

We note that atomicity is achieved by a game-theoretic

argument: intermediaries can, in principle, stop the protocol

either in the locking phase or in the unlocking phase. In the

former, they would lose the transaction fee f , while in the

latter, they would lose the payment amount m, m+ f , m+2 f

respectively. Thus, they are incentivized to act once they have

committed to participate.

A E1 I E2 B

y
1.

(m+3 f ,y,t1)

2.

(m+2 f ,y,t2)

3.

(m+ f ,y,t3)

4.

(m,y,t4)

5.

x

6.

x

7.

x

8.

Fig. 2. Wormhole Attack in Lightning.

a) The Wormhole Attack: The aforementioned routing

protocol is proven to be vulnerable to the Wormhole attack [7],

which is depicted in Figure 2. The attack is as follows: E1

and E2 collude, and bypass I in the unlocking phase, thus

stealing I’s participation reward f . Until actions 6 in Figure 1

and Figure 2, the behavior is identical. Then, E2, knowing x,

forwards x to E1 (offline) instead of unlocking the HTLC from

I (action 7 in Figure 2). This way, E1 can unlock A’s HTLC

and claim the money (action 8), but I will never be able to

unlock. After a certain time the remaining HTLCs time-out

and the locked money returns to the creators.

Therefore, the parties A and B are not affected. However,

E1 and E2 collectively earn 3 f instead of the 2 f they deserve,

stealing the fee f from I, who locked resources in the locking

phase of the protocol. This attack undermines the incentive of

intermediaries to route payments.
b) The Griefing Attack: It describes the scenario when a

player, assume B for simplicity, ignores the proposed payment

and refuses to proceed [20]. This way, money is locked in

the conditional payments for a considerable amount of time.

While [39] studies the Griefing attack through probabilistic

modelling and [40] provides mitigation techniques, to the best

of our knowledge there is no formal security analysis of this

attack at present. Our work addresses this limitation and shows

that Lightning’s routing module is indeed susceptible to the

Griefing attack.

In the sequel we consider the behavior as illustrated in

Figure 1 as the only honest routing behavior.

B. Game-Theoretic Definitions

We now introduce the game-theoretic concepts relevant for

our formalization. We denote real numbers by R and tuples

as σ = (σ1, ...,σn). We write σ [σ ′
i /σi] to denote the tuple

resulting from substituting σi by σ ′
i in σ , that is σ [σ ′

i /σi] =
(σ1, ...,σi−1,σ

′
i ,σi+1, ...,σn). We understand games as static

objects in which finitely many players can choose finitely

many times from a finite set of actions. A game yields a certain

positive or negative utility for each player. We briefly overview

the very common Normal Form Games, also called Strategic

Games [41], in which each player chooses an action only once,

called strategy.

Definition II.1 (Normal Form Game – NFG). A Normal Form

Game (NFG) is a tuple Γ = (N,S ,u), where N is the set of

game players, S = "p∈NSp the set of joint strategies σ and

u the utility function:

• Sp is the non-empty set of strategies player p can choose

from. Thus, a joint strategy σ ∈S is a tuple of strategies

σ = (σp1
, ...,σp|N|

), with σpi
∈ Spi

.
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TABLE I
NFG ΓC WITH PLAYERS A,B.

A
B

U C I

U (1/2,1/2) (0,1) (0,1)
C (1,0) (1,1) (−1,−1)
I (1,0) (−1,−1) (−1,−1)

• u = (up1
, . . . ,upn), where upi

: S → R assigns player pi

its utility for every joint strategy σ ∈ S .

In what follows we fix an arbitrary game Γ and give all

definitions relative to it. To formalize an optimal outcome on

game strategies, we use Nash Equilibria.

Definition II.2 (Nash Equilibrium – NE). A Nash Equilibrium

is a joint strategy σ ∈ S s.t. no player pi can increase

their utility by unilaterally deviating from σ = (σp1
, ...,σp|N|

),
Formally,

∀p ∈ N ∀σ ′
p ∈ Sp : up(σ)≥ up( σ [σ ′

p/σp] ) . (1)

Another important concept is weakly dominated strategies,

expressing the strategies a rational player would not play since

they yield worse utilities.

Definition II.3 (Weakly Dominated Strategy). A strategy σd
p ∈

Sp of player p is called weakly dominated by strategy σ ′
p ∈

Sp, if it always yields a utility at most as good as σ ′
p and a

strictly worse utility at least once:

∀σ ∈ S : up( σ [σd
p/σp] )≤ up( σ [σ ′

p/σp] ) and (2)

∃σ ∈ S : up( σ [σd
p/σp] )< up( σ [σ ′

p/σp] ) . (3)

Example II.1. Consider the NFG ΓC in Table I, which was

introduced in [19] to model closing. In this game ΓC, there

are two players N = {A,B} and each players can choose from

the same strategy set SA = SB = {U,C,I}. Here, strategy U

captures unilateral closing, that is publishing the latest state

on-chain. Further, strategy C corresponds for closing collab-

oratively, that is publishing a mutually signed transaction.

Finally, strategy I stands for ignoring, that is doing nothing.

The utility for each joint strategy is given in Table I, where

player A’s strategies are listed in the left column of Table I

and the strategies of B are given in the top row of Table I.

Applying Definition II.2, the joint strategies (C,C), (U,I)
and (I,U) are Nash Equilibria: for each of these joint

strategies, neither A nor B can deviate in order to increase

their own utility. Comparing the second and the third row of

Table I, we see that A’s utility is always as least as good in

the second row as it is in the third row. Hence, strategy C

weakly dominates strategy I for player A, by Definition II.3;

the same property also holds for player B. By comparing the

other pairs of rows/columns of Table I, we see that there is no

other weak dominance in ΓC.

C. Game-Theoretic Security Properties of Off-Chain Protocols

We now present existing game-theoretic concepts [19],

[41] implying security properties of off-chain protocols. In

Section III, we extend these concepts towards another type of

games, called Extensive Form Games, enabling our security

analysis in Section IV. We focus on two security properties

ensuring that (P1) honest players do not suffer damage, and

(P2) subgroups of rational players do not deviate from a

respective strategy. A protocol is compliant to these properties,

if the strategy implementing the intended behavior satisfies

them; we call such a strategy an honest strategy.

(P1) No Honest Loss. As the utility function of a game is

supposed to display the monetary and intrinsic value of

a certain joint strategy, property (P1) is expressed using

weak immune strategies defined next.

Definition II.4 (Weak Immunity). A joint strategy σ ∈ S in

an NFG Γ is called weak immune, if every player p that

follows σ gets utility at least 0, regardless of how the other

players behave:

∀p ∈ N ∀σ ′ ∈ S : up( σ ′[σp/σ ′
p] )≥ 0 . (4)

Example II.2. In the game ΓC of Table I, the only weakly

immune strategy is (U,U). This is the case, because as long

as A chooses U, player B can take any strategy and A will

never get negative utility (similarly, vice-versa).

(P2) No Deviation. Even though the concept of Nash Equi-

libria seems to be a good candidate to ensure (P2) at

first glance, they have two crucial shortcomings. First,

a Nash Equilibrium only ensures that a single player

cannot profit from deviating, but does not imply that two

or more players cannot do so. Second, there might be

Nash Equilibria, which are weakly dominated by another

strategy for a specific player. Such Nash Equilibria will

therefore not be played by rational parties and hence

should not be considered to satisfy (P2).

The solution proposed for NFGs in [19] is to consider

strategies σ compliant to (P2), if they are both strongly

resilient (fixing the former shortcoming) and practical (fixing

the latter) as defined subsequently.

Strong resilience extends Nash Equilibria by considering

deviations of multiple players.

Definition II.5 (Strong Resilience – SR). A joint strategy

σ ∈ S in an NFG Γ is strongly resilient (SR) if no proper

subgroup of players S := {s1, ...,s j} has an incentive in

deviating:

∀S ⊂ N ∀σ ′
si
∈ Ssi

∀p ∈ S :

up(σ)≥ up( σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

] ) .
(5)

We note that in games with two players (i.e. two-player

games), strong resilience and Nash Equilibrium are identical.

As such, in ΓC from Table I, the joint strategies (C,C), (U,I)
and (I,U) of Example II.1 are also strongly resilient.

To define practicality of a strategy, we first introduce the

concept of iterated deletion of weakly dominated strategies

(IDWDS).
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TABLE II
NFG Γ′

C OBTAINED FROM IDWDS OVER TABLE I.

A
B

U C

U (1/2,1/2) (0,1)
C (1,0) (1,1)

Definition II.6 (Iterated Deletion of Weakly Dominated Strate-

gies – IDWDS). The iterated deletion of weakly dominated

strategies (IDWDS) of an NFG Γ is defined as iteratively

rewriting Γ by omitting all weakly dominated strategies of all

players. This is repeated until no strategy is weakly dominated

any more. The resulting game Γ′ is thus a subgame of Γ.

Note that, when IDWDS is applied to a game Γ, then every

Nash Equilibrium of the resulting game Γ′ is also a Nash

Equilibrium of Γ. Since all weakly dominated strategies of

every player are removed at each step, the generated game is

unique. Details and proofs can be found in [41].

We now define practical strategies, in order to ensure that

no single strategy is weakly dominated at any iteration.

Definition II.7 (Practicality). A strategy is practical if it is

a Nash Equilibrium of the NFG Γ′ after iterated deletion of

weakly dominated strategies.

Example II.3. Let us consider ΓC from Table I. We know from

Example II.1 that only I is weakly dominated for both A and

B. Therefore, according to Definition II.6, strategy I has to be

removed from both player’s strategy set. This yields the game

Γ′
C as listed Table II.

Note that there are no weakly dominated strategies in Γ′
C .

Thus, any Nash Equilibrium of Γ′
C is also practical strategy

of ΓC. By comparing utilities, we derive that the only Nash

Equilibrium of Γ′
C is the joint strategy (C,C).

An alternative approach for expressing (P2) is by requiring

a strategy σ to be both a strong Nash Equilibrium (a property

similar to SR) and practical, instead of SR and practical.

Definition II.8 (Strong Nash Equilibrium – sNE). A joint

strategy σ is a strong Nash Equilibrium (sNE) if for every

group of deviating players S := {s1, ...,s j} and all possible

deviations σ ′
si
∈ Ssi

, i ∈ {1, ..., j} at least one player p ∈ S

has no incentive to participate, that is

∀S ⊆ N, S 6= /0 ∀σ ′
si
∈ Ssi

∃p ∈ S :

up(σ)≥ up( σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

]).
(6)

Example II.4. In ΓC from Table I, all NE are also sNE. For

the joint strategy (C,C), this is easy to see. However, it is also

the case for (U,I) and (I,U), since any deviation yields a

utility of at most 1. Thus, at least one player’s utility does not

increase by deviating from (U,I), (I,U) respectively.

A detailed comparison of the various concepts ensuring

(P2) including their strengths and weaknesses, is given in

Section III.

III. EFG-BASED MODELING OF OFF-CHAIN PROTOCOLS

So far we considered games in which each party takes only

one action. We now extend our definitions to handle adaptive

strategies, i.e., games in which parties take several actions

and choose at each step which action to take based on the

actions previously chosen by other parties. As we will see,

this is necessary for faithfully modeling off-chain protocols

and overcoming the limitations of previous work [19]. For

that, we overview the concept of extensive form games (EFGs)

in Section III-A. We show how to lift NFG-based security

definitions to EFGs in Section III-B. Finally, we show that

these definitions do not yet suffice to yield an accurate security

model of off-chain protocols, and introduce a refined security

definition based on the concept of collusion resilience in

Section III-C.

A. Extensive Form Games (EFG)

To formalize strategies where players make multiple choices

one after the other, we advocate the usage of Extensive Form

Games (EFGs) [41], which extend NFGs as follows.

Definition III.1 (Extensive Form Game – EFG). An Extensive

Form Game (EFG) is a tuple Γ = (N,H ,P,u), where N and u

are as in NFGs. The set H captures game histories, T ⊆H

is the set of terminal histories, and P denotes the next player

function, satisfying the following properties.

• The set H of histories is a set of sequences of actions

with

1) /0 ∈ H ;

2) if the action sequence (ak)
K
k=1 ∈ H and L < K, then

also (ak)
L
k=1 ∈ H ;

3) a history is terminal (ak)
K
k=1 ∈T , if there is no action

aK+1 with (ak)
K+1
k=1 ∈ H .

• The next player function P

1) assigns the next player p ∈ N to every non-terminal

history (ak)
K
k=1 ∈ H \T , that is P((ak)

K
k=1) = p;

2) after a non-terminal history h = (ak)
K
k=1 ∈ H , it is

player P(h)’s turn to choose an action from the action

set A(h) = {a : (h,a) ∈ H }.

A strategy of player p is a function σp mapping every h ∈ H

with P(h) = p to an action from A(h). Formally,

σp : {h ∈ H : P(h) = p}→ {a : (h,a) ∈ H ,∀h ∈ H } ,

such that σp(h) ∈ A(h). The set of all strategies of a player p

is Sp, and the set of all joint strategies is S = "p∈NSp.

Note that the set of terminal histories T is uniquely

determined by H and therefore does not explicitly occur in

the tuple Γ. Since histories h are just sequences of actions

h = (ak)
K
k=1 = (a1, ...,aK), we denote histories by the variable

h, the abstract sequence (ak)
K
k=1, or the explicit sequence

(a1, ...,aK), depending on the context in which they are used.

We note that EFGs can conveniently be represented as trees,

as described below.

Definition III.2 (EFG as Tree). Considering an EFG Γ =
(N,H ,P,u), the following tree G = (V,E) represents Γ.
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Fig. 3. An EFG ΓE .

• For every history h ∈ H , there exists exactly one node

vh ∈V. This is labeled by P(h), the next player, if h is not

terminal (h /∈ T ), or by u(σ), the joint utility of playing

a game with history h, if h is terminal (h ∈ T ) and the

joint strategy σ yields history h.

• Two nodes vh, vh′ ∈ H are connected via an oriented

edge (vh,vh′) ∈ E iff h′ = (h,a). This edge is labeled a.

Let us illustrate EFGs and their tree-based representation

through the following example.

Example III.1. The game tree in Figure 3 results

from the extensive form game ΓE = (N,H ,P,u) with

the two players N = {A,B}, where the set of histories

is H = { /0,(a),(b),(b,c),(b,d),(b,d,e),(b,d, f ),(b,d, f ,g),
(b,d, f , i)}. The next player function P assigns player A after

histories /0 and (b,d), and player B after (b) and (b,d, f ).
Finally, the utility function u assigns joint utility (2,2) to

strategies that yield history (a), utility (3,1) for strategies with

history (b,c), utility (1,1) for strategies with history (b,d,e),
and (0,2) for strategies resulting in (b,d, f , i). A strategy

σ = (σA,σB) in ΓE is for example: A chooses a after history

/0: σA( /0) = a; and f after (b,d): σA((b,d)) = f ; B takes c

after (b): σB((b)) = c, and g after (b,d, f ): σB((b,d, f )) = g.

Following this strategy until we read a leaf yields history (a).
A different strategy σ ′ = (σ ′

A,σ
′
B), which also yields history

(a), is for example σ ′
A( /0) = a, σ ′

A((b,d)) = e and σ ′
B = σB.

As depicted in the tree-based representation of Figure 3, we

note that the utility of joint strategies in an EFG is uniquely

determined by their associated history (i.e., path). In the

context of EFGs, the concept of Nash Equilibria remains as

given in Definition II.2. In addition to Nash Equilibria, another

useful concept for EFGs is the Subgame Perfect Equilibrium,

which we will use to characterize the strategies played in

practice by rational parties. To this end, we first introduce the

notion of subgames of EFGs. A subgame of an EFGs can be

seen as a subtree determined by a certain history (i.e., whose

root note is the last history node), and is formalized below.

Definition III.3 (Subgame of EFG). The subgame of an

EFG Γ = (N,H ,P,u) associated to history h ∈ H is the

EFG Γ(h) = (N,H|h,P|h,u|h) defined as follows: H|h :=
{h′ | (h,h′) ∈ H }, P|h(h

′) := P(h,h′), and u|h(h
′) := u(h,h′).

Example III.2. Consider the EFG ΓE from Figure 3 . The

subgame of ΓE associated to history (b,d) is the subtree rooted

in A.

By adjusting the concept of Nash Equilibrium to subgames,

we derive the following property of joint strategies.

Definition III.4 (Subgame Perfect Equilibrium). A subgame

perfect equilibrium is a joint strategy σ = (σ1, ...,σn) ∈ S ,

s.t. σ|h = (σ1|h, ...,σn|h) is a Nash Equilibrium of the subgame

Γ(h), for every h ∈ H . The strategies σi|h are functions that

map every h′ ∈ H|h with P|h(h
′) = i to an action from A|h(h

′).

B. EFG Extensions for Security Properties

While EFGs enable us to incorporate choices made at dif-

ferent times yielding different options for the next player, they

come with the following limitation. The intended (i.e., honest)

behaviors in off-chain protocols only specify a terminal history

(i.e., a path from root to leaf), rather than a strategy. For

instance, an honest history may specify to close the channel

collaboratively, but it does not capture a player’s behavior once

a player deviated. To address this limitation, we introduce the

following notion of an extended strategy in EFGs.

Definition III.5 (Extended Strategy). Let β be a terminal

history in an EFG Γ. Then, all strategies σβ that result in

history β are extended strategies of β .

Example III.3. Recall Figure 3. In Example III.1, we consider

the terminal history (a) and provide two extended strategies

of (a), they are σ and σ ′. A strategy, which is not an extended

strategy of (a) is for instance σ ′′ = (σ ′′
A ,σ

′′
B), where σ ′′

A( /0) =
b, σ ′′

A((b,d)) = e and σ ′′
B = σB. This is the case because by

following the choices of A and B in σ ′′, we end up in (b,c).

While EFGs can in principle be translated to NFGs, as

explained in [41], analyzing the security properties (P1)-(P2)

over the translated NFGs may yield unexpected results. We

shortly exemplify this point in Example III.4, but similar issues

occur also in larger games. We thus lift NFG-based definitions

to EFGs, enabling the analysis of (P1) and (P2). Since EFGs

have a utility function just as NFGs do, which assigns values

after the game, the NFG concepts of weak immunity, strong

resilience and sNE remain the same for EFGs.

Definition III.6 (EFG Properties). A joint strategy σ ∈ H

of an EFG Γ is called weak immune, strongly resilient, or

a strong Nash Equilibrium, if it satisfies the formulae of

Definition II.4, Definition II.5 or Definition II.8 respectively.

Practicality in NFGs, however, relies on IDWDS, which

fails to incorporate the sequential nature of EFGs, and hence

must be adjusted for EFGs. This is because NFG actions

happen simultaneously, while EFG players choose their actions

sequentially. We first present an example to showcase that

applying the NFG definition of practicality to an EFG, by

using its translation to an NFG, leads to overlooking rational

strategies.

Example III.4. Let us consider the EFG ΓE from Figure 3,

with two players A and B. The compact translation of ΓE

to an NFG ΓN is given in Table III. Histories of Figure 3,

where players choose twice, such as (b,d, f ), are translated
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TABLE III
COMPACT VIEW OF ΓE , TRANSLATED TO AN NFG ΓN .

A
B

c d;g d; i

a (2,2) (2,2) (2,2)
b;e (3,1) (1,1) (1,1)
b; f (3,1) (0,1) (0,2)

to Table III as the joint strategy (b; f ,d). Hence, the NFG

strategy b; f of player A means choosing action b first, and,

if A gets to choose again, A takes f . Player A’s strategies

are displayed in the rows, whereas player B’s are shown in

the columns of Table III. Strategy d;g for example denotes

choosing d in the first turn and g in the second turn, unless

the game ends before. For readability, strategies with identical

utilities in any case are merged together, e.g., having only a

instead of both a;e and a; f .

According to definition of practicality for NFGs (see Defi-

nition II.7), the only practical strategy in ΓN is (a, d; i), which

results in a utility of (2,2). This is because for A strategy b;e

weakly dominates b; f and for B strategy d; i weakly dominates

both c and d;g. After deleting those (in blue), the red strategy

b;e of A becomes weakly dominated by a. Thus, after removing

b;e only the joint strategy (a, d; i) remains and is therefore a

Nash Equilibrium of the resulting game.

However, in the EFG ΓE the comparison of strategies has

a certain order, as not all choices are made simultaneously.

Thus, when it comes to B choosing between option c and d,

choosing c is also a rational action because in any case B

gets utility 1. This is the case, since the subgame following

after d, will end in the subgame perfect and practical (1,1),
if played by rational players. Following this argumentation,

we claim that (b;e,c), yielding history (b,c) should also be

considered rational and thus practical.

Example III.4 demonstrates that it is advisable to adapt

the NFG concept of practicality for EFGs, and that a näive

application can be problematic since information may be lost

during the transformation from EFG to NFG [41]. We there-

fore propose to use subgame perfect equilibria for comparing

EFG strategies, and define practicality for EFGs as follows.

Definition III.7 (Practicality for EFG). A strategy of an EFG

Γ is practical if it is a subgame perfect equilibrium of Γ.

C. Security Strategies for Off-Chain Protocols

We now leverage the previously introduced EFG-based def-

initions (Section III-B) to faithfully model the security of off-

chain protocols. In particular, we propose the novel concept

of collusion resilience for addressing (P2), and compare it to

existing formalizations of property (P2).

In [19], strong resilience and practicality were used to model

the no deviation property of (P2): We identify unwanted prop-

erties of strong resilience and we thus investigate variations

of it. Specifically, we show that strong Nash Equilibria do

not imply strong resilience nor vice-versa (Lemma III.1), and

therefore define the collusion resilience property of a joint

strategy. Intuitively, collusion resilience considers the sum of

the utilities of the deviating parties, since rational players may

collude or be controlled by the same entity.

Definition III.8 (Collusion Resilience – CR). A joint strategy

σ ∈ S in an EFG/NFG Γ is called collusion resilient (CR)

if no strict subgroup of players S := {s1, ...,s j} has a joint

incentive in deviating from σ . That is,

∀S ⊂ N ∀σ ′
si
∈ Ssi

:

∑
p∈S

up(σ)≥ ∑
p∈S

up( σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

] ). (7)

In addition, we also consider a slight adaption of strong

resilience, SR⊆, where the deviation of the entire set of players

N is also allowed, as it is for sNE.

Definition III.9 (Strong Subset Resilience – SR⊆). A joint

strategy σ ∈S is called strongly subset resilient (SR⊆), if no

player of any subgroup S⊆N, S := {s1, ...,s j} has an incentive

to deviate from σ :

∀S ⊆ N ∀σ ′
si
∈ Ssi

∀p ∈ S :

up(σ)≥ up( σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

] ) .
(8)

We now formalize how the resilience properties relate to

each other, which motivates our definition of (P2).

Lemma III.1 (Resilience Properties). Let σ ∈ S be a joint

strategy. The following and only the following implications

hold.

1) σ is SR⊆ ⇒ σ is SR, CR, sNE.

2) σ is SR ⇒ σ is CR.

SR⊆SR

sNECR

The next example further motivates why we decided to

formalize (P2) in terms of collusion resilience.

Example III.5. Consider the games Γ1 and Γ2, respectively

defined in Tables IV-V. The games Γ1 and Γ2 show that

there exist cases where both strong resilience and strong Nash

Equilibria fail to correctly state whether rational players will

deviate, while collusion resilience does not.

Let us study Γ1 first. There are three players P1 on the

left, P2 in the “3rd dimension” who only has one possible

strategy, and P3 at the top. Let us consider the joint strategy

σ = (H1,H2,H3). Since P2 does not have another choice, P2

can never deviate. Player P1 deviating alone yields the same

utility as σ and is thus irrelevant. The same holds for P3. The

only deviation that makes a difference, is if P1 and P3 change

strategy together to (D1,H2,D3). By doing so, P1 profits and

receives 5 instead of 1, but P3 looses by getting −2 instead

of 1. Thus, P3 does not have an incentive to do so, unless

the two players collude for their mutual benefit and share

their payoffs. This way they receive 1.5 each instead of 1

each, which poses a serious thread to σ and should thus not

be considered satisfying (P2). However, (H1,H2,H3) is sNE,

since P3 has no incentive in deviating with P1, if their utilities
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TABLE IV
THREE PLAYER GAME Γ1 .

H 2 H3 D3

H1 (1,1,1) (1,1,1)
D1 (1,1,1) (5,0,−2)

TABLE V
THREE PLAYER GAME Γ2 .

H 2 H3 D3

H1 (1,1,1) (1,1,1)
D1 (1,1,1) (3,0,−2)

are not shared, but it is not CR, since

2 = uP1
(H1,H2,H3)+ uP3

(H1,H2,H3) (9)

< uP1
(D1,H2,D3)+ uP3

(D1,H2,D3) = 3 . (10)

In the similar game Γ2, on the contrary, P3 has no incentive

in deviating from σ = (H1,H2,H3) together with P1, also if

their utilities are shared. Such a deviation yields 0.5 each,

instead of 1 each in σ . Hence, there is no incentive to change

strategy for one or more players and therefore (H1,H2,H3)
should be considered satisfying (P2). Nevertheless, according

to Definition II.5, (H1,H2,H3) is not SR, since at least one of

the deviating parties P1, P3 profits from choosing (D1,H2,D3),
although P3 has no reason to play along. However, in Γ2,

(H1,H2,H3) is CR as

2 = uP1
(H1,H2,H3)+ uP3

(H1,H2,H3) (11)

≥ uP1
(D1,H2,D3)+ uP3

(D1,H2,D3) = 1 . (12)

Remark 1 (Formalizing ((P1) and (P2)). Based on the re-

silience properties of Lemma III.1, we say (P2) is satisfied by

a joint strategy σ , if σ is CR and practical. In addition, a

joint strategy σ satisfies (P1), if σ is weak immune, as in

[19].

We conclude this section by defining secure game strate-

gies/histories, as follows.

Definition III.10 (Secure Strategy). A strategy σ of an

NFG/EFG is secure if it is weak immune, practical and CR.

When discussing security in the setting of EFGs, we are

interested mainly in assessing whether a history is secure, as

the protocol only defines an honest history instead of a full

strategy. By applying Definition III.5, we state the following

security characterization.

Definition III.11 (Secure History). A terminal history β of

an EFG is secure if there exist extended strategies σ1, σ2, and

σ3 of β , such that σ1 is weak immune, σ2 is practical and σ3

is CR.

We note that we do not have to find a secure extended

strategy for the history to be secure, as aiming for one joint

secure strategy in an EFG would be unnecessarily restrictive.

Instead, our goal is to make sure that rational parties follow

the honest history, no matter what their actual strategy is.

In particular, an honest player follows the honest history

by default, a rational player does so because of practicality

and collusion resistance. Weak immunity further ensures that

honest players as well as rational one cannot be damaged by

Byzantine players while following the honest history. Hence,

the strategy each player has in mind does not matter, since

in a secure protocol weak immune, practical, and collusion

resistant, strategies are overlapping along the honest history.

This is the case because in Definition III.11 we require σ1,

σ2, and σ3 to all yield the same history, namely β . We can

therefore admit that an honest player has a weak immune

strategy in mind, while a rational player has a practical one,

as long as these overlap on the honest history.

IV. CLOSING GAMES OF OFF-CHAIN PROTOCOLS

We now define a new two-player EFG, called the Closing

Game Gc, in order to model closing phase properties of off-

chain protocols, in particular of the Lightning Network. As

explained in Section II-A, to close a channel a party can

unilaterally publish a channel state on-chain, which does not

necessarily have to be the latest one. The one who closes,

however, has to wait a certain amount of time until the money

can be used. Meanwhile, the other party can steal all the money

from the channel in case the state published on-chain is not

the latest one: this ensures that rational players close their

channel only with the latest state. Alternatively, the parties

can collaboratively sign a new transaction to split the money.

In this case no one has to wait.

Our closing game overcomes the limitations of previous

work [19] in representing dishonest closing attempts, by mod-

eling how closing can be achieved after a failed collaborative

closing attempt and by also considering the additional fee f

to be paid in a revocation transaction.

To the best of our knowledge, our closing game Gc is the

most accurate model for the security analysis of off-chain

protocols, notably of the Lightning Network. In our model

of the closing phase we make the following assumptions for

a channel between A and B at the moment where the closing

phase is initiated.

• The fair split of the channel’s funds is a → A, b → B and

a > 0, b > 0.

• The benefit of closing the channel is α . Closing a channel

yields a benefit, since it unlocks assets.

• The opportunity cost of having to wait for one’s funds

upon closing is ε .

• When both players agree to update the channel we assume

a fair deal in the background which yields a profit of ρ
for both parties.

• Publishing a revocation transaction on-chain costs a fee

f > 0.

Further, to properly model utilities in the closing game

Gc, we define the following total order, which is crucial for

analyzing security properties of Gc. For capturing total order

properties in the setting of Gc, we extend the set R of real

numbers by the infinitesimal numbers α , ε and ρ .

Definition IV.1 (Utility Order). We consider the total or-

der (U,4), where U is the group resulting from closing

R ∪̇ {α,ε,ρ} under addition. The total ordering 4 is uniquely

defined by the following conditions.

1) On R, the relation 4 is the usual less than or equal

relation 4 |R :=≤.
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TABLE VI
POSSIBLE ACTIONS IN Gc(A).

H Close unilaterally and honestly without reacting to a previous move,
such as a collaborative closing attempt.

D Close unilaterally but dishonestly (without reacting to a previous move)
with a profit of dA ∈ (0,b] in A’s case, dB ∈ (0,a] in B’s case.

Ch Try to close collaboratively and honestly, that is proposing a fair split.

Cc Try to close collaboratively but by cheating the other party by c ∈
(0,b], that means proposing an unfair split.

S Signing the collaborative closing attempt of the other player.

I Ignore the previous action and do nothing.

P Prove other party tried to close dishonestly. That means stating a
revocation transaction. We assume its publication requires a fee of
f > 0 and that the attempt to do so is always successful, that is that
the miners behave honestly.

U+ Propose an update of the channel where player A’s balance is increased

by pA ∈ (0,b].
U− Propose an update where player A’s balance is decreased by pB ∈

(0,a].
A Agree to a proposed update.

2) The values α , ε and ρ are greater than 0,

∀ξ ∈ {α,ε,ρ} : −ξ ≺ 0 ≺ ξ . (13)

3) The values α , ε and ρ are closer to 0 than any real

number,

∀x ∈ R,ξ ∈ {α,ε,ρ},x > 0 : ξ ≺ x, −x ≺−ξ . (14)

4) Additionally, α , ε and ρ have the order ρ ≺ ε ≺ α .

In general, unlocking funds gives additional financial free-

dom even if there is some processing delay; therefore, we

choose ε ≺α in Definition IV.1. Additionally, once the parties

initiate the closing phase, it is reasonable to assume that no

potential update significantly benefits both parties. In contrast,

both parties are interested in avoiding the opportunity cost,

i.e., the cost of having to wait for their funds upon closing,

therefore, we set ρ ≺ ε in Definition IV.1.

Remark 2. While the ordering conditions of Definition IV.1

may seem to be restrictive, lifting them comes with the

burden of considering a high number of possible vari-

able orderings. In particular, one would need to consider

(number of variables)! orderings, which would highly com-

plicate the formal analysis task. Approximating or clustering

the number of orderings, while weakening conditions in Defi-

nition IV.1, is an interesting venue for future work.

Based on the utility ordering of Definition IV.1, we intro-

duce our Closing Game for Player A below.

Definition IV.2 (Closing Game Gc(A) of Player A). The Clos-

ing Game Gc(A) = (N,H ,P,u) is an EFG with two players

N = {A,B}. The tree representation of Gc(A) in Figure 4

defines H , P and u3, with the actions of the game being

summarized in Table VI.

Note that the utility function u of Gc(A) in Figure 4 assigns

player p ∈ N the money player p received minus the money

player p deserved based on the latest channel state. The

values of closing (α), updating (ρ) and waiting (−ε) are also

3The subgames Si, S′i are given in the appendix.

A

B

(α − ε,α)
B

B(−a,a− f +α)

(dA +α − ε,−dA +α)

A

(α,α)

(α,α − ε)S3

S4
A

(c+α,−c+α)

A

A
S′4

S′3
(α,α − ε)

(b− f +α,−b)

(−dB +α,dB +α − ε)

(b− f +α,−b)

(−dB +α,dB +α − ε)

B
S1

S2

(α − ε,α)

(−a,−b)

B
S′1

S′2

(α − ε,α)

(−a,−b)

(−a,a− f +α)

(dA +α − ε,−dA +α)

(−a,a− f +α)

(dA +α − ε,−dA +α)
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H
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P

I

D

H

I
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U− U−

U+

I

H

D

P

I

P

I

HU+

U− D

I

S S
I

D
U−

U+
H

P

I

P
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Fig. 4. Closing Game Gc(A).

considered in Figure 4. As discussed in Section II-A, the fee

needed for the closing transaction is assumed to have been

reserved among the locked funds in the channel all the time

and is spent upon closing, therefore not affecting the players’

channel balance.

The closing game for player B, Gc(B) is defined similarly

to Gc(A), with the roles of A and B being swapped in

Definition IV.2. Based on the closing games Gc(A) and Gc(B),
we consider the closing phase in an off-chain channel as given

in Figure 5 and defined below.

Definition IV.3 (Closing Phase). The closing phase of an off-

chain channel modeled by a closing game Gc(A) is initiated

in one of three ways: (i) A starts with a closing action C, and

thus triggers the closing game Gc(A); (ii) A does not start a

closing action, thus performing action ignore I, but B starts

with a closing action C and triggers Gc(B); or (iii) none of

the players A and B ever start closing, that is B also choosing

action I, in which case the money stays locked in the channel.

Then, we get the EFG ΓC from Figure 5 modeling the closing

phase of Gc(A) and Gc(B).
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A

Gc(A)

B

Gc(B)

(−a,−b)

C

I

C

I

Fig. 5. Closing Phase ΓC.

V. CLOSING GAMES FOR SECURE LIGHTNING CHANNELS

We now show that the closing games from Definition IV.2

precisely capture secure closing phases in Lightning chan-

nels [6]. Namely, the following two terminal histories of clos-

ing games model the honest behavior of Lightning: (i) history

(H) from Figure 4 represents unilateral honest closing of A,

yielding utility (α −ε,α); and (ii) history (Ch,S) captures the

attempt of A to close collaboratively and honestly, while B

signs, with a utility of (α,α). Our security analysis focuses

on these two honest histories of Lightning channels.

Definition V.1 (Honest Closing). The only honest histories in

the closing game Gc(A) are the terminal histories (H) honest

unilateral closing and (Ch,S) honest collaborative closing. All

strategies yielding one of the two histories are considered

honest strategies.

In the following, the values dA (resp. dB) defined in Table VI

(line D) represent the difference of funds between the latest

state and the old one that is dishonestly posted on chain by

A (resp. B). In other words, if (a,b) is the latest state, the

one posted on chain is (a+dA,b−dA) (resp. (a−dB,b+dB)),
thus enabling dishonest closing attempts of profit dA for A

(resp. dB for B). The values pA,B (Table VI, lines U+, U−)

and c (Table VI, line Cc) can respectively be chosen by A

and B at the time of the action and do not depend on previous

distribution states. Based on this setting, we derive the security

properties (P1) and (P2) of Lightning channels as given below.

The omitted proofs are given in the appendix.

Theorem V.1 (Weak Immunity of Honest Behavior – (P1)).

The terminal histories (H) of honest unilateral closing, and

(Ch,S) of honest collaborative closing of Gc(A) are weak

immune, if the channel balances are higher than the fee

required in a revocation transaction, that is if a≥ f and b≥ f .

Theorem V.1 implies that as long as both players have a

minimal balance of f in the channel, no honest player can

lose money. As such, Theorem V.1 establishes the security

property (P1) ensuring “no honest loss” in the channel.

Further, to ensure the security property (P2) of “no devia-

tion”, we require that

a− pB + dA ≥ f and (15)

b− pA + dB ≥ f . (16)

To understand the inequations (15)-(16) consider the history

(Ch,I,U
−,A,D) in Figure 4, respectively S′1. This history for-

malizes the case where A attempts honest collaborative closing

(action Ch) and B ignores it (action I). Then A proposes an

update (action U−) from state (a,b) to state (a− pB,b+ pB)
and B agrees (action A). Finally, A closes dishonestly (action

D) using the old distribution state (a− pB + dA,b+ pB − dA).
Let us also study the options B has. By ignoring A’s behavior

(action I), B receives b+ pB − dA instead of the fair amount

b + pB, leaving B with a loss of dA. By publishing the

revocation transaction (action P), B receives a+ b but has to

pay the fee f for pushing it on the blockchain, which leads

to a win of a− pB − f . Therefore, the win should be greater

than the loss; hence

a− pB− f ≥−dA ⇔ a− pB+ dA ≥ f , (17)

in order for a rational B to publish the revocation transaction.

This in turn yields a loss for A and hence discourages A

from closing dishonestly, which is necessary for the incentive

compatibility (P2) of Lightning’s closing phase. By swapping

A’s and B’s roles, we get the prerequisite formulated in

(16). These extreme cases of dishonest closing subsume the

others. Thus, the only preconditions we need in the following

Theorem V.2 are (15)–(16). In summary, formulas (15)–(16)

ensure that ignoring any dishonest closing attempt is worse

than publishing the revocation transaction. Property (P2) is

then established by the following theorem.

Theorem V.2 (Incentive-Compatibility – (P2)). If a− pB +
dA ≥ f and b− pA+ dB ≥ f , then

1) honest unilateral closing (H) is CR, but not practical.

2) honest collaborative closing (Ch,S) is CR. It is practical

iff c 6= pA.

Remark 3 (Explanation of c 6= pA). The condition c 6= pA

in Theorem V.2 has the following relevance. Player A can

in principle choose to propose dishonest collaborative closing

(action Cc), providing A an unfair advantage of value c. Then,

either B (action U+) or A (B choosing action I to ignore

first, then A taking action U+) can propose a channel update

(a,b) 7→ (a + c,b− c). The value of the update pA is now

equal to the amount player A cheated with in Cc: pA = c.

In this special case, the closing game behaves differently.

The described histories (Cc,I,U
+) and (Cc,U

+) lead to the

subgames S′1 and S′3 respectively. Let us consider S′3 with

pA = c.

Assume A agrees to the update, action A, and player B

signs the initially unfair collaborative closing attempt of A.

Since in the meantime the channel was updated by the exact

amount that A tried to cheat with, the pending collaborative

closing now contains the fair split. Therefore, both players

profit from this course of action, yielding utility (ρ+α,ρ+α).
The analog can be achieved in subgame S′1 with the history

(A,I,S). In fact, for pA = c, those histories are the only

practical ones and provide the mutually best outcome possible.

However, updating to (a+ c,b− c) first and then closing

honestly and collaboratively yields the exact same result. This

is why we study the closing game without the possibility of up-

dating after a closing attempt in the next section Section V-A.

We now state our first main security theorem. Since (H)
is not practical, a rational player will not play it. Hence,

the terminal history (H) is not secure. We get the following
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security result instead for (Ch,S).

Theorem V.3 (Security of Gc(A)). If a ≥ f , b ≥ f , a− pB +
dA ≥ f , b− pA + dB ≥ f , and c 6= pA, then the closing game

Gc(A) together with the honest behavior (Ch,S) is secure.

Proof. As a ≥ f and b ≥ f , we have that (Ch,S) is weak

immune (Theorem V.1). Since a − pB + dA ≥ f , we derive

b − pA + dB ≥ f and c 6= pA, we have that (Ch,S) is also

practical and CR (Theorem V.2). Hence, by Definition III.11,

(Ch,S) is secure.

Theorem V.3 implies that for honest and rational players the

action of collaborative closing followed by signing (Ch,S) is

the best way to close an off-chain channel. It also implies, that

rational adversaries will cooperate. Further, Byzantine players

represent no threat as long as their channel balances are high

enough and they do not engage in special cases of channel

updates after a collaborative closing attempt.

We note that for proving our security properties (P1)-(P2)

in Theorem V.1–Theorem V.3, we rely on a succinct analysis

of the finite graph properties of the closing game GC(A)
from Figure 4. While automated approaches analyzing a finite

number of graph properties exist, see e.g. [42], [43], these

approaches cannot handle (game) graphs where graph leaves

contain variables, instead of specific numerical values, which

is the case of GC(A). For such cases, automated reasoning

tools, such as theorem provers, need to be combined with

graph-theoretic manipulations of GC(A), an approach we aim

to investigate as a future work towards automating the security

analysis (and proofs) of closing games.

A. Closing Games without Updates

We will now consider a variation of closing games without

updates, as updating is not beneficial for at least one player

upon closing. Furthermore, we avoid special cases such as

the one described in Remark 3, which should be equivalent

to updating before initiating Gc(A), and then closing honestly

and collaboratively. As such, the closing game Gc(A) without

updates results from removing all actions U+ and U− in

Figure 4. For the resulting closing game Gc(A) without updates

we get the following security result similar to Theorem V.3.

Theorem V.4 (Security of Gc(A) without Updates). If a ≥ f

and b ≥ f , then the closing game Gc(A) without updates and

together with both honest histories (H) and (Ch,S) is secure.

Proof. We respectively fix honest strategies σ and σ ′ for

histories (H) and (Ch,S); let σ ′ have A choosing Ch initially, P

after (Ch,D) and H after (Ch,I), and then B choosing S after

(Ch), P after (D) and H after (Cc). Infer that the deviation of A

causes negative utility for B, whereas the deviation of B leads

to non-negative utility for A as b− f ≥ 0. By Theorem V.1 we

thus have that σ ′, and therefore (Ch,S), are weak immune. In

addition, Theorem V.1 implies that also (H) is weak immune.

To show practicality, we compute all subgame perfect

terminal histories. From a ≥ f and b ≥ f we have a+dA ≥ f

and b+dB ≥ f . Since closing with a dishonest behavior yields

utility a − f + α , b − f + α respectively, whereas ignoring

a dishonest behavior leads to −dA + α and −dB + α , we

conclude that the best choice after action D is always P. Thus,

A’s best choice after (Ch,I) and (Cc,I) is H. Therefore, B has

the two subgame perfect options I and S after (Ch), and only

I after (Cc), yielding thus the following practical histories:

history (Ch,S) with utility (α,α); and (Ch,I,H), (Cc,I,H),
and (H) each with utility (α −ε,α). Therefore, both (H) and

(Ch,S) are practical.

Note that every practical terminal history is a Nash Equi-

librium, since if a deviation could benefit a player, the player

would have chosen differently already. As CR is equivalent

to Nash Equilibria in two-player games (by Definition II.5

and Lemma III.1), we use Definition III.7 and Lemma III.1 to

conclude that practicality of (H) and (Ch,S) implies collusion

resistance CR of (H) and (Ch,S). As (H) and (Ch,S) are both

weak immune, practical and CR, by Definition III.11 we infer

that they are also secure.

Remark 4. Note that the analysis of utilities in the closing

game Gc(A) crucially depends on constraints of the under-

lining ordering that we set in Definition IV.1, and thus on

the values of variables a,b,c,dA,B, f in Table VI. In general,

the bigger ε gets in Definition IV.1, the more discouraged

is closing unilaterally in Table VI, and hence in Figure 4.

Further, B is more likely to accept a dishonest collaborative

closing attempt Cc, as it is better to lose c than to lose ε .

We further study what happens if a player has almost no

funds left in a channel. In particular, we show that security

properties, in particular weak immunity and practicality, are

violated in this case, thereby formalizing the following folklore

in the community.

Theorem V.5 (Little Funds). If a < f , then only terminal

histories that involve an explicit cheating attempt are weak

immune in the closing game Gc(A) without updates. A terminal

history involves an explicit cheating attempts if one of its

actions is Cc or D.

Proof. Let σ be any strategy, yielding a history that does not

involve an explicit cheating attempt. Then A can deviate to a

strategy where A chooses D as its first action. In this case, the

honest B gets negative utility, no matter whether B chooses P

or I, since a < f . Hence, only histories that involve explicit

cheating attempts can be weak immune.

We next derive the following results on security properties.

Corollary 1. If there exists an old channel state (a+ dA,b−
dA), with a+ dA < f , then neither history (H) nor (Ch,S) is

weak immune nor practical, but CR.

Corollary 2. A rational party should never, in any channel,

let the opponent’s balance fall below f , because at that point

the other party can always cause financial loss by closing

dishonestly and unilaterally4.

4The special edge cases a = 0 or b = 0 are considered in the appendix.
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Proof. Once the opponent’s balance is below f , that party can

start the closing game, therefore the opponent becoming A.

Thus, by applying Theorem V.5, it follows that the opponent

can make the rational player lose money by closing unilaterally

and dishonestly. If it is not the first time that A’s balance is

below f and the respective old state contains a higher balance

for A than the latest one, then we are even in the situation

of Corollary 1. It is thus rational of A (practical) to close

dishonestly.

B. Optimal Strategy for Closing Off-Chain

To summarize, our security analysis based on closing

games for Lightning channels yields the following results.

Theorem V.4-Theorem V.5, together with with Corollary 1-

Corollary 2, allow us to derive the optimal strategy for closing

an off-chain channel for a rational and suspicious player. We

next describe and illustrate this optimal strategy, highlighting

the main steps of our security analysis based on Theorem V.4-

Theorem V.5.

Without loss of generality, we assume the current state of

the channel is (a,b).

The player, assumed to be player A, who initiated the closing

phase shall:

• try to close honestly and collaboratively (action Ch), if

there does not exist an old state (a+ dA,b− dA), where

dA > 0 and a+ dA < 0. In case the other player, that is

player B, does not sign (action S), player A shall close

honestly and unilaterally (action H).

If player B closed dishonestly and unilaterally (action D),

player A shall:

– state the revocation transaction (action P), if the state

used for cheating was (a− dB,b+ dB), where dB > 0

and b+ dB ≥ f .

– ignore the cheating otherwise (action I), as it yields

less loss.

• close dishonestly and unilaterally (action D), if there

exists an old state (a+ dA,b − dA), where dA > 0 and

a + dA < f . In this case, player A shall use the old

distribution state (a+d′
A,b−dA), with the highest d′

A > 0

that still satisfies a+ d′
A < f .

The reacting player, in this case assumed to be player B, shall:

• sign the collaborative honest closing attempt (action S), if

applicable, if there is no old state (a−dB,b+dB), dB > 0

in which the funds of player B are less then f , that is if

b+ dB < f .

• close honestly and unilaterally (action H), in case of a

dishonest collaborative closing attempt (action Cc). This

holds, if there is no old state (a− dB,b+ dB), dB > 0

in which the player B’s funds are less then f , that is

b+ dB < f .

• otherwise ignore (action I) the collaborative and hon-

est/dishonest closing attempt, if applicable, and close

dishonestly and unilaterally (action D), using the old state

(a−d′
B,b+d′

B), with the highest d′
B > 0 that still satisfies

b+ d′
B < f .

• state the revocation transaction (action P), if player A

tried to close dishonestly and unilaterally (action D) with

state (a+ dA,b− dA), where dA > 0 and a+ dA ≥ f .

• ignore (action I) if player A closed dishonestly (action

D), in the case where a+ dA < f , as it yields less loss.

Example V.1. Let players A and B share a channel with initial

balance (5,5) and let us assume the fee for publishing a

revocation transaction f = 2. After the first update let their

state be (3,7). The optimal way for A to close now is Ch and

for B to sign. Dishonest closing would cause B to publish the

revocation transaction, yielding a loss of 3 for A and a profit

of 3− 2 = 1 for B.

The next update could be (1.8,8.2). The best way to close

for A is still Ch. Dishonest closing using (3,7), for example,

would still cause B to publish the revocation transaction.

Player B would in this case lose 1.8−2=−0.2, but he would

lose more, 7− 8.2 =−1.2, by ignoring it.

Another update could be (1,9). Now the optimal strategy

for A to close is D, using the old state (1.8,8.2). Ignoring the

dishonest closing (action I) brings B −0.8, but proving A’s

cheating (action P) leads to 1− 2 =−1. Hence, a rational B

will choose to ignore (action I), that means B does not publish

the revocation transaction.

VI. BEYOND CLOSING GAMES FOR OFF-CHAIN SECURITY

Our game-theoretic analysis so far focused on using closing

games to capture security properties of off-chain channels

(Section IV), and in particular of Lightning channels (Sec-

tion V). In this section, we show that our game-theoretic

formalism from Section III is expressive enough to analyse

more complex protocols than just closing phases in Lightning

channels. In particular, we introduce a new EFG, called

the Routing Game in Section VI-A, and use this game in

Section VI-B to disprove security of Lightning’s routing

mechanism amid the Wormhole and Griefing attacks [7], [20].

We also discuss a natural extension of our analysis to model

other off-chain protocols in Section VI-C.

A. Routing Games for Lightning’s Routing Module

We first propose a new EFG, called the Routing Game,

showing that EFGs can capture actual attacks, in this case the

Wormhole attack [7] and the Griefing attack [20], which were

overlooked for example in [19]. Specifically, the below defined

routing game considers fees f , and supports actions allowing

the intermediaries to choose not to claim their money using

the secret x but instead to forward it to another intermediary

(as explained in Section II-A). Additionally, other deviations

such as creating a conditional payment (i.e. HTLC) with a

different hash value, a different amount, or a different time-

out than expected are also considered. For simplicity, we chose

to model our routing game below with five players; however,

an arbitrary number of intermediaries can be modeled.

Definition VI.1 (Routing Game Grout). The routing game

Grout = (Nr,Hr,Pr,ur) is an EFG with five players N =
{A,E1, I,E2,B}, where
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Fig. 6. Partial Definition of the Lightning’s Routing Grout and the Fulgor Model GFul. The olive colored subtree only applies for Grout.

• the histories Hr, the next player function Pr, and the

utility function ur are defined via the tree representation

of Figure 6. The utility tuples in Figure 6 assign the first

value to A, the second to E1, the third to I, the fourth to

E2, and the last to B;

• the actions of Grout are as listed in Table VII.

We note that our Routing Game Grout has four types of

subgames, as modeled in Figure 6 and described next: (i)

subgames that result from sending the secret to another player

Si; (ii) subgames that result from locking a wrong amount of

money in the HTLC Si; (iii) subgames that result from using a

wrong time-out in an HTLC Si; and (iv) subgames that result

from using a wrong hash value as lock in the HTLC Si. We

further note that Figure 6 only gives a partial model, as not all

subgames are presented in Figure 6. However, within one type

of subgame, the game trees are similar. Therefore, we provide

only one instance of each type in the appendix, which are the

subgames S1, S2, and S3. An instance of a secret forwarding

subgame capturing the Wormhole attack can be seen in Grout,

as the subtree after history (SH ,L,L,L,L,U,SSE1
).

Let us emphasize that the utility function ur of Grout assigns

each player p ∈ N the relative profit of their routing actions

and does not mirror the individual channel balances. It also

takes the value ρ of a successful payment and the opportunity

cost ε into account.

As in the closing games Gc(A) and Gc(B), we aim to align

utility and monetary outcome as tight as possible. We adjust

the ordering (U,4) of Definition IV.1 by not assuming that

ρ ≺ ε , since achieving an update is the ultimate goal of the

routing protocol. We also consider the utility relative to the

amount due to each party.

B. Security Analysis of Lightning’s Routing Module

Let us recall Figure 1 and Figure 2, where player A wants

to pay another player B money of value m. Since, A and B

do not share a channel, the three intermediaries E1, I,and E2

support the payment, with each receiving a fee f > 0 for their

collaboration if the payment is successful. Each player who

creates an HTLC locks her money for a given time, yielding

an opportunity cost of ε if the money is returned. If the

transaction fails, before anyone has unlocked an HTLC, all

parties get utility 0 or −ε , depending on whether they created

an HTLC or not. Otherwise, the intermediaries’ utilities are

according to their financial win/loss. The parties A and B both

receive ρ once B is paid. Should the transaction fail after B
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is paid, but before A has paid, she has utility m+3 f +ρ − ε;

once E1 collects the money, A’s utility is ρ .

In the sequel, we consider the behavior from Figure 1 as

the only honest history in Grout, as also formalized next.

Definition VI.2 (Honest Routing). The only honest history in

the routing game Grout is the history (SH ,L,L,L,L,U,U,U,U).
All strategies yielding this history are considered honest

strategies.

Using our model Grout and its honest behavior, we derive

the following result.

Theorem VI.1 (Vulnerability of Grout to Wormhole Attacks).

The honest behavior (SH ,L,L,L,L,U,U,U,U) of the Routing

Game Grout is not CR.

Proof. The utility of the honest behavior of the routing module

(SH ,L,L,L,L,U,U,U,U) is (ρ , f , f , f ,ρ) (as indicated in red

in Figure 6). Let us compare this behavior and utility to

the deviating terminal history (SH ,L,L,L,L,U,SSE1
,U,I) with

a utility of (ρ , m + 3 f − ε, −ε, −m, ρ) (given in blue in

Figure 6). It is not hard to argue that the collusion of E1 and E2

(and B by not sending the secret to I) strictly profits from the

deviation, which yields a joint utility of 3 f − ε +ρ , whereas

the honest behavior only yields a joint utility of 2 f +ρ . As

such, collusion resistance CR is violated, since no honest

player can prevent the Wormhole attack from happening by

following any honest strategy (that is, a strategy σ whose

history is the honest behavior (SH ,L,L,L,L,U,U,U,U)).

In conclusion, Theorem VI.1 formally proves that Light-

ning’s routing module is susceptible to the Wormhole attack.

We further extend this result by noting that not only can Grout

capture the Wormhole attack, but also the Griefing attack, as

stated below.

Theorem VI.2 (Vulnerability of Grout to Griefing Attack).

The honest behavior (SH ,L,L,L,L,U,U,U,U) of the Routing

Game Grout is not weak immune.

Proof. For showing that history (SH ,L,L,L,L,U,U,U,U) is

not weak immune, we prove that no strategy which yields this

history is weak immune. Let us consider any such strategy

TABLE VII
POSSIBLE ACTIONS IN GROUT .

SH Sharing the secret’s Hash to enable the others to create HTLCs (action
1 in Figure 1, Section II-A).

L Lock money, as defined in actions 2–5 in Figure 1, in an HTLC.

U Unlocking the money from an HTLC (actions 6–9 in Figure 1). Thereby
the secret is revealed to the HTLC’s creator.

I Ignoring all the previous actions and do nothing. If applicable, until
the unlockable HTLC has timed out.

SS Sending the Secret to another player. If it is sent to a specific player
(not leading to Si) this player is indicated by another subscript.

LH Locking money in an HTLC, that uses a different Hash-lock than
described in Figure 1.

LA Locking a different Amount of money in an HTLC, than described in
Figure 1.

LT Locking money in an HTLC, whose Time-out is different from the
values described in Figure 1.

A E1 I E2 B

1.

y2,x2,ZKP2 y3,x3,ZKP3 y4,x4,ZKP4 x1 + x2 + x3 + x4

(m+3 f ,y1 ,t1)

2.

(m+2 f ,y2 ,t2)

3.

(m+ f ,y3 ,t3)

4.

(m,y4,t4)

5.

x1 + x2 + x3 + x4

6.

x1 + x2 + x3

7.

x1 + x2

8.

x1

9.

Fig. 7. Routing in Fulgor.

σ . Then, player A has to choose action L after B sent her

the secret, that is history (SH). Assume now E1 deviates and

chooses to ignore (action I). Then A’s utility is −ε ≺ 0. Hence,

history (SH ,L,L,L,L,U,U,U,U) is not weak immune.

We also obtain the following result as an immediate conse-

quence of Theorem VI.1 and Theorem VI.2.

Corollary 3 (Security of Routing Module). The honest be-

havior (SH ,L,L,L,L,U,U,U,U) of the Routing Game Grout is

not secure. Hence, the Routing Game Grout is not secure.

C. Further Routing Protocols Beyond the Lightning Network

We conclude this paper by arguing that our EFG games,

either closing or routing games, are not restricted to Lightning

networks but can be used for other protocols as well. In

the remaining of this section, we illustrate how to model

Fulgor [38], a payment channel network protocol that fixes

the Wormhole attack, but not the Griefing attack.

The routing mechanisms used in Fulgor is similar to Light-

ning’s routing, and is similarly based on HTLCs. The main

difference lies in the structure of the secrets and their hashes.

Indeed, while Lightning uses the same secret x for every

HTLC, Fulgor provides a different secret and hash lock for

each player.

Fulgor’s routing mechanism is illustrated in Figure 7, where

player A generates different secrets and hash locks at the

beginning. The secrets and the hashes relate in the following

way: h(x1) = y1, h(x1 + x2) = y2, h(x1 + x2 + x3) = y3 and

h(x1 + x2 + x3 + x4) = y4. Therefore, a player only gets to

know a sum of secrets when the right-hand party unlocks

and subtracts the secret value received from A to unlock

their HTLC. A also provides a zero-knowledge-proof ZKPi

for each intermediary [44] to prove that the secrets and hashes

constructed this way guarantee successful unlocking of the left

HTLC, which is essential to not lose funds.

The game-theoretical (EFG) model of Fulgor GFul re-

ported in Figure 6 looks similar to the routing game Grout,

yet, with one significant difference. Consider the history

(SH ,L,L,L,L,U,SSE1
) in Figure 6, which enables player E1

to unlock (action U) the HTLC created by A. In Fulgor, the

same history does not enable E1 to unlock the HTLC. As

Figure 7 shows, the secrets that E2 can share after action 6

are x4 and x1 + x2 + x3 + x4. Further, E1 only knows x2, thus

there is no way to compute x1. This is however the value

needed to unlock the HTLC created by A. Indeed, Fulgor is
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not affected by the Wormhole attack. Nevertheless, similarly

to Theorem VI.2, the honest behavior of Fulgor is not weak

immune, as it is vulnerable to the Griefing attack.

VII. CONCLUSIONS

Our work advocates the use of Extensive Form Games

(EFGs) for the game-theoretic security analysis of off-chain

protocols. In particular, we introduce two instances of EFGs to

model the closing and the routing of the Lightning Network.

By doing so, we take the first step towards closing the gap

existing security proof techniques have due to using informal

arguments about rationality. We express security properties as

formal requirements over joint strategies in EFGs, allowing us

to establish optimal strategies for closing off-chain and capture

security vulnerabilities amid attacks. Given the theoretical ex-

pressiveness of our EFGs, future work includes the definitions

of new games to capture a wider range of off-chain protocols.

To overcome the burden of tedious manual analysis, we

also plan to leverage SMT solving and/or automated theorem

proving in order to provide automated security proofs.
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APPENDIX

A. Proof of the Resilience Properties

We restate the results for better readability.

Lemma III.1 (Resilience Properties). Let σ ∈ S be a joint

strategy. The following and only the following implications

hold.

1) σ is SR⊆ ⇒ σ is SR, CR, sNE.

2) σ is SR ⇒ σ is CR.

SR⊆SR

sNECR

Proof. We start by showing property (2). Let σ be SR and

let S = {s1, ...,s j} ⊂ N, σ ′
S ∈ SS be arbitrary but fixed. Then,

for all p ∈ S we have up(σ) ≥ up(σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

])

and thus also ∑p∈S up(σ) ≥ ∑p∈S up(σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

]).
Hence σ is CR and the implication is proven. For implication

(1) we see that SR⊆ ⇒ SR is trivial. If the property is

satisfied for every S ⊆ N, then it is also satisfied for every

S ⊂ N. By (2) and the transitivity of implication we also get

SR⊆ ⇒ CR. For the last implication let σ be SR⊆ and let

S = {s1, ...,s j} ⊆ N, S 6= /0 and σ ′
S ∈ SS be arbitrary but fixed.

Then there exists some p∈ S and by definition all p∈ S satisfy

up(σ)≥ up(σ [σ ′
s1
/σs1

, ...,σ ′
s j
/σs j

]). Therefore, σ is sNE.

To prove that no other implication holds between those four

concepts, we provide three counterexamples. An overview of

which game disproves which implication is given in Table IX.

The three-player NFG Γ1 in Table IV shows a joint strategy

(H1,H2,H3) that is sNE, but not CR (refer to Example III.5).

Using the just proven (1) and (2), we get that (H1,H2,H3) is

also not SR nor SR⊆.

The three-player game Γ2 (Table V) shows a strategy

(H1,H2,H3) that is CR, but not SR (see Example III.5) and

thus also not SR⊆ (property (1)). It is, however, sNE: The

only relevant deviation from (H1,H2,H3) is (D1,H2,D3), as it

yields a different utility (3,0,−2) instead of (1,1,1). While

player P1 profits in this case, player P3 does not. One deviating

player not profiting suffices for a strong Nash Equilibrium,

thus (H1,H2,H3) is sNE.

To prove the remaining implications incorrect, we consider

the two-player game Γ3 in Table VIII. We can easily see

that (H1,H2) is not SR⊆, nor sNE. This is the case, as all

players {P1,P2} can deviate to play (D1,D2) which yields a

strict increase for both. However, since no player profits from

deviating alone, (H1,H2) is still SR and CR.

B. Results of Security Analysis and Their Proofs

In this section all omitted proofs of the results from Section

V are provided. Additionally, the results Theorem A.1,

Theorem A.2 and Theorem A.3 about edge cases are stated

TABLE VIII
GAME Γ3 .

H2 D2

H1 (1,1) (1,1)
D1 (1,1) (2,2)

17



TABLE IX
OVERVIEW OF IMPLICATIONS AND COUNTEREXAMPLES.

→ SR SR⊆ sNE CR

SR Γ3 Γ3 X

SR⊆ X X X

sNE Γ1 Γ1 Γ1

CR Γ2 Γ2 Γ3

and proven.

Theorem V.1 (Weak Immunity of Honest Behavior – (P1)).

The terminal histories (H) of honest unilateral closing, and

(Ch,S) of honest collaborative closing of Gc(A) are weak

immune, if the channel balances are higher than the fee

required in a revocation transaction, that is if a≥ f and b≥ f .

Proof. Let a,b ≥ f . For history (H), we consider any strategy

σ , where A chooses H after the empty history /0, B chooses

S after (Ch), P after (D) and H after (Cc). Such a strategy

σ yields terminal history (H). If we can show that σ is

weak immune, also history (H) is weak immune by Definition

III.11. Assume, player A honestly follows σ , i.e., choosing

(H), then B’s deviation from σ cannot affect the outcome.

Thus, A’s utility remains non-negative. The other way around,

if B follows σ , A can deviate to any initial action Ch, D or Cc,

player B’s utility never drops below 0, by following strategy

σ , as a ≥ f . Since honest players cannot get negative utility,

σ is weak immune.

Similarly, for (Ch,S), we consider any strategy σ ′, where

A chooses Ch initially, player B chooses S after (Ch), P after

(D) and H after (Cc). Further, player A takes P after (Ch,D)
and H after (Ch,I), (Ch,U

+) and (Ch,U
−). This strategy σ ′

yields terminal history (Ch,S). Deviation of A has the same

effects as before, never causing the honest B, who follows σ ,

negative utility. If B deviates now to one of U+, U−, I, D,

or H, honest A, following σ , also never gets negative utility,

since b ≥ f . Therefore, σ ′ and hence history (Ch,S) are weak

immune.

Theorem V.2 (Incentive-Compatibility – (P2)). If a− pB +
dA ≥ f and b− pA+ dB ≥ f , then

1) honest unilateral closing (H) is CR, but not practical.

2) honest collaborative closing (Ch,S) is CR. It is practical

iff c 6= pA.

Proof. Let us first prove collusion resilience CR of (H) and

(Ch,S). As in the previous proof, we only have to find a

strategy σ that yields history (H) and another strategy σ ′

yielding history (Ch,S), that are CR, to prove (H) and (Ch,S)
CR, as defined in Definition III.11. Additionally, collusion

resilience is defined on strict subsets of players. Thus, in a

two-player game, it considers only deviations of single players

and since the summation over one value is the value itself,

CR is equivalent to being a Nash Equilibrium in this case.

We therefore only have to check whether σ and σ ′ are Nash

Equilibria.

For (H), we consider a strategy σ , where player A chooses

H initially, player B chooses I after (Ch), and I after (Cc).
Additionally, player B always chooses P after a history

(...,D), where the last action was D. Player A takes action

H after (Ch,I) and (Cc,I). Further, B takes action I after

(Ch/c,I,U
+/−) (subgames S1, S2, S′1, S′2 in Figure 10). For A,

we finally assume she takes action H after (Ch/c,I,U
+/−,I).

This strategy yields history (H). Deviations from σ of player

B cannot change the utility, hence in particular cannot increase

his utility. Let us consider deviations of player A. A deviation

to D at any point in the game, leads to A losing all her funds

a, which is a strict decrease in utility. This is the case because

in σ player B always chooses P after D. Therefore this option

is not a threat. If A deviates to Ch or Cc initially, we end up in

(Ch,I), (Cc,I) respectively. Closing honestly (action H) here

leads to the same utility as not deviating. Also a deviation to

I does not lead to a better utility. The options she has left is

taking U+ or U−. Either way, B takes I and leaves A similar

choices to before: action H or action I, both of which do

not yield a better utility for her. Since no player can increase

their utility by deviating from σ , it is a Nash Equilibrium, and

hence (H) is too.

To show that (Ch,S) is a Nash Equilibrium, we consider a

strategy σ ′, where A picks Ch initially, B chooses S after (Ch),
P after (D) and H after (Cc). Further, let A pick P after (Ch,D),
H after (Ch,I) and (Ch,U

+/−) (subgames S3, S4 in Figure 11).

This strategy σ ′ has terminal history (Ch,S). A deviation of

player B, results in either the same utility (choosing action I,

U+, or U− after (Ch) and having A taking H) or in strictly

worse utility (choosing H or D, where A takes P). Every other

deviation has no impact on the resulting history. Similarly,

player A cannot profit from deviating. Choosing action H or

D initially, leads to a strict loss, as B plays P, whereas taking

action Cc yields the same utility for A (as B will take action

H). Every other deviation has no impact on the history. Hence,

no player can increase their utility by deviating, which makes

σ ′ and therefore (Ch,S) a Nash Equilibrium.

To prove the practicality properties, we compute all sub-

game perfect equilibria of Gc(A). We compute subgame per-

fect equilibria bottom-up. That is, we start comparing the

utility of subtrees with leaves only. In Gc(A), these are for

example the subgames after history (Ch,I,D) or (Cc,D). For

the latter, A is the player to choose the action. To compute the

subgame perfect equilibrium, we have to compare all possible

utilities for A after (Cc,D). We then replace this internal node

labelled A, by the utility that yields the best value for A and

proceed until we reach the root. If there is no single best choice

for a player, then all actions resulting in best utility have to

be considered. Applying this procedure to the subgames S1-S4

and S′1-S′4 we get subgame perfect terminal history (A,H) with

utility (ρ+α−ε,ρ+α) for S1. For S2 we get terminal history

(S) yielding (α,α) and (I,H), yielding (α −ε,α). For S3 and

S4 it is (I,S) with (α,α). The subgame S′1 has practical history
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(I,H), with (α −ε,α) if c > pA, (A,I,S) with (ρ +α,ρ +α)
if c = pA and (A,H) with (ρ +α − ε,ρ +α) if c < p. The

subgame S′2 has practical history (I,H), yielding (α − ε,α).
For S′3 and S′4 in Figure 11 we get (I,H) with (α,α − ε)
and additionally for S′3, if c = p, we also have (A,S) yielding

(ρ +α,ρ +α). All of these results are based on the facts

a− pB + dA ≥ f and b− pA + dB ≥ f , since this causes the

revocation transaction always to be better than ignoring the

dishonest unilateral closing attempt.

Based on these preliminary results, we can now com-

pute the subgame perfect equilibria for Gc(A) considering

multiple practical histories and case splits as stated: If c =
pA, then (Cc,U

+,A,S) and (Cc,I,U
+,A,I,S) are practical,

both yielding (ρ + α,ρ + α). If c > pA, then the histo-

ries (Ch,S), (Ch,U
+,I,S), (Ch,U

−,I,S) and (Ch,I,U
−,S) all

leading to (α,α) are practical, as well as terminal history

(Ch,I,U
+,I,H), yielding (ρ + α − ε,ρ + α). For c < pA,

all the histories and their utilities from c > pA are practical.

Additionally (Cc,I,U
+,A,H) is subgame perfect in this case

and also results in utility (ρ +α − ε,ρ +α).

This shows, that (H) is never practical and (Ch,S) is

practical if and only if c 6= pA.

1) Results without Updates:

Corollary 1. If there exists an old channel state (a+ dA,b−
dA), with a+ dA < f , then neither history (H) nor (Ch,S) is

weak immune nor practical, but CR.

Proof. We fix the old distribution state such that the difference

dA to the latest state is the value of A’s dishonest closing

attempt in the closing game. As a+ dA < f implies a < f ,

Theorem V.5 applies. Therefore, neither (H) nor (Ch,S) are

weak immune.

In order to show that they are also not practical, we prove

instead, that the only practical history is (D,I). Since a+dA <
f , I is the best choice for B after (D), (Ch,I,D) and (Cc,I,D).
Consequently, A will choose D after (Ch,I) and (Cc,I). If

now b+ dB ≥ f , then A’s best choice is P after (Ch,D) and

(Cc,D). Thus, B will take S after (Ch) and H after (Cc). In the

other case, b+ db < f , A’s best option is I after (Ch,D) and

(Cc,D), thus B’s best choice after (Ch) and (Cc) is D, which

yields a negative utility for A. Therefore, in both cases A’s

only subgame perfect action is D. Hence, (D,I) is the unique

subgame perfect history.

For CR, we show instead that there exist extensions (Defini-

tion III.11) σ of (H) and σ ′ of (Ch,S) that are Nash Equilibria.

Let σ be the strategy, where A chooses H, everyone chooses

P after a dishonest closing attempt D, B chooses I after (Ch)
and (Cc) and A chooses H after (Ch,I) and (Cc,I). Then,

player B’s deviations have no impact, thus cannot not increase

his utility, and player A’s deviations either lead to the same

utility as σ , or to the strictly worse utility −a. Anyway, no

player can deviate to increase their utility and therefore σ
and thus (H) is CR. To prove (Ch,S) is CR, we consider the

strategy σ ′, which is the same as σ , except A initially chooses

Ch and B chooses S after (Ch). A deviation of A either leads

to utility α − ε for her, which is worse than σ ’s utility, or

to utility −a, which is even worse. For B, a deviation either

leads to the same utility α (taking I after (Ch)), to a slightly

worse α − ε (choosing H after (Ch)) or to the way worse −b

(D after (Ch)). Every other deviation has no impact on the

history. Hence, as nobody profits from deviating, σ ′ is also a

Nash Equilibrium.

We present an additional theorem, discussing the case where

player B has little funds left in the channel. Since the roles of

player A and B are arbitrary, it is of little importance because

the results give stronger security guarantees as for the case

where A has a low balance. Nevertheless, we state it for the

sake of completeness.

Theorem A.1. If there exists an old state with b+dB < f , but

a ≥ f , then

1) (H) is secure.

2) (Ch,S) is not practical, not weak immune, but CR.

Proof. To prove (1), we start by showing weak immunity for a

strategy σ with history (H). Consider σ , where A takes action

H initially, player B chooses P after (D), S after (Ch) and H

after (Cc). Then σ and thus (H) is weak immune, because B’s

deviations have no impact on the history and A’s deviations

can never bring B’s utility below zero.

Next, we prove the practicality of (H) by computing all

subgame perfect equilibria. Since a ≥ f , the subgame perfect

choice after (D), (Ch,I,D) and (Cc,I,D) is P. Thus, A chooses

H after (Ch,I) and (Cc,I). Due to b+dB < f , A’s best option

after (Ch,D) and (Cc,D) is I. Hence B’s unique subgame

perfect choice after (Cc) and (Ch) is D. Thus, A’s only best

response is H. Therefore, (H) is the only practical history. As

practicality implies CR in our case, (H) is secure.

For (2), we just showed that (Ch,S) cannot be practical.

Additionally, (Ch,S) is not weak immune, since B could

deviate to D after (Ch), in which case A gets negative utility

for sure, because of b+ dB < f .

Finally, we consider the strategy σ ′, with history (Ch,S),
where A initially chooses Ch, B chooses S after (Ch), both

take P in case of a dishonest unilateral closing attempt D,

B takes H after (Cc), similarly A takes H after (Ch,I) and

(Cc,I). Using similar argumentation as before, we conclude

that any deviation of a player leads a utility as most as good as

σ ′ for them, but never better. Hence, σ ′ is a Nash Equilibrium

yielding terminal history (Ch,S).

2) Results for Edge Cases: So far, we only considered

cases where both balances a and b were strictly greater than

zero. This is not necessarily the case. Therefore, we consider

these cases here. In the first case, a = 0, B cannot close

dishonestly, as there is no old state that increases his balance.

The corresponding simplified game is presented in Figure 8.

If b= 0 (Figure 9), player A cannot close dishonestly, as she

cannot take any money from B. Thus, both dishonest unilateral

closing D and proposing an unfair split in a collaborative

closing attempt Cc are not possible.

Finally, we present results about the two edge cases.
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Fig. 9. Closing game Gc(A) with b = 0.

Theorem A.2. If a = 0 and b > 0 (Figure 8), then only

histories that involve an explicit cheating attempt are weak

immune. Additionally, (H) and (Ch,S) are practical if and

only if dA ≥ f in every previous state (dA,b−dA). In any case

they are CR.

Proof. We first show that only histories that involve an explicit

cheating attempt can be weak immune. Let us consider a

history h without a D or Cc action, then A does not initially

choose D in h. However, if A deviates to D, then B’s utility is

negative. Thus, any such history h is not weak immune.

To show both (H) and (Ch,S) are CR, it suffices to show

they are Nash Equilibria as before. We therefore consider any

strategy σ , where A initially chooses H, player B chooses P

after (D), S after (Ch) and H after (Cc). Further, player A takes

action H after (Ch,I). The strategy σ yields history (H). No

matter how player A deviates, she always gets utility 0, as

she does in σ . Thus, she has no incentive to deviate. Since

player B’s deviations cannot change the history, also he has

no incentive to do so. Therefore, σ and hence (H) is a Nash

Equilibrium. Adapting σ , by making A first choice Ch we

get strategy σ ′ which leads to history (Ch,S). As before, A’s

utility stays 0 no matter how she deviates from σ ′. Also player

B cannot improve his utility by changing strategy. Hence, also

σ ′ and therefore (Ch,S) is a Nash Equilibrium.

Towards practicality, we now compute all subgame perfect

equilibria. Let dA ≥ f . In which case P is the subgame best

choice for B after (D), (Ch,I,D) and (Cc,I,D). Further, after

history (Cc,I), S it is never a best option for B, because it

is strictly dominated by H. Therefore, A will get utility zero

in any case. This makes (H) a practical history. Similarly for

(Ch,S), since S is subgame perfect for B after (Ch).

If now dA < f , then I is subgame perfect for B after D.

Thus, with similar argumentation as before, (D,I) is the only

practical history.

Theorem A.3. If a > 0 and b = 0 (Figure 9), then

1) (H) is secure.

2) (Ch,S) is not weak immune, but CR. It is practical iff

dB ≥ f in every previous state (a− dB,dB).

Proof. We prove (1.) first. The history (H) is weak immune,

as B’s strategy does not effect the history, since A’s initial

choice has to be H. Further, A’s deviation is irrelevant for B,

as he can never get negative utility in this game.

Practicality of (H). We compute subgame perfect equilibria.

After history (Ch,D) the subgame perfect choice of A depends

on whether dB ≥ f . In any case, D is subgame perfect for B

after history (Ch). If A chose P, then it is as good as any other

choice, yielding 0, otherwise it is the only best option resulting

in a positive utility. Thus, A either gets − f +α or −dB+α if

she chooses Ch, both of which is negative. Hence A’s subgame

perfect and therefore practical choice is H, yielding the history

(H).

The fact that (H) is CR follows from practicality. This

shows that (H) is secure, if b = 0.

For (2), we start showing (Ch,S) is not weak immune. We

consider any strategy σ ′ yielding the history (Ch,S). Assume

now, B deviates to D after (Ch), then no matter what A’s choice

is, she will get a negative utility, thus (Ch,S) is not weak

immune.

The collusion resilience of (Ch,S), can be shown by consid-

ering a strategy σ ′ with history (Ch,S), where we additionally

fix that A chooses P after (Ch,D). Then B has no incentive to

deviate as he always gets utility 0, and A has no incentive as

α , which is her utility in σ ′, is the best possible outcome for

her.

To finally show that (Ch,S) is practical iff dB ≥ f , we

consider A’s choice after (Ch,D). The option P is subgame

perfect iff dB ≥ f . Thus, S is subgame perfect for B iff

dB ≥ f . For dB < f , D is the better option for B, yielding

(−dB+α,dB +α −ε). Therefore Ch is subgame perfect for A

iff dB ≥ f , in which case the resulting history is (Ch,S).

The weak immunity result of (H) might be misleading, as

B can actually close dishonestly immediately (before A takes

action). This is not represented here, but in Gc(B), which is

analog to Gc(A) but with swapped roles.
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Fig. 10. Subgames S1,2, S′1,2 with Update (a,b) 7→ (a+ x,b− x).

C. Subgames of the Closing Game

In the following all the subgames needed for the closing

game Gc(A) are defined. The subgames S1,2 and S′1,2 in

Figure 10 cover the case where a channel update is proposed

by A, although A has already signed a collaborative closing

attempt. In S1 the closing attempt was honest, hence y = 0

and the update is from channel state (a,b) to (a+ pA,b− pA),
hence x = pA. In S2 also y = 0 the suggested update is

(a− pB,b+ pB), thus x = −pB. In S′1,2 the closing attempt

was dishonest, therefore y = c. The channel updates are as

before, thus x = pA for S′1 and x = −pB for S′2. Similarly,

subgames S3,4 and S′3,4 in Figure 11 cover the case where

a channel update is proposed by B, although A has already

signed a collaborative closing attempt. As in the first case, we

have y = 0 for the honest closing attempt in S3,4 and y = c for

dishonest collaborative closing in S′3,4. Further in S3 and S′3,

the proposed update is (a+ pA,b− pA), hence x= pA, whereas

in S4 and S′4 it is (a− pB,b+ pB), thus x =−pB.

D. Subgames of the Routing Game

In this section, one subgame of each type is detailed. First,

subgame S1 in Figure 12 describes the case where player A

locks an amount of money in the HTLC which deviates from

the expected m+3 f . The action Lw means that the subsequent

player follow along and forward the deviation of −w to player

B. Subgame S2 in Figure 13 illustrates the case that player E1

creates her own secret and uses its hash z as the lock of her
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Fig. 11. Subgames S3,4, S′3,4 with Update (a,b) 7→ (a+ x,b− x).

HTLC. Action Lz describes the reusing of hash lock z in the

next HTLCs. Lastly, subgame S3 in Appendix D handles the

case, where player I uses a time-out t3 of the HTLC which is

later than the previous ones t1 and t2, thereby neglecting the

decreasing ordering of time outs. In Appendix D, the action Ut2

means unlocking the HTLC before t2 times out, thus enabling

the other players to unlock too. The action U>t1 stands for

unlocking after both t1 and t2 timed out, therefore I and E1

cannot unlock their respective HLTCs any more. Finally, action

U[t2,t1] means unlocking after t2 has timed out, but the HTLC

with time-out t1 can still be unlocked.
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