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ABSTRACT
Edge offloading is widely used to support the execution of
near real-time mobile applications. However, offloading on
edge infrastructures can suffer from failures due to the ab-
sence of supporting systems and environmental factors. We
propose a fault-tolerant offloading method modeled as a
Markov Decision Process (MDP) based on predictions per-
formed through Support Vector Regression (SVR). SVR is
used to estimate offloading service availability, which is used
by MDP for offloading decisions. Our approach is imple-
mented in a real-world test-bed and compared with the de-
fault Kubernetes scheduler augmented with hybrid fault-
tolerance.

CCS CONCEPTS
• Computer systems organization→ Distributed archi-
tectures; • Computing methodologies→ Distributed
computing methodologies.

KEYWORDS
edge offloading; kubernetes; containers; microservices

1 INTRODUCTION
Offloading applications (or parts of them) on remote surro-
gate machines can reduce resource consumption of mobile
devices [21]. While offloading delay-tolerant applications on
far distanced cloud servers can increase energy efficiency,
(near-)real-time mobile applications (e.g., augmented virtual
reality, live traffic navigation) requires Edge offloading [14],
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i.e., offloading to nearby edge devices to address latency con-
straints [30]. This approach enables running new emerging
consumer-oriented offloading applications. For instance, web
browser can be accelerated by offloading browsing functions
(e.g. content caching, optimizing transmission) on remote
edge nodes [24]. It alleviates backhaul network traffic and
can lead to radio network optimization based on real-time
and runtime information for improving network and QoE
quality levels [14]. Previous works [9, 12] provide insights
that coupling together edge computing platform, microser-
vice architecture, and container orchestration can provide a
modular and loosely-coupled edge architecture to address
the resource limitations. However, the absence of supporting
systems on the edge devices (e.g., cooling) and environmental
factors can cause failures that affect offloading [3].
Studies in [10, 18, 28] target edge offloading on a failure-

free edge IoT-enabled infrastructure and stateful vehicles
without considering proactive fault-tolerant measures and
real-world experimentation. Also, research focused on of-
floading in a failure-prone environment mostly considered
reactive fault tolerance, such as check-pointing [16] and local
re-computing [27], which can cause high execution delays.
Moreover, reactive recovery actions in microservice appli-
cations can cause interference to other services [29]. Work
[25] shows how proactive fault tolerance can improve cloud
servers’ performance w.r.t. reactive failure management.
We propose an edge offloading algorithm that employs

Markov Decision Process (MDP) which performs proactive
fault tolerance based on predictions obtained through Sup-
port Vector Regression (SVR). The SVR algorithm predicts
offloading service availability on remote sites and forwards
those predictions to the MDP-based decision engine on a mo-
bile device that synthesizes the offloading decision policy for
task offloading. We select the SVR algorithm due to its pre-
diction accuracy above 90% for failure time-series data [15]
and its relatively small training dataset [6] w.r.t. deep neural
networks. Also, MDPs allow to model edge offloading due
to numerous offloading service alternatives and stochastic
availability. Remote offloading services are implemented as
micro-services running in Docker containers and deployed
on Kubernetes cluster. Exposing them as public Kubernetes
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Figure 1: Edge Offloading Framework

services through HTTP APIs, enables them to receive of-
floaded application tasks from mobile device where decision
engine is placed. The offloading framework is evaluated on
an experimental test-bed and compared to the baseline Ku-
bernetes scheduler augmented with hybrid fault-tolerance.

Edge offloading is described in Section 2. Then, we describe
offloading framework design and offloading algorithm in
Section 3. Section 4 describes prototype implementation. In
Section 5 we describe evaluation results. Finally, we describe
relatedwork in Section 6 and conclude the paper in Section 7.

2 EDGE OFFLOADING
Edge Offloading is the process of executing an application
(or part of it) to remote computational nodes, to improve
performance like conserving battery energy supplies and
reducing application runtime. Offloading requires deciding
whether and where to offload a task, depending on task char-
acteristics and network availability [13] and according to
different objectives. To address these issues, [7] envisions
three main components on mobile device: (i) system moni-
tor, which collects resource information about the remote
infrastructure; (ii) application profiler, which extracts tasks
and resource requirements of mobile applications, and (iii)
decision engine, which takes offloading decisions based on
other components’ data. However, the impact of network
failures is not considered. Thus, we add proactive fault tol-
erance to [7], as opposed to typical approaches based on
reactive fault tolerance [16, 27].

3 SYSTEM DESIGN
3.1 Edge Offloading Framework
We envision an Edge Offloading Framework with the fol-
lowing components: (i) Decision engine, which computes the
offloading decision policy; (ii) Prediction engine, which es-
timates future service availability on the remote offloading
sites based on local historical failure trace logs; (iii) Failure

monitor, which monitors failures of local system operations
on remote offloading sites; (iv) Failure detector, which de-
tects failures during execution on remote offloading sites and
collects the failure estimation data from prediction engine;
(v) Resource monitor, which collects resource information
about remote infrastructure; (vi) Application profiler, which
profiles resource requirements of underlying mobile applica-
tions. Components are partitioned between mobile device
and remote offloading sites as summarized in Figure 1.

The edge offloading process is described as following. First,
the failure monitor collects historical failure traces and for-
wards them to the prediction engine (step 1a), which esti-
mates service availability of each offloading site and sends
these data to a mobile device (step 2a). Simultaneously, the
application profiler and the resource monitor collect data
about mobile application requirements and remote infras-
tructure capabilities (steps 2b and 2c). These data are used
by the decision engine (steps 3a, 3b, and 3c) for offloading
decisions (Step 4a), based on which tasks are offloaded (Step
5a and 5b).

3.1.1 Application Requirements. We focus on response time
(RT) and mobile device battery lifetime (BL) as in [31]. RT
is defined as the sum of local computation time, uploading,
and downloading data transfer time. Local computation time
is defined as a ratio between CPU Millions of Instructions
per Second (MIPS) and the number of task’s instructions.
Data transfer time is defined as a ratio between data size and
network bandwidth plus the network latency.

BL is defined as the difference between total battery capac-
ity and runtime energy consumption. Energy consumption
is defined as the sum of local, upload, and download energy
consumption. Each energy consumption component is equal
to the multiplication of time and its power coefficient. We
assume 𝑝𝑢 > 𝑝𝑑 > 𝑝𝑐 > 𝑝𝑖 , respectively power consumption
for upload, download, local computation and idle [19].

3.1.2 Offloading Sites. We assume the infrastructure setup
of [31], which allows to address diverse application require-
ments, i.e., data-intensive, computational-intensive, andmod-
erate applications. We assume three Edge nodes types: (i)
Edge database server (ED), with large data storage capabili-
ties and fast network transmission rates for data-intensive
applications; (ii) Edge computational server (EC) with greater
computational power to support computational-intensive ap-
plications such as games and AI, and (iii) Edge regular server
(ER) with intermediate resources suitable for applications
that do not require a large amount of computation or data
storage capabilities, such as live traffic navigation or posting
updates on Facebook. Edge nodes are clustered together with
the cloud data center (CD).
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Algorithm 1 Edge Offloading Algorithm
1: procedure EDGE_OFF_ALGO(𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
2: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store energy consumption of each off. site
3: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 ← 𝑎𝑟𝑟𝑎𝑦 () ⊲ Store response time for each offloading site
4: for each state 𝑣 in 𝑡𝑎𝑠𝑘𝑠 do
5: for each state 𝑞 in 𝑆 do
6: 𝑒𝑛𝑒𝑟𝑔𝑦 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑛𝑒𝑟𝑔𝑦 (𝑣, 𝑞)
7: 𝑡𝑖𝑚𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑡𝑖𝑚𝑒 (𝑣,𝑞)
8: 𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑒𝑟𝑔𝑦)
9: 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑖𝑚𝑒)
10: end for
11: end for
12: 𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ← 𝑆𝑉𝑅 (𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ) ⊲ Predict availability
13: 𝑃 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑃_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑠𝑣𝑟_𝑎𝑣𝑎𝑖𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 )
14: 𝑅 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑅_𝑚𝑎𝑡𝑟𝑖𝑥 (𝑒𝑛𝑒𝑟𝑔𝑦_𝑣𝑒𝑐𝑡𝑜𝑟, 𝑡𝑖𝑚𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 )
15: < 𝜋∗,𝑄 >← 𝑃𝐼𝐴(𝑆,𝐴, 𝑃, 𝑅, 𝑠0) ⊲ PIA returns offloading decision policy
16: return < 𝜋∗,𝑄 >

17: end procedure

3.1.3 Failure Monitor. Failure monitor collects historical
system trace logs on remote offloading sites for availability
estimation. We employ heartbeat failure detection [1] to col-
lect traces. This approach sends ping messages to remote
offloading sites at a fixed time interval. Offloading site is con-
sidered to be unavailable if the ping is not answered before
timeout. Recommended configuration settings for heartbeat
protocols are time intervals of 150 ms and 10 timeouts [1].
Therefore, the offloading site is considered to be unavailable
after 1.5 seconds, which captures the network variability due
to different network delays between nodes.

3.1.4 Service Availability Estimator. We select the SVR al-
gorithm for availability predictions, which provides predic-
tion accuracy above 90% [15] and requires a small training
dataset [6] as opposed to deep neural networks. The algo-
rithm takes as input historical failure traces as input and
its accuracy depends on hyper-parameters 𝐶 and 𝜖 . Due to
the near real-time requirements of our scenario, we use [5]
parameter selection algorithm to reduce response time. 𝐶 is
defined in Equation 1 and 𝜖 in Equation 2,

𝐶 =𝑚𝑎𝑥 ( |𝑦 + 3𝜎 |, |𝑦 − 3𝜎 |) (1)

𝜖 = 3𝜎
√︂

𝑙𝑛(𝑚)
𝑚

(2)

where 𝑦 is availability dataset, 𝑦 represents the arithmetic
mean,𝑚 is a dataset sample size and 𝜎 represents the stan-
dard deviation of the dataset. As a kernel solution, we use the
Gaussian RBF kernel function which can estimate time-series
data that exhibit non-linear behavior such as failures.

3.2 Proposed Method
3.2.1 MDP offloading model. We employ offloading MDP
in [31], which is defined as a labeled transition system with:
(i) state-space 𝑆 = {𝑀𝐷, 𝐸𝐷, 𝐸𝐶, 𝐸𝑅,𝐶𝐷} representing of-
floading site where a current task is offloaded, (ii) action

Algorithm 2 Edge Offloading Process
1: procedure EDGE_OFF_PROC(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
2: 𝑆 ← (𝑞𝑚𝑑 , 𝑞𝑒𝑑 , 𝑞𝑒𝑐 , 𝑞𝑒𝑑 , 𝑞𝑐𝑑 ) ⊲ Offloading sites
3: 𝐴← (𝑎𝑚𝑑 , 𝑎𝑒𝑑 , 𝑎𝑒𝑐 , 𝑎𝑒𝑑 , 𝑎𝑐𝑑 ) ⊲ Action decisions
4: < 𝜋∗,𝑄 >← 𝐸𝐷𝐺𝐸_𝑂𝐹𝐹_𝐴𝐿𝐺𝑂 (𝑆,𝐴, 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑡𝑎𝑠𝑘𝑠)
5: for each state 𝑠 in 𝑆 do
6: 𝑎 ← 𝜋∗ (𝑠) ⊲ for state 𝑠 get best action 𝑎
7: while True do
8: if 𝜆𝑇 (𝑠,𝑎) then ⊲ if offloading fails then consider another action 𝑎
9: 𝑄 ← 𝑄 − {(𝑠, 𝑎) }
10: if 𝑄 = ∅ then return "No feasible solution"
11: end if
12: 𝑎 ← argmax𝑎 [𝑄 (𝑠, 𝑎) ] ⊲ get next best action 𝑎
13: continue
14: else
15: 𝜔 = 𝜔 + {(𝑠, 𝑎) } ⊲ store feasible action 𝑎
16: break
17: end if
18: end while
19: end for
20: return 𝜔 ⊲ return feasible offloading policy
21: end procedure

set 𝐴 = {𝑀𝐷, 𝐸𝐷, 𝐸𝐶, 𝐸𝑅,𝐶𝐷} represents the offloading site
where to offload next task, (iii) 𝑃 probabilistic state transition
matrix representing offloading service availability, and (iv)
𝑅 matrix of rewards associated with RT and BL. The goal is
to maximize rewards by minimizing RT and maximizing BL.
We use Policy Iteration Algorithm (PIA) [17] to iterate MDP
and find a feasible offloading policy.

3.2.2 Edge Offloading Algorithm. The Algorithm 1 describes
the edge offloading while Algorithm 2 executes offloading
decisions. In Algorithm 1, the loop on lines 4-9 iterates over
application tasks and computes 𝐵𝐿 and 𝑅𝑇 for each offload-
ing site. In line 12, the SVR algorithm estimates offloading
service sites’ availability, based on the probability matrix
𝑃 which is constructed on line 13. On line 14, the reward
matrix 𝑅 is computed and forwarded together with MDP’s
states, actions, and 𝑃 to PIA, which synthesizes the offload-
ing policy 𝜋 (line 15). Policy 𝜋 is executed during runtime by
the Algorithm 2. Within the for loop (lines 5-19) offloading is
performed. If the target offloading site fails during runtime,
offloading is classified as failed (line 8) and the next alterna-
tive is considered (line 12). The algorithm terminates when
offloading is successful (lines 15-16) and returns a feasible
offloading policy (line 20) or when no service site is available
(line 10) and returns an error message.

4 PROTOTYPE IMPLEMENTATION
4.1 Cluster Networking
The Raspberry Pi (RPi) single-hop away edge nodes provide
wireless connectivity to nearby mobile devices. Configura-
tion requires installation of local DHCP and DNS servers
which provide control over mobile IP address space.

Deploying the Kubernetes cluster over the public and pri-
vate IP subnets is not straightforward. To address firewall
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Table 1: Experimental Setup

Hardware specifications
Node Type CPU RAM

[GB]
STORAGE
[GB]

Huawei P Z (mob.) Quad-core ARM Cortex-A53 1.7 GHz 4 64
RPi 3B+ (master) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (ED) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (EC) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (ER) Quad-core ARMv7 at 1.4GHz 1 64
AMD64 (cloud) 48-core Intel Xeon E5-2650 v4 @ 2.2GHz 128 1000

and NAT translation issues, we deploy the private virtual
networking solution called OpenVPN, which provides point-
to-point communication and shared virtual IP address space.

4.2 Micro-service Containerization
We developed our microservices using Python 3.6 program-
ming language and containerized them using Docker. We
use the buildx command-line interface (CLI) plugin that uti-
lizes machine processor emulator QEMU to build a common
Docker container image for both CPU architectures available
in the cluster, i.e., RPi ARMv7 and AMD64.
Micro-services on the mobile device are developed using

Python Kivymobile cross-platform frameworkWe developed
it as a Python application for Android OS mobile devices.
These microservices do not have to be containerized. How-
ever, microservices can be placed on the dedicated offloading
site instead (as part of the Kubernetes cluster) to reduce
mobile devices’ resource consumption.

4.3 Service Deployment
Since offloading requests are performed by mobile devices
through HTTP, we deploy Flask web service on each of-
floading site. Flask provides necessary web services without
additional third-party components. We instantiate it as an ad-
ditional microservice on the remote offloading site, together
with the failure monitor and prediction engine, on a single
Kubernetes pod. Each pod has its unique virtual IP address
dispatched by the Flannel Container Networking Interface
(CNI) plugin. We also employ the NGINX reverse proxy to
redirect HTTP requests to appropriate offloading services.
Combining NGINX web service on the Kubernetes cluster
level with Flask micro web services on the offloading site,
we can expose offloading sites to mobile devices.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We evaluate our edge offloading framework on the test-bed
described in Table 1. Infrastructure setup is summarized in
Figure 2: Huawei P Smart Z is a mobile device; RPis are edge
nodes, deployed as in Figure 3b and AMD64 in Figure 3a is
used to simulate a cloud data center. Resource heterogeneity

Figure 2: Infrastructure Overview

(a) AMD64 Cloud Server (b) Edge Infrastructure

Figure 3: Hardware Infrastructure for the Experiments

is simulated by defining hardware and network limitations,
as in [31]. They are parameterized in the clusters’ PostgreSQL
database as experimental input parameters. When offloading
micro-service is deployed on the Kubernetes cluster, it con-
nects to the database and retrieves the resource information
based on which resource capacity of the underlying site is
specified.

Edge nodes and the cloud server are integrated into a sin-
gle Kubernetes cluster while a mobile device is implemented
as an external user. One of the RPi edge nodes is config-
ured as a master node and the other nodes are configured as
worker nodes where offloading micro-services are deployed
and implemented as Docker containers. They are deployed
according to the node labeling system. Each node in the Ku-
bernetes cluster has a certain label that represents a node
type. For instance, if we want to mark a certain node as an
edge database server for handling data-intensive applica-
tions, the node is labeled as edge database, and inserted into
Kubernetes deployment manifest file.
The mobile applications used in the evaluation are Di-

rected Acyclic Graphs (DAGs) taken from [7, 31], namely
(i) Facebook, (ii) GPS navigation, (iii) Facerecognizer, (iv) An-
tivirus, and (v) Chess. The mobile applications are sampled ac-
cording to a probability distribution taken from [8]. The sim-
ulated workload is utilized since the real application would
require application partitioning and profiling mechanisms,
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which are out of the scope of this paper. To offload the simu-
lated DAG workload on the remote Kubernetes offloading
service site, the JSON serialization is performed. It converts
task objects into byte strings which are necessary to transfer
the data via a network to the target offloading service site.
On the recipient site, JSON deserialization is performed to
acquire the original task object from which it extracts all
necessary resource information.

To simulate failures on remote offloading sites, we imple-
ment a two-state Markov state machine. This kind of on/off
(failure/non-failure) model is used to simulate network inter-
mittent channels where simplicity is preferred over complex-
ity [4]. The probabilistic availability distribution is extracted
from the local failure dataset Los Alamos National Labora-
tory (LANL) for HPC clusters [22]. We adopted this dataset
since it shares some characteristics with edge computing,
i.e., distributed architecture, a large number of nodes, and
heterogeneous resources. Possible limitation of using the
HPC dataset for the edge is that it probably cannot replicate
the edge behavior completely. HPC cluster nodes usually
have superior resources, equipped with additional support
systems (e.g. fan units, backup power generators) and in-
terlinked with high-speed network connections where in
edge could not be the case. We pick several nodes from the
dataset to compute availability distributions for each offload-
ing service (Table 2). The nodes are categorized according
to their availability levels as low (LA), medium (MA), and
high (HA) based on failure rates, and mean and deviation of
their availability distribution. Their hardware characteristics
are the second selection criteria. For instance, nodes from
systems 5 and 7 are selected for the ED edge node due to a
large number of nodes (larger data storage). The nodes are
named <systemID_nodenumber> where both index numbers
are obtained from the original dataset. They are split into
train and test data in a proportion of 80%-20% as the general
rule of thumb practiced in ML community. The nodes from
systems 5 and 7 are most suitable to the ED edge node due to
a large number of nodes (larger data storage). The EC node
is sampled from nodes of systems 19 and 20 which have a
higher ratio of processors per node (higher computational
power). ER edge node is sampled from 3, 4, and 16 systems
due to a lower processor per node ratio, a minimum quantity
of network interface cards, and a moderate number of nodes
compared relatively to the ED and the EC nodes. The cloud
is sampled only from 22 system since it has a single node
with the highest processor per node ratio and RAM capacity
in the entire dataset.

For statistical significance, we set application runs to 1000
and average results of 100 executions. Results are compared
with the solution in [31], which emulates default Kubernetes

Table 2: Dataset configurations

Dataset configurations
Service DS1 DS2 DS3 DS4 DS5
ED HA (7_1) MA (5_158) HA (5_165) HA (5_243) HA (5_48)
EC LA (19_1) MA (19_11) MA (19_4) HA (19_8) HA (20_41)
ER HA (3_0) HA (16_80) MA (4_55) MA (4_1) HA (4_3)
CD HA (22_0) HA (22_0) HA (22_0) HA (22_0) HA (22_0)

greedy multi-criteria decision-making (with adjusted param-
eter tuning) and estimates availability levels through mean-
time-between-failures (MTBF). Moreover, it is augmented
with re-computing and check-pointing and named KubeHy-
brid as a Kubernetes hybrid (proactive-reactive) decision-
maker. The source is available online1.

5.2 Results
Figures 4, 5 and 6 illustrates results for RT, BL and availability
respectively. Our solution outperforms the KubeHybrid in
all three objectives. There is a strong correlation between the
three objectives since higher service availability increases
BL and decreases RT. This is explained by the necessity of
re-transmitting offloading tasks in case of offloading failures,
which consumes additional mobile devices’ resources. Hence,
higher availability ensures more BL and shorter RT. In our
evaluation, we consider also offloading distribution, i.e., the
number of tasks offloaded per offloading service site.

Figures 4, 5 and 6 depict that for DS1 configuration our so-
lution achieves around 600 seconds RT, 98.4% BL, and 99.6%
availability against the KubeHybrid with 760 seconds RT,
98.15% BL, 98.6% availability. According to offloading dis-
tribution, our solution offloaded around 50% of tasks to EC,
completely avoiding Cloud (0% distribution) while ER re-
ceives less than 0.1% distribution. Other tasks are offloaded
either on a mobile device or an ED service. Despite lower
availability, the prediction engine predicts service availabil-
ity accurately enough to select EC service for timely task
offloading. Moreover, 50% implies that not only CI-intensive
tasks are offloaded but also moderate tasks. This is because
ER has a lower CPU than EC. The KubeHybrid algorithm, on
the other hand, relies on a cloud distribution of 2.9%, while
edge services are consumed proportionally to their resource
availability. ED is the most used (31.7%), ER is moderately
utilized (17.8%) while EC is the least used edge service (7.9%).
KubeHybrid depends on an average MTBF, which reduces
the prediction accuracy. The SVR algorithm, on the other
hand, generally, did yield in our experiment the prediction
accuracy between 55% and 90% measured in R2, so-called
the good-of-fitness metric. It is widely used in statistics to

1https://github.com/jzilic1991/edge-offloading/tree/master

https://github.com/jzilic1991/edge-offloading/tree/master
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Figure 4: Application response time Figure 5: Mobile battery lifetime Figure 6: Service availability

measure accuracy in predicting future outcomes and usu-
ally preferred since it is more intuitive and informative then
other metric alternatives.

For DS2 and DS5 configurations, our solution achieves of-
floading distribution and prediction accuracy similar to DS1,
which indicates adaptability towards different availability
distributions. However, in DS4 configuration ED is the most
utilized service, with 37% offloading distribution, due to its
high availability and resource capabilities. The second most
utilized service is EC since it has more hardware capabili-
ties than ER service. In our approach, none of the tasks are
offloaded to the Cloud. The KubeHybrid approach, instead,
prefers ED service the most (26%) but cloud service is the
second most utilized (15%). When ED service is unavailable,
data intensive tasks are offloaded to the cloud. However, the
higher latency results in its worst performance of around
950 seconds RT, 97.5% BL, and 97% availability.

6 RELATEDWORK
Mostly reactive failure management techniques has been dis-
cussed in the related edge computing literature thus far. The
authors in [12] perform container checkpointing at the edge
to ensure high service availability while [16] checkpoints the
applications offloaded on the offloading sites. Another work
[27] locally re-computes offloaded tasks on a mobile device
when task offloading fails. Research conducted both in sim-
ulated [7, 8, 11] and real-world edge environment [26] do
not consider proactive failure mitigation. Failure prediction
approaches such as [6, 15] proved the effectiveness of proac-
tive failure management, but these approaches are neither
applied at the edge nor on a real-world test-bed.

There exists few studies focusing on proactive failure man-
agement. They propose risk based [23], learning based [2, 3],
or formal verification based [31] solutions. Nevertheless,
none of these consider microservices. We summarise our lit-
erature review in Table 3. The works are selected according
to whether they focus on microservice architecture (MSA),
edge offloading (OFF), proactive failure prediction (PRO), con-
tainer orchestration (ORCH), and real-world implementation

Table 3: Overview of state-of-the-art literature

Publication MSA OFF PRO ORCH REAL
Suk et al. [23]
Aral et al. [2]
Zilic et al. [31]
Dupont et al. [9]
Tang et al. [26]
Wu et al. [29]
Samanta et al. [20]
This work

(REAL). We conclude that to the best of our knowledge, none
of the selected works covers all aforementioned objectives.

7 CONCLUSION AND FUTUREWORK
We designed a proactive fault-tolerant edge offloading mi-
croservice which allows to reduce application response time
and increase mobile battery lifetime. Our solution outper-
forms default Kubernetes scheduler, augmented with hybrid
fault tolerance. Experimentation was conducted on a real-
world edge-cloud testbed and showed great promise for the
failure prediction in edge offloading. The web link to the
experiments’ source code is provided in the paper.
In the future, we plan to apply runtime failure injection

to evaluate edge offloading performance under stress in-
stead of the two state model used in this work. Utilisation of
edge-related traces for the evaluation of the approach would
strengthen the evaluation. Operating computation-intensive
software, such as a decision engine, on the mobile device
can hinder offloading benefits. As a consequence, we will
investigate placing the decision engine at the Edge. Infras-
tructure providers might deploy more powerful edge nodes
(i.e., micro data centers) to address lower reliability of RPis.
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