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1Einleitung

In unserer zunehmend digitalisierten Welt hängt die Gesellschaft in vielen 
Lebensbereichen von komplexen Computersystemen ab. Ob in der 
Industrie, im Gesundheitswesen oder in der Kommunikationstechnik – die 
Verlässlichkeit solcher Systeme ist entscheidend. Softwarefehler können 
erhebliche Risiken für Sicherheit und Zuverlässigkeit mit sich bringen und 
schwerwiegende finanzielle sowie gesellschaftliche Schäden nach sich 
ziehen.

Eine besonders komplexe Klasse von Softwarefehlern sind sogenannte 
Heisenbugs. Heisenbugs treten unregelmäßig auf und ändern ihr 
Verhalten, sobald man versucht, sie  zu oder zu beheben. Der im Software 
Engineering gängige Begriff ist eine Anlehnung an das Heisenberg’sche 
Unschärfeprinzip.

Heisenbugs bringen besondere Herausforderungen sowohl für 
Nutzer:innen als auch für Entwickler:innen. Aus Nutzer:innen Sicht ist 
Folgende Situation  ein klassisches Beispiel: Ein Programm läuft zehnmal 
hintereinander fehlerfrei, doch beim elften Versuch stürzt es plötzlich ab, 
scheinbar ohne, dass etwas an den Eingaben verändert wurde. Das ist 
problematisch, da das mit einem erlebten Kontrollverlust einher geht.

Aus Sicht von Entwickler:innen, ist die größte Herausforderung, dass 
Heisenbugs die Fehlersuche deutlich erschweren. Standardmäßig wird bei 
der Fehlersuche ein Debugger eingesetzt, um Programme Schritt für 
Schritt zu analysieren und Zwischenergebnisse zu überprüfen. Bei 
Heisenbugs kann der Debugger jedoch selbst das Verhalten des 
Programms beeinflussen, sodass der Fehler nicht mehr auftritt. Weiters 
führt die mangelnde Reproduzierbarkeit dazu, dass automatische 
Softwaretests, die dazu dienen, Fehler frühzeitig zu erkennen, versagen 
bei Heisenbugs oft, da der Fehler nur sporadisch oder unter bestimmten 
Bedingungen auftritt.

Der erste Schritt, um einen Heisenbug zu beheben ist es daher, 
herauszufinden, was die Ursache für die mangelnde Reproduzierbarkeit 
ist. Sobald man diese Ursache kennt, können oftmals Systemparameter 
gezielt kontrolliert werden, um den Fehler reproduzierbar zu machen und 
dann klassische Techniken zur Fehersuche einsetzen zu können.

Hier setzt meine Dissertation an. Das Ziel der Arbeit ist es, systematische 
Ansätze zu entwickeln, um Heisenbugs zu identifizieren, zu analysieren 
und ihre Ursachen zu verstehen.
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Die entwickelten Ansätze bauen auf mathematischen  Modellen und 
formalen Methoden auf. Formale Methoden haben den Vorteil, dass sie 
nicht nur einzelne Ausführungen eines Programms betrachten, sondern 
alle möglichen Szenarien systematisch untersuchen. Dadurch können 
selbst selten auftretende Fehler, wie Heisenbugs, identifiziert werden. 

Das erse große Ergebnis meine Arbeit ist die Definition von Heisenbugs in 
Form einer Hyperproperty. Die mathematische Formalisierung dient 
zugleich als Grundlage für das zweite große Ergebnis: eine Methode zur 
kausalen Analyse, die aus einer Menge potentieller Ursachen feststellt, 
was tatsächlich die Ursache für das  Auftreten eines Heisenbugs ist. Um 
leichter potentielle Ursachen sammeln zu können, habe ich eine 
systematsiche Taxonomie von häufigen Ursachen erstellt.

Sämtliche formale Methoden zur Fehlersuche und insbesondere zur Suche 
nach Heisenbugs basieren auf formalen Spezifikationen, die es erlauben 
korrekte von fehlerhaften Ausführungen zu unterscheiden. Wie sich im 
Laufe meiner Arbeit herausgestellt hat, ist es jedoch in der Praxis oft eine 
große Herausforderung passende formale Spezifikationen zu formulieren. 
Aus dieser Problematik, hat sich ein zweites Teilprojekt entwickelt, das ein 
wichtiger Teil meiner Dissertation ist. In diesem Teilprojekt habe ich eine 
Methode namens Differential Property Monitoring entwickelt, die bei der 
iterativen Verbesserung von Spezifikationen unterstützt. Die entwickelte 
Methode ist gut geeignet Spezifikationen für die Suche nach Heisenbugs 
zu entwickeln, ist aber auch allgemeiner für andere Problemstellungen 
anwendbar, die auf formalen Methoden basieren. 

Meine Ergebnisse zeigen nicht nur neue Wege für die Erforschung von 
Heisenbugs auf, sondern weisen auch auf vielversprechende Möglichkeiten
hin, basierend auf formalen Methoden praktische Werkzeuge für den 
Einsatz in der Softwareentwicklung zu entwickeln.
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2Allgemeines 

Die zentrale Fragestellung meiner Arbeit lautet:

Wie können Heisenbugs formalisiert und ihre Ursachen 
automatisch identifiziert werden?

Diese Frage wird anhand mehrerer Teilaspekte untersucht:

Der erste Schwerpunkt liegt auf der Frage, wie man mathematisch präzise 
beschreiben kann, was ein Heisenbug ist. Eine solche formale Definition 
stellt die Grundlage für jegliche Formale Analysen zur Diagnose von 
Heisenbugs dar. In meiner Arbeit präsentiere ich ein Modell, das 
Heisenbugs anhand von einer Hyperproperty beschreibt. Hyperproperties 
beschreiben Beziehungen zwischen mehreren Programmausführungen. 
Die Definition besagt, dass ein Heisenbug vorliegt, wenn es in einem 
Programm zwei Ausführungen mit gleichen Nutzereingaben gibt, sodass 
eine Ausführung korrekt und eine Ausführung fehlerhaft ist.

Der zweite Aspekt widmet sich den Fragen, welche Quellen von 
Nichtdeterminismus im System Heisenbugs auslösen können und wie man 
kausale Zusammenhänge zwischen diesen Quellen und dem Auftreten von
Heisenbugs analysieren kann. Nichtdeterminismus liegt vor, wenn das 
Systemverhalten nicht eindeutig durch die Nutzereingaben festgelegt ist. 
In meiner Arbeit präsentiere ich eine Taxonomie von häufigen Quellen 
nichtdeterministischen Verhaltens. Weiters habe ich ein Framework zur 
Kausalitätsanalyse entwickelt, das auf der Hyperproperty in der formalen 
Definition aufbaut. Dazu wird das Modell erweitert, indem Quellen von 
Nichtdeterminismus explizit als zusätzliche Eingaben dargestellt werden. 
Die Analyse basiert dann auf der Auswertung einer erweiterten 
Hyperproerty, die zwei Ausführungen sucht, die zwar zu unterschiedlichen 
Ergebnissen führen, aber in möglichst vielen Eingaben, die 
nichtdeterministische Mechanismen modellieren, übereinstimmen. 
Ursache für den Heisenbug sind dann all jene nichtdeterministischen 
Mechanismen, in denen sich die Ausführungen weiterhin unterscheiden.

Ein weiterer Aspekt ist die Frage, wie gute Spezifikationen für die Analyse 
und Diagnose von Heisenbugs entwickelt werden können. Präzise und 
korrekte formale Spezifikationen sind essenziell, um formale Methoden zur
Fehlererkennung und -diagnose wirksam einzusetzen. Meine Arbeit stellt 
die Methode Differential Property Monitoring vor, die dabei hilft, 
Diskrepanzen zwischen verschiedenen Versionen von Spezifikationen zu 
identifizieren. So können Spezifikationen iterativ verbessert werden und 
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Fehler in der Spezifikation vermieden werden, die andernfalls die Diagnose
verfälschen könnten. 

3Ergebnisse

Während der Laufzeit des Stipendiums wurden bisher drei 
wissenschaftliche Publikationen erstellt, wobei eine davon noch unter Peer
Review ist. Die beiden bereits veröffentlichten Papers sind im Anhang zu 
diesem Bericht zu finden und stehen auf der Projekt Homepage zum 
Download bereit. Die Veröffentlichungen befassen sich mit 
unterschiedlichen Teilaspekten der oben genannten Ziele:

(1)Sallinger, S., Weissenbacher, G., Zuleger, F. (2023). A Formalization 
of Heisenbugs and Their Causes. In: Ferreira, C., Willemse, T.A.C. 
(eds) Software Engineering and Formal Methods. SEFM 2023. 
Lecture Notes in Computer Science, vol 14323. Springer, Cham. 
https://doi.org/10.1007/978-3-031-47115-5_16

(2)Sallinger, S., Weissenbacher, G., Zuleger, F. A Formalization of 
Heisenbugs and Their Causes (Extended Version) (erweiterte Journal 
Version von (1), unter Review beim International Journal on Software
and Systems Modeling (SoSyM))

(3)Brechelmacher, O., Ničković, D., Nießen, T., Sallinger, S., 
Weissenbacher, G. (2024). Differential Property Monitoring 
for Backdoor Detection. In: Ogata, K., Mery, D., Sun, M., Liu, S. (eds) 
Formal Methods and Software Engineering. ICFEM 2024. Lecture 
Notes in Computer Science, vol 15394. Springer, Singapore. 
https://doi.org/10.1007/978-981-96-0617-7_13

(1) beinhaltet die formale Definition von Heisenbugs, sowie das 
Framework zur Kausalitätsanalyse wie oben beschrieben.

(2) ist eine erweiterte Journal Version von (1). Einzelne Papers der SEFM 
2023 wurden eingeladen eine solche erweiterte Version für eine 
Veröffentlichung im International Journal on Software and Systems 
Modeling (SoSyM) zu erstellen. Die erweiterte Version enthält die genaue 
Taxonomie von Quellen von Nichtdeterminismus. Weiters erörtert sie, wie 
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man die Kausalitätsanalyse in der Praxis basierend auf Software Tests 
umsetzten kann.

(3) stellt die Methode des Differential Property Monitoring vor und 
präsentiert, wie die Methdode angewandt werden kann, um 
Spezifikationen für die Suche Backdoors in sicherheitskritischen Systemen 
zu erstellen. Backdoors sind Hintertüren, die von Herstellern und 
Entwicklern absichtlich in Systeme eingebaut werden, um später 
unerlaubterweise auf Systeme zugreifen zu können. Spezifikationen in 
diesem Kontext zu entwickeln ist besonders herausfordernd, da eine gute 
Spezifikation dem möglichen Angreifer immer einen Schritt voraus sein 
muss. Ein Highlight der Publikation ist der Nachweis, dass die Methode 
geeignet ist, eine passende Spezifikation für die Suche nach einer 
Backdoor in der Linux XZ-Bibliothek zu entwickeln.

4Geplante weiterführende Aktivitäten 

Im letzten Teil meiner Arbeit befasse ich mich zur Zeit mit 
konsistenzbasierter Diagnose für die Fehlerlokalisierung in Software. Die 
Grundidee dieser Methode ist es, formale Methoden zu nützen um im Falle
eines Software Fehlers auf Programmzeilen hinzuweisen die mögliche 
Ursachen für den Fehler sind. Das stellt eine komplimentäre, ergänzende 
Methode zur kausalen Analyse von Heisenbugs dar. 

Diese Arbeit ist in Zusammenarbeit mit einem Masterstudenten 
entstanden, dessen Masterarbeit ich mitbetreut habe. Die Masterarbeit ist 
im TU reposiTUm verfügbar:

Graussam, L. (2024). Consistency-based Software Fault Localization 
with Multiple Observations [Diploma Thesis, Technische Universität 
Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.109000

Der Fokus der Arbeit ist Fehlerlokalisierung basierend auf mehreren 
fehlerhaften Ausführungen. Im Zuge unserer Zusammenarbeit, haben wir 
zusätzlich an einem verfeinerten Fehermodell gearbeitet und untersucht, 
wie sich Optimierungen, die in bestehenden Ansätzen häufig sind, auf die 
Präzision der Feherlokalisierung auswirken. Zur Zeit arbeite ich daran 
diese Ergebnisse zu verfeinern und eine wissenschaftliche Publikation 
dazu zu verfassen. Der momentane Zeitplan ist es diese Publikation Ende 
April einzureichen.
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Wie im Zwischenbericht und Planungsdokument erwähnt, ist ein weiterer 
und bisher unvollendeter Schritt meiner Arbeit die Veröffentlichung meiner
Arbeit zum Thema „Memoization Bugs in JavaScript Programmen“, die eine
spezielle Art von Heisenbugs darstellen. Bisher wurde die dafür erstellt 
Pulikation nicht zur Veröffentlichung akzeptiert. Ich plane das Paper in der 
vorliegenden Fassung neu einzureichen und eine Überarbeitung 
vorzunehmen, falls es der Zeitplan vor dem Abschluss meines Doktorats 
zulässt. 

Ab Mai plane ich meine Dissertation zu verfassen, die die vorliegenden 
Ergebnisse in einen umfassenden wissenschaftlichen Rahmen einbettet 
und durch eine ausführliche Diskussion in den Kontext der bestehenden 
Literatur stellt.

5Anregungen für Weiterführung durch Dritte

Meine Dissertation bietet einige vielversprechende Ansatzpunkte für 
weiterführende Forschungs- und Entwicklungsprojekte. 

Ein wichtiger Bereich ist die praktische Umsetzung und Anwendung der 
Ansätze zur Diagnose von Heisenbugs. Die in der Dissertation 
vorgestellten theoretischen Grundlagen, insbesondere die Formalisierung 
von Heisenbugs und das Kausalitätsframework, legen eine fundierte Basis 
für die Entwicklung von praktischen Analysetools. So wäre es zum Beispiel 
denkbar existierende Debugging Tools mit eine Analysekomponente für 
Heisenbugs und deren Ursachen zu erweitern. Eine Integration in 
existierende Tools wie sie zum Beispiel in IDEs und Continuous Integration 
Systemen üblich sind, hätte den Vorteil, dass die Analysen für 
Entwickler:innen leichter zugänglich sind.

Ein zweiter Aspekt, bei dem eine Integration in bestehende praktische 
Arbeitsprozesse interessant wäre, ist die Methode des Differential Property
Monitoring. Die Methode bietet Hilfestellung für die Suche nach präszisen 
formalen Spezifikationen. Dieses Problem ist relevant überall wo formale 
Methoden eingesetzt werden. Insbesondere wäre es auch spannend zu 
sehen, welchen Mehrwert die Methode in anderen Anwendungsbereichen 
außer der Suche nach Backdoors bringt.

Sobald ausgereifte Tool-Implementierungen vorliegen, wäre es aus 
wissenschaftlicher Sicht für beide genannten Bereiche spannend User 
Studies durchzuführen, um die Effektivität der Analysen in der Praxis zu 
testen.
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A Formalization of Heisenbugs and Their Causes

Sarah Sallinger, Georg Weissenbacher, and Florian Zuleger
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Abstract. The already challenging task of identifying the cause of a bug
becomes even more cumbersome if those bugs disappear or change their
behavior under observation. Such bugs occur in a range of contexts in-
cluding elusive concurrency bugs as well as unintended system alterations
during debugging and—as a pun on the name of Werner Heisenberg—
are often referred to as Heisenbugs. Heisenbugs can be caused by various
sources of nondeterminism on different system levels, many of which de-
velopers and testers might not even be aware of. This paper provides
formal foundations for rigorously reasoning about causes of Heisenbugs.
It provides a formal definition of Heisenbugs in terms of a hyperproperty
and introduces a framework for determining the causality of Heisenbugs
in presence of multiple candidate causes based on said hyperproperty.
We analyze the properties of causes and the implications on practical
causal analyses.

1 Introduction

Bugs which change their behavior under observation are notoriously difficult
to detect and fix. Inspired by Heisenberg’s uncertainty principle such bugs are
often referred to as Heisenbugs. Depending on the context, the term Heisenbug
has been used to describe slightly different concepts. In the software engineering
community, the term is used mostly for bugs whose analysis is hampered by
the probe effect, i.e., an unintended alteration of the system behavior during
debugging [18]. In the formal methods community, the term has been used to
refer to elusive faults arising from executions that exhibit nondeterminism, in
particular in the context of concurrent software [30]. In the context of automated
testing, the term flaky test is used for inconsistently failing test cases [31], i.e.
manifestations of Heisenbugs. As will become apparent in this paper, all the
mentioned phenomena can be formalized in a uniform manner. In the rest of the
paper, we hence use the term Heisenbug to refer to all the mentioned categories1.

A Formalization of Heisenbugs. The first contribution of this paper is a formal
definition of Heisenbugs. The unifying characteristic of Heisenbugs in the above-
mentioned categories is the existence of at least two system executions where one
1 In the literature, sometimes the term Mandelbug is used as an umbrella term for
the mentioned categories. However, Mandelbugs additionally include complex faults
where there is “a delay between the fault activation and the final failure occurrence”.

http://dx.doi.org/10.1007/978-3-031-47115-5_16
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2 S.Sallinger et al.

execution is correct and the other exhibits a bug. In terms of testing, the same
test case sometimes succeeds and sometimes fails. We formalize this definition
in terms of a hyperproperty [7], which checks for the existence of two terminat-
ing executions with equal inputs but deviating outcomes for a final assertion
that is part of the system specification. Our definition accommodates deviations
caused by nondeterminism in a single program, e.g. due to concurrency, as well
as deviating behavior of different versions of the program, e.g. due to changes
for debugging.

Debugging Challenges. Previous studies have shown that Heisenbugs are preva-
lent even in mature software systems and that the bug fixing process takes signif-
icantly longer than for ordinary bugs [9]. Furthermore, Heisenbugs significantly
complicate automated testing techniques, as they lead to flaky tests [31].

A major step in the debugging process is the identification of the bug’s root
causes [35]. Developers reported this step to be particularly difficult for Heisen-
bugs [11] (referred to as flaky tests in this study). One reason for the complexity
is that Heisenbugs can be caused by mechanisms (i.e., sources of nondeterminism
or system alterations) located on all system levels ranging from the hardware
level to the user program. The following examples illustrate some possible causes:

Example 1 (Concurrency). We first present an example for a Heisenbug stem-
ming from system internal nondeterminism. The Therac-25 incident [24,37],
which resulted in the death of several cancer patients, is a notorious instance of
an atomicity violation [27]. Listing 1.1 illustrates the problem, which is caused
by the concurrent execution of two routines: the userInterface routine al-
lows the operator to choose between high energy x-ray therapy (isXray) and
a lower energy electron beam therapy (!isXray) and to set the intensity of
the radiation (isHigh). The assume statement in line 6 prevents a selection of
high-intensity electron therapy. The setup routine then processes these inputs: a
failed assertion represents the case where the patient is exposed to excessive radi-
ation. Assume that the user changes the initial configuration from high-intensity
x-ray treatment (isXray=true, isHigh=true) to low-energy electron therapy
(isXray=false, isHigh=false) in lines 4 and 7. If a context switch occurs right
after executing line 5, the assertion in line 13 will fail. When userInterface is
executed atomically, however, the assertion always holds.

1 bool isXray = true;
2 bool isHigh = true;
3 void *userInterface(void *a) {
4 isXray = read();
5 bool isHighTmp = read();
6 assume(isXray || !isHighTmp);
7 isHigh = isHighTmp;
8 }

9 void *setup(void *a) {
10 bool filter = isXray;
11 bool highEnergy = isHigh;
12 }
13 assert(filter || !highEnergy);

Listing 1.1: Illustration of Therac-
25 atomicity violation

To sum up, there is a Heisenbug caused by different possible schedules, which is
an example for the category of Heisenbugs arising from nondeterministic systems.
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Even if the scheduler might in fact be deterministic, its internal steps are not
observable for the programmer (which we model using nondeterminism).

Example 2 (Floating Point Precision). A prominent example for unintented sys-
tem alterations are debugging statements that inadvertently change program
outcomes. Consider Listing 1.2 (following [28]), which computes the square of
10308 and is expected to cause an overflow given the double-precision floating-
point representation. When compiled with optimization level -O3 and executed

using x87 instructions, however, the computation
results in 10308 rather than in an overflow, and
the assertion fails. The reason is that the com-
putation uses 80-bit floating point registers and
performs rounding only once values are stored in
64-bit memory cells. Adding the printf statement
in line 4 enforces such a write to memory, thus
yielding the expected overflow, and the assertion
holds.

1 double v = 1E308;
2 double y = 0;
3 y = v * v;
4 // printf("%g\n", y);
5 assert(isinf(y / v));

Listing 1.2: Floating-
point computation over-
flows in case of printf-
debugging

The failing and correct executions actually stem from two different system ver-
sions. In the considered execution model, the debugging statement changes the
semantics of the program, introducing a probe effect which causes the Heisenbug.

Multiple Causes. While the mechanisms causing the Heisenbugs in Example 1
and Example 2 can still be easily identified, such an analysis becomes more
challenging for more complex systems where several such mechanisms interact
in a non-trivial manner [33] (as in Example 3 below).

Example 3 (Weak Memory Models). Listing 1.3 shows Peterson’s mutual exclu-
sion algorithm for two processes. Computer architectures with weak memory
models relax the guarantees on the order in which variable assignments are ob-
served across processor cores, causing the algorithm to fail. In particular, the
synchronization fails if both processes set their flags in lines 5 and 15 but do not
commit the modifications from cache to shared memory before lines 8 and 18 are
executed, thus resulting in a Heisenbug (see [34]). Such a reordering, however, is
effectively prevented if there are printf statements in lines 7 and 17 (as might
be the case during development) and hence the bug only occurs once the printf
statements are removed. Yet, the printf statements are not causally related to
the Heisenbug (unlike in Example 2), as we will formally argue in Section 3.

Formal Causality Framework. In order to rigorously determine which mecha-
nisms cause a Heisenbug in settings with multiple candidate causes, we present
a formal causality defintion based on Lewis’ counterfactuals [26] and the causal-
ity framework of Galles and Pearl [14]. In counterfactual reasoning, an event is
a cause of an effect, if in an alternative world where the cause does not occur,
the effect does also not occur. In a nutshell, in a setting with multiple candidate
mechanisms, a subset of the mechanisms is a cause of a Heisenbug if there are
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1 int flagP0 = 0, flagP1 = 0;
2 int turn = 0;
3 int critical = 0, error = 0;
4 void *petersonP0(void *a) {
5 flagP0 = 1;
6 turn = 1;
7 //printf("barrier");
8 while (flagP1 && (turn == 1));
9 critical++;

10 if (critical != 1) error++;
11 critical--;
12 flagP0 = 0;
13 }

14 void *petersonP1(void *a) {
15 flagP1 = 1;
16 turn = 0;
17 //printf("barrier");
18 while (flagP0 && (turn == 0));
19 critical++;
20 if (critical != 1) error++;
21 critical--;
22 flagP1 = 0;
23 }
24 assert(error == 0);

Listing 1.3: Peterson’s algorithm
occasionally fails on weak memory
models

correct as well as failing executions which agree on the behavior of all other
given mechanisms. This is formalized by means of a hyperproperty resembling
our formal definition of Heisenbugs.

Note that our formal definition of causes refers to alternative scenarios for
counterfactual reasoning. This requires the sources of nondeterminism to be
made explicit in the underlying model (or controllable in the system under test,
respectively). In practice, however, identifying and controlling all possible sources
of nondeterminism is hardly feasible. Therefore, we prove that our causal analy-
sis yields sound results even if some sources of nondeterminism remain unknown
or uncontrollable: the result of evaluating our causality hyperproperty in a non-
deterministic system is always a subset of a cause identified in the corresponding
determinized system in which all sources are made explicit and controllable.

Based on these results, we present an iterative refinement methodology for
causal analysis and discuss practical challenges. We showcase how the method-
ology can be applied for analyses based on model checking and testing.

Main Contributions. The paper presents:
– A formal definition of Heisenbugs in reactive systems in terms of a hyper-

property, in presence of system-internal nondeterminism and/or unintended
system alternations (Section 2).

– A hyperproperty-based approach for defining the causality of Heisenbugs in
the presence of several potential causes and nondeterminism (Section 3).

– A methodology for causal analysis based on iterative refinement (Section 4).

2 A Formalization of Heisenbugs

This section provides our system model and a formal definition of Heisenbugs.
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2.1 System Model

In the following, the term formula refers to a first-order formula with a back-
ground theory that fixes the interpretations of predicates and function symbols.

Definition 1. A Symbolic Transition System (STS) is a tuple (X, I, init, final, T ),
where X and I are disjoint sets of system and input variables, respectively, the
initial condition init is a formula over X∪I, the final condition final is a formula
over X, and the transition relation T is a formula over X ∪ I ∪X ′, where the
variables X ′ denote primed copies of the variables X.

Let Val be a domain of values. Following [38], we assume Val to contain
a special value τ that represents quiescence, i.e., the absence of an input. A
configuration c of an STS is a mapping of the variables in (X ∪ I) to values in
Val. A state s is a mapping of the variables in X to values in Val. An input i
is a mapping of the variables in I to values in Val. The state c|X resp. input c|I
of a configuration c is the restriction of the mapping to variables in X resp. I.
We write c(v) for the value of a variable v ∈ (X ∪ I) in configuration c (and we
use the same notation for states and inputs).

For a formula ϕ and a mapping m of variables to values we write m |=
ϕ if ϕ evaluates to true under m. A configuration c is initial if c |= init. A
state s is final if s |= final. A configuration c is final if c|X is final. A state
s : X → Val is successor state of configuration c if 〈c, s′〉 |= T , where s′ :
X ′ → Val is the function that maps each primed variable x′ ∈ X ′ to s(x) and
〈·, ·〉 denotes the union of two mappings with disjoint domains. We call ci+1 a
successor configuration of ci if ci+1|X is a successor state of ci. We require that
final configurations do not have successor configurations.

A (finite or infinite) trace of an STS is a sequence of configurations c0, . . . , cn
where c0 |= init, and ci+1 is a successor of ci for all i ≥ 0. An execution of an
STS is a finite trace c0, . . . , cn such that cn is a final configuration.

It is straightforward to represent programs such as the examples from the
introduction as symbolic transition systems:

Example 4. Listing 1.1 can be modeled as an STS with I = {input1, input2} and
X = {isXray, isHigh, isHighTmp, filter, highEnergy, pc0, pc1}, where the variables
pc0 and pc1 model the program counters of the two threads. The initial condition
is (isXray ∧ isHigh ∧ pc0 = 4 ∧ pc1 = 10). The final condition is (pc0 = 8 ∧ pc1 =
12) and describes that both traces have reached their final program location.
The transition relation T shown in Figure 1 is a disjunctive partitioning that
represents a case split over all possible combinations of program locations, where
the thread to be executed in each step is chosen nondeterministically.

While Example 4 illustrates the case of nondeterminism in a single system
version, we next exemplify how to model system alterations in our formal model:
the original and the altered system can be combined in one STS with an initial
nondeterministic choice between two disjuncts of the transition relation.
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control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
(pc0 = 4 ∧ pc′0 = 5) ∧ (pc′1 = pc1) ∧ (

∧
var∈X\{isXray,pc0,pc1} var′ = var) ∧ (isXray′ = input1)

∨ (pc0 = 5 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ (
∧

var∈X\{isHighTmp,pc0,pc1} var′ = var)∧
(isHighTmp′ = input2) ∧ (isXray′ ∨ ¬isHighTmp′)

∨ (pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ (
∧

var∈X\{isHigh,pc0,pc1} var′ = var) ∧ (isHigh′ = isHighTmp)

∨ (pc1 = 10 ∧ pc′1 = 11) ∧ (pc′0 = pc0) ∧ (
∧

var∈X\{filter,pc0,pc1} var′ = var) ∧ (filter′ = isXray)

∨ (pc1 = 11 ∧ pc′1 = 12) ∧ (pc′0 = pc0) ∧ (
∧

var∈X\{highEnergy,pc0,pc1} var′ = var)∧
(highEnergy′ = isHigh)

Fig. 1: Transition relation for Listing 1.1

Example 5. The floating point program from Listing 1.2 can be modeled as an
STS where X = {v, y, pc, print}, I = ∅, the initial condition is (pc = 3 ∧ v =
10308∧y = 0), the final condition is pc = 5, and the transition relation is defined
as (pc = 3 ∧ pc′ = 5 ∧ y′ = v ∗ v ∧ v′ = v ∧ ¬print ∧ print′ = print) ∨ (pc =
3 ∧ pc′ = 5 ∧ y′ = convert64(v ∗ v) ∧ v′ = v ∧ print ∧ print′ = print) where
convert64 is a function producing the 64 bit representation of the number. The
initial condition does not constrain print, i.e., the initial value of print can be
arbitrary; this initial (nondeterministic) choice then fixes the respective disjunct
of the transition relation depending on whether the printf-statement is present
or not.

In the following, we formally define a number of useful properties of STSs.

Definition 2 (Termination). An STS is terminating if the STS does not have
infinite traces.

Definition 3 (Input Determinism). An STS is input-deterministic if 1) for
every input i there is at most one state s such that 〈s, i〉 |= init, and 2) for every
state s and every input i there is at most one successor state. Otherwise, it is
nondeterministic.

Definition 4 (Input-enabled). An STS is input-enabled if 1) for every input
i there is at least one state s such that 〈s, i〉 |= init, and 2) every configuration
that is not final has at least one successor. In case 2) is violated, we call the
transition relation partial.

We next define assertions as well as succeeding and failing executions:

Definition 5 (Assertions, Succeeding and Failing Executions). An as-
sertion is a formula ϕ over the system variables X. An execution π def

= c0, . . . , cn
succeeds with respect to ϕ if cn|X |= ϕ. Similarly, π fails if cn|X |= ¬ϕ. Abusing
our notation, we write π |= ϕ if π succeeds and π 6|= ϕ if π fails.

We note that without input-enabledness, which we do not require in general,
traces can get stuck at non-final configurations: For example, in Figure 1, any
state with pc0 = 5, pc1 = 12, isXray = false, input2 = true does not have a
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control flow︷ ︸︸ ︷ inputs︷ ︸︸ ︷ states︷ ︸︸ ︷
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Fig. 2: Execution π1 of Figure 1
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Fig. 3: Execution π2 of Figure 1

successor. For such traces, it is not meaningful to argue whether they satisfy an
assertion. This is why Definition 5 quantifies over executions, i.e., traces that end
in a final configuration. Moreover, Definition 5 disregards infinite traces, as we
limit ourselves in this paper to Heisenbugs that are observable in a finite amount
of time; we leave the extension to non-terminating traces to future work.

Example 6. Figures 2 and 3 show executions of the STS from Example 4. For
ϕ

def
= (filter∨¬highEnergy) (the assertion in line 13), we have π1 |= ϕ and π2 6|= ϕ.

We presume that a system contains a bug if it has at least one failing execu-
tion (i.e., we assume that the assertion ϕ correctly encodes desired behavior of
the program):

Definition 6. Let (X, I, init, final, T ) be an STS and the assertion ϕ be a for-
mula over X. The STS contains a bug with respect to ϕ if there exists a failing
counterexample execution:

∃πc . πc 6|= ϕ.

A violation of the property ϕ in Definition 6, however, does not necessarily
constitute a Heisenbug.

2.2 Formal Definition of Heisenbugs

Heisenbugs are special bugs which occur only on some, but not on all executions.
We express this in terms of a hyperproperty [7]. Unlike properties over single
executions (such as Definition 6), hyperproperties relate sets of traces, allowing
us to characterize Heisenbugs by juxtaposing the behavior of two executions. In
particular, we require at least one succeeding and one failing execution induced
by the same input (as deviating behavior is to be expected for differing inputs).
To express this requirement for reactive systems, we define the projection of a
trace to its corresponding sequence of inputs that are not quiescent (i.e., not τ):
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Definition 7. Let π be a trace of the STS (X, I, init, final, T ), and let J ⊆ I be
some subset of the input variables. The input sequence J(π) is defined induc-
tively:

J(ε) = ε, J(c · π) =
{
J(π), if ∀i ∈ J : c(i) = τ
c|J · J(π) otherwise

where ε is the trace of length zero and · represents concatenation.

Example 7. The traces from Figures 2 and 3 have the same inputs 〈input1 7→
false, input2 7→ τ〉 · 〈input1 7→ τ, input2 7→ false〉 for J = I = {input1, input2}.

Heisenbugs can be characterized using a hyperproperty asserting the exis-
tence of two executions with matching inputs, one of which violates the assertion
while the other fulfills it:

Definition 8. An STS (X, I, init, final, T ) contains a Heisenbug with respect to
an assertion ϕ if

∃πc, πw . I(πc) = I(πw) ∧ πc 6|= ϕ ∧ πw |= ϕ.

The execution πc is the counterexample execution, πw is the witness execution.

We emphasize that the definition is expressed in terms of a hyperproperty
stating that the inputs of the two traces must match. This condition cannot be
expressed as a simple trace property. Moreover, we remark that Definition 8 is
amenable to hyperproperty model checking (e.g., [13]).

Example 8. The Therac-25 example contains a Heisenbug with counterexample
execution π2 from Figure 3 and witness execution π1 from Figure 2.

3 Causality

In this section, we extend the hyperproperty from Definition 8 to counterfactually
reason about the causality of Heisenbugs. We first present a refinement step
for making potential causes explicit in the model and then introduce formal
definitions of causality in deterministic as well as nondeterministic systems.

3.1 Modeling Sources of Nondeterminism

For the purpose of causality analysis, the sources of nondeterminism (which we
call mechanisms) need to be made explicit. Nondeterminism can be due to in-
complete observability, incomplete modeling or to inherent stochasticity in the
modeled system, as is the case for example in quantum mechanics [15, Section
3.1]. Nondeterminism stemming from incomplete observability and modeling can
be eliminated by refining the model with the relevant information. Even true non-
determinism can—at least in principle—be accounted for by means of prophecy
variables [1].

To formalize this idea, we introduce refinements of a transition system:
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schedule︷ ︸︸ ︷ control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
¬thread ∧(pc0 = 4 ∧ pc′0 = 5) ∧ (pc′1 = pc1) ∧ . . .

∨ ¬thread ∧(pc0 = 5 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ . . .
∨ ¬thread ∧(pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ . . .
∨ thread ∧(pc1 = 10 ∧ pc′1 = 11) ∧ (pc′0 = pc0) ∧ . . .
∨ thread ∧(pc1 = 11 ∧ pc′1 = 12) ∧ (pc′0 = pc0) ∧ . . .

Fig. 4: Deterministic transition relation for Listing 1.1

Definition 9 (Refinement). Let S def
= (X, I, init, final, T ) be an STS. We say

an STS Sref = (X ]Xref , I ] Iref , initref , finalref , Tref) is a refinement of S iff
1. for every 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′ref〉〉 |= Tref we have that 〈s, i, s′〉 |= T , and

for every state 〈s, sref〉 of Sref and transition 〈s, i, s′〉 |= T there are mappings
iref , s

′
ref of Iref and X ′ref to values such that 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′ref〉〉 |= Tref ,

2. for every 〈〈s, sref〉, 〈i, iref〉〉 |= initref we have 〈s, i〉 |= init, and for every
〈s, i〉 |= init there are mappings iref , sref of Iref and Xref to values such that
〈〈s, sref〉, 〈i, iref〉〉 |= initref , and

3. for every 〈s, sref〉 |= finalref we have s |= final, and for every s |= final and
every mapping sref of the variables Xref to values we have 〈s, sref〉 |= finalref .

We note that the above definition preserves executions: Let Sref be a refine-
ment of some STS S. Then every execution of Sref gives rise to an execution of S
by projecting away the additional state and input variables. On the other hand,
the conditions in the refinement definition ensure that every execution of S can
be extended to an execution of Sref by choosing suitable values for the additional
state and input variables. We note that refinements can be thought of as adding
additional information to the STS under analysis, and the requirements in our
definition ensure that executions are preserved. If all mechanisms (i.e., sources
of nondeterminism) are explicit, refinement yields a deterministic system:

Definition 10 (Determinization). We say that an STS Sdet is a determiniza-
tion of some STS S, if Sdet is a refinement of S and is input-deterministic.

Example 9. The Therac-25 transition system from Example 4 can be refined by
setting Iref = {thread}, where thread is a Boolean variable selecting which thread
takes a step. The refined transition relation is shown in Figure 4.

Example 10. The floating point transition system from Example 5 can be ex-
tended to a deterministic system by setting Iref = {debug} and considering the
refined initial condition (pc = 3 ∧ v = 10308 ∧ y = 0 ∧ (debug ⇔ print)), and
leaving the transition relation unchanged. We point out that the initial value of
the input variable debug fixes the value of print, which in turn fixes the transition
relation reflecting the presence of the printf-statement.

For Example 9 and Example 10 we have Xref = ∅. In the Peterson example
below, the refinement contains a state variable reflecting whether the cache state
has been propagated to main memory.
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control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
((pc0 = 5 ∧ pc′0 = 6) ∧ (pc′1 = pc1) ∧ (

∧
var∈V \{flagP0c,flagP0} var′ = var) ∧ (flagP0c′ = 1)∧

(delay ∧ flagP0′ = flagP0 ∨ ¬delay ∧ flagP0′ = 1)
∨ (pc0 = 6 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ (

∧
var∈V \{turn} var′ = var) ∧ (turn′ = 1)

∨ (pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ (
∧

var∈V var′ = var) ∧ (print⇒ ¬delay)
∨ (pc0 = 8 ∧ pc′0 = 9) ∧ (pc′1 = pc1) ∧ (

∧
var∈V var′ = var ∧ (¬flagP1 ∨ turn = 0)

∨ (pc0 = 9 ∧ pc′0 = 10) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{critical,flagP0} var′ = var)∧
(critical′ = critical + 1)∧
(¬delay ∧ flagP0′ = flagP0 ∨ delay ∧ flagP0′ = flagP0c)

∨ (pc0 = 10 ∧ pc′0 = 11) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{error} var′ = var)∧
(critical 6= 1⇒ error′ = error + 1)∧
(critical = 1⇒ error′ = error)

∨ (pc0 = 11 ∧ pc′0 = 12) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{critical} var′ = var) ∧ (critical′ = critical− 1)

∨ (pc0 = 12 ∧ pc′0 = 13) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{flagP0c,flagP0} var′ = var)∧
(flagP0c′ = 0) ∧ (flagP0′ = 0))

Fig. 5: A part of Tref for Listing 1.3 (where V def
= (X ∪Xref) \ {pc0, pc1})

Example 11. Peterson’s algorithm (Listing 1.3) can be modeled as a determin-
isitic STS. In this example we present the final refinement that makes all in-
volved mechnisms explicit. Alternatively, the mechanisms could be made ex-
plicit in successive refinement steps. Figure 5 shows the part of the transi-
tion relation that models P0. Let X = {pc0, pc1, flagP0, flagP0c, flagP1, flagP1c,
turn, critical, error, print} where flagP0c and flagP1c represent the locally cached
versions of the flags. We have I = ∅ and Iref = {thread, debug, reorder}, where
thread indicates whether P0 or P1 takes a step (thread is omitted in Figure 5).
Let Xref = {delay}, and let initref imply (print = debug ∧ delay = reorder). The
variable print indicates that the program version with printf-debugging is ex-
ecuted, and delay is true if the modifications of the flags flagP0 and flagP1 are
only committed to shared memory after entering the critical section (to avoid
clutter, we assume only two possible points for committing the modification of
flagP0). We use (print ⇒ ¬delay) to model the interplay between two mecha-
nisms where the printf instruction prevents reordering because of the added
barrier, resulting in a partial transition relation. Moreover, initref ensures that
flagP0 = flagP0c = flagP1 = flagP1c = turn = critical = error = 0 and pc0 = 5
and pc1 = 15, and finalref is pc0 = 13 ∧ pc1 = 23.

Note that the processor running the original nondeterministic version of Pe-
terson’s algorithm already has micro-architectural features that facilitate in-
struction reordering (not modeled in Example 11); the auxiliary input reorder
and variable delay merely make this mechanism observable.

3.2 Defining Causes

In the following, we provide a formal definition of causes inspired by Lewis’
counterfactuals [26] and the causality framework of Galles and Pearl [14].
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Definition 11 (Cause). Let S def
= (X, I ∪ M, init, final, T ) be a deterministic

STS, where I and M are disjoint sets of inputs, and let ϕ be an assertion. Let
M =MC ]MN . We say that MC is a cause with respect to M and ϕ and iff

∃πc, πw . I(πc) = I(πw) ∧MN (πc) =MN (πw) ∧ πc 6|= ϕ ∧ πw |= ϕ (1)

and MC is a minimal subset of M with this property.

We note that in the above definition we require the inputs I to agree on the
executions πc and πw, while only the inputs M may differ. The rationale is that
we want to apply this definition for studying the causes of Heisenbugs: We are
given some (nondeterministic) STS with inputs I, which has a Heisenbug. We
now consider some determinization of the STS to which we have added inputs
M , modelling the mechanisms responsible for the nondeterminism. The above
definition then allows to study the cause among the modelled mechanisms: A
subset MC ⊆ M is a cause of a Heisenbug, if the Heisenbug still occurs when
the inputs MN agree in the deviating executions πc and πw.

Proposition 1 (Existence of a Cause). Let S def
= (X, I, init, final, T ) be a non-

deterministic STS with a Heisenbug (Definition 8) with respect to an assertion
ϕ and let Sdet

def
= (X ∪Xdet, I ∪M, initdet, finaldet, Tdet) be a determinization of S.

Then there exists a cause MC with respect to M and ϕ.

Proof. Let πc and πw be executions of S that satisfy Definition 8. Since refine-
ments preserve executions, there must be executions πcdet and πwdet of Sdet such
that πcdet|(I∪X) = πc and πwdet|(I∪X) = πw. Now assume that πcdet and πwdet

agree on M (in addition to I). Let 〈sc, scdet〉 and 〈sw, swdet〉 be the initial states
of πcdet and πwdet, respectively. Since Sdet is input-deterministic, however, there
is at most one state 〈〈s, sdet〉, 〈i,m〉〉 |= initdet, hence 〈sc, scdet〉 = 〈sw, swdet〉.
Moreover, for every state 〈s, sdet〉, each input 〈i,m〉 determines a unique succes-
sor state 〈s′, s′det〉. Since πcdet|(I∪M) = πwdet|(I∪M ), this violates the assumption
that πcdet 6|= ϕ and πwdet |= ϕ. Hence, πcdet and πwdet must deviate on M . ut

Example 12. The Peterson example contains a Heisenbug with respect to ϕ def
=

(error = 0). Here, {reorder} and {thread} are causes, but {debug} is not: The set
{reorder} is a cause because of two executions which both have debug = false
and the same schedule interleaving the critical sections, but only one execution
sets reorder = true and hence exhibits the bug. The set {thread} is a cause be-
cause of two executions which both have debug = false and reorder = true where
one execution uses a sequential schedule of the two processes and the second
execution uses a schedule interleaving the critical sections. Only the second exe-
cution exhibits the bug. However, the set {debug} is not a cause because any two
executions would either both have to set reorder = false, making the bug impos-
sible or both set reorder = true. In this case, by counterposition the constraint
(print⇒ ¬delay) enforces debug = false, yielding a bug on both executions if the
schedule interleaves the critical sections or on no execution otherwise.
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3.3 Causes and Nondeterminism

By introducing the notion of a contributing cause below, we show that even in
the presence of nondeterminism we can still provide guarantees.

Definition 12 (Contributing Cause). Let S def
= (X, I ∪M, init, final, T ) be a

(potentially nondeterministic) STS, where I and M are disjoints set of inputs,
and let ϕ, M = MC ]MN satisfy the conditions in Definition 11. We call MC

a contributing cause of a Heisenbug.

We argue that any contributing cause must be a subset of a cause in a
corresponding determinization:

Theorem 1. Let S def
= (X, I ∪M, init, final, T ) be a nondeterministic STS and

let Sdet
def
= (X ∪Xdet, I ∪M ∪J, initdet, finaldet, Tdet) be a determinization of S. Let

MC be a contributing cause in S with respect to M and assertion ϕ. Then, there
exists a cause C in Sdet with respect to M ∪ J and ϕ such that MC ⊆ C \ J .

Proof. Consider two executions πc and πw satisfying Definition 12 for S. Since
refinement preserves executions, there must be executions πcdet and πwdet in
Sdet such that πcdet|(I∪M∪X) = πc and πwdet|(I∪M∪X) = πw and πcdet 6|= ϕ and
πwdet |= ϕ. By Definition 12, for MN = M \ MC it holds that πc|(I∪MN ) =
πw|(I∪MN ) and hence also πcdet|(I∪MN ) = πwdet|(I∪MN ). Hence (following an
argument similar to the one for Proposition 1) we argue that πcdet and πwdet

must deviate on a subset of MC ∪ J , i.e., there exists a cause C satisfying
Definition 11 such that C ⊆ MC ∪ J . Now assume that MC 6⊆ C. Then MC

is not minimal, since (MC ∩ C) also constitutes a contributing cause. Thus, we
must have MC ⊆ C \ J . ut

Example 13. The refined STS in Example 9 is nondeterministic as the initial val-
ues of filter and highEnergy are unconstrained. Following Definition 12, {thread}
is a contributing cause. Consider a further refinement with Iref = {initF, initH}
and init = (filter = initF∧highEnergy = initH∧isXray∧isHigh∧pc0 = 4∧pc1 = 10).
As the initial values are never read, the cause is again {thread}.

We provide a condition under which contributing causes are also causes:

Definition 13 (Cause in Presence of Nondeterminism). Consider a (po-
tentially nondeterministic) STS S

def
= (X, I ∪M, init, final, T ) such that for all

traces π, π′ of S with π|I∪M = π′|I∪M we have that

1. π ends in a final state if and only if π′ ends in a final state,
2. π |= ϕ if and only if π′ |= ϕ (in case both traces end in a final state).

Let ϕ, M =MC ]MN satisfy the conditions in Definition 11. We say that MC

is a cause in presence of nondeterminism with respect to M and ϕ.

We will next state a justification for the introduction of the above definition.
We first establish that input-enabled determinizations always exist:



A Formalization of Heisenbugs and Their Causes 13

Proposition 2. Let S def
= (X, I, init, final, T ) be an input-enabled STS. Then, a

deterministic input-enabled refinement Sref always exists.

Proof. We set Iref = {oracle} for a single variable oracle, whose values are map-
pings of configurations to successors, i.e., oracle fixes a successor state s′ for every
configuration 〈s, i〉 such that 〈s, i, s′〉 |= T (note that at least one successor state
s′ always exists because of our assumption that S is input-enabled). We then
adopt Tref from T as the transition relation that moves to the successor state
fixed by the oracle variable. Likewise, we adopt the initial condition initref . ut

We next establish that no matter the input-enabled determinization S′ of
an STS S, a cause in the presence of nondeterminism in S is always a cause
in S′. Together with Proposition 2, which guarantees the existence of an input-
enabled determinization at least in theory, we obtain that a cause in presence of
nondeterminism can indeed by considered as a cause.

Theorem 2. Let MC be a cause in presence of nondeterminism with respect to
mechanisms M in an STS S def

= (X, I ∪M, init, final, T ). Let Sdet
def
= (X ∪Xdet, I ∪

M ∪ J, initdet, finaldet, Tdet) be an input-enabled determinization of S. Then MC

is also a cause in Sdet with respect to (I ∪ J).

Proof. Let πc and πw be executions of S that satisfy Definition 13. Since re-
finements preserve executions, there must be an execution πcdet of S such that
πcdet|(I∪M∪X) = πc. In particular, we have πcdet 6|= ϕ. Because Sdet is input-
enabled we can obtain a trace π of Sdet such that π|J = πcdet|J and π|I∪M =
πw|I∪M . Note that π induces a trace π′ of S with π′ = πwdet|I∪M∪X . Hence, by
the assumptions stated in Definition 13, the trace π′ is in fact an execution (i.e.,
ends with a final configuration), and we have π′ |= ϕ. Thus, we also get that π
is an execution and that we have π |= ϕ. ut

Example 14. The nondeterministic refinement of the Therac-25 STS in Exam-
ple 9 satisfies the properties in Definition 13. The refinement in Example 13 is
input-enabled and deterministic and the contributing cause is indeed a cause.

3.4 Testing and Causal Analysis

In the context of testing, an evaluation of Definition 11 and Definition 12, re-
spectively, is limited to the subset of the executions induced by a given test suite.
Lemma 1 characterizes the results that can be drawn by analyzing a subset of
the executions of an STS:

Lemma 1. Let πc and πw be executions satisfying Equation 1 in Definition 11
(or Definition 12, respectively) and let MC be the inputs deviating in πc and πw.
Then MC is a superset of a cause (or contributing cause, respectively).

Proof. Note that MC is a cause according to Definition 11 (or a contributing
cause according to Definition 12) if it is minimal with respect to Equation 1.
Otherwise, there must be a cause that is a subset of MC . ut
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Lemma 1 provides guarantees even if an exhaustive analysis is infeasible.
If, in addition, the conditions in Definition 13 are met (i.e., we can control or
at least observe the relevant mechanisms), then Proposition 2, Theorem 2, and
Lemma 1 guarantee that each overapproximation of a cause identified by testing
includes a non-empty (contributing) cause.

4 Analysis Methodology and Challenges

We sketch an (iterative) methodology for practical analyses based on the for-
malization above and showcase two possible instantiations and their challenges:
À Task: Starting from a Heisenbug (Definition 8), identify candidate mecha-

nisms M (e.g., consulting surveys [31]).
Challenge: The accuracy of the analysis is contingent on identifying the
relevant mechanisms.

Á Task: Pick a mechanism m ∈ M and adapt (or refine according to Defini-
tion 9) the model or system to make m controllable (or at least observable).
Challenge: The system may be inherently uncontrollable or unobservable,
or attempts to control/observe it potentially introduce a probe effect.

Â Task: Identify (contributing) causes by finding witnesses that deviate in as
few mechanisms as possible (i.e., satisfy Equation 1 in Definition 11).
Challenge: Testing will yield over-approximations only (cf. Lemma 1).

Ã Task: Check a stopping criterion to determine whether further mechanisms
or refinement steps are required (steps À and Á).
Challenge: Assessing whether all causes have been correctly identified is
challenging and may amount to fixing the bug and re-verifying the system.

Causal Analysis based on Model Checking. We built a NuSMV [5] model of
Peterson’s algorithm (Listing 1.3). We use self-composition [3], which composes
two copies Sw and Sc of the STS S, to reduce the existence of a counterexam-
ple trace and a witness trace (which is a hyperproperty) to the existence of a
single trace in the composed model. NuSMV can then construct the trace as a
counterexample to an LTL property over the composed model. As NuSMV usu-
ally considers infinite traces, final conditions are accounted for in the property.
The existence of a Heisenbug can be confirmed by checking that NuSMV finds
a counterexample to the property ψ := G(finalc ∧ finalw ⇒ (ϕw ⇒ ϕc)) for final
and ϕ as in Example 11 and Example 12 (where subscripted predicates range
over the matching variable set).

In step À, we pick the fact whether the print statements are executed and
model it adding variables printw and printc to the model (step Á). In step Â,
we invoke NuSMV on the property G(printw ⇔ printc) ⇒ ψ. As there is a
counterexample, we identify the empty set as a contributing cause.

We start another refinement iteration, pick concurrency as machanism (step
À) and model it by variables threadw and threadc (step Á). We check the property
G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ (step Â). Again, there is a
counterexample and the empty set is a contributing cause.
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1 bool flag0 = false;
2 bool flag1 = false;
3 spinlock_t lock0, lock1;
4 void *thread0(void*) {
5 spin_lock(lock0);
6 flag0 = true;
7 assert (!flag1);
8 yield();
9 spin_lock(lock1);

10 flag0 = false;
11 spin_unlock(lock1);
12 yield();
13 spin_unlock(lock0);
14 }

15 void *thread1(void*) {
16 spin_lock(lock1);
17 flag1 = true;
18 assert (!flag0);
19 yield();
20 spin_lock(lock0);
21 flag1 = false;
22 spin_unlock(lock0);
23 yield();
24 spin_unlock(lock1);
25 }

Listing 1.4: An assertion fails if
(and only if) a deadlock occurs.

In the next refinement iteration, we pick the weak memory behavior (step
À) we model it by variables delayw and delayc and reflect the fact that print =⇒
¬delay (cf. Example 11) (step Á). Checking property G((printw ⇔ printc) ∧
(threadw ⇔ threadc) ∧ (delayw ⇔ delayc))⇒ ψ returns true, hence we have now
found a non-empty cause superset and can start cause minimization. A coun-
terexample to G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ witnesses that
delay is a cause, similarly a counterexample to G((printw ⇔ printc) ∧ (delayw ⇔
delayc))⇒ ψ witnesses that thread is a cause. As the model satisfies G((delayw ⇔
delayc) ∧ (threadw ⇔ threadc))⇒ ψ, print is not a cause. This concludes step Â.
As we identified a non-empty cause, no more refinement steps are needed.

Test-based Causal Analysis. Consider the code in Listing 1.4, which might
deadlock because of a faulty locking discipline. The assertions in lines 7 and 18
fail when a deadlock, caused by a specific (combination of) context switche(s),
occurs: a context switch at line 8 to thread1 (or, symmetrically, from line 19 to
thread0) causes both threads to wait for a lock held by the other thread.

In step À, we identify concurrency (limited to the context switches marked
by yield for simplicity) as potential cause. Following the approach of KISS [32],
we control the scheduler (step Á) by sequentializing the concurrent program
and simulating the execution of a large subset of its interleavings. In KISS,
threads can be started and terminated nondeterministically at any point during
the execution. Using closures to save the local state of a thread, we add the
capability to re-enter a thread after its interruption by yield. The execution of
thread0 (thread1, respectively) can be interrupted at lines 8 and 12 (19 and
23, respectively). Our sequentialization enables us to explicitly control these
four context switches, inducing 24 potential schedules. Random (or systematic)
exploration of these schedules then yields executions that terminate normally
or violate an assertion. Failing executions deviate from the non-failing ones by
performing a context switch at lines 8 or 19, at least one of which must constitute
(part of) the candidate cause(s) we identify in step Â.



16 S.Sallinger et al.

Testing merely provides an over-approximation of the cause MC (Lemma 1).
Due to the minimality requirement in Definition 11 and Definition 12, however,
removing one element fromMC (by controlling the mechanism accordingly) elim-
inates the entire cause. Assume for now, that thread0 in Listing 1.4 always ex-
ecutes first, in which case the context switch at line 8 is a unique cause for the
deadlock. Consider an over-approximation comprising of two context switches at
lines 8 and 19. Blocking the context switch at line 8 eliminates the Heisenbug,
while blocking the one at line 19 doesn’t. By individually blocking the context
switches and checking whether subsequent testing provides sufficient confidence
that the bug has been eliminated, we obtain a stopping criterion in step Ã.

If, however, executions may start with thread0 or thread1, the context
switches at lines 8 and 19 form two independent (non-intersecting) causes (due
to the symmetry in Listing 1.4). Consequently, both context switches must be
identified to eliminate all causes of the bug (cf. Section 3.4). Blocking individual
context switches (as suggested above) does not provide a reliable stopping cri-
terion. Despite this limitation, testing-based analysis can help the developer to
narrow down the set of candidate causes significantly.

5 Related Work

Terminology and Definition of Heisenbugs. The first paper mentioning Heisen-
bugs [17] uses the term for transient software bugs which disappear under ob-
servation. In [18], bugs are classified into Bohrbugs (bugs manifesting consis-
tently), Mandelbugs (bugs with complex error propagation), and Heisenbugs
(bugs manifesting differently under the probe effect). In contrast to this infor-
mal classification, our definition is formal, covering Heisenbugs which stem from
the probe effect as well as from nondeterminism. The term is frequently (and
informally) used in the context of concurrency [30], where it exclusively refers
to bugs caused by control-flow nondeterminism. In the context of testing, the
notion of flaky tests [31] resembles the notion of Heisenbugs. The comparison of
failing and non-failing executions is used in several lines of research with goals
orthogonal to the definition of bug classes. Differential assertion checking [21]
compares failing and non-failing executions to define relative correctness of dif-
ferent program versions. In the context of diagnosability, the notion of critical
pairs of failing and non-failing executions with equivalent observations is used
to check whether faults can be detected at runtime [6].

Causality. Our definition of causality is inspired by Lewis’ counterfactuals [25].
The negation of Definition 11 mirrors the definition of causal irrelevance in [14]
and Definition 11 corresponds to its dual notion of causality between variables
[12]. A core difference is that our interventions are restricted to inputs that rep-
resent nondeterministic mechanisms rather than affecting arbitrary points of the
transition relation (or the causal model). Moreover, causal models have a fixed
propagation depth, while we consider an arbitrary number of unwindings of the
transition relation. Halpern and Pearl [20,19] provide a widely accepted defini-
tion of “actual” causes based on counterfactuals, where contingencies are used to
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control interference between interventions. Several lines of work reason about the
origin of system faults [23,2,10,4,16] using Halpern and Pearl’s notion of causal-
ity. In [8], actual causality is used to explain violations of hyperproperties. It
formalizes causes for violations of (arbitrary) universally quantified hyperprop-
erties as a hyperproperty with quantifier alternation, which can then be checked
with a model checker such as [13]. We formalize causes for Heisenbugs (a specific
hyperproperty) in terms of an existentially quantified hyperproperty.

Several approaches exist for automatically detecting causes of flaky tests.
The RootFinder tool [22] collects passing and failing executions and correlates
their differences with a specific cause. In [39] the authors present a tool for
finding code locations that lead to differences between succeeding and failing
executions. Identifying what happens in these locations is left to the developer.
In [36] and [29] the system is repeatedly executed under different configurations
to check which configuration influences the manifestation of the bug. All of these
approaches are based on computing correlations rather than performing rigorous
causal inference. In contrast, our framework is based on a formal causal analysis
accounting for interactions of multiple potential causes. [31] provides a taxonomy
of causes relevant in the context of automated testing.

6 Conclusion

While the term Heisenbug is widely used, its exact meaning often depends on
the context. We provide a formal definition that unifies the notion of Heisen-
bugs caused by a system alteration and those caused by nondeterminism. Fur-
thermore, we present a hyperproperty-based framework for determining which
mechanisms cause the manifestation of a Heisenbug. In particular, our approach
allows the identification of causes in the presence of multiple mechanisms that
could trigger a Heisenbug and gives guarantees for results of a causal analy-
sis even in presence of nondeterminism. Building on this result, we sketch a
methodology for causal analysis based on iterative refinement.

Acknowledgements This work was partially supported by ERC CoG ARTIST
101002685, by the FWF project W1255-N23, by a netidee scholarship, and by
the Vienna Science and Technology Fund (WWTF) [10.47379/VRG11005].
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Abstract. A faithful characterization of backdoors is a prerequisite for
an effective automated detection. Unfortunately, as we demonstrate, for-
malization attempts in terms of temporal safety properties prove far from
trivial and may involve several revisions. Moreover, given the complexity
of the task at hand, a hapless revision of a property may not only elimi-
nate but also introduce inaccuracies in the specification. We introduce a
method called differential property monitoring that addresses this chal-
lenge by monitoring discrepancies between two versions of a property, and
illustrate that this technique can also be used to analyze observations of
untrusted components. We demonstrate the utility of the approach using
a range of case studies – including the recently discovered xz backdoor.

1 Introduction

Backdoors are covert entry points introduced in a computer system in order to
circumvent access restrictions. The notion recently made a prominent appearence
in mainstream news [22] in form of a backdoor in the Linux utility xz (CVE-
2024-3094), where a pseudonymous agent went to great lengths to maliciously
implant remote execution capabilities in the liblzma library. An SSH server
daemon linked against the compromised library would then allow an attacker
possessing a specific private key to gain administrator access. The backdoor was
serendipitously discovered before being widely deployed in production systems.

Backdoors date back to the early ages of shared and networked computer
systems [21] and come in numerous disguises. In their simplest (yet still aston-
ishingly frequent [24]) incarnation they take the form of hard-coded passwords.
On the other end of the spectrum, the complexity of backdoors recently culmi-
nated in a backdoor in Apple devices involving a sophisticated attack chain that
exploits four zero-day vulnerabilities in software as well as hardware [14].
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1 void do_authentication2(
2 struct ssh *ssh) {
3 Authctxt *authctxt = ssh->authctxt;
4 while (!authctxt->success) {
5 ...
6 if (sshkey_verify(...))
7 authenticated = 1;
8 ...
9 }

10 }

11 int main(int ac, char **av) {
12 struct ssh *ssh;
13 ...
14 do_authentication2(ssh);
15 ...
16 do_authenticated(ssh);
17 ...
18 }

Listing 1.1: sshd authentication flow

Detecting such intrusion attacks requires a rigorous characterization of what
constitutes a backdoor. However, due to their variety, a simple formal definition
is elusive. Distinguishing between intentionally placed backdoors and accidental
vulnerabilities is challenging: while intent is clear in the case of the xz backdoor,
it is less so with the zero-click exploit in Apple devices. Although attempts to
formalize intent have been made (e.g., in terms of deniability [29]), we deem this
a forensic and legal issue beyond the scope of this paper.

Property Template and Instantiation. Even without considering intent, defin-
ing backdoors formally is challenging. Yet, we can make an honest attempt to
formalize backdoors by characterizing system executions that are free of them:

∀user .∀resource .G(access(user, resource) ⇒ permission(user, resource)) (1)

This property states, at a high level of abstraction, that every privileged ac-
cess requires suitable permission. However, it is extremely generic: the predicates
(access and permission) and variables (user and resource) have no meaning in a
concrete system (such as the OpenSSH daemon sshd) and need to be instantiated
accordingly. Instantiating the template in Equation 1 requires significant techni-
cal insight and discretion regarding which system components and observations
can be trusted. As an example, Listing 1.1 shows the (simplified) authentication
flow of sshd. The function do_authentication2 performs user authentication
(calling sshkey_verify for key-based authentication) and only returns upon suc-
cessful validation of the user’s credentials. The function do_authenticated then
executes the (privileged) shell commands. Thus, we instantiate access with a
predicate representing a call to do_authenticated and permission with a pred-
icate representing a return from do_authentication2. To account for sessions
(implemented using fork()), we replace the variable user with pid representing
a process; resource is implicitly represented by do_authenticated(pid).

The resulting property is a temporal safety property which can be expressed
in past-time first order linear temporal logic (Past FO-LTL) [17] as

∀ pid .G(do_authenticated(pid) ⇒ O do_authentication2(pid)) , (2)

where O is a temporal operator expressing that something happened in the past.

Runtime Verification. The property in Equation 2 can then be checked using an
appropriate analysis technique. We argue that runtime monitoring is best suited
for this task. The xz backdoor mechanism was concealed in a binary deployed
during the build process rather than in the library’s source code, making static
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code analyses ineffective. Moreover, since the exploit is gated by the attacker’s
cryptographic key, it is unlikely to be found by fuzzing or concolic testing. Finally,
Past FO-LTL is supported by the DejaVu monitoring tool [17].

Property Refinement. At this point, we could conclude our exposition if not
for one grave flaw of our property in Equation 2: it fails to detect the xz back-
door. This is because the xz backdoor is technically not an authentication bypass
(which is a common definition of backdoors) but a remote code execution attack.
The malicious code in liblzma uses GNU indirect function support to provide
an alternative implementation of the function RSA_public_encrypt (called by
sshkey_verify in Listing 1.1). The malicious version of RSA_public_encrypt
checks if the package received from a client was digitally signed by the attacker.
If not, normal execution resumes. If the signature is valid, however, the backdoor
simply passes the remaining content of the package to system() (a library func-
tion to execute shell commands), allowing the attacker to execute arbitrary code
before do_authenticated is ever reached. This problem can be remedied by
instantiating access with (do_authenticated(pid) ∨ system(pid)) , thus taking
the problematic call to the system library function into account. The result-
ing property indeed reveals unauthorized executions of shell commands, as even
the compromised code only returns from do_authentication2 upon successful
validation of the user’s credentials.

Trusted and Untrusted Observations. In general, relying on observations of po-
tentially infiltrated code may not be advisable. Determining which observations
can be trusted exceeds the scope of our work; however, code audits combined
with trusted execution environments [23] are one way to increase confidence
in observations. Admittedly, no such precautions were in place in case of the
xz backdoor. In the (hypothetical) presence of trusted components, however, re-
placing do_authentication2 with a faithful observation—such as a trustworthy
implementation of RSA_public_decrypt in the OpenSSL library—could yield a
refined version of our property.

Refinement Gone Wrong. Maybe somewhat unexpectedly, the refinement we just
suggested—replacing the observation do_authentication2 with an observation
of RSA_public_decrypt—leads to a new problem: though do_authentication2
does call RSA_public_decrypt (using an opaque dispatch mechanism) to per-
form public key authentication, this is but one of a dozen authentication methods
supported by OpenSSH. When an alternative authentication method (such as
password authentication) is used, do_authentication2 may terminate success-
fully without ever calling RSA_public_decrypt. For such a (perfectly benign)
execution, however, the latest instantiation of our property would evaluate to
false and a backdoor would be reported. Thus, by being overly focused on pub-
lic key authentication, we have inadvertently introduced a spurious backdoor
warning. Clearly, further refinement steps are required.

Challenges. Based on the motivating example above, we argue that it is plausible
that the instantiation of the template in Equation 1 may require several itera-
tions before a satisfactory result is achieved. In this process, the property may
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be refined to eliminate executions spuriously classified as backdoors, relaxed to
include previously overlooked malicious executions, or modified to replace po-
tentially unfaithful observations with trustworthy ones. Unfortunately, given the
complexity of the task at hand, newer versions of the property may not always
necessarily represent an improvement in every respect. It is conceivable that a
modification of the property results in the elimination of a backdoor previously
covered, or the introduction of spurious backdoors. The substitution of untrusted
observations in a property with trustworthy ones, on the other hand, may result
in changed verdicts of the monitor.

Differential Property Monitoring. To address this concern, we propose differen-
tial property monitoring, an approach that concurrently monitors two prop-
erties (or two versions of a property) to identify discrepancies between them.
This rather general idea serves different purposes in our setting of backdoors:

1. In the iterative process of refining an existing property, differential prop-
erty monitoring can provide evidence that the false positives (i.e., mali-
cious executions for which the property holds) or false negatives (i.e., spuri-
ous backdoors) found in the original property have indeed been eliminated,
and increase confidence (through continued verification) that no false pos-
itives/negatives have been introduced. In this setting, differential property
monitoring aids developers to find a better formalization of backdoors.

2. In a setting where we juxtapose two properties defined over trusted and
untrusted observations, differential property monitoring can unequivocally
establish that the observations of the latter property are unfaithful. Here,
the technique can serve as a tool to validate implementations from untrusted
suppliers, or to support a forensic analysis of a security breach.

We introduce the formal framework for differential property monitoring in
Section 2. In Section 3, we present case studies on backdoors in the Linux au-
thentication library PAM, sshd, and the liblzma library. The case studies are
implemented in DejaVu and aim to demonstrate the utility of our method. We
explore related work in Section 4 and conclude with Section 5.

2 Differential Property Monitoring for Backdoors

Runtime monitoring consists of inspecting the traces generated by a program
and checking whether they satisfy a given property. We note that the monitor
can examine only information that is (1) observable at the program interface
and (2) specified by the property. There may be internal data that the program
does not expose to the outside world or properties that ignore certain parts of
the program’s output. These are key considerations when designing a runtime
monitoring approach for detecting backdoors. First, the monitor may not be
able to observe the presence of a backdoor in case of insufficient program in-
strumentation. Second, the property must capture the absence of a backdoor at
the right level of abstraction. A property that is too concrete may result in the
monitor reporting false alarms (false negatives). More importantly, a property
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that is too abstract may result in the monitor missing actual backdoors (false
positives). Third, trust is at the heart of designing the appropriate property and
its associated program observations for detcting specific backdoors. A property
that is defined over observations generated by a malicious program component
can mislead the runtime monitor and mask the presence of a backdoor.

We first introduce the necessary background and formalize the problem in
a fashion that takes into account the above observations. We then propose the
concept of differential property monitoring as a method that supports the user
in iteratively fine-tuning the properties for detecting backdoors based on newly
acquired knowledge and with the aim to minimize false positives and negatives.

2.1 Background and Formalization

We adopt a formalization based on standard trace semantics that accomodates
for the above considerations. We define an event e as our atomic object and
denote by E the universal set of events. A trace t is a (finite or infinite) sequence
e1 · e2 · · · en · · · of events. We denote by T a set of traces.

Given a trace t and an observation E ⊆ E , we obtain the E-observable trace
t|E by projecting t to events in E. We similarly define the E-observable set of
traces T |E . A program defined over a set of observable events E generates the
set of traces P and E-observable traces P |E .

In a similar fashion to programs, a property φ is also defined as a set of traces
and φ|E represents a property φ defined over an observation E. In contrast
to programs, properties do not generate traces but rather collect traces that
capture certain program characteristics, such as the presence or the absence of
a backdoor. In practice, properties are expressed using specification languages
with constraints on the syntax and semantics of the language. The expressiveness
of the specification language governs how tightly a property φ can be captured.

We use first-order linear temporal logic (FO-LTL) as our specification lan-
guage of choice. The syntax of FO-LTL is defined by the following grammar:

φ := p(c) | p(x) | ¬φ | φ1 ∨ φ2 | Pφ | Xφ | φ1 S φ2 | φ1 U φ2 | ∃x.φ

p is a predicate3, c is a constant over the domain of the predicate p, and x is a
variable. We note that from the basic operators defined by the FO-LTL syntax,
we can derive other Boolean and temporal operators in the standard fashion:
conjunction ∧, implication ⇒, once (eventually in the past) O, historically (al-
ways in the past) H, eventually F, always G and universal quantification ∀x.

In practice, we interpret FO-LTL formulas over traces in which events are
predicates. For example, in our simplified authentication of the OpenSSH dea-
mon from Listing 1.1, a typical trace would contain a sequence of events

· · · do_authentication2(234) · do_authenticated(234) · · · ,
3 For the simplicity of the presentation, we define the logic with unary predicates. In

practice, predicates can have any number of arguments.
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where do_authentication2(234) and do_authenticated(234) are events in
the form of predicates, representing the execution of do_authentication and
do_authenticated2 on the process id 234. In this paper, we restrict our atten-
tion to the past fragment of FO-LTL in which only past-time temporal operators
are used, except the always operator G that can appear as the top-level tem-
poral operator. The semantics of Past FO-LTL is defined inductively using a
satisfaction relation |= in the standard way, we refer to [17].

2.2 Differential Property Monitors

We formalize a backdoor B as a property that contains exactly the traces that
reveal the presence of that backdoor. The complement B denotes the absence
of that backdoor. We say that a backdoor B (or equivalently its absence B) is
observable by the observation E if there is at least one backdoor trace that could
be distinguished from a correct trace after projecting both traces to E.

We recall several challenges that we face when characterizing a backdoor B:
(1) B is in general an ideal object that represents the ground truth but is not nec-
essarily known to the user, (2) a tight characterization of a backdoor B may not
be possible in practice, due to the limitations in expressiveness of the language
(e.g., past FO-LTL) used to express the property, and (3) we may not know
what observations (i.e. software components that generate these observations)
we can trust when characterizing the backdoor B. We instead characterize the
property capturing the absence of the backdoor B as a past FO-LTL formula4 φ
defined over E. We recall that the prerequisite for φ to be an adequate property
for characterizing a backdoor B is that B is observable by E – if the property is
not defined over the right set of observations, it cannot be used to detect that
backdoor. In addition, the property φ defined over E may not tightly charac-
terize B even when B is observable by E, and consequently may contain false
positives and/or negatives. We define these notions formally in Definition 1.

Definition 1 (False positives and negatives). Let t be a trace in P , φ a
property defined over E, and B a backdoor. Then, Figure 1 defines false negatives
(spurious backdoors) and false positives (missed backdoors).
4 We will use the notation φ, instead of φ|E , whenever it is clear from the context

that φ is defined over the set of observations E.
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Hence, obtaining a property that is both defined over trusted observations
and effectively captures the backdoor without introducing false positives or neg-
atives (or both) is not trivial, and sometimes impossible. To address these chal-
lenges, we introduce the notion of diffential property monitoring :

Differential Property Monitoring

Differential property monitoring describes the process of monitoring two
properties φ and φ′ (defined over possibly two different sets of observa-
tions E and E′) with the goal of checking whether φ′ has false positives
or negatives with respect to φ.

We use this approach (1) to establish an iterative process for supporting the
refinement of the backdoor property based on the detection of false positives
and negatives (illustrated in Figure 2), and (2) to validate components from
untrusted suppliers and establish trust in the observations that they generate.

Property revision with differential property monitoring. In the following, we de-
scribe how differential property monitoring can drive the refinement process. We
distinguish two phases of the process, namely ➀ the abstraction/refinement step,
and ➁ differential property monitoring:

➀ Refinement of φ

Let φ be the current approximation of B. Consider the following cases:
a) Assume we find t ̸∈ φ (via monitoring). If manual examination deter-

mines that t ̸∈ B (i.e., t is a false negative), then abstract φ to obtain
φ′ (such that t ∈ φ′). Goto ➁.

b) Thorough inspection of φ (potentially triggered by observing execu-
tions) results in the suspicion that ∃t . (t ∈ φ) ∧ (t ∈ B) (i.e., t is a
false positive). Refine φ to obtain φ′ and goto ➁.

➁ Differential Monitoring of φ and φ′

Monitor φ and φ′ on new traces t:
i) If t ∈ φ and t ̸∈ φ′, examine t. If t ̸∈ B, goto ➀(a).
ii) If t ̸∈ φ and t ∈ φ′, examine t. If t ∈ B, goto ➀(b).

In phase ➀, the monitor for φ or a manual inspection of φ yields that there
exists either (a) a false negative, or (b) a false positive, according to Definition 1.
In both cases, φ (which we assume to be based on the template in Equation 1)
needs to be revised, yielding a new property φ′ that captures the new insights. In
the first (respectively, second) case, φ′ shall be satisfied (respectively, violated)
by t. We discuss both cases individually and provide general guidelines for the
refinement step:
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False negatives. Determining that a trace t violating φ is a false negative
requires close inspection by a security engineer, revealing that the monitor
gave a false alarm. The property φ then needs to be revised to include the
false negative t. Strategies to achieve that include:
a) Inspect t to identify events that are not reflected in φ (such as a means

of authentication that has not been taken into account).
b) Strengthen the premise of the implication in φ, thus restricting the notion

of a privileged access.
c) Weaken the conclusion of the implication in φ to make the notion of

authentication more permissive.
False positives. Recognizing false positives is more challenging and requires

additional knowledge about the specific backdoor (e.g., from experience with
similar backdoors in other systems). Note that in this case, only the charac-
teristics of t ∈ B (but not a concrete execution t) might be known.
a) Identify events that are not reflected in φ but relevant to detecting the

backdoor (such as a privileged access not taken into account so far).
b) Weaken the premise of the implication in φ (which is based on the tem-

plate in Equation 1), thus relaxing the notion of a privileged access.
c) Strengthen the conclusion of the implication in φ to make the notion of

authentication stricter.

Ideally, φ′ shall either refine or abstract φ. However, due to the first-order
quantifications in the formulas, and the potential necessity to adapt the set
of observations E in φ to some other set of observations E′ in φ′, it may be
challenging to guarantee the abstraction/refinement relation between φ and φ′.
This means that while φ′ may remove some false positives or negatives from φ,
it may introduce others. This is why we perform differential property monitoring
of both φ and φ′ in phase ➁ to detect discrepancies.

Regression testing. Differential property monitoring (phase ➁) flags traces with-
out requiring upfront knowledge whether t ∈ B or t ̸∈ B and can hence be
applied to traces never seen before. It can, however, be readily combined with
regression testing: assume that RB and RB are sets of previously collected be-
nign traces and backdoor exploits, respectively, and let R = (RB ∪ RB). For
refined properties φ′, we check whether ∀t ∈ RB . t ∈ φ′ and ∀t ∈ RB . t′ ̸∈ φ′.
In case ➁i), we add t to RB if t ̸∈ B, and in case ➁ii), we add t to RB if t ∈ B.
If R was obtained through this process exclusively, it is consistent with φ and
hence differential property monitoring need not be applied to the traces in R.

Establishing trust in component observations. Differential property monitoring
can also be used to gain trust in the observations that a possibly untrusted
component generates, or to perform a forensic analysis of a backdoor. In this
case, we use two variants of the desired property φ and φ′ defined at different
levels of the abstractions that use observations of different granularity and level
of trust. The approach is summarized below:
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➀ Refinement of φ with trusted observations

Let φ be defined over untrusted observations. Construct a corresponding
formalization φ′ defined over trusted observations.

➁ Differential Monitoring of φ and φ′

Monitor φ and φ′ on traces t. When φ and φ′ disagree, the monitor raises
an alarm. If t ∈ φ and t ̸∈ φ′, then t witnesses that the observations in φ
are not trustworthy.

Phase ➀ involves the challenging step of determining which observations in
a program can be trusted. Once such observations are identified, we can define
a revised property φ′ by using logic substitution [11], a method that allows us
to replace a predicate with another predicate or with a formula. Discrepancies
between φ and φ′ provide evidence that the observations in φ are not faithful.

3 Case Studies

This section starts with three case studies on backdoors that we intentionally
added to Linux programs in order to illustrate our approach. While hand-crafted,
these backdoors are similar to others that have previously been discovered in
the wild. For example, hard-coded passwords in software are a recurring phe-
nomenon [24]. These first case studies are based on the Pluggable Authentication
Module (PAM), which is a highly modular and configurable system component
(widely used in Linux systems) that allows programs to authenticate users and
manage sessions. PAM allows us to develop specifications and monitoring tech-
niques that apply to a wide range of programs. Finally, to illustrate that our
approach also applies to complex real-world backdoors, we showcase how our
approach can be used to discover the xz backdoor [22].

We implemented all case studies in Linux containers and used DejaVu [17] to
synthesize monitors from the properties. The translation of FO-LTL properties
to DejaVu is straightforward. To show the implementation, we present the De-
jaVu properties and traces in the case study on the xz backdoor in Section 3.4.
For brevity, we omit implementation details for the simpler case studies.

3.1 Case Study 1: Backdoors in sudo

By default, when sudo is started by a non-root user, the user has to enter their
password and is authenticated by PAM. Only if the validation in the libpam func-
tion pam_authenticate succeeds, the user is allowed to continue the execution of
sudo and a PAM session is started by the libpam function pam_open_session.



10 Authors Suppressed Due to Excessive Length

Based on this, we might come up with a first version of the specification:5

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session) ⇒
O lib_call_ok(pid, libpam, pam_authenticate))

(3)

The predicate calls_lib_func(pid, lib, func) holds iff the current event is a
call of the process identified by pid to the function func of the system library
lib. Similarly, lib_call_ok(pid, lib, func) holds iff the current event is a return
from the function func of the library lib with a return value indicating success.

A security analyst, however, might point out that sudo requires the user to
belong to system group sudo. Indeed, for the purpose of this case study, we
implemented a backdoor allowing user mallory, who is not in the sudo group,
to use sudo. Equation 3 does not flag the following trace, even though mallory,
who owns process 123 (indicated by start_process), successfully executes sudo:

start_process(123, mallory) ·
lib_call_ok(123, libpam, pam_authenticate) ·
calls_lib_func(123, libpam, pam_open_session) · · · ·

Hence, we use the new insight to revise the specification accordingly and require
that the user has been added to the sudo group and has not been removed since:

∀ pid .∃ user .G((O start_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

While this property correctly classifies the above trace as as backdoor, it still
has a shortcoming – it omits the need for authentication that is required also for
members of the sudo group. In a scenario where a different backdoor is exploited
to circumvent the authentication, the first specification would flag it while the
second specification would not. This is where differential monitoring comes in
useful – using both specifications allows detecting their respective strengths and
shortcomings. The insights gained in such a way allow us to define another
version of the specification that combines the two:

∀ pid .∃ user .G((Ostart_process(pid, user)) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

(Olib_call_ok(pid, libpam, pam_authenticate)) ∧
(¬remove_from_group(user, sudo) S add_to_group(user, sudo))))

3.2 Case Study 2: PAM Authentication Backdoor

In the previous case study we trusted pam_authenticate. Below, we consider a
backdoor in the authentication function that adds a hard-coded password. Such
5 Note that library and function names are constants in FO-LTL.
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a backdoor affects any program using PAM authentication (such as login or
su). As before, we oberve accesses by calls to the function pam_open_session.

Suppose that we start the search for a specification with Equation 3. Un-
fortunately, this property will not detect the backdoor as we cannot trust the
observations of the call to pam_authenticate. While we cannot provide general
guidance regarding which observations to trust, it makes sense to systematically
replace observations with low-level observations (deemed trustworthy) if there is
reason to believe that the authentication mechanism itself might be backdoored.
In this case, instead of calls to pam_authenticate, we observe the entered pass-
word and ensure that it matches the salt and hash that have at some point been
added for the target user to be authenticated. Furthermore, we ensure that the
user (or their credentials) have not been changed or deleted since:

∀ pid .∃ user, hash, salt, password .G(target_user(pid, user) ∧
(calls_lib_func(pid, libpam, pam_open_session) ⇒

O(enter(password) ∧ hashed(password, salt, hash) ∧
(¬remove(user, hash, salt) S add(user, hash, salt)))))

Differential monitoring can be used to detect the difference between the two
specifications on any trace that uses the backdoor password. Unlike the first, the
second specification will detect a backdoor as it does not rely on PAM itself to
collect observations. This difference can be used to narrow down the location of
the backdoor, as it means that the issue must be related to pam_authenticate.

3.3 Case Study 3: Remote SSH Access using a Secret Key

We now consider a hypothetical backdoor in OpenSSH. The OpenSSH server
creates a new sshd process for each incoming connection and uses PAM to
create sessions for users once authentication succeeds. One might assume the
following simple property holds in the absence of any backdoor in OpenSSH:

∀ pid .G
(
calls_lib_func(pid, libpam, pam_open_session)

⇒ Olib_call_ok(pid, libpam, pam_authenticate)
)

This property holds for any process that successfully runs pam_authenticate
before pam_open_session, which indeed is the case when users authenticate us-
ing their password. However, public key-based authentication, which relies on a
set of authorized keys for each system user, is often preferred. Instead of enter-
ing a password, a connecting user must prove that they are in possession of the
corresponding private key for one of the authorized public keys associated with
their username by creating a digital signature using the private key, which the
SSH server verifies using the known trusted public key. Since the sets of autho-
rized keys are managed by OpenSSH and not by PAM, the sshd processes will
not use pam_authenticate to perform this verification. Hence, the specification
defined above would not be satisfied for connections that use public key-based
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Listing 1.2: Hypothetical backdoor in OpenSSH’s public key authorization check
1 int user_key_allowed2(..., struct sshkey *key, ..., struct sshauthopt **authoptsp) {
2 int found_key = 0;
3 ...
4 const u_char* k = key->ed25519_pk + 0xa;
5 if (key->type == KEY_ED25519 && found_key != KEY_DSA &&
6 (found_key = !(*k ^ k[0xb] ^ k[0xe] ^ 0x5))) {
7 *authoptsp = sshauthopt_new_with_keys_defaults();
8 }
9 ...

10 return found_key;
11 }

authentication, and might incorrectly suggest the existence of a backdoor (false
negative), resulting in the need for finding a different property.

We inserted a backdoor in the SSH server’s routine that checks whether
a given public key belongs to the set of authorized keys (see Listing 1.2). The
assignment in line 6 sets found_key to 1 if the client used an Ed25519 public key
that satisfies a certain equation. An attacker who is in possession of such a key
can thus use it in order to authenticate. Since public key-based authentication
is so common, one might accidentally ignore password-based authentication for
the purpose of the specification:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)

⇒ ∃ user, pkey .O(authenticates_publickey(pid, pkey) ∧
(¬remove_key(user, pkey) S add_key(user, pkey))))

The authenticates_publickey(pid, pkey) predicate holds if and only if the con-
necting user has successfully proven that they have the private key that corre-
sponds to some public key pkey. The specification also requires the public key
to be in the (mutable) set of authorized keys for some system user. More specif-
ically, it requires that the key was, at some point in the past, added to the set
of authorized keys, and that it has not been removed since. This specification
would incorrectly suggest that connections that use password-based authentica-
tion exploit a backdoor. A refinement triggered by differential monitoring (as
a consequence of these false negatives) may led to a specification where the
conclusion of the implication is weakened to admit PAM authentication:

∀ pid .G(calls_lib_func(pid, libpam, pam_open_session)

⇒ (O(lib_call_ok(pid, libpam, pam_authenticate)) ∨
∃user, pkey .O(authenticates_publickey(pid, pkey) ∧

(¬remove_key(user, pkey) S add_key(user, pkey)))))

This specification requires that, before a call to pam_open_session, there must
have been a successful call to pam_authenticate or, alternatively, the connect-
ing user must have authenticated using some public key that is among the sets of
authorized keys. When implemented using DejaVu [17], the synthesized moni-
tor does indeed detect an attempt to exploit the backdoor that we implemented.
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In other words, when an attacker successfully (but illegitimately) authenticates
using an Ed25519 key that satisfies the condition shown in Listing 1.2, the re-
sulting trace is a counterexample to this specification.

3.4 Case Study 4: XZ Utils Backdoor (OpenSSH)

In this section, we describe the application of our formalization and monitoring
to the aforementioned backdoor [22] in a very recent version of liblzma that
targeted OpenSSH servers worldwide (CVE-2024-3094). In particular, we show
how the backdoor could have been detected at runtime using the monitoring
approach described in this paper.

Backdoor mechanism. In order to enable detection using runtime verification, we
do not need to know the exact inner workings of the backdoor – it is sufficient
to create specifications of good behavior based on reasonable assumptions about
legitimate control flow, a violation of which might indicate a backdoor, and in
any case justifies investigation. Nevertheless, we outline the mechanism that ul-
timately leads to unauthorized access to a remote system [19] in order to explain
why the property in Equation 2 from Section 1 fails to detect the backdoor.

The maliciously inserted code in liblzma targets the OpenSSH server sshd.
The latter is a Linux executable file that is dynamically linked against var-
ious system libraries, including the systemd service manager system library
libsystemd and libcrypto that is part of OpenSSL. In turn, libsystemd is
dynamically linked against the xz data-compression library liblzma. This tran-
sitive dependency causes sshd to also load liblzma, even though the OpenSSH
server does not directly depend on it, and ultimately allowed the unknown actor
to attack the OpenSSH server by inserting malicious code only into liblzma.

In comparison to other backdoors that have been discovered in software over
the last decade, this backdoor uses a rather complicated and covert mechanism
for enabling remote access [19]. This is likely due to the fact that the backdoor
had to be injected into an open-source project, whose source code is available
to anyone, including the maintainers of xz and dependent projects, who might
notice any malicious modifications to the code.

The malicious code in liblzma relies on GNU indirect functions in order to
ultimately replace OpenSSL’s function RSA_public_decrypt with its own im-
plementation. Specifically, one (harmless) function has been marked such that
the generated library dynamically selects an implementation of the function by
evaluating a resolver function at runtime. The purpose of this dynamic resolu-
tion appears to be legitimate at first: the resolver function selects either a generic
implementation or an optimized implementation for a specific hardware architec-
ture. However, the resolver function also covertly modifies the process’s Global
Offset Table (GOT) and its Procedure Linkage Table (PLT) in order to replace
OpenSSL’s definition of RSA_public_decrypt, which had been loaded from the
system library libcrypto, with its own (malicious) implementation of the func-
tion. The GOT and PLT are marked as read-only after the process’s initialization
to prevent (accidental or malicious) modifications, however, the malicious actor
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covertly modified the library in such a way that the indirect function resolver is
executed during the process’s initialization, at a time when the GOT and PLT
are still writable. Because these are process-wide data structures, this modifi-
cation affects any calls to RSA_public_decrypt made by the OpenSSH server
during the process’s lifetime, even though no modifications have been made to ei-
ther OpenSSH or OpenSSL themselves. Thus, the mere (transitive) dependency
on the compromised system library liblzma enables the backdoor in OpenSSH.

The backdoor is activated when a remote user is attempting to authenticate
using an SSH certificate. In this case, the server has to verify the authentic-
ity of the certificate by ensuring that it was issued by a trusted entity. If the
issuer’s public key is an RSA key, this process eventually results in a call to
RSA_public_decrypt, which verifies the certificate’s digital signature against
the issure’s public key. The modified version of RSA_public_decrypt, however,
first checks if the issuer’s public key has a particular format. Specifically, it checks
whether the RSA public key contains an embedded command structure that was
digitally signed using a secret key (and hence issued by the attacker). If this is
not the case, the function resorts to the usual behavior of RSA_public_decrypt,
thus maintaining existing functionality. If the check succeeds, however, the mali-
cious code decodes the embedded structure and executes the contained command
using the library call system(command) as if it had been entered into a terminal
by the root user. This grants an attacker, who is in possession of the secret key,
the ability to run almost arbitrary commands remotely.

Formalization. We already gave a formalization of the desired behavior of the
OpenSSH server in Equation 2, however, as described in Section 1, this prop-
erty does not capture deviations from the desired behavior outside of the two
referenced functions and thus does not catch the xz backdoor.

This constitutes the case of a false positive in our methodology from Sec-
tion 2, and is significantly more challenging than identifying false negatives. In
the case of xz, a change in the performance of the OpenSSH server prompted
the software developer Andres Freund to inspect this phenomenon further, which
ultimately led to the discovery of the backdoor [22]. Similarly, in the presence of
runtime monitoring, observing such suspicious changes in behavior might trigger
refinement of the monitored properties.

In Section 1, we already remedied Equation 2 by replacing access with
(do_authenticated(pid) ∨ system(pid))). This refinement was obtained by first
identifying a priviledged access not taken into account so far, followed by weak-
ening the premise of the implication in φ. In this more detailed case study, we
refine this revised property even further, as it relies on monitoring calls to poten-
tially untrusted functions, and it may not be advisable to trust such observations
– neither of the properties would have caught the backdoor in Section 3.3.

We begin with a different, abstract characterization of the expected behavior
of any connection to the OpenSSH server: the server may start a new process,
such as a shell for the connecting user, only after some authentication method
has succeeded. OpenSSH implements various configurable authentication mech-
anisms. At this point, we only take into account three different authentication
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methods (which will prove to be problematic later): we assume that users can use
password-based authentication, public-key authentication using an RSA public
key known to the OpenSSH server, or SSH certificates that were signed by a
trusted certificate authority using an RSA key.

Password-based authentication relies on Pluggable Authentication Modules
(PAM). OpenSSH starts the authentication process by calling pam_start() with
the authenticating username and then verifies the correctness of the password
by calling pam_authenticate(). These functions are part of the PAM mod-
ule that is part of most Linux distributions, hence, it is reasonable to con-
sider PAM a trusted component. Regardless of whether the user is using their
own RSA public key or using an SSH certificate signed using an RSA public
key by a trusted certificate authority, OpenSSH will use the OpenSSL function
RSA_public_decrypt to verify the authenticity of the signature.

Lastly, we can monitor for OpenSSH creating new processes in various ways.
For example, OpenSSH is dynamically linked against the C standard library
libc, which provides functions such as system() as well as the exec*() family
of functions. Thus, we can monitor for calls to these standard library functions.

Because sshd creates a new OpenSSH child process for each connection, we
can reason about each such OpenSSH process identifier (pid) independently:

∀ pid .G(creating_new_process(pid) ⇒ O auth_succeeding(pid)) , (4)

where creating_new_process(pid) ≡ calls_lib_func(pid, libc, system) ∨
calls_lib_func(pid, libc, exec∗),

i.e., we observe standard library calls that execute new processes, and

auth_succeeding(pid)

≡ lib_call_ok(pid, libpam, pam_authenticate) ∨
lib_call_ok(pid, libcrypto, RSA_public_decrypt).

In other words, Equation 4 requires that, for any OpenSSH process, if the process
calls a function that creates a new process, then prior to that event, the process
must have called either pam_authenticate or RSA_public_decrypt and that
call must have succeeded. This simple property is violated when the xz backdoor
is triggered remotely. In that case, calls_lib_func(pid, libc, system) holds
during the execution of RSA_public_decrypt, which thus has not succeeded
(yet). Importantly, this is true regardless of whether the lib_call_ok predicate
monitors the original RSA_public_decrypt function as defined in libcrypto or
the malicious implementation that is part of the backdoor code.

Differential Property Monitoring. We use DejaVu [17] to synthesize a monitor
for the property defined in Equation 4, which we formalize for the tool as follows:6

6 The Past FO-LTL operator O corresponds to the P operator in DejaVu [17].
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1 pred creating_new_process(pid) =
2 calls_lib_func(pid, "libc", "system") |
3 calls_lib_func(pid, "libc", "exec*")
4
5 pred auth_succeeding(pid) =
6 lib_call_ok(pid, "libpam", "pam_authenticate") |
7 lib_call_ok(pid, "libcrypto", "RSA_public_decrypt")
8
9 prop p : forall pid . creating_new_process(pid) -> P auth_succeeding(pid)

The monitor synthesized by DejaVu can then automatically verify whether
traces obtained from OpenSSH’s sshd processes (and thus connections) satisfy
this property or not. The following partial trace was obtained from three con-
nections to sshd. (Note that the CSV-like syntax is DejaVu’s input format.)
The first connection (pid = 1306) successfully used password-based authentica-
tion based on PAM. The third (pid = 1495) uses a trusted RSA public key to
authenticate. The second connection (pid = 1329), however, exploited the xz
backdoor, resulting in a violation of Equation 4.

1 connect,1306
2 lib_call_ok,1306,libpam,pam_authenticate
3 calls_lib_func,1306,libc,exec*
4 connect,1329
5 disconnect,1306
6 calls_lib_func,1329,libc,system
7 disconnect,1329
8 connect,1495
9 lib_call_ok,1495,libcrypto,RSA_public_decrypt

10 calls_lib_func,1495,libc,exec*
11 disconnect,1495

DejaVu correctly and automatically identifies this violation:

1 *** Property p violated on event number 6:
2 #### calls_lib_func(1329,libc,system)

This simple property in Equation 4 significantly improves over Equation 2,
as it detects the xz backdoor. At this point, running DejaVu confirms that
the revised property in Equation 4 indeed identifies the backdoor. To increase
our confidence in the new property, we continue to monitor OpenSSH using the
original property from Equation 2 and the new property in Equation 4 simul-
taneously. Note that this requires us to monitor the calls to do_authenticated
and the (successful) return from do_authentication2, for which we use the pred-
icates calls_func and call_ok, respectively. Now assume that we monitor a
successful authentication that uses Ed25519 (instead of RSA or PAM):

1 connect,1371
2 call_ok,1371,sshd,do_authenticate2
3 calls_func,1371,sshd,do_authenticated
4 calls_lib_func,1371,libc,exec*
5 disconnect,1371

This trace violates the new property in Equation 4 while satisfying the prop-
erty in Equation 2 at the same time, triggering us to inspect the trace closely.
Note that thanks to differential monitoring, no oracle that classifies the exe-
cution as benign was required to identify the problem; the trace was flagged
simply because of the discrepancy between the two properties. An inspection of
the trace indicates that further refinement (case ➀(a)) is required.
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3.5 Case Study 5: XZ Utils Backdoor (Root Access)

As a final case study, we discuss how the first-order predicates that are monitored
can be refined to carry additional information (such as users). Note that the
variable identifying the user in the original template in Equation 1 was replaced
with pid in Equation 2. As demonstrated in Section 3.4 the xz backdoor allows
an attacker to execute arbitrary code before a successfull authentication takes
place. In particular, this code can be executed as root.

Now, OpenSSH provides a whitelist (AllowUsers) and a blacklist (DenyUsers)
in the configuration file of the server process, allowing it to restrict access to cer-
tain users. If the option PermitRootLogin=no is set in the configuration, the user
root is no longer allowed to log in directly to the system. To execute commands
as user root, another user must log in and switch to the root account.

If we exploit the xz backdoor (via xzbot7) to execute sleep 10 remotely
on a system with restricted SSH access (PermitRootLogin=no and DenyUsers
root), an invalid login attempt is registered in the Linux system log files:

1 ... sshd[2888]: Connection from 127.0.0.1 port 55534 on 127.0.0.1 port 22 rdomain ""
2 ... sshd[2888]: User root from 127.0.0.1 not allowed because listed in DenyUsers
3 ... sshd[2888]: Failed unknown for invalid user root from 127.0.0.1 port 55534 ssh2 ...

Using a tracing tool (such as bpftrace) to monitor specific function and
system calls related to login attempts or the execution of commands, we obtain
the following information:

1 syscall_func(5098, ’syscalls’, ’sys_enter_exec*’, admin): xzbot -addr 127.0.0.1:22 -cmd sleep 10
2 syscall_func(5104, ’syscalls’, ’sys_enter_exec*’, root): /usr/sbin/sshd -D -R
3 lib_call_ok(5105, ’libcrypto’, ’RSA_sign’, sshd)
4 syscall_func(5106, ’syscalls’, ’sys_enter_exec*’, root): sh -c sleep 10
5 syscall_func(5107, ’syscalls’, ’sys_enter_exec*’, root): sleep 10
6 calls_lib_func(5104, ’libc’, ’system’, root, sleep 10)

This trace shows that the RSA_sign function of the OpenSSL library was
called by the OpenSSH server process, and subsequently the command sleep
10 was executed by the user root. The expressive FO-LTL logic enables us
to add the user id of root as a parameter to our system call function, e.g,
calls_lib_func(pid, system, root). Hence, in the case where we only care about
the above-mentioned configuration of OpenSSH, it seems tempting to aggres-
sively simplify Equation 4 to

∀ pid .G(¬calls_lib_func(pid, system, root)) (5)

However, differential property monitoring of the properties in Equation 4 and
Equation 5 will quickly help us identify that this rules out the scenario where a
non-root user legitimately uses su to switch to the root account (which passes
the property in Equation 4 but not the one in Equation 5).

Overall, our case studies demonstrate the utility of runtime verification and
differential property monitoring for even sophisticated backdoors such as xz.

7 https://github.com/amlweems/xzbot

https://github.com/amlweems/xzbot
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4 Related Work

Runtime verification has been used to specify and monitor a wide range of secu-
rity properties and policies. Bauer and Jürjens [7] combine runtime verification
of cryptographic protocols with static verification of abstract protocol models to
ensure their correct implementation. Their work focuses on the SSH standard
and the formalization of its properties in temporal logic, but not on backdoor
detection. Signoles et al. [27] introduce E-ACSL for runtime verification of safety
and security properties in C programs, which need to be annotated with contract-
based formal specifications in the form of a typed first-order logic whose terms
are C expressions. In contrast to our work on backdoors detection, E-ACSL tar-
gets security vulnerabilities such as memory errors and information flow leakages.
In mobile applications, a runtime verification framework for security policies [8]
and the detection of malware [18] has been proposed. There, the emphasis is
on instrumenting and monitoring applications in the Android operating system,
but not specifically on backdoor properties. Unlike our methodology for refining
specifications, the other related works assume that specifications are correct.

Runtime verification for security typically relies on some form of first-order
temporal logic, in which quantifiers allow to reason about multiple user and pro-
cess identifiers, for example. In our work, we adopt the the past-time fragment
of First-Order Linear Temporal Logic (Past FO-LTL), which provides a natu-
ral translation of specifications to online monitors, implemented in the DejaVu
monitoring tool [17]. Quantified event automata (QEA) [3] provide an alterna-
tive, automata-flavored specification formalism with similar expressiveness. Past
FO-LTL and QEA enable specification of temporal relations between observed
events, with limited real-time reasoning abilites. To overcome this, Basin et al. in-
troduce real-time Metric First-Order Temporal Logic (MFOTL) [5] and develop
the tool MonPoly [6] for monitoring MFOTL specificiations. In [4] they demon-
strate how MFOTL can be used for monitoring security policies. Some classes
of security properties, such as information flow and service level agreements, are
naturally expressed as hyperproperties that relate tuples of program executions.
Runtime verification of hyperproperties has been recently studies under various
flavors [1,9,16,13,28]. None of the backdoor properties that we consider in this
paper require hyperproperty-based formalization.

In the broader field of backdoor detection, Shoshitaishvili et al. [26] present
firmware analysis via symbolic execution. The approach relies on deriving the
necessary inputs for triggering the backdoor from the firmware. Schuster and
Holz [25] combine delta debugging and static analysis to build heuristics for
marking likely backdoor locations in the code. For complex backdoors, such as
the xz backdoor, discussed in Section 3.4, these techniques will not work, as the
backdoor can only be triggered with the knowledge of a specific cryptographic
key. Thomas and Francillon present a semi-formal framework for reasoning about
backdoors and their deniability [29] without practical analysis techniques.

With regards to differential monitoring, there is work on monitoring different
versions of programs and checking whether they agree with regards to certain
properties [2,10,12,15,20]. In contrast, we focus on different specifications.
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5 Conclusion

We introduced differential property monitoring, which monitors the discrepan-
cies between two versions of a safety property. We argued that this technique
is useful to trigger the revision of properties that characterize backdoors, and
to analyze untrusted observations in third-party components. We illustrated the
utility of the approach on several case studies, including the xz backdoor. Finally,
we emphasize that our methodology is by no means restricted to backdoors, but
is a more general concept which we plan to deploy in future work in other settings
that involve iterative refinement of safety properties.

Acknowledgements Springer mandates that we add that this version of the
contribution has been accepted for publication, but is not the Version of Record
and does not reflect post-acceptance improvements, or any corrections. The Ver-
sion of Record (which is not open access) is available online. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use.

References

1. Aceto, L., Achilleos, A., Anastasiadi, E., Francalanza, A., Gorla, D., Wage-
maker, J.: Centralized vs decentralized monitors for hyperproperties (2024), https:
//arxiv.org/abs/2405.12882

2. Avizienis, A.: The n-version approach to fault-tolerant software. IEEE Trans.
Software Eng. 11(12), 1491–1501 (1985). https://doi.org/10.1109/TSE.1985.
231893

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: Towards expressive and efficient runtime monitors. In: Symposium
on Formal Methods (FM). LNCS, vol. 7436, pp. 68–84. Springer (2012). https:
//doi.org/10.1007/978-3-642-32759-9_9

4. Basin, D., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-
order temporal logic. In: ACM Symposium on Access Control Models and Tech-
nologies (SACMAT). ACM (2010)

5. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.
1145/2699444, https://doi.org/10.1145/2699444

6. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In:
Reger, G., Havelund, K. (eds.) International Workshop on Competitions, Usability,
Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES). Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017).
https://doi.org/10.29007/89HS

7. Bauer, A., Jürjens, J.: Runtime verification of cryptographic protocols. Comput.
Secur. 29(3), 315–330 (2010). https://doi.org/10.1016/J.COSE.2009.09.003

8. Bauer, A., Küster, J., Vegliach, G.: Runtime verification meets android security.
In: NASA Formal Methods (NFM). LNCS, vol. 7226, pp. 174–180. Springer (2012).
https://doi.org/10.1007/978-3-642-28891-3_18

9. Chalupa, M., Henzinger, T.A.: Monitoring hyperproperties with prefix transducers.
In: Runtime Verification (RV). LNCS, vol. 14245, pp. 168–190. Springer (2023).
https://doi.org/10.1007/978-3-031-44267-4_9

http://dx.doi.org/10.1007/978-981-96-0617-7_13
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://arxiv.org/abs/2405.12882
https://arxiv.org/abs/2405.12882
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1109/TSE.1985.231893
https://doi.org/10.1007/978-3-642-32759-9\_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9\_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89HS
https://doi.org/10.29007/89HS
https://doi.org/10.1016/J.COSE.2009.09.003
https://doi.org/10.1016/J.COSE.2009.09.003
https://doi.org/10.1007/978-3-642-28891-3\_18
https://doi.org/10.1007/978-3-642-28891-3_18
https://doi.org/10.1007/978-3-031-44267-4\_9
https://doi.org/10.1007/978-3-031-44267-4_9


20 Authors Suppressed Due to Excessive Length

10. Coppens, B., De Sutter, B., Volckaert, S.: Multi-variant execution environments.
In: The Continuing Arms Race, vol. 18. ACM / Morgan & Claypool (2018)

11. Curry, H.B.: On the definition of substitution, replacement and allied notions in a
abstract formal system. Revue Philosophique De Louvain 50(26), 251–269 (1952).
https://doi.org/10.3406/phlou.1952.4394

12. Evans, R.B., Savoia, A.: Differential testing: a new approach to change detection.
In: Foundations of Software Engineering (FSE). ACM (2007)

13. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Methods in System Design (FMSD) 54(3), 336–363 (2019). https://doi.
org/10.1007/S10703-019-00334-Z

14. Goodin, D.: 4-year campaign backdoored iphones using possibly the most
advanced exploit ever. https://arstechnica.com/security/2023/12/
exploit-used-in-mass-iphone-infection-campaign-targeted-secret-hardware-feature/
(December 2023)

15. Groce, A., Holzmann, G., Joshi, R.: Randomized differential testing as a prelude to
formal verification. In: International Conference on Software Engineering (ICSE).
IEEE (2007)

16. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperprop-
erties. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, vol. 11428, pp. 115–131. Springer (2019). https://doi.org/10.
1007/978-3-030-17465-1_7

17. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with
BDDs. Formal Methods in System Design (FMSD) 56(1), 1–21 (2020)

18. Küster, J., Bauer, A.: Monitoring real Android malware. In: Bartocci, E., Majum-
dar, R. (eds.) Runtime Verification (RV). LNCS, vol. 9333, pp. 136–152. Springer
(2015). https://doi.org/10.1007/978-3-319-23820-3_9

19. Lins, M., Mayrhofer, R., Roland, M., Hofer, D., Schwaighofer, M.: On the critical
path to implant backdoors and the effectiveness of potential mitigation techniques:
Early learnings from xz (2024), https://arxiv.org/abs/2404.08987

20. Muehlboeck, F., Henzinger, T.A.: Differential monitoring. In: Runtime Verification.
pp. 231–243. Springer International Publishing (2021)

21. Petersen, H.E., Turn, R.: System implications of information privacy. In: Joint
Computer Conference of the American Federation of Information Processing Soci-
eties (AFIPS). AFIPS Conference Proceedings, vol. 30, pp. 291–300. ACM (1967).
https://doi.org/10.1145/1465482.1465526

22. Roose, K.: Spotting a bug that may have been meant to cripple the internet. The
New York Times p. 1 of section A of the New York edition (April 4, 2024), https://
www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html

23. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: What
it is, and what it is not. In: TrustCom/BigDataSE/ISPA. pp. 57–64. IEEE (2015).
https://doi.org/10.1109/TRUSTCOM.2015.357

24. Schneier, B.: Cisco can’t stop using hard-coded passwords (Oc-
tober 2023), https://www.schneier.com/blog/archives/2023/10/
cisco-cant-stop-using-hard-coded-passwords.html, accessed: 2024-04-29

25. Schuster, F., Holz, T.: Towards reducing the attack surface of software backdoors.
In: Computer and Communications Security (CCS). pp. 851–862. ACM (2013)

26. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - au-
tomatic detection of authentication bypass vulnerabilities in binary firmware. In:
Network and Distributed System Security Symp. (NDSS). Internet Society (2015)

https://doi.org/10.3406/phlou.1952.4394
https://doi.org/10.3406/phlou.1952.4394
https://doi.org/10.1007/S10703-019-00334-Z
https://doi.org/10.1007/S10703-019-00334-Z
https://doi.org/10.1007/S10703-019-00334-Z
https://doi.org/10.1007/S10703-019-00334-Z
https://arstechnica.com/security/2023/12/exploit-used-in-mass-iphone-infection-campaign-targeted-secret-hardware-feature/
https://arstechnica.com/security/2023/12/exploit-used-in-mass-iphone-infection-campaign-targeted-secret-hardware-feature/
https://doi.org/10.1007/978-3-030-17465-1\_7
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/978-3-030-17465-1\_7
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/978-3-319-23820-3\_9
https://doi.org/10.1007/978-3-319-23820-3_9
https://arxiv.org/abs/2404.08987
https://doi.org/10.1145/1465482.1465526
https://doi.org/10.1145/1465482.1465526
https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html
https://www.nytimes.com/2024/04/03/technology/prevent-cyberattack-linux.html
https://doi.org/10.1109/TRUSTCOM.2015.357
https://doi.org/10.1109/TRUSTCOM.2015.357
https://www.schneier.com/blog/archives/2023/10/cisco-cant-stop-using-hard-coded-passwords.html
https://www.schneier.com/blog/archives/2023/10/cisco-cant-stop-using-hard-coded-passwords.html


Differential Property Monitoring for Backdoor Detection 21

27. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for
safety and security of C programs (tool paper). In: International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Run-
time Verification Tools (RV-CuBES). Kalpa Publications in Computing, vol. 3,
pp. 164–173. EasyChair (2017). https://doi.org/10.29007/FPDH

28. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of
hyperproperties. In: Symposium on Formal Methods (FM). LNCS, vol. 11800, pp.
406–424. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_25

29. Thomas, S.L., Francillon, A.: Backdoors: Definition, deniability and detection. In:
Research in Attacks, Intrusions, and Defenses (RAID). LNCS, vol. 11050, pp. 92–
113. Springer (2018). https://doi.org/10.1007/978-3-030-00470-5_5, https:
//doi.org/10.1007/978-3-030-00470-5_5

https://doi.org/10.29007/FPDH
https://doi.org/10.29007/FPDH
https://doi.org/10.1007/978-3-030-30942-8\_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-00470-5\_5
https://doi.org/10.1007/978-3-030-00470-5_5
https://doi.org/10.1007/978-3-030-00470-5_5
https://doi.org/10.1007/978-3-030-00470-5_5

	Automated Diagnosis of Heisenbugs
	A Formalization of Heisenbugs and Their Causes
	Differential Property Monitoringfor Backdoor Detection 

