
EFPO: Energy Efficient and Failure Predictive Edge Offloading
Josip Zilic

Vienna University of Technology
Vienna, Austria

josip.zilic@tuwien.ac.at

Atakan Aral
Vienna University of Technology

Vienna, Austria
atakan.aral@tuwien.ac.at

Ivona Brandic
Vienna University of Technology

Vienna, Austria
ivona.brandic@tuwien.ac.at

ABSTRACT
Many researchers focus on offloading issues and challenges to im-
prove energy efficiency and reduce application response time by
employing multi-objective offloading frameworks but without con-
sidering offloading failures. Edge Computing, due to distributed
architecture that contains diverse resource and reliability character-
istics, is prone to server and network failures that can postpone or
prevent offloading thus affecting the overall system performance.
In this study, we propose a novel solution to model the energy con-
sumption of mobile device and application response time assuming
the resource and reliability diversity of the Edge Computing sys-
tem. The model adopts the Markov Decision Process (MDP), which
provides a formal framework for capturing stochastic and non-
deterministic behavior of Edge offloading. We propose the Energy
Efficient and Failure Predictive Edge Offloading (EFPO) framework
based on a model checking solution called Value Iteration Algo-
rithm (VIA). EFPO determines the feasible offloading decision policy,
which should yield a near-optimal system performance. Evaluation
is performed by offloading various mobile applications modeled
as Directed Acyclic Graphs (DAG). Failures are emulated from the
failure trace data set from Pacific Northwest National Laboratory.
Results show that the proposed EFPO framework yields better time
performance between 12% - 57% and better energy efficiency be-
tween 15% - 51% when comparing to other offloading decision
policies from the literature.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies→ Modeling and simulation.

KEYWORDS
edge offloading; offload decision engine; model checking

1 INTRODUCTION
Modern mobile applications offer an increasing amount of features
to satisfy the demands of a rising number of users, ensure revenues
and preserve their position in the market. However, a rising number
of features increase also resource consumption on the mobile device.
Regardless of the increased computational capabilities of mobile
devices, it is still difficult for them to provide enough resources
to mobile applications. The results are unacceptable application
run times –especially in the case of latency-sensitive applications–
and subsequently shorter battery recharging intervals. The Mobile
Cloud Computing (MCC) paradigm emerged to overcome the afore-
mentioned issues. MCC is based on the offloading concept. Mobile
applications are partitioned into smaller tasks that can be offloaded
to a Cloud data center to decrease the resource consumption on the

mobile device by executing a task in a more computationally power-
ful surrogate machine. Research works such as [11, 17, 24, 30] pro-
posed offloading frameworks with various architectures to achieve
energy savings through offloading code to the Cloud. However,
offloading a task to the Cloud data center can sometimes do more
harm than benefit. The geographical distance between Cloud data
centers and mobile devices can deteriorate application performance
due to network latency and bandwidth.

Edge computing bridge this gap by moving smaller-scale data
centers from the Cloud to the edge of the network. Thus, the task
is offloaded to the most suitable nearby Edge node instead of a dis-
tant Cloud data center to reduce application run time and prolong
battery time on the mobile device. The aforementioned works in
MCC were an inspiration for many works in Mobile Edge Com-
puting (MEC) as summarized in [21], to achieve energy savings
and reduce execution delays. However, all these work assume the
infrastructure to be failure-free, which is not a realistic assumption
Edge Computing is prone to server and network failures due to
heterogeneous resources and reliability, which can postpone or
prevent offloading and affect overall system performance [6, 7].
Low reliability of the remote infrastructure reduces the Quality-
of-Service (QoS) and degrades the end-user experience. Failures
in mobile wireless environments are considered in [22, 29, 31] but
none of them were adapted for Edge Computing.

The methodology that we used in our work is the Markov Deci-
sion Process (MDP). It is a suitable solution to capture the stochastic
and non-deterministic behavior of Edge offloading. It is the system
where failures are occurring stochastically while offloading deci-
sions are non-deterministic due to uncertainty. Work [3] modeled
offloading as Timed Automata that captures time-critical behavior
to deliver performance guarantee. Other works as [5, 26] modeled
offloading as MDP to capture the stochastic behavior of wireless fad-
ing channels and non-deterministic offloading decisions to deliver
optimal performance. However, all servers and nodes in simulation
models are assumed to be failure-free without considering offload-
ing failures and their stochastic predictability. Our proposed solu-
tion is the Energy Efficient and Failure Predictive Edge Offloading
(EFPO) framework, which adopts MDP as a formal framework that
captures the stochastic behavior of failures and non-deterministic
logic of offloading decisions to deliver efficient performance in the
shape of optimal decision policy. This is achieved through a model
checking solution called Value Iteration Algorithm (VIA) which
includes objectives like energy and time by taking offloading failure
probability into account. The advantage of the model checking ap-
proach is that it exhaustively and automatically explores the state
space and yields an optimal solution.

Evaluation is performed by offloading various intensive mobile
applications on network infrastructure, which contains diverse re-
source and reliability characteristics. Failures are emulated from the

failure trace dataset, which is collected from the high-performance
computing system at the Pacific Northwest National Laboratory
(PNNL). Results show that the EFPO framework yields better time
performance and energy efficiency between 12% - 57% and 15% - 51%
respectively when compared to other offloading decision policies
used in the evaluation.

The paper is organized as follows. The background about mobile
applications, offloading decision engine, and formal verification is
described in Section 2. In Section 3, we describe our EFPO frame-
work. Section 4 provides the evaluation results. In Section 5 related
work is discussed. Finally, Section 6 briefly mentions future work
and concludes the paper.

2 BACKGROUND
2.1 Mobile Applications
Mobile applications consist of multiple tasks, each of which has dif-
ferent requirements for computational and data storage resources.
Due to this partitioned nature, a mobile application can be mod-
eled as a Directed Acyclic Graph (DAG) [3, 14]. A DAG consists
of vertices and edges, where vertices represent the application
tasks specified with resource requirements and edges represent
task dependencies. DAG models are used when task execution or-
der within the application is relevant, due to the input and output
dependency of tasks to others. An example of DAG is shown in
Figure 1. Facerecognizer application consist of five tasks, where
blue circles are non-offloadable and white circles are offloadable
ones. Non-offloadable tasks can not be offloaded since they depend
on specific physical device functions (e.g. camera).

Figure 1: Facerecognizer mobile application [14]

2.2 Edge Offloading
With Edge offloading, a mobile application (or a part of it) is of-
floaded from a mobile device to remote network infrastructure. In
Figure 2, we summarize the offloading process. We assume that
offloading is performed by a software unit running on the mobile
device called the offloading decision engine (ODE). ODE is responsi-
ble for offloading application tasks on remote servers. It decides on
which Edge server or Cloud data center each application task shall
be offloaded, taking into account applications’ and infrastructures’
resource requirements and capacities. Once offloading is completed,

the infrastructure executes tasks and sends the results to the loca-
tion where the next application task will be executed. This process
repeats until the application terminates.

Figure 2: Edge offloading model as UML data flow diagram

Main components of offloading engine in Figure 2 are: (1) Appli-
cation profiler that profiles and extracts DAG structure and identifies
tasks requirements and dependencies; (2) System monitoring that
monitors data about remote infrastructure, and (3) Decision engine
that collects data from the other two and performs offloading deci-
sions. In this work, we focus on the decision engine. We assume
that the decision engine has already collected the application DAG
model annotated with requirements, the offloading possibility for
each task from the Application profiler, as well as the information
about remote infrastructure from System monitoring. The entire
system in the decision engine is viewed as an MDP model, and by
verifying it, we obtain optimal decision policy that is being used
in the EFPO algorithm to determine which application tasks will
be offloaded on which offloading sites. MDP framework is used for
modeling systems that exhibit probabilistic and non-deterministic
behavior. Edge offloading fits to this scenario as offloading failures
occur probabilistically and offloading decisions can be resolved in
a non-deterministic manner. Executing ODE on the mobile device
consumes energy that may be intolerable in some cases. The alter-
native is to execute ODE on a remote server and store the result on
the device. In case of unstable connectivity, execution can continue
on the device until the connection to the remote server is restored.

2.3 Formal Verification
Formal verification is the methodology for verifying the correctness
and performance of the system, using formal methods of mathe-
matics. A widely used technique is model checking, which consists
of a systematical and exhaustive exploration of the mathematical
model. It usually includes exploring all states and transitions in the
model. One variant of model checking, which is used in this paper,
is quantitative model checking, a mathematical technique for estab-
lishing the correctness, performance, and reliability of systems that
exhibit stochastic behavior [19]. Performance (e.g. time response,
energy consumption) and reliability of the system are the focus
of our paper. These models are represented as labeled transition
systems where each state represents some system configuration
and transitions (actions) that define the behavior of the system.
A general advantage of the model checking is that verification is
automatic and exhaustive. However, in the case of larger systems,
this may result in a state-space explosion and limit the number of
formulas and properties that can be verified. Theorem proving, as

an alternative approach to model checking, can work with more
accurate representations of the system and express any property,
but due to manual proofing, it requires more time and expertise.

3 OFFLOADING FRAMEWORK
3.1 MDP Formulation
MDP is a mathematical framework for modeling decision making
in situations where outcomes are partly probabilistic and partly
under the control of a decision-maker. This kind of framework can
be used for modeling systems that exhibit probabilistic and non-
deterministic behavior. Offloading decisions can be resolved in a
non-deterministic manner as a optimal decision policy. An optimal
decision policy describes the best action for each state in the MDP
model, which yields optimal performance for the modeled system
under given conditions. It can be obtained by formally verifying
the MDP model using the model checking solution Value Iteration
Algorithm (VIA). VIA algorithm focuses critically on expected value,
in contrast to safety properties that are focused on the worst-case
scenario. This allows us to exploit sampling and approximation
more aggressively. There are other model checking solutions for
MDP including Policy Iteration Algorithm, but VIA is preferred due
to its theoretical simplicity and ease of implementation [23].

MDP is defined as a labeled transition system with state space S ,
where each state represents system configuration, action space A,
where probabilistic transitions defines state trajectory from previ-
ous state s ′ to current state s and a reward function R which deter-
mines immediate reward (or cost) for taken action a while in state
s . Therefore, MDP can be formally defined as a tuple < S,A, P ,R >:

• S state space,
• A action set,
• P(s, s ′,a) transition probability by taking action a in state s
will lead to state s ′,
• R(s, s ′,a) immediate reward received after transition from
current state s to next state s ′ by taking action a.

The system architecture that we model with MDP is illustrated
in Figure 3. It consists of five offloading sites, a single mobile de-
vice (MD), three Edge servers, and a single Cloud data center (CD).
The scenario is that ODE is running on the mobile device and of-
floads the tasks from a current executed mobile application on Edge
servers or Cloud data center. Alternatively, it is performed locally
on the device. The mobile device has inferior computation and
data storage resources comparing it with Edge and Cloud. Edge
servers, on the other hand, have inferior resources when comparing
to the Cloud data center. We introduce three Edge server types: (i)
Edge database server (E1) has larger data storage capabilities and
network transmission rates for faster data transfer for handling
data-intensive applications such as Facerecognizer, (ii) Edge compu-
tational server (E2) has larger computational capabilities as CPU
processing speed suitable for computational-intensive applications
such as Chess, and (iii) Edge regular server (E3) has intermediate
resources suitable more for typical applications that do not have
large requirement for computation or data storage, such as social
media applications. Mesh network topology is used in the archi-
tecture due to advantages such as system robustness in case of
server or network failures. The system architecture is extendable

for employing multiple instances of each aforementioned offload-
ing site. MDP model checking solutions support scalability. This is
an important feature which can cope with verifying larger system
models. However, the price of larger system models is a larger state
space that can cause state space explosion which disrupts the model
checking process. In this study, we use five offloading site instances
as illustrated in Figure 3.

Figure 3: System architecture

Modeling of thementioned system architecture as aMDP is as fol-
lows: (a) The state space S is defined as S = {MD,E1,E2,E3,CD},
where elements correspond to the aforementioned offloading sites,
(b) The action spaceA is defined asA = S where a ∈ A represents
offloading site decisions (c) The discrete decision epochs repre-
sents discrete time events when offloading actions are performed
and defined as T = {0, 1, ...,n}, (d) The transition probabilities
for each state s(t) and action a(t), gives quantitative information
that the next state will be s(t + 1), (e) The reward function used
in this work considers two objectives, energy consumption and ap-
plication response time, resulting in two reward functions, Re(s,a)
and Rt(s,a), which are combined in the overall reward function
R(s, s ′,a), (f) Value iteration algorithm (VIA) performs an ap-
proximation to the optimal value function for each state as in Equa-
tion (1) and yields optimal actions which represents our optimal
offloading decision policy as shown in Equation (2). π (s) represents
offloading decision policy with initial state s andγ is discount factor
[0, 1] which guarantees algorithm output convergence.

V (s) =
∑
s ′

Pπ (s)(s, s
′)(Rπ (s)(s, s

′) + γV (s ′)) (1)

π (s) = argmax
a

∑
s ′

Pπ (s)(s, s
′)(Rπ (s)(s, s

′) + γV (s ′)) (2)

3.2 Offloading Model
Offloading sites has hardware characteristics based on which of-
floading and failure cost are computed. A site is defined as the
vector q = (f , ram, stor , r , l), where f is the CPU processing speed
in millions of cycles per second, ram is the memory storage, storaдe
is the data storage capacity, r is the network bandwidth and l is
the network latency. Application tasks are defined similarly, v =
(w , ram, din , dout , o f f), wherew is the CPU processing speed in
millions of cycles per second, ram is the memory consumption, din

is the input data size, dout is the output data size and o f f is the
binary variable that indicates whether the task offloadable.

When offloading application tasks on remote infrastructure, re-
source constraints must be respected. Defining valid offloading, the
following conditions must be satisfied:
•
∑
v ∈Oq (t)(ωv) ≤ fq

•
∑
v ∈Oq (t)(ramv) ≤ ramq

•
∑
v ∈Oq (t)(d

in
v + d

out
v) ≤ storq

• ϕ(v) = ∅

Oq (t) represents a set of application tasks that are executed in
time moment t on offloading site q and ϕ(v) represents a set of
application tasks that are input dependencies for task v . First, three
conditions, validate that CPU, RAM and data storage capacities
of offloading site q are not exceeded. The last condition validates
that all input dependable tasks are executed before task v is ready
for offloading and execution. The notation used for our simulation
model is listed in Table 1.

3.3 Time Response Model
Time response cost is defined asTv = {tmd , te1, te2, te3, tcd }, where
each element denotes the time response cost to execute component
v on each of the offloading sites. fmd , fe1, fe2, fe3 and fcd are de-
fined as the CPU clock speeds (cycles/second) of offloading sites.
The total CPU cycles needed to execute the application taskv is ωv
and fi denotes CPU frequency of qi offloading site. tcvi denotes the
computational time of executing task v on site qi and defined as:

tcvi =
ωv
fi
,∀v ∈ V ,∀i ∈ [0,k] (3)

Input and output data of task v are denoted as dinv and doutv ,
respectively. Also, t invi and t

out
vi are defined as the communication

time spent for input and output data transmission between qi and
qj offloading sites, given by both equations:

t invi =
dinv
ri j
+ li j ,∀v ∈ V ,∀i, j ∈ [0,k], i , j (4)

toutvi =
doutv
ri j
+ li j ,∀v ∈ V ,∀i, j ∈ [0,k], i , j (5)

ri j and li j represents bandwidth and latency between offloading
sites qi and qj respectively. tvi is the total time cost of task v to be
executed on site qi and it is defined as:

tvi = tcvi + t
in
vi + t

out
vi (6)

In case that successive tasks are executed on the same offloading
site then according to Equation (6), total time cost is tvi = tcvi ,
without data transmission costs from Equations (4) and (5) .

3.4 Energy Consumption Model
Energy consumption cost is defined asEv = {emd , ee1, ee2, ee3, ecd },
where each element denotes the energy cost to execute task v on
the offloading sites. Energy consumption is considered only from
mobile device perspective. Supplies on infrastructure are perceived
as unlimited. It is assumed that the energy consumption ev is com-
puted as the amount of energy a mobile device spends while ex-
ecuting the application task or waiting for the application task
to be executed on remote offloading sites. Energy consumption

of a task v is then defined by evi in Equation (7) where pc is the
mobile power consumption for local computation, pd is the mo-
bile power consumption when downloading data, pu is the mobile
power consumption when uploading data, and pidle is the mobile
power consumption in idle mode when application task is executed
on remote infrastructure (Edge or Cloud).

evi =

{
tcvi × pc + t

in
vi × pd + t

out
vi × pu

tvi × pidle
(7)

The first case considers offloading from the mobile device, and
the second when task is migrated on the remote infrastructure.
Assumption about mobile power parameters when computing total
energy consumption cost is considered as pu > pd > pc > pidle
from [18], where transmission consumes more energy then local
computation or idle mode.

3.5 Reward Functions
Reward functions are used to model utilities or objectives which we
want maximize or minimize through state sequence sampling. We
define the overall reward function R(s,a) which contains reward
function for energy consumption Re (s,a) and reward function for
application response time Rt (s,a):

R(s,a) = ωe × Re (s,a) + ωt × Rt (s,a) (8)

ωe and ωt are defined as the weight factors for energy consump-
tion and response time. The weight factors constraints are given
as

∑
m ωm = 1 wherem = {e, t} represents objectives such that

0 ≤ ωe ≤ 1 and 0 ≤ ωt ≤ 1. Both aforementioned reward functions
are defined as follows:

Re (s,a) =
1

1 + eev
(9)

Rt (s,a) =
1

1 + etv
(10)

In the evaluation, we used ωe = ωt = 0.5 which gives equal
importance to both objectives. Weight factors can be altered to
optimize the trade-off but this is out of this work’s scope.

3.6 Failure Model
Failures can occur on Edge and Cloud infrastructure on the server
or the network level. Server failures can be hardware faults (aging
factor, power outage, hard disk failure, etc.) and software faults
(OS failure, application crash, etc.), while network failures occur on
network physical connections or network interface. Both failure
types in this study are considered as an offloading failure.

Offloading failure occurrence in the simulation model is consid-
ered as a failure event λqi (t), which can occur in any discrete-time
epoch t and offloading site qi except mobile device which is consid-
ered as failure-free. Use case scenario of our most interest is that
task offloading is performed on offloading site qi at the same time
moment t when failure event λqi (t) occurred. This interrupts of-
floading and execution process and causes additional cost in energy
and time as well as forcing ODE to select other offloading sites qj .

Table 1: Simulation parameters

Simulation parameters
Offloading sites qi i-th offloading site
Energy parameters evi Energy cost of task v if executed on offloading site qi

Time parameters

tvi Total time cost of task v if executed on offloading site qi
tcvi Computational time spent executing task v on site qi
t ivi Time spent receiving input data to the task v on site qi
tovi Time spent sending output data to the task v on site qi

Hardware
parameters

fi CPU clock speed (cycles/second) of offloading site qi
wv Total CPU cycles needed by the instructions of task v
ramq RAM memory storage of offloading site q
storq Data storage capacity of offloading site q

Data parameters dinv Input data received by task v
doutv Output data sent by a task v

Power parameters

pu Mobile power consumption for uplink transmission
pd Mobile power consumption for downlink transmission
pe Mobile power consumption for local execution
pidle Mobile power consumption at idle

Network
parameters

ri j Network bandwidth rate between site qi and qj
li j Network latency between site qi and qj

Weight factors ωe Weight factor for energy consumption reward function Re (s,a)
ωt Weight factor for time response reward function Rt (s,a)

Failure parameters

λqi Binary flag that indicates did failure occured on offloading site qi
MTBF Mean time between failures
ctvi Failure time cost on the offloading site qi where task v is offloaded
cevi Failure energy cost on the offloading site qi where task v is offloaded

Offloading failure costs for time is defined as:

ctvi =

t invi
t invi + t

c
vi

t invi + t
c
vi + t

out
vi

0

(11)

The first case is when a failure occurs during input data transmis-
sion, the second case is when a failure occurs during execution,
thus, input data transmission and computation time cost are in-
cluded, thirdly, failure occurs during output data transmission, thus,
all three time cost components are included. Finally, the last case
is when there are no failures observed. Next, the offloading failure
cost for energy is defined as:

cevi =

t invi × pidle
(t invi + t

c
vi) × pidle

(t invi + t
c
vi + t

out
vi) × pidle

0

(12)

Cases are the same as in the previous equation. All time com-
ponents are multiplied with pidle since all failures are occurring
only on remote infrastructure and during that period failure-free
mobile device is in idle mode. Simulating failure events λqi (t) is
done by Poisson distribution similar to [29]. As a rate parameter,
we use Mean Time Between Failures (MTBF). It is a measure that
gives quantified information about product reliability, defined as:

MTBF =
T

R
(13)

T denotes total time and R number of failures. MTBF can be
expressed in hours, days or any other time unit. The longer the
MTBF, the product reliability is higher. It is an opposite measure of
failure rates. Using it as a rate parameter in Poisson distribution, we
obtain the number of discrete epoch events until failure event λqi (t)
occurs on offloading site qi . The final issue is predicting failure
events. Failure predictability is defined as probability estimation:

P(t) = 1 − e−t/MTBF (14)

3.7 EFPO Algorithm
Algorithm 1 shows the EFPO algorithm for obtaining an energy-
efficient offloading decision policy with failure predictability. The
algorithm obtains an optimal policy from the VIA algorithm by
exploring every state in the state space and selects the action with
the lowest energy and time cost to be the optimal action. It performs
this operation until it finds a feasible action that can be performed
on the offloading site that did not experience offloading failure.
After exploring the state space, the EFPO algorithm determines
the feasible offloading decision policy that is then used to make
an efficient decision for every future state the system encounters.
EFPO algorithm is illustrated in Algorithm 1.

In line 1 we obtain optimal offloading decision policy from the
VIA algorithm. However, optimal actions from VIA does not guar-
antee that they are feasible due to failures that happen during the
runtime. We need to iterate all states in the MDP state space to
obtain feasible optimal actions. In line 5, λT (s,a) is a boolean vari-
able which indicates whether offloading failure occurred on the

Algorithm 1 Energy Efficient and Failure Predictive Edge Offload-
ing Algorithm

1: < π∗,Q >← V IA(S,A, P ,R, s0) ▷ VIA algorithm returns
optimal decision policy

2: for each state s in S do
3: a ← π∗(s) ▷ for state s get optimal action a
4: while True do
5: if λT (s,a) then ▷ if offloading failure occurs then

another a action should be considered
6: Q ← Q − {(s,a)}
7: if Q = ∅ then return "No feasible solution"
8: end if
9: a ← argmaxa [Q(s,a)] ▷ get next best action a
10: continue
11: else
12: ω = ω + {(s,a)} ▷ store feasible action a
13: break
14: end if
15: end while
16: end for
17: return ω ▷ return feasible offloading policy

offloading site T (s,a) or not. If it is true, then we consider other
offloading sites from vector Q which contains all action-state val-
ues returned from the VIA algorithm. Based on those values, we
obtain the next action a. The algorithm continues to iterate until
it finds an action that is feasible to offload on site which did not
experience failure. Otherwise, the algorithm terminates on line 7.
When a feasible action is found, it is stored in ω vector in line 12
and returned in line 17.

The EFPO algorithm finds the efficient offloading decision with
an algorithmic complexity of O(SA) per task offloading, where S is
the state space and A is the action set. This algorithmic complexity
does not reflect the complexity of the VIA algorithm. Although the
EFPO algorithm can be considered to be a computationally expen-
sive operation for resource-limited mobile devices, an alternative
can be made so that the feasible offloading decision policy is per-
formed by the remote server. Therefore, mobile devices only store
the matrix form of the results.

4 EVALUATION
4.1 Experimental Setup
At the timewewrite, there are several state-of-the-artmodel checker
tools available such as UPPAAL [8] and PRISM [20]. UPPAAL ver-
ifies non-deterministic and time-critical systems. Moreover, UP-
PAAL Statistical Model Checking (SMC) [13] extension supports
modeling and verification of the systems which exhibit both proba-
bilistic and timed behavior. Nevertheless, the tool does not support
MDP models. PRISM, on the other hand, is a tool for formal mod-
eling and analysis of systems that exhibit random or probabilistic
behavior. MDP modeling and verification are supported but PRISM
modeling language requires that every aspect of the system, in-
cluding simulation utilities (e.g. DAG models, Poisson distribution,
parsing dataset, etc.) must be abstracted as state machines, which
limit the expressiveness of our simulation. This can also cause time

overhead in the verification process, for instance, the state space
explosion. For this reason, we use our simulation framework imple-
mented in Python which provides relatively simple syntax, diverse
mathematical sampling distributions available as simple applica-
tion programming interface (API) calls and MDP solver toolbox
[9] for MDP modeling and verification. This framework supports
DAG mobile application scheduling, energy consumption, time re-
sponse, offloading failure models, simulation and distribution of
failures, and Edge/Cloud infrastructure model. Moreover, it can
be expended with other objectives due to modular architecture.
The input of our simulation framework is the infrastructure model
which includes hardware specifications of the computational nodes,
network characteristics, and mobile application setup.

The evaluation scenario is as follows. ODE on the mobile device
decides on which offloading site shall application task be offloaded
and executed. Energy consumption and response time are affected
by hardware characteristics of the site as well as network links
between the sites. It is assumed that only data is offloaded from site
to site, while computation is replicated on each of them. Efficient
selection of replica sites in a large network is left as future work.
Here, we only consider a local partition of the system. Additionally,
failures on sites where tasks are offloaded prolong time and energy
and ODE is forced to offload tasks on another site possibly without
failure. Energy and time cost after offloading failure are defined
by Equations (11) and (12). Failure can occur on links and servers.
Depending on which part failure occurred, energy failure cost ctvi
and time failure cost cevi are computed accordingly.

4.1.1 Computational nodes. The infrastructure model used in our
simulation includes five computational nodes. We have a mobile
device, three Edge servers, and a Cloud data center. The mobile
device is the start and endpoint of any mobile application execu-
tion. Resources are very limited when comparing to the hardware
specifications of Edge servers and Cloud data centers. We assume
that the hardware specifications of the aforementioned nodes do
not change during the runtime. The contemporary CPU processing
power of the mobile device is typical between 1.8 - 2.2 GHz but
everything above 1 GHz is acceptable [2]. Cloud data center CPU
processing power with modern technological achievements can
be boosted with 56 cores with a base frequency of 2.6 GHz and
turbo 3.8 GHz [1]. Using 20 GHz in the simulation is to reflect the
computational superiority of the Cloud server compared to other
counterparts (mobile and Edge). Values from Table 2 are selected
as moderate to reflect the magnitude of the computational power
ratio between complementary parts of the network. Also, Edge and
Cloud servers due to unreliability (server and network failures)
must have larger resource capacities to stay competitive.

Concerning the mobile device, we need to consider an energy
consumption model. The parameters used in energy model are pu =
1.3W, pd = 1.0W, pc = 0.9W, pidle = 0.3Wwhere condition is assumed
pu > pd > pc > pidle as in [18] and used in Equations (7) and (12).

4.1.2 Network Infrastructure. Network parameters that can influ-
ence offloading results are network latency and bandwidth. Net-
work latency is the amount of time that takes the data to transmit
between two points which is dependable on physical distance. This
fits our model since the Cloud data center is geographically more
distanced from the end-user which scale up the network latency.

Table 2: Hardware specifications

Node CPU
(GHz)

RAM
(GB)

Storage
(GB)

Edge database server 5 8 500
Edge computational
server 8 8 250

Edge regular server 5 8 250
Cloud data center 20 128 1000
Mobile device 1 8 16

The latency on wireless links between the mobile device and Edge
servers should be less due to geographical proximity. Bandwidth,
on the other hand, is the rate of data transfer between the two
points. This fits the DAG mobile application model where task de-
pendency between the tasks is achieved based on input and output
data transmission via network links. Overview of network latency
and bandwidth distribution is shown in Table 3. Latency distribu-
tion is similar to work [14], while bandwidth for wireless links (first
and the second row of the table) are actual speed limits of IEEE
802.11 wireless standard (802.11a, 802.11b, 802.11g) and for fixed
network links (third and fourth row of the table) are Fast Ethernet
and 1Gbit Ethernet link standards. Mentioned wireless standards
are used since speed is lower when comparing to other IEEE 802.11
wireless standards which could yield to higher price and opera-
tional cost. For a fixed network, we selected Ethernet links since
we are assuming that Edge servers will be localized near each other.
Higher bandwidth values from the Table 3 are associated with Edge
database server network connection characteristics due to high
demand in data transmission.

Table 3: Network specifications

Links Latency (ms) Bandwidth (Mbps)
Mobile Edge 15 5.5/20
Mobile Cloud 54 + φ(µ, σ) 20
Edge Cloud 15 + φ(µ, σ) 100/987
Edge Edge 10 100/987

Network links between Edge servers and the Cloud data center
are much faster when compared to wireless links. It is a reason-
able assumption since it is well known that data transmission on
telecommunication or Internet network is highly demanding, thus
larger bandwidth rates should be provided, similar to the assump-
tion in [26]. φ(µ, σ) function models Internet latency on Cloud data
center due to transmission delay that according to [16] is estimated
to be between 100 and 300ms. It is modeled by employing a Gauss-
ian distribution with mean µ = 200 and standard deviation σ = 33.5
to obtain the values in the aforementioned range.

4.1.3 Mobile application setup. We use DAG models of mobile
applications as described in works [14, 15]. These applications are
suitable for our use case scenarios since we are more interested in
more typical and commercialized applications that will be more
probable used by the average user. The DAG structure used for
this paper comes from the description of each application in the

aforementioned works. We select three applications: (i) Facebook,
that models the behaviour of posting pictures on Facebook, which
represents typical mobile application, (ii) Facerecognizer, models the
image processing application which recognizes face on the picture,
and represents data-intensive application due to large database of
face images and (iii) Chess, that models the behavior of chess game
between the user and AI software and represents computational-
intensivemobile application due to large and complex computations
for anticipating next game moves.

Denoting mobile application as typical, data or computational-
intensive, does not imply that all tasks in the application are of the
same intensity. Table 4 shows application task sizes in terms of CPU,
input and output data size. CI and DI refer to as computational-
intensive and data-intensive respectively. Moderate stands for ap-
plication tasks that do not have emphasized computational or data
components. Similar application task distribution is used in work
[26]. Task specifications of aforementioned mobile applications that
are used in this experiment are listed in Tables 5, 6 and 7.

Table 4: Application task specifications

Type CPU Input data Output data
DI 100-200M cycles 15-20 KB 25-30 KB
CI 550-650M cycles 4-8 KB 4-8 KB
Moderate 100-200M cycles 4-8 KB 4-8 KB

Table 5: Facebook task specifications

Task Type RAM Offloadable
FACEBOOK_GUI Moderate 1 GB False
GET_TOKEN Moderate 1 GB True
POST_REQUEST Moderate 2 GB True
PROCESS_RESPONSE Moderate 2 GB True
FILE_UPLOAD DI 2 GB False
APPLY_FILTER DI 2 GB True
FACEBOOK_POST DI 2 GB False
OUTPUT Moderate 1 GB False

Table 6: Facercognizer task specifications

Task Type RAM Offloadable
GUI DI 1 GB False
FIND_MATCH DI 1 GB True
INIT DI 1 GB True
DETECT_FACE DI 1 GB True
OUTPUT DI 1 GB False

4.1.4 Failure dataset. Failure dataset is vital for MTBF computing
for simulating failures through sampling via Poisson distribution
(as explained in subsection 3.6) and probability estimation of fail-
ures that are encoded in the probability matrix of the MDP model.
There does not exist an Edge Computing failure dataset that is
available for scientific research at present due to the novelty of

1.6

1.4

-

� 1.2
::,0
......

C 1.0
0
·z;
a.

§ 0.8
V) C0 u >- 0.6
C'I
Q) C
LU 0.4

0.2

0.0

- Local

- Mobile Cloud

- Energy Efficient

- EFPO

FACERECOGNIZER CHESS

Mobile applications

FACEBOOK

Figure 4: Energy consumption with different applications. Figure 5: Response time with different applications.

Figure 6: Offloading distribution with
Facerecognizer application.

Figure 7: Offloading distribution with
Chess application.

Figure 8: Offloading distribution with
Facebook application.

Figure 9: Offloading failure rates with
Facerecognizer application.

Figure 10: Offloading failure rates with
Chess application.

Figure 11: Offloading failure rates with
Facebook application.

technology in the field. Consequently and similar to the previous
work [7], we adopt failure traces from other real-world distributed
systems to the edge computing scenario. Our simulation divides
and maps real-world failure traces into simulation nodes that have
distinctive characteristics as depicted in Figure 3. Failure dataset is
needed for failure simulation and computing transition probabili-
ties that are used for failure predictability in the EFPO algorithm.
Dataset is made publicly available by Pacific Northwest National

Laboratory (PNNL). Although the PNNL dataset is not collected on
an Edge infrastructure, it possesses certain properties that suit our
evaluation scenario. The number of computational nodes is large,
they are distributed in different geographical locations, and they
contain different hardware characteristics.

The dataset contains 4652 failure logs between 2003-2007. Failure
logs are collected from the HPC (High-Performance Computing)

Table 7: Chess task specifications

Task Type RAM Offloadable
GUI Moderate 1 GB No
UPDATE_CHESS Moderate 1 GB Yes
COMPUTE_MOVE CI 2 GB Yes
OUTPUT Moderate 1 GB No

system that consists of 980 computational nodes. Nodes are classi-
fied into several categories according to hardware characteristics.
Categories are (i) fat node, they are 570 of them, where each con-
tains 430 GB local disk and 10 GB RAM, (ii) thin node, 378 nodes,
where each contains 10GB local disk and 10 GB RAM, and (iii) Lustre
servers, they are 34 of them. Every node uses Itanium-2 processor
1.5 GHz and all are interconnected with Quadrics QsNetll.

Simulated failures are applied in the simulation model on all
nodes except mobile devices, which is assumed to be failure-free.
Before simulating failures, we need to map the failures of node
categories from the dataset into the nodes of our simulation model.
Fat nodes are suitable for Edge database server due to larger local
disk capacity, Lustre servers are considered as Cloud data centers,
where due to high performances are used in Cluster computing,
and thin nodes are divided between Edge computational and reg-
ular server. A small portion of thin nodes is test and login nodes
that have only a few failures. Those node failures are mapped on
a regular server while the majority of thin nodes are mapped to a
computational server. This setup gives regular servers more relia-
bility than a computational server. With this setting, we want to
explore how EFPO performs in a scenario where we have resource-
ful servers that are less reliable with reliable servers that are less
resourceful. Another scenario is where resourceful servers are more
reliable, but the EFPO algorithm could have similar performance
as other state-of-the-art decision engines since offloading failures
are occurring much less on resourceful servers which are more
attractive for offloading. Concerning failures, server failures are
identified by hardware identifier which is easy to map it on the
particular nodes. Network failures, on the other hand, cannot be
mapped since they do not contain information on which nodes they
are connected to. Thus, network failures are distributed to node
categories in proportion to the frequency of failures.

4.2 Evaluation Results
Besides the mentioned mobile applications that are used in the
experiment, we implemented three additional ODEs to compare
performance with EFPO. These are (i) Local, which considers only
mobile device as an execution site, (ii) Mobile Cloud (MC), which
considers only mobile device and Cloud data center, and (iii) En-
ergy Efficient (EE), which considers offloading application tasks
on all offloading sites but without considering failure probability.
Considering the reliability, after mapping failures from the PNNL
dataset to simulation nodes as explained in 4.1.4, the Edge database
and computational server are less reliable then Edge regular and
Cloud. The main goal here is to evaluate, whether EFPO boosts
the system performance by offloading application tasks on more
reliable servers in certain periods by mitigating offloading failures

on more resourceful servers. This can extend the execution time
but it is still less harmful than offloading failures.

Figures 4 and 5 show energy consumption and response time
per ODE for a single mobile application execution along with the
standard deviation. Single mobile application execution is sampled
100,000 times that gives validity and statistical significance to our
experimental results. We also consider an experiment, where we
have successive mobile application executions, but increasing the
number of application executions linearly increases both energy and
time. Deviation in application executions is measured and detected
but does not change the conclusion of the results. This justifies
that sampling a single mobile application execution is sufficient for
the evaluation and less time consuming. In both figures, the EFPO
algorithm outperforms all other ODE engines in all three mobile
application cases. EE engine does not yield better performance since
it does not contain failure predictability feature, which is shown in
Figures 9, 10 and 11 where offloading failure rates are the highest.
EE engine always prefers those sites that have superior resources
capacities without considering failure probabilities. Thus, as shown
in Figures 6, 7 and 8, EE considers Cloud as most attractive and Edge
regular server as less attractive offloading site. Consequently, this
yields bias in task offloading towards those sites which are resource
superior but less reliable, which leads to more frequent offloading
failures and increased energy consumption as well as response time.
Edge regular server, on the other hand, is more attractive for EFPO
due to low failure probability and forces offloading distribution
to utilize Edge servers more frequently to exploit the advantages
of Edge Computing in lower network latency and better network
bandwidth. EFPO utilizes Edge servers in 56%, 45% and 48% of
task offloading cases with Facerecognizer, Chess and Facebook
application respectively. Non-offloadable tasks are executed on the
mobile device, where 4%, 5%, and 2% end up in the Cloud data center
in Facerecognizer, Chess and Facebook, respectively.

Local ODE outperforms MC ODE in terms of energy, in Facerec-
ognizer and Facebook application cases, while for time response,
only in the Facebook case as shown in Figures 4 and 5. This is
due to high latency between mobile device and Cloud (geograph-
ical distance and Internet transmission delay) and the fact that
the majority of the application tasks are DI requiring more expen-
sive data transmissions due to larger input and output data sizes.
However, in Chess application case, MC ODE outperforms Local
since Chess contains CI application task COMPUTE_MOVE where
Cloud is more suitable due to superior computational capacity and
less expensive data transmission for small input and output data
size. Cloud data center utilization in Chess application case for
MC ODE is 32% (Figure 7), while in Facerecognizer (Figure 6) and
Facebook (Figure 8) cases are 19% and 16%, respectively. However,
the majority of applications tasks are executed on the mobile device.
In Chess case, two out four application tasks are non-offloadable
which explains the high distribution of task execution on the device.
In the other two application cases, besides a high proportion of
non-offloadable tasks, the majority of tasks are more data expensive
due to larger input and output data size, which causes the majority
of tasks to remain on the device. The mobile device is the site where
the majority of application tasks are distributed, from 40% for EE
and EFPO ODEs in the Facerecognizer application case up to 100%
for all three application cases when Local ODE is performing.

5 RELATEDWORK
Offloading was considered as a suitable solution for tackling energy
efficiency and application response time issues as summarized in
[4, 28] for MCC infrastructure. Most of those works introduced
computation offloading frameworks and multi-objective decision-
making algorithms. Similarly, in survey work [21] for MEC, a lot
of literature work about offloading frameworks and architectures
are systemized to overcome the offloading limitations where of-
floading decision-making, computation resource allocation, and
mobility management are addressed as key areas. Currently, some
researchers in the Edge Computing area are coping with offload-
ing challenges through multi-objective optimization algorithms as
[14, 15] inspired by offloading frameworks in MCC as [10, 11, 17]
where energy consumption, application run time and/or monetary
costs are considered as primary objectives. None of these works
considers the effect of offloading failures on systems’ performance.

Research works about fault-tolerant offloading systems that ex-
ist for mobile wireless environments such as [22, 29] using M/M/1
queue model and checkpointing mechanism respectively. Work as
[27] performs a trade-off between local re-execution and offloading
on remote infrastructure in case of offloading failure using the time-
out mechanism, while work [25] considers recovery mechanism
by finding alternative paths via ad-hoc relay nodes through Fyold-
Warshall algorithm in case of offloading failure occurrence on the
shortest path. None of this works provides formal verification of
performance and reliability for Edge Computing. A desirable solu-
tion for achieving both goals is formal verification. Work [31] was
using the MDP algorithm for obtaining optimal offloading decision
policy in a wireless mobile environment where uncertainty in wire-
less connections and user mobility can cause offloading failures.
This work was adopted for Cloudlet systems. There exist works
[26] and [5] for MCC and Edge Computing, which use the MDP
algorithm to obtain optimal offloading decision policy but without
considering offloading failures. Also, the MDP reward optimization
technique is used for Edge/Cloud offloading but in the context of
data stream analytics [12].

6 CONCLUSION AND FUTUREWORK
In this work, we show that Edge offloading failures can impact the
energy consumption of the mobile device and the time response
of mobile applications dramatically. Unreliability expressed as fail-
ure probability can be used for the probability estimation of an
offloading failure for certain offloading sites. Based on that, we
proposed the EFPO framework with a failure predictability feature
that comes in great benefit to mitigate offloading failures to boost
system performance. Failure predictability is combined with ob-
jective functions as energy consumption of the mobile device and
application time response. MDP is used as a formal modeling frame-
work to construct the EFPO framework, which consists of states
to represent offloading sites and actions that represent offloading
decisions. Value Iteration Algorithm as a model checking solution
is used to obtain optimal offloading decision policy that consists
of a set of optimal actions for certain offloading sites. However,
the optimal policy may not be feasible due to offloading failures.
Obtained a feasible offloading decision policy contains offloading
sites that did not experience failure in the current discrete epoch.

For evaluation purposes, we used Facerecognizer, Chess and Face-
book mobile applications modeled as DAGs. Failures are simulated
through Poisson distribution as well as MTBF values obtained from
the PNNL failure dataset. This dataset fits our model due to resource
heterogeneity and distributed architecture. Our solution outper-
forms all ODE engines, namely EE, MC, and Local ODE both in
energy and time aspects. As future work, we will focus our research
activities in provisioning Edge resources for application replicas.
Several application replicas should be positioned on determined
offloading sites, which yields better reliability and performance.

ACKNOWLEDGEMENTS
This work is partially funded through the Rucon project (Runtime
Control in Multi Clouds), FWF Y 904 START-Programm 2015.

REFERENCES
[1] [n.d.]. Intel’s new assault on the data center: 56-core Xeons, 10nm FPGAs, 100gig

Ethernet. https://arstechnica.com/gadgets/2019/04/intels-new-assault-on-the-
data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/. Accessed: 2019-09-05.

[2] [n.d.]. The Specs That Really Count When Buying a Phone. https://smartphones.
gadgethacks.com/how-to/specs-really-count-when-buying-phone-0171678/.
Accessed: 2019-09-05.

[3] Luca Aceto et al. 2015. Decision support for MCC applications via model checking.
In IEEE Int’l. Conf. onMobile Cloud Computing, Services, and Engineering. 199–204.

[4] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. 2018. Mobile cloud
computing for computation offloading. Applied Comp. and Inf. 14, 1 (2018), 1–16.

[5] Khalid R Alasmari, Robert C Green, and Mansoor Alam. 2018. Mobile edge
offloading using MDP. In Int’l. Conf. on Edge Computing. Springer, 80–90.

[6] Atakan Aral and Ivona Brandic. 2017. Quality of service channelling for latency
sensitive edge applications. In IEEE Int’l. Conference on Edge Computing. 166–173.

[7] Atakan Aral and Ivona Brandic. 2018. Dependency mining for service resilience
at the edge. In IEEE/ACM Symposium on Edge Computing (SEC). 228–242.

[8] Gerd Behrmann et al. 2006. A tutorial on UPPAAL 4.0. Technical Report. Depart-
ment of computer science, Aalborg university.

[9] Iadine Chadès, Guillaume Chapron, et al. 2014. MDPtoolbox: a multi-platform
toolbox to solve stoch. dyn. prog. problems. Ecography 37, 9 (2014), 916–920.

[10] Byung-Gon Chun et al. 2011. Clonecloud: elastic execution between mobile
device and cloud. In ACM Conference on Computer systems. 301–314.

[11] Eduardo Cuervo et al. 2010. MAUI: making smartphones last longer with code
offload. In Int’l. Conf. on Mobile Systems, Applications, and Services. ACM, 49–62.

[12] da Silva Veith et al. 2019. Multi-Objective Reinforcement Learning for Reconfig-
uring Data Stream Analytics on Edge Computing. In International Conference on
Parallel Processing. 106.

[13] Alexandre David, Kim G Larsen, et al. 2015. Uppaal SMC tutorial. International
Journal on Software Tools for Technology Transfer 17, 4 (2015), 397–415.

[14] Vincenzo De Maio and Ivona Brandic. 2018. First hop mobile offloading of dag
computations. In IEEE/ACM Int’l. Symp. on Cluster, Cloud and Grid Comp. 83–92.

[15] Vincenzo De Maio and Ivona Brandic. 2019. Multi-Objective Mobile Edge Provi-
sioning in Small Cell Clouds. In ACM/SPEC Int’l. Conf. on Perf. Eng. 127–138.

[16] Mark DeVirgilio, W David Pan, et al. 2013. Internet delay statistics: Measuring
internet feel using a dichotomous hurst parameter. In IEEE Southeastcon. 1–6.

[17] Sokol Kosta, Andrius Aucinas, et al. 2012. Thinkair: Dynamic resource allocation
and parallel execution in the cloud for mobile code offl.. In IEEE Infocom. 945–953.

[18] Karthik Kumar and Yung-Hsiang Lu. 2010. Cloud computing for mobile users:
Can offloading computation save energy? Computer 4 (2010), 51–56.

[19] Marta Kwiatkowska. 2007. Quantitative verification: Models, techniques and tools.
In ACM SIGSOFT Symp. on the Foundations of Software Engineering. 449–458.

[20] M. Kwiatkowska et al. 2011. PRISM 4.0: Verification of Probabilistic Real-time
Systems. In International Conference on Computer Aided Verification. 585–591.

[21] Pavel Mach and Zdenek Becvar. 2017. Mobile edge computing: A survey on
architecture and computation offloading. arXiv preprint arXiv:1702.05309 (2017).

[22] Shumao Ou, Yumin Wu, Kun Yang, and Bosheng Zhou. 2008. Performance
analysis of fault-tolerant offloading systems for pervasive services in mobile
wireless environments. In IEEE Int’l. Conf. on Communications. 1856–1860.

[23] Martin L Puterman. 2014. Markov Decision Processes.: Discrete Stochastic Dynamic
Programming. John Wiley & Sons.

[24] Hao Qian and Daniel Andresen. 2015. Jade: Reducing energy consumption of
android app. Int’l. J. of Networked and Distributed Computing 3, 3 (2015), 150–158.

[25] Dimas Satria, Daihee Park, and Minho Jo. 2017. Recovery for overloaded mobile
edge computing. Future Generation Computer Systems 70 (2017), 138–147.

https://arstechnica.com/gadgets/2019/04/intels-new-assault-on-the-data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/
https://arstechnica.com/gadgets/2019/04/intels-new-assault-on-the-data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/
https://smartphones.gadgethacks.com/how-to/specs-really-count-when-buying-phone-0171678/
https://smartphones.gadgethacks.com/how-to/specs-really-count-when-buying-phone-0171678/

[26] Mati B Terefe, Heezin Lee, et al. 2016. Energy-efficient multisite offloading policy
using MDP for MCC. Pervasive and Mobile Computing 27 (2016), 75–89.

[27] Qiushi Wang, Huaming Wu, and Katinka Wolter. 2013. Model-based perfor-
mance analysis of local re-execution scheme in offloading system. In IEEE/IFIP
International Conference on Dependable Systems and Networks. 1–6.

[28] Huaming Wu. 2018. Multi-objective decision-making for mobile cloud offloading:
A survey. IEEE Access 6 (2018), 3962–3976.

[29] Huaming Wu. 2018. Performance Modeling of Delayed Offloading in Mobile
Wireless Env. With Failures. IEEE Comm. Letters 22, 11 (2018), 2334–2337.

[30] Feng Xia et al. 2014. Phone2Cloud: Exploiting computation offloading for energy
saving on smartphones in MCC. Inf. Systems Frontiers 16, 1 (2014), 95–111.

[31] Yang Zhang, Dusit Niyato, and Ping Wang. 2015. Offloading in mobile cloudlet
systems with intermittent connectivity. IEEE Transactions on Mobile Computing
14, 12 (2015), 2516–2529.

	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Applications
	2.2 Edge Offloading
	2.3 Formal Verification

	3 Offloading Framework
	3.1 MDP Formulation
	3.2 Offloading Model
	3.3 Time Response Model
	3.4 Energy Consumption Model
	3.5 Reward Functions
	3.6 Failure Model
	3.7 EFPO Algorithm

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion and Future Work
	References

