
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

FRESCO: Fast and Reliable Edge Offloading with
Reputation-based Hybrid Smart Contracts

Josip Zilic, TU Wien, Vincenzo De Maio, TU Wien, Shashikant Ilager, University of Amsterdam, Ivona Brandic,
TU Wien

Abstract—Mobile devices offload latency-sensitive application
tasks to edge servers to satisfy applications’ Quality of Service
(QoS) deadlines. Consequently, ensuring reliable offloading with-
out QoS violations is challenging in distributed and unreliable
edge environments with diverse resource and reliability levels.
We propose FRESCO, a fast and reliable edge offloading frame-
work that utilizes a blockchain-based reputation system, which
enhances the reliability of offloading in the distributed edge. The
distributed reputation system tracks the historical performance
of edge servers, while blockchain through a consensus mechanism
ensures that sensitive reputation information is secured against
tampering. However, blockchain consensus typically has high
latency, and therefore we employ a Hybrid Smart Contract
(HSC) as a reputation state manager that automatically computes
and stores reputation securely on-chain (i.e., on the blockchain)
while allowing fast offloading decisions off-chain (i.e., outside
of blockchain). The offloading decision engine uses a reputation
score from HSC to derive fast offloading decisions, which
are based on Satisfiability Modulo Theory (SMT). The SMT
can formally guarantee a feasible solution that is valuable for
latency-sensitive applications that require high reliability. With a
combination of an on-chain HSC reputation state manager and
an off-chain SMT decision engine, FRESCO offloads tasks to
reliable servers without being hindered by blockchain consensus.
In our experiment, FRESCO reduces response time by up to
7.86 times and saves energy by up to 5.4% compared to all
baselines while minimizing QoS violations to 0.4% and achieving
an average decision time of just 5.05 milliseconds.

Index Terms—edge offloading, reputation, hybrid smart con-
tract, satisfiability modulo theory.

I. INTRODUCTION

LATENCY-SENSITIVE mobile applications are subject to
strict Quality of Service (QoS) requirements to enhance

the user experience [1]–[3]. Such applications are resource-
intensive, and executing them on resource-limited and battery-
powered mobile devices can cause QoS violations. A typical
solution to improve performance is to offload applications’
tasks to edge servers [4], [5]. However, reliability is an issue
for edge servers, due to (1) limited resources that cannot com-
pensate for unstable connections and lack of support systems
(e.g., cooling and backup power [6], [7]), and (2) volatile
workloads which yields inconsistent performance for shared
multi-tenant edge environments [8]. Consequently, offloading
to unreliable edge servers can cause failures [6], [9] and thus
postpone or prolong offloading and potentially violate QoS.

Estimating reliability at the edge is challenging due to geo-
distribution, with diverse resources and reliability levels [10],
[11], and devices mobility where changing edge environments
and interacting with previously unknown servers is a norm [6],
[12].

Many offloading works employ blockchain-enabled [13]–
[15] or blockchain-based reputation systems [16]–[19] to
achieve reliable offloading. As a trustworthiness metric, repu-
tation scores can be associated with edge servers based on past
performance and stored in a distributed database for informa-
tive offloading decision-making. Integrating a reputation with
blockchain is sensible in malicious environments where differ-
ent actors can tamper with a reputation to unjustifiably inflate
selected servers while downgrading others to gain incentives
unfairly, potentially leading to end-user QoS violations [16]–
[19]. However, there are a few challenges of edge offloading
with blockchain-based reputation systems remain unresolved,
such as challenge (C1) without providing formal guarantee
about the feasibility of offloading decisions which is important
for applications that require high reliability, like latency-
sensitive ones, (C2) encountering edge servers in distributed
edge environments that have diverse reliability levels and with
whom did not have any prior experience, (C3) not addressing
reliability in terms of edge failures, and (C4) neglecting the
impact of long-latency blockchain consensus on offloading
decisions, especially for latency-sensitive applications.

To address these challenges, we introduce a FRESCO edge
offloading framework, which optimizes both offloading and
reliability in distributed unreliable edge scenarios for latency-
sensitive applications. FRESCO consists of offloading and re-
liability components. Regarding offloading, we employ an of-
floading decision engine based on a formal method called sat-
isfiability modulo theory (SMT) which is deployed on the mo-
bile device. The SMT addresses challenge (C1) by providing
formal proof assurance that relevant resource limitations and
timing constraints are satisfied, which fits resource-constrained
and latency-sensitive settings. SMT relies on constraints and
logic rather than environmental variables like heuristics or
machine learning, which makes it an environment-agnostic
approach, suitable for distributed scenarios (C2).

Concerning reliability, to address challenge (C3), thanks to
the performance-tracking feature, the blockchain-based rep-
utation system is re-purposed for estimating the reliability
levels in terms of failures rather than trustworthiness. How-
ever, blockchain-based systems are slowly responsive due to
consensus protocols that conflict with our latency objective.
To enable a blockchain-based reputation system for latency-
sensitive applications (C4), we employ a hybrid smart contract
(HSC) as a reputation state manager. HSC allows off-chain
(i.e., outside of blockchain) transactions like fast offloading
decisions that require performance while retaining secured on-
chain storage (i.e., on the blockchain) of sensitive reputation
information against malicious tampering. The HSC, deployed

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

on the blockchain, is queried by mobile devices to retrieve
secured reputation scores about servers’ reliability levels to the
SMT-based decision engine for reliable offloading decisions.
In summary, FRESCO bypasses slow consensus with HSC
for fast off-chain offloading decisions on reliable edge servers
while preserving a secured on-chain reputation.

We evaluated FRESCO against Skype availability traces,
simulated latency-sensitive applications, dynamic queuing
workload model, and scalable infrastructure from the Open-
CellID dataset. FRESCO reduces response time by up to 7.86
times and saves energy by up to 5.4% compared to all base-
lines while minimizing QoS violations to 0.4% and achieving
a low-latency average decision time of 5.05 milliseconds.

The rest of the paper is structured as follows. Section II
presents methodologies, while Section III presents the system
model. Section IV formalizes the problem and presents our
algorithm. In Section V, we present our experiment and
evaluation results. In Section VI, we discuss the assumptions
and limitations of our approach. Finally, the related work and
conclusion are in Sections VII and VIII.

II. MOTIVATION AND BACKGROUND

A. Motivational use case

Fig. 1: A motivational use case: NaviAR mobile augmented
reality application and its tasks

Latency-sensitive mobile applications are usually resource-
intensive and require low-latency execution. An example is
a Mobile Augmented Reality (MAR), where any significant
delay hinders the users’ experience [2], [3]. One of the typical
MAR applications is personal live navigation called NaviAR.
NaviAR supports users with real-time navigation by displaying
virtual path information over the physical environment.

Figure 1 shows a typical NaviAR execution flow [3]. The
application is represented as a Directed Acyclic Graph (DAG)
to model execution order and task interdependencies. The
NaviAR consists of heterogeneous tasks where some are
offloadable while others are not due to dependency on local
device functions (e.g. camera). First, the destination location
is taken as input from the user, upon which the map is loaded
(steps 1a and 1b). Afterward, the geo-information is processed
to identify the current and destination locations on the map
(step 2). Then, the shortest route is calculated (step 3) based
on which motion commands (i.e., left, right) are generated
to navigate the user (step 4). Motion commands are rendered
visually to guide the user in the physical environment (step
5). Finally, the user location is constantly updated (step 6) on
the display until the user reaches the final destination (step 7).

Resource-intensive tasks (e.g. MAP, SHORTEST PATH) re-
quire offloading to the nearby edge servers to achieve desired
performance [3]. Failures on edge servers can affect offloading,
causing additional delay [11]. Identifying reliable edge servers
is of paramount importance to ensure a good user experience.
Furthermore, during mobility, mobile devices connect to dif-
ferent edge servers which have varying levels of resources and
reliability. It necessitates a reliable offloading functionality that
is robust to changing environmental conditions.

B. Blockchain-based Reputation Systems and Hybrid Smart
Contracts

Blockchain is a decentralized network that secures transac-
tions through consensus, where all participating nodes agree
on the current blockchain state. It is difficult to tamper trans-
actions without compromising with a majority of nodes on a
large-scale public blockchain (e.g. Ethereum). Thus, a public
blockchain with consensus ensures tampering-resistance.

A smart contract is a self-executing program that automati-
cally enforces agreed rules when certain events or conditions
on the blockchain are met. Thanks to the tamper-resistant
property of the blockchain, smart contracts can securely exe-
cute transactions that include sensitive information. However,
the blockchain imposes long latencies and limits function-
alities that smart contracts can provide by excluding non-
deterministic operations (e.g. floating-point arithmetic) [20].
Additionally, blockchain is self-contained and accepts only
transactions that occur on-chain. Overall, it is unsuitable for
complex, latency-sensitive, and off-chain applications.

Hybrid smart contracts (HSC), on the other hand. allow
transactions to happen off-chain, avoiding slow consensus.
Offloading decisions, which are performance-critical, are con-
ducted off-chain while the sensitive reputation information,
which requires trust, is secured on-chain. For instance, repu-
tation information, as a subjective belief about the consistency
of past performance, can be considered sensitive information
to identify reliable servers for executing tasks. Reputation can
be maliciously tampered with to take a competitive advantage
over other servers which can lead to less efficient and reliable
offloading and potentially to QoS violations. Therefore, a trust-
sensitive reputation system is deployed on-chain as an HSC
while latency-sensitive offloading is performed off-chain.

III. SYSTEM MODEL

Figure 2 illustrates the edge offloading lifecycle model,
which manages offloaded tasks and estimates the reliability
level of edge servers based on monitored performance. The
two main components of our solution are the reputation state
manager and the offloading decision engine. The reputation
state manager is deployed as an HSC on the public blockchain
network, estimates the critical reliability level of edge servers
as a reputation score, and stores it securely on a public
blockchain thanks to a consensus mechanism. The decision
engine offloads tasks to an off-chain cluster based on reputa-
tion scores retrieved from the reputation state manager. The
decision engine is often exposed as an intermediate central
third-party service [5], making it vulnerable as a single point

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Fig. 2: Edge offloading lifecycle model

of failure in an unreliable environment. In our system, the
decision engine is deployed on the mobile device, therefore its
design choices should ensure a limited overhead, to guarantee
fast decision time even on limited-resource mobile devices.

The lifecycle is executed as follows. In steps 1a and 1b,
the mobile device retrieves the reputation score from HSC
and monitors resources on the off-chain cluster. Based on the
procured information, the mobile device calculates offloading
decisions and offloads tasks to the off-chain cluster in step
2. Task results are returned to the mobile device after exe-
cution in step 3. The mobile device records the performance
metric (e.g., response time) and sends it to the HSC on the
blockchain for evaluation in step 4. Finally, HSC compares
the received performance metric to the deadlines and updates
the reputation score accordingly. The lifecycle is repeated until
the application is terminated. Noteworthy to mention, is that
blockchain consensus is triggered only upon reputation update
but not at reputation retrieval, which makes cached reputation
score accessible in (near-)real-time.

A. Queuing and response time

Fig. 3: Dynamic queuing workload model

The workload on the shared infrastructure can be highly
dynamic, where response times are hard to predict due to
heterogeneous resources and tasks. To describe such dynamic
behavior, we employ a queuing theory. Figure 3 illustrates
the dynamic queuing workload model at the edge, which
consists of three queuing parts. The task offloading queue
models the task offloading, where multiple mobile task sources
generate and offload tasks to remote servers through a shared

communication channel. The task execution queue model the
execution of the task, where the servers share their resources to
execute multiple tasks. The task result delivery queue models
the delivery of task results, where the results are sent back to
the sources through the shared channel. The response time is
defined as RT (v, t, h) = To(h, t)+Te(v, t)+Td(h, t) where t
is a task, h is a communication channel between pairs that can
correspond to devices and servers, v ∈ V where V = N∪{m}
is a set of task execution nodes where a task can be executed
on remote edge and cloud servers N and local mobile device
m, To(h, t) is offloading latency, Te(v, t) is execution latency
and Td(h, t) is delivery latency. We assume that the channels
are on distinct frequencies to avoid interference [21] and em-
ploy a nonpreemptive First-Come-First-Served queuing policy
that makes the performance predictable, which is important
for high-reliability applications.

1) Communication latency: The shared channels in offload-
ing and delivery are modeled as M/M/1 queues, which emu-
lates practical transmission due to fair sharing and different
bandwidths [21]. We will use the term communication and
symbol Tc(h, t) when referring to offloading and delivery.

The arrival process relates to task generation, modeled as
Poisson with an arrival rate λc(s) where s ∈ S is a node
in the task load generation set S = G ∪ N ∪ {m} which
consists of mobile devices G that have the sole function of
generating tasks, remote servers N and mobile device m
which has decision engine deployed. Task sizes are sampled
from the exponential distribution with task size rate data(t),
accounting for the diversity of tasks’ t resources. Generated
tasks occupy shared resources, where bandwidth utilization
Uc(h, t) is defined as a ratio of generated tasks λc(s) ·data(t)
and total bandwidth bwtotal(h):

Uc(h, t) =
∑
s∈Dc

λc(s) · data(t)
bwtotal(h)

(1)

where Dc ⊂ S represents a subset of load generators in
a specific communication direction, like Do = G ∪ {m}
represents task generators and mobile devices that generate
tasks in the offloading channel c = o, or only remote servers
Dd = N on a delivery channel when task results are delivered
after execution c = d.

The waiting time wc(h, t) is a delay due to resource sharing
between tasks, which is a ratio of the current enqueued tasks
and the available bandwidth (difference between total and
utilized bandwidth):

wc(h, t) =
∑
s∈Dc

λc(s) · data(t)
bwtotal(h)− bwutil(h)

, (2)

The communication service time µc(h, t) models the actual
transmission between devices and remote servers. Communi-
cation is subject to the Shannon-Hartley theorem [22] which
defines the maximum data transmitted over a noisy link.
Hence, the communication service time µc(h, t) is:

µc(h, t) =
data(t)

bwavail(h) · log2(1 +
pc(h)

n0·bwavail(h)
)

(3)

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

where n0 is the noise spectral density and pc channel
transmission power. Finally, the total communication latency
Tc(h, t) is a sum of communication waiting time µc(h) and
service time wc(h) such as Tc(h, t) = µc(h, t) + wc(h, t).

2) Execution latency: The execution on the shared infras-
tructure is represented as a queuing M/M/1 network. Each
server is a queue with independent rates and is interconnected
with other queues to form a network [23]. Remote server
n ∈ N utilization is accumulated load and is defined as:

Ue(v) =
∑
s∈S

∑
t∈T (v)

λe(s) ·MI(t)

MIPS(v)
, (4)

where MI(t) is the number of instructions for task t and
MIPS(v) represents the capacity in terms of millions of
instructions per second, λe(v) is the arrival rate of the task
and T (v) is a set of tasks assigned to the server v.

The waiting time we(v) is the delay in task execution due
to resource contention and is defined as:

we(v, t) =

∑
s∈S λe(s) ·MI(t)

1− U(v)
(5)

The actual execution is defined as the service time µe(n, t),
which is the ratio between the task load t and the server
capacity v:

µe(v, t) =
MI(t)

MIPS(v)
, (6)

Finally, we define execution latency Te(v, t) based on the
execution waiting and service times as Te(v, t) = we(v, t) +
µe(v, t).

B. Battery lifetime

Mobile devices are battery-powered, thus energy saving
is critical. We introduce energy models of local execution
and network transmission, major drivers of mobile energy
consumption [24]. We assume a mobile multicore execution
power model [25] with power states [26]:

pe(m) = bcores(m) +

cores(m)∑
i=0

(βUe(m) ·Ue(m)) + βbase ·
Tidle

C

(7)
where cores(m) is the number of CPU cores on mobile

device m, Ue(m) utilization per core, βUe(m) and βbase are
energy coefficients for the operating and idle power states,
bcores(m) is a CPU power baseline for a specific number of
cores, Tidle and C are idle state time duration and number of
power state transitions.

The power model for network transmission pc(hm) is de-
rived from the Shannon-Hartley theorem:

pc(hm) = n0 · bwavail(hm) · (2
Ch(hm)

bwavail(hm) − 1). (8)

where bwavail(hm) is the bandwidth on the channel hm of
the mobile device m, and Ch(hm) is a channel capacity that
is an effective limit on bandwidth due to noise. Subsequently,

we can define the total energy consumption on the mobile
device as the sum of local execution and transmission energy
consumption models, defined as E(v, t,m, hm) = Te(v, t) ·
pe(m) + Tc(hm) · pc(hm). Finally, the battery lifetime of the
device BL(v, t,m, hm) is defined as the ratio between the
differentiation of the full battery bcap and the total energy
consumption until the time instant τ and full battery capacity
as BL(v, t,m, hm) =

bcap−
∑

τ E(v,t,m,hm)

bcap .

C. Resource utilization cost

Edge and cloud are commercial services that bring monetary
costs to mobile users who utilize resources owned by resource
providers. Including the monetary objective in the decision-
making is important to validate the approach in practical
commercial environments where budgetary constraints can
impact performance. The utilization cost is defined as:

PR(v, t) =

0 if local
Te(v, t) · costr(v, t) if cloud
Te(v, t) · (costr(v, t) + coste) if edge

(9)

The first case of local execution has no cost since no remote
resources are rented. The second case brings cost when cloud
resources are rented for task execution latency time Te(v, t).
The cloud price costr(v, t) for the execution task t on the
target server v is defined:

costr(v, t) = costcores(v)·MI(t)+coststor(v)·data(t) (10)

where costcores(v), coststor(v), and data(t) represent cost
units for CPU and data storage. The third case accounts for
renting edge servers for execution latency time Te(v, t) where
the price includes edge price penalty coste for using low-
latency service [27].

IV. FRESCO OFFLOADING SOLUTION

A. Reputation state manager

The blockchain-based reputation state manager distributes
task incentives to encourage servers’ participation in resource-
sharing and successful task completion. Task incentives are
computed based on the task completion time, meaning that
shorter completion results in higher rewards. The rewards
stimulate servers to perform task executions reliably and
efficiently and compete with each other by offering better
performance. The task incentive incτ (v, t, h) at time instant τ
is defined as:

incτ (v, t, h) = max{∇ −RT (v, t, h)

∇
, 0} (11)

where ∇ is a timing constraint. The task incentive is
normalized [0, 1] to prevent potential blockchain overflow.

The reputation model has to adhere to blockchain consensus
restrictions. The consensus requires that on-chain updates
are deterministic, to reach an agreement between blockchain
nodes. Therefore, stochastic and floating-point arithmetic is
not allowed on-chain [20]. Also, resource and time consump-
tion on the blockchain is limited to prevent resource saturation.

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

To address the consensus determinism requirement and limited
resource consumption, we define a linear reputation model:

Rτ (v, t, h) = Rτ−1(v, t, h) · (1− ω) + ω · incτ (v, t, h) (12)

where Rτ (v, t, h) is the current reputation score,
Rτ−1(v, t, h) is a previous reputation score, and ω is a
weight factor to balance between new and old reputation.
Although the model stores only the last score reputation,
implicitly it accounts for multiple past values. It can be
expanded to the equivalent formula, which tracks historical
reputation performance by storing past reputation scores:

Rτ (v, t, h) = inc1(v, t, h) · (1− ω)τ−1+
τ−2∑
i=0

ω(1− ω)iincτ−1(v, t, h) (13)

Reputation scoring ensures that only reliable servers are
selected for offloading. Combining both incentives and rep-
utation scores ensures a balanced trade-off where reputation
is used as a long-term performance indicator and incentives
as immediate short-term rewards to stimulate continuous im-
provement in server reliability and prioritize reliable servers.

To summarize, the presented reputation-incentive dual ap-
proach is encoded as an HSC on the blockchain to asses
the reliability level of servers based on past performance. It
also ensures trust against reputation malicious tampering for
gaining incentives unfairly. The reputation update is according
to the presented reputation model based on provided time
measurements that are acquired off-chain from mobile devices.

B. Offloading decision engine

Our goal is to efficiently offload tasks to minimize appli-
cation response time and resource costs and maximize device
battery. Therefore, we transform these individual objectives as
a constraint optimization problem:

min
∑
t∈A

∑
v∈V

RT (v, t, h)

max
∑
t∈A

∑
v∈V

BL(v, t,m, hm)

min
∑
t∈A

∑
v∈V

PR(v, t)

s.t. RT (v, t, h) ≤ ∇, ∀v ∈ V, t ∈ A

BL(v, t,m, hm) > 0, ∀v ∈ V, t ∈ A

PR(v, t) ≤ pr, ∀v ∈ V, t ∈ A,

APτ ≤ D

(14)

where A is a task set of certain application, and APτ

is an overall application response time until τ time instant.
∇, D and pr represent task timing constraint, application
time deadline, and price constraint that can be application-
dependant (e.g., 1500 ms reaction time in a traffic safety [28]),
user-defined, or defined by developers for testing purposes.
Battery lifetime is limited on mobile device m; thus, the goal is

to avoid total discharge. Therefore, our main objective function
is a linear combination of the objectives mentioned earlier:

score(v, t,m, h) = α(RT (v, t, h)− ˆRT (v, t, h))+

β(ˆBL(v, t,m, hm)−BL(v, t,m, hm)+

γ(PR(v, t)− ˆPR(v, t))) (15)

where α, β, and γ are user-defined weight factors for
response, battery, and resource cost respectively (α + β + γ =
1). Objectives with caret symbols are local optimum values.
The goal is to find server n that minimizes the value of the
score. The weight factors can be fine-tuned according to user
preferences and subject to sensitivity analysis. However, we
fix the weight factors and justify them accordingly in our
experimental evaluation, in the subsection V-B3.

1) SMT encoding: Encoding is necessary to translate Equa-
tions 14 and 15 into a form, known as SMT formulas, that a
target solver can automatically solve. The SMT combines first-
order Boolean logic with constraint programming to express
resource constraints and deadlines of real-time system [29].
The SMT is lighter than machine learning solutions that
are usually exposed as central third-party services [5], and
it is suitable for less powerful devices [30]. Additionally,
we encode infrastructure capacities, task requirements, and
servers’ reputation as in Equation 16. It combines them all
and uses an SMT solver to find a reliable edge server.

reputation : (Rτ (v, t, h) ≥ rp) ∧ (0 ≤ rp ≤ 1)

batteryLife : (BL(v, t,m, hm) · bcap− E(v, t,m, hm)) ≥ 0

storageLimit :
∑
t∈Oτ

data(t) ≤ stor(v)

cpuLimit :
∑
t∈Oτ

MI(t) ≤ cpu(v)

memoryLimit :
∑
t∈Oτ

mem(t) ≤ mem(v)

taskReady :
∑
t∈Oτ

(δin(t) = ∅ ∧ t /∈ O<τ)

(16)
The reputation constraint refers to server reputation which

has to be above a certain threshold. To determine the reputation
threshold rp, we apply k criteria from [31] where top k
servers with the highest reputation score will be considered.
We take a reputation score, which is minimum among k
servers as the reputation threshold rp. Here, the batteryLife
constraint verifies that the mobile device’s battery is not
drained completely. The storageLimit constraint verifies that
the input and output data of all offloaded tasks Oτ until
time instant τ does not exceed storage capacity on v target
server. Similarly, CPU and memory capacities are labeled as
cpuLimit and memoryLimit respectively. Finally, the taskReady
label indicates that the application task is ready for offloading
only when tasks’ input dependencies δin(t) on prior tasks are
completed (i.e., empty set) and the current task t was not part
of a previous executed task set O<τ before time instant τ .
Finally, we combine Equation 14, 15, and 16 with logical AND

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Algorithm 1 FRESCO Algorithm
1: procedure FRESCO(candList, currSite, reps, tasks, constr, α, β, γ)
2: transactions = list()
3: for each task in tasks do
4: for each candSite in candList do
5: if RT (task, candSite, currSite) ≤ optRT then
6: optRT = RT (task, candSite, currSite)
7: end if
8: if EC(task, candSite, currSite) ≤ optEC then
9: optEC = EC(task, candSite, currSite)

10: end if
11: if PR(task, candSite, currSite) ≤ optPR then
12: optRT = PR(task, candSite, currSite)
13: end if
14: end for
15: for each candSite in candList do
16: score(candSite) = α(RT (task, candSite, currSite) −

optRT) + β(EC(task, candSite, currSite) − optEC) +
γ(PR(task, candSite, currSite) − optPR)

17: end for
18: do
19: if candList.empty() then
20: break
21: end if
22: selSite = SMTSOLV ING(score, candList, reps, constr)
23: if OFFLOAD(selSite, task) then
24: d = compTaskConstrMeasure(selSite, task)
25: transactions.append((d, selSite))
26: break
27: end if
28: transactions.append((0, selSite))
29: score.pop(selSite)
30: candList.pop(selSite)
31: reps.pop(selSite)
32: while True
33: end for
34: return transactions
35: end procedure

operator into a single SMT logical formula. The final result
of verifying the formula should be a reliable server location
for offloading. However, solving the optimization function
in Equation 14 is NP-hard, which is very time-consuming
and impractical for real-time systems. We propose an online
algorithm based on a heuristic in the next section, which can
find a feasible solution in a reasonable amount of time.

C. FRESCO Algorithm

The offloading algorithm needs to solve the objective func-
tion and respect application deadlines, task timing constraints,
and resource constraints. Therefore, we propose the FRESCO
algorithm (Algorithm 1) for performing reliable edge offload-
ing decisions. Inputs are the list of candidate servers, the
server where the previous task was executed (currSite), the
reputation scores per server, a list of tasks, a list of constraints,
and user-defined weights. First, we declare a transaction list
recording every offloading attempt and its associated constraint
(line 2). Then, we compute local optima for each objective
(lines 6-12), which are used to calculate servers’ optimization
score (line 16) (first for loop on line 3). We iterate until the
candidate list is empty or the task is successfully offloaded (do-
while loop on line 18). If the candidate list is empty (line 19)
then it exits from the do-while loop and returns accumulated
transactions. Otherwise, the SMT solver on line 22 selects
the server. If offloading fails, then the server is removed
from the candidate list and its associate objective values
(lines 28-31) and loops back on line 18. If offloading succeeds,
the difference between execution time and the constraint ∇

is computed (line 24) and appended to the transaction list
(line 25). The offloading transaction list is returned (line 34)
and forwarded to the HSC for reputation update.

The computational complexity of the FRESCO depends on
|T |, which is the cardinality of the set of application tasks
T , and |N |, which is the cardinality of the set of nodes N .
This can be seen by the for loop on line 3, that is executed
|T | times, and for loops on lines 4, 15, that iterate over N
set. Also, do-while loop on line 18 is executed |N | times
in the worst case. However, the most impacting factor on
FRESCO complexity is the complexity of the SMT solver
(SMTSOLVING function on line 22). Since SMT solving
generalizes the boolean satisfiability problem (SAT), which
is known to be NP-complete, solving SMT is NP-hard. The
SMT solving complexity depends on multiple factors, such as
heuristic space search, clause learning, and problem size and
structure [32]. Therefore, the selection of an SMT solver has a
strong impact on performance [33]. Works like [30] show the
applicability of SMT solvers to latency-critical settings such as
mobile edge offloading. We will empirically evaluate FRESCO
overhead, including the SMT solver in our experiment.

V. EXPERIMENTAL EVALUATION

A. Implementation and testbed

Simulated off-chain edge cloud clusters and decision engine
are developed in Python and evaluation is performed on a
laptop machine with a dual-core CPU of 2.8GHz and 16 GB
RAM. The Ganache blockchain emulator and HSC reputation
state manager contract are deployed on an AMD64 server
with a 40-core 1.80GHz CPU and 128Gb RA. The basic
distributed testbed setting reflects our edge offloading lifecycle
model presented in III. The decision engine connects to the
Ganache when reputation needs to be updated and stored
during runtime. Ganache executes the blockchain consensus
and returns confirmation. The infrastructure is simulated based
on the OpenCellID dataset [34] which contains radio cell
tower locations geographically distributed over vast areas.
The workload on the nodes is simulated through the queuing
network (Section III-A). For SMT solving, we use Z3 as
SMT solver [33]. We used the Ganache 1 blockchain emulator
as a blockchain and implemented a real-world HSC in the
Solidity2. Using an emulator instead of a real blockchain is
due to the limited number of Ethereum tokens available, which
prevents repeated experiments for statistical significance. We
assume Proof-of-Authority (PoA) consensus, popular in both
private and public Ethereum whose consensus delay is around
4 seconds [35]. Developers usually use this type of consensus
to get easy access and fast feedback. We have open-sourced
our prototype publicly3.

B. Experimental design and setup

1) Computing and networking infrastructure: Table I shows
the target infrastructure configuration. It reflects our infras-
tructure’s configurations of different edge, cloud, and mobile

1https://archive.trufflesuite.com/ganache/
2https://soliditylang.org/
3https://github.com/jzilic1991/hybrid-edge-blockchain

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

TABLE I: Computing infrastructure

Node class CPU
cores

CPU
(GHz)

RAM
(GB)

Storage
(GB)

ED server 8 2100 8 300
EC server 16 2800 16 150
ER server 4 1800 8 150
CD server 64 2400 128 1000
Mobile device 2 1800 8 16

TABLE II: Empirical latency measurements as constraints and
deadlines from real-world applications in milliseconds

Intra(D=108) MobiAR(D=400) NaviAR(D=800)
∇ Proc Net Proc Net Proc Net
Edge 18 15 2-20 15 250-300 300-400
Cloud 2-20 90 1 300 2-20 1000-1500
Mobile 300 0 300 0 800 0

devices. We classified servers into several classes to capture re-
source heterogeneity. The mobile device has limited resources
compared to other nodes. The ED is an edge database server
that has fast-speed network access and large data storage
capacity to handle data-intensive (DI) tasks; the second one
represents a computational-intensive server (EC) that has a
high number of CPU cores to cope with computational-
intensive (CI) tasks, and the third one represents an edge
regular server (ER) with moderate resource capacities. The
cloud server is the most resourceful one but has higher latency.

We adopt processing and network latencies as application
QoS deadlines from three real-world use cases, described in
Table II. In Table II, ”Proc” indicates the processing timing
constraint, while ”Net” is the networking timing constraint.
Note that we distinguish task timing constraint ∇ from ap-
plication deadline D. We measure QoS violations against
application deadlines.

2) Mobile DAG applications: Mobile applications are mod-
eled as DAGs which is a common method of mobile applica-
tion modeling [30], [36]. These applications exhibit a pipeline
workflow structure, which is typical for AI-based applications.
Table III specifies task categories from which the applications
are constructed, while Tables IV, V, and VI describe structures
of selected applications. We selected the following applications
because they are latency-sensitive, and are part of an emerging
market where edge computing is a key technology enabler.

(i) Intrasafed: It is a traffic safety application [28], which
employs an AI-based object detection that detects pedestrians
at intersections, notifying drivers in real-time to prevent ac-
cidents. We simulated the application in our simulator with
latency measurements from the original work, presented in
Table II. It has a deadline of D = 108 ms for the average
drivers’ notification latency via 5G networks. (ii) MobiAR:
It is a generic AR object detection application [2], which
we extracted its application structure and executed in our
simulator. The real latency measurements are extracted from
the work and presented in Table II. The application requires
a deadline of D = 400 ms to meet the applications’ inference
latency. (iii) NaviAR: It is an AR live navigation executed
on AR HoloLens glasses [3]. We simulated the structure in
our simulator backed by latency measurements as constraints

TABLE III: Task specifications

Type CPU Input data Output data
DI 100-200 M cycles 15-20 KB 25-30 KB
CI 550-650 M cycles 4-8 KB 4-8 KB
Moderate 100-200 M cycles 4-8 KB 4-8 KB

TABLE IV: Intrasafed task specifications

Task Type RAM Offloadable
LOAD MODEL Moderate 1 GB False
UPLOAD DI 1 GB True
ANALYZE CI 4 GB True
AGGREGATE CI 2 GB True
SEND ALERT Moderate 1 GB True

listed in Table II. It requires a deadline of 800 ms which is
equal to the local execution time on AR glasses.

3) Parameters: Parameters used in our experiment are
defined in Table VII. The Poisson task arrival rate λ range is
selected so it can scale to different workload intensities. α, β,
and γ values are selected as a representative case of the user’s
preferences about preferring fast response and willingness to
pay a higher price for it (α > β > γ) since we target latency-
sensitive applications. BL is the initial device battery capacity.
Reputation weight factor ω is taken from [20] which accounts
for a relatively conservative reputation system to mitigate
volatility in a crowdsourced system. cost coefficients for CPU
and storage are taken from Google Cloud [37] which is one of
the most commonly used cloud providers. Energy coefficients
of βbase, βUe and pcores are taken from [25], [26] which are
validated against real mobile equipment.

4) Datasets: We employed the Skype availability dataset
[38] to model the system’s availability. The motivation for
selecting Skype dataset is because it shares edge characteristics
like geo-distribution, heterogeneity, large number of nodes,
and it constitutes the middle ground in availability ratio (60-
70%) and latency (up to ∼50 ms) compared to other infras-
tructure [7]. Traces are collected over 2,081 servers for 400
days and contain availability time intervals that are associated
with each node. Nodes have different lifespans and hence they
are normalized within the [0, 1] time range interval. Adopting
such availability datasets from distributed systems that share
similar characteristics is common in edge computing research
[7], [39] due to the lack of publicly available datasets.

Edge and cloud deployment follow cellular base station
locations from OpenCellID. OpenCellID is an open cellular
database containing datasets of cell tower geolocations that
mobile operators publicly publish. It is used in generating
infrastructure topologies under edge computing settings [40].
We selected a dataset that contains around 3, 500 cell tower lo-
cations and randomly filtered them out to match the number of
2, 081 Skype nodes for one-to-one availability trace mapping.
We clustered the entire network into 30 cell clusters using
the k-means clustering algorithm as illustrated in Figure 4. In
such a deployment, location-based mobility is simulated where
a mobile device visits each cell cluster and offloads tasks on
remote servers. Mobile device dwelling time in each cell is
evenly distributed throughout the entire simulation. Each cell
cluster location has edge node classes such as ER, ED, and

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

TABLE V: MobiAR task specifications

Task Type RAM Offloadable
UPLOAD Moderate 1 GB False
EXTRACT CI 2 GB True
PROCESS CI 2 GB True
DATA DI 1 GB True
DOWNLOAD DI 1 GB False

TABLE VI: NaviAR task specifications

Task Type RAM Offloadable
MAP DI 1 GB True
GUI Moderate 1 GB False
COORDINATION CI 4 GB True
SHORTEST PATH CI 2 GB True
MOTION COMMAND CI 1 GB True
VIRTUAL GUIDANCE Moderate 1 GB False
RUNTIME LOCATION CI 1 GB True
DISPLAY Moderate 1 GB False

EC which are randomly associated with OpenCellID nodes
and a single accessible cloud server. Remote servers have
an associated reputation score, which is stored on a public
blockchain that is globally accessible.

Fig. 4: Cell tower locations from OpenCellID dataset [34]

5) Baselines: We compare FRESCO with the following
three baseline algorithms.

• MINLP is a mixed integer non-linear programming-based
method that formulates constraint offloading optimization
problems without reputation. The MINLP approach is the
most common modeling method for offloading optimiza-
tion [41].

• SQ EDGE [31] considers reputation and queuing time on
edge nodes, and it is utilized in blockchain-based vehic-
ular ad-hoc networks. The method considers only local
and edge offloading, as in naive offloading approaches
used when resources are limited for decision-making.

• MDP is a common method for modeling offloading [5].
Reputation is encoded as transition probability, remote
servers represent states, and objectives are modeled as
reward functions. The modeling is similar to existing
work that targets reliable offloading [36].

C. Analysis of results

For each experimental run, we execute 100 applications
sequentially and average results over 100 runs to obtain
statistically significant results.

TABLE VII: Simulation and algorithmic parameters

Parameter Value
λ [10, 20]
α 0.5
β 0.4
γ 0.1
BL 1000
ω 0.3
costcores 0.023
coststor 0.776
βbase 625.25 10−3

βUe 6.9305 10−3

pcores 0.073 10−3

1) Response time: Figure 5 illustrates the response time
performance of offloading decision engines in Intrasafed,
MobiAR, and NaviAR applications respectively. The worst-
performing decision engine is MDP whose response time
is 53.11, 73.86, and 104.06 seconds for three applications,
respectively. Whereas the SQ EDGE decision engines have
average response times of 41.99, 46.96, and 65.12 seconds.
However, SQ Edge has a higher deviation in its response time
compared to others (6.16, 4.03, and 5.99 seconds). Although
the SQ EDGE approach is reputation-aware, its primary target
is to identify malicious servers instead of reliable offloading in
terms of QoS violations caused by failed or high-loaded sites.
Thus, this leads to more volatile performance as observed. The
MINLP decision engine yielded the second-best approach with
24.34, 28.91, and 18.72 seconds. The best performance was
achieved with the NaviAR application (18.72 seconds) which
is unexpected since NaviAR has the most complex structure.
The possible explanation is that the edge servers in the last
visited cells were more loaded which limits resource capacity.
It could deter MINLP from taking offloading decisions on the
edge and rather opt for local execution or select a far-distant
cloud. 75% of the offloading attempts in the last cell were
concentrated on cloud and mobile. Although MINLP does
not perceive reputation, selecting both mobile devices and the
cloud are safe for offloading and avoids offloading failures on
the failure-prone edge which in the last two cells have limited
availability (12 − 25%). Offloading failure would impose
a longer response time as seen in Intrasafed and MobiAR
applications. Lastly, our FRESCO solution outperforms other
decision engines due to frequent offloading on more reliable
servers which resulted in response time performance of 6.75,
11.61, and 17.81 seconds.

2) Battery lifetime: Figure 6 illustrates the battery perfor-
mance of offloading decision engines in all three applications.
The SQ EDGE decision engine drains the device battery
the most, with 96.38%, 95.33%, and 93.34%. A higher rate
of failed offloading attempts drains the energy more than
the longer response time (Figure 5) in MDP whose battery
lifetimes are 98.08%, 95.64%, and 93.03%. MINLP and
FRESCO, on the other hand, have battery lifetimes that reflect
response time performance from Figure 5. MINLP battery
lifetimes are 98.28%, 97.54%, and 98.42% while FRESCO has
the highest battery lifetime of 99.47%, 99.06%, and 98.43%.

3) Resource utilization cost: Figure 7 shows the resource
utilization cost of all four approaches. Here. MDP incurs

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

Fig. 5: Response time Fig. 6: Battery lifetime Fig. 7: Resource utilization cost

(a) Intrasafed (b) MobiAR (c) NaviAR

Fig. 8: Offloading distribution

lower resource utilization costs (ranging from 34.4 to 90.69
monetary units) although it has poor response time (see
Figure 5). This is because it offloads to a highly available
cloud node which has a lower utilization cost. SQ EDGE is
the most expensive solution due to failed offloading attempts
and fixed k parameter which does not scale with several nodes,
and thus limits alternative servers for offloading consideration
and can lead to potentially higher costs. According to SQ
EDGE, best k sites are the most reputable ones but can
be highly loaded and limit re-offloading alternatives in case
of failed or untimely execution. SQ EDGE monetary costs
are 139.3, 139.16, and 228.23 units for three applications.
When comparing MINLP and FRESCO, FRESCO emerged
as the second-best cost-effective solution and cheaper than
MINLP in Intrasafed (132.22 vs 139.33 units) and MobiAR
(132.38 vs 139.08 units) use cases but worse when offloading
NaviAR (219.89 vs 216.76 units). In NaviAR’s case, MINLP
is slightly cheaper than FRESCO because it offloaded a minor
portion of tasks on the cloud which is cheaper than Edge.
FRESCO did not yield the overall best cost-effectiveness
because hyperparameters are tuned so it prefers faster and
energy-efficient solutions rather than low-cost sites.

4) Offloading distribution: Figure 8a) shows the offloading
distribution analysis for three applications. This analysis shows
the distribution of application tasks to different nodes in our
infrastructure. In the Intrasafed use case, the MDP was worse-
performant because most of the offloading decisions were
targeting highly available cloud (43%) instead of expensive
edge servers and thus is the cheapest solution (Figure 7) and
not necessarily the least energy-efficient (Figure 6). SQ EDGE,

with a similar offloading distribution composition to MINLP,
only considers k sites with the highest reputation and selects
the shortest queue waiting time. k parameter is fixed and does
not scale with several nodes which can limit the number of
alternative servers and exclude viable ones that are less loaded
and sufficiently reliable. MINLP, on the other hand, does not
restrict its offloading options. FRESCO, comparably to the
previous two aforementioned baselines, is more flexible and
utilizes all site types, including cloud (2%) for CI tasks when
edge servers are less reliable, also less reliant on moderate
ER sites (14% compared to 19% and 16% in MINLP and SQ
EDGE respectively), and utilizes resource-rich EC sites more
frequently (20% compared to 17% in MINLP and SQ EDGE).
FRESCO’s offloading distribution composition is similar in the
MobiAR case (Figure 8b) and reflects FRESCO’s higher per-
formance in both applications. In the NaviAR case (Figure 8c),
MINLP and FRESCO have different offloading distribution
compositions but performance-wise are comparable (Figure 5).
FRESCO balances reliability and performance, where the most
reputable servers are not necessarily efficient ones. MINLP
is reputation-oblivious but selecting the most efficient servers
can be sometimes beneficial if the underlying infrastructure is
more reliable and has fewer failures or less volatile load.

5) QoS violations: Figure 9 illustrates QoS violation re-
sults. MDP has the highest violation rate because of fre-
quent offloading on highly available clouds. Leading to fewer
failures but frequent violations. The next better performant
solution is SQ EDGE, with a violation rate between 18.9% (in
the NaviAR case) and 15.9% (in the MobiAR case). MINLP
shows better performance with violation rates of 12.3%, 9.2%,

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

TABLE VIII: Hybrid smart contract usage cost on Ethereum

Function name Gas consumption (Wei)
registerNode 21, 503 Wei
unregisterNode 21, 204 Wei
getNodeCount 21, 604 Wei
getNode 21, 204 Wei
updateNodeReputation 21, 638-29, 984 Wei
getReputationScore 21, 204 Wei
resetReputation 21, 484-25, 544 Wei

and 0.1% in Intrasafed, MobiAR, and NaviAR respectively.
FRESCO has the lowest violation rates in Intrasafed and
MobiAR use cases with 7.1% and 3.8% and has a violation
rate of 0.4% with a standard deviation of 0.48% in the NaviAR
case which is comparable with MINLP.

Fig. 9: QoS violations

6) HSC overhead: HSC blockchain usage costs are ex-
pressed as gas consumption and are called Wei. The results
are presented in Table VIII for each function. Where range is
expressed, it refers to executing from 1 to 30 offloading trans-
actions, as multiple offloading transactions are typically exe-
cuted for those functions. All HSC functions consume slightly
above 21, 000 Wei, which is typical on the Ethereum [42].

7) Offloading decision overhead: Figure 10 illustrates of-
floading decision time overhead across different infrastructure
sizes on a logarithmic scale. The SQ EDGE is the least com-
plex algorithm since selecting the first k nodes and computing
their estimated queue waiting time is relatively straightfor-
ward in comparison to other decision engines. The average
decision time overhead is 0.048 milliseconds. FRESCO and
MINLP decision time overhead are 5.05 milliseconds and 6.57
milliseconds with standard deviations of 5.16 milliseconds
and 3.07 milliseconds respectively, making them comparable.
MDP has the highest overhead, which is an average of 1373.83
milliseconds, due to state space explosion when offloading
on a larger number of nodes. In summary, FRESCO has an
average decision time overhead of 5.05 milliseconds, which
makes it suitable for offloading latency-sensitive applications.

Summary: FRESCO decreases average response time up to
7.86x, and increases battery up to 5.4% compared to baselines.
It also achieves a low deadline violation rate of 0.4% while
maintaining competitive utilization costs. With approximately
typical blockchain consumption (≈ 21, 500 Wei) and low
average decision time overhead (5.05 milliseconds), FRESCO
is suitable for offloading latency-sensitive applications.

Fig. 10: Offloading decision time in logarithmic scale

TABLE IX: Overview of state-of-the-art literature

Publication OFF (H)SC BLOCK(-
REP)

REL

[2], [43], [44] ✓ ✗ ✗ ✗
[13]–[15], [19], [31] ✓ ✗ ✓ ✗
[11], [36], [45] ✓ ✗ ✗ ✓
[46], [47] ✗ ✓ ✗ ✗
[16]–[18], [48] ✗ ✗ ✓ ✓
[49] ✓ ✗ ✓ ✗

This work ✓ ✓ ✓ ✓

VI. DISCUSSION AND LIMITATIONS

Limitations of our experiment are the usage of a blockchain
emulator and the selection of a single consensus mechanism.
In the former, the real Ethereum requires tokens, which
carries financial cost and prevents us from collecting suffi-
cient traces to strengthen the experimental evaluation. In the
latter, the selected lightweight PoA consensus is used in real
Ethereum [35], has relatively shorter latencies compared to
computational-intensive ones (e.g., Proof-of-Work), and does
not test our solution on varied consensus latencies. Also, the
choice to use public blockchain instead of private blockchain
is that we targeted more open and public settings instead of
being contained within certain organizations (e.g., enterprises).

Hyperparameter optimization of FRESCO could potentially
increase the performance but also introduce overhead, thus
endangering online applicability. User-defined hyperparame-
ters enable flexibility to fit different needs (e.g., preferring
cheaper but slower service over expensive and faster one). The
empirically obtained hyperparameters reflect a representative
scenario where latency is preferred over other objectives,
which is typical for latency-sensitive applications. Theoreti-
cally, without relying on user-defined values, mobile devices
need to adjust them by incorporating data-driven optimization.

VII. RELATED WORK

Table IX compares FRESCO with the literature concerning
offloading OFF , smart contracts (H)SC, blockchain-enabled
or based-reputation BLOCK(−REP), and reliability REL.

Offloading survey [43] shows that applying deep reinforce-
ment learning solutions (DRL) and their variants has become
common recently due to their adaptability to changing and
dynamic conditions. They do not consider edge failures and
are deployed as an intermediary between devices and servers
which is risky in the unreliable environment that can lead to a
single-point-of-failure, sometimes requiring model re-training
when topology or environment changes drastically [44].

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

Blockchain-enabled edge offloading approaches [13]–[15]
enhance reliability and efficiency in mobile edge computing
and vehicular edge networks where blockchain and smart
contracts make offloading more secure and trustworthy. They
do not provide specifics about real-world smart contract imple-
mentation or they deploy an offloading framework as a smart
contract which is unrealistic since smart contracts prohibit
nondeterministic and stochastic computations that conflict with
the determinism requirement of blockchain consensus proto-
cols. Blockchain-based reputation offloading was proposed for
specific scenarios that require fast responses like vehicular
networks [31] and IIoT [19]. Solutions are applied in private
environments (e.g. factories, enterprises) while ignoring the
consensus overhead, and using reputation against malicious
actors rather than against failures in unreliable environments.
Also, other blockchain-based reputation works are applied for
selecting reliable edge servers, ranging from IoT [48], feder-
ated edge learning [18] to vehicular networks [16]. However,
they did not target reliability in edge offloading in terms of
edge failures and do not employ HSC, which forces them to
compute reputation off-chain rather than on-chain which can
lead to potential risks (e.g. collusion) [50].

Some edge offloading approaches [11], [45], [51] tried to
solve reliability issues in terms of failure and recovery prob-
abilistic models, or predict edge failures based on historical
data [36]. The aforementioned works did not prove or evaluate
their solutions in distributed unreliable edge scenarios where
the device moves and reacts to different environments.

Works [46], [47] implemented smart contracts on hybrid
blockchain architecture to reconcile conflicting objectives such
as trust on one side and performance on the other side. The
works are not applied in edge offloading context.

In conclusion, none of the works applied a blockchain-
reputation system for enhancing reliability in the edge of-
floading context. FRESCO uniquely ensures trust for sensitive
reputation information on-chain and allows fast performance
for latency-sensitive applications off-chain.

VIII. CONCLUSION

We investigated edge offloading of latency-sensitive mo-
bile applications on the distributed unreliable edge. Edge
offloading is formulated as a constraint optimization problem
that balances between response time, battery, and utilization
monetary cost objectives. Formulation incorporates critical
QoS deadlines that have to be respected, and reputation scores
to identify reliable edge servers based on past performance.

The FRESCO consists of a reputation state manager and a
decision engine. The reputation state manager is implemented
as a hybrid smart contract, which stores sensitive reputation
scores on-chain against tampering, and enables an SMT-based
decision engine to compute offloading decisions off-chain
on reliable servers without being hindered by blockchain
consensus. The presented solution balances reliability and
performance where trust is required against tampering.

FRESCO was evaluated against baselines with simulated
applications, a dynamic queueing workload, Skype availability
traces, and large-scale infrastructure from the OpenCellID.

We also discussed limitations like the blockchain emulator,
hyperparameter optimization, and using a single consensus
mechanism which will be addressed in our future work.

ACKNOWLEDGMENTS

This work is partially funded by Josip Zilic’s netidee
scholarship by the Internet Foundation Austria.

REFERENCES

[1] D. Marimon, C. Sarasua, P. Carrasco, R. Álvarez, J. Montesa,
T. Adamek, I. Romero, M. Ortega, and P. Gascó, “Mobiar: tourist
experiences through mobile augmented reality,” Telefonica Research and
Development, Barcelona, Spain, 2010.

[2] J. Ren, L. Gao, X. Wang, M. Ma, G. Qiu, H. Wang, J. Zheng,
and Z. Wang, “Adaptive computation offloading for mobile augmented
reality,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 5, no. 4, pp. 1–30, 2021.

[3] Y. Wang, T. Yu, and K. Sakaguchi, “Context-based mec platform for
augmented-reality services in 5g networks,” in 2021 IEEE 94th Vehicular
Technology Conference (VTC2021-Fall). IEEE, 2021, pp. 1–5.

[4] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “Qos driven
task offloading with statistical guarantee in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 1, pp. 278–290,
2020.

[5] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey
on computation offloading modeling for edge computing,” Journal of
Network and Computer Applications, vol. 169, p. 102781, 2020.

[6] T. Long, Y. Ma, Y. Xia, X. Xiao, Q. Peng, and J. Zhao, “A mobility-
aware and fault-tolerant service offloading method in mobile edge
computing,” in 2022 IEEE International Conference on Web Services
(ICWS). IEEE, 2022, pp. 67–72.

[7] A. Aral and I. Brandić, “Learning spatiotemporal failure dependencies
for resilient edge computing services,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1578–1590, 2020.

[8] S. Tuli, G. Casale, and N. R. Jennings, “Pregan: Preemptive migration
prediction network for proactive fault-tolerant edge computing,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 670–679.

[9] H. Wu, “Performance modeling of delayed offloading in mobile wireless
environments with failures,” IEEE Communications Letters, vol. 22,
no. 11, pp. 2334–2337, 2018.

[10] L. Zhao, B. Li, W. Tan, G. Cui, Q. He, X. Xu, L. Xu, and Y. Yang,
“Joint coverage-reliability for budgeted edge application deployment in
mobile edge computing environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 12, pp. 3760–3771, 2022.

[11] J. Liang, B. Ma, Z. Feng, and J. Huang, “Reliability-aware task process-
ing and offloading for data-intensive applications in edge computing,”
IEEE Transactions on Network and Service Management, vol. 20, no. 4,
pp. 4668–4680, 2023.

[12] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.

[13] J. Ma, Y. Yi, W. Zhang, Y. Sun, and G. Zhang, “Blockchain-based
task offloading for mobile edge computing networks with server
collaboration,” 2024 5th Information Communication Technologies
Conference (ICTC), pp. 221–226, 2024. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:271407903

[14] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, “Drl-based v2v
computation offloading for blockchain-enabled vehicular networks,”
IEEE Transactions on Mobile Computing, vol. 22, pp. 3882–3897,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
247090469

[15] Y. Zhou, X. Li, H. Ji, and H. Zhang, “Blockchain-based trustworthy
service caching and task offloading for intelligent edge computing,”
2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–
6, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
246478911

[16] L. Sun, Q. Yang, X. Chen, and Z. Chen, “Rc-chain: Reputation-based
crowdsourcing blockchain for vehicular networks,” Journal of network
and computer applications, vol. 176, p. 102956, 2021.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

[17] Z. Zhou, M. Wang, C.-N. Yang, Z. Fu, X. Sun, and Q. J. Wu,
“Blockchain-based decentralized reputation system in e-commerce envi-
ronment,” Future Generation Computer Systems, vol. 124, pp. 155–167,
2021.

[18] J. Kang, Z. Xiong, X. Li, Y. Zhang, D. Niyato, C. Leung, and C. Miao,
“Optimizing task assignment for reliable blockchain-empowered fed-
erated edge learning,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 2, pp. 1910–1923, 2021.

[19] S. Iqbal, R. M. Noor, A. W. Malik, and A. U. Rahman, “Blockchain-
enabled adaptive-learning-based resource-sharing framework for iiot
environment,” IEEE Internet of Things Journal, vol. 8, no. 19, pp.
14 746–14 755, 2021.

[20] A. Battah, Y. Iraqi, and E. Damiani, “Blockchain-based reputation sys-
tems: Implementation challenges and mitigation,” Electronics, vol. 10,
no. 3, p. 289, 2021.

[21] Q. Fan and N. Ansari, “Towards workload balancing in fog computing
empowered iot,” IEEE Transactions on Network Science and Engineer-
ing, vol. 7, no. 1, pp. 253–262, 2018.

[22] O. Rioul and J. C. Magossi, “On shannon’s formula and hartley’s rule:
Beyond the mathematical coincidence,” Entropy, vol. 16, no. 9, pp.
4892–4910, 2014.

[23] M. Bramson, Stability of queueing networks. Springer, 2008.
[24] M. Tawalbeh, A. Eardley et al., “Studying the energy consumption in

mobile devices,” Procedia Computer Science, vol. 94, pp. 183–189,
2016.

[25] F. A. Ali, P. Simoens, T. Verbelen, P. Demeester, and B. Dhoedt, “Mobile
device power models for energy efficient dynamic offloading at runtime,”
Journal of Systems and Software, vol. 113, pp. 173–187, 2016.

[26] Y. Zhang, Y. Liu, X. Liu, and Q. Li, “Enabling accurate and ef-
ficient modeling-based cpu power estimation for smartphones,” in
2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS). IEEE, 2017, pp. 1–10.

[27] V. De Maio and I. Brandic, “Multi-objective mobile edge provisioning in
small cell clouds,” in Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, 2019, pp. 127–138.

[28] I. Lujic, V. D. Maio, K. Pollhammer, I. Bodrozic, J. Lasic, and
I. Brandic, “Increasing traffic safety with real-time edge analytics and
5g,” in Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, 2021, pp. 19–24.

[29] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, “Smt-based scheduling for mul-
tiprocessor real-time systems,” in 2016 IEEE/ACIS 15th International
Conference on Computer and Information Science (ICIS). IEEE, 2016,
pp. 1–7.

[30] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Resource management for
latency-sensitive iot applications with satisfiability,” IEEE Transactions
on Services Computing, vol. 15, no. 5, pp. 2982–2993, 2021.

[31] S. Iqbal, A. W. Malik, A. U. Rahman, and R. M. Noor, “Blockchain-
based reputation management for task offloading in micro-level vehicular
fog network,” IEEE Access, vol. 8, pp. 52 968–52 980, 2020.

[32] R. Robere, A. Kolokolova, and V. Ganesh, “The proof complexity of smt
solvers,” in Computer Aided Verification: 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II 30. Springer, 2018,
pp. 275–293.

[33] A. Høfler, “Smt solver comparison,” Graz, July, p. 17, 2014.
[34] “”opencellid, 2021, (https://opencellid”,” openCellID, 2021,

(https://opencellid.org/).
[35] “””ethereum test network” https://medium”,” ”Ethereum Test network”

https://medium.com/coinmonks/ethereum-test-network-21baa86072fa
(Accessed: 2024-02-07).

[36] J. Zilic, V. De Maio, A. Aral, and I. Brandic, “Edge offloading for
microservice architectures,” in Proceedings of the 5th International
Workshop on Edge Systems, Analytics and Networking, 2022, pp. 1–
6.

[37] “””cloud storage pricing” https://cloud”,” ”Cloud Storage pricing”
https://cloud.google.com/storage/pricing (Accessed: 2022-30-11).

[38] S. Guha and N. Daswani, “An experimental study of the skype peer-to-
peer voip system,” Cornell University, Tech. Rep., 2005.

[39] Z. N. Samani, N. Mehran, D. Kimovski, and R. Prodan, “Proactive sla-
aware application placement in the computing continuum,” in 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2023, pp. 468–479.

[40] B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “A dataset for mobile
edge computing network topologies,” Data in Brief, vol. 39, p. 107557,
2021.

[41] C. Feng, P. Han, X. Zhang, B. Yang, Y. Liu, and L. Guo, “Computation
offloading in mobile edge computing networks: A survey,” Journal of
Network and Computer Applications, vol. 202, p. 103366, 2022.

[42] “””what is gwei? the cryptocurrency explained” https://www”,”
”What Is Gwei? The Cryptocurrency Explained”
https://www.investopedia.com/terms/g/gwei-ethereum.asp (Accessed:
2024-02-07).

[43] Z. Zabihi, A. M. Eftekhari Moghadam, and M. H. Rezvani, “Reinforce-
ment learning methods for computation offloading: a systematic review,”
ACM Computing Surveys, vol. 56, no. 1, pp. 1–41, 2023.

[44] H. Zhang, R. Wang, W. Sun, and H. Zhao, “Mobility management for
blockchain-based ultra-dense edge computing: A deep reinforcement
learning approach,” IEEE Transactions on Wireless Communications,
vol. 20, no. 11, pp. 7346–7359, 2021.

[45] C. Liu and K. Liu, “Toward reliable dnn-based task partitioning and of-
floading in vehicular edge computing,” IEEE Transactions on Consumer
Electronics, vol. 70, no. 1, pp. 3349–3360, 2023.

[46] C. Molina-Jimenez, I. Sfyrakis, E. Solaiman, I. Ng, M. W. Wong,
A. Chun, and J. Crowcroft, “Implementation of smart contracts using
hybrid architectures with on and off–blockchain components,” in 2018
IEEE 8th International Symposium on Cloud and Service Computing
(SC2). IEEE, 2018, pp. 83–90.

[47] E. Solaiman, T. Wike, and I. Sfyrakis, “Implementation and evaluation
of smart contracts using a hybrid on-and off-blockchain architecture,”
Concurrency and computation: practice and experience, vol. 33, no. 1,
p. e5811, 2021.

[48] Y. Yu, S. Liu, L. Guo, P. L. Yeoh, B. Vucetic, and Y. Li, “Crowdr-
fbc: A distributed fog-blockchains for mobile crowdsourcing reputation
management,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8722–
8735, 2020.

[49] S. Deng, G. Cheng, H. Zhao, H. Gao, and J. Yin, “Incentive-driven com-
putation offloading in blockchain-enabled e-commerce,” ACM Transac-
tions on Internet Technology (TOIT), vol. 21, no. 1, pp. 1–19, 2020.

[50] X. Deng, J. Liu, L. Wang, and Z. Zhao, “A trust evaluation system
based on reputation data in mobile edge computing network,” Peer-to-
Peer Networking and Applications, vol. 13, pp. 1744–1755, 2020.

[51] K. Peng, B. Zhao, M. Bilal, and X. Xu, “Reliability-aware computation
offloading for delay-sensitive applications in mec-enabled aerial com-
puting,” IEEE Transactions on Green Communications and Networking,
vol. 6, no. 3, pp. 1511–1519, 2022.

IX. BIOGRAPHY SECTION

Josip Zilic is a Pre-Doctoral Researcher at the High-Performance Research
Group at TU Wien. His research focuses on applying formal methods in edge
offloading to ensure and guarantee performance for latency-sensitive and high-
reliability mobile applications. In 2023, he received netidee scholarship from
Internet Foundation Austria for his edge offloading doctoral thesis proposal.

Vincenzo De Maio received his PhD in 2016 at the University of Innsbruck,
Austria. His research in the area of parallel and distributed systems comprises
energy-aware Cloud computing and scheduling. Since 2017, he has been a
postdoctoral researcher at the High-Performance Computing Research Group
of TU Wien. He authored different conferences and journal publications on
energy efficiency and modeling for Cloud, Edge, and Quantum Computing.

Shashikant Illager is an assistant professor at the Informatics Institute,
University of Amsterdam, Netherlands. He is a member Multiscale Networked
Systems research group. He works at the intersection of distributed systems,
energy efficiency, and machine learning. His recent research explores the en-
ergy efficiency and performance optimization of data-intensive and distributed
AI applications.

Ivona Brandic is a Professor at TU Wien. In 2015 she was awarded
FWF START prize, the highest Austrian award for young researchers. She
received her PhD degree in 2007 from Vienna University of Technology. In
2011 she received the Distinguished Young Scientist Award from the Vienna
University of Technology for her project on the Holistic Energy Efficient
Hybrid Clouds. Her main research interests are cloud computing, large-scale
distributed systems, energy efficiency, QoS, and autonomic computing.

