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Abstract

Cloud computing enabled scalable computational and data storage services to become
ubiquitous and available on-demand globally around the world for all internet-capable
devices including those with mobile and wireless connections. The resource-abundant
cloud environment equipped with hundreds and thousands of commodity off-the-shelf
servers, located in so-called data centres, enabled developers and companies to develop
much more complex enterprise applications and systems tailored to satisfy customer
needs and requirements. Cloud allowed businesses to deliver and scale business operations
globally and reach out to all corners of global markets, fuelling economic growth and
development. Newly developed cloud applications and services contained a richer set of
features and were accessible by all kinds of mobile devices that did not have sufficient
resources to execute them. Furthermore, with the hardware development breakthrough of
system-on-chip technology, the first smartphones emerged that supported local software
functions where some application features could be executed locally to reduce response
time for a better user experience, especially where user-facing interactions and input
are required. However, newly introduced classes of applications have emerged such as
autonomous vehicles and GPS navigation which require low latency response up to a few
milliseconds to perform real-time decisions but simultaneously require huge amounts of
resources to achieve such fast performance that mobile devices cannot provide. Violating
strict time requirements can lead to hazardous and even life-threatening situations. These
strict requirements cannot be satisfied by simply moving complex applications and their
data from mobile devices to computationally scalable cloud data centres which exhibit long
latencies due to geographical distance and high-volume internet traffic load. Fortunately,
edge computing was introduced as a viable and promising middle-ground solution between
cloud and mobile to provide sufficient resources for achieving high-performance. Cloud
data processing and storage capabilities were partly moved from the centralized cloud
data centres to the servers at the edge of the network in the proximity of mobile devices,
thus reducing geographical distance and bypassing high-volume internet traffic.

To exploit the full benefits of edge computing for enabling real-time execution of resource-
intensive applications in resource-constrained environments, the offloading concept was
introduced. Mobile applications are partitioned into smaller units called tasks and
offloaded from resource-constrained mobile devices to resourceful nearby edge servers for
reducing application response time and saving energy supplies on battery-powered mobile
devices. Every application task has its own time and resource requirements. Low-latency
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application tasks are offloaded to the nearby edge servers while computational-intensive
tasks are offloaded to computationally scalable cloud data centres. However, the edge
servers are resource-limited compared to their cloud counterparts having less hardware
redundancy, a lack of supporting systems (e.g. backup power generators), and are
deployed across many geographical sites which are exposed to different environmental
factors which makes them more failure-prone. Offloading tasks on such unreliable edge
servers would postpone or prolong the offloading process making it less efficient and
potentially hazardous which can lead to life-threatening situations, degraded performance,
or substantial economic cost. With the intent of addressing the aforementioned reliability
problem in the edge offloading setting, this thesis introduces an efficient and reliable
offloading framework that predicts failures on the edge and cloud infrastructure to
mitigate failures during offloading. Furthermore, we developed an experimental prototype
for real-world deployment that improves the prediction of reliability by employing a
machine learning approach for more efficient proactive offloading decision-making. We also
propose an edge offloading framework that formally guarantees the feasibility of offloading
decisions while balancing performance and reliability objectives in a distributed and
failure-prone edge environment for latency-sensitive applications. Proposed solutions are
evaluated using real-world datasets, preliminary simulations, emulators, real experimental
testbeds, and synthetic applications. Presented works are not just theoretical but also
practical for latency-sensitive applications in resource-constrained edge environments.
Our contributions make edge offloading more efficient and reliable, driving progress
toward a sustainable edge offloading ecosystem.
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CHAPTER 1
Introduction

Nowadays, mobile devices become more popular and face increased user demands. Porta-
bility, mobility, and small physical dimensions of mobile devices enhance their usability
and practicality. Moreover, wireless connections to remote and distant infrastructure
make services ubiquitous and available on demand through mobile applications. Mobile
hardware capabilities are enhanced to cope with such complex mobile applications. How-
ever, they still cannot handle resource-intensive mobile applications that require large
data storage, high computation speed, or frequent wireless communication. Managing
resource consumption properly will yield benefits for the user. For instance, prolonging
the mobile device’s battery life is considered the most important feature [20].

To overcome resource limitations, mobile cloud computing (MCC) is introduced. which
allows mobile applications to be partially executed on mobile devices and partially on
cloud data centers for better efficiency. However, this solution did not consider the
high network latency and low bandwidth availability that come with distant cloud data
centers. Figure 1.1a compares cloud latency with latencies observed at other parts of
the network, ranging from cell towers to telco data centers, and shows that cloud latency
outstands the most and varies between 30-75 milliseconds excluding processing latency
on the cloud server and downlink latency from the cloud to end devices. This implies
that round-trip latency can easily scale up to several hundreds of milliseconds or more
depending on network congestion and processing workload. The cloud latency timescale
exceeds strict real-time requirements of latency-sensitive applications such as virtual
reality (VR) [KLBK24] and autonomous vehicles [DCH+23] where latencies should not
go beyond 20 and 50 milliseconds respectively. Furthermore, the Cisco 2020 report shown
in Figure 1.1b, outlines that in 2020 the number of mobile subscribers (5.4 billion) already
has surpassed the number of people using electricity (5.3 billion), bank accounts (4.5
billion), running water (3.5 billion), cars (2.8 billion), and landlines (2.2 billion) due to
massive growth in the adoption of mobile devices. In another report by Visual Capitalist
[Vis22], the number of mobile devices has surpassed a number of people on the planet in
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1. Introduction

2023. This causes a big surge in traffic and workload on network and cloud infrastructure
and a huge strain on managing the centralized cloud properly to deliver agreed service
quality to end users. Furthermore, the mobile application market which values in 2023
at around 252.89 billion has been forecasted that it will continue its booming trend
with an annual growth rate of 14.3% until 2030 [Gra23]. As previously mentioned,
some of the new emergent mobile applications, like AV/VR and autonomous driving, are
resource-intensive and require large amounts of resources to function in real-time where
responses have to be within dozens of milliseconds which makes it almost impossible for
resource-limited mobile devices or high-latency cloud to deliver. To conclude, we need
innovative and efficient viable solutions for coping with real-time and resource-intensive
mobile applications executed in resource-constrained mobile environments.

(a) Network latencies

(b) Mobile growth

Figure 1.1: Network and mobile statistics

To achieve energy efficiency on mobile devices and fast application response time, edge
computing is introduced, where data processing is moved from the cloud on the network’s
edge in the users’ proximity. Figure 1.2 taken from [AO18] shows edge computing
architecture where edge servers are embedded between resource-limited user devices and
far-distant massive cloud data centers. The geographical proximity of edge servers to
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Figure 1.2: Edge computing architecture

user devices eliminates issues such as long network latency and unnecessary bandwidth
consumption towards the cloud. Edge nodes have superior storage and computational
capabilities compared to the mobile device, but inferior to the Cloud data center. Edge
node can be any network device that has computational, storage, and network capabilities
such as micro data center, radio base station, router device, gateway node, or similar.

To harness the benefits of nearby edge servers for better performance efficiency and
energy savings on mobile devices, the offloading concept is introduced. The offloading is
also known as cyber foraging which is a mimic of biological foraging where animals search
and exploit nearby resources opportunistically for survival and flourishing. Analogously,
the same applies to edge offloading where mobile devices exploit nearby edge resources to
flourish in terms of enhancing their performance efficiency and improving energy savings.
To offload mobile applications on the edge similarly to mobile cloud computing (MCC),
the application has to be partitioned into smaller chunks called tasks. Each task is a
computational and data workload that is part of a larger application and represents its
smaller and interdependent computational unit. In real-world practice, tasks can be
classes, processes, threads, methods, or functions, depending on the programming model
applied (e.g. object-oriented) and on which system level the application is executing
(e.g. platform processes). Some tasks are offloadable and other tasks are not. For
instance, if an application task has a dependency on a physical function of the mobile
device like a camera or sensor, then the application task is not offloadable. The mobile
application’s interdependent structure can be modeled via directed acyclic graphs (DAG)
shown in Figure 1.3a of the face recognizer application example. Vertices represent
tasks while edges represent task interdependencies. Blue-colored vertices represent non-
offloadable tasks while transparent tasks represent offloadable tasks. All tasks have
their resource demands where some tasks are computationally intensive requiring higher
CPU frequencies or a larger number of CPU cores like DETECT_EXTRACT_OBJECT
task. Other tasks are data-intensive tasks that require large disk storage capacities and
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1. Introduction

(a) Directed acyclic graph of face recognizer
application

(b) Task offloading

Figure 1.3: Mobile application and offloading examples

faster network transmission rates like FIND_MATCH task. DAG captures application
execution order where current tasks cannot be executed if all prior dependent tasks are
not executed completely. To illustrate the offloading execution of tasks, Figure 1.3b
shows the simple execution of the application which consists of tasks A, B, and C which
are sequentially ordered. Task A is non-offloadable, task B is computationally-intensive
and task C is lightweight in terms of resource demands. The upper example in the figure
shows when the entire application is executed locally on the device without offloading. In
this case, the response time is longer and drains more battery energy. The lower example
shows the offloading case where non-offloadable task A is executed locally, computational-
intensive task B is offloaded and executed on a cloud/edge server, and lightweight task C
is executed locally. The offload case due to offloading of computation-intensive task B
to the remote server, speeds up application response time and saves battery energy on
mobile devices.

Edge offloading decision-making process is a complex process where many objectives
and constraints have to be accounted for, ranging from device constraints, network
conditions, cost, and latency, to resource capacities, server loads, and availability. In real-
world settings, edge server resources are diverse and heterogeneous, and geographically
distributed to many sites that adhere to different environmental conditions. Resource-
wise, edge servers are smaller and cheaper compared to cloud servers and thus have
fewer hardware redundancies and sometimes lack supporting systems (e.g. power backup)
which impacts reliability. All aforementioned factors come into play during the offloading
decision process. Because of that the goal and motivation of this work is to ensure an
efficient and reliable edge offloading decision-making process that can deliver (near-)
real-time response to latency-sensitive applications.

In the following Section 1.1, we describe the research problems and motivate our research
direction of offloading decision-making in distributed and resource-constrained edge
environments. Section 1.2 discusses the efficiency and reliability concerns of edge offloading
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1.1. Problem Statement

Figure 1.4: Motivational use case scenario with mobile augmented reality

and how research problems in this thesis relate to such concerns. In Section 1.3, we
provide an overview of addressed research questions, while Section 1.4 presents the main
scientific contributions. We discuss the importance of the research and contributions to
the field in Section 1.5. The thesis organization is outlined in Section 1.6.

1.1 Problem Statement
In this section, we examine the motivational use case scenario of a mobile augmented
reality application, for better and easier framing of research questions studied in this
thesis. Latency-sensitive mobile applications are usually resource-intensive and require
low-latency execution. An example is a Mobile Augmented Reality (MAR), where any
significant delay hinders the users’ experience [RGW+21, WYS21]. One of the typical
MAR applications is personal live navigation called NaviAR. NaviAR supports users with
real-time navigation by displaying virtual path information over the physical environment.

Figure 1.4 shows a typical NaviAR execution flow [WYS21]. The application is represented
as a Directed Acyclic Graph (DAG) to model execution order and task interdependencies.
The NaviAR consists of heterogeneous tasks where some are offloadable while others are
not due to dependency on local device functions (e.g. camera). First, the destination
location is taken as input from the user, upon which the map is loaded (steps 1a and
1b). Afterward, the geo-information is processed to identify the current and destination
locations on the map (step 2). Then, the shortest route is calculated (step 3) based on
which motion commands (i.e., left, right) are generated to navigate the user (step 4).
Motion commands are rendered visually to guide the user in the physical environment
(step 5). Finally, the user location is constantly updated (step 6) on the display until the
user reaches the final destination (step 7).

Resource-intensive tasks (e.g. MAP, SHORTEST PATH) require offloading to the nearby
edge servers to achieve desired performance [WYS21]. Failures on edge servers can
affect offloading, causing additional delay [LMFH23]. Identifying reliable edge servers
is of paramount importance to ensure a good user experience. Furthermore, during
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1. Introduction

mobility, mobile devices connect to different edge servers which have varying levels of
resources and reliability. A reliable offloading solution is required to be robust to changing
environmental conditions.

We address the challenges of achieving efficient and reliable edge offloading following:

• Limited and heterogeneous resources: Edge nodes have limited CPU cores,
memory bandwidth, and storage capacity due to physical and economic constraints
making efficient resource management even more critical compared to other dis-
tributed systems. Additionally, edge resources are heterogeneous because edge
devices can be manufactured by different vendors (e.g. ARM-based CPU cores),
deployed on geographical sites that can have unique environmental conditions (e.g.
harsh cold climate), communicate with networks that have flexible topologies to
accommodate different needs (e.g. mesh peer-to-peer for file sharing), and executing
applications that depend on special hardware (e.g. GPUs for AI inference).

• Volatile workloads: Task offloading has to be highly adaptable to dynamic
workload changes that stem out of intermittent connections (e.g. physical obstacles
breaking line of sight), dynamic user activities (e.g. daily patterns, stadium events),
mobility (e.g. joining and leaving radio cells) and diverse set of applications
executed on mobile devices (e.g. AR/VR, video streaming). Edge resource-limited
infrastructure makes it more susceptible to workload volatility and, if handled
inefficiently can cause task failures like dropping.

• Failures and reliability assesment: Edge servers are more susceptible to failures
compared to cloud counterparts due to a lack of supporting systems (e.g. backup
power generators, fan units), physical damage amid less stable environments (e.g
harsh cold climate), intermittent power supply (e.g. faulty power lines), network-
wise disruptions (e.g. packet loss), and software errors (e.g. compatibility issues
between adjacent microservices). Fault-tolerance methods applied in the cloud such
as replication and checkpoint are less feasible in the resource-limited edge. Hence,
the requirement for proactive failure-aware methods is a necessity, especially for
latency-sensitive mobile applications where failures cause unacceptable delays.

1.2 Emerging Fields in Edge Offloading
Efficiency and reliability are the main concerns regarding edge offloading [JCG+19].
Efficiency is usually related to minimizing application response time, energy consumption
on mobile devices, and monetary costs, which are induced due to outsourcing task
execution on edge and cloud servers that are in ownership of resource providers. Resource
providers rent their own resources for executing tasks of devices that do not have
sufficient resources for executing tasks to satisfy desired requirements. Optimizing
multiple objectives can be tricky since sometimes they can conflict with each other
where lower response time can induce higher energy consumption[yCLlL23] and monetary
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1.3. Research Questions

cost. For instance, offloading tasks from mobile devices on an edge server can accelerate
application response time but can induce higher energy consumption if wireless network
conditions are unfavorable causing longer data transmissions. The conflict arises due to
changing environmental conditions which are typical for edge. Additionally, the reliability
goal imposes requirements for maintaining continuous and consistent systems performance
despite varying environmental conditions that causes failures and disruptions. Ensuring
reliability in an edge offloading environment, requires failure mitigation techniques
and predictive-based methods which can sustain application service availability and
performance amid edge dynamism and volatility. In essence, edge offloading solutions
should integrate adaptive and predictive methods into their framework to balance both
efficiency and reliability aspects of the edge offloading systems.

Previously presented research challenges can be addressed by balancing between efficiency
and reliability aspects. Available resource capacities and their allocation have to be
optimized because limited and heterogenous resources are constraining the capability to
handle serious failures adequatenly. Task offloading must be resource- and energy-aware to
output optimized offloading decisions that respect resource limitations and strict latencies
imposed by latency-sensitive applications. Also, taking into account the reliability levels
of underlying resources for mitigating less reliable ones which can disrupt task offloading
executions. Volatile workloads can contribute to worse efficiency where resource demands
of diverse application tasks can quickly consumes limited edge resources and cause
unpredictable performance for other hosted tasks. The inconsistent performance leads to
a poorer reliability level and can deter further offloading decisions, leading to suboptimal
performance. And lastly, proactively managing edge failures can enable their mitigation
and counteracting them before they impact the system’s performance. Addressing all
aforementioned concerns will enhance edge offloading efficiency and reliability, leading to
a more sustainable, scalable, adaptable, and fault-tolerant edge offloading ecosystem and
landscape.

1.3 Research Questions

We provide an overview of our research questions that will guide us in our future research
work.

1. How to select Edge server that will satisfy performance by taking offloading failures
into account? (RQ1)
Performance has a wide range of objectives that can be managed optimally in
the sense of delivering Edge services to the user or smart devices to perform near
real-time decisions. Depending on the type of application, various resources have
to be allocated and available for application execution. Data-intensive applications
require a big amount of network bandwidth and data storage resources, while
computational-intensive application emphasizes more on CPU processing resources.
Resource failures are appearing frequently because of the increasing functionality
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1. Introduction

and complexity of Edge services. Due to resource-limited capacity and prone
to failures, offloading strategies have to be developed that can cope with the
performance and reliability issue.

2. Which failure mitigation or predictive approaches can be used to avoid Edge offloading
failures? (RQ2)
As the systems’ complexity grows, also the number of failures increases. Proactive
prediction methods are required to improve service availability and decrease response
time by avoiding failures. In case of failure, recovery time can be an overkill for a
systems’ availability, which gives the motivation to investigate failure prediction
methods. Estimating failure probability is challenging in distributed systems due
to the correlation between various types of failures. A single failure can lead to
multiple failures in a short period. Temporal and spatial failure dependability
can be exploited in such manner, that task offloading on unreliable nodes can be
mitigated or minimized.

3. Which resilience techniques can we utilize to enhance the reliability of the Edge
Computing system? (RQ3)
Enhancement of reliability is considered as one of the crucial requirements for
Quality-of-Service (QoS) guarantee [YLL15]. Resilience techniques such as replica-
tion are one of the possible solutions that can bring fault-tolerance and reliability
to the system. They are needed for Edge services to fulfill strict requirements for
latency-sensitive applications and avoid service interruptions. Violating those re-
quirements can cause failover to redundant resources or recovery backup which can
introduce additional delay and overhead in response. Failure forecasting methods
that contain learning and inference features can deliver valuable input information
to resilient techniques to perform informed decision-making that ensures service
availability with a minimum cost of redundancy or failures.

4. How can failure-aware Edge resource provisioning enhance systems’ performance
and reliability? (RQ4)
Run time decision support for resource management is challenging to ensure QoS
parameters such as performance, availability, response time and reliability. Resource
scalability and failure prediction are factors that need to be considered for accurate
and optimal resource allocation and provisioning. It should handle Edge resource
effectively to mitigate SLA (Service Level Agreements) violations that are negotiated
between the Edge service provider and the user. Over-provisioning and under-
provisioning have to be avoided to provide fairness to the stakeholders. Resource
provisioning algorithms should consider both minimizing monetary cost for users
and maximizing financial profit for a service provider.
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1.4. Scientific Contributions

1.4 Scientific Contributions
The state-of-the-art systems lack efficient and reliable edge offloading strategies for reliable
edge offloading, especially targeting latency-sensitive solutions for (near-)real-time mobile
applications. In this thesis, we address (i) novel edge offloading concepts and strategies
showing the theoretical contributions and (ii) their practical applicability on real-world
testbeds. In this context, driven by performance efficiency and reliability requirements of
latency-sensitive and resource-intensive mobile applications, scientific contributions of
this thesis are the following.

1. Energy-efficient and failure predictive edge offloading (SC1)
Edge computing, due to distributed architecture that contains diverse resource and
reliability characteristics, is prone to server and network failures that can postpone
or prevent offloading thus affecting the overall system performance. We proposed a
novel solution to model the energy consumption of mobile device and application
response time assuming the resource and reliability diversity of the Edge Computing
system. The model adopts the Markov Decision Process (MDP), which provides
a formal framework for capturing stochastic and non-deterministic behavior of
Edge offloading. We propose the Energy Efficient and Failure Predictive Edge
Offloading (EFPO) framework based on a model checking solution called Value
Iteration Algorithm (VIA). EFPO determines the feasible offloading decision policy,
which should yield a near-optimal system performance. Evaluation is performed by
offloading various mobile applications modeled as Directed Acyclic Graphs (DAG).

2. Edge offloading of microservice-based applications (SC2)
Edge offloading is widely used to support the execution of near real-time mobile
applications. However, offloading on edge infrastructures can suffer from failures
due to the absence of supporting systems and environmental factors. We propose
a fault-tolerant offloading method modeled as a Markov Decision Process (MDP)
based on predictions performed through Support Vector Regression (SVR). SVR is
used to estimate offloading service availability, which is used by MDP for offloading
decisions. Our approach is implemented in a real-world test-bed and compared
with the default Kubernetes scheduler augmented with hybrid fault-tolerance.

3. Fast and reliable edge offloading using reputation-based hybrid smart contracts (SC3)
Mobile devices offload latency-sensitive application tasks to edge servers to satisfy
applications’ Quality of Service (QoS) deadlines. Consequently, ensuring reliable
offloading without QoS violations is challenging in distributed and unreliable edge
environments with diverse resource and reliability levels. We propose FRESCO,
a fast and reliable edge offloading framework that utilizes a blockchain-based
reputation system, which enhances the reliability of offloading in the distributed
edge. The distributed reputation system tracks the historical performance of edge
servers, while blockchain through a consensus mechanism ensures that sensitive
reputation information is secured against tampering. However, blockchain consensus
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1. Introduction

typically has high latency, and therefore we employ a Hybrid Smart Contract (HSC)
as a reputation state manager that automatically computes and stores reputation
securely on-chain (i.e., on the blockchain) while allowing fast offloading decisions off-
chain (i.e., outside of blockchain). The offloading decision engine uses a reputation
score from HSC to derive fast offloading decisions, which are based on Satisfiability
Modulo Theory (SMT). The SMT can formally guarantee a feasible solution that
is valuable for latency-sensitive applications that require high reliability. With a
combination of an on-chain HSC reputation state manager and an off-chain SMT
decision engine, FRESCO offloads tasks to reliable servers without being hindered
by blockchain consensus.

1.5 Significance of the Study

This study represents a quantum leap toward an efficient and reliable edge offloading
ecosystem for latency-sensitive mobile applications amid of distributed and unreliable edge
environments. The output of the study is critical findings that contribute to the broader
ecosystem and landscape of distributed computing systems by addressing challenges
(i) the emergence of resource-intensive and latency-sensitive mobile applications and
unprecedented global mobile growth adoption, (ii) limited edge heterogeneous resources
and their failure-prone and volatile behavior, and (iii) need for reliability-aware edge
offloading frameworks for enhancing systems performance.

The end results of the study are benefiting system engineers, solution architects, software
developers, and business decision-makers which are included in the entire process of
designing, managing, developing, and deploying edge systems and projects. For integrating
adaptive and proactive edge offloading frameworks in edge computing systems, the study
provides deep insights for optimizing and maintaining consistent performance of latency-
sensitive mobile applications and their reliability levels.

The study shows that theoretical research can be bridged with practical work by developing
an experimental prototype that incorporates adaptive and proactive edge offloading
frameworks. The prototype is validated by being deployed in a real-world environment
instead of solely relying on simulations. Used methodologies enhances the offloading
decision-making process and thus can be used as a platform for further development of
efficient and reliable edge offloading systems.

The significance of conducted research around edge offloading goes beyond merely aca-
demic scientific contributions. It can pave the way for practical development and deploy-
ment of edge offloading solutions in real commercial environments that adds business
value to cloud providers, telco operators, and industrial partners. The study supports
further evolution of distributed computing systems by enhancing user experiences, cutting
operational costs, and making supported systems more sustainable.
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1.6. Thesis Organization

Figure 1.5: Thesis organization

1.6 Thesis Organization
The thesis is organized into eight chapters, presenting research problems, research
solutions, and experimental evaluation results which are contained through benchmarking
against state-of-the-art baseline solutions that are taken from the literature.

• Chapter 1: Introduction
The chapter gives an overview of edge offloading, including problem statements,
emerging fields, research questions, scientific contributions, and elaborations on the
significance of the study.

• Chapter 2: Background
The chapter provides background technical information on used methodologies,
including tools and frameworks. A research contribution roadmap is also presented
which outlines the main research outcomes of this work.

• Chapter 3: Energy-Efficient and Failure Predictive Edge Offloading
The chapter presents an offloading decision engine that optimizes performance by
predicting failure rates over time. The offloading solution is based on a general
reliability bathtub curve model for edge servers, and their proactive management
to mitigate failures before they occur.
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• Chapter 4: Edge Offloading for Microservice Architectures
The chapter introduces an offloading solution that focuses on resource service
availability which is critically needed for offloading and executing microservice
applications. The proposed solution includes a machine learning-based availability
prediction model for edge resources by predicting their availability probabilities
that vary over time.

• Chapter 5: Fast and Reliable Edge Offloading Using Reputation-based Hybrid Smart
Contracts
The chapter unveils an offloading solution that employs a formal method-based
offloading decision engine which formally guarantees the feasibility of offloading
decisions, and reputation state manager encoded as a hybrid smart contract that
tracks edge server historical performance to provide reliable and trusted offloading
service.

• Chapter 6: Evaluation
The chapter describes experimental design, setup, schematics, datasets, and eval-
uation results for benchmarking proposed research solutions. Metrics, objectives,
and benchmarking against state-of-the-art baseline solutions are explained in great
detail.

• Chapter 7: Related Work
The chapter gives a holistic review of the state-of-the-art literature by comparing
our proposed research solutions to existing baseline solutions by addressing research
gaps.

• Chapter 8: Conclusion
The final chapter provides a summary of the main contributions of the thesis, and
its limitations, and points out the direction for future research work.

The structured approach ensures an exploration of efficient and reliable edge offloading,
and aligning theoretical knowledge with practical design and implementation.
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CHAPTER 2
Background

In this chapter, we present background technical information about fundamentals of edge
offloading and mobile applications, research focus, used research methods ranging from
formal methods to machine learning, real-world testbed and infrastructures, software tools
for research solution and experiment development, and research contributions overview
which highlights research outcomes of the thesis.

Mobile cloud computing (MCC)
Cloud computing emerged as the need to provision on-demand scalable resources for
high-complexity application execution with large data volumes. Traditional on-premise
data centers had struggled to tackle resource consumption spikes with limited scalability
due to fixed resource capacity. Also, on-premise data centers require a high upfront
capital investment and in-house technical skills to manage such data centers. Hence, IT
companies migrated software and applications on hyperscaler cloud data centers (e.g.
Google Cloud, Amazon Web Services, Microsoft Azure), to gain elastic scalability to
cope with resource-intensive applications and lower their total cost of ownership without
requiring data center maintenance which is under hyperscaler cloud provider responsibility.
It shifts costs from capital to operational expenses making it more cost-efficient. Also,
cloud data centers support multitenancy by enabling application and service execution of
multiple users on shared cloud infrastructure instead of purchasing separated dedicated
servers making it also resource-efficient.

Mobile devices, on the other hand, had significant hardware advancements (e.g. system-
on-chip) which enabled them to execute more complex mobile applications than just
sending messages and conducting voice phone calls. Mobile applications grew in code
complexity over the years to satisfy the diverse needs of users by delivering a richer
set of features (e.g. graphical animations, live navigation, real-time syncing). To cope
with resource-intensive mobile applications, the mobile cloud computing (MCC) concept
was introduced and enables the execution of resource-intensive mobile applications on
resource-limited mobile devices. MCC partitions the application into smaller tasks
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and loads resource-intensive tasks on a cloud while lightweight tasks remain on mobile
devices. However, a new class of applications emerged in recent years like AR/VR, cloud
gaming, autonomous vehicles, and smart factories which are both resource-intensive
and latency-sensitive. Offloadithosehat kind of tasks on the cloud or keeping them
on a mobile device would be performance-wise counterproductive. Centralized cloud
data centers are usually located in locations far away from end-users and are accessible
through public internet which can have high levels of network congestion and reduced
network bandwidth. This disqualifies cloud data centers from executing latency-sensitive
application tasks. Hence, MCC suffers from high latency and network congestion, and
the need for near-instantaneous processing has driven the evolution from MCC towards
edge computing, where computation is offloaded to edge servers closer to mobile users.
This transition from MCC to edge-based offloading represents a key shift in optimizing
low-latency, high-performance mobile applications.

Edge offloading
Although MCC augments the computation and storage capabilities of mobile devices by
offloading application tasks on resourceful but distant cloud servers, it fails to meet the
strict time requirements of latency-sensitive mobile applications which are measured in
milliseconds. Reasons for high-latency responses lay in physical distance (e.g. network
hops), reduced network bandwidth, and high traffic volume. Therefore, edge computing
was introduced as an intermediate middle layer embedded between cloud and mobile
layers as a decentralized computing infrastructure. Edge computing provides cloud
services and capabilities but on edge servers that are deployed in the vicinity of mobile
users. Nearby edge servers reduce overall latency by executing application tasks near the
task sources instead of executing tasks on far-distant cloud servers.

Edge offloading, on the other hand, is a resource management technique primarily
enabled by the edge computing concept to enable real-time execution of real-time mobile
applications on resource-limited mobile devices. Computationally and data-intensive
tasks are dynamically offloaded from mobile devices to nearby resourceful edge servers
with the objectives of reducing application response time, conserving battery energy
supplies on mobile devices, and minimizing the monetary resource utilization costs of
using rented edge resources from edge resource providers for task offloading and execution.

The most prominent edge computing instance is mobile (multi-access) edge computing
(MEC) which targets edge computing frameworks on telecommunication networks and
infrastructure. MEC extends cloud services on radio access networks where edge servers
are deployed on radio network controllers, radio base stations, and aggregation points.
This kind of deployment enables application execution at the edge of the network close to
mobile users, thus dramatically reducing latency for latency-sensitive mobile applications.
Recently, there have been plenty of MEC-enabled applications using 5G ultra-reliable
and low-latency cellular connections like real-time video analytics, vehicular networks
(V2X), mobile gaming, and AI-driven network optimization. Due to high-speed cellular
connections, MEC provides (near-) real-time task offloading and execution thus enabling
a great mobile user experience.
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Latency-sensitive mobile applications
Cloud-based task executions fail to satisfy the strict time requirements of latency-sensitive
mobile applications that require real-time response. To tackle the latency issue, the
offloading technique has emerged as a critical solution for achieving high performance.

Latency-sensitive applications have pervaded a variety of application domains including
a few representative examples:

• Mobile augmented and virtual reality (AR/VR) – Low-latency response
is critical for AR/VR applications to provide an immersive and interactive user
experience. Tasks like object detection, graphics rendering, and instant interaction
require immediate reaction where any significant delays can degrade performance
and experience. AR/VR application tasks offloaded on edge servers could reduce
processing latencies to ensure smooth operations and save energy supplies of battery-
powered AR/VR glasses.

• Traffic safety - Real-time communication is critical where autonomous vehicles
communicate with nearby vehicles and roadside infrastructure to avoid collisions,
and hazardous situations and regulate traffic flows. Edge offloading would minimize
the communication latency necessary for enabling real-time decisions without
compromising the safety of all included traffic actors.

• Real-time image processing - Facial recognition, medical imaging, and remote
sensing are just a fragment of image processing applications that require real-time
response. They can be both computational and data-intensive consuming CPU
and network bandwidths at scale. Offloading such application tasks would reduce
communication towards cloud servers and enable timely response.

In all aforementioned application domains, there are plenty of use cases where edge
offloading can play a dominant role in enabling better performance, energy efficiency,
and high reliability. Some of the mentioned applications are also used as a workload for
evaluating proposed edge offloading solutions and benchmarked against baseline solutions.

2.1 Research Focus
The research focus of this dissertation is on adaptive and failure-aware edge offloading
mechanisms that improve the performance and reliability of latency-sensitive applications
in distributed and unreliable edge environments. The low-latency application execution
requirement was normalized in past years due to the increasing emergence of real-
time applications. Consequently, edge computing has co-emerged as a viable solution
to handle resource-intensive mobile applications in real time. However, distributed
edge environments are unreliable and failure-prone due to heterogeneous and limited
infrastructure, and intermittent network connections. We focus on adaptive and failure-
aware offloading techniques to improve both the performance and reliability of edge
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Figure 2.1: Edge offloading decision-making model

computing by selecting high-performing and reliable edge servers that minimize offloading
failure rate.

The main focus of reliable edge-offloading approaches is on selecting the optimal target
server while performing trade-offs and balancing between timing deadlines, resource
constraints, performance objectives, energy efficiency, monetary resource utilization costs,
and reliability factors. Hence, we investigate and explore formal methods, machine learn-
ing, and decentralized analytical approaches such as blockchain-based reputation systems
to improve the performance and reliability of edge offloading systems in distributed and
unreliable edge environments.

The research is organized around three key aspects:

• Failure predictive edge offloading - employing Markov Decision Process (MDP) for
offloading decision-making and encoding failure probabilities via general reliability
bathtub curve model for estimating failure events.

• Microservice-based edge offloading - Offloading of microservice applications based
on Support Vector Regression (SVR) which assesses the availability probabilities
of edge servers and forwards them to the MDP decision-maker agent for selecting
edge servers for offloading.

• Blockchain-based reputation-aware edge offloading -The reputation system tracks
the historical performance of edge servers and stores them on blockchain against
any malicious tampering. The reputation scores are queried by mobile devices
which offloads tasks accordingly.

The general offloading decision-making framework is illustrated in Figure 2.1 which
consists of the following components:

• Application profiler: Extracts application structure and tasks’ resource requirements
from mobile applications.
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• System monitoring: Observes available resource capacities on the infrastructure.

• Decision engine: Based on data inputs from the profiler and monitor, it determines
the target server as an offloading location.

The goal of the presented research focus is to invent edge-offloading frameworks that can
produce efficient and reliable offloading decision policies by improving the performance and
reliability of edge-offloading systems. Also, the intent is to transfer theoretical offloading
findings into real-world prototypes with breakthrough impact for latency-sensitive mobile
applications.

2.2 Methods
Edge computing systems are designed to enable real-time and latency-sensitive decision-
making by distributing computational tasks across edge nodes. These systems require
robust and adaptive methodologies to optimize task offloading strategies, ensure data
integrity, and enhance overall system reliability. In this section, we introduce the
methodologies employed in this dissertation, each addressing different challenges in
energy-efficient and failure-predictive edge offloading.

2.2.1 Markov decision processes (MDP)

One of the core challenges in edge offloading is determining the optimal decision policy for
task execution—whether tasks should be executed locally on mobile devices or offloaded
to edge/cloud servers. This decision-making process needs to consider device resource
constraints (CPU, memory, and battery life), network conditions (latency and bandwidth),
and application deadlines.

Markov Decision Processes (MDP) provide a formalized mathematical framework for
sequential decision-making under uncertainty. In an MDP-based approach, the state
represents the system’s current computational and network resource availability, while
actions correspond to offloading decisions (e.g., execute locally, offload to a specific edge
node, or delegate to the cloud). The transition function models network fluctuations and
dynamic workload conditions, and the reward function ensures energy efficiency, task
completion success, and latency minimization.

MDP solvers can be implemented using dynamic programming or reinforcement learning,
enabling the system to learn and adapt offloading decisions over time. By leveraging MDP-
based optimization, the edge infrastructure can efficiently manage tasks and dynamically
allocate computational resources, ensuring both reliability and responsiveness.

An example of formally modeling the offloading decision-making process under uncertainty
is presented in Figure 2.2. MDPs provide a mathematical framework where decisions are
made sequentially based on the current system state, available actions, and probabilistic
transitions to future states. The MDP state space consists of various execution locations
for an offloaded task, including:
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Figure 2.2: Markov decision process example for offloading decision-making

• MD (Mobile Device): Execution occurs locally on the user’s mobile device.

• EC (Edge Computational Node): A high-performance edge node optimized for
computational tasks.

• ED (Edge Database Node): A storage-focused edge node handling data-intensive
processing.

• ER (Edge Regular Node): A general-purpose edge node that offers intermediate
processing capabilities.

• Cloud: A remote cloud data center with abundant resources but higher latency

Each state transition occurs due to offloading decisions (actions), influenced by network
conditions, device resource availability, and task complexity. These transitions are
depicted in the MDP model visualization (Figure above), where states are represented as
blue circles, corresponding to available execution locations. Actions (black dots) indicate
decisions to offload tasks between execution nodes. Transitions (yellow arrows) illustrate
the probabilistic movement between states based on network conditions and system
constraints.

2.2.2 Support vector regression (SVR)

Support Vector Regression (SVR) is a machine learning technique widely used for
predictive modeling across diverse domains where accurate estimation and forecasting
are essential. SVR is particularly effective in capturing complex, non-linear relationships
between input features and target variables, making it a robust choice for applications
that require precise predictions with controlled error margins.
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Unlike traditional regression methods, which minimize overall prediction error, SVR oper-
ates by defining a margin of tolerance (epsilon-insensitive zone) within which predictions
are considered acceptable. By leveraging kernel functions, SVR maps input data into a
higher-dimensional space, allowing it to identify underlying patterns and generalize well
to unseen data.

SVR applies to a broad range of predictive tasks, including but not limited to:

• Failure Prediction: Estimating the likelihood of system failures in manufacturing,
IT infrastructure, healthcare devices, and autonomous systems.

• Performance Forecasting: Predicting processing times, energy consumption, or
service delays in various industries, from logistics to cloud computing.

• Anomaly Detection: Identifying irregularities in sensor data, cybersecurity threats,
or equipment malfunctions.

• Demand Estimation: Forecasting resource utilization, consumer demand trends, or
supply chain fluctuations for efficient planning.

• Environmental and Sensor Data Prediction: Anticipating weather patterns, air
pollution levels, or seismic activity for real-time monitoring applications.

SVR enables adaptive and data-driven decision-making by providing accurate forecasts
that guide system optimization, resource allocation, and risk mitigation. By training on
historical data, SVR can proactively identify trends and anticipate potential disruptions,
allowing for informed decision-making in uncertain or dynamic environments. Its ability
to generalize across different domains and data types makes SVR a versatile tool for
predictive analytics, enhancing reliability, efficiency, and performance optimization in
complex systems.

2.2.3 Satisfiability modulo theory (SMT)

Satisfiability Modulo Theories (SMT) is a powerful formal method used for constraint
solving, decision-making, and system verification across various computational domains.
SMT solvers extend traditional Boolean satisfiability (SAT) solving by incorporating
theories such as arithmetic, bit-vectors, arrays, data structures, and temporal logic,
allowing for more expressive and complex constraint representations.

SMT is particularly useful in domains that require rigorous constraint validation and
automated reasoning, enabling efficient problem-solving where multiple constraints must
be simultaneously satisfied. By encoding problems as logical formulas, SMT solvers
determine whether a given set of constraints is satisfiable and, if so, provide feasible
solutions. SMT solvers offer several advantages, making them valuable across multiple
disciplines:
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• Expressive Constraint Representation: They support rich mathematical theories
beyond simple Boolean logic, making them ideal for complex decision-making
scenarios.

• Automation and Scalability: They enable automated reasoning and constraint
resolution, reducing the need for manual rule enforcement in large-scale systems.

• Efficient Search for Optimal Solutions: Unlike brute-force approaches, SMT solvers
efficiently prune the search space, finding solutions faster and handling large problem
instances.

• Formal Verification Guarantees: They provide provable correctness in systems
where safety, security, or compliance is critical.

By integrating SMT-based reasoning into computational frameworks, organizations,
developers, and researchers can ensure that systems operate within defined constraints,
maintain robust security, and optimize performance in constrained environments.

2.2.4 Blockchain and smart contracts

Blockchain is a decentralized network that secures transactions through consensus, where
all participating nodes agree on the current blockchain state. It is difficult to tamper
transactions without compromising with a majority of nodes on a large-scale public
blockchain (e.g. Ethereum). Thus, a public blockchain with consensus ensures tampering-
resistance. Figure ?? [PNMH21] visually represents the fundamental process of how
transactions are executed and validated within a blockchain network. It follows the key
stages: (i) new transaction request, a user initiates a transaction which is the request is
submitted to the network for processing, such as sending cryptocurrency. (ii) transaction
broadcasted to all nodes, the transaction is propagated across all participating nodes
in the blockchain network where nodes act as validators and maintain decentralized
consensus, (iii) transaction verification by miners is the transaction undergoes verification,
typically through a proof-of-work (PoW) or proof-of-stake (PoS) mechanism, where
miners or validators ensure the transaction is legitimate by checking digital signatures,
double-spending issues, and network rules. (iv) transaction verified, once validated, the
transaction is deemed correct and ready for block inclusion. (v) new block creation with
transaction information a miner (or validator) compiles verified transactions into a new
block which is added to the blockchain through consensus mechanisms like PoW (in
Bitcoin) or PoS (in Ethereum 2.0), (vi) add new block to existing chain of blocks, the new
block is linked to the previous block, forming a tamper-resistant ledger which follows the
chain structure that ensures security, immutability, and distributed record-keeping, (vii)
transaction completed the transaction is finalized, permanently recorded in the blockchain,
and considered immutable.

A smart contract is a self-executing program that automatically enforces agreed rules
when certain events or conditions on the blockchain are met. Thanks to the tamper-
resistant property of the blockchain, smart contracts can securely execute transactions that
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(a) Blockchain mining process (b) Smart contract execution

Figure 2.3: Blockchain and smart contract

include sensitive information. However, the blockchain imposes long latencies and limits
functionalities that smart contracts can provide by excluding non-deterministic operations
(e.g. floating-point arithmetic)[BID21]. Additionally, blockchain is self-contained and
accepts only transactions that occur on-chain. Overall, it is unsuitable for complex,
latency-sensitive, and off-chain applications.

Figure 2.3b [DSX+18] illustrates how smart contracts are executed and validated in a
blockchain-based system. It is divided into two main phases the execution phase and the
consensus phase. Node1 and Node2 represent participants executing a smart contract.
Both nodes independently compute the contract’s logic and generate a result. This
phase ensures each participant processes the same computation but does not yet reach a
consensus. After execution, nodes synchronize their results to reach a consensus. The
handshake symbol represents an agreement among nodes before finalizing the transaction.
Once consensus is achieved, the results are recorded on the blockchain. This ensures all
nodes have an identical state, preventing double-spending, fraud, or inconsistencies.

2.2.5 Reputation systems

A distributed reputation system operates without a central authority. Instead of relying
on a single entity to maintain reputation data, it allows all participants to contribute,
evaluate, and distribute trust scores. This ensures that no single entity can control or
manipulate the reputation landscape, making it more resistant to bias or failure. At
the core of such a system is the process of trust evaluation and reliability measurement.
Reputation is built based on past interactions, where participants provide feedback on
their experiences. The system collects this feedback and aggregates it into a reputation
score, which helps others make informed decisions. However, reputation is more than
just a numerical score—it is a reflection of both trustworthiness and reliability. A high
reputation suggests not only that an entity has acted fairly in the past but also that it
can be expected to fulfill its commitments consistently in the future. For a distributed
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reputation system to function effectively, it must facilitate the sharing and verification
of reputation information across a decentralized network. This requires a method for
participants to exchange feedback, validate its authenticity, and ensure that reputation
scores remain accurate over time. Unlike centralized reputation models, where the
authority ensures data integrity, distributed systems must rely on mechanisms where
trust emerges organically from the interactions between participants.

Reputation systems serve as a critical component in decision-making. Whether in online
transactions, decentralized financial services, or collaborative networks, participants need
a way to assess risk before engaging with others. Reputation helps reduce uncertainty,
allowing participants to confidently enter agreements, knowing that past behaviors provide
a reliable indication of future actions. Beyond trust, reputation systems also influence
incentives and behavior. A well-functioning reputation system encourages honest and
reliable participation while discouraging fraudulent or irresponsible behavior. When
reputation is tied to benefits—such as access to better services, higher privileges, or
stronger network influence—participants are naturally incentivized to maintain a good
reputation. In contrast, those who act dishonestly or fail to meet expectations risk
damaging their reputation, which can limit their ability to participate in the system
effectively.

As distributed reputation systems grow in complexity, the challenge of maintaining trust
in a decentralized environment becomes more pronounced. This is where blockchain
technology presents a valuable integration. Blockchain offers immutability, transparency,
and decentralization, aligning well with the principles of distributed reputation systems.
One of the key reasons for integrating reputation systems with blockchain is ensuring
data integrity. In a decentralized system where reputation data is collectively main-
tained, the risk of data manipulation or loss must be mitigated. Blockchain provides a
tamper-resistant ledger where reputation records are securely stored and verifiable by all
participants. Additionally, blockchain enhances reputation verification by eliminating the
need for intermediaries. Since reputation scores influence decision-making, ensuring their
authenticity is crucial. Blockchain allows for cryptographic verification of reputation
data, making it easier for participants to assess trustworthiness without relying on a
third party.

2.3 Testbeds and infrastructure

This section presents the hardware and network infrastructure utilized in our testbed for
evaluating edge offloading in microservice architectures. The setup consists of heteroge-
neous devices, including low-power edge nodes, mobile devices, and high-performance
cloud servers. The selected devices are Raspberry Pi 3B+, Huawei P Smart Z, and
an AMD64 cloud-class server, each playing a distinct role in the distributed processing
workflow.
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2.3.1 Hardware and networking equipment

Raspberry Pi 3B+
The Raspberry Pi 3B+ serves as an edge node within our testbed, acting as an intermediary
between mobile clients and more powerful processing resources. It is equipped with a
Quad-core ARM Cortex-A53 processor clocked at 1.4GHz, 1GB RAM, and 64GB of
local storage. These characteristics make it suitable for lightweight data processing tasks,
sensor aggregation, and executing small-scale machine learning models. Furthermore,
it provides wireless connectivity to nearby mobile devices and is configured with local
DHCP and DNS services for managing mobile IP address allocation.

Huawei P smart Z
This mobile device is used for testing real-time application offloading and data transmission
efficiency. It features a Quad-core ARM Cortex-A53 processor at 1.7GHz, 4GB RAM,
and 64GB of storage. The device is particularly relevant for evaluating computational
offloading strategies and network latency in mobile-edge computing scenarios. Offloading
requests from the Huawei P Smart Z are performed over HTTP, leveraging a Flask-based
web service deployed on edge nodes.

AMD64 cloud server
To simulate cloud infrastructure, we utilize an AMD64 server equipped with a 48-core
Intel Xeon E5-2650 v4 processor running at 2.2GHz, 128GB RAM, and 1TB of storage.
The cloud server plays a pivotal role in handling computationally intensive workloads
that exceed the processing capabilities of edge nodes. It supports Kubernetes-based
container orchestration for microservice deployment, and its high processing power allows
us to benchmark edge-to-cloud task migration strategies.

Netgear 24-Port switch
The Netgear 24-port switch is a high-speed networking solution designed for environments
that require low-latency, high-bandwidth data transfer. With Gigabit Ethernet across all
ports, it ensures efficient communication between distributed computing nodes, sensors,
and connected devices. Managed models offer VLAN segmentation and QoS, optimizing
traffic flow and enabling network isolation for different workloads.

For scalability and reliability, the switch supports Link Aggregation (LACP) to increase
bandwidth and Spanning Tree Protocol (STP) for redundancy, ensuring uninterrupted
operation in dynamic network environments. Power over Ethernet (PoE) capabilities
simplify infrastructure by delivering power to connected edge devices, while remote man-
agement options provide flexibility for configuring and monitoring network performance.

MikroTik router
The MikroTik router is a versatile networking device that enables efficient traffic manage-
ment, security enforcement, and adaptive routing in distributed environments. Powered
by RouterOS, it provides VLAN support, QoS policies, and traffic shaping, ensuring
optimal resource allocation and seamless network performance.

With hardware-accelerated VPN support (WireGuard, IPSec, OpenVPN), the router
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(a) Edge cluster equipment (b) AMD64 cloud class-server

Figure 2.4: Lab testbed

secures data transmission across distributed nodes, while its firewall and intrusion preven-
tion system enhances security in dynamic network conditions. Load balancing and failover
mechanisms improve network resilience, ensuring reliable operation in environments where
connectivity and performance must be maintained without interruption.

The entire overall testbed used in our edge offloading evaluation is illustrated in Figures
2.4a and 2.4b. The first figure shows edge devices whereas the second figure shows a
cloud server in TU Wien University’s local data center.

2.3.2 Software

Python programming language
Python is a high-level, interpreted programming language widely used for automation,
web development, data analysis, and system orchestration. Its extensive standard
library and third-party ecosystem support rapid development across various domains.
Python’s readability and dynamic typing make it an ideal choice for scripting, system
integration, and application prototyping. With frameworks like Flask, Python enables
the development of lightweight web APIs and microservices, commonly deployed in
distributed environments. The language also integrates seamlessly with asynchronous
event loops (asyncio), parallel computing (multiprocessing), and containerized execution,
making it well-suited for modern cloud-native applications.
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Docker containers
Docker provides a lightweight, portable containerization platform that encapsulates
applications and their dependencies into isolated runtime environments. It enables con-
sistent deployment across different infrastructures, improving scalability and reducing
compatibility issues. With support for multi-container applications via Docker Compose,
networking between services, and resource constraints for CPU and memory, Docker
ensures efficient workload distribution and isolation in cloud and edge computing environ-
ments. Its layered filesystem and image caching enhance deployment efficiency, making it
a fundamental tool for modern DevOps workflows.

Kubernetes orchestrator
Kubernetes is a container orchestration platform designed for automated deployment,
scaling, and management of containerized applications. It provides dynamic workload
scheduling, self-healing capabilities, and rolling updates, ensuring high availability and
efficient resource utilization. With features like Ingress controllers for traffic routing,
persistent storage management, and service discovery, Kubernetes facilitates scalable
and fault-tolerant microservices architectures. Built-in load balancing, autoscaling, and
node affinity policies further enhance system reliability, making it a preferred choice for
managing complex distributed applications.

Figure 2.5 [Ada21] illustrates the architecture of a Kubernetes cluster, showing how the
master node (control plane) interacts with worker nodes to manage and deploy applications.
The master node contains key components like the API server, scheduler, controller
manager, etc., which work together to orchestrate workloads. Worker nodes, each running
kubelet and kube-proxy, are responsible for executing the assigned workloads by running
containers inside pods. In the task scheduling process, the kube-scheduler in the master
node selects an appropriate worker node for a new pod based on resource availability and
scheduling constraints. The API server manages all communication, ensuring that the
scheduler’s decisions are enforced. Once a node is assigned, the API server notifies the
kubelet running on that worker node, which then pulls the necessary container images
and starts the pod. Kube-proxy configures networking to allow communication between
the new pod and other services, while the controller manager continuously monitors the
cluster state to ensure that the desired number of replicas is maintained.

Ganache blockchain emulator
Ganache is a personal Ethereum blockchain emulator that enables rapid smart contract
development and testing in a controlled environment. It provides a local blockchain
instance with adjustable gas fees, instant block mining, and customizable account balances,
allowing developers to simulate real-world transactions without incurring network costs.
With JSON-RPC support, event logging, and integrated debugging tools, Ganache
streamlines the development and testing of decentralized applications (dApps). It is
commonly used in Ethereum-based smart contract development workflows, complementing
tools like Truffle and Hardhat.

Solidity Ethereum smart contracts
Solidity is a statically typed programming language designed for writing Ethereum
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Figure 2.5: Kubernetes cluster components and their interactions

smart contracts that execute on the Ethereum Virtual Machine (EVM). It supports
contract inheritance, function modifiers, and event-driven programming, enabling secure
and efficient blockchain interactions. With built-in features like reentrancy protection,
access control mechanisms, and gas optimization, Solidity ensures the secure and cost-
effective execution of decentralized applications. It integrates with tools like Remix,
Truffle, and Ganache for testing and deployment, facilitating the development of trustless,
decentralized systems.

Z3 SMT solver
Z3 is a high-performance Satisfiability Modulo Theories (SMT) solver developed by
Microsoft Research, designed for formal verification, constraint solving, and automated
reasoning. It enables symbolic execution, theorem proving, and model checking, making
it a powerful tool for program analysis, cryptographic verification, and security testing.
With support for integer arithmetic, bit-vectors, and logical formulas, Z3 allows for auto-
mated decision-making in optimization problems, formal verification of smart contracts,
and constraint-based software testing. It is widely used in AI, formal methods, and
cybersecurity applications, ensuring correctness in complex computational workflows.

2.4 Research Contributions Overview

Figure 2.6 illustrates the research contributions of this thesis, which are structured into
three main chapters. Chapter 3 introduces an energy-efficient and failure-predictive edge
offloading framework, incorporating proactive failure prediction and adaptive decision-
making for reliable task execution. Chapter 4 focuses on application-specific offloading
strategies, optimizing computational, data-intensive, and latency-sensitive workloads for
enhanced efficiency. Chapter 5 presents a trust-based offloading mechanism, integrating
blockchain-based reputation systems and formal decision models to ensure reliable and
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Figure 2.6: Research contributions overview

secure edge task execution. These contributions collectively improve efficiency, reliability,
and adaptability in distributed edge environments.
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CHAPTER 3
Energy Efficient and Failure

Predictive Edge Offloading

In the previous chapter we established the key concepts and challenges inherent to
edge offloading—particularly the issues of energy consumption, resource constraints,
and reliability in distributed edge environments. In this chapter, we revisit the work
presented in our conference paper “EFPO: Energy Efficient and Failure Predictive Edge
Offloading” to further advance our investigation into reliable offloading mechanisms. This
study introduces a novel framework that integrates formal modeling and verification
techniques to address the dual challenges of performance efficiency and failure mitigation
in heterogeneous edge computing systems.

Specifically, the conference paper formulates the offloading decision problem as a Markov
Decision Process (MDP), capturing the stochastic behavior of failures alongside non-
deterministic offloading choices. We employ the Value Iteration Algorithm (VIA) within
the Energy Efficient and Failure Predictive Edge Offloading (EFPO) framework to
derive near-optimal offloading policies. The main contributions of this work include
(a) a comprehensive energy and time response model that accounts for the diversity in
computational and network resources between mobile devices and edge nodes, (b) the
development of the EFPO framework, which integrates MDP-based modeling with formal
verification to address offloading failures systematically, (c) experimental evaluations
demonstrating improvements in application response times.

The remainder of this chapter is organized as follows. Section 3.1 outlines the system
architecture and MDP formulation underlying the EFPO framework. Section 3.2 details
the implementation of the Value Iteration Algorithm and the offloading decision process.
In Section 3.3, we present and discuss the experimental evaluation and its implications for
both performance and reliability. Finally, Section 3.4 offers insights into future research
directions for enhancing fault-aware edge offloading strategies.
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3.1 MDP formulation and system architecture
MDP is a mathematical framework for modeling decision making in situations where
outcomes are partly probabilistic and partly under the control of a decision-maker. This
kind of framework can be used for modeling systems that exhibit probabilistic and
non-deterministic behavior. Offloading decisions can be resolved in a non-deterministic
manner as a optimal decision policy. An optimal decision policy describes the best
action for each state in the MDP model, which yields optimal performance for the
modeled system under given conditions. It can be obtained by formally verifying the
MDP model using the model checking solution Value Iteration Algorithm (VIA). VIA
algorithm focuses critically on expected value, in contrast to safety properties that are
focused on the worst-case scenario. This allows us to exploit sampling and approximation
more aggressively. There are other model checking solutions for MDP including Policy
Iteration Algorithm, but VIA is preferred due to its theoretical simplicity and ease of
implementation [Put14].

MDP is defined as a labeled transition system with state space S, where each state
represents system configuration, action space A, where probabilistic transitions defines
state trajectory from previous state s′ to current state s and a reward function R which
determines immediate reward (or cost) for taken action a while in state s. Therefore,
MDP can be formally defined as a tuple < S, A, P, R >:

• S state space,

• A action set,

• P (s, s′, a) transition probability by taking action a in state s will lead to state s′,

• R(s, s′, a) immediate reward received after transition from current state s to next
state s′ by taking action a.

The system architecture that we model with MDP is illustrated in Figure 3.1. It consists
of five offloading sites, a single mobile device (MD), three Edge servers, and a single
Cloud data center (CD). The scenario is that ODE is running on the mobile device and
offloads the tasks from a current executed mobile application on Edge servers or Cloud
data center. Alternatively, it is performed locally on the device. The mobile device
has inferior computation and data storage resources comparing it with Edge and Cloud.
Edge servers, on the other hand, have inferior resources when comparing to the Cloud
data center. We introduce three Edge server types: (i) Edge database server (E1) has
larger data storage capabilities and network transmission rates for faster data transfer
for handling data-intensive applications such as Facerecognizer, (ii) Edge computational
server (E2) has larger computational capabilities as CPU processing speed suitable for
computational-intensive applications such as Chess, and (iii) Edge regular server (E3)
has intermediate resources suitable more for typical applications that do not have large
requirement for computation or data storage, such as social media applications. Mesh
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network topology is used in the architecture due to advantages such as system robustness
in case of server or network failures. The system architecture is extendable for employing
multiple instances of each aforementioned offloading site. MDP model checking solutions
support scalability. This is an important feature which can cope with verifying larger
system models. However, the price of larger system models is a larger state space that
can cause state space explosion which disrupts the model checking process. In this study,
we use five offloading site instances as illustrated in Figure 3.1.

Figure 3.1: System architecture

Modeling of the mentioned system architecture as a MDP is as follows: (a) The state
space S is defined as S = {MD, E1, E2, E3, CD}, where elements correspond to the
aforementioned offloading sites, (b) The action space A is defined as A = S where
a ∈ A represents offloading site decisions (c) The discrete decision epochs represents
discrete time events when offloading actions are performed and defined as T = {0, 1, ..., n},
(d) The transition probabilities for each state s(t) and action a(t), gives quantitative
information that the next state will be s(t + 1), (e) The reward function used in
this work considers two objectives, energy consumption and application response time,
resulting in two reward functions, Re(s, a) and Rt(s, a), which are combined in the
overall reward function R(s, s′, a), (f) Value iteration algorithm (VIA) performs an
approximation to the optimal value function for each state as in Equation (3.1) and
yields optimal actions which represents our optimal offloading decision policy as shown
in Equation (3.2). π(s) represents offloading decision policy with initial state s and γ is
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discount factor [0, 1] which guarantees algorithm output convergence.

V (s) =
∑︂
s′

P π(s)(s, s′)(Rπ (s)(s, s′) + γV (s′)) (3.1)

π(s) = argmax
a

∑︂
s′

P π(s)(s, s′)(Rπ (s)(s, s′) + γV (s′)) (3.2)

With Edge offloading, a mobile application (or a part of it) is offloaded from a mobile
device to remote network infrastructure. In Figure 4.1, we summarize the offloading
process. We assume that offloading is performed by a software unit running on the mobile
device called the offloading decision engine (ODE). ODE is responsible for offloading
application tasks on remote servers. It decides on which Edge server or Cloud data
center each application task shall be offloaded, taking into account applications’ and
infrastructures’ resource requirements and capacities. Once offloading is completed,
the infrastructure executes tasks and sends the results to the location where the next
application task will be executed. This process repeats until the application terminates.

Figure 3.2: Edge offloading model

Main components of offloading engine in Figure 4.1 are: (1) Application profiler that
profiles and extracts DAG structure and identifies tasks requirements and dependencies;
(2) System monitoring that monitors data about remote infrastructure, and (3) Decision
engine that collects data from the other two and performs offloading decisions. In
this work, we focus on the decision engine. We assume that the decision engine has
already collected the application DAG model annotated with requirements, the offloading
possibility for each task from the Application profiler, as well as the information about
remote infrastructure from System monitoring. The entire system in the decision engine
is viewed as an MDP model, and by verifying it, we obtain optimal decision policy
that is being used in the EFPO algorithm to determine which application tasks will be
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offloaded on which offloading sites. MDP framework is used for modeling systems that
exhibit probabilistic and non-deterministic behavior. Edge offloading fits to this scenario
as offloading failures occur probabilistically and offloading decisions can be resolved in
a non-deterministic manner. Executing ODE on the mobile device consumes energy
that may be intolerable in some cases. The alternative is to execute ODE on a remote
server and store the result on the device. In case of unstable connectivity, execution can
continue on the device until the connection to the remote server is restored.

3.2 Offloading Model

Offloading sites has hardware characteristics based on which offloading and failure cost
are computed. A site is defined as the vector q = (f , ram, stor, r, l), where f is the CPU
processing speed in millions of cycles per second, ram is the memory storage, storage
is the data storage capacity, r is the network bandwidth and l is the network latency.
Application tasks are defined similarly, v = (w, ram, din, dout, off), where w is the CPU
processing speed in millions of cycles per second, ram is the memory consumption, din

is the input data size, dout is the output data size and off is the binary variable that
indicates whether the task offloadable.

When offloading application tasks on remote infrastructure, resource constraints must be
respected. Defining valid offloading, the following conditions must be satisfied:

•
∑︁

v∈Oq(t)(ωv) ≤ fq

•
∑︁

v∈Oq(t)(ramv) ≤ ramq

•
∑︁

v∈Oq(t)(din
v + dout

v ) ≤ storq

• ϕ(v) = ∅

Oq(t) represents a set of application tasks that are executed in time moment t on offloading
site q and ϕ(v) represents a set of application tasks that are input dependencies for task v.
First, three conditions, validate that CPU, RAM and data storage capacities of offloading
site q are not exceeded. The last condition validates that all input dependable tasks are
executed before task v is ready for offloading and execution. The notation used for our
simulation model is listed in Table 3.1.

3.2.1 Time Response Model

Time response cost is defined as Tv = {tmd, te1, te2, te3, tcd}, where each element de-
notes the time response cost to execute component v on each of the offloading sites.
fmd, fe1, fe2, fe3 and fcd are defined as the CPU clock speeds (cycles/second) of offloading
sites. The total CPU cycles needed to execute the application task v is ωv and fi denotes
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Table 3.1: Simulation parameters

Simulation parameters
Offloading sites qi i-th offloading site
Energy
parameters

evi Energy cost of task v if executed on offloading site qi

Time parameters

tvi Total time cost of task v if executed on offloading site qi

tc
vi

Computational time spent executing task v on site qi

ti
vi

Time spent receiving input data to the task v on site qi

to
vi

Time spent sending output data to the task v on site qi

Hardware
parameters

fi CPU clock speed (cycles/second) of offloading site qi

wv Total CPU cycles needed by the instructions of task v
ramq RAM memory storage of offloading site q
storq Data storage capacity of offloading site q

Data parameters din
v Input data received by task v

dout
v Output data sent by a task v

Power parameters

pu Mobile power consumption for uplink transmission
pd Mobile power consumption for downlink transmission
pe Mobile power consumption for local execution
pidle Mobile power consumption at idle

Network
parameters

rij Network bandwidth rate between site qi and qj

lij Network latency between site qi and qj

Weight factors ωe Weight factor for energy consumption reward function
Re(s, a)

ωt Weight factor for time response reward function Rt(s, a)

Failure parameters

λqi Binary flag that indicates did failure occured on offloading
site qi

MTBF Mean time between failures
ct

vi
Failure time cost on the offloading site qi where task v is
offloaded

ce
vi

Failure energy cost on the offloading site qi where task v is
offloaded

CPU frequency of qi offloading site. tc
vi

denotes the computational time of executing task
v on site qi and defined as:

tc
vi

= ωv

fi
,∀v ∈ V,∀i ∈ [0, k] (3.3)

Input and output data of task v are denoted as din
v and dout

v , respectively. Also, tin
vi and

tout
vi are defined as the communication time spent for input and output data transmission

between qi and qj offloading sites, given by both equations:

tin
vi

= din
v

rij
+ lij ,∀v ∈ V,∀i, j ∈ [0, k], i ̸= j (3.4)
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tout
vi

= dout
v

rij
+ lij ,∀v ∈ V,∀i, j ∈ [0, k], i ̸= j (3.5)

rij and lij represents bandwidth and latency between offloading sites qi and qj respectively.
tvi is the total time cost of task v to be executed on site qi and it is defined as:

tvi = tc
vi

+ tin
vi

+ tout
vi

(3.6)

In case that successive tasks are executed on the same offloading site then according
to Equation (3.6), total time cost is tvi = tc

vi
, without data transmission costs from

Equations (3.4) and (3.5) .

3.2.2 Energy Consumption Model

Energy consumption cost is defined as Ev = {emd, ee1, ee2, ee3, ecd}, where each element
denotes the energy cost to execute task v on the offloading sites. Energy consumption is
considered only from mobile device perspective. Supplies on infrastructure are perceived
as unlimited. It is assumed that the energy consumption ev is computed as the amount
of energy a mobile device spends while executing the application task or waiting for the
application task to be executed on remote offloading sites. Energy consumption of a
task v is then defined by evi in Equation (3.7) where pc is the mobile power consumption
for local computation, pd is the mobile power consumption when downloading data, pu

is the mobile power consumption when uploading data, and pidle is the mobile power
consumption in idle mode when application task is executed on remote infrastructure
(Edge or Cloud).

evi =
{︄

tc
vi
× pc + tin

vi
× pd + tout

vi
× pu

tvi × pidle

(3.7)

The first case considers offloading from the mobile device, and the second when task
is migrated on the remote infrastructure. Assumption about mobile power parameters
when computing total energy consumption cost is considered as pu > pd > pc > pidle

from [KL10], where transmission consumes more energy then local computation or idle
mode.

3.2.3 Reward Functions

Reward functions are used to model utilities or objectives which we want maximize or
minimize through state sequence sampling. We define the overall reward function R(s, a)
which contains reward function for energy consumption Re(s, a) and reward function for
application response time Rt(s, a):

R(s, a) = ωe ×Re(s, a) + ωt ×Rt(s, a) (3.8)

ωe and ωt are defined as the weight factors for energy consumption and response time.
The weight factors constraints are given as

∑︁
m ωm = 1 where m = {e, t} represents
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objectives such that 0 ≤ ωe ≤ 1 and 0 ≤ ωt ≤ 1. Both aforementioned reward functions
are defined as follows:

Re(s, a) = 1
1 + eev

(3.9)

Rt(s, a) = 1
1 + etv

(3.10)

In the evaluation, we used ωe = ωt = 0.5 which gives equal importance to both objectives.
Weight factors can be altered to optimize the trade-off but this is out of this work’s scope.

3.2.4 Failure Model

Failures can occur on Edge and Cloud infrastructure on the server or the network level.
Server failures can be hardware faults (aging factor, power outage, hard disk failure, etc.)
and software faults (OS failure, application crash, etc.), while network failures occur on
network physical connections or network interface. Both failure types in this study are
considered as an offloading failure.

Offloading failure occurrence in the simulation model is considered as a failure event
λqi(t), which can occur in any discrete-time epoch t and offloading site qi except mobile
device which is considered as failure-free. Use case scenario of our most interest is
that task offloading is performed on offloading site qi at the same time moment t when
failure event λqi(t) occurred. This interrupts offloading and execution process and causes
additional cost in energy and time as well as forcing ODE to select other offloading sites
qj .

Offloading failure costs for time is defined as:

ct
vi

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tin
vi

tin
vi

+ tc
vi

tin
vi

+ tc
vi

+ tout
vi

0

(3.11)

The first case is when a failure occurs during input data transmission, the second case is
when a failure occurs during execution, thus, input data transmission and computation
time cost are included, thirdly, failure occurs during output data transmission, thus, all
three time cost components are included. Finally, the last case is when there are no
failures observed. Next, the offloading failure cost for energy is defined as:

ce
vi

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tin
vi
× pidle

(tin
vi

+ tc
vi

)× pidle

(tin
vi

+ tc
vi

+ tout
vi

)× pidle

0

(3.12)
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Cases are the same as in the previous equation. All time components are multiplied
with pidle since all failures are occurring only on remote infrastructure and during that
period failure-free mobile device is in idle mode. Simulating failure events λqi(t) is
done by Poisson distribution similar to [Wu18b]. As a rate parameter, we use Mean
Time Between Failures (MTBF). It is a measure that gives quantified information about
product reliability, defined as:

MTBF = T

R
(3.13)

T denotes total time and R number of failures. MTBF can be expressed in hours, days
or any other time unit. The longer the MTBF, the product reliability is higher. It is an
opposite measure of failure rates. Using it as a rate parameter in Poisson distribution, we
obtain the number of discrete epoch events until failure event λqi(t) occurs on offloading
site qi. The final issue is predicting failure events. Failure predictability is defined as
probability estimation:

P (t) = 1− e−t/MT BF (3.14)

3.2.5 EFPO Algorithm

Algorithm 1 shows the EFPO algorithm for obtaining an energy-efficient offloading
decision policy with failure predictability. The algorithm obtains an optimal policy from
the VIA algorithm by exploring every state in the state space and selects the action with
the lowest energy and time cost to be the optimal action. It performs this operation
until it finds a feasible action that can be performed on the offloading site that did
not experience offloading failure. After exploring the state space, the EFPO algorithm
determines the feasible offloading decision policy that is then used to make an efficient
decision for every future state the system encounters. EFPO algorithm is illustrated in
Algorithm 1.

In line 1 we obtain optimal offloading decision policy from the VIA algorithm. However,
optimal actions from VIA does not guarantee that they are feasible due to failures that
happen during the runtime. We need to iterate all states in the MDP state space to
obtain feasible optimal actions. In line 5, λT (s,a) is a boolean variable which indicates
whether offloading failure occurred on the offloading site T (s, a) or not. If it is true, then
we consider other offloading sites from vector Q which contains all action-state values
returned from the VIA algorithm. Based on those values, we obtain the next action
a. The algorithm continues to iterate until it finds an action that is feasible to offload
on site which did not experience failure. Otherwise, the algorithm terminates on line 7.
When a feasible action is found, it is stored in ω vector in line 12 and returned in line 17.

The EFPO algorithm finds the efficient offloading decision with an algorithmic complexity
of O(SA) per task offloading, where S is the state space and A is the action set. This
algorithmic complexity does not reflect the complexity of the VIA algorithm. Although
the EFPO algorithm can be considered to be a computationally expensive operation for
resource-limited mobile devices, an alternative can be made so that the feasible offloading
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Algorithm 1 Energy Efficient and Failure Predictive Edge Offloading Algorithm
1: ⟨π∗, Q⟩ ← VIA(S, A, P, R, s0) ▷ VIA algorithm
2: for each state s in S do
3: a← π∗(s) ▷ Get optimal action
4: while True do
5: if λT (s,a) then ▷ Escaped parenthesis
6: Q← Q \ {(s, a)}
7: if Q = ∅ then
8: return “No solution”
9: end if

10: a← arg maxa Q(s, a)
11: continue
12: else
13: ω ← ω ∪ {(s, a)}
14: break
15: end if
16: end while
17: end for
18: return ω

decision policy is performed by the remote server. Therefore, mobile devices only store
the matrix form of the results.
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CHAPTER 4
Edge Offloading for Microservice

Architectures

Building upon our previously established offloading framework, we now present a compre-
hensive investigation into the reliability challenges of microservice-based edge offloading.
In the first phase, we focus on the architectural requirements and design principles for
resilient offloading services that seamlessly integrate predictive failure management with
real-time decision-making. This paper contributes:

• a detailed analysis of fault-tolerant offloading mechanisms tailored for microser-
vice architectures, incorporating proactive failure prediction via Support Vector
Regression (SVR) and a Markov Decision Process (MDP)-based decision engine

• a specification of essential engineering principles for deploying highly resilient,
containerized offloading services on edge nodes, ensuring optimized performance
and energy efficiency under dynamic network conditions.

In Section 2, we review the state-of-the-art in edge offloading and highlight key reliability
issues. Section 3 details the design and implementation of our proposed fault-tolerant
offloading framework, while Section 4 presents experimental evaluations and performance
analyses. Finally, Section 5 discusses future research directions and concludes the paper.

4.1 Edge Offloading Framework
We envision an Edge Offloading Framework with the following components: (i) Decision
engine, which computes the offloading decision policy; (ii) Prediction engine, which
estimates future service availability on the remote offloading sites based on local historical
failure trace logs; (iii) Failure monitor, which monitors failures of local system operations
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Figure 4.1: Edge Offloading Framework

on remote offloading sites; (iv) Failure detector, which detects failures during execution
on remote offloading sites and collects the failure estimation data from prediction engine;
(v) Resource monitor, which collects resource information about remote infrastructure;
(vi) Application profiler, which profiles resource requirements of underlying mobile appli-
cations. Components are partitioned between mobile device and remote offloading sites
as summarized in Figure 4.1.

The edge offloading process is described as following. First, the failure monitor collects
historical failure traces and forwards them to the prediction engine (step 1a), which
estimates service availability of each offloading site and sends these data to a mobile
device (step 2a). Simultaneously, the application profiler and the resource monitor collect
data about mobile application requirements and remote infrastructure capabilities (steps
2b and 2c). These data are used by the decision engine (steps 3a, 3b, and 3c) for offloading
decisions (Step 4a), based on which tasks are offloaded (Step 5a and 5b).

However, decision engine micro-service can be a potential resource-intensive operation
that can consequently reverse the offloading benefits. There is an alternative that the
decision engine can be placed on a remote dedicated server and the mobile device acts as
a thin client. This is also discussed in section 6.

4.1.1 Application Requirements

We focus on response time (RT) and mobile device battery lifetime (BL) which are
mathematical models to estimate the aforementioned measurements that are necessary
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for the decision engine to make informative offloading decision-making as in [ZAB19].
RT is defined as the sum of local computation time, uploading, and downloading data
transfer time. Local computation time is defined as a ratio between CPU Millions of
Instructions per Second (MIPS) and the number of task’s instructions. Data transfer
time is defined as a ratio between data size and network bandwidth plus the network
latency.

BL is defined as the difference between total battery capacity and runtime energy
consumption. Energy consumption is defined as the sum of local, upload, and download
energy consumption. Each energy consumption component is equal to the multiplication
of time and its power coefficient. We assume pu > pd > pc > pi, respectively power
consumption for upload, download, local computation and idle [SSX+12]. Idle mode
is the case when a mobile device is in an operational state but not used for executing
application tasks. It has become necessary to model energy consumption since it is
common that low-level energy information is usually not accessible. We pick the BL
metric instead of direct energy consumption measurements since energy supplies on the
infrastructure are perceived as unlimited while on the mobile device are limited despite
power-saving modes. It is defined as a difference between total mobile battery capacity
and total energy consumption during runtime.

4.1.2 Offloading Sites

We assume the infrastructure setup of [ZAB19], which allows to address diverse application
requirements, i.e., data-intensive, computational-intensive, and moderate applications.
We assume three Edge nodes types: (i) Edge database server (ED), with large data storage
capabilities and fast network transmission rates for data-intensive applications; (ii) Edge
computational server (EC) with greater computational power to support computational-
intensive applications such as games and AI, and (iii) Edge regular server (ER) with
intermediate resources suitable for applications that do not require a large amount of
computation or data storage capabilities, such as live traffic navigation or posting updates
on Facebook. Edge nodes are clustered together with the cloud data center (CD).

4.1.3 Failure Monitor

Failure monitor collects historical system trace logs on remote offloading sites for avail-
ability estimation. However, to detect failures on remote offloading sites it is required to
employ a suitable failure detection strategy. The failure detector micro-service container
on the mobile device is based on heartbeat-like failure detection. We employ heartbeat
failure detection [hea] to collect traces. This approach sends ping messages to remote
offloading sites at a fixed time interval. Offloading site is considered to be unavailable if
the ping is not answered before timeout. When the message is received, then consequently,
the site is removed from the list. This approach is responsible for maintaining the integrity
of the entire system architecture. Recommended configuration settings for heartbeat
protocols are time intervals of 150 ms and 10 timeouts [hea]. Therefore, the offloading site
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Algorithm 2 Edge Offloading Algorithm
1: procedure EDGE_OFF_ALGO(S, A, train_dataset, tasks)
2: energy_vector ← array() ▷ Store energy consumption of each off. site
3: time_vector ← array() ▷ Store response time for each offloading site
4: for each state v in tasks do
5: for each state q in S do
6: energy ← compute_energy(v, q)
7: time← compute_time(v, q)
8: energy_vector.append(energy)
9: time_vector.append(time)

10: end for
11: end for
12: svr_avail_predict← SV R(train_dataset) ▷ Predict availability
13: P ← compute_P _matrix(svr_avail_predict)
14: R← compute_R_matrix(energy_vector, time_vector)
15: < π∗, Q >← P IA(S, A, P, R, s0) ▷ PIA returns offloading decision policy
16: return < π∗, Q >
17: end procedure

is considered to be unavailable after 1.5 seconds, which captures the network variability
due to different network delays between nodes.

Service Availability Estimator

We select the SVR algorithm for availability predictions, which provides prediction
accuracy above 90% [MAUY19] and requires a small training dataset [dCMZLD11] as
opposed to deep neural networks. The algorithm takes as input historical failure traces
as input and its accuracy depends on hyper-parameters C and ϵ. C is a regularization
parameter that models the ability to generalize the unseen data as a trade-off between
the training and testing phases. ϵ parameter determines the level of regressor accuracy by
controlling the width of the ϵ-insensitive area in the loss function L(y, ŷ) which measures
the difference between actual data y and estimated data ŷ. Due to the near real-time
requirements of our scenario, we use [CM04] parameter selection algorithm to reduce
response time. C is defined in Equation 4.1 and ϵ in Equation 4.2,

C = max(|ȳ + 3σ|, |ȳ − 3σ|) (4.1)

ϵ = 3σ

√︄
ln(m)

m
(4.2)

where y is availability dataset, ȳ represents the arithmetic mean, m is a dataset sample
size and σ represents the standard deviation of the dataset. As a kernel solution, we
use the Gaussian RBF kernel function which can estimate time-series data that exhibit
non-linear behavior such as failures.
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Algorithm 3 Edge Offloading Process
1: procedure EDGE_OFF_PROC(train_dataset, tasks)
2: S ← (qmd, qed, qec, qed, qcd) ▷ Offloading sites
3: A← (amd, aed, aec, aed, acd) ▷ Action decisions
4: < π∗, Q >← EDGE_OF F _ALGO(S, A, train_dataset, tasks)
5: for each state s in S do
6: a← π∗(s) ▷ for state s get best action a
7: while True do
8: if λT (s,a) then ▷ if offloading fails then consider another action a
9: Q← Q− {(s, a)}

10: if Q = ∅ then return "No feasible solution"
11: end if
12: a← argmaxa[Q(s, a)] ▷ get next best action a
13: continue
14: else
15: ω = ω + {(s, a)} ▷ store feasible action a
16: break
17: end if
18: end while
19: end for
20: return ω ▷ return feasible offloading policy
21: end procedure

4.2 Proposed Method

4.2.1 MDP offloading model

We employ offloading MDP in [ZAB19], MDP is a formal mathematical framework used
for modeling discrete-time non-deterministic and stochastic control processes. It is defined
as a labeled transition system in tuple form of ⟨S, A, P, R⟩ yields the following modeling
assumption: (i) state-space S = {MD, ED, EC, ER, CD} representing offloading site
where a current task is offloaded, (ii) action set A = {MD, ED, EC, ER, CD} represents
the offloading site where to offload next task, (iii) P probabilistic state transition matrix
representing offloading service availability, and (iv) R matrix of rewards associated with
RT and BL. The goal is to maximize rewards by minimizing RT and maximizing BL.
We use Policy Iteration Algorithm (PIA) [Put14] to iterate MDP and find a feasible
offloading policy and yield offloading decision policy based on which offloading decisions
are performed.

4.2.2 Edge Offloading Algorithm

The Algorithm 4 describes the edge offloading while Algorithm 3 executes offloading
decisions. In Algorithm 4, the loop on lines 4-9 iterates over application tasks and
computes BL and RT for each offloading site. In line 12, the SVR algorithm estimates
offloading service sites’ availability, based on the probability matrix P which is constructed
on line 13. On line 14, the reward matrix R is computed and forwarded together with
MDP’s states, actions, and P to PIA, which synthesizes the offloading policy π (line 15).
Policy π is executed during runtime by the Algorithm 3. Within the for loop (lines 5-19)
offloading is performed. If the target offloading site fails during runtime, offloading is
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classified as failed (line 8) and the next alternative is considered (line 12). The algorithm
terminates when offloading is successful (lines 15-16) and returns a feasible offloading
policy (line 20) or when no service site is available (line 10) and returns an error message.

4.3 Prototype Implementation

4.3.1 Cluster Networking

Wireless connectivity between the mobile device and the Kubernetes offloading cluster
has to be assured to enable task offloading. The Raspberry Pi (RPi) single-hop away edge
nodes provide wireless connectivity to nearby mobile devices. Configuring it as a Wi-Fi
access point is possible due to the Wi-Fi shield component which is integrated into the
RPi board and enables Wi-Fi protocol communication with remote nodes. Configuration
requires installation of local DHCP and DNS servers which provide control over mobile
IP address space. Moreover, it is required to re-configure the local NAT table of the RPi
edge node to mask the mobile IP address with its’ own so the packets are not discarded
during packet routing.

Deploying the Kubernetes cluster over the public and private IP subnets is not straight-
forward. To address firewall and NAT translation issues, we deploy the private virtual
networking solution called OpenVPN, which provides point-to-point communication and
shared virtual IP address space. However, deploying the Kubernetes cluster which is
composed out of private edge IP nodes and public cloud IP server yields firewall and NAT
translations issues. We deploy the private virtual networking solution called OpenVPN
which provides point-to-point communication and shared virtual IP address space between
edge and cloud.

4.3.2 Micro-service Containerization

We developed our microservices using Python 3.6 programming language and containerized
them using Docker. Containerizing Python micro-service applications using Docker makes
the software deployment process much easier due to their modularity and fine granularity.
Docker container images are created by bundling together Python micro-service source
code and libraries that are necessary to run an isolated and independent container
instance. Although Docker solves portability and system dependency issues, it can still be
a challenge to build the Docker multi-CPU architecture container image for the underlying
RPi ARMv7 and AMD64 architecture. Cloud-class host server to build a consistent
Docker container image can be a significant obstacle for interoperability. We use the
buildx command-line interface (CLI) plugin that utilizes machine processor emulator
QEMU to build a common Docker container image for both CPU architectures available
in the cluster, i.e., RPi ARMv7 and AMD64.

Micro-services on the mobile device (resource monitor, failure detector, application
profiler, and decision engine) are developed using Python Kivy mobile cross-platform
framework [?]. We developed it as a Python application for Android OS mobile devices.
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These microservices do not have to be containerized. However, microservices can be
placed on the dedicated offloading site instead (as part of the Kubernetes cluster) to
reduce mobile devices’ resource consumption. In this case, micro-services have to be
containerized to be executed on the edge offloading cluster.

4.3.3 Service Deployment

Since offloading requests are performed by mobile devices through HTTP, we deploy
Flask web service on each offloading site. Flask provides necessary web services without
additional third-party components. We instantiate it as an additional microservice on
the remote offloading site, together with the failure monitor and prediction engine, on a
single Kubernetes pod. Each pod has its unique virtual IP address dispatched by the
Flannel Container Networking Interface (CNI) plugin. Usually, Docker containers are
not equipped with network interfaces so subsequent CNI plugin installation is required.
We installed the Flannel CNI plugin due to its ease of deployment. We also employ
the NGINX reverse proxy to redirect HTTP requests to appropriate offloading services.
Combining NGINX web service on the Kubernetes cluster level with Flask micro web
services on the offloading site, we can expose offloading sites to mobile devices.
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CHAPTER 5
Fast and Reliable Edge Offloading

using Reputation-based Hybrid
Smart Contracts

In the previous sections we examined the challenges of offloading latency-sensitive mobile
applications in unreliable edge environments, where conventional methods struggle to
meet strict Quality of Service (QoS) requirements due to volatile resource availability
and unpredictable failures. In this paper, we introduce FRESCO—a fast and reliable
edge offloading framework that leverages a blockchain-based reputation system combined
with hybrid smart contracts to ensure trust and timely offloading decisions. FRESCO
addresses the inherent trade-offs between security and performance by maintaining
sensitive reputation information on-chain via a Hybrid Smart Contract (HSC) while
executing offloading decisions off-chain using a Satisfiability Modulo Theory (SMT)-based
decision engine.

The main contributions of FRESCO include:

• A formal offloading decision process that guarantees feasibility by incorporating
critical resource constraints and timing requirements, ensuring that offloading
decisions satisfy latency and energy objectives

• The integration of a blockchain-enabled reputation system re-purposed to assess
edge server reliability in terms of failure metrics, thereby mitigating the risks posed
by volatile edge environments

• A hybrid approach that bypasses the high latency of blockchain consensus during
decision-making while preserving tamper-resistant reputation data, thus achieving
significant improvements in response time, energy efficiency, and QoS compliance
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The remainder of the paper is organized as follows. Section II outlines the underlying
methodologies and motivations for our approach. Section III details the system model,
including the design of the HSC reputation state manager and the SMT-based offloading
decision engine. In Section IV, we formalize the offloading optimization problem and
present the FRESCO algorithm. Section V discusses the experimental setup, evaluation
results, and a comparative analysis with baseline methods. Finally, Section VI reviews
limitations and outlines future research directions.

5.1 System Model

Figure 5.1: Edge offloading lifecycle model

Figure 5.1 illustrates the edge offloading lifecycle model, which manages offloaded tasks
and estimates the reliability level of edge servers based on monitored performance. The
two main components of our solution are the reputation state manager and the offloading
decision engine. The reputation state manager is deployed as an HSC on the public
blockchain network, estimates the critical reliability level of edge servers as a reputation
score, and stores it securely on a public blockchain thanks to a consensus mechanism.
The decision engine offloads tasks to an off-chain cluster based on reputation scores
retrieved from the reputation state manager. The decision engine is often exposed as an
intermediate central third-party service [LZC+20], making it vulnerable as a single point
of failure in an unreliable environment. In our system, the decision engine is deployed
on the mobile device, therefore its design choices should ensure a limited overhead, to
guarantee fast decision time even on limited-resource mobile devices.

The lifecycle is executed as follows. In steps 1a and 1b, the mobile device retrieves the
reputation score from HSC and monitors resources on the off-chain cluster. Based on
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the procured information, the mobile device calculates offloading decisions and offloads
tasks to the off-chain cluster in step 2. Task results are returned to the mobile device
after execution in step 3. The mobile device records the performance metric (e.g.,
response time) and sends it to the HSC on the blockchain for evaluation in step 4.
Finally, HSC compares the received performance metric to the deadlines and updates the
reputation score accordingly. The lifecycle is repeated until the application is terminated.
Noteworthy to mention, is that blockchain consensus is triggered only upon reputation
update but not at reputation retrieval, which makes cached reputation score accessible
in (near-)real-time.

5.1.1 Queuing and response time

Figure 5.2: Dynamic queuing workload model

The workload on the shared infrastructure can be highly dynamic, where response times
are hard to predict due to heterogeneous resources and tasks. To describe such dynamic
behavior, we employ a queuing theory. Figure 5.2 illustrates the dynamic queuing
workload model at the edge, which consists of three queuing parts. The task offloading
queue models the task offloading, where multiple mobile task sources generate and offload
tasks to remote servers through a shared communication channel. The task execution
queue model the execution of the task, where the servers share their resources to execute
multiple tasks. The task result delivery queue models the delivery of task results, where
the results are sent back to the sources through the shared channel. The response
time is defined as RT (v, t, h) = To(h, t) + Te(v, t) + Td(h, t) where t is a task, h is a
communication channel between pairs that can correspond to devices and servers, v ∈ V
where V = N ∪ {m} is a set of task execution nodes where a task can be executed on
remote edge and cloud servers N and local mobile device m, To(h, t) is offloading latency,
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Te(v, t) is execution latency and Td(h, t) is delivery latency. We assume that the channels
are on distinct frequencies to avoid interference [FA18] and employ a nonpreemptive
First-Come-First-Served queuing policy that makes the performance predictable, which
is important for high-reliability applications.

Communication latency

The shared channels in offloading and delivery are modeled as M/M/1 queues, which
emulates practical transmission due to fair sharing and different bandwidths [FA18]. We
will use the term communication and symbol Tc(h, t) when referring to offloading and
delivery.

The arrival process relates to task generation, modeled as Poisson with an arrival rate
λc(s) where s ∈ S is a node in the task load generation set S = G∪N∪{m} which consists
of mobile devices G that have the sole function of generating tasks, remote servers N and
mobile device m which has decision engine deployed. Task sizes are sampled from the
exponential distribution with task size rate data(t), accounting for the diversity of tasks’ t
resources. Generated tasks occupy shared resources, where bandwidth utilization Uc(h, t)
is defined as a ratio of generated tasks λc(s) · data(t) and total bandwidth bwtotal(h):

Uc(h, t) =
∑︂

s∈Dc

λc(s) · data(t)
bwtotal(h) (5.1)

where Dc ⊂ S represents a subset of load generators in a specific communication direction,
like Do = G ∪ {m} represents task generators and mobile devices that generate tasks in
the offloading channel c = o, or only remote servers Dd = N on a delivery channel when
task results are delivered after execution c = d.

The waiting time wc(h, t) is a delay due to resource sharing between tasks, which is a
ratio of the current enqueued tasks and the available bandwidth (difference between total
and utilized bandwidth):

wc(h, t) =
∑︂

s∈Dc

λc(s) · data(t)
bwtotal(h)− bwutil(h) , (5.2)

The communication service time µc(h, t) models the actual transmission between devices
and remote servers. Communication is subject to the Shannon-Hartley theorem [RM14]
which defines the maximum data transmitted over a noisy link. Hence, the communication
service time µc(h, t) is:

µc(h, t) = data(t)
bwavail(h) · log2(1 + pc(h)

n0·bwavail(h))
(5.3)
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where n0 is the noise spectral density and pc channel transmission power. Finally, the
total communication latency Tc(h, t) is a sum of communication waiting time µc(h) and
service time wc(h) such as Tc(h, t) = µc(h, t) + wc(h, t).

Execution latency

The execution on the shared infrastructure is represented as a queuing M/M/1 network.
Each server is a queue with independent rates and is interconnected with other queues
to form a network [Bra08]. Remote server n ∈ N utilization is accumulated load and is
defined as:

Ue(v) =
∑︂
s∈S

∑︂
t∈T (v)

λe(s) ·MI(t)
MIPS(v) , (5.4)

where MI(t) is the number of instructions for task t and MIPS(v) represents the capacity
in terms of millions of instructions per second, λe(v) is the arrival rate of the task and
T (v) is a set of tasks assigned to the server v.

The waiting time we(v) is the delay in task execution due to resource contention and is
defined as:

we(v, t) =
∑︁

s∈S λe(s) ·MI(t)
1− U(v) (5.5)

The actual execution is defined as the service time µe(n, t), which is the ratio between
the task load t and the server capacity v:

µe(v, t) = MI(t)
MIPS(v) , (5.6)

Finally, we define execution latency Te(v, t) based on the execution waiting and service
times as Te(v, t) = we(v, t) + µe(v, t).

5.1.2 Battery lifetime

Mobile devices are battery-powered, thus energy saving is critical. We introduce energy
models of local execution and network transmission, major drivers of mobile energy
consumption[TE+16]. We assume a mobile multicore execution power model [ASV+16]
with power states [ZLLL17]:

pcomp =
cores∑︂
i=0

(βUiUi) + βbase (5.7)
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where cores is the number of CPU cores, Ui utilization per core, βUi and βbase are energy
coefficients for the operating state and idle power state when the workload is absent.
However, the mentioned computation model does not capture switching overhead when
transitioning between power states and multicore energy baselines, which are not the
same as in single-core systems. Therefore, we expand the computational power model
in [ZLLL17] to capture both aforementioned effects:

pe(m) = bcores(m) +
cores(m)∑︂

i=0
(βUe(m) · Ue(m)) + βbase ·

Tidle

C
(5.8)

where cores(m) is the number of CPU cores on mobile device m, Ue(m) utilization per
core, βUe(m) and βbase are energy coefficients for the operating and idle power states,
bcores(m) is a CPU power baseline for a specific number of cores, Tidle and C are idle
state time duration and number of power state transitions. The ratio of Tidle and C
captures state switching overhead. Multiple deep power-saving idle states exist, but
switching to deeper states induces longer latencies [ZLLL17] which prolongs the execution
of latency-sensitive applications. Hence, we only consider the zero-level power-saving
idle state with minimum switching overhead which induces negligible latency[ZLLL17].
The energy consumption of task local computation is based on Equation 5.8 and task
execution latency:

Ecomp = Te ∗ pcomp (5.9)

The power model for network transmission pc(hm) is derived from the Shannon-Hartley
theorem:

pc(hm) = n0 · bwavail(hm) · (2
Ch(hm)

bwavail(hm) − 1). (5.10)

where bwavail(hm) is the bandwidth on the channel hm of the mobile device m, and
Ch(hm) is a channel capacity that is an effective limit on bandwidth due to noise.
Subsequently, we can define the total energy consumption on the mobile device as
the sum of local execution and transmission energy consumption models, defined as
E(v, t, m, hm) = Te(v, t) · pe(m) + Tc(hm) · pc(hm). Finally, the battery lifetime of the
device BL(v, t, m, hm) is defined as the ratio between the differentiation of the full battery
bcap and the total energy consumption until the time instant τ and full battery capacity
as BL(v, t, m, hm) = bcap−

∑︁
τ

E(v,t,m,hm)
bcap . Subsequently, we can define the energy model

of network transmission, which applies both in offloading and delivery cases:

Enet = Tnet ∗ pnet (5.11)

.
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E = Te ∗ pe + Tc ∗ pc (5.12)

where Tnet can represent offloading To or delivery latency time Td and Te is execution
time as defined in equation ??.

5.1.3 Resource utilization cost

Edge and cloud are commercial services that bring monetary costs to mobile users
who utilize resources owned by resource providers. Including the monetary objective
in the decision-making is important to validate the approach in practical commercial
environments where budgetary constraints can impact performance. The utilization cost
is defined as:

PR(v, t) =

⎧⎪⎪⎨⎪⎪⎩
0 if local
Te(v, t) · costr(v, t) if cloud
Te(v, t) · (costr(v, t) + coste) if edge

(5.13)

The first case of local execution has no cost since no remote resources are rented. The
second case brings cost when cloud resources are rented for task execution latency time
Te(v, t). The cloud price costr(v, t) for the execution task t on the target server v is
defined:

costr(v, t) = costcores(v) ·MI(t) + coststor(v) · data(t) (5.14)

where costcores(v), coststor(v), and data(t) represent cost units for CPU and data storage.
The third case accounts for renting edge servers for execution latency time Te(v, t) where
the price includes edge price penalty coste for using low-latency service [DMB19].

5.2 Problem Formulation

In this section, we formulate our problem statement and provide a solution algorithm for
fast and reliable edge offloading.

5.2.1 Reputation state manager

The blockchain-based reputation state manager distributes task incentives to encourage
servers’ participation in resource-sharing and successful task completion. Task incentives
are computed based on the task completion time, meaning that shorter completion results
in higher rewards. The rewards stimulate servers to perform task executions reliably
and efficiently and compete with each other by offering better performance. The task
incentive incτ (v, t, h) at time instant τ is defined as:
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incτ (v, t, h) = max{∇ −RT (v, t, h)
∇

, 0} (5.15)

where ∇ is a timing constraint. If ∇ is violated, then no incentive is distributed to the
server. The incentive is proportional to the difference between ∇ and the execution
time when task execution is successful. The task incentive is normalized [0, 1] to prevent
potential blockchain overflow.

The reputation model has to adhere to blockchain consensus restrictions. The consen-
sus requires that on-chain updates are deterministic, to reach an agreement between
blockchain nodes. Therefore, stochastic and floating-point arithmetic is not allowed
on-chain [BID21]. Also, resource and time consumption on the blockchain is limited to
prevent resource saturation. To address the consensus determinism requirement and
limited resource consumption, we define a linear reputation model:

Rτ (v, t, h) = Rτ−1(v, t, h) · (1− ω) + ω · incτ (v, t, h) (5.16)

where Rτ (v, t, h) is the current reputation score, Rτ−1(v, t, h) is a previous reputation
score, and ω is a weight factor to balance between new and old reputation. Although
the model stores only the last score reputation, implicitly it accounts for multiple past
values. It can be expanded to the equivalent formula, which tracks historical reputation
performance by storing past reputation scores:

Rτ (v, t, h) = inc1(v, t, h) · (1− ω)τ−1+
τ−2∑︂
i=0

ω(1− ω)iincτ−1(v, t, h) (5.17)

The expanded reputation formula explicitly requires storing multiple reputation scores
and several computational steps to output updated reputation score.

Reputation scoring ensures that only reliable servers are selected for offloading. Combining
both incentives and reputation scores ensures a balanced trade-off where reputation is
used as a long-term performance indicator and incentives as immediate short-term rewards
to stimulate continuous improvement in server reliability and prioritize reliable servers.

To summarize, the presented reputation-incentive dual approach is encoded as an HSC on
the blockchain to asses the reliability level of servers based on past performance. It also
ensures trust against reputation malicious tampering for gaining incentives unfairly. The
reputation update is according to the presented reputation model based on provided time
measurements that are acquired off-chain from mobile devices which allows performance-
sensitive offloading decisions to be made off-chain.
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5.2.2 Offloading decision engine

Our goal is to efficiently offload tasks to minimize application response time and resource
costs and maximize device battery. Therefore, we transform these individual objectives
as a constraint optimization problem:

min
∑︂
t∈A

∑︂
v∈V

RT (v, t, h)

max
∑︂
t∈A

∑︂
v∈V

BL(v, t, m, hm)

min
∑︂
t∈A

∑︂
v∈V

PR(v, t)

s.t. RT (v, t, h) ≤ ∇, ∀v ∈ V, t ∈ A

BL(v, t, m, hm) > 0, ∀v ∈ V, t ∈ A

PR(v, t) ≤ pr, ∀v ∈ V, t ∈ A,

APτ ≤ D

(5.18)

where A is a task set of certain application, and APτ is an overall application response
time until τ time instant. ∇, D and pr represent task timing constraint, application
time deadline, and price constraint that can be application-dependant (e.g., 1500 ms
reaction time in a traffic safety [LMP+21]), user-defined, or defined by developers for
testing purposes. Battery lifetime is limited on mobile device m; thus, the goal is to
avoid total discharge. Therefore, our main objective function is a linear combination of
the objectives mentioned earlier:

score(v, t, m, h) = α(RT (v, t, h)−RT (v, t, h)ˆ )+

β(BL(v, t, m, hm)ˆ −BL(v, t, m, hm)+

γ(PR(v, t)− PR(v, t)ˆ )) (5.19)

where α, β, and γ are user-defined weight factors for response, battery, and resource cost
respectively (α + β + γ = 1). Objectives with caret symbols are local optimum values.
The goal is to find server n that minimizes the value of the score. The weight factors can
be fine-tuned according to user preferences and subject to sensitivity analysis. However,
we fix the weight factors and justify them accordingly in our experimental evaluation, in
the subsection 6.3.2.

SMT encoding

Encoding is necessary to translate Equations 5.18 and 5.19 into a form, known as SMT
formulas, that a target solver can automatically solve. The SMT combines first-order
Boolean logic with constraint programming to express resource constraints and deadlines
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of real-time system [CZTL16]. The SMT is lighter than machine learning solutions
that are usually exposed as central third-party services [LZC+20], and it is suitable for
less powerful devices [ATD21]. Additionally, we encode infrastructure capacities, task
requirements, and servers’ reputation as in Equation 5.20. It combines them all and uses
an SMT solver to find a reliable edge server.

reputation : (Rτ (v, t, h) ≥ rp) ∧ (0 ≤ rp ≤ 1)
batteryLife : (BL(v, t, m, hm) · bcap− E(v, t, m, hm)) ≥ 0

storageLimit :
∑︂

t∈Oτ

data(t) ≤ stor(v)

cpuLimit :
∑︂

t∈Oτ

MI(t) ≤ cpu(v)

memoryLimit :
∑︂

t∈Oτ

mem(t) ≤ mem(v)

taskReady :
∑︂

t∈Oτ

(δin(t) = ∅ ∧ t /∈ O<τ )

(5.20)

The reputation constraint refers to server reputation which has to be above a certain
threshold. To determine the reputation threshold rp, we apply k criteria from [IMRN20]
where top k servers with the highest reputation score will be considered. We take a
reputation score, which is minimum among k servers as the reputation threshold rp.
Here, the batteryLife constraint verifies that the mobile device’s battery is not drained
completely. The storageLimit constraint verifies that the input and output data of all
offloaded tasks Oτ until time instant τ does not exceed storage capacity on v target
server. Similarly, CPU and memory capacities are labeled as cpuLimit and memoryLimit
respectively. Finally, the taskReady label indicates that the application task is ready
for offloading only when tasks’ input dependencies δin(t) on prior tasks are completed
(i.e., empty set) and the current task t was not part of a previous executed task set O<τ

before time instant τ . Finally, we combine Equation 5.18, 5.19, and 5.20 with logical
AND operator into a single SMT logical formula. The final result of verifying the formula
should be a reliable server location for offloading. However, solving the optimization
function in Equation 5.18 is NP-hard, which is very time-consuming and impractical
for real-time systems. We propose an online algorithm based on a heuristic in the next
section, which can find a feasible solution in a reasonable amount of time.

5.2.3 FRESCO Algorithm

The offloading algorithm needs to solve the objective function and respect application
deadlines, task timing constraints, and resource constraints. Therefore, we propose
the FRESCO algorithm (Algorithm 4) for performing reliable edge offloading decisions.
Inputs are the list of candidate servers, the server where the previous task was executed
(currSite), the reputation scores per server, a list of tasks, a list of constraints, and
user-defined weights. First, we declare a transaction list recording every offloading
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Algorithm 4 FRESCO Algorithm
1: procedure FRESCO(candList, currSite, reps, tasks, constr, α, β, γ)
2: transactions = list()
3: for each task in tasks do
4: for each candSite in candList do
5: if RT (task, candSite, currSite) ≤ optRT then
6: optRT = RT (task, candSite, currSite)
7: end if
8: if EC(task, candSite, currSite) ≤ optEC then
9: optEC = EC(task, candSite, currSite)

10: end if
11: if P R(task, candSite, currSite) ≤ optP R then
12: optRT = P R(task, candSite, currSite)
13: end if
14: end for
15: for each candSite in candList do
16: score(candSite) = α(RT (task, candSite, currSite) −

optRT ) + β(EC(task, candSite, currSite)− optEC) +
γ(P R(task, candSite, currSite)− optP R)

17: end for
18: if candList.empty() then
19: break
20: end if
21: selSite = SMT SOLV ING(score, candList, reps, constr)
22: if OF F LOAD(selSite, task) then
23: d = compT askConstrMeasure(selSite, task)
24: transactions.append((d, selSite))
25: break
26: end if
27: transactions.append((0, selSite))
28: score.pop(selSite)
29: candList.pop(selSite)
30: reps.pop(selSite) True
31: end for
32: return transactions
33: end procedure

attempt and its associated constraint (line 2). Then, we compute local optima for each
objective (lines 6-12), which are used to calculate servers’ optimization score (line 16)
(first for loop on line 3). We iterate until the candidate list is empty or the task is
successfully offloaded (do-while loop on line 17). If the candidate list is empty (line 18)
then it exits from the do-while loop and returns accumulated transactions. Otherwise,
the SMT solver on line 21 selects the server. If offloading fails, then the server is removed
from the candidate list and its associate objective values (lines 27-30) and loops back on
line 17. If offloading succeeds, the difference between execution time and the constraint
∇ is computed (line 23) and appended to the transaction list (line 24). The offloading
transaction list is returned (line 32) and forwarded to the HSC for reputation update.

5.2.4 Complexity Analysis

The computational complexity of the FRESCO depends on |T |, which is the cardinality
of the set of application tasks T , and |N |, which is the cardinality of the set of nodes N .
This can be seen by the for loop on line 3, that is executed |T | times, and for loops on
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lines 4, 15, that iterate over N set. Also, do-while loop on line 17 is executed |N | times
in the worst case. However, the most impacting factor on FRESCO complexity is the
complexity of the SMT solver (SMTSOLVING function on line 21). Since SMT solving
generalizes the boolean satisfiability problem (SAT), which is known to be NP-complete,
solving SMT is NP-hard. The SMT solving complexity depends on multiple factors,
such as heuristic space search, clause learning, and problem size and structure [RKG18].
Therefore, the selection of an SMT solver has a strong impact on performance [Høf14].
Works like [ATD21] show the applicability of SMT solvers to latency-critical settings
such as mobile edge offloading. Application to edge offloading and it was shown in
the edge offloading literature that it can be placed on the mobile device as a decision
engine [ATD21]. We will empirically evaluate FRESCO overhead, including the SMT
solver in our experiment. Lastly, the complexity of the SMT solver is a Ω(n log n) where
n is the number of clauses (e.g. batteryLife, storageLimit, etc.) in the SMT formula
[RKG18].
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CHAPTER 6
Evaluation

This chapter presents the experimental evaluation of the proposed approaches described
in the previous chapters. We first evaluate the energy-efficient and failure-predictive edge
offloading framework in Section 6.1, featuring three core mechanisms: adaptive failure
prediction (Section 6.1.2), dynamic resource management (Section 6.1.3), and optimal
offloading policy synthesis (Section 6.1.4). In Section 6.2, we assess the technology and
system components implemented for robust offloading in microservice-based architectures,
detailing the design choices and real-world prototype deployment. Finally, in Section 6.3,
we present the experimental evaluation of the reputation-based hybrid smart contracts
approach, including an in-depth analysis of testbed configurations, input datasets, and
performance metrics related to decision latency, energy efficiency, and QoS compliance.

6.1 Energy Efficient and Failure Predictive Edge
Offloading Evaluation

6.1.1 Experimental Setup

At the time we write, there are several state-of-the-art model checker tools available
such as UPPAAL [B+06] and PRISM [K+11]. UPPAAL verifies non-deterministic and
time-critical systems. Moreover, UPPAAL Statistical Model Checking (SMC) [DL+15] ex-
tension supports modeling and verification of the systems which exhibit both probabilistic
and timed behavior. Nevertheless, the tool does not support MDP models. PRISM, on
the other hand, is a tool for formal modeling and analysis of systems that exhibit random
or probabilistic behavior. MDP modeling and verification are supported but PRISM
modeling language requires that every aspect of the system, including simulation utilities
(e.g. DAG models, Poisson distribution, parsing dataset, etc.) must be abstracted as
state machines, which limit the expressiveness of our simulation. This can also cause
time overhead in the verification process, for instance, the state space explosion. For
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this reason, we use our simulation framework implemented in Python which provides
relatively simple syntax, diverse mathematical sampling distributions available as simple
application programming interface (API) calls and MDP solver toolbox [CC+14] for MDP
modeling and verification. This framework supports DAG mobile application scheduling,
energy consumption, time response, offloading failure models, simulation and distribution
of failures, and Edge/Cloud infrastructure model. Moreover, it can be expended with
other objectives due to modular architecture. The input of our simulation framework is
the infrastructure model which includes hardware specifications of the computational
nodes, network characteristics, and mobile application setup.

The evaluation scenario is as follows. ODE on the mobile device decides on which
offloading site shall application task be offloaded and executed. Energy consumption
and response time are affected by hardware characteristics of the site as well as network
links between the sites. It is assumed that only data is offloaded from site to site, while
computation is replicated on each of them. Efficient selection of replica sites in a large
network is left as future work. Here, we only consider a local partition of the system.
Additionally, failures on sites where tasks are offloaded prolong time and energy and
ODE is forced to offload tasks on another site possibly without failure. Energy and time
cost after offloading failure are defined by Equations (3.11) and (3.12). Failure can
occur on links and servers. Depending on which part failure occurred, energy failure cost
ct

vi
and time failure cost ce

vi
are computed accordingly.

Computational nodes

The infrastructure model used in our simulation includes five computational nodes. We
have a mobile device, three Edge servers, and a Cloud data center. The mobile device is
the start and endpoint of any mobile application execution. Resources are very limited
when comparing to the hardware specifications of Edge servers and Cloud data centers.
We assume that the hardware specifications of the aforementioned nodes do not change
during the runtime. The contemporary CPU processing power of the mobile device is
typical between 1.8 - 2.2 GHz but everything above 1 GHz is acceptable [mob]. Cloud data
center CPU processing power with modern technological achievements can be boosted
with 56 cores with a base frequency of 2.6 GHz and turbo 3.8 GHz [clo]. Using 20 GHz
in the simulation is to reflect the computational superiority of the Cloud server compared
to other counterparts (mobile and Edge). Values from Table 6.1 are selected as moderate
to reflect the magnitude of the computational power ratio between complementary parts
of the network. Also, Edge and Cloud servers due to unreliability (server and network
failures) must have larger resource capacities to stay competitive.

Concerning the mobile device, we need to consider an energy consumption model. The
parameters used in energy model are pu = 1.3W, pd = 1.0W, pc = 0.9W, pidle = 0.3W
where condition is assumed pu > pd > pc > pidle as in [KL10] and used in Equations
(3.7) and (3.12).
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Table 6.1: Hardware specifications

Node CPU
(GHz)

RAM
(GB)

Storage
(GB)

Edge database server 5 8 500
Edge computational server 8 8 250
Edge regular server 5 8 250
Cloud data center 20 128 1000
Mobile device 1 8 16

Table 6.2: Network specifications

Links Latency (ms) Bandwidth (Mbps)
Mobile Edge 15 5.5/20
Mobile Cloud 54 + φ(µ, σ) 20
Edge Cloud 15 + φ(µ, σ) 100/987
Edge Edge 10 100/987

Network Infrastructure

Network parameters that can influence offloading results are network latency and band-
width. Network latency is the amount of time that takes the data to transmit between
two points which is dependable on physical distance. This fits our model since the Cloud
data center is geographically more distanced from the end-user which scale up the network
latency. The latency on wireless links between the mobile device and Edge servers should
be less due to geographical proximity. Bandwidth, on the other hand, is the rate of data
transfer between the two points. This fits the DAG mobile application model where task
dependency between the tasks is achieved based on input and output data transmission
via network links. Overview of network latency and bandwidth distribution is shown in
Table 6.2. Latency distribution is similar to work [DMB18], while bandwidth for wireless
links (first and the second row of the table) are actual speed limits of IEEE 802.11 wireless
standard (802.11a, 802.11b, 802.11g) and for fixed network links (third and fourth row
of the table) are Fast Ethernet and 1Gbit Ethernet link standards. Mentioned wireless
standards are used since speed is lower when comparing to other IEEE 802.11 wireless
standards which could yield to higher price and operational cost. For a fixed network, we
selected Ethernet links since we are assuming that Edge servers will be localized near each
other. Higher bandwidth values from the Table 6.2 are associated with Edge database
server network connection characteristics due to high demand in data transmission.

Network links between Edge servers and the Cloud data center are much faster when
compared to wireless links. It is a reasonable assumption since it is well known that
data transmission on telecommunication or Internet network is highly demanding, thus
larger bandwidth rates should be provided, similar to the assumption in [TL+16]. φ(µ,
σ) function models Internet latency on Cloud data center due to transmission delay
that according to [DP+13] is estimated to be between 100 and 300ms. It is modeled by
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employing a Gaussian distribution with mean µ = 200 and standard deviation σ = 33.5
to obtain the values in the aforementioned range.

Mobile application setup

We use DAG models of mobile applications as described in works [DMB18, DMB19].
These applications are suitable for our use case scenarios since we are more interested in
more typical and commercialized applications that will be more probable used by the
average user. The DAG structure used for this paper comes from the description of each
application in the aforementioned works. We select three applications: (i) Facebook, that
models the behaviour of posting pictures on Facebook, which represents typical mobile
application, (ii) Facerecognizer, models the image processing application which recognizes
face on the picture, and represents data-intensive application due to large database of
face images and (iii) Chess, that models the behavior of chess game between the user
and AI software and represents computational-intensive mobile application due to large
and complex computations for anticipating next game moves.

Denoting mobile application as typical, data or computational-intensive, does not imply
that all tasks in the application are of the same intensity. Table 6.3 shows application task
sizes in terms of CPU, input and output data size. CI and DI refer to as computational-
intensive and data-intensive respectively. Moderate stands for application tasks that
do not have emphasized computational or data components. Similar application task
distribution is used in work [TL+16]. Task specifications of aforementioned mobile
applications that are used in this experiment are listed in Tables 6.4, 6.5 and 6.6.

Table 6.3: Application task specifications

Type CPU Input data Output data
DI 100-200 M cycles 15-20 KB 25-30 KB
CI 550-650 M cycles 4-8 KB 4-8 KB
Moderate 100-200 M cycles 4-8 KB 4-8 KB

Table 6.4: Facebook task specifications

Task Type RAM Offloadable
FACEBOOK_GUI Moderate 1 GB False
GET_TOKEN Moderate 1 GB True
POST_REQUEST Moderate 2 GB True
PROCESS_RESPONSE Moderate 2 GB True
FILE_UPLOAD DI 2 GB False
APPLY_FILTER DI 2 GB True
FACEBOOK_POST DI 2 GB False
OUTPUT Moderate 1 GB False
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Table 6.5: Facercognizer task specifications

Task Type RAM Offloadable
GUI DI 1 GB False
FIND_MATCH DI 1 GB True
INIT DI 1 GB True
DETECT_FACE DI 1 GB True
OUTPUT DI 1 GB False

Table 6.6: Chess task specifications

Task Type RAM Offloadable
GUI Moderate 1 GB No
UPDATE_CHESS Moderate 1 GB Yes
COMPUTE_MOVE CI 2 GB Yes
OUTPUT Moderate 1 GB No
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Figure 6.1: Performance metrics

Failure dataset

Failure dataset is vital for MTBF computing for simulating failures through sampling
via Poisson distribution (as explained in subsection 3.2.4) and probability estimation
of failures that are encoded in the probability matrix of the MDP model. There does
not exist an Edge Computing failure dataset that is available for scientific research at
present due to the novelty of technology in the field. Consequently and similar to the
previous work [AB18], we adopt failure traces from other real-world distributed systems
to the edge computing scenario. Our simulation divides and maps real-world failure
traces into simulation nodes that have distinctive characteristics as depicted in Figure 3.1.
Failure dataset is needed for failure simulation and computing transition probabilities
that are used for failure predictability in the EFPO algorithm. Dataset is made publicly
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(a) Offloading distribution with
Facerecognizer application.

(b) Offloading distribution with
Chess application.

(c) Offloading distribution with
Facebook application.

Figure 6.2: Offloading distribution

(a) Offloading failure rates with
Facerecognizer application.

(b) Offloading failure rates with
Chess application.

(c) Offloading failure rates with
Facebook application.

Figure 6.3: Offloading failure rates

available by Pacific Northwest National Laboratory (PNNL). Although the PNNL dataset
is not collected on an Edge infrastructure, it possesses certain properties that suit our
evaluation scenario. The number of computational nodes is large, they are distributed in
different geographical locations, and they contain different hardware characteristics.

The dataset contains 4652 failure logs between 2003-2007. Failure logs are collected from
the HPC (High-Performance Computing) system that consists of 980 computational
nodes. Nodes are classified into several categories according to hardware characteristics.
Categories are (i) fat node, they are 570 of them, where each contains 430 GB local disk
and 10 GB RAM, (ii) thin node, 378 nodes, where each contains 10GB local disk and
10 GB RAM, and (iii) Lustre servers, they are 34 of them. Every node uses Itanium-2
processor 1.5 GHz and all are interconnected with Quadrics QsNetll.

Simulated failures are applied in the simulation model on all nodes except mobile devices,
which is assumed to be failure-free. Before simulating failures, we need to map the
failures of node categories from the dataset into the nodes of our simulation model. Fat
nodes are suitable for Edge database server due to larger local disk capacity, Lustre
servers are considered as Cloud data centers, where due to high performances are used in
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Cluster computing, and thin nodes are divided between Edge computational and regular
server. A small portion of thin nodes is test and login nodes that have only a few failures.
Those node failures are mapped on a regular server while the majority of thin nodes are
mapped to a computational server. This setup gives regular servers more reliability than
a computational server. With this setting, we want to explore how EFPO performs in a
scenario where we have resourceful servers that are less reliable with reliable servers that
are less resourceful. Another scenario is where resourceful servers are more reliable, but
the EFPO algorithm could have similar performance as other state-of-the-art decision
engines since offloading failures are occurring much less on resourceful servers which
are more attractive for offloading. Concerning failures, server failures are identified by
hardware identifier which is easy to map it on the particular nodes. Network failures,
on the other hand, cannot be mapped since they do not contain information on which
nodes they are connected to. Thus, network failures are distributed to node categories in
proportion to the frequency of failures.

6.1.2 Evaluation Results

Besides the mentioned mobile applications that are used in the experiment, we imple-
mented three additional ODEs to compare performance with EFPO. These are (i) Local,
which considers only mobile device as an execution site, (ii) Mobile Cloud (MC), which
considers only mobile device and Cloud data center, and (iii) Energy Efficient (EE),
which considers offloading application tasks on all offloading sites but without considering
failure probability. Considering the reliability, after mapping failures from the PNNL
dataset to simulation nodes as explained in 6.1.1, the Edge database and computational
server are less reliable then Edge regular and Cloud. The main goal here is to evaluate,
whether EFPO boosts the system performance by offloading application tasks on more
reliable servers in certain periods by mitigating offloading failures on more resourceful
servers. This can extend the execution time but it is still less harmful than offloading
failures.

Figures 6.6b and 6.6a show energy consumption and response time per ODE for a single
mobile application execution along with the standard deviation. Single mobile application
execution is sampled 100,000 times that gives validity and statistical significance to our
experimental results. We also consider an experiment, where we have successive mobile
application executions, but increasing the number of application executions linearly
increases both energy and time. Deviation in application executions is measured and
detected but does not change the conclusion of the results. This justifies that sampling a
single mobile application execution is sufficient for the evaluation and less time consuming.
In both figures, the EFPO algorithm outperforms all other ODE engines in all three
mobile application cases. EE engine does not yield better performance since it does not
contain failure predictability feature, which is shown in Figures 6.3a, 6.3b and 6.3c where
offloading failure rates are the highest. EE engine always prefers those sites that have
superior resources capacities without considering failure probabilities. Thus, as shown in
Figures 6.2a, 6.2b and 6.2c, EE considers Cloud as most attractive and Edge regular
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server as less attractive offloading site. Consequently, this yields bias in task offloading
towards those sites which are resource superior but less reliable, which leads to more
frequent offloading failures and increased energy consumption as well as response time.
Edge regular server, on the other hand, is more attractive for EFPO due to low failure
probability and forces offloading distribution to utilize Edge servers more frequently to
exploit the advantages of Edge Computing in lower network latency and better network
bandwidth. EFPO utilizes Edge servers in 56%, 45% and 48% of task offloading cases
with Facerecognizer, Chess and Facebook application respectively. Non-offloadable tasks
are executed on the mobile device, where 4%, 5%, and 2% end up in the Cloud data
center in Facerecognizer, Chess and Facebook, respectively.

Local ODE outperforms MC ODE in terms of energy, in Facerecognizer and Facebook
application cases, while for time response, only in the Facebook case as shown in
Figures 6.6b and 6.6a. This is due to high latency between mobile device and Cloud
(geographical distance and Internet transmission delay) and the fact that the majority of
the application tasks are DI requiring more expensive data transmissions due to larger
input and output data sizes. However, in Chess application case, MC ODE outperforms
Local since Chess contains CI application task COMPUTE_MOVE where Cloud is more
suitable due to superior computational capacity and less expensive data transmission for
small input and output data size. Cloud data center utilization in Chess application case
for MC ODE is 32% (Figure 6.2b), while in Facerecognizer (Figure 6.2a) and Facebook
(Figure 6.2c) cases are 19% and 16%, respectively. However, the majority of applications
tasks are executed on the mobile device. In Chess case, two out four application tasks
are non-offloadable which explains the high distribution of task execution on the device.
In the other two application cases, besides a high proportion of non-offloadable tasks,
the majority of tasks are more data expensive due to larger input and output data size,
which causes the majority of tasks to remain on the device. The mobile device is the
site where the majority of application tasks are distributed, from 40% for EE and EFPO
ODEs in the Facerecognizer application case up to 100% for all three application cases
when Local ODE is performing.

6.2 Edge Offloading for Microservice Architecture
Evaluation

6.2.1 Experimental Setup

We evaluate our edge offloading framework on the test-bed described in Table 6.7. Infras-
tructure setup is summarized in Figure 6.4: Huawei P Smart Z is a mobile device; RPis
are edge nodes, deployed as in Figure ?? and AMD64 in Figure 2.4b is used to simulate a
cloud data center. Resource heterogeneity is simulated by defining hardware and network
limitations, as in [ZAB19]. They are parameterized in the clusters’ PostgreSQL database
as experimental input parameters. When offloading micro-service is deployed on the
Kubernetes cluster, it connects to the database and retrieves the resource information
based on which resource capacity of the underlying site is specified. One RPi is configured
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Table 6.7: Experimental Setup
Hardware specifications

NODE TYPE CPU RAM
[GB]

STORAGE
[GB]

Huawei P Z (mob.) Quad-core ARM Cortex-A53 1.7
GHz

4 64

RPi 3B+ (master) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (ED) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (EC) Quad-core ARMv7 at 1.4GHz 1 64
RPi 3B+ (ER) Quad-core ARMv7 at 1.4GHz 1 64
AMD64 (cloud) 48-core Intel Xeon E5-2650 v4 @

2.2GHz
128 1000

Figure 6.4: Infrastructure Schematics

as a master node and the others as worker nodes in the Kubernetes cluster. Their setup
is illustrated in Figure 6.5.

Edge nodes and the cloud server are integrated into a single Kubernetes cluster while a
mobile device is implemented as an external user. One of the RPi edge nodes is configured
as a master node and the other nodes are configured as worker nodes where offloading
micro-services are deployed and implemented as Docker containers. They are deployed
according to the node labeling system. Each node in the Kubernetes cluster has a certain
label that represents a node type. For instance, if we want to mark a certain node as an
edge database server for handling data-intensive applications, the node is labeled as edge
database, and inserted into Kubernetes deployment manifest file.

The mobile applications used in the evaluation are Directed Acyclic Graphs (DAGs) taken
from [DMB18, ZAB19], namely (i) Facebook, as a use case scenario of posting posts on
Facebook, (ii) GPS navigation, that navigates the traffic drivers to their destination (iii)
Facerecognizer, as the image processing application which recognizes facial structures and
patterns in the images, (iv) Antivirus, that scans the software and compares potential
software virus signatures with the registered ones in the database, and (v) Chess. as an
interactive game where AI software agent tries to anticipate player chess moves.

The mobile applications are sampled according to a probability distribution taken from
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Figure 6.5: Kubernetes Schematics

[DMB19]. The simulated workload is utilized since the real application would require
application partitioning and profiling mechanisms, which are out of the scope of this
paper. To offload the simulated DAG workload on the remote Kubernetes offloading
service site, the JSON serialization is performed. It converts task objects into byte strings
which are necessary to transfer the data via a network to the target offloading service
site. On the recipient site, JSON deserialization is performed to acquire the original task
object from which it extracts all necessary resource information.

Hardware and software failures are some of the main threats to the availability of
production systems. Software-controlled failure injection during runtime can stress the
system when real-world failures are hard to reproduce. This kind of software testing
approach often requires custom-developed failure injection software separated from the
system under test, especially for distributed systems such as edge computing. This is
out of the scope and thus, instead, to simulate failures on remote offloading sites, we
implement a two-state Markov state machine. This kind of on/off (failure/non-failure)
model is used to simulate network intermittent channels where simplicity is preferred over
complexity [BL00]. Although this cannot fully replicate spontaneous failure behaviors
from the real-world but at least can aid us to get an insight into edge failure proactive
performance.

The probabilistic availability distribution is extracted from the local failure dataset Los
Alamos National Laboratory (LANL) for HPC clusters [SG09]. We adopted this dataset
since it shares some characteristics with edge computing, i.e., distributed architecture, a
large number of nodes, and heterogeneous resources. Possible limitation of using the HPC
dataset for the edge is that it probably cannot replicate the edge behavior completely.
HPC cluster nodes usually have superior resources, equipped with additional support
systems (e.g. fan units, backup power generators) and interlinked with high-speed network
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Table 6.8: Dataset configurations
Dataset configurations

Service DS1 DS2 DS3 DS4 DS5
ED HA (7_1) MA (5_158) HA (5_165) HA (5_243) HA (5_48)
EC LA (19_1) MA (19_11) MA (19_4) HA (19_8) HA (20_41)
ER HA (3_0) HA (16_80) MA (4_55) MA (4_1) HA (4_3)
CD HA (22_0) HA (22_0) HA (22_0) HA (22_0) HA (22_0)

(a) Application response time (b) Mobile battery lifetime (c) Service availaiblity

Figure 6.6: System performance

connections where in edge could not be the case. We pick several nodes from the dataset
to compute availability distributions for each offloading service (Table 6.8). The nodes
are categorized according to their availability levels as low (LA), medium (MA), and high
(HA) based on failure rates, and mean and deviation of their availability distribution.
Their hardware characteristics are the second selection criteria. For instance, nodes from
systems 5 and 7 are selected for the ED edge node due to a large number of nodes (larger
data storage). Additionally, a high volatile (HV) node is also present which presents a
node that is highly available but exhibits a larger variance due to a few severe failures
which are observed as an outlier. The nodes are named <systemID_nodenumber> where
both index numbers are obtained from the original dataset. They are split into train
and test data in a proportion of 80%-20% as the general rule of thumb practiced in ML
community. The nodes from systems 5 and 7 are most suitable to the ED edge node
due to a large number of nodes (larger data storage). The EC node is sampled from
nodes of systems 19 and 20 which have a higher ratio of processors per node (higher
computational power). ER edge node is sampled from 3, 4, and 16 systems due to a
lower processor per node ratio, a minimum quantity of network interface cards, and a
moderate number of nodes compared relatively to the ED and the EC nodes. The cloud
is sampled only from 22 system since it has a single node with the highest processor per
node ratio and RAM capacity in the entire dataset.

For statistical significance, we set application runs to 1000 and average results of 100
executions. Results are compared with the solution in [ZAB19], which emulates default
Kubernetes greedy multi-criteria decision-making (with adjusted parameter tuning) and
estimates availability levels through mean-time-between-failures (MTBF). Moreover,
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it is augmented with re-computing and check-pointing and named KubeHybrid as a
Kubernetes hybrid (proactive-reactive) decision-maker. The source is available online1.

6.2.2 Results

Figures 6.6a, 6.6b and 6.6c illustrates results for RT, BL and availability respectively.
Our solution outperforms the KubeHybrid in all three objectives. There is a strong
correlation between the three objectives since higher service availability increases BL and
decreases RT. This is explained by the necessity of re-transmitting offloading tasks in
case of offloading failures, which consumes additional mobile devices’ resources. Hence,
higher availability ensures more BL and shorter RT. In our evaluation, we consider also
offloading distribution, i.e., the number of tasks offloaded per offloading service site.

Figures 6.6a, 6.6b and 6.6c depict that for DS1 configuration our solution achieves around
600 seconds RT, 98.4% BL, and 99.6% availability against the KubeHybrid with 760
seconds RT, 98.15% BL, 98.6% availability. EC is marked as a LA service while its
counterparts on other offloading sites are marked as HA service. According to offloading
distribution, our solution offloaded around 50% of tasks to EC, completely avoiding
Cloud (0% distribution) while ER receives less than 0.1% distribution. Other tasks are
offloaded either on a mobile device or an ED service. Despite lower availability, the
prediction engine predicts service availability accurately enough to select EC service
for timely task offloading. Moreover, 50% implies that not only CI-intensive tasks are
offloaded but also moderate tasks. This is because ER has a lower CPU than EC.
The KubeHybrid algorithm, on the other hand, relies on a cloud distribution of 2.9%,
while edge services are consumed proportionally to their resource availability. ED is
the most used (31.7%), ER is moderately utilized (17.8%) while EC is the least used
edge service (7.9%). KubeHybrid depends on an average MTBF, which reduces the
prediction accuracy. The SVR algorithm, on the other hand, generally, did yield in our
experiment the prediction accuracy between 55% and 90% measured in R2, so-called the
good-of-fitness metric. It is widely used in statistics to measure accuracy in predicting
future outcomes and usually preferred since it is more intuitive and informative then
other metric alternatives.

For DS2 and DS5 configurations, our solution achieves offloading distribution and predic-
tion accuracy similar to DS1, which indicates adaptability towards different availability
distributions. However, in DS4 configuration findings are unlike the previously mentioned.
Instead of overwhelmingly offloading tasks on EC service, our solution proposal replicates
the DS3 availability setting where ED service is tagged HA, while EC and ER services
are MA tagged. ED is the most utilized service, with 37% offloading distribution, due
to its high availability and resource capabilities. The second most utilized service is
EC since it has more hardware capabilities than ER service. In our approach, none of
the tasks are offloaded to the Cloud. The KubeHybrid approach, instead, prefers ED
service the most (26%) but cloud service is the second most utilized (15%). When ED

1https://github.com/jzilic1991/edge-offloading/tree/master
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service is unavailable, data intensive tasks are offloaded to the cloud. However, the higher
latency results in its worst performance of around 950 seconds RT, 97.5% BL, and 97%
availability.

6.3 Evaluation of Fast and Reliable Edge Offloading using
Reputation-based Hybrid Smart Contract

6.3.1 Implementation and testbed

Simulated off-chain edge cloud clusters and decision engine are developed in Python
and evaluation is performed on a laptop machine with a dual-core CPU of 2.8GHz and
16 GB RAM. The Ganache blockchain emulator and HSC reputation state manager
contract are deployed on an AMD64 server with a 40-core 1.80GHz CPU and 128Gb
RA. The basic distributed testbed setting reflects our edge offloading lifecycle model
presented in ??. The decision engine connects to the Ganache when reputation needs to
be updated and stored during runtime. Ganache executes the blockchain consensus and
returns confirmation. The infrastructure is simulated based on the OpenCellID dataset
[ope] which contains radio cell tower locations geographically distributed over vast areas.
The workload on the nodes is simulated through the queuing network (Section 5.1.1).
For SMT solving, we use Z3 as SMT solver [Høf14]. We used the Ganache 2 blockchain
emulator as a blockchain and implemented a real-world HSC in the Solidity3. Using an
emulator instead of a real blockchain is due to the limited number of Ethereum tokens
available, which prevents repeated experiments for statistical significance. We assume
Proof-of-Authority (PoA) consensus, popular in both private and public Ethereum whose
consensus delay is around 4 seconds [etha]. Developers usually use this type of consensus
to get easy access and fast feedback. We have open-sourced our prototype publicly4.

6.3.2 Experimental design and setup

Computing and networking infrastructure

Table 6.9 shows the target infrastructure configuration. It reflects our infrastructure’s
configurations of different edge, cloud, and mobile devices. We classified servers into
several classes to capture resource heterogeneity. The mobile device has limited resources
compared to other nodes. The ED is an edge database server that has fast-speed network
access and large data storage capacity to handle data-intensive (DI) tasks; the second
one represents a computational-intensive server (EC) that has a high number of CPU
cores to cope with computational-intensive (CI) tasks, and the third one represents an
edge regular server (ER) with moderate resource capacities. The cloud server is the most
resourceful one but has higher latency.

2https://archive.trufflesuite.com/ganache/
3https://soliditylang.org/
4https://github.com/jzilic1991/hybrid-edge-blockchain
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Table 6.9: Computing infrastructure

Node class CPU cores CPU
(GHz)

RAM
(GB)

Storage
(GB)

ED server 8 2100 8 300
EC server 16 2800 16 150
ER server 4 1800 8 150
CD server 64 2400 128 1000
Mobile device 2 1800 8 16

Table 6.10: Empirical latency measurements as constraints and deadlines from real-world
applications in milliseconds

Intra(D=108) MobiAR(D=400) NaviAR(D=800)
∇ Proc Net Proc Net Proc Net
Edge 18 15 2-20 15 250-300 300-400
Cloud 2-20 90 1 300 2-20 1000-1500
Mobile 300 0 300 0 800 0

We adopt processing and network latencies as application QoS deadlines from three
real-world use cases, described in Table 6.10. In Table 6.10, "Proc" indicates the pro-
cessing timing constraint, while "Net" is the networking timing constraint. Note that
we distinguish task timing constraint ∇ from application deadline D. We measure QoS
violations against application deadlines.

Mobile DAG applications

Mobile applications are modeled as DAGs which is a common method of mobile application
modeling [ATD21, ZDMAB22]. These applications exhibit a pipeline workflow structure,
which is typical for AI-based applications. Table 6.11 specifies task categories from which
the applications are constructed, while Tables 6.12, 6.13, and 6.14 describe structures of
selected applications. We selected the following applications because they are latency-
sensitive, and are part of an emerging market where edge computing is a key technology
enabler.

(i) Intrasafed: It is a traffic safety application [LMP+21], which employs an AI-based
object detection that detects pedestrians at intersections, notifying drivers in real-time
to prevent accidents. We simulated the application in our simulator with latency
measurements from the original work, presented in Table 6.10. It has a deadline of D =
108 ms for the average drivers’ notification latency via 5G networks. (ii) MobiAR: It is
a generic AR object detection application [RGW+21], which we extracted its application
structure and executed in our simulator. The real latency measurements are extracted
from the work and presented in Table 6.10. The application requires a deadline of D
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Table 6.11: Task specifications

Type CPU Input data Output data
DI 100-200 M cycles 15-20 KB 25-30 KB
CI 550-650 M cycles 4-8 KB 4-8 KB
Moderate 100-200 M cycles 4-8 KB 4-8 KB

Table 6.12: Intrasafed task specifications

Task Type RAM Offloadable
LOAD_MODEL Moderate 1 GB False
UPLOAD DI 1 GB True
ANALYZE CI 4 GB True
AGGREGATE CI 2 GB True
SEND_ALERT Moderate 1 GB True

Table 6.13: MobiAR task specifications

Task Type RAM Offloadable
UPLOAD Moderate 1 GB False
EXTRACT CI 2 GB True
PROCESS CI 2 GB True
DATA DI 1 GB True
DOWNLOAD DI 1 GB False

= 400 ms to meet the applications’ inference latency. (iii) NaviAR: It is an AR live
navigation executed on AR HoloLens glasses [WYS21]. We simulated the structure in
our simulator backed by latency measurements as constraints listed in Table 6.10. It
requires a deadline of 800 ms which is equal to the local execution time on AR glasses.

Parameters

Parameters used in our experiment are defined in Table 6.15. The Poisson task arrival rate
λ range is selected so it can scale to different workload intensities. α, β, and γ values are
selected as a representative case of the user’s preferences about preferring fast response
and willingness to pay a higher price for it (α > β > γ) since we target latency-sensitive
applications. BL is the initial device battery capacity. Reputation weight factor ω is
taken from [BID21] which accounts for a relatively conservative reputation system to
mitigate volatility in a crowdsourced system. cost coefficients for CPU and storage are
taken from Google Cloud [gcl] which is one of the most commonly used cloud providers.
Energy coefficients of βbase, βUe and pcores are taken from [ASV+16, ZLLL17] which are
validated against real mobile equipment.
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Table 6.14: NaviAR task specifications

Task Type RAM Offloadable
MAP DI 1 GB True
GUI Moderate 1 GB False
COORDINATION CI 4 GB True
SHORTEST_PATH CI 2 GB True
MOTION_COMMAND CI 1 GB True
VIRTUAL_GUIDANCE Moderate 1 GB False
RUNTIME_LOCATION CI 1 GB True
DISPLAY Moderate 1 GB False

Table 6.15: Simulation and algorithmic parameters

Parameter Value
λ [10, 20]
α 0.5
β 0.4
γ 0.1
BL 1000
ω 0.3
costcores 0.023
coststor 0.776
βbase 625.25 10−3

βUe 6.9305 10−3

pcores 0.073 10−3

Datasets

We employed the Skype availability dataset[GD05] to model the system’s availability.
The motivation for selecting Skype dataset is because it shares edge characteristics like
geo-distribution, heterogeneity, large number of nodes, and it constitutes the middle
ground in availability ratio (60-70%) and latency (up to ∼50 ms) compared to other
infrastructure[AB20]. Traces are collected over 2,081 servers for 400 days and contain
availability time intervals that are associated with each node. Nodes have different
lifespans and hence they are normalized within the [0, 1] time range interval. Adopting
such availability datasets from distributed systems that share similar characteristics is
common in edge computing research[AB20, SMKP23] due to the lack of publicly available
datasets.

Edge and cloud deployment follow cellular base station locations from OpenCellID.
OpenCellID is an open cellular database containing datasets of cell tower geolocations
that mobile operators publicly publish. It is used in generating infrastructure topologies
under edge computing settings [XEMDN21]. We selected a dataset that contains around
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3, 500 cell tower locations and randomly filtered them out to match the number of 2, 081
Skype nodes for one-to-one availability trace mapping. We clustered the entire network
into 30 cell clusters using the k-means clustering algorithm as illustrated in Figure 6.7. In
such a deployment, location-based mobility is simulated where a mobile device visits each
cell cluster and offloads tasks on remote servers. Mobile device dwelling time in each cell
is evenly distributed throughout the entire simulation. Each cell cluster location has edge
node classes such as ER, ED, and EC which are randomly associated with OpenCellID
nodes and a single accessible cloud server. Remote servers have an associated reputation
score, which is stored on a public blockchain that is globally accessible.

Figure 6.7: Cell tower locations from OpenCellID dataset [ope]

Baselines

We compare FRESCO with the following three baseline algorithms.

• MINLP is a mixed integer non-linear programming-based method that formulates
constraint offloading optimization problems without reputation. The MINLP ap-
proach is the most common modeling method for offloading optimization [FHZ+22].

• SQ EDGE [IMRN20] considers reputation and queuing time on edge nodes, and
it is utilized in blockchain-based vehicular ad-hoc networks. The method considers
only local and edge offloading, as in naive offloading approaches used when resources
are limited for decision-making.

• MDP is a common method for modeling offloading [LZC+20]. Reputation is
encoded as transition probability, remote servers represent states, and objectives
are modeled as reward functions. The modeling is similar to existing work that
targets reliable offloading[ZDMAB22].
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(a) Response time (b) Battery lifetime (c) Monetary cost

Figure 6.8: Performance main objectives

(a) Intrasafed (b) MobiAR (c) NaviAR

Figure 6.9: Offloading distribution

6.3.3 Analysis of results

For each experimental run, we execute 100 applications sequentially and average results
over 100 runs to obtain statistically significant results.

Response time

Figure 6.8a illustrates the response time performance of offloading decision engines
in Intrasafed, MobiAR, and NaviAR applications respectively. The worst-performing
decision engine is MDP whose response time is 53.11, 73.86, and 104.06 seconds for three
applications, respectively. Whereas the SQ EDGE decision engines have average response
times of 41.99, 46.96, and 65.12 seconds. However, SQ Edge has a higher deviation in its
response time compared to others (6.16, 4.03, and 5.99 seconds). Although the SQ EDGE
approach is reputation-aware, its primary target is to identify malicious servers instead of
reliable offloading in terms of QoS violations caused by failed or high-loaded sites. Thus,
this leads to more volatile performance as observed. The MINLP decision engine yielded
the second-best approach with 24.34, 28.91, and 18.72 seconds. The best performance was
achieved with the NaviAR application (18.72 seconds) which is unexpected since NaviAR
has the most complex structure. The possible explanation is that the edge servers in the
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last visited cells were more loaded which limits resource capacity. It could deter MINLP
from taking offloading decisions on the edge and rather opt for local execution or select
a far-distant cloud. 75% of the offloading attempts in the last cell were concentrated
on cloud and mobile. Although MINLP does not perceive reputation, selecting both
mobile devices and the cloud are safe for offloading and avoids offloading failures on
the failure-prone edge which in the last two cells have limited availability (12 − 25%).
Offloading failure would impose a longer response time as seen in Intrasafed and MobiAR
applications. Lastly, our FRESCO solution outperforms other decision engines due to
frequent offloading on more reliable servers which resulted in response time performance
of 6.75, 11.61, and 17.81 seconds.

Battery lifetime

Figure 6.8b illustrates the battery performance of offloading decision engines in all three
applications. The SQ EDGE decision engine drains the device battery the most, with
96.38%, 95.33%, and 93.34%. A higher rate of failed offloading attempts drains the
energy more than the longer response time (Figure 6.8a) in MDP whose battery lifetimes
are 98.08%, 95.64%, and 93.03%. MINLP and FRESCO, on the other hand, have battery
lifetimes that reflect response time performance from Figure 6.8a. MINLP battery
lifetimes are 98.28%, 97.54%, and 98.42% while FRESCO has the highest battery lifetime
of 99.47%, 99.06%, and 98.43%.

Resource utilization cost

Figure 6.8c shows the resource utilization cost of all four approaches. Here. MDP incurs
lower resource utilization costs (ranging from 34.4 to 90.69 monetary units) although it
has poor response time (see Figure 6.8a). This is because it offloads to a highly available
cloud node which has a lower utilization cost. SQ EDGE is the most expensive solution
due to failed offloading attempts and fixed k parameter which does not scale with several
nodes, and thus limits alternative servers for offloading consideration and can lead to
potentially higher costs. According to SQ EDGE, best k sites are the most reputable
ones but can be highly loaded and limit re-offloading alternatives in case of failed or
untimely execution. SQ EDGE monetary costs are 139.3, 139.16, and 228.23 units for
three applications. When comparing MINLP and FRESCO, FRESCO emerged as the
second-best cost-effective solution and cheaper than MINLP in Intrasafed (132.22 vs
139.33 units) and MobiAR (132.38 vs 139.08 units) use cases but worse when offloading
NaviAR (219.89 vs 216.76 units). In NaviAR’s case, MINLP is slightly cheaper than
FRESCO because it offloaded a minor portion of tasks on the cloud which is cheaper than
Edge. FRESCO did not yield the overall best cost-effectiveness because hyperparameters
are tuned so it prefers faster and energy-efficient solutions rather than low-cost sites.
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Offloading distribution

Figure 6.9a) shows the offloading distribution analysis for three applications. This analysis
shows the distribution of application tasks to different nodes in our infrastructure. In
the Intrasafed use case, the MDP was worse-performant because most of the offloading
decisions were targeting highly available cloud (43%) instead of expensive edge servers and
thus is the cheapest solution (Figure 6.8c) and not necessarily the least energy-efficient
(Figure 6.8b). SQ EDGE, with a similar offloading distribution composition to MINLP,
only considers k sites with the highest reputation and selects the shortest queue waiting
time. k parameter is fixed and does not scale with several nodes which can limit the
number of alternative servers and exclude viable ones that are less loaded and sufficiently
reliable. MINLP, on the other hand, does not restrict its offloading options. FRESCO,
comparably to the previous two aforementioned baselines, is more flexible and utilizes all
site types, including cloud (2%) for CI tasks when edge servers are less reliable, also less
reliant on moderate ER sites (14% compared to 19% and 16% in MINLP and SQ EDGE
respectively), and utilizes resource-rich EC sites more frequently (20% compared to 17%
in MINLP and SQ EDGE). FRESCO’s offloading distribution composition is similar
in the MobiAR case (Figure 6.9b) and reflects FRESCO’s higher performance in both
applications. In the NaviAR case (Figure 6.9c), MINLP and FRESCO have different
offloading distribution compositions but performance-wise are comparable (Figure 6.8a).
FRESCO balances reliability and performance, where the most reputable servers are not
necessarily efficient ones. MINLP is reputation-oblivious but selecting the most efficient
servers can be sometimes beneficial if the underlying infrastructure is more reliable and
has fewer failures or less volatile load.

QoS violations

Figure 6.10 illustrates QoS violation results. MDP has the highest violation rate because
of frequent offloading on highly available clouds. Leading to fewer failures but frequent
violations. The next better performant solution is SQ EDGE, with a violation rate
between 18.9% (in the NaviAR case) and 15.9% (in the MobiAR case). MINLP shows
better performance with violation rates of 12.3%, 9.2%, and 0.1% in Intrasafed, MobiAR,
and NaviAR respectively. FRESCO has the lowest violation rates in Intrasafed and
MobiAR use cases with 7.1% and 3.8% and has a violation rate of 0.4% with a standard
deviation of 0.48% in the NaviAR case which is comparable with MINLP.

HSC overhead

HSC blockchain usage costs are expressed as gas consumption and are called Wei. The
results are presented in Table 6.16 for each function. Where range is expressed, it refers
to executing from 1 to 30 offloading transactions, as multiple offloading transactions are
typically executed for those functions. All HSC functions consume slightly above 21, 000
Wei, which is typical on the Ethereum [ethb].
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Figure 6.10: QoS violations

Table 6.16: Hybrid smart contract usage cost on Ethereum

Function name Gas consumption (Wei)
registerNode 21, 503 Wei
unregisterNode 21, 204 Wei
getNodeCount 21, 604 Wei
getNode 21, 204 Wei
updateNodeReputation 21, 638-29, 984 Wei
getReputationScore 21, 204 Wei
resetReputation 21, 484-25, 544 Wei

Offloading decision overhead

Figure 6.11 illustrates offloading decision time overhead across different infrastructure
sizes on a logarithmic scale. The SQ EDGE is the least complex algorithm since
selecting the first k nodes and computing their estimated queue waiting time is relatively
straightforward in comparison to other decision engines. The average decision time
overhead is 0.048 milliseconds. FRESCO and MINLP decision time overhead are 5.05
milliseconds and 6.57 milliseconds with standard deviations of 5.16 milliseconds and
3.07 milliseconds respectively, making them comparable. MDP has the highest overhead,
which is an average of 1373.83 milliseconds, due to state space explosion when offloading
on a larger number of nodes. In summary, FRESCO has an average decision time
overhead of 5.05 milliseconds, which makes it suitable for offloading latency-sensitive
applications.

Summary: FRESCO decreases average response time up to 7.86x, and increases battery
up to 5.4% compared to baselines. It also achieves a low deadline violation rate of 0.4%
while maintaining competitive utilization costs. With approximately typical blockchain
consumption (≈ 21, 500 Wei) and low average decision time overhead (5.05 milliseconds),
FRESCO is suitable for offloading latency-sensitive applications.
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Figure 6.11: Offloading decision time in logarithmic scale
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CHAPTER 7
Related Work

In this chapter, we provide a structured overview of the state-of-the-art in edge offloading,
focusing on key challenges and advancements in heterogeneous and resource-constrained
environments. We analyze existing approaches and their limitations across five main
aspects:

• Energy-efficient and failure-aware edge offloading

• Microservice-based edge offloading

• Blockchain-enhanced reliability and offloading mechanisms

Through this analysis, we highlight critical gaps in the literature and discuss emerging
solutions that improve efficiency, fault tolerance, and decision-making in edge computing.

7.1 Energy-efficient and failure-aware edge offloading
Offloading was considered as a suitable solution for tackling energy efficiency and appli-
cation response time issues as summarized in [Wu18a, AGH18] for MCC infrastructure.
Most of those works introduced computation offloading frameworks and multi-objective
decision-making algorithms. Similarly, in survey work [MB17] for MEC, a lot of literature
work about offloading frameworks and architectures are systemized to overcome the
offloading limitations where offloading decision-making, computation resource allocation,
and mobility management are addressed as key areas. Currently, some researchers in
the Edge Computing area are coping with offloading challenges through multi-objective
optimization algorithms as [DMB18, DMB19] inspired by offloading frameworks in MCC
as [C+11, KA+12, C+10] where energy consumption, application run time and/or mone-
tary costs are considered as primary objectives. None of these works considers the effect
of offloading failures on systems’ performance.
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Table 7.1: Overview of state-of-the-art literature for microservices and offloading
Publication MSA OFF PRO ORCH REAL
Suk et al. [SHBZ19] ✓ ✓ ✓
Aral et al. [AB18] ✓
Zilic et al. [ZAB19] ✓ ✓
Dupont et al. [DGC17] ✓ ✓ ✓
Tang et al. [TYLG20] ✓ ✓ ✓
Samanta et al. [SLE19] ✓ ✓ ✓
Wu et al. [WTAK20] ✓ ✓ ✓
Jimenez et al. [JS19] ✓ ✓ ✓
Samanta et al. [ST20] ✓ ✓
This work ✓ ✓ ✓ ✓ ✓

Research works about fault-tolerant offloading systems that exist for mobile wireless
environments such as [Wu18b, OWYZ08] using M/M/1 queue model and checkpointing
mechanism respectively. Work as [WWW13] performs a trade-off between local re-
execution and offloading on remote infrastructure in case of offloading failure using
the timeout mechanism, while work [SPJ17] considers recovery mechanism by finding
alternative paths via ad-hoc relay nodes through Fyold-Warshall algorithm in case of
offloading failure occurrence on the shortest path. None of this works provides formal
verification of performance and reliability for Edge Computing. A desirable solution for
achieving both goals is formal verification. Work [ZNW15] was using the MDP algorithm
for obtaining optimal offloading decision policy in a wireless mobile environment where
uncertainty in wireless connections and user mobility can cause offloading failures. This
work was adopted for Cloudlet systems. There exist works [TL+16] and [AGA18] for MCC
and Edge Computing, which use the MDP algorithm to obtain optimal offloading decision
policy but without considering offloading failures. Also, the MDP reward optimization
technique is used for Edge/Cloud offloading but in the context of data stream analytics
[dSV+19].

7.2 Microservice-based edge offloading
Mostly reactive failure management techniques has been discussed in the related edge
computing literature thus far. The authors in [IGAK+15] perform container checkpointing
at the edge to ensure high service availability while [OWYZ08] checkpoints the appli-
cations offloaded on the offloading sites. Another work [WWW13] locally re-computes
offloaded tasks on a mobile device when task offloading fails. Research conducted both
in simulated [DMB18, DMB19, HXW+20] and real-world edge environment [TYLG20]
do not consider proactive failure mitigation. Failure prediction approaches such as
[MAUY19, dCMZLD11] proved the effectiveness of proactive failure management, but
these approaches are neither applied at the edge nor on a real-world test-bed.

There exists few studies focusing on proactive failure management. They propose risk
based [SHBZ19], learning based [AB18, AB20], or formal verification based [ZAB19] so-
lutions. Nevertheless, none of these consider microservices. We summarise our literature
review in Table 7.2. The works are selected according to whether they focus on mi-
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Table 7.2: Overview of state-of-the-art literature for blockchain-based reputation and
offloading

Publication OFF (H)SC BLOCK(-REP) REL
[RGW+21, ZEMR23, ZWSZ21] ✓ ✗ ✗ ✗
[INMR21, IMRN20, MYZ+24, SDS+23, ZLJZ21] ✓ ✗ ✓ ✗
[ZDMAB22, LMFH23, LL23] ✓ ✗ ✗ ✓
[MJSS+18, SWS21] ✗ ✓ ✗ ✗
[SYCC21, YLG+20, KXL+21, ZWY+21] ✗ ✗ ✓ ✓
[DCZ+20] ✓ ✗ ✓ ✗
FRESCO ✓ ✓ ✓ ✓

croservice architecture (MSA), edge offloading (OFF), proactive failure prediction (PRO),
container orchestration (ORCH), and real-world implementation (REAL). We conclude
that to the best of our knowledge, none of the selected works covers all aforementioned
objectives.

7.3 Blockchain-enhanced reliability and offloading
mechanisms

Table 7.2 compares FRESCO with the literature concerning offloading OFF , smart con-
tracts (H)SC, blockchain-enabled or based-reputation BLOCK(−REP ), and reliability
REL.

Offloading survey [ZEMR23] shows that applying deep reinforcement learning solutions
(DRL) and their variants has become common recently due to their adaptability to
changing and dynamic conditions. They do not consider edge failures and are deployed as
an intermediary between devices and servers which is risky in the unreliable environment
that can lead to a single-point-of-failure, sometimes requiring model re-training when
topology or environment changes drastically[ZWSZ21]. Also in the experimental evalua-
tions, they are usually trained on limited infrastructure, probably due to convergence
issues requiring extensive experience.

Deep reinforcement learning solutions (DRL) are common in edge offloading areas[ZEMR23]
due to their adaptability to changing and dynamic conditions. However, we did not
opt for such a solution because in most cases, the deep RL is deployed as an interme-
diary between devices and servers which is risky in the unreliable environment that
can lead to single-point-of-failure. Also, model re-training is required when topology
or environment changes drastically[ZWSZ21] which is common in our scenario with
failure-prone infrastructure and devices moving between different cells. Distributed
multi-agent DRL offloading solutions can mitigate the single-point-of-failure issue and
adapt to local changes. However, they are usually trained on limited infrastructure
due to convergence issues requiring large experience and do not consider reliability
problems[ZYP+22, YYC+23, HLMZ21].

Work [MUB19] employs an SMT solver for computing offloading by respecting QoS
constraints. Also, an adaptive offloading framework (ACTOR) based on artificial neural
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networks was developed in [RGW+21] that offloads latency-sensitive applications such as
AR that we used in our evaluation. None of the aforementioned works are considered for
offloading reliability problems.

Blockchain-enabled edge offloading approaches [MYZ+24, SDS+23, ZLJZ21] enhance
reliability and efficiency in mobile edge computing and vehicular edge networks where
blockchain and smart contracts make offloading more secure and trustworthy. They do
not provide specifics about real-world smart contract implementation or they deploy
an offloading framework as a smart contract which is unrealistic since smart contracts
prohibit nondeterministic and stochastic computations that conflict with the deter-
minism requirement of blockchain consensus protocols. Blockchain-based reputation
offloading was proposed for specific scenarios that require fast responses like vehicular
networks[IMRN20] and IIoT[INMR21]. Solutions are applied in private environments
(e.g. factories, enterprises) while ignoring the consensus overhead, and using reputation
against malicious actors rather than against failures in unreliable environments. Also,
other blockchain-based reputation works are applied for selecting reliable edge servers,
ranging from IoT [YLG+20], federated edge learning [KXL+21] to vehicular networks
[SYCC21]. However, they did not target reliability in edge offloading in terms of edge
failures and do not employ HSC, which forces them to compute reputation off-chain
rather than on-chain which can lead to potential risks (e.g. collusion) [DLWZ20].

Some edge offloading approaches [PZBX22, LMFH23, LL23] tried to solve reliability
issues in terms of failure and recovery probabilistic models, or predict edge failures based
on historical data [ZDMAB22]. The aforementioned works did not prove or evaluate
their solutions in distributed unreliable edge scenarios where the device moves and reacts
to different environments.

Works [MJSS+18, SWS21] implemented smart contracts on hybrid blockchain architecture
to reconcile conflicting objectives such as trust on one side and performance on the other
side. The works are not applied in edge offloading context.

Works like [DCZ+20, DSRS19] applied incentive-based offloading in e-commerce and
service provisioning in IoT environments based on blockchain-based reputations. Both
solutions do not account for reliability issues and neglect the consensus delay impact on
decision-making, which makes it not suitable for (near-)real-time environments.

In conclusion, none of the works applied a blockchain-reputation system for enhancing
reliability in the edge offloading context. FRESCO uniquely ensures trust for sensi-
tive reputation information on-chain and allows fast performance for latency-sensitive
applications off-chain.
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CHAPTER 8
Conclusion

8.1 Summary

Edge offloading has been positioned as a key technique for enabling efficient and reliable
real-time execution of resource-intensive mobile applications in distributed and unreliable
resource-limited edge environments. The core focus of this thesis was the investigation
and exploration of the reliability impact on edge offloading by addressing research
challenges like heterogeneous and limited edge resources, volatile workloads, and failures
and reliability assessment of edge servers. Many new emerged latency-sensitive mobile
applications relies on offloading due to its adaptive and failure-aware capabilities to cope
against dynamic environmental conditions such as mobile augmented and virtual reality,
traffic safety, and facial image processing.

This research study has demonstrated through development and evaluation of proposed
edge offloading frameworks how adaptive and failure-aware offloading decision policies can
contribute to fast and reliable system performance, which is needed for latency-sensitive
mobile applications. Proposed edge offloading solutions integrated formal methods,
machine learning,g and decentralized analytical approaches to derive dynamic offloading
policies for assessing reliability levels of edge and cloud servers with the purpose of
predicting and mitigating failrues over time. The evaluation results emphasized the role
of ensuring that unreliable edge servers were less likely to be selected for offloading and
task execution, which can be prolonged or postponed due to occurred failures.

In this study, we evaluated methodologies used both in simulation and real-world settings
and empirically validated theoretical offloading findings practically. Evaluation results
have shown that our proposed offloading solutions did minimize application response time
and failures rates, prolong battery lifetime and optimize monetary resource utilization
costs compared to cloud-based solutions and baselines methodologies taken from the
literature. These critical findings should incentivize further research to find other
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offloading alternatives that balances performance with other objectives like trustworthiness
and credibility, to make offloading more reliable and resilient.

8.2 Limitations

Although this study have shown promising preliminary research results, the proposed
solutions still do not eliminate uncertainties completely. Monitored resource data and
performance metrics can have lower quality due to noise and error-prone measurements.
Also, during runtime in large-scale systems, it is almost impossible to have a complete
information corpus about the infrastructure state. This compels offloading decision-
making to be performed upon partial and limited data. The robustness of offloading
policies and reliability predictions is critical in such dynamic and large-scale edge systems.

Additional limitations are used methodologies themselves including heuristics, formal
methods, and machine learning models. Heuristic methods such as reputation systems
can be limiting in tracking historical performance depending on weight factors, which can
be biased in more diverse application and infrastructure setups. Formal methods maybe
can give rigorous and guaranteed solutions, but lack flexibility and adaptivity for dynamic
conditions and circumstances. Machine learning predictive models need continuous
re-update and learning, and rely heavily on data quality, which can be compromised
depending on the reliability of monitoring instrumentation.

The system architectures that we relied on in this study followed a three-tier mobile-edge-
cloud architectural pattern. Other architectural patterns were not employed for evaluation
purposes, such as mobile-edge without cloud connectivity, or device-to-device offloading,
which is inevitable in infrastructureless or minimum infrastructure environments like
vehicular networks. Also, extreme failure cases were not examined like natural disasters,
where availability zones or regional locations are unavailable, to test the robustness and
resilience. In our experiments we used real datasets, which do not contain such high-stress
situations since they are rare and hardly reproducible.

8.3 Future Work

Based on theoretical findings, evaluation results, and identified limitations, we propose
several research directions and venues to investigate and explore for further development
of efficient, reliable, failure-aware, and adaptive edge offloading. First venue could be
decentralized offloading decision-making in a distributed unreliable edge. Multi-agent
deep reinforcement learning and stochastic game theory could be viable methods to
copre with failures uncertainty in distributed settings. They can dynamically adapt to
changeable environmental parameters and mutually coordinate offloading decisions to
output optimal offloading strategies that should lead to welfare benefit of all effected
offloading actors.
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Second venue for future work considerations are lightweight predictive machine learning
models. These kinds of solutions are deployed directly on resource-limited devices without
imposing high resource consumption, and can dynamically predict future events and
trends for more informed decision-making. Methods like personalized federated learning
could be explored for predicting performance or reliability levels over time. The approach
could improve real-time and adaptive decision-making without sacrificing mobile resources
and potentially nullify the benefits of offloading.

A third venue for research considerations is further exploration of formal methods and
their hybrid integration with machine learning models. The goal would be to combine
formal methods’ mathematical rigour with machine learnings’ stochastic predictions
to enable consistent and predictable high-performance, especially for latency-sensitive
mobile applications that require high-reliability guarantees. Formal methods through
formal verification and validation techniques can guarantee the feasibility and correctness
of offloading decisions, while machine learning can assign probability levels to offloading
decisions or locations about their performance impact or reliability assessment.

And the last venue would be more empirical and industrial-oriented edge offloading
solutions, which are deployed in live production environments. The goal would be
to expand the scalability of edge offloading solutions and identify in which concrete
use cases would be most beneficial to deploy the offloading solution. Also, necessary
software artifacts for development, deployment and runtime execution of edge offloading
frameworks should be identified, including tools, frameworks, and libraries. It should be
considered how to integrate offloading software development lifecycle into existing legacy
systems and asses state-of-the-art technology stacks’ adequacy. Otherwise, novel custome
software artifacts should be invented to support edge offloading development lifecycles.
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Overview of Generative AI Tools
Used

GrammarlyGO and ChatGT-4o tools were used as an aid in the writing of this thesis.
Both tools were used with intent to improve clarity, readability, and unambiguity of the
thesis content. They improved text quality without changing the inherent semantics of
original text version.

The GrammarlyGO tool was utilized for correcting grammatical mistakes, spelling errors,
and sentence re-phrasing. The tool made writing clearer and easier to read. Identified
word or sentence errors were highlighted together with text suggestions without generating
new synthetic text. The accepted suggested improvements were only localized at the
sentence level without altering the original meaning of the text.

ChatGPT-4o was mostly used for brainstorming around the structure and organization
of the thesis, generating key points and concepts as a basis for storyline creation and
content writing, and getting feedback about the text quality. It aided in text clarification
and adjusting writing style for simplifying complex concepts, but without losing technical
soundness.

The text generated by the AI tools was refined thoroughly without compromising the
author’s original intent and meaning. The final content version contains the original
author’s contributions by respecting academic ethical conduct.
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Glossary

Artificial Intelligence (AI) The simulation of human intelligence in machines that
can learn, reason, and solve problems, often used in predictive offloading and
reliability modeling.

Blockchain A decentralized digital ledger technology used for secure transactions and
trust management in distributed computing.

Central Processing Unit (CPU) The primary component of a computer that per-
forms most of the processing inside a system.

Cloud Computing The delivery of computing services over the internet, allowing
on-demand access to computing resources.

Edge Computing A distributed computing paradigm that brings computation and
data storage closer to the location where it is needed to improve response times
and save bandwidth.

Energy Efficiency A key factor in mobile and edge computing that optimizes resource
consumption while maintaining performance.

Failure Prediction A technique that anticipates potential system failures in order to
improve reliability and performance.

FRESCO A fast and reliable edge offloading framework that ensures optimized task
distribution in edge computing environments.

Gigabyte (GB) A unit of digital information storage equal to 1,024 megabytes (MB).

IEEE Institute of Electrical and Electronics Engineers, an organization that sets stan-
dards for computing and telecommunications.

Kubernetes (Kub) An open-source container orchestration system for automating
application deployment, scaling, and management.
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Latency The delay before a data packet is transmitted and received, critical in real-time
computing applications.

Markov Decision Process (MDP) A mathematical framework for modeling decision-
making where outcomes are partly random and partly under the control of a
decision-maker.

Markov Model A stochastic model that represents systems where future states depend
only on the current state, commonly used in failure prediction.

Mobile Computing A technology that allows computation to be performed on mobile
devices while offloading tasks to edge or cloud resources.

Quality of Service (QoS) A measure of performance guarantees such as latency, band-
width, and availability in computing networks.

Reliability The ability of an edge computing system to perform consistently and avoid
failures.

Reputation System A mechanism that evaluates the reliability of edge computing
nodes based on historical data and trust scores.

Satisfiability Modulo Theory (SMT) A decision problem for logical formulas with
respect to combinations of background theories, used in formal verification and
constraint solving.

Task Offloading The process of transferring computational tasks from a mobile device
to edge or cloud servers to optimize performance and energy consumption.

98



Bibliography

[AB18] Atakan Aral and Ivona Brandic. Dependency mining for service resilience
at the edge. In IEEE/ACM Symposium on Edge Computing (SEC), pages
228–242, 2018.

[AB20] Atakan Aral and Ivona Brandić. Learning spatiotemporal failure dependen-
cies for resilient edge computing services. IEEE Transactions on Parallel
and Distributed Systems, 32(7):1578–1590, 2020.

[Ada21] AdamTheAutomator. Kubernetes architecture diagram : Fits components
together, 2021. Accessed: 13-Feb-2025.

[AGA18] Khalid R Alasmari, Robert C Green, and Mansoor Alam. Mobile edge
offloading using mdp. In Int’l. Conf. on Edge Computing, pages 80–90.
Springer, 2018.

[AGH18] Khadija Akherfi, Micheal Gerndt, and Hamid Harroud. Mobile cloud
computing for computation offloading. Applied Comp. and Inf., 14(1):1–16,
2018.

[AO18] Atakan Aral and Tolga Ovatman. A decentralized replica placement
algorithm for edge computing. IEEE Transactions on Network and Service
Management, 15:516–529, 2018.

[ASV+16] Farhan Azmat Ali, Pieter Simoens, Tim Verbelen, Piet Demeester, and
Bart Dhoedt. Mobile device power models for energy efficient dynamic
offloading at runtime. Journal of Systems and Software, 113:173–187, 2016.

[ATD21] Cosmin Avasalcai, Christos Tsigkanos, and Schahram Dustdar. Resource
management for latency-sensitive iot applications with satisfiability. IEEE
Transactions on Services Computing, 15(5):2982–2993, 2021.

[B+06] Gerd Behrmann et al. A tutorial on UPPAAL 4.0. Technical report,
Department of computer science, Aalborg university, 2006.

[BID21] Ammar Battah, Youssef Iraqi, and Ernesto Damiani. Blockchain-based
reputation systems: Implementation challenges and mitigation. Electronics,
10(3):289, 2021.

99



[BL00] Fulvio Babich and Giancarlo Lombardi. A markov model for the mobile
propagation channel. IEEE Transactions on Vehicular Technology, 49(1):63–
73, 2000.

[Bra08] Maury Bramson. Stability of queueing networks. Springer, 2008.

[C+10] Eduardo Cuervo et al. Maui: making smartphones last longer with code
offload. In Int’l. Conf. on Mobile Systems, Applications, and Services,
pages 49–62. ACM, 2010.

[C+11] Byung-Gon Chun et al. Clonecloud: elastic execution between mobile
device and cloud. In ACM Conference on Computer systems, pages 301–314,
2011.

[CC+14] Iadine Chadès, Guillaume Chapron, et al. Mdptoolbox: a multi-platform
toolbox to solve stoch. dyn. prog. problems. Ecography, 37(9):916–920,
2014.

[clo] Intel’s new assault on the data center: 56-core xeons, 10nm fpgas,
100gig ethernet. https://arstechnica.com/gadgets/2019/04/
intels-new-assault-on-the-data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/.
Accessed: 2019-09-05.

[CM04] Vladimir Cherkassky and Yunqian Ma. Practical selection of svm parame-
ters and noise estimation for svm regression. Neural networks, 17(1):113–
126, 2004.

[CZTL16] Zhuo Cheng, Haitao Zhang, Yasuo Tan, and Yuto Lim. Smt-based schedul-
ing for multiprocessor real-time systems. In 2016 IEEE/ACIS 15th Inter-
national Conference on Computer and Information Science (ICIS), pages
1–7. IEEE, 2016.

[DCH+23] Daniel Mawunyo Doe, Dawei Chen, Kyungtae Han, Yanpeng Dai, Jiang
Xie, and Zhu Han. Real-time search-driven content delivery in vehicular
networks for ar/vr-enabled autonomous vehicles. 2023 IEEE/CIC Inter-
national Conference on Communications in China (ICCC), pages 1–6,
2023.

[dCMZLD11] Márcio das Chagas Moura, Enrico Zio, Isis Didier Lins, and Enrique
Droguett. Failure and reliability prediction by support vector machines
regression of time series data. Reliability Engineering & System Safety,
96(11):1527–1534, 2011.

[DCZ+20] Shuiguang Deng, Guanjie Cheng, Hailiang Zhao, Honghao Gao, and Jianwei
Yin. Incentive-driven computation offloading in blockchain-enabled e-
commerce. ACM Transactions on Internet Technology (TOIT), 21(1):1–19,
2020.

100

https://arstechnica.com/gadgets/2019/04/intels-new-assault-on-the-data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/
https://arstechnica.com/gadgets/2019/04/intels-new-assault-on-the-data-center-56-core-xeons-10nm-fpgas-100gig-ethernet/


[DGC17] Corentin Dupont, Raffaele Giaffreda, and Luca Capra. Edge computing
in iot context: Horizontal and vertical linux container migration. In 2017
Global Internet of Things Summit (GIoTS), pages 1–4. IEEE, 2017.

[DL+15] Alexandre David, Kim G Larsen, et al. Uppaal smc tutorial. International
Journal on Software Tools for Technology Transfer, 17(4):397–415, 2015.

[DLWZ20] Xiaoheng Deng, Jin Liu, Leilei Wang, and Zhihui Zhao. A trust evaluation
system based on reputation data in mobile edge computing network. Peer-
to-Peer Networking and Applications, 13:1744–1755, 2020.

[DMB18] Vincenzo De Maio and Ivona Brandic. First hop mobile offloading of dag
computations. In IEEE/ACM Int’l. Symp. on Cluster, Cloud and Grid
Comp., pages 83–92, 2018.

[DMB19] Vincenzo De Maio and Ivona Brandic. Multi-objective mobile edge pro-
visioning in small cell clouds. In ACM/SPEC Int’l. Conf. on Perf. Eng.,
pages 127–138, 2019.

[DP+13] Mark DeVirgilio, W David Pan, et al. Internet delay statistics: Measuring
internet feel using a dichotomous hurst parameter. In IEEE Southeastcon,
pages 1–6, 2013.

[DSRS19] Mazin Debe, Khaled Salah, Muhammad Habib Ur Rehman, and Davor
Svetinovic. Iot public fog nodes reputation system: A decentralized solution
using ethereum blockchain. In Proceedings of the IEEE International
Conference on Communications (ICC), pages 1–10, 2019.

[dSV+19] da Silva Veith et al. Multi-objective reinforcement learning for reconfiguring
data stream analytics on edge computing. In International Conference on
Parallel Processing, page 106, 2019.

[DSX+18] Nour Diallo, Weidong Larry Shi, Lei Xu, Zhimin Gao, Lin Chen, Yang
Lu, Nolan Shah, Larry Carranco, Ton Chanh Le, Abraham Bez Surez,
and Glenn Turner. egov-dao: a better government using blockchain based
decentralized autonomous organization. 2018 International Conference on
eDemocracy & eGovernment (ICEDEG), pages 166–171, 2018.

[etha] ""ethereum test network" https://medium". "Ethereum Test network"
https://medium.com/coinmonks/ethereum-test-network-21baa86072fa
(Accessed: 2024-02-07).

[ethb] ""what is gwei? the cryptocurrency explained" https://www".
"What Is Gwei? The Cryptocurrency Explained"
https://www.investopedia.com/terms/g/gwei-ethereum.asp (Accessed:
2024-02-07).

101



[FA18] Qiang Fan and Nirwan Ansari. Towards workload balancing in fog com-
puting empowered iot. IEEE Transactions on Network Science and Engi-
neering, 7(1):253–262, 2018.

[FHZ+22] Chuan Feng, Pengchao Han, Xu Zhang, Bowen Yang, Yejun Liu, and
Lei Guo. Computation offloading in mobile edge computing networks: A
survey. Journal of Network and Computer Applications, 202:103366, 2022.

[gcl] ""cloud storage pricing" https://cloud". "Cloud Storage pricing"
https://cloud.google.com/storage/pricing (Accessed: 2022-30-11).

[GD05] Saikat Guha and Neil Daswani. An experimental study of the skype
peer-to-peer voip system. Technical report, Cornell University, 2005.

[Gra23] GrandViewResearch. Mobile application market size, share and trends
analysis report by store (google store, apple store, others), by application
(gaming, music and entertainment, health and fitness, social networking),
and region, segment forecasts, 2024 - 2030, 2023. Accessed: 13-Feb-2025.

[hea] Network heartbeat configuration. https://www.aerospike.com/
docs/operations/configure/network/heartbeat/. Accessed:
2020-09-02.

[HLMZ21] Xiaoyan Huang, Supeng Leng, Sabita Maharjan, and Yan Zhang. Multi-
agent deep reinforcement learning for computation offloading and inter-
ference coordination in small cell networks. In Proceedings of the IEEE
International Conference on Communications (ICC), pages 1–6, 2021.

[Høf14] Andrea Høfler. Smt solver comparison. Graz, July, page 17, 2014.

[HXW+20] Miao Hu, Zixuan Xie, Di Wu, Yipeng Zhou, Xu Chen, and Liang Xiao.
Heterogeneous edge offloading with incomplete information: A minority
game approach. IEEE Transactions on Parallel and Distributed Systems,
31(9):2139–2154, 2020.

[IGAK+15] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli
Ab Karim, Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and
Ong Hong Hoe. Evaluation of docker as edge computing platform. In 2015
IEEE Conference on Open Systems (ICOS), pages 130–135. IEEE, 2015.

[IMRN20] Sarah Iqbal, Asad Waqar Malik, Anis Ur Rahman, and Rafidah Md Noor.
Blockchain-based reputation management for task offloading in micro-level
vehicular fog network. IEEE Access, 8:52968–52980, 2020.

[INMR21] Sarah Iqbal, Rafidah Md Noor, Asad Waqar Malik, and Anis U Rahman.
Blockchain-enabled adaptive-learning-based resource-sharing framework
for iiot environment. IEEE Internet of Things Journal, 8(19):14746–14755,
2021.

102

https://www.aerospike.com/docs/operations/configure/network/heartbeat/
https://www.aerospike.com/docs/operations/configure/network/heartbeat/


[JCG+19] Congfeng Jiang, Xiaolan Cheng, Honghao Gao, Xin Zhou, and Jian Wan.
Toward computation offloading in edge computing: A survey. IEEE Access,
7:131543–131558, 2019.

[JS19] Lara Lorna Jiménez and Olov Schelén. Docma: A decentralized orchestrator
for containerized microservice applications. In 2019 IEEE Cloud Summit,
pages 45–51, 2019.

[K+11] M. Kwiatkowska et al. PRISM 4.0: Verification of probabilistic real-time
systems. In International Conference on Computer Aided Verification,
pages 585–591, 2011.

[KA+12] Sokol Kosta, Andrius Aucinas, et al. Thinkair: Dynamic resource allocation
and parallel execution in the cloud for mobile code offl. In IEEE Infocom,
pages 945–953, 2012.

[KL10] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users:
Can offloading computation save energy? Computer, (4):51–56, 2010.

[KLBK24] Eugene Korneev, M. Liubogoshchev, D. Bankov, and Evgeny M. Khorov.
How to model cloud vr: An empirical study of features that matter. IEEE
Open Journal of the Communications Society, 5:4155–4170, 2024.

[KXL+21] Jiawen Kang, Zehui Xiong, Xuandi Li, Yang Zhang, Dusit Niyato, Cyril
Leung, and Chunyan Miao. Optimizing task assignment for reliable
blockchain-empowered federated edge learning. IEEE Transactions on
Vehicular Technology, 70(2):1910–1923, 2021.

[LL23] Chunhui Liu and Kai Liu. Toward reliable dnn-based task partitioning and
offloading in vehicular edge computing. IEEE Transactions on Consumer
Electronics, 70(1):3349–3360, 2023.

[LMFH23] Jingyu Liang, Bowen Ma, Zihan Feng, and Jiwei Huang. Reliability-
aware task processing and offloading for data-intensive applications in
edge computing. IEEE Transactions on Network and Service Management,
20(4):4668–4680, 2023.

[LMP+21] Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic, Josip
Lasic, and Ivona Brandic. Increasing traffic safety with real-time edge
analytics and 5g. In Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking, pages 19–24, 2021.

[LZC+20] Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, and Lusheng
Wang. A survey on computation offloading modeling for edge computing.
Journal of Network and Computer Applications, 169:102781, 2020.

103



[MAUY19] Bashir Mohammed, Irfan Awan, Hassan Ugail, and Muhammad Younas.
Failure prediction using machine learning in a virtualised hpc system and
application. Cluster Computing, 22(2):471–485, 2019.

[MB17] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on
architecture and computation offloading. arXiv preprint arXiv:1702.05309,
2017.

[MJSS+18] Carlos Molina-Jimenez, Ioannis Sfyrakis, Ellis Solaiman, Irene Ng,
Meng Weng Wong, Alexis Chun, and Jon Crowcroft. Implementation
of smart contracts using hybrid architectures with on and off–blockchain
components. In 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2), pages 83–90. IEEE, 2018.

[mob] The specs that really count when buying a phone.
https://smartphones.gadgethacks.com/how-to/
specs-really-count-when-buying-phone-0171678/. Ac-
cessed: 2019-09-05.

[MUB19] Vincenzo De Maio, Rafael Brundo Uriarte, and Ivona Brandic. Energy
and profit-aware proof-of-stake offloading in blockchain-based vanets. In
Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), pages 177–186, 2019.

[MYZ+24] Jiayu Ma, Yuhan Yi, Wenqian Zhang, Yue Sun, and Guanglin Zhang.
Blockchain-based task offloading for mobile edge computing networks with
server collaboration. 2024 5th Information Communication Technologies
Conference (ICTC), pages 221–226, 2024.

[ope] "opencellid, 2021, (https://opencellid". OpenCellID, 2021,
(https://opencellid.org/).

[OWYZ08] Shumao Ou, Yumin Wu, Kun Yang, and Bosheng Zhou. Performance
analysis of fault-tolerant offloading systems for pervasive services in mobile
wireless environments. In IEEE Int’l. Conf. on Communications, pages
1856–1860, 2008.

[PNMH21] Tahmid Hasan Pranto, Abdullah Al Noman, Atik Mahmud, and Akm Ba-
halul Haque. Blockchain and smart contract for iot enabled smart agricul-
ture. PeerJ Computer Science, 7, 2021.

[Put14] Martin L Puterman. Markov Decision Processes.: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, 2014.

[PZBX22] Kai Peng, Bohai Zhao, Muhammad Bilal, and Xiaolong Xu. Reliability-
aware computation offloading for delay-sensitive applications in mec-
enabled aerial computing. IEEE Transactions on Green Communications
and Networking, 6(3):1511–1519, 2022.

104

https://smartphones.gadgethacks.com/how-to/specs-really-count-when-buying-phone-0171678/
https://smartphones.gadgethacks.com/how-to/specs-really-count-when-buying-phone-0171678/


[RGW+21] Jie Ren, Ling Gao, Xiaoming Wang, Miao Ma, Guoyong Qiu, Hai Wang,
Jie Zheng, and Zheng Wang. Adaptive computation offloading for mo-
bile augmented reality. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5(4):1–30, 2021.

[RKG18] Robert Robere, Antonina Kolokolova, and Vijay Ganesh. The proof com-
plexity of smt solvers. In Computer Aided Verification: 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II 30, pages
275–293. Springer, 2018.

[RM14] Olivier Rioul and José Carlos Magossi. On shannon’s formula and hartley’s
rule: Beyond the mathematical coincidence. Entropy, 16(9):4892–4910,
2014.

[SDS+23] Jinming Shi, Jun Du, Yuan Shen, Jian Wang, Jian Yuan, and Zhu Han.
Drl-based v2v computation offloading for blockchain-enabled vehicular
networks. IEEE Transactions on Mobile Computing, 22:3882–3897, 2023.

[SG09] Bianca Schroeder and Garth A Gibson. A large-scale study of failures in
high-performance computing systems. IEEE transactions on Dependable
and Secure Computing, 7(4):337–350, 2009.

[SHBZ19] Tonghoon Suk, Jinho Hwang, Muhammed Fatih Bulut, and Zemei Zeng.
Failure-aware application placement modeling and optimization in high
turnover devops environment. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), pages 115–123, 2019.

[SLE19] Amit Samanta, Yong Li, and Flavio Esposito. Battle of microservices:
Towards latency-optimal heuristic scheduling for edge computing. In 2019
IEEE Conference on Network Softwarization (NetSoft), pages 223–227,
2019.

[SMKP23] Zahra Najafabadi Samani, Narges Mehran, Dragi Kimovski, and Radu
Prodan. Proactive sla-aware application placement in the computing
continuum. In 2023 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 468–479. IEEE, 2023.

[SPJ17] Dimas Satria, Daihee Park, and Minho Jo. Recovery for overloaded mobile
edge computing. Future Generation Computer Systems, 70:138–147, 2017.

[SSX+12] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K Nurminen, Matti Kemp-
painen, and Pan Hui. Can offloading save energy for popular apps? In
Seventh ACM international workshop on Mobility in the evolving internet
architecture, pages 3–10, 2012.

105



[ST20] Amit Samanta and Jianhua Tang. Dyme: Dynamic microservice scheduling
in edge computing enabled iot. IEEE Internet of Things Journal, 7(7):6164–
6174, 2020.

[SWS21] Ellis Solaiman, Todd Wike, and Ioannis Sfyrakis. Implementation and
evaluation of smart contracts using a hybrid on-and off-blockchain architec-
ture. Concurrency and computation: practice and experience, 33(1):e5811,
2021.

[SYCC21] Lijun Sun, Qian Yang, Xiao Chen, and Zhenxiang Chen. Rc-chain:
Reputation-based crowdsourcing blockchain for vehicular networks. Journal
of network and computer applications, 176:102956, 2021.

[TE+16] Mohammad Tawalbeh, Alan Eardley, et al. Studying the energy consump-
tion in mobile devices. Procedia Computer Science, 94:183–189, 2016.

[TL+16] Mati B Terefe, Heezin Lee, et al. Energy-efficient multisite offloading policy
using mdp for mcc. Pervasive and Mobile Computing, 27:75–89, 2016.

[TYLG20] Jie Tang, Rao Yu, Shaoshan Liu, and Jean-Luc Gaudiot. A container
based edge offloading framework for autonomous driving. IEEE Access,
8:33713–33726, 2020.

[Vis22] VisualCpaitalist. Charted: The rise of mobile device subscriptions world-
wide, 2022. Accessed: 13-Feb-2025.

[WTAK20] Li Wu, Johan Tordsson, Alexander Acker, and Odej Kao. Microras:
Automatic recovery in the absence of historical failure data for microservice
systems. In 2020 IEEE/ACM 13th International Conference on Utility
and Cloud Computing (UCC), pages 227–236, 2020.

[Wu18a] Huaming Wu. Multi-objective decision-making for mobile cloud offloading:
A survey. IEEE Access, 6:3962–3976, 2018.

[Wu18b] Huaming Wu. Performance modeling of delayed offloading in mobile
wireless env. with failures. IEEE Comm. Letters, 22(11):2334–2337, 2018.

[WWW13] Qiushi Wang, Huaming Wu, and Katinka Wolter. Model-based performance
analysis of local re-execution scheme in offloading system. In IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 1–6,
2013.

[WYS21] Yue Wang, Tao Yu, and Kei Sakaguchi. Context-based mec platform for
augmented-reality services in 5g networks. In 2021 IEEE 94th Vehicular
Technology Conference (VTC2021-Fall), pages 1–5. IEEE, 2021.

106



[XEMDN21] Bin Xiang, Jocelyne Elias, Fabio Martignon, and Elisabetta Di Nitto. A
dataset for mobile edge computing network topologies. Data in Brief,
39:107557, 2021.

[yCLlL23] Zheng yi Chai, Xu Liu, and Ya lun Li. A computation offloading algo-
rithm based on multi-objective evolutionary optimization in mobile edge
computing. Eng. Appl. Artif. Intell., 121:105966, 2023.

[YLG+20] Yao Yu, Shumei Liu, Lei Guo, Phee Lep Yeoh, Branka Vucetic, and Yonghui
Li. Crowdr-fbc: A distributed fog-blockchains for mobile crowdsourcing
reputation management. IEEE Internet of Things Journal, 7(9):8722–8735,
2020.

[YLL15] Shanhe Yi, Cheng Li, and Qun A. Li. A survey of fog computing: Concepts,
applications and issues. Proceedings of the 2015 Workshop on Mobile Big
Data, 2015.

[YYC+23] Jian Yang, Qifeng Yuan, Shuangwu Chen, Huasen He, Xiaofeng Jiang, and
Xiaobin Tan. Cooperative task offloading for mobile edge computing based
on multi-agent deep reinforcement learning. In Proceedings of the IEEE
International Conference on Communications (ICC), pages 1–6, 2023.

[ZAB19] Josip Zilic, Atakan Aral, and Ivona Brandic. Efpo: Energy efficient
and failure predictive edge offloading. In 12th IEEE/ACM International
Conference on Utility and Cloud Computing, pages 165–175, 2019.

[ZDMAB22] Josip Zilic, Vincenzo De Maio, Atakan Aral, and Ivona Brandic. Edge
offloading for microservice architectures. In Proceedings of the 5th Interna-
tional Workshop on Edge Systems, Analytics and Networking, pages 1–6,
2022.

[ZEMR23] Zeinab Zabihi, Amir Masoud Eftekhari Moghadam, and Mohammad Hos-
sein Rezvani. Reinforcement learning methods for computation offloading:
a systematic review. ACM Computing Surveys, 56(1):1–41, 2023.

[ZLJZ21] Yutong Zhou, Xi Li, Hong Ji, and Heli Zhang. Blockchain-based trustworthy
service caching and task offloading for intelligent edge computing. 2021
IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2021.

[ZLLL17] Yifan Zhang, Yunxin Liu, Xuanzhe Liu, and Qun Li. Enabling accurate
and efficient modeling-based cpu power estimation for smartphones. In
2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE, 2017.

[ZNW15] Yang Zhang, Dusit Niyato, and Ping Wang. Offloading in mobile cloudlet
systems with intermittent connectivity. IEEE Transactions on Mobile
Computing, 14(12):2516–2529, 2015.

107



[ZWSZ21] Haibin Zhang, Rong Wang, Wen Sun, and Huanlei Zhao. Mobility manage-
ment for blockchain-based ultra-dense edge computing: A deep reinforce-
ment learning approach. IEEE Transactions on Wireless Communications,
20(11):7346–7359, 2021.

[ZWY+21] Zhili Zhou, Meimin Wang, Ching-Nung Yang, Zhangjie Fu, Xingming
Sun, and QM Jonathan Wu. Blockchain-based decentralized reputation
system in e-commerce environment. Future Generation Computer Systems,
124:155–167, 2021.

[ZYP+22] Nan Zhao, Zhiyang Ye, Yiyang Pei, Ying-Chang Liang, and Dusit Niyato.
Multi-agent deep reinforcement learning for task offloading in uav-assisted
mobile edge computing. In Proceedings of the IEEE International Confer-
ence on Communications (ICC), pages 1–6, 2022.

108


	Previous Publications
	Abstract
	Contents
	Introduction
	Problem Statement
	Emerging Fields in Edge Offloading
	Research Questions
	Scientific Contributions
	Significance of the Study
	Thesis Organization

	Background
	Research Focus
	Methods
	Testbeds and infrastructure
	Research Contributions Overview

	Energy Efficient and Failure Predictive Edge Offloading
	MDP formulation and system architecture
	Offloading Model

	Edge Offloading for Microservice Architectures
	Edge Offloading Framework
	Proposed Method
	Prototype Implementation

	Fast and Reliable Edge Offloading using Reputation-based Hybrid Smart Contracts
	System Model
	Problem Formulation

	Evaluation
	Energy Efficient and Failure Predictive Edge Offloading Evaluation
	Edge Offloading for Microservice Architecture Evaluation
	Evaluation of Fast and Reliable Edge Offloading using Reputation-based Hybrid Smart Contract

	Related Work
	Energy-efficient and failure-aware edge offloading
	Microservice-based edge offloading
	Blockchain-enhanced reliability and offloading mechanisms

	Conclusion
	Summary
	Limitations
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Bibliography

