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Abstract

Blockchain protocols are a popular target for attacks since they manipulate valuable funds
while operating in a pseudo-anonymous environment, where “code is law”. That means
stealing funds through a loophole in a protocol is considered legal, and the stolen funds
can be used unrestrainedly by the attacker. Such attacks can target different aspects of a
blockchain protocol: the implementation, the cryptography, and the incentive structures.
When it comes to ensuring the security of a blockchain protocol, all of them have to be
considered. Most existing research on blockchain security focuses on implementation or
cryptography aspects. However, blockchain protocols rely heavily on economic incentives
to ensure correct execution, and it is hence essential to also study them. Such incentives
can be captured using game-theoretic analysis of the behavior of blockchain users.

In this thesis, two aspects of blockchain security are addressed. Primarily, a comprehensive
framework for game-theoretic security analysis is developed, combining extensive form
games, symbolic payoffs, and automated reasoning techniques to rigorously model and
evaluate a protocol’s incentive structures. Additionally, this dissertation extends to
the security of a protocol’s implementation, proposing methods for formalizing and
verifying unbounded summations in blockchain protocols. Thereby, this thesis enables
both theoretical and practical advancements in blockchain security.

Regarding game-theoretic security, this thesis discusses how to ensure the incentives favor
the intended behavior in every case. It provides a formal definition of game-theoretic
security and advocates the use of extensive form games with symbolic utilities to model
blockchain protocols. This dissertation further presents automation techniques for game-
theoretic security analysis, making even the analysis of immense game models feasible.
These techniques are implemented in the two versions of the automated game-theoretic
security analysis tool CheckMate presented in this thesis. Our tool goes beyond
conventional automation and enables piece-wise, so-called compositional automated
analysis, allowing for greater scalability.

Moreover, approaches that target the security of the implementation have struggled to
fully formally capture summation with an arbitrary, unbounded number of summands.
In this work, a generalization to Presburger arithmetic is introduced that can express
properties about summations. It is further shown how this generalization can be used to
formalize verification problems of smart contracts, a specific type of blockchain protocols,
thereby enhancing implementation security efforts.
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Kurzfassung

Blockchain Protokolle sind ein beliebtes Ziel für Angriffe, weil sie wertvolle Güter ver-
walten und in einer pseudoanonymen Umgebung agieren, in der Code “Gesetz” ist. Das
heißt Schwachstellen in Protokollen auszunützen, um Gelder zu stehlen, gilt als legal
und die gestohlenen Gelder stehen der Angreifer*in uneingeschränkt zur Verfügung.
Solche Angriffe können unterschiedliche Aspekte eines Blockchain Protokolls betreffen:
die Implementierung, die Kryptographie und die Anreizstrukturen. Um die Sicherheit
eines Blockchain Protokolls zu garantieren, müssen alle Aspekte betrachtet werden. Der
Großteil der bestehenden Forschung konzentriert sich auf die Implementierung oder die
Kryptographie. Da Blockchain Protokolle jedoch stark auf finanzielle Anreize angewiesen
sind, um eine korrekte Ausführung sicherzustellen, ist es wesentlich auch diese zu unter-
suchen. Solche Anreize können mittels spieltheoretischer Analysen des Verhaltens der
Blockchain Nutzer*innen erfasst werden.

In dieser Arbeit werden zwei Bereiche der Blockchain Sicherheit behandelt. Einerseits
wird ein umfassender Ansatz zur spieltheoretischen Sicherheit entwickelt, der Spiele in
Extensivform, abstrakte Gewinne und automatisches Schlussfolgern kombiniert, um die
Anreizstrukturen von Protokollen rigoros zu modellieren und zu evaluieren. Andererseits
erstreckt sich diese Dissertation auch zur Sicherheit der Implementierung, durch die
Entwicklung von Methoden zum Formalisieren und Verifizieren von unbeschränkten
Summationen. Dadurch werden sowohl theoretische als auch praktische Fortschritte in
der Blockchain Sicherheit ermöglicht.

Hinsichtlich der spieltheoretischen Sicherheit diskutiert diese Arbeit wie sichergestellt
werden kann, dass die Anreize in jedem Fall das gewünschte Verhalten fördern. Sie liefert
eine formale Definition der spieltheoretischen Sicherheit und plädiert für die Verwendung
von Spielen in Extensivform mit symbolischen Nutzenfunktionen zur Modellierung von
Blockchain Protokollen. Darüber hinaus werden Automatisierungstechniken für die spiel-
theoretische Sicherheitsanalyse präsentiert, die es ermöglichen, selbst riesige Modelle zu
analysieren. Diese Techniken wurden in den beiden Versionen unseres automatisierten
Tools für spieltheoretische Sicherheitsanalysen, CheckMate, implementiert. Es geht
über herkömmliche Automatisierung hinaus und ermöglicht eine stückweise, also zu-
sammensatzbare, automatisierte Analyse, wodurch eine höhere Skalierbarkeit erreicht
wird.
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Weiters haben Ansätze zur Sicherheit der Implementierung bisher Schwierigkeiten, Sum-
mationen mit einer beliebigen Anzahl von Summanden vollständig formal zu erfassen.
In dieser Arbeit wird eine Verallgemeinerung der Presburger Arithmetik eingeführt, die
Eigenschaften von Summationen ausdrücken kann. Es wird zudem gezeigt, wie diese Ver-
allgemeinerung genutzt werden kann, um Fragestellungen der Verifikation von Blockchain
Protokollen zu formalisieren und so die Bemühungen zur Implementierungssicherheit zu
verbessern.
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CHAPTER 1
Overview

The age of digitalization has redefined the concept of security, giving it an entirely new
meaning. It became essential for humanity that the digital systems they used were secure.
This applies to everyday services such as emails or online banking, but also to digitally
managed infrastructures such as traffic control and power grids, just to name a few.
As a consequence, the research area of cybersecurity emerged to address the challenge.
Frameworks were introduced to test digital systems, verify their implementation in
software, and analyze their cryptographic premises – if any were applied, as they are in
internet protocols, for example.

Then, in 2008, the first idea of blockchains was presented [Nak08] and led to the dig-
italization of yet another crucial part of modern society: means of payment, finance,
and banking. A blockchain itself can be thought of as a chain of blocks, implemented
by a linked list. Each item, called a block, contains information and is linked to the
previous block by storing the previous block’s hash value, thereby creating a chain. In the
case of a cryptocurrency, such as Bitcoin [Nak08], the stored information in the blocks
documents transactions. Besides tracking balances, most cryptocurrencies also support
more complex constructs, such as, for example, a 2-of-3 Multisig [GBC23]: this is an
account that is managed by three users and requires two out of three signatures to spend
its funds. Such more involved concepts rely on protocols, which are executed by the users
of a blockchain to reach a specific common goal, such as spending funds of a Multisig.
There are also cryptocurrencies, such as the one on the Ethereum blockchain [But14],
which enable finance products similar to the ones existing in traditional finance, like
auctions or crowdfunding. These applications are called decentralized finance [Sch21],
and their underlying protocols are called smart contracts [SEM18], which are pieces of
source code that are stored on the blockchain and can be executed.

Many of those blockchain protocols and smart contracts rely on incentives and punish-
ment mechanisms to ensure the users follow the instructions. The novelty for security
considerations in this context is that the incentives are native to the technology. That
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1. Overview

means the technology enables finance products of a currency but the incentives are of
that currency and part of the technology. Hence, this is the first technology where
incentives became an integral part of this very digital system. Therefore, to reason
about the security of blockchain technology, it is essential to also study the nature of
incentives and their impact on the behavior of blockchain users, which can be captured
using game-theoretic analysis.

This dissertation addresses the challenge of the security aspects that are induced by
incentive mechanisms in blockchain protocols. It introduces automated techniques to
analyze and verify game-theoretic security.

1.1 Blockchain Protocols

Throughout this thesis, a protocol is meant to be a set of rules and guidelines to achieve
a particular task. A blockchain protocol is thus a set of rules and guidelines to maintain
or enable different aspects of blockchain technology. For simplicity, smart contracts, as
introduced above and studied in Chapter 6, are also considered blockchain protocols.
There are various different types of blockchain protocols. One of those, the so-called
off-chain protocols, are particularly relevant to this dissertation, as they rely on interesting
game-theoretic principles implemented through incentive and punishment mechanisms.
An off-chain protocol enables secure transactions without having to publish each of them
on the blockchain. Many different kinds of off-chain protocols exist [GMSR+20], such as
virtual channels [AME+21], watchtowers [ALW20], payment-channels [DW15, AEE+21,
AKWZ21], state channels [DEF+19, MBB+19], virtual payment hubs [DEFM19], etc.

In the most widely adopted off-chain construction, Bitcoin’s Lightning Network [PD16],
parties deposit money in a shared address, called a channel, agree off-chain on new
deposit distribution states, and publish the latest distribution state on the blockchain in
the end. This concept can also be generalized to paths of such channels. By updating
the distribution states one after another, money is routed from one endpoint of the path
to the other, thereby achieving the same result as a regular on-chain transaction would.
The Lightning Network relies on a punishment mechanism to disincentivize parties to
publish outdated states on the blockchain and, in the case of channel paths, on an
incentive mechanism, that motivates the intermediaries of the channel path to forward
the transaction. In addition to the incentive structures, the Lightning Network also relies
on cryptographic concepts and correct implementation, as every blockchain protocol
does.

The nature of blockchain protocols makes them a popular target for attackers since they
manipulate valuable funds while operating in a pseudo-anonymous environment in which
everything that is technically possible is “allowed”. As the blockchain community says:
“Code is law”. That means if a protocol has a loophole through which a malicious person
can steal funds, the stolen funds officially belong to the attacker and they can use it
unrestrainedly. Such attacks can target different aspects of a blockchain protocol:
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1.2. Game-Theoretic Security

The implementation, which is mostly critical for smart contracts as they support complex
dependencies. There have been overflow attacks [How], where malicious users caused
an integer variable to overflow on purpose. The overflow was applied such that the
number of funds in the attacker’s account increased drastically. Another attack type is
re-entrancy. During such an attack, a specific line of code in a smart contract is entered
multiple times, thereby subtracting a certain value over and over [AES25].

The used cryptographic concepts. Blockchain technology makes heavy use of cryptography.
A common example is private keys (passcodes), which, among other applications, allow
users to sign transactions. An example of a flaw in a cryptographic concept occurred in
the Elliptic Curve Digital Signature Algorithm (ECDSA) used in Bitcoin. If a nonce, that
means a random value that was used during a signing process, is reused or predictable, it
can leak the private key due to the mathematical properties of ECDSA [Ami].

The incentive structures. It is possible that during protocol design incentives are intro-
duced to motivate the participants to behave in a certain way. However, a developer
can overlook how such mechanisms may award malicious actions in certain cases. An
example of such a situation is the wormhole attack [MMSS+19]. There, two users of the
Lightning Network collude to “steal” funds that were a third party’s incentive.

1.2 Game-Theoretic Security
When it comes to ensuring the security of a blockchain protocol, all three different aspects
(implementation, cryptography, and incentives) have to be considered.

The following non-blockchain-related analogy aims to provide an intuition about the
different aspects. When a password is used to log into some account, the security depends
on 1) what the webpage does with the password that was typed in (implementation),
2) whether a hacker can steal the password (cryptography), and 3) whether the user
wants to share their password (incentives). This is, of course, a drastic simplification,
and depending on the application, the categories might overlap.

The security of the incentive structures relies on game-theoretic considerations and is
therefore called game-theoretic security. This thesis mainly focuses on game-theoretic
security. In particular, it studies how to make sure the incentives work as intended, which
means that they favor the intended behavior in every case, no matter the circumstances.
These concepts are thoroughly motivated and defined in Chapter 2. It further presents how
to apply automated techniques to such a game-theoretic security analysis in Chapters 3–5.
Chapter 6 is concerned with an aspect of implementation security: verifying correct
summation with an unbounded number of summands.

To facilitate the reading of this dissertation, game theory, as well as relevant game-
theoretic concepts, are briefly introduced.

Game Theory. Game theory is a field of mathematics that studies strategic interactions
between decision-makers, called players, in situations where the outcome for each player
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1. Overview

depends on the actions of all involved. It provides a framework to analyze and predict the
behavior of individuals or groups in competitive, as well as cooperative settings. Game
theory is widely used in various areas, such as economics, political science, and social
sciences, to study decision-making, market competition, and evolutionary behavior, see,
e.g., [PR20]. The core object of game theory is the game, a mathematical model of the
studied social interaction.

Games. Similar to the variety of blockchain protocols is the variety of game types.
However, any game essentially consists of three components: the players, the possible
actions, and the resulting outcomes. They further share basic properties: The number
of players is finite; at each step of the game it is known whose turn it is and what
their possible actions are; and there is a pay-off for every player at the end of the game.
Whether players cooperate, a game may take forever, or, if all the information is known
by every player depends on the type of the game. This thesis considers finite games that
do not contain any probabilistic actions. Moreover, all relevant information is assumed
to be known by all players.

The most commonplace type of game is the normal form game (NFG). In an NFG all
the players choose one action simultaneously. Then, the game is over and the players
receive their pay-off. The well-known game rock-paper-scissors is an example of an NFG.
In this thesis, extensive form games (EFGs) are considered; this choice is motivated in
detail in Chapter 2. EFGs are still rather simple games but allow multiple turns. The
turns happen sequentially, in contrast to NFGs. The game tic-tac-toe is an EFG for
instance. While not being able to express probabilistic behavior, EFGs allow for deriving
deterministic security results, which is aimed for in this dissertation. Both NFGs and
EFGs are perfect information games, which means all players know all the facts. In
contrast to those, there are also imperfect information games, where the players only have
partial knowledge of the facts. Most card games (e.g. Poker) are imperfect information
games. Another important class of games is stochastic games. Those are games in which
– in addition to the player’s choices – chance plays a role. Roulette and dice games in
general are stochastic games.

Players. Most social interactions can be modeled as games. Since the behavior of
blockchain users is a social interaction, game theory applies as well. Every user is a
player, who might aim to correctly use decentralized finance products, although they may
have different objectives, such as (maliciously) maximizing their own profit. In this thesis,
players with three different objectives are considered, as motivated in Chapter 2. The
first type of player always follows the rules and guidelines of the protocol and thus aims
to benefit from using the finance product as intended by its developers. Such players
are called honest. The second type of player is the rational one; a rational player always
behaves the way it yields the most financial profit for them, even if they have to violate
the protocol’s rules. The last type of player is called Byzantine. Byzantine players do
not care about their pay-off or the rules and behave randomly; such players might have
other goals, such as for example decreasing trust in the system.

4



1.3. Automated Reasoning

As elaborated in this thesis (Chapter 2), to prove a blockchain protocol game-theoretically
secure, one has to show that honest and rational behavior are identical. That means, for
the incentive structures of a protocol to be considered secure, behaving honestly has to
yield the best payoff. Additionally, a game-theoretically secure protocol should be resilient
to Byzantine users. These security properties have been thoroughly studied and defined in
terms of game-theoretic properties in Chapter 2.

1.3 Automated Reasoning
When analyzing different aspects of blockchain security, automation is generally desirable.
Machines are much more reliable than humans when it comes to rather simple but
repetitive tasks. They are also much faster. To enable automation even when it comes
to verifying mathematical properties, that contain symbolic variables, as it does in this
thesis, automated reasoning is required. By providing sound rules, mechanized methods
have been developed with which it is possible to correctly and automatically reason about
mathematical formulae [GV20, BT18, Mac95].

The game models that have to be studied to analyze the game-theoretic security of
blockchain protocols are huge. Consider, for example, the routing of payments along a
path of channels in the Lightning Network as introduced in Section 1.1: Modeling the
routing along a path of three channels (hence four users) exceeded 200 GB of allocated
disk space and resulted in a game with 144 342 306 nodes. Details on this are provided
in Chapter 5. It is obvious that games of this size can hardly be analyzed manually. A
manual verification of its game-theoretic security would not only take months – if not
years – but is also very error-prone, cumbersome, and repetitive. It is just not feasible.

Straightforward automation of the analysis is not possible since the game-theoretic
properties to be verified are of mathematical nature and contain symbolic variables. Hence,
automated reasoning techniques have to be employed to successfully implement automated
game-theoretic security analyses. While Chapters 3–4 address this challenge, Chapter 5
goes beyond conventional automation and enables piece-wise, so-called compositional
automated analysis, overcoming the bottleneck of exceeded storage space.

1.4 Thesis Structure and Contributions
Each chapter of this thesis is based on a publication, which is stated at the beginning
of the respective chapter. All of them have been peer-reviewed and published at a
highly renowned computer science conference, except the one of Chapter 5, which is
currently under review. The chapters are self-contained, including their own introductions,
preliminaries, related work, and conclusion sections to allow for independent reading.
The contributions of this dissertation are the following.

Chapter 2 – Introducing Game-Theoretic Security In this chapter, we advocate
the use of game-theoretic concepts to reason about incentive structures in blockchain
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1. Overview

protocols, and in particular, the use of extensive form games (EFGs) with symbolic
payoffs to model blockchain protocols as games. The symbolic payoffs enable gap-free
security analysis, as they represent all possible values of balances, transferred amounts,
etc, through all-quantifying the variables in the symbolic payoffs. We further define
game-theoretic security as the intersection of the three game-theoretic properties weak
immunity, collusion resilience, and practicality. As a proof of concept, we also modeled
two capabilities of Bitcoin’s Lightning Network (the closing phase and the routing of
payments) as EFGs and manually analyzed their game-theoretic security according to our
definition with mathematical rigor. Our models are the first to accurately capture these
aspects of the Lightning Network including arbitrary deviations. Thereby, we formalized
precise criteria for when Lighting’s closing and routing are secure and established first
guidelines on the game-theoretic modeling of blockchain protocols.

Results of Chapter 2 have been published in [RAKM23] and presented at the IEEE
Computer Security Foundations Symposium 2023.

Chapter 3 – Automated Game-Theoretic Security Analysis This part of the
thesis presents a framework we developed that allows users to automatically analyze the
game-theoretic security of a blockchain protocol based on its EFG model with symbolic
payoffs. It is based on automated reasoning techniques such as SMT solving. To this
end, we encoded game-theoretic concepts such as strategies and histories as first-order
logic formulae. Also, the security properties defined in Chapter 2 were encoded in
first-order logic. The encoding was proven sound and complete. We implemented the
approach in a prototype and evaluated it on eight benchmarks, including the models
introduced in Chapter 2. The security analysis terminated in a matter of seconds for all
benchmarks, except for the routing of payments from Chapter 2, which is a tree with
21,688 nodes. Analyzing this benchmark took 1,222 seconds. For game models that violate
a security property, we additionally present a method to automatically compute a weakest
precondition: Adding this precondition as an assumption ensures the game model satisfies
the security property. Similarly, we introduce counterexamples to the security properties
and implement an algorithm to extract them as part of our framework. Note that the
publication this chapter is based on, [BKK+23a], makes an implicit assumption about
the structure of the game tree when reasoning about counterexamples to practicality.
In this thesis, this assumption is lifted in Chapter 3 Definition 3.10 and Theorem 3.4.
Lastly, for the models that satisfy the security properties, we provide a witness strategy
as proof.

Partial results of Chapter 3 have been published at the ACM Conference on Computer
and Communications Security 2023 in [BKK+23a].

Chapter 4 – The Game-Theoretic Security Tool CheckMate Based on the
encoding presented in Chapter 3, we developed the game-theoretic security analysis tool
CheckMate. In this chapter, we describe what the tool can do, how it operates, and how
to use it. Moreover, constraints from the previous chapter are lifted (linear expressions),
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concepts are refined (case splitting, counterexamples to practicality, weakest precondition
generation), and the entire tool has a new implementation compared to its prototype in
Chapter 3. We evaluated CheckMate on 15 benchmarks, out of which we introduced
seven as new game-theoretic security benchmarks. The results show significant scaling
improvements compared to its prototype.

The results of Chapter 4 have been published in [RBK+24] at the International Conference
on Logic for Programming Artificial Intelligence and Reasoning 2024.

Chapter 5 – Compositional Game-Theoretic Security When it comes to game
models based on actual blockchain protocols, CheckMate, as introduced in Chapter 4,
still does not scale well enough, due to millions of game nodes. In fact, such game models
are not even constructable as they exceed 200 GB of allocated disk space. We, therefore,
in Chapter 5, propose a compositional, that is, a divide-and-conquer-like approach to
game-theoretic security analysis. We establish theoretical results on the compositionality
of the security properties. Thereby, we define variations of the properties that allow for
compositional reasoning and prove them equivalent to their originals. Based on these new
versions, we develop a divide-and-conquer algorithm to decide the game-theoretic security
of a game model and prove it sound and complete. We implemented the algorithm as the
next generation of CheckMate and evaluated it on the benchmark set of Chapter 4,
which shows significant improvements in runtime. Most importantly, our methodology
supports subtree-supertree reasoning due to its compositional structure. That means a
part of the game model – a so-called subtree – can be analyzed independently ahead of
time. This functionality allows for iteratively generating and analyzing parts of a game
model, which drastically decreases the required disk space as the already analyzed part of
the model does not have to be stored. Further, we also present methods to conveniently
extract witness strategies, weakest preconditions, and counterexamples without causing
major overhead.

Chapter 6 – Further Reasoning about Implementation Security This chapter
goes beyond game-theoretic security and is concerned with an aspect of implementation
security: It studies summation with an arbitrary unbounded number of summands. Smart
contracts can manipulate the total number of assets, called tokens. This can happen
through the minting or burning of such tokens. Other smart contracts might want to
change the balances of some users’ tokens through a transaction while ensuring the
total number of assets remains unchanged (keyword: integer overflow). Implementation
security approaches have struggled to fully formally capture such unbounded summations.
Chapter 6 makes the following contributions towards this challenge: We introduce a
generalization to Presburger arithmetic that can express properties about summations and
show how verification problems of smart contracts can be formalized using it. We study
the decidability of our extension and present different encodings of it to first-order logic,
also considering theory-specific reasoning. Furthermore, we evaluate the encodings using
SMT solvers and first-order theorem provers using 31 new benchmarks, implementing
summation-related transitions of smart contracts and their properties. The experiments
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showcase the applicability of our results towards implementation security of blockchain
protocols.

Results of Chapter 6 have been published at the International Conference on Computer
Aided Verification 2021 in [ERI+21a].

Finally, Chapter 7 – Summary and Outlook concludes this thesis. It summarizes the
main results, gives an outlook on possible future work, and aims to inspire continuation
based on our findings.

1.5 Impact

Included Peer-Reviewed Publications. The following peer-reviewed publications
are included in this thesis. The author of this thesis is either the main contributor or
one of the main contributors to the mentioned publications. The work of [ERI+21a], has
one other main author, whose main contribution was the (un-)decidability analysis in
Section 6.4, which is why the proofs of this section are omitted in this thesis.

[RAKM23] Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. Towards a
Game-Theoretic Security Analysis of Off-Chain Protocols. In Proceedings of IEEE
36th Computer Security Foundations Symposium, pages 31–46, Los Alamitos, CA,
USA, 2023.

[BKK+23a] Lea Salome Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain, and
Michael Rawson. CheckMate: Automated Game-Theoretic Security Reasoning. In
Proceedings of 30th ACM SIGSAC Conference on Computer and Communications
Security, pages 1407–1421, New York, NY, USA, 2023.

[RBK+24] Sophie Rain, Lea Salome Brugger, Anja Petković Komel, Laura Kovács, and Michael
Rawson. Scaling Checkmate for Game-Theoretic Security. In Proceedings of 25th
Conference on Logic for Programming, Artificial Intelligence and Reasoning, pages
222–231, Stockport, UK, 2024.

[ERI+21a] Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács, and Mooly Sagiv. Summing
up Smart Transitions. In Proceedings of 33rd International Conference on Computer
Aided Verification, pages 317–340, Cham, Switzerland, 2021.

Extended Versions and Preprints. In addition to the publications listed in the
previous paragraph, this thesis also incorporates results from the following extended
versions, respectively, a preprint of work that is currently under review.

[RAKM21] Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. Towards a
Game-Theoretic Security Analysis of Off-Chain Protocols. arXiv preprint, 2021.
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[BKK+23b] Lea Salome Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain, and Michael
Rawson. CheckMate: Automated Game-Theoretic Security Reasoning. EasyChair
Preprint no. 10853, 2023.

[BKK+25] Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael
Rawson. Divide and Conquer: A Compositional Approach to Game-Theoretic
Security. EasyChair Preprint no. 15785, 2025.

[ERI+21b] Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács, and Mooly Sagiv. Summing
up Smart Transitions. arXiv preprint, 2021.

Other Publications. Working towards this thesis, also inspired other work. Meant to
foster diversity in computer science, the author of this thesis also co-founded the workshop
series “Abenteuer Informatik für Volksschule” which led to the following conference paper.

[LRKF23] Martina Landman, Sophie Rain, Laura Kovács, and Gerald Futschek. Reshaping
Unplugged Computer Science Workshops for Primary School Education. In Pro-
ceedings of 16th International Conference on Informatics in Schools: Situation,
Evolution, and Perspectives, pages 139–151, Lausanne, Switzerland, 2023.

Awards and Honors. The research within this thesis brought the following additional
recognitions to the thesis author.

• In October 2022 the Christina Hörbiger Prize was awarded in acknowledgment of
the efforts and endeavors made towards this thesis.

• In November 2022 a Netidee stipend was granted from the Internet Stiftung to
support the research that led to this thesis.

• In July 2023, the author of this thesis was listed among TU Wien’s 30 under 30,
an institution to highlight young talents at TU Wien.

• In May 2024, the Best Presentation Award was given to the author of this thesis for
the presentation of [RBK+24] at the 25th Conference on Logic for Programming,
Artificial Intelligence and Reasoning.
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CHAPTER 2
Introducing Game-Theoretic

Security

This chapter is based on article [RAKM21]:

Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. Towards a
Game-Theoretic Security Analysis of Off-Chain Protocols. arXiv preprint, 2021.

This article is an extended version of the publication [RAKM23]:

Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. Towards a
Game-Theoretic Security Analysis of Off-Chain Protocols. In Proceedings of IEEE
36th Computer Security Foundations Symposium, pages 31–46, Los Alamitos, CA,
USA, 2023.

2.1 Problem Statement
Blockchain technologies are emerging as a revolutionary paradigm to perform secure
decentralized financial applications. Nevertheless, a widespread adoption of cryptocur-
rencies, such as Bitcoin [Nak08] and Ethereum [Woo14], is severely hindered by their
inherent limitations on transaction throughput [HSHS20, CMVSM18]. For instance,
while Bitcoin can support tens of transactions per second and the confirmation time is
about an hour, traditional credit networks like Visa can comfortably handle up to 47,000
transactions per second.

Off-chain protocols [GMSR+20] are recognized as one of the most promising scalability
solutions, achieving a seemingly contradictory property: the bulk of transactions is per-
formed off-chain, and yet in a secure fashion. The idea is to leverage the blockchain only
in case of disputes, resorting otherwise to off-chain, peer-to-peer transactions. Bitcoin’s
Lightning Network [PD16] is the most widely adopted off-chain instantiation, hosting at
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the time of writing bitcoins worth more than 170M USD, in a total of more than 27,000
nodes and more than 76,000 channels. In a nutshell, parties deposit money in a shared
address, called a channel, and can later on perform arbitrarily many off-chain transactions
with each other by redistributing the deposit on the channel. In the end, the channel can
be closed and the latest state (i.e., deposit distribution) is posted on-chain. Off-chain
transactions are not limited to the end-point of the channel, but they can be routed over
paths of channels (so-called multi-hop payments). Besides such payment channel networks,
an entire ecosystem of off-chain protocols [GMSR+20] (virtual channels, watchtowers,
payment-channel hubs, state channels, side-chains, etc.) is under development for Bit-
coin [MMSS+19, AEE+21, AME+21, AMKM21, AKWZ21, DW15], Ethereum [DEFM19,
DEF+19, MBB+19, ALW20], as well as other cryptocurrencies [TMSS20].

The cryptographic protocols underlying these off-chain constructions are rather sophisti-
cated and, most importantly, rely on game-theoretic arguments to discourage malicious
behavior. For instance, the Lightning Network relies on a punishment mechanism to
disincentivize parties to publish old states on-chain and on an unlocking mechanism
where parties first pay a neighbor and then retrieve the paid amount from the other
to ensure the atomicity of multi-hop payments (i.e., either all channels are consistently
updated or none is).

Off-chain protocols are typically subject to rigorous security analyses, which, how-
ever, concentrate on cryptographic properties and do not capture the game-theoretic
ones. In particular, most protocols are proven secure in the Universal Composability
framework [CDPW07], proving that the cryptographic realization simulates the ideal
functionality. This framework, however, was developed to reason about security in the
classical honest/Byzantine setting: in particular, the ideal functionality has to model all
possible parties’ behavior, rational and irrational, otherwise it would not be simulatable,
but reasoning on whether or not certain behavior is rational is outside of the model and
thus left to informal arguments. This is not just a theoretical issue, but a practical one,
as there is the risk of letting attacks pass undetected: for instance, the Wormhole attack
[MMSS+19] constitutes a rational behavior in the Lightning Network, which is thus
admitted in any faithful model thereof, although it undermines its incentive mechanism.
The first step towards closing this gap in cryptographic proofs is to come up with a
faithful game-theoretic model for off-chain protocols in order to reason about security in
the presence of rational parties. We address this challenge in this work, advocating the
use of Extensive Form Games (EFGs) for the game-theoretic security analysis of off-chain
protocols. In particular, we introduce two instances of EFGs to model the closing and
the routing of the Lightning Network.

2.1.1 Related Work

A game-theoretic model for off-chain protocols is initiated and introduced in [ZBPBS21].
This work suffers, however, from several limitations, which make it unsuitable to conduct
faithful security analyses. Firstly, the game model considers only honest closing of
channels, i.e., all deviations – such as posting an old state – are ignored: this makes
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it impossible to reason about the security of basic channel operations. Secondly, the
pay-offs are represented as constants, which neglects the dependency of the channel’s
balance on its security properties. Further, fees are not considered at all, thereby ignoring
their impact on Lightning protocols. For instance, the routing game to model the security
of multi-hop payments fails to capture already identified attacks in payment channel
networks, like the Wormhole attack [MMSS+19] that targets the fee distribution among
players. Additionally, Lightning is vulnerable to the Griefing attack [KSHB19], where a
significant amount of money is locked. In our work, we overcome the aforementioned
limitations by defining a stronger closing phase model, by aligning the utilities to the
monetary outcome, by considering all possible deviations of parties during closing, and by
revising the relevant security properties. We demonstrate the importance of precision in
game-theoretic protocol models by modeling the Wormhole attack, as well as the Griefing
attack.

Our work further complements other game-theoretic advancements in the area, most
prominently the following lines of research.

Incentivizing Watchtowers A major drawback of payment channel protocols is that
channel participants must frequently be online and watch the blockchain to prevent
cheating. To alleviate this issue, the parties can employ third parties, or so-called
watchtowers, to act on their behalf in case their counterparty misbehaves. Correctly
aligning the incentives of watchtowers to yield a secure payment channel protocol is,
however, challenging. This is the main focus of several works [MBB+19, ALS+18, ALW20,
AKWZ21]. As their objective is to incentivize external parties, their models do not apply
in our work.

Payment Channel Network Creation Games Avarikioti et al. [AHWW20, ASW19]
study payment channel networks as network creation games. Their goal is to deter-
mine which channels a rational node should establish to maximize its profit. Ersoy et
al. [ERE20] undertake a similar task; they formulate the same problem as an optimization
problem, show it is NP-hard, and present a greedy algorithm to approximate it. Similarly
to our work, all these works assume rational participants. However, we aim to model
the security of the protocols, in contrast to these works that study the network creation
problem graph-theoretically.

Blockchains with Rational Players Blockchains incentivize miners to participate in
the network via monetary rewards [Nak08]. Therefore, analyzing blockchains under the
lens of rational participants is critical for the security of the consensus layer. There are
multiple works in this direction: Badertscher et al. [BGM+18] present a rational analysis
of the Bitcoin protocol. Eyal and Garay [ES14] introduce an attack on the Nakamoto
consensus, effectively demonstrating that rational miners will not faithfully follow the
Bitcoin protocol. This attack is generalized in [KKS+17, SSZ16]. Consequently, Kiayias
et al. [KKKT16] analyze how miners can deviate from the protocol to optimize their
expected outcome. Later, Chen et al. [CPR19] investigate the reward allocation schemes
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in longest-chain protocols and identify Bitcoin’s allocation rule as the only one that
satisfies a specific set of desired properties. On a different note, several works study the
dynamics of mining pools from a game-theoretic perspective [Eya15, TJS16] or introduce
network attacks that may increase the profit of rational miners [HKZG15, NKMS16]. An
overview of game-theoretic works on blockchain protocols can be found in [LNW+19].

All these works, however, focus on the consensus layer (Layer-1) of blockchains and as
both the goals and assumptions are different from the application layer (Layer-2), the
models introduced there cannot be employed for our purposes. For instance, payment
channel protocols occur off-chain and thus game-based cryptographic assumptions of the
blockchain do not apply. In addition, consensus protocols investigate the expected reward
of miners ,which is a probabilistic problem, whereas we ask if any honest player could
lose money, which depends on the behavior of the other players and is fundamentally
deterministic.

Game-based definitions have also been proposed for the security analysis of smart
contracts [CGV18, CGP19]. These models, however, target an on-chain setting and are
thus not suitable for reasoning about the specifics of off-chain constructions (e.g., closing
games, routing games, etc.).

2.1.2 Our Contributions

In this work, we take the first steps towards closing the gap between security and game-
theoretic analysis of off-chain protocols. Specifically, we introduce the first game-theoretic
models that are expressive enough to reason about the security of off-chain protocols.
We model off-chain protocols as games and then analyze whether or not certain security
properties are satisfied. The design of our models is driven by two principles: (a) all
possible actions should be represented, and (b) the utility function should mirror the
monetary outcome realistically. We aim to ensure that honest participants do not suffer
any damage (P1), whereas deviating from the protocol yields a worse outcome for the
adversary (P2) We will use weak immunity (Definition 2.4) to implement (P1), and
collusion resilience (Definition 2.16) together with practicality (Definition 2.15) for (P2).
While we believe that our approach of implementing principles (a) and (b) is easily
extensible to other off-chain protocols, in this work, we focus on the Bitcoin Lightning
Network, which constitutes the most widely adopted off-chain protocol. Our technical
contributions can be summarized as follows:

• We refine existing game-theoretical concepts in order to reason about the security
of off-chain protocols (Section 2.3).

• We introduce the Closing Game Gc, the first game-theoretic security model that
accurately captures the closing phase of Lightning channels, encapsulating arbitrary
deviations from the protocol specification (Section 2.4).

• We perform a detailed security analysis of Gc, formalize folklore security corner
cases of Lightning, and present the strategy that rational parties should follow to
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close their channels in order to maximize their expected outcome relative to the
current and previous distribution states (Section 2.5).

• We identify limitations in prior work [ZBPBS21] on game-based modeling of multi-
hop payments, putting forward a new game-based definition that is precise enough
to cover the Wormhole and the Griefing attack (Section 2.6). We further show
how to model Fulgor protocol [MMSK+17], a variant of Lightning’s routing that
prevents the Wormhole attack. Our formalization leverages game theory concepts
introduced in Section 2.3 and Section 2.4, thereby demonstrating the theoretical
expressiveness of our framework to analyze complex protocols.

In conclusion, our work brings game-theoretical foundations to enforce security of off-chain
protocols, by providing a rigorous analysis over security properties expressed through
formal requirements over game strategies. We believe the provided rigor in our work
opens up new venues for automating security analysis via game-theoretic arguments, a
challenge which we aim to tackle in future work.

2.2 Background and Preliminaries

2.2.1 Payment Channel Networks

A payment channel [AEE+21] can be seen as an escrow (or multi-signature), into which
two parties Alice A and Bob B transfer their initial coins with the guarantee that their
coins are not locked forever and the agreed balance can be withdrawn at any time. After
that, A and B can pay each other off-chain by signing and exchanging messages that
reflect the updated balances in the escrow. These signatures can be used at any time to
close the channel and distribute the coins on-chain according to the last channel state. In
order to discourage parties from posting an old state on-chain, a punishment mechanism
is in place. In particular, in Lightning [PD16], once A closes the channel, she has to wait
a mutually agreed time before getting her coins. Meanwhile, B has the opportunity to
withdraw all the coins in the channel (by posting a so-called revocation transaction),
including the ones assigned to A, if the state posted on-chain by A is not the last one
they mutually agreed on. Such a punishment mechanism is of game-theoretic nature:
parties can indeed post an old state on-chain, yet they are discouraged to do so.

In particular, Lightning payment channels operate as follows: First, Alice and Bob create
a funding transaction where they input their respective coins; the funding transaction
has a single output that can only be spent if both A and B provide their signature (2-
out-of-2 multi-signature). Then, the two parties create the first commitment transaction,
i.e., a transaction that spends the output of the funding transaction and returns the
initial coins to both parties. In other words, the input of the commitment transaction
is the output of the funding transaction while the output of the first commitment
transaction is two-fold: the first output returns the coins to A and the second output to
B. However, the commitment transaction each party holds is not the same. Specifically,
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the commitment transaction of A has an additional spending condition, a timelock t
that signifies the revocation period and is pre-agreed between the two parties; in A’s
commitment transaction, B’s output is spendable immediately. Symmetrically, in B’s
commitment transaction B’s output has a timelock t while A’s output is spendable
immediately. Note that a timelock t is a condition that allows the coins of the output to
be spent on-chain only after time t has elapsed from the publication of the transaction.
After A and B sign and exchange the respective first commitment transactions, they
proceed to sign the funding transaction and publish it on-chain. This order is important
to avoid hostage situations1. As soon as the funding transaction is securely published
on-chain, A and B can transact off-chain by creating every time a new commitment
transaction that depicts the current balance of the joint capital among the two parties.
Every time a new commitment transaction is created, the parties reveal a secret to
their counterparty that allows their counterparty to spend their own coins immediately
(e.g., A can spend B’s coins from the previous commitment) if the previous commitment
transaction appears on chain (revocation transaction). To close a Lightning channel,
the two parties can either collaborate and spend the output of the funding transaction,
or each of them can close the channel unilaterally by publishing the last commitment
transaction. Since the commitment transactions each party hold have a timelock, in
case of cheating, i.e., publication of a previous commitment transaction on-chain, the
counterpart can immediately spend the cheating party’s coins, claiming all the coins of
the channel, thus punish the cheating party for misbehaving.

Technically, A and B do not just lock their initial funds but also a certain small amount
which will be used as a fee for the closing transaction of the channel. Note that every
on-chain transaction requires such a fee f . The fee for the opening transaction is paid
upon the opening of the channel and is thus irrelevant to our consideration. However, in
case A posts an old state on-chain and B performs the revocation transaction – which is
an on-chain transaction – to prove it, B has to carry the additional transaction fee alone.
These facts have an important impact on our game-theoretic models.

In the following, we refer to honest closing when a party unilaterally closes the channel
by posting the last commitment transaction or when the parties close collaboratively,
where both parties sign to spend the funding transaction output directly.

Off-chain transactions are not limited to the end-points of a channel, as they can be
performed whenever sender and receiver are connected by a path of channels with enough
capacity. The cryptographic approach to do so exploits hash-time-locked contracts
(HTLC) [DW15]. Assume players A and B do not share a channel. Instead, A has a
channel with E1; E1 has a channel with I; I has a channel with E2; and E2 has a channel
with B, as illustrated in Figure 2.1. Player A can now send an amount m to player B
via the intermediaries E1, I, and E2, where each intermediary charges a fee f for the

1If the funding transaction is published on-chain before the first commitment transactions are signed,
a party may hold the other hostage since none of the parties can close the channel unilaterally but only
in collaboration.
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Figure 2.1: Routing in Lightning using HTLCs.
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Figure 2.2: Wormhole Attack in Lightning.

routing service, hence A should pay m+ 3f . The core idea is that A pays E1, E1 pays I,
and so forth until B gets paid.

A key security property in multi-hop payments is atomicity: either all payments are
successful, and the deposit in each channel is updated accordingly, or none is. To achieve
this property, the Lighting protocol proceeds as follows. First, the receiver B generates a
secret x and sends its hash h(x) = y to the sender A (see action 1 in Figure 2.1). Then
A creates an HTLC for E1, where she locks m+ 3f with lock y and time-out t1. That
means only E1 can claim the money and only by providing a value whose hash is y within
time t1 (action 2 in Figure 2.1). Although E1 does not know such a value yet and can
therefore not unlock, E1 can nevertheless proceed by creating another HTLC for I also
locked with y and a time-out t2 (action 3 in Figure 2.1). Thereafter, I and E2 continue
in the same way (actions 4 – 5 in Figure 2.1). Actions 1 – 5 of Figure 2.1 are called
the locking phase. Note that in order to allow everybody to unlock their HTLCs in the
subsequent steps, the time-outs have to be decreasing t1 > t2 > t3 > t4. Once B receives
the conditional payment, he can reveal x to E2 and the conditional payment is unlocked
(action 6 in Figure 2.1). The others can now unlock the HTLCs one after the other from
right to left (actions 7 – 9 in Figure 2.1), which is called the unlocking phase. Finally, A
paid m+ 3f , B received m and each intermediary was rewarded with f .

We note that atomicity is achieved by a game-theoretic argument: intermediaries can, in
principle, stop the protocol either in the locking phase or in the unlocking phase. In the
former, they would lose the transaction fee f , while in the latter, they would lose the
payment amount m, m+ f , m+ 2f respectively. Thus, they are incentivized to act once
they have committed to participate.
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The Wormhole Attack The aforementioned routing protocol is proven to be vulner-
able to the Wormhole attack [MMSS+19], which is depicted in Figure 2.2. The attack
is as follows: E1 and E2 collude, and bypass I in the unlocking phase, thus stealing
I’s participation reward f . Until actions 6 in Figure 2.1 and Figure 2.2, the behavior
is identical. Then, E2, knowing x, forwards x to E1 (offline) instead of unlocking the
HTLC from I (action 7 in Figure 2.2). This way, E1 can unlock A’s HTLC and claim the
money (action 8), but I will never be able to unlock. After a certain time the remaining
HTLCs time-out and the locked money returns to the creators.

Therefore, the parties A and B are not affected. However, E1 and E2 collectively earn
3f instead of the 2f they deserve, stealing the fee f from I, who locked resources in the
locking phase of the protocol. This attack undermines the incentive of intermediaries to
route payments.

The Griefing Attack It describes the scenario when a player, assume B for simplicity,
ignores the proposed payment and refuses to proceed [KSHB19]. This way, money is locked
in the conditional payments for a considerable amount of time. While [MBS+22] studies
the Griefing attack through probabilistic modelling and [BMR20] provides mitigation
techniques, to the best of our knowledge there is no formal security analysis of this attack
at present. Our work addresses this limitation and shows that Lightning’s routing module
is indeed susceptible to the Griefing attack.

In the sequel we consider the behavior as illustrated in Figure 2.1 as the only honest
routing behavior.

2.2.2 Game-Theoretic Definitions

We now introduce the game-theoretic concepts relevant for our formalization. We denote
real numbers by R and tuples as σ = (σ1, ..., σn). We write σ[σ′

i/σi] to denote the tuple
resulting from substituting σi by σ′

i in σ, that is σ[σ′
i/σi] = (σ1, ..., σi−1, σ

′
i, σi+1, ..., σn).

We understand games as static objects in which finitely many players can choose finitely
many times from a finite set of actions. A game yields a certain positive or negative
utility for each player. We briefly overview the very common Normal Form Games, also
called Strategic Games [OR94], in which each player chooses an action only once, called
strategy.

Definition 2.1 (Normal Form Game – NFG). A Normal Form Game (NFG) is a tuple
Γ = (N,S , u), where N is the set of game players, S = "p∈NSp the set of joint
strategies σ and u the utility function:

• Sp is the non-empty set of strategies player p can choose from. Thus, a joint
strategy σ ∈ S is a tuple of strategies σ = (σp1 , ..., σp|N|), with σpi ∈ Spi.

• u = (up1 , . . . , upn), where upi : S → R assigns player pi its utility for every joint
strategy σ ∈ S .
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Table 2.1: NFG ΓC with players A,B.

A
B U C I

U (1/2, 1/2) (0, 1) (0, 1)
C (1, 0) (1, 1) (−1,−1)
I (1, 0) (−1,−1) (−1,−1)

In what follows we fix an arbitrary game Γ and give all definitions relative to it. To
formalize an optimal outcome on game strategies, we use Nash Equilibria.

Definition 2.2 (Nash Equilibrium – NE). A Nash Equilibrium is a joint strategy σ ∈ S
s.t. no player pi can increase their utility by unilaterally deviating from σ = (σp1 , ..., σp|N|).
Formally,

∀p ∈ N ∀σ′
p ∈ Sp : up(σ) ≥ up( σ[σ′

p/σp] ) . (2.1)

Another important concept is weakly dominated strategies, expressing the strategies a
rational player would not play since they yield worse utilities.

Definition 2.3 (Weakly Dominated Strategy). A strategy σdp ∈ Sp of player p is called
weakly dominated by strategy σ′

p ∈ Sp, if it always yields a utility at most as good as σ′
p

and a strictly worse utility at least once:

∀σ ∈ S : up( σ[σdp/σp] ) ≤ up( σ[σ′
p/σp] ) and (2.2)

∃σ ∈ S : up( σ[σdp/σp] ) < up( σ[σ′
p/σp] ) . (2.3)

Example 2.1. Consider the NFG ΓC in Table 2.1, which was introduced in [ZBPBS21]
to model closing. In this game ΓC , there are two players N = {A,B} and each players
can choose from the same strategy set SA = SB = {U,C,I}. Here, strategy U captures
unilateral closing, that is publishing the latest state on-chain. Further, strategy C
corresponds for closing collaboratively, that is publishing a mutually signed transaction.
Finally, strategy I stands for ignoring, that is doing nothing. The utility for each joint
strategy is given in Table 2.1, where player A’s strategies are listed in the left column of
Table 2.1 and the strategies of B are given in the top row of Table 2.1.

Applying Definition 2.2, the joint strategies (C,C), (U, I) and (I, U) are Nash Equilibria:
for each of these joint strategies, neither A nor B can deviate in order to increase their
own utility. Comparing the second and the third row of Table 2.1, we see that A’s utility
is always as least as good in the second row as it is in the third row. Hence, strategy
C weakly dominates strategy I for player A, by Definition 2.3; the same property also
holds for player B. By comparing the other pairs of rows/columns of Table 2.1, we see
that there is no other weak dominance in ΓC .
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2.2.3 Game-Theoretic Security Properties of Off-Chain Protocols

We now present existing game-theoretic concepts [ZBPBS21, OR94] implying security
properties of off-chain protocols. In Section 2.3, we extend these concepts towards another
type of games, called Extensive Form Games, enabling our security analysis in Section 2.4.
We focus on two security properties ensuring that (P1) honest players do not suffer
damage, and (P2) subgroups of rational players do not deviate from a respective strategy.
A protocol is compliant to these properties, if the strategy implementing the intended
behavior satisfies them; we call such a strategy an honest strategy.

(P1) No Honest Loss. As the utility function of a game is supposed to display the
monetary and intrinsic value of a certain joint strategy, property (P1) is expressed
using weak immune strategies defined next.

Definition 2.4 (Weak Immunity). A joint strategy σ ∈ S in an NFG Γ is called weak
immune, if every player p that follows σ gets utility at least 0, regardless of how the other
players behave:

∀p ∈ N ∀σ′ ∈ S : up( σ′[σp/σ′
p] ) ≥ 0 . (2.4)

Example 2.2. In the game ΓC of Table 2.1, the only weakly immune strategy is (U,U).
This is the case, because as long as A chooses U , player B can take any strategy and A
will never get negative utility (similarly, vice-versa).

(P2) No Deviation. Even though the concept of Nash Equilibria seems to be a good
candidate to ensure (P2) at first glance, they have two crucial shortcomings. First,
a Nash Equilibrium only ensures that a single player cannot profit from deviating,
but it does not imply that two or more players cannot do so. Second, there might
be Nash Equilibria, which are weakly dominated by another strategy for a specific
player. Such Nash Equilibria will therefore not be played by rational parties and
hence should not be considered to satisfy (P2).

The solution proposed for NFGs in [ZBPBS21] is to consider strategies σ compliant to
(P2), if they are both strongly resilient (fixing the former shortcoming) and practical
(fixing the latter) as defined subsequently.

Strong resilience extends Nash Equilibria by considering deviations of multiple players.

Definition 2.5 (Strong Resilience – SR). A joint strategy σ ∈ S in an NFG Γ is
strongly resilient (SR) if no proper subgroup of players S := {s1, ..., sj} has an incentive
in deviating:

∀S ⊂ N ∀σ′
si
∈ Ssi ∀p ∈ S :

up(σ) ≥ up( σ[σ′
s1/σs1 , ..., σ

′
sj
/σsj ] ) .

(2.5)
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Table 2.2: NFG Γ′
C obtained from IDWDS over Table 2.1.

A
B U C

U (1/2, 1/2) (0, 1)
C (1, 0) (1, 1)

We note that in games with two players (i.e. two-player games), strong resilience and
Nash Equilibrium are identical. As such, in ΓC from Table 2.1, the joint strategies (C,C),
(U, I) and (I, U) of Example 2.1 are also strongly resilient.

To define practicality of a strategy, we first introduce the concept of iterated deletion of
weakly dominated strategies (IDWDS).

Definition 2.6 (Iterated Deletion of Weakly Dominated Strategies – IDWDS). The
iterated deletion of weakly dominated strategies (IDWDS) of an NFG Γ is defined as
iteratively rewriting Γ by omitting all weakly dominated strategies of all players. This is
repeated until no strategy is weakly dominated anymore. The resulting game Γ′ is thus a
subgame of Γ.

Note that when IDWDS is applied to a game Γ, then every Nash Equilibrium of the
resulting game Γ′ is also a Nash Equilibrium of Γ. Since all weakly dominated strategies
of every player are removed at each step, the generated game is unique. Details and
proofs can be found in [OR94].

We now define practical strategies, in order to ensure that no single strategy is weakly
dominated at any iteration.

Definition 2.7 (Practicality). A strategy is practical if it is a Nash Equilibrium of the
NFG Γ′ after iterated deletion of weakly dominated strategies.

Example 2.3. Let us consider ΓC from Table 2.1. We know from Example 2.1 that
only I is weakly dominated for both A and B. Therefore, according to Definition 2.6,
strategy I has to be removed from both players’ strategy set. This yields the game Γ′

C

as listed Table 2.2.

Note that there are no weakly dominated strategies in Γ′
C . Thus, any Nash Equilibrium

of Γ′
C is also practical strategy of ΓC . By comparing utilities, we derive that the only

Nash Equilibrium of Γ′
C is the joint strategy (C,C).

An alternative approach for expressing (P2) is by requiring a strategy σ to be both a
strong Nash Equilibrium (a property similar to SR) and practical, instead of SR and
practical.

Definition 2.8 (Strong Nash Equilibrium – sNE). A joint strategy σ is a strong Nash
Equilibrium (sNE) if for every group of deviating players S := {s1, ..., sj} and all possible
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deviations σ′
si
∈ Ssi , i ∈ {1, ..., j} at least one player p ∈ S has no incentive to participate,

that is
∀S ⊆ N, S ̸= ∅ ∀σ′

si
∈ Ssi ∃p ∈ S :

up(σ) ≥ up( σ[σ′
s1/σs1 , ..., σ

′
sj
/σsj ]).

(2.6)

Example 2.4. In ΓC from Table 2.1, all NE are also sNE. For the joint strategy (C,C),
this is easy to see. However, it is also the case for (U, I) and (I, U), since any deviation
yields a utility of at most 1. Thus, at least one player’s utility does not increase by
deviating from (U, I), (I, U) respectively.

A detailed comparison of the various concepts ensuring (P2), including their strengths
and weaknesses, is given in Section 2.3.

2.3 EFG-based Modeling of Off-Chain Protocols

So far we considered games in which each party takes only one action. We now extend
our definitions to handle adaptive strategies, i.e., games in which parties take several
actions and choose at each step which action to take based on the actions previously
chosen by other parties. As we will see, this is necessary for faithfully modeling off-chain
protocols and overcoming the limitations of previous work [ZBPBS21]. For that, we
overview the concept of extensive form games (EFGs) in Section 2.3.1. We show how to
lift NFG-based security definitions to EFGs in Section 2.3.2. Finally, we show that these
definitions do not yet suffice to yield an accurate security model of off-chain protocols,
and introduce a refined security definition based on the concept of collusion resilience in
Section 2.3.3.

2.3.1 Extensive Form Games (EFG)

To formalize strategies where players make multiple choices one after the other, we
advocate the usage of Extensive Form Games (EFGs) [OR94], which extend NFGs as
follows.

Definition 2.9 (Extensive Form Game – EFG). An Extensive Form Game (EFG) is
a tuple Γ = (N,H , P, u), where N and u are as in NFGs. The set H captures game
histories, T ⊆H is the set of terminal histories, and P denotes the next player function,
satisfying the following properties.

The set H of histories is a set of sequences of actions with

1. ∅ ∈H ;

2. if the action sequence (ak)Kk=1 ∈H and L < K, then also (ak)Lk=1 ∈H ;

3. a history is terminal (ak)Kk=1 ∈ T , if there is no action aK+1 with (ak)K+1
k=1 ∈H .
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The next player function P

1. assigns the next player p ∈ N to every non-terminal history (ak)Kk=1 ∈H \T , that
is P ((ak)Kk=1) = p;

2. after a non-terminal history h = (ak)Kk=1 ∈H , it is player P (h)’s turn to choose
an action from the action set A(h) = {a : (h, a) ∈H }.

A strategy of player p is a function σp mapping every h ∈H with P (h) = p to an action
from A(h). Formally,

σp : {h ∈H : P (h) = p} → {a : (h, a) ∈H ,∀h ∈H } ,

such that σp(h) ∈ A(h). The set of all strategies of a player p is Sp, and the set of all
joint strategies is S = "p∈NSp.

Note that the set of terminal histories T is uniquely determined by H and therefore
does not explicitly occur in the tuple Γ. Since histories h are just sequences of actions
h = (ak)Kk=1 = (a1, ..., aK), we denote histories by the variable h, the abstract sequence
(ak)Kk=1, or the explicit sequence (a1, ..., aK), depending on the context in which they are
used. We note that EFGs can conveniently be represented as trees, as described below.

Definition 2.10 (EFG as Tree). Considering an EFG Γ = (N,H , P, u), the following
tree G = (V,E) represents Γ.

• For every history h ∈H , there exists exactly one node vh ∈ V . This is labeled by
P (h), the next player, if h is not terminal (h /∈ T ), or by u(σ), the joint utility of
playing a game with history h, if h is terminal (h ∈ T ) and the joint strategy σ
yields history h.

• Two nodes vh, vh′ ∈ H are connected via an oriented edge (vh, vh′) ∈ E iff
h′ = (h, a). This edge is labeled a.

Let us illustrate EFGs and their tree-based representation through the following example.

Example 2.5. The game tree in Figure 2.3 results from the extensive form game
ΓE = (N,H , P, u) with the two players N = {A,B}, where the set of histories is
H = {∅, (a), (b), (b, c), (b, d), (b, d, e), (b, d, f), (b, d, f, g), (b, d, f, i)}. The next player
function P assigns player A after histories ∅ and (b, d), and player B after (b) and (b, d, f).
Finally, the utility function u assigns joint utility (2, 2) to strategies that yield history
(a), utility (3, 1) for strategies with history (b, c), utility (1, 1) for strategies with history
(b, d, e), and (0, 2) for strategies resulting in (b, d, f, i). A strategy σ = (σA, σB) in ΓE is
for example: A chooses a after history ∅: σA(∅) = a; and f after (b, d): σA((b, d)) = f ;
B takes c after (b): σB((b)) = c, and g after (b, d, f): σB((b, d, f)) = g. Following this
strategy until we read a leaf yields history (a). A different strategy σ′ = (σ′

A, σ
′
B), which

also yields history (a), is for example σ′
A(∅) = a, σ′

A((b, d)) = e and σ′
B = σB.
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A

B(2, 2)

A(3, 1)

B(1, 1)

(0, 2)(0, 1)

ba

dc

fe

ig

Figure 2.3: An EFG ΓE .

As depicted in the tree-based representation of Figure 2.3, we note that the utility of
joint strategies in an EFG is uniquely determined by their associated history (i.e., path).
In the context of EFGs, the concept of Nash Equilibria remains as given in Definition 2.2.
In addition to Nash Equilibria, another useful concept for EFGs is the Subgame Perfect
Equilibrium, which we will use to characterize the strategies played in practice by rational
parties. To this end, we first introduce the notion of subgames of EFGs. A subgame of
an EFGs can be seen as a subtree determined by a certain history (i.e., whose root node
is the last history node), and is formalized below.

Definition 2.11 (Subgame of EFG). The subgame of an EFG Γ = (N,H , P, u) as-
sociated to history h ∈ H is the EFG Γ(h) = (N,H|h, P|h, u|h) defined as follows:
H|h := {h′ | (h, h′) ∈H }, P|h(h′) := P (h, h′), and u|h(h′) := u(h, h′).

Example 2.6. Consider the EFG ΓE from Figure 2.3 . The subgame of ΓE associated
with history (b, d) is the subtree rooted in A.

By adjusting the concept of Nash Equilibrium to subgames, we derive the following
property of joint strategies.

Definition 2.12 (Subgame Perfect Equilibrium). A subgame perfect equilibrium is a
joint strategy σ = (σ1, ..., σn) ∈ S , s.t. σ|h = (σ1|h, ..., σn|h) is a Nash Equilibrium of
the subgame Γ(h), for every h ∈ H . The strategies σi|h are functions that map every
h′ ∈H|h with P|h(h′) = i to an action from A|h(h′).

2.3.2 EFG Extensions for Security Properties

While EFGs enable us to incorporate choices made at different times, yielding different
options for the next player, they come with the following limitation. The intended (i.e.,
honest) behaviors in off-chain protocols only specify a terminal history (i.e., a path from
root to leaf), rather than a strategy. For instance, an honest history may specify to close
the channel collaboratively, but it does not capture a player’s behavior once a player
deviated. To address this limitation, we introduce the following notion of an extended
strategy in EFGs.
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Definition 2.13 (Extended Strategy). Let β be a terminal history in an EFG Γ. Then,
all strategies σβ that result in history β are extended strategies of β.

Example 2.7. Recall Figure 2.3. In Example 2.5, we consider the terminal history (a)
and provide two extended strategies of (a), they are σ and σ′. A strategy, which is not an
extended strategy of (a) is for instance σ′′ = (σ′′

A, σ
′′
B), where σ′′

A(∅) = b, σ′′
A((b, d)) = e

and σ′′
B = σB. This is the case because by following the choices of A and B in σ′′, we

end up in (b, c).

While EFGs can in principle be translated to NFGs, as explained in [OR94], analyzing
the security properties (P1)-(P2) over the translated NFGs may yield unexpected results.
We shortly exemplify this point in Example 2.8, but similar issues also occur in larger
games. We thus lift NFG-based definitions to EFGs, enabling the analysis of (P1) and
(P2). Since EFGs have a utility function just as NFGs do, which assigns values after the
game, the NFG concepts of weak immunity, strong resilience and sNE remain the same
for EFGs.

Definition 2.14 (EFG Properties). A joint strategy σ ∈H of an EFG Γ is called weak
immune, strongly resilient, or a strong Nash Equilibrium, if it satisfies the formulae of
Definition 2.4, Definition 2.5 or Definition 2.8 respectively.

Practicality in NFGs, however, relies on IDWDS, which fails to incorporate the sequential
nature of EFGs, and hence must be adjusted for EFGs. This is because NFG actions
happen simultaneously, while EFG players choose their actions sequentially. We first
present an example to showcase that applying the NFG definition of practicality to an
EFG, by using its translation to an NFG, leads to overlooking rational strategies.

Example 2.8. Let us consider the EFG ΓE from Figure 2.3, with two players A and
B. The compact translation of ΓE to an NFG ΓN is given in Table 2.3. Histories of
Figure 2.3, where players choose twice, such as (b, d, f), are translated to Table 2.3 as the
joint strategy (b; f , d). Hence, the NFG strategy b; f of player A means choosing action
b first, and, if A gets to choose again, A takes f . Player A’s strategies are displayed in
the rows, whereas player B’s are shown in the columns of Table 2.3. Strategy d; g, for
example, denotes choosing d in the first turn and g in the second turn, unless the game
ends before. For readability, strategies with identical utilities in any case are merged
together, e.g., having only a instead of both a; e and a; f .

According to definition of practicality for NFGs (see Definition 2.7), the only practical
strategy in ΓN is (a, d; i), which results in a utility of (2, 2). This is because for A
strategy b; e weakly dominates b; f and for B strategy d; i weakly dominates both c and
d; g. After deleting those (in blue), the red strategy b; e of A becomes weakly dominated
by a. Thus, after removing b; e only the joint strategy (a, d; i) remains and is therefore a
Nash Equilibrium of the resulting game.

However, in the EFG ΓE the comparison of strategies has a certain order, as not all
choices are made simultaneously. Thus, when it comes to B choosing between option c
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Table 2.3: Compact View of ΓE , Translated to an NFG ΓN .

A
B c d ; g d ; i

a (2, 2) (2, 2) (2, 2)
b ; e (3, 1) (1, 1) (1, 1)
b ; f (3, 1) (0, 1) (0, 2)

and d, choosing c is also a rational action because in any case B gets utility 1. This is the
case, since the subgame after d, will end in the subgame perfect and practical (1, 1), if
played by rational players. Following this argumentation, we claim that (b; e, c), yielding
history (b, c) should also be considered rational and thus practical.

Example 2.8 demonstrates that it is advisable to adapt the NFG concept of practicality
for EFGs, and that a näive application can be problematic since information may be
lost during the transformation from EFG to NFG [OR94]. We therefore propose to use
subgame perfect equilibria for comparing EFG strategies, and define practicality for
EFGs as follows.

Definition 2.15 (Practicality for EFG). A strategy of an EFG Γ is practical if it is a
subgame perfect equilibrium of Γ.

2.3.3 Security Strategies for Off-Chain Protocols

We now leverage the previously introduced EFG-based definitions (Section 2.3.2) to
faithfully model the security of off-chain protocols. In particular, we propose the
novel concept of collusion resilience for addressing (P2), and compare it to existing
formalizations of property (P2).

In [ZBPBS21], strong resilience and practicality were used to model the no deviation
property of (P2): We identify unwanted properties of strong resilience and we thus
investigate variations of it. Specifically, we show that strong Nash Equilibria do not
imply strong resilience nor vice-versa (Lemma 2.1), and therefore define the collusion
resilience property of a joint strategy. Intuitively, collusion resilience considers the sum
of the utilities of the deviating parties, since rational players may collude or be controlled
by the same entity.

Definition 2.16 (Collusion Resilience – CR). A joint strategy σ ∈ S in an EFG/NFG
Γ is called collusion resilient (CR) if no strict subgroup of players S := {s1, ..., sj} has a
joint incentive in deviating from σ. That is,

∀S ⊂ N ∀σ′
si
∈ Ssi :∑︂

p∈S
up(σ) ≥

∑︂
p∈S

up( σ[σ′
s1/σs1 , ..., σ

′
sj
/σsj ] ). (2.7)
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Table 2.4: Overview of Implications and Counterexamples.

→ SR SR⊆ sNE CR

SR Γ3 Γ3 ✓

SR⊆ ✓ ✓ ✓

sNE Γ1 Γ1 Γ1

CR Γ2 Γ2 Γ3

In addition, we also consider a slight adaptation of strong resilience, SR⊆, where the
deviation of the entire set of players N is also allowed, as it is for sNE.

Definition 2.17 (Strong Subset Resilience – SR⊆). A joint strategy σ ∈ S is called
strongly subset resilient (SR⊆), if no player of any subgroup S ⊆ N , S := {s1, ..., sj} has
an incentive to deviate from σ:

∀S ⊆ N ∀σ′
si
∈ Ssi ∀p ∈ S :

up(σ) ≥ up( σ[σ′
s1/σs1 , ..., σ

′
sj
/σsj ] ) .

(2.8)

We now formalize how the resilience properties relate to each other, which motivates our
definition of (P2).

Lemma 2.1 (Resilience Properties). Let σ ∈ S be a joint strategy. The following and
only the following implications hold.

1. σ is SR⊆ ⇒ σ is SR, CR, sNE.

2. σ is SR ⇒ σ is CR.

SR⊆SR

sNECR

Proof. We start by showing property (2). Let σ be SR and let S = {s1, ..., sj} ⊂ N , σ′
S ∈

SS be arbitrary but fixed. Then, for all p ∈ S we have up(σ) ≥ up(σ[σ′
s1/σs1 , ..., σ

′
sj
/σsj ])

and thus also
∑︁
p∈S up(σ) ≥

∑︁
p∈S up(σ[σ′

s1/σs1 , ..., σ
′
sj
/σsj ]). Hence σ is CR and the

implication is proven. For implication (1) we see that SR⊆ ⇒ SR is trivial. If the property
is satisfied for every S ⊆ N , then it is also satisfied for every S ⊂ N . By (2) and the
transitivity of implication we also get SR⊆ ⇒ CR. For the last implication let σ be SR⊆
and let S = {s1, ..., sj} ⊆ N, S ≠ ∅ and σ′

S ∈ SS be arbitrary but fixed. Then there
exists some p ∈ S and by definition all p ∈ S satisfy up(σ) ≥ up(σ[σ′

s1/σs1 , ..., σ
′
sj
/σsj ]).

Therefore, σ is sNE.
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To prove that no other implication holds between those four concepts, we provide three
counterexamples. An overview of which game disproves which implication is given in
Table 2.4.

The three-player NFG Γ1 in Table IV shows a joint strategy (H1, H2, H3) that is sNE,
but not CR (refer to Example III.5). Using the just proven (1) and (2), we get that
(H1, H2, H3) is also not SR nor SR⊆.

The three-player game Γ2 (Table V) shows a strategy (H1, H2, H3) that is CR, but not
SR (see Example III.5) and thus also not SR⊆ (property (1)). It is, however, sNE: The
only relevant deviation from (H1, H2, H3) is (D1, H2, D3), as it yields a different utility
(3, 0,−2) instead of (1, 1, 1). While player P1 profits in this case, player P3 does not. One
deviating player not profiting suffices for a strong Nash Equilibrium, thus (H1, H2, H3) is
sNE.

To prove the remaining implications incorrect, we consider the two-player game Γ3 in
Table 2.5. We can easily see that (H1, H2) is not SR⊆, nor sNE. This is the case, as all
players {P1, P2} can deviate to play (D1, D2), which yields a strict increase for both.
However, since no player profits from deviating alone, (H1, H2) is still SR and CR.

The next example further motivates why we decided to formalize (P2) in terms of collusion
resilience.

Example 2.9. Consider the games Γ1 and Γ2, respectively defined in Tables 2.6-2.7. The
games Γ1 and Γ2 show that there exist cases where both strong resilience and strong Nash
Equilibria fail to correctly state whether rational players will deviate, while collusion
resilience does not.

Let us study Γ1 first. There are three players P1 on the left, P2 in the “3rd dimension”
who only has one possible strategy, and P3 at the top. Let us consider the joint strategy
σ = (H1, H2, H3). Since P2 does not have another choice, P2 can never deviate. Player
P1 deviating alone yields the same utility as σ and is thus irrelevant. The same holds for
P3. The only deviation that makes a difference, is if P1 and P3 change strategy together
to (D1, H2, D3). By doing so, P1 profits and receives 5 instead of 1, but P3 loses by
getting −2 instead of 1. Thus, P3 does not have an incentive to do so, unless the two
players collude for their mutual benefit and share their payoffs. This way they receive
1.5 each instead of 1 each, which poses a serious threat to σ and should thus not be
considered satisfying (P2). However, (H1, H2, H3) is sNE, since P3 has no incentive in

Table 2.5: Game Γ3.

H2 D2
H1 (1, 1) (1, 1)
D1 (1, 1) (2, 2)
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Table 2.6: Three Player Game Γ1.

H
2 H3 D3

H1 (1, 1, 1) (1, 1, 1)
D1 (1, 1, 1) (5, 0,−2)

Table 2.7: Three Player Game Γ2.

H
2 H3 D3

H1 (1, 1, 1) (1, 1, 1)
D1 (1, 1, 1) (3, 0,−2)

deviating with P1, if their utilities are not shared, but it is not CR, since

2 = uP1(H1, H2, H3) + uP3(H1, H2, H3) (2.9)
< uP1(D1, H2, D3) + uP3(D1, H2, D3) = 3 . (2.10)

In the similar game Γ2, on the contrary, P3 has no incentive in deviating from σ =
(H1, H2, H3) together with P1, also if their utilities are shared. Such a deviation yields
0.5 each, instead of 1 each in σ. Hence, there is no incentive to change strategy for
one or more players and therefore (H1, H2, H3) should be considered satisfying (P2).
Nevertheless, according to Definition 2.5, (H1, H2, H3) is not SR, since at least one of the
deviating parties P1, P3 profits from choosing (D1, H2, D3), although P3 has no reason
to play along. However, in Γ2, (H1, H2, H3) is CR as

2 = uP1(H1, H2, H3) + uP3(H1, H2, H3) (2.11)
≥ uP1(D1, H2, D3) + uP3(D1, H2, D3) = 1 . (2.12)

Remark 1 (Formalizing ((P1) and (P2)). Based on the resilience properties of Lemma 2.1,
we say (P2) is satisfied by a joint strategy σ, if σ is CR and practical. In addition, a joint
strategy σ satisfies (P1), if σ is weak immune, as in [ZBPBS21].

We conclude this section by defining secure game strategies/histories, as follows.

Definition 2.18 (Secure Strategy). A strategy σ of an NFG/EFG is secure if it is weak
immune, practical and CR.

When discussing security in the setting of EFGs, we are interested mainly in assessing
whether a history is secure, as the protocol only defines an honest history instead of a full
strategy. By applying Definition 2.13, we state the following security characterization.

Definition 2.19 (Secure History). A terminal history β of an EFG is secure if there
exist extended strategies σ1, σ2, and σ3 of β, such that σ1 is weak immune, σ2 is practical
and σ3 is CR.

We note that we do not have to find a secure extended strategy for the history to be secure,
as aiming for one joint secure strategy in an EFG would be unnecessarily restrictive.
Instead, our goal is to make sure that rational parties follow the honest history, no matter
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what their actual strategy is. In particular, an honest player follows the honest history by
default, a rational player does so because of practicality and collusion resistance. Weak
immunity further ensures that honest players as well as rational one cannot be damaged
by Byzantine players while following the honest history. Hence, the strategy each player
has in mind does not matter, since in a secure protocol weak immune, practical, and
collusion resilient, strategies are overlapping along the honest history. This is the case
because in Definition 2.19 we require σ1, σ2, and σ3 to all yield the same history, namely
β. We can therefore admit that an honest player has a weak immune strategy in mind,
while a rational player has a practical one, as long as these overlap on the honest history.

2.4 Closing Games of Off-Chain Protocols
We now define a new two-player EFG, called the Closing Game Gc, in order to model
closing phase properties of off-chain protocols, in particular of the Lightning Network. As
explained in Section 2.2.1, to close a channel, a party can unilaterally publish a channel
state on-chain, which does not necessarily have to be the latest one. The one who closes,
however, has to wait a certain amount of time until the money can be used. Meanwhile,
the other party can steal all the money from the channel in case the state published
on-chain is not the latest one: this ensures that rational players close their channel only
with the latest state. Alternatively, the parties can collaboratively sign a new transaction
to split the money. In this case, no one has to wait.

Our closing game overcomes the limitations of previous work [ZBPBS21] in representing
dishonest closing attempts, by modeling how closing can be achieved after a failed
collaborative closing attempt and by also considering the additional fee f to be paid in a
revocation transaction.

To the best of our knowledge, our closing game Gc is the most accurate model for the
security analysis of off-chain protocols, notably of the Lightning Network. In our model
of the closing phase we make the following assumptions for a channel between A and B
at the moment where the closing phase is initiated.

• The fair split of the channel’s funds is a→ A, b→ B and a > 0, b > 0.

• The benefit of closing the channel is α. Closing a channel yields a benefit, since it
unlocks assets.

• The opportunity cost of having to wait for one’s funds upon closing is ϵ.

• When both players agree to update the channel we assume a fair deal in the
background which yields a profit of ρ for both parties.

• Publishing a revocation transaction on-chain costs a fee f > 0.

Further, to properly model utilities in the closing game Gc, we define the following total
order, which is crucial for analyzing security properties of Gc. For capturing total order
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properties in the setting of Gc, we extend the set R of real numbers by the infinitesimal
numbers α, ϵ and ρ.

Definition 2.20 (Utility Order). We consider the total order (U,≼), where U is the
group resulting from closing R ∪̇ {α, ϵ, ρ} under addition. The total ordering ≼ is
uniquely defined by the following conditions.

1. On R, the relation ≼ is the usual less than or equal relation ≼ |R :=≤.

2. The values α, ϵ and ρ are greater than 0,

∀ξ ∈ {α, ϵ, ρ} : −ξ ≺ 0 ≺ ξ . (2.13)

3. The values α, ϵ and ρ are closer to 0 than any real number,

∀x ∈ R, ξ ∈ {α, ϵ, ρ}, x > 0 : ξ ≺ x, −x ≺ −ξ. (2.14)

4. Additionally, α, ϵ and ρ have the order ρ ≺ ϵ ≺ α.

In general, unlocking funds gives additional financial freedom even if there is some
processing delay; therefore, we choose ϵ ≺ α in Definition 2.20. Additionally, once the
parties initiate the closing phase, it is reasonable to assume that no potential update
significantly benefits both parties. In contrast, both parties are interested in avoiding the
opportunity cost, i.e., the cost of having to wait for their funds upon closing, therefore,
we set ρ ≺ ϵ in Definition 2.20.

Remark 2. While the ordering conditions of Definition 2.20 may seem to be restrictive,
lifting them comes with the burden of considering a high number of possible variable
orderings. In particular, one would need to consider (number of variables)! orderings,
which would highly complicate the formal analysis task. Approximating or clustering
the number of orderings, while weakening conditions in Definition 2.20, is an interesting
venue for future work.

Based on the utility ordering of Definition 2.20, we introduce our Closing Game for
Player A below.

Definition 2.21 (Closing Game Gc(A) of Player A). The Closing Game Gc(A) =
(N,H , P, u) is an EFG with two players N = {A,B}. The tree representation of Gc(A)
in Figure 2.4 defines H , P and u2, with the actions of the game being summarized in
Table 2.8.

2The subgames Si, S′
i are given in Figures 2.5 and 2.7.
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Table 2.8: Possible Actions in Gc(A).

H Close unilaterally and honestly without reacting to a previous move, such as a
collaborative closing attempt.

D Close unilaterally but dishonestly (without reacting to a previous move) with a
profit of dA ∈ (0, b] in A’s case, dB ∈ (0, a] in B’s case.

Ch Try to close collaboratively and honestly, that is proposing a fair split.
Cc Try to close collaboratively but by cheating the other party by c ∈ (0, b], that

means proposing an unfair split.
S Signing the collaborative closing attempt of the other player.
I Ignore the previous action and do nothing.
P Prove other party tried to close dishonestly. That means stating a revocation

transaction. We assume its publication requires a fee of f > 0 and that the
attempt to do so is always successful, that is, that the miners behave honestly.

U+ Propose an update of the channel where player A’s balance is increased by pA ∈
(0, b].

U− Propose an update where player A’s balance is decreased by pB ∈ (0, a].
A Agree to a proposed update.

The Closing Game The game Gc(A) in Figure 2.4 assumes a current channel state
(a, b), that means value a for player A and value b for player B. It starts with a closing
action of player A: There are two ways of closing an off-chain channel, unilaterally or
collaboratively, which can each be done honestly (using the channel state (a, b) as a
basis) or dishonestly (e.g., using an outdated state). If A closes unilaterally and honestly
(action H), we reach a leaf; unilateral but dishonest closing (action D), gives player B
the option to prove A was cheating (action P ), or to just ignore A’s dishonesty (action
I); collaborative closing is more involved. Independent of whether A proposed an honest
split (a, b) (action Ch) or a dishonest split (a+ c, b− c) (action Cc) player B can choose
from the following actions: B can agree to the proposed split by signing it (action S), can
ignore A’s closing attempt (action I), can unilaterally close themselves, both honestly
(action H) and dishonestly (action D), which gives again A the chance to prove it (action
P ) or ignore it (action I). Further player B can even propose a channel update, where
player A’s balance increases (action U+), or where it decreases (action U−), which leads
to subgame S3,4 or S′

3,4 respectively. If player B chose action I, it is again player A’s
turn to close unilaterally (actions H, D), propose a channel update (actions U+, U−) or
to not do anything (action I) which causes the funds to stay locked in the channel.

The utility function u of Gc(A) in Figure 2.4 assigns player p ∈ N the money player
p received minus the money player p deserved based on the latest channel state. The
values of closing (α), updating (ρ) and waiting (−ϵ) are also considered in Figure 2.4.
As discussed in Section 2.2.1, the fee needed for the closing transaction is assumed to
have been reserved among the locked funds in the channel all the time and is spent upon
closing, therefore not affecting the players’ channel balance.
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Figure 2.4: Closing Game Gc(A), with channel state at the root of the game of a > 0 for
A and b > 0 for B.

Subgames of the Closing Game The subgames S1,2 and S′
1,2 in Figure 2.5 cover

the case where a channel update is proposed by A, although A has already signed a
collaborative closing attempt. In S1 the closing attempt was honest, hence y = 0 (in
Figure 2.5) and the update is from channel state (a, b) to (a+ pA, b− pA), hence x = pA
(in Figure 2.5). In S2, it is also y = 0 and the proposed channel update is (a−pB, b+pB),
thus x = −pB. In S′

1,2, the closing attempt was dishonest, therefore y = c. The channel
updates are as before, thus x = pA for S′

1 and x = −pB for S′
2. Similarly, subgames S3,4

and S′
3,4 in Figure 2.7 cover the case where a channel update is proposed by B, although

A has already signed a collaborative closing attempt. As in the first case, we have y = 0
for the honest closing attempt in S3,4 and y = c for dishonest collaborative closing in S′

3,4.
Further in S3 and S′

3, the proposed update is (a+ pA, b− pA), hence x = pA, whereas in
S4 and S′

4 it is (a− pB, b+ pB), thus x = −pB.

The closing game for player B, Gc(B) is defined similarly to Gc(A), with the roles of A
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Figure 2.5: Subgames S1,2, S′
1,2 with Update (a, b) ↦→ (a+ x, b− x).

and B being swapped in Definition 2.21. Based on the closing games Gc(A) and Gc(B),
we consider the closing phase in an off-chain channel as in Figure 2.6 and defined below.

Definition 2.22 (Closing Phase). The closing phase of an off-chain channel modeled by
a closing game Gc(A) is initiated in one of three ways: (i) A starts with a closing action
C, and thus triggers the closing game Gc(A); (ii) A does not start a closing action, thus
performing action ignore I, but B starts with a closing action C and triggers Gc(B); or
(iii) none of the players A and B ever start closing, that is B also choosing action I,
in which case the money stays locked in the channel. Then, we get the EFG ΓC from
Figure 2.6 modeling the closing phase of Gc(A) and Gc(B).

A

Gc(A)

B

Gc(B)

(−a,−b)
C

I

C

I

Figure 2.6: Closing Phase ΓC .
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Figure 2.7: Subgames S3,4, S′
3,4 with Update (a, b) ↦→ (a+ x, b− x).

2.5 Closing Games for Secure Lightning Channels
We now show that the closing games from Definition 2.21 precisely capture secure closing
phases in Lightning channels [PD16]. Namely, the following two terminal histories of
closing games model the honest behavior of Lightning: (i) history (H) from Figure 2.4
represents unilateral honest closing of A, yielding utility (α−ϵ, α); and (ii) history (Ch, S)
captures the attempt of A to close collaboratively and honestly, while B signs, with a
utility of (α, α). Our security analysis focuses on these two honest histories of Lightning
channels.

Definition 2.23 (Honest Closing). The only honest histories in the closing game Gc(A)
are the terminal histories (H) honest unilateral closing and (Ch, S) honest collaborative
closing. All strategies yielding one of the two histories are considered honest strategies.

In the following, the values dA (resp. dB) defined in Table 2.8 (line D) represent the
difference of funds between the latest state and the old one that is dishonestly posted on
chain by A (resp. B). In other words, if (a, b) is the latest state, the one posted on chain
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is (a + dA, b − dA) (resp. (a − dB, b + dB)), thus enabling dishonest closing attempts
of profit dA for A (resp. dB for B). The values pA,B (Table 2.8, lines U+, U−) and c
(Table 2.8, line Cc) can respectively be chosen by A and B at the time of the action
and do not depend on previous distribution states. Based on this setting, we derive the
security properties (P1) and (P2) of Lightning channels as given below.

Theorem 2.1 (Weak Immunity of Honest Behavior – (P1)). The terminal histories (H)
of honest unilateral closing, and (Ch, S) of honest collaborative closing of Gc(A) are
weak immune, if the channel balances are higher than the fee required in a revocation
transaction, that is if a ≥ f and b ≥ f .

Proof. Let a, b ≥ f . For history (H), we consider any strategy σ, where A chooses H
after the empty history ∅, B chooses S after (Ch), P after (D) and H after (Cc). Such
a strategy σ yields terminal history (H). If we can show that σ is weak immune, also
history (H) is weak immune by Definition III.11. Assume, player A honestly follows σ,
i.e., choosing (H), then B’s deviation from σ cannot affect the outcome. Thus, A’s utility
remains non-negative. The other way around, if B follows σ, A can deviate to any initial
action Ch, D or Cc, player B’s utility never drops below 0, by following strategy σ, as
a ≥ f . Since honest players cannot get negative utility, σ is weak immune.

Similarly, for (Ch, S), we consider any strategy σ′, where A chooses Ch initially, player
B chooses S after (Ch), P after (D) and H after (Cc). Further, player A takes P after
(Ch, D) and H after (Ch, I), (Ch, U+) and (Ch, U−). This strategy σ′ yields terminal
history (Ch, S). Deviation of A has the same effects as before, never causing the honest
B, who follows σ, negative utility. If B deviates now to one of U+, U−, I, D, or H,
honest A, following σ, also never gets negative utility, since b ≥ f . Therefore, σ′ and
hence history (Ch, S) are weak immune.

Theorem 2.1 implies that as long as both players have a minimal balance of f in the
channel, no honest player can lose money. As such, Theorem 2.1 establishes the security
property (P1) ensuring “no honest loss" in the channel.

Further, to ensure the security property (P2) of “no deviation", we require that

a− pB + dA ≥ f and (2.15)
b− pA + dB ≥ f . (2.16)

To understand the inequations (2.15)-(2.16) consider the history (Ch, I, U−,A, D) in
Figure 2.4, respectively S′

1. This history formalizes the case where A attempts honest
collaborative closing (action Ch) and B ignores it (action I). Then A proposes an update
(action U−) from state (a, b) to state (a− pB, b+ pB) and B agrees (action A). Finally, A
closes dishonestly (action D) using the old distribution state (a− pB + dA, b+ pB − dA).
Let us also study the options B has. By ignoring A’s behavior (action I), B receives
b+ pB − dA instead of the fair amount b+ pB, leaving B with a loss of dA. By publishing
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the revocation transaction (action P ), B receives a + b but has to pay the fee f for
pushing it on the blockchain, which leads to a win of a − pB − f . Therefore, the win
should be greater than the loss; hence

a− pB − f ≥ −dA ⇔ a− pB + dA ≥ f , (2.17)

in order for a rational B to publish the revocation transaction. This, in turn, yields a
loss for A and hence discourages A from closing dishonestly, which is necessary for the
incentive compatibility (P2) of Lightning’s closing phase. By swapping A’s and B’s roles,
we get the prerequisite formulated in (2.16). These extreme cases of dishonest closing
subsume the others. Thus, the only preconditions we need in the following Theorem 2.2
are (2.15)–(2.16). In summary, formulas (2.15)–(2.16) ensure that ignoring any dishonest
closing attempt is worse than publishing the revocation transaction. Property (P2) is
then established by the following theorem.

Theorem 2.2 (Incentive-Compatibility – (P2)). If a−pB +dA ≥ f and b−pA+dB ≥ f ,

1. honest unilateral closing (H) is CR, but not practical.

2. honest collaborative closing (Ch, S) is CR. It is practical iff c ̸= pA.

Proof. Let us first prove collusion resilience CR of (H) and (Ch, S). As in the previous
proof, we only have to find a strategy σ that yields history (H) and another strategy
σ′ yielding history (Ch, S), that are CR, to prove (H) and (Ch, S) CR, as defined in
Definition III.11. Additionally, collusion resilience is defined on strict subsets of players.
Thus, in a two-player game, it considers only deviations of single players and since the
summation over one value is the value itself, CR is equivalent to being a Nash Equilibrium
in this case. We, therefore, only have to check whether σ and σ′ are Nash Equilibria.

For (H), we consider a strategy σ, where player A chooses H initially, player B chooses
I after (Ch), and I after (Cc). Additionally, player B always chooses P after a history
(..., D), where the last action was D. Player A takes action H after (Ch, I) and (Cc, I).
Further, B takes action I after (Ch/c, I, U+/−) (subgames S1, S2, S′

1, S′
2 in Figure 2.5).

For A, we finally assume she takes action H after (Ch/c, I, U+/−, I). This strategy yields
history (H). Deviations from σ of player B cannot change the utility, hence, in particular,
cannot increase his utility. Let us consider deviations of player A. A deviation to D
at any point in the game leads to A losing all her funds a, which is a strict decrease in
utility. This is the case because in σ player B always chooses P after D. Therefore this
option is not a threat. If A deviates to Ch or Cc initially, we end up in (Ch, I), (Cc, I)
respectively. Closing honestly (action H) here leads to the same utility as not deviating.
Also, a deviation to I does not lead to a better utility. The options she has left are taking
U+ or U−. Either way, B takes I and leaves A with similar choices to before: action
H or action I, both of which do not yield a better utility for her. Since no player can
increase their utility by deviating from σ, it is a Nash Equilibrium, and hence (H) is too.
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To show that (Ch, S) is a Nash Equilibrium, we consider a strategy σ′, where A picks
Ch initially, B chooses S after (Ch), P after (D) and H after (Cc). Further, let A pick
P after (Ch, D), H after (Ch, I) and (Ch, U+/−) (subgames S3, S4 in Figure 2.7). This
strategy σ′ has terminal history (Ch, S). A deviation of player B, results in either the
same utility (choosing action I, U+, or U− after (Ch) and having A taking H) or in
strictly worse utility (choosing H or D, where A takes P ). Every other deviation has
no impact on the resulting history. Similarly, player A cannot profit from deviating.
Choosing action H or D initially leads to a strict loss, as B plays P , whereas taking
action Cc yields the same utility for A (as B will take action H). Every other deviation
has no impact on the history. Hence, no player can increase their utility by deviating,
which makes σ′ and therefore (Ch, S) a Nash Equilibrium.

To prove the practicality properties, we compute all subgame perfect equilibria of Gc(A).
We compute subgame perfect equilibria bottom-up. That is, we start comparing the
utility of subtrees with leaves only. In Gc(A), these are for example the subgames after
history (Ch, I, D) or (Cc, D). For the latter, A is the player to choose the action. To
compute the subgame perfect equilibrium, we have to compare all possible utilities for A
after (Cc, D). We then replace this internal node labeled A with the utility that yields
the best value for A and proceed until we reach the root. If there is no single best choice
for a player, then all actions resulting in the best utility have to be considered. Applying
this procedure to the subgames S1-S4 and S′

1-S′
4 we get subgame perfect terminal history

(A, H) with utility (ρ+ α− ϵ, ρ+ α) for S1. For S2 we get terminal history (S) yielding
(α, α) and (I, H), yielding (α− ϵ, α). For S3 and S4 it is (I, S) with (α, α). The subgame
S′

1 has practical history (I, H), with (α− ϵ, α) if c > pA, (A, I, S) with (ρ+ α, ρ+ α) if
c = pA and (A, H) with (ρ+ α− ϵ, ρ+ α) if c < p. The subgame S′

2 has practical history
(I, H), yielding (α− ϵ, α). For S′

3 and S′
4 in Figure 2.7 we get (I, H) with (α, α− ϵ) and

additionally for S′
3, if c = p, we also have (A, S) yielding (ρ + α, ρ + α). All of these

results are based on the facts a− pB + dA ≥ f and b− pA + dB ≥ f since this causes the
revocation transaction to always be better than ignoring the dishonest unilateral closing
attempt.

Based on these preliminary results, we can now compute the subgame perfect equilibria
for Gc(A) considering multiple practical histories and case splits as stated: If c = pA,
then (Cc, U+,A, S) and (Cc, I, U+,A, I, S) are practical, both yielding (ρ + α, ρ + α).
If c > pA, then the histories (Ch, S), (Ch, U+, I, S), (Ch, U−, I, S) and (Ch, I, U−, S)
all leading to (α, α) are practical, as well as terminal history (Ch, I, U+, I, H), yielding
(ρ+α− ϵ, ρ+α). For c < pA, all the histories and their utilities from c > pA are practical.
Additionally (Cc, I, U+,A, H) is subgame perfect in this case and also results in utility
(ρ+ α− ϵ, ρ+ α).

This shows that (H) is never practical and (Ch, S) is practical if and only if c ≠ pA.

Remark 3 (Explanation of c ̸= pA). The condition c ≠ pA in Theorem 2.2 has the
following relevance. Player A can, in principle, choose to propose dishonest collaborative
closing (action Cc), providing A an unfair advantage of value c. Then, either B (action
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U+) or A (B choosing action I to ignore first, then A taking action U+) can propose
a channel update (a, b) ↦→ (a + c, b − c). The value of the update pA is now equal to
the amount player A cheated with in Cc: pA = c. In this special case, the closing
game behaves differently. The described histories (Cc, I, U+) and (Cc, U+) lead to the
subgames S′

1 and S′
3 respectively. Let us consider S′

3 with pA = c.

Assume A agrees to the update, action A, and player B signs the initially unfair collab-
orative closing attempt of A. Since in the meantime the channel was updated by the
exact amount that A tried to cheat with, the pending collaborative closing now contains
the fair split. Therefore, both players profit from this course of action, yielding utility
(ρ+ α, ρ+ α). The analog can be achieved in subgame S′

1 with the history (A, I, S). In
fact, for pA = c, those histories are the only practical ones and provide the mutually best
outcome possible.

However, updating to (a+ c, b− c) first and then closing honestly and collaboratively
yields the exact same result. This is why we study the closing game without the possibility
of updating after a closing attempt in the next section Section 2.5.1.

We now state our first main security theorem. Since (H) is not practical, a rational player
will not play it. Hence, the terminal history (H) is not secure. We get the following
security result instead for (Ch, S).

Theorem 2.3 (Security of Gc(A)). If a ≥ f , b ≥ f , a− pB + dA ≥ f , b− pA + dB ≥ f ,
and c ̸= pA, then the closing game Gc(A) together with the honest behavior (Ch, S) is
secure.

Proof. As a ≥ f and b ≥ f , we have that (Ch, S) is weak immune (Theorem 2.1). Since
a − pB + dA ≥ f , we derive b − pA + dB ≥ f and c ̸= pA, we have that (Ch, S) is also
practical and CR (Theorem 2.2). Hence, by Definition 2.19, (Ch, S) is secure.

Theorem 2.3 implies that for honest and rational players the action of collaborative
closing followed by signing (Ch, S) is the best way to close an off-chain channel. It also
implies that rational adversaries will cooperate. Further, Byzantine players represent
no threat as long as their channel balances are high enough and they do not engage in
special cases of channel updates after a collaborative closing attempt.

We note that for proving our security properties (P1)-(P2) in Theorem 2.1–Theorem 2.3,
we rely on a succinct analysis of the finite graph properties of the closing game GC(A) from
Figure 2.4. While automated approaches analyzing a finite number of graph properties
exist, see e.g. [MMT05, SvS14], these approaches cannot handle (game) graphs where
graph leaves contain variables, instead of specific numerical values, which is the case
of GC(A). For such cases, automated reasoning tools, such as theorem provers, need
to be combined with graph-theoretic manipulations of GC(A), an approach we aim to
investigate as future work towards automating the security analysis (and proofs) of
closing games.
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2.5.1 Closing Games without Updates

We will now consider a variation of closing games without updates, as updating is not
beneficial for at least one player upon closing. Furthermore, we avoid special cases such as
the one described in Remark 3, which should be equivalent to updating before initiating
Gc(A), and then closing honestly and collaboratively. As such, the closing game Gc(A)
without updates results from removing all actions U+ and U− in Figure 2.4. For the
resulting closing game Gc(A) without updates we get the following security result similar
to Theorem 2.3.

Theorem 2.4 (Security of Gc(A) without Updates). If a ≥ f and b ≥ f , then the closing
game Gc(A) without updates and together with both honest histories (H) and (Ch, S) is
secure.

Proof. We respectively fix honest strategies σ and σ′ for histories (H) and (Ch, S); let σ′

have A choosing Ch initially, P after (Ch, D) and H after (Ch, I), and then B choosing
S after (Ch), P after (D) and H after (Cc). Infer that the deviation of A causes negative
utility for B, whereas the deviation of B leads to non-negative utility for A as b− f ≥ 0.
By Theorem 2.1 we thus have that σ′, and therefore (Ch, S), are weak immune. In
addition, Theorem 2.1 implies that also (H) is weak immune.

To show practicality, we compute all subgame-perfect terminal histories. From a ≥ f and
b ≥ f we have a+ dA ≥ f and b+ dB ≥ f . Since closing with a dishonest behavior yields
utility a − f + α, b − f + α respectively, whereas ignoring a dishonest behavior leads
to −dA + α and −dB + α, we conclude that the best choice after action D is always P .
Thus, A’s best choice after (Ch, I) and (Cc, I) is H. Therefore, B has the two subgame
perfect options I and S after (Ch), and only I after (Cc), yielding thus the following
practical histories: history (Ch, S) with utility (α, α); and (Ch, I, H), (Cc, I, H), and (H)
each with utility (α− ϵ, α). Therefore, both (H) and (Ch, S) are practical.

Note that every practical terminal history is a Nash Equilibrium, since if a deviation could
benefit a player, the player would have chosen differently already. As CR is equivalent
to Nash Equilibria in two-player games (by Definition 2.5 and Lemma 2.1), we use
Definition 2.15 and Lemma 2.1 to conclude that practicality of (H) and (Ch, S) implies
collusion resistance CR of (H) and (Ch, S). As (H) and (Ch, S) are both weak immune,
practical and CR, by Definition 2.19 we infer that they are also secure.

Remark 4. Note that the analysis of utilities in the closing game Gc(A) crucially
depends on constraints of the underlining ordering that we set in Definition 2.20, and
thus on the values of variables a, b, c, dA,B, f in Table 2.8. In general, the bigger ϵ gets in
Definition 2.20, the more discouraged is closing unilaterally in Table 2.8, and hence in
Figure 2.4. Further, B is more likely to accept a dishonest collaborative closing attempt
Cc, as it is better to lose c than to lose ϵ.
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We further study what happens if a player has almost no funds left in a channel. In
particular, we show that security properties, in particular weak immunity and practicality,
are violated in this case, thereby formalizing the following folklore in the community.

Theorem 2.5 (Little Funds). If a < f , then only terminal histories that involve an
explicit cheating attempt are weak immune in the closing game Gc(A) without updates. A
terminal history involves an explicit cheating attempt if one of its actions is Cc or D.

Proof. Let σ be any strategy, yielding a history that does not involve an explicit cheating
attempt. Then A can deviate to a strategy where A chooses D as its first action. In this
case, the honest B gets negative utility, no matter whether B chooses P or I, since a < f .
Hence, only histories that involve explicit cheating attempts can be weak immune.

We next derive the following results on security properties. The results still assume
a, b > 0. The case where at least one of these values is exactly zero is studied in
Section 2.5.2.

Corollary 2.1. If there exists an old channel state (a+ dA, b− dA), with a+ dA < f ,
then neither history (H) nor (Ch, S) is weak immune nor practical, but CR.

Proof. We fix the old distribution state such that the difference dA to the latest state is
the value of A’s dishonest closing attempt in the closing game. As a+ dA < f implies
a < f , Theorem V.5 applies. Therefore, neither (H) nor (Ch, S) are weak immune.

In order to show that they are also not practical, we prove instead that the only practical
history is (D, I). Since a+ dA < f , I is the best choice for B after (D), (Ch, I, D) and
(Cc, I, D). Consequently, A will choose D after (Ch, I) and (Cc, I). If now b+ dB ≥ f ,
then A’s best choice is P after (Ch, D) and (Cc, D). Thus, B will take S after (Ch)
and H after (Cc). In the other case, b+ db < f , A’s best option is I after (Ch, D) and
(Cc, D), thus B’s best choice after (Ch) and (Cc) is D, which yields a negative utility for
A. Therefore, in both cases, A’s only subgame perfect action is D. Hence, (D, I) is the
unique subgame perfect history.

For CR, we show instead that there exist extensions (Definition III.11) σ of (H) and σ′

of (Ch, S) that are Nash Equilibria. Let σ be the strategy, where A chooses H, everyone
chooses P after a dishonest closing attempt D, B chooses I after (Ch) and (Cc) and A
chooses H after (Ch, I) and (Cc, I). Then, player B’s deviations have no impact, thus
cannot increase his utility, and player A’s deviations either lead to the same utility as σ,
or to the strictly worse utility −a. Anyway, no player can deviate to increase their utility
and therefore σ and thus (H) is CR. To prove (Ch, S) is CR, we consider the strategy
σ′, which is the same as σ, except A initially chooses Ch and B chooses S after (Ch). A
deviation of A either leads to utility α − ϵ for her, which is worse than σ’s utility, or
to utility −a, which is even worse. For B, a deviation either leads to the same utility
α (taking I after (Ch)), to a slightly worse α− ϵ (choosing H after (Ch)) or to the way
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worse −b (D after (Ch)). Every other deviation has no impact on the history. Hence, as
nobody profits from deviating, σ′ is also a Nash Equilibrium.

Corollary 2.2. A rational party should never, in any channel, let the opponent’s balance
fall below f , because at that point the other party can always cause financial loss by
closing dishonestly and unilaterally.

Proof. Once the opponent’s balance is below f , that party can start the closing game,
therefore the opponent becoming A. Thus, by applying Theorem 2.5, it follows that the
opponent can make the rational player lose money by closing unilaterally and dishonestly.
If it is not the first time that A’s balance is below f and the respective old state contains a
higher balance for A than the latest one, then we are even in the situation of Corollary 2.1.
It is thus rational for A (practical) to close dishonestly.

We present an additional theorem, discussing the case where player B has little funds left
in the channel. Since the roles of player A and B are arbitrary, it is of little importance
because the results give stronger security guarantees than in the case where A has a low
balance. Nevertheless, we state it for the sake of completeness.

Theorem 2.6. If there exists an old state with b+ dB < f , but a ≥ f , then

1. (H) is secure.

2. (Ch, S) is not practical, not weak immune, but CR.

Proof. To prove (1), we start by showing weak immunity for a strategy σ with history
(H). Consider σ, where A takes action H initially, player B chooses P after (D), S after
(Ch) and H after (Cc). Then σ and thus (H) is weak immune, because B’s deviations
have no impact on the history and A’s deviations can never bring B’s utility below zero.

Next, we prove the practicality of (H) by computing all subgame perfect equilibria. Since
a ≥ f , the subgame perfect choice after (D), (Ch, I, D) and (Cc, I, D) is P . Thus, A
chooses H after (Ch, I) and (Cc, I). Due to b+dB < f , A’s best option after (Ch, D) and
(Cc, D) is I. Hence B’s unique subgame perfect choice after (Cc) and (Ch) is D. Thus,
A’s only best response is H. Therefore, (H) is the only practical history. As practicality
implies CR in our case, (H) is secure.

For (2), we just showed that (Ch, S) cannot be practical. Additionally, (Ch, S) is not
weak immune, since B could deviate to D after (Ch), in which case A gets negative utility
for sure, because of b+ dB < f .

Finally, we consider the strategy σ′, with history (Ch, S), where A initially chooses Ch,
B chooses S after (Ch), both take P in case of a dishonest unilateral closing attempt
D, B takes H after (Cc), similarly A takes H after (Ch, I) and (Cc, I). Using similar
argumentation as before, we conclude that any deviation of a player leads a utility as
most as good as σ′ for them, but never better. Hence, σ′ is a Nash Equilibrium yielding
terminal history (Ch, S).
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Figure 2.9: Closing game Gc(A) with b = 0.

2.5.2 Edge Cases for Closing Games

So far, we have only considered cases where both balances a and b were strictly greater
than zero. This is not necessarily the case. Therefore, we consider these cases here. In
the first case, a = 0, B cannot close dishonestly, as there is no old state that increases
his balance. The corresponding simplified game is presented in Figure 2.8.

If b = 0 (Figure 2.9), player A cannot close dishonestly, as she cannot take any money
from B. Thus, both dishonest unilateral closing D and proposing an unfair split in a
collaborative closing attempt Cc are not possible.

Finally, we present results about the two edge cases.
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Theorem 2.7. If a = 0 and b > 0 (Figure 2.8), then only histories that involve an
explicit cheating attempt are weak immune. Additionally, (H) and (Ch, S) are practical
if and only if dA ≥ f in every previous state (dA, b− dA). In any case, they are CR.

Proof. We first show that only histories that involve an explicit cheating attempt can be
weak immune. Let us consider a history h without a D or Cc action, then A does not
initially choose D in h. However, if A deviates to D, then B’s utility is negative. Thus,
any such history h is not weak immune.

To show both (H) and (Ch, S) are CR, it suffices to show they are Nash Equilibria as
before. We therefore consider any strategy σ, where A initially chooses H, player B
chooses P after (D), S after (Ch) and H after (Cc). Further, player A takes action H
after (Ch, I). The strategy σ yields history (H). No matter how player A deviates, she
always gets utility 0, as she does in σ. Thus, she has no incentive to deviate. Since player
B’s deviations cannot change the history, he also has no incentive to do so. Therefore,
σ and hence (H) is a Nash Equilibrium. Adapting σ, by making A first choice Ch we
get strategy σ′ which leads to history (Ch, S). As before, A’s utility stays 0 no matter
how she deviates from σ′. Also, player B cannot improve his utility by changing strategy.
Hence, also σ′ and therefore (Ch, S) is a Nash Equilibrium.

Towards practicality, we now compute all subgame perfect equilibria. Let dA ≥ f . In
which case P is the subgame best choice for B after (D), (Ch, I, D) and (Cc, I, D).
Further, after history (Cc, I), S it is never a best option for B, because it is strictly
dominated by H. Therefore, A will get utility zero in any case. This makes (H) a
practical history. Similarly for (Ch, S), since S is subgame perfect for B after (Ch).

If now dA < f , then I is subgame perfect for B after D. Thus, with similar argumentation
as before, (D, I) is the only practical history.

Theorem 2.8. If a > 0 and b = 0 (Figure 2.9), then

1. (H) is secure.

2. (Ch, S) is not weak immune, but CR. It is practical iff dB ≥ f in every previous
state (a− dB, dB).

Proof. We prove (1.) first. The history (H) is weak immune, as B’s strategy does not
affect the history, since A’s initial choice has to be H. Further, A’s deviation is irrelevant
for B, as he can never get negative utility in this game.

Practicality of (H). We compute subgame perfect equilibria. After history (Ch, D) the
subgame perfect choice of A depends on whether dB ≥ f . In any case, D is subgame
perfect for B after history (Ch). If A chose P , then it is as good as any other choice,
yielding 0, otherwise it is the only best option resulting in a positive utility. Thus, A
either gets −f + α or −dB + α if she chooses Ch, both of which is negative. Hence, A’s
subgame perfect and therefore practical choice is H, yielding the history (H).
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The fact that (H) is CR follows from practicality. This shows that (H) is secure if b = 0.

For (2), we start showing (Ch, S) is not weak immune. We consider any strategy σ′

yielding the history (Ch, S). Assume now, B deviates to D after (Ch), then no matter
what A’s choice is, she will get a negative utility, thus (Ch, S) is not weak immune.

The collusion resilience of (Ch, S), can be shown by considering a strategy σ′ with history
(Ch, S), where we additionally fix that A chooses P after (Ch, D). Then B has no
incentive to deviate as he always gets utility 0, and A has no incentive as α, which is her
utility in σ′, is the best possible outcome for her.

To finally show that (Ch, S) is practical iff dB ≥ f , we consider A’s choice after (Ch, D).
The option P is subgame perfect iff dB ≥ f . Thus, S is subgame perfect for B iff dB ≥ f .
For dB < f , D is the better option for B, yielding (−dB + α, dB + α− ϵ). Therefore, Ch
is subgame perfect for A iff dB ≥ f , in which case the resulting history is (Ch, S).

The weak immunity result of (H) might be misleading, as B can actually close dishonestly
immediately (before A takes action). This is not represented here, but in Gc(B), which
is analog to Gc(A) but with swapped roles, as defined in Definition 2.22.

2.5.3 Optimal Strategy for Closing Off-Chain

To summarize, our security analysis based on closing games for Lightning channels yields
the following results. Theorem 2.4-Theorem 2.5, together with Corollary 2.1-Corollary 2.2,
allow us to derive the optimal strategy for closing an off-chain channel for a rational and
suspicious player. We next describe and illustrate this optimal strategy, highlighting
the main steps of our security analysis based on Theorem 2.4-Theorem 2.5.

Without loss of generality, we assume the current state of the channel is (a, b).

The player, assumed to be player A, who initiated the closing phase shall:

• try to close honestly and collaboratively (action Ch), if there does not exist an old
state (a+ dA, b− dA), where dA > 0 and a+ dA < 0. In case the other player, that
is player B, does not sign (action S), player A shall close honestly and unilaterally
(action H).
If player B closed dishonestly and unilaterally (action D), player A shall:

– state the revocation transaction (action P ), if the state used for cheating was
(a− dB, b+ dB), where dB > 0 and b+ dB ≥ f .

– ignore the cheating otherwise (action I), as it yields less loss.

• close dishonestly and unilaterally (action D), if there exists an old state (a +
dA, b − dA), where dA > 0 and a + dA < f . In this case, player A shall use the
old distribution state (a+ d′

A, b− dA), with the highest d′
A > 0 that still satisfies

a+ d′
A < f .
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The reacting player, in this case assumed to be player B, shall:

• sign the collaborative honest closing attempt (action S), if applicable, if there is no
old state (a− dB, b+ dB), dB > 0 in which the funds of player B are less than f ,
that is if b+ dB < f .

• close honestly and unilaterally (action H), in case of a dishonest collaborative
closing attempt (action Cc). This holds, if there is no old state (a− dB, b+ dB),
dB > 0 in which the player B’s funds are less then f , that is b+ dB < f .

• otherwise ignore (action I) the collaborative and honest/dishonest closing attempt,
if applicable, and close dishonestly and unilaterally (action D), using the old state
(a− d′

B, b+ d′
B), with the highest d′

B > 0 that still satisfies b+ d′
B < f .

• state the revocation transaction (action P ), if player A tried to close dishonestly and
unilaterally (action D) with state (a+ dA, b− dA), where dA > 0 and a+ dA ≥ f .

• ignore (action I) if player A closed dishonestly (action D), in the case where
a+ dA < f , as it yields less loss.

Example 2.10. Let players A and B share a channel with initial balance (5, 5) and let
us assume the fee for publishing a revocation transaction f = 2. After the first update,
let their state be (3, 7). The optimal way for A to close now is Ch and for B to sign.
Dishonest closing would cause B to publish the revocation transaction, yielding a loss of
3 for A and a profit of 3− 2 = 1 for B.

The next update could be (1.8, 8.2). The best way to close for A is still Ch. Dishonest
closing using (3, 7), for example, would still cause B to publish the revocation transaction.
Player B would in this case lose 1.8− 2 = −0.2, but he would lose more, 7− 8.2 = −1.2,
by ignoring it.

Another update could be (1, 9). Now the optimal strategy for A to close is D, using the
old state (1.8, 8.2). Ignoring the dishonest closing (action I) brings B −0.8, but proving
A’s cheating (action P ) leads to 1− 2 = −1. Hence, a rational B will choose to ignore
(action I), that means B does not publish the revocation transaction.

2.6 Beyond Closing Games for Off-Chain Security
Our game-theoretic analysis so far focused on using closing games to capture security
properties of off-chain channels (Section 2.4), and in particular of Lightning channels
(Section 2.5). In this section, we show that our game-theoretic formalism from Section 2.3
is expressive enough to analyse more complex protocols than just closing phases in
Lightning channels. In particular, we introduce a new EFG, called the Routing Game
in Section 2.6.1, and use this game in Section 2.6.2 to disprove security of Lightning’s
routing mechanism amid the Wormhole and Griefing attacks [MMSS+19, KSHB19]. We
also discuss a natural extension of our analysis to model other off-chain protocols in
Section 2.6.3.
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Figure 2.10: Partial Definition of the Lightning’s Routing Grout and the Fulgor Model
GFul. The Olive Colored Subtree only applies for Grout. The amount to be routed from
player A to player B is m > 0, and each of the intermediaries should receive a fee f .

2.6.1 Routing Games for Lightning’s Routing Module

We first propose a new EFG, called the Routing Game, showing that EFGs can cap-
ture actual attacks, in this case the Wormhole attack [MMSS+19] and the Griefing
attack [KSHB19], which were overlooked for example in [ZBPBS21]. Specifically, the
below defined routing game considers fees f , and supports actions allowing the interme-
diaries to choose not to claim their money using the secret x but instead to forward it to
another intermediary (as explained in Section 2.2.1). Additionally, other deviations such
as creating a conditional payment (i.e. HTLC) with a different hash value, a different
amount, or a different time-out than expected are also considered. For simplicity, we
chose to model our routing game below with five players; however, an arbitrary number
of intermediaries can be modeled.

Definition 2.24 (Routing Game Grout). The routing game Grout = (Nr,Hr, Pr, ur) is
an EFG with five players N = {A,E1, I, E2, B}, where

• the histories Hr, the next player function Pr, and the utility function ur are defined
via the tree representation of Figure 2.10. The utility tuples in Figure 2.10 assign
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the first value to A, the second to E1, the third to I, the fourth to E2, and the last
to B;

• the actions of Grout are as listed in Table 2.9.

The Routing Game The game Grout in Figure 2.10 assumes that player A wants
to forward value m > 0 to player B and pays each intermediary a participation fee of
f > 0. It starts with player B initializing the routing mechanism by coming up with a
secret and sending its hash to player A (action SH), or forwarding the secret to someone
(action SS), or not doing anything (action I). If player B initialized the mechanism, then
it is player A’s turn to set up an HTLC correctly (action L), incorrectly (actions LA, LT ,
LH), or not to set up an HTLC (action I). If player A did set up an HTLC, independent
of whether it was done correctly or not, the intermediaries have the same set of actions
available, one after the other. When/If all HTLCs were set up, it is again player B’s turn
to either unlock their HTLC (action U), let it expire (action I), or share the secret with
someone (action SS). These three types of actions are what all the other players can also
choose from once they know the secret (through either secret sharing or the unlocking of
the HTLC they set up). Once all HTLCs are unlocked or expired, we reach a leaf.

Subgames of the Routing Game We note that our Routing Game Grout has four
types of subgames, as modeled in Figure 2.10 and described next: (i) subgames that
result from sending the secret to another player Si; (ii) subgames that result from locking
a wrong amount of money in the HTLC Si; (iii) subgames that result from using a wrong
time-out in an HTLC Si; and (iv) subgames that result from using a wrong hash value
as lock in the HTLC Si. We further note that Figure 2.10 only gives a partial model, as
not all subgames are presented in Figure 2.10. However, within one type of subgame, the

Table 2.9: Possible Actions in Grout.

SH Sharing the secret’s Hash to enable the others to create HTLCs (action 1 in
Figure 2.1, Section 2.2.1).

L Lock money, as defined in actions 2–5 in Figure 2.1, in an HTLC.
U Unlocking the money from an HTLC (actions 6–9 in Figure 2.1). Thereby, the

secret is revealed to the HTLC’s creator.
I Ignoring all the previous actions and do nothing. If applicable, until the unlockable

HTLC has timed out.
SS Sending the Secret to another player. If it is sent to a specific player (not leading

to Si) this player is indicated by another subscript.
LH Locking money in an HTLC, that uses a different Hash-lock than described in

Figure 2.1.
LA Locking a different Amount of money in an HTLC, than described in Figure 2.1.
LT Locking money in an HTLC, whose Time-out is different from the values described

in Figure 2.1.
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game trees are similar. Therefore, we provide only one instance of each type, which are
the subgames S1 (Figure 2.11), S2 (Figure 2.12), and S3 (Figure 2.13). An instance of a
secret-forwarding subgame S capturing the Wormhole attack can be seen in Grout, as
the subtree after history (SH , L, L, L, L, U, SSE1

).

Subgame S1 in Figure 2.11 describes the case where player A locks an amount of money
in the HTLC which deviates from the expected m+ 3f . The action Lw (analogous to
action L in the main tree) means that the subsequent players follow along and forward
the wrong amount to player B, which means the locked value differs from the honest
one by −w in each step. Subgame S2 in Figure 2.12 illustrates the case that player E1
creates her own secret and uses its hash z as the lock of her HTLC. Action Lz (analogous
to action L in the main tree) describes the reusing of hash lock z in the next HTLCs.
Lastly, subgame S3 in Figure 2.13 handles the case, where player I uses a time-out t3
of the HTLC which is later than the previous ones t1 and t2, thereby neglecting the
decreasing ordering of time-outs. In Figure 2.13, the action U<t2 means unlocking the
HTLC before t2 times out, thus enabling the other players to unlock too. The action
U>t1 stands for unlocking after t1 (and thus t2) timed out. Therefore, I and E1 cannot
unlock their respective HLTCs anymore. Finally, action U[t2,t1] means unlocking after t2
has timed out, but the HTLC with time-out t1 can still be unlocked.

Let us emphasize that the utility function ur of Grout assigns each player p ∈ N the
relative profit of their routing actions and does not mirror the individual channel balances.
It also takes the value ρ of a successful payment and the opportunity cost ϵ into account.

As in the closing games Gc(A) and Gc(B), we aim to align utility and monetary outcome
as tight as possible. We adjust the ordering (U,≼) of Definition 2.20 by not assuming
that ρ ≺ ϵ, since achieving an update is the ultimate goal of the routing protocol. We
also consider the utility relative to the amount due to each party.

2.6.2 Security Analysis of Lightning’s Routing Module

Let us recall Figure 2.1 and Figure 2.2, where player A wants to pay another player B
money of value m. Since A and B do not share a channel, the three intermediaries E1,
I, and E2 support the payment, with each receiving a fee f > 0 for their collaboration
if the payment is successful. Each player who creates an HTLC locks her money for a
given time, yielding an opportunity cost of ϵ if the money is returned. If the transaction
fails, before anyone has unlocked an HTLC, all parties get utility 0 or −ϵ, depending
on whether they created an HTLC or not. Otherwise, the intermediaries’ utilities are
according to their financial win/loss. The parties A and B both receive ρ once B is
paid. Should the transaction fail after B is paid, but before A has paid, she has utility
m+ 3f + ρ− ϵ; once E1 collects the money, A’s utility is ρ.

In the sequel, we consider the behavior from Figure 2.1 as the only honest history in
Grout, as also formalized next.

Definition 2.25 (Honest Routing). The only honest history in the routing game Grout is
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the history (SH , L, L, L, L, U, U, U, U). All strategies yielding this history are considered
honest strategies.

Using our model Grout and its honest behavior, we derive the following result.

Theorem 2.9 (Vulnerability of Grout to Wormhole Attacks). The honest behavior
(SH , L, L, L, L, U, U, U, U) of the Routing Game Grout is not CR.

Proof. The utility of the honest behavior of the routing module (SH , L, L, L, L, U, U, U, U)
is (ρ, f, f, f, ρ) (as indicated in red in Figure 2.10). Let us compare this behavior and
utility to the deviating terminal history (SH , L, L, L, L, U, SSE1

, U,I) with a utility of
(ρ, m+ 3f − ϵ, −ϵ, −m, ρ) (given in teal in Figure 2.10). It is not hard to argue that
the collusion of E1 and E2 (and B by not sending the secret to I) strictly profits from
the deviation, which yields a joint utility of 3f − ϵ+ ρ, whereas the honest behavior only
yields a joint utility of 2f +ρ. As such, collusion resistance CR is violated, since no honest
player can prevent the Wormhole attack from happening by following any honest strategy
(that is, a strategy σ whose history is the honest behavior (SH , L, L, L, L, U, U, U, U)).

In conclusion, Theorem 2.9 formally proves that Lightning’s routing module is susceptible
to the Wormhole attack. We further extend this result by noting that not only can Grout
capture the Wormhole attack, but also the Griefing attack, as stated below.

Theorem 2.10 (Vulnerability of Grout to Griefing Attack). The honest behavior, history
(SH , L, L, L, L, U, U, U, U), of the Routing Game Grout is not weak immune.

Proof. For showing that history (SH , L, L, L, L, U, U, U, U) is not weak immune, we prove
that no strategy that yields this history is weak immune. Let us consider any such
strategy σ. Then, player A has to choose action L after B sent her the secret, that is
history (SH). Assume now E1 deviates and chooses to ignore (action I). Then A’s utility
is −ϵ ≺ 0. Hence, history (SH , L, L, L, L, U, U, U, U) is not weak immune.

We also obtain the following result as an immediate consequence of Theorem 2.9 and
Theorem 2.10.

Corollary 2.3 (Security of Routing Module). The honest behavior, that is history
(SH , L, L, L, L, U, U, U, U), of the Routing Game Grout is not secure. Hence, the Routing
Game Grout is not secure.

2.6.3 Further Routing Protocols Beyond the Lightning Network

We conclude this work by arguing that our EFG games, either closing or routing games,
are not restricted to Lightning networks but can be used for other protocols as well. In
the remainder of this section, we illustrate how to model Fulgor [MMSK+17], a payment
channel network protocol that fixes the Wormhole attack, but not the Griefing attack.
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Figure 2.14: Routing in Fulgor.

The routing mechanisms used in Fulgor are similar to Lightning’s routing and are similarly
based on HTLCs. The main difference lies in the structure of the secrets and their hashes.
Indeed, while Lightning uses the same secret x for every HTLC, Fulgor provides a different
secret and hash lock for each player.

Fulgor’s routing mechanism is illustrated in Figure 2.14, where player A generates different
secrets and hash locks at the beginning. The secrets and the hashes relate in the following
way: h(x1) = y1, h(x1 + x2) = y2, h(x1 + x2 + x3) = y3, and h(x1 + x2 + x3 + x4) = y4.
Therefore, a player only gets to know a sum of secrets when the right-hand party unlocks
and subtracts the secret value received from A to unlock their HTLC. A also provides a
zero-knowledge-proof ZKPi for each intermediary [GO94] to prove that the secrets and
hashes constructed this way guarantee successful unlocking of the left HTLC, which is
essential to not losing funds.

The game-theoretical (EFG) model of Fulgor GFul reported in Figure 2.10 looks similar
to the routing game Grout, yet with one significant difference. Consider the history
(SH , L, L, L, L, U, SSE1

) in Figure 2.10, which enables player E1 to unlock (action U)
the HTLC created by A. In Fulgor, the same history does not enable E1 to unlock the
HTLC. As Figure 2.14 shows, the secrets that E2 can share after action 6 are x4 and
x1 + x2 + x3 + x4. Further, E1 only knows x2; thus, there is no way to compute x1. This
is, however, the value needed to unlock the HTLC created by A. Indeed, Fulgor is not
affected by the Wormhole attack. Nevertheless, similarly to Theorem 2.10, the honest
behavior of Fulgor is not weak immune, as it is vulnerable to the Griefing attack.

2.7 Conclusion

Our work advocates the use of Extensive Form Games (EFGs) for the game-theoretic
security analysis of off-chain protocols. In particular, we introduce two instances of EFGs
to model the closing and the routing of the Lightning Network. By doing so, we take
the first step towards closing the gap existing security proof techniques have due to
using informal arguments about rationality. We express security properties as formal
requirements over joint strategies in EFGs, allowing us to establish optimal strategies for
closing off-chain and capturing security vulnerabilities amid attacks. Given the theoretical
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expressiveness of our EFGs, future work includes the definitions of new games to capture
a wider range of off-chain protocols. To overcome the burden of tedious manual analysis,
we also plan to leverage SMT solving and/or automated theorem proving in order to
provide automated security proofs.
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CHAPTER 3
Automated Game-Theoretic

Security Analysis

This chapter is based on article [BKK+23b]:

Lea Salome Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain, and Michael
Rawson. CheckMate: Automated Game-Theoretic Security Reasoning. EasyChair
Preprint no. 10853, 2023.

This article is an extended version of the publication [BKK+23a]:

Lea Salome Brugger, Laura Kovács, Anja Petković Komel, Sophie Rain, and Michael
Rawson. CheckMate: Automated Game-Theoretic Security Reasoning. In Proceedings
of 30th ACM SIGSAC Conference on Computer and Communications Security, pages
1407–1421, New York, NY, USA, 2023.

3.1 Problem Statement
Applications of blockchain technology such as cryptocurrencies [Nak08] and decentralized
finance [Woo14] are becoming increasingly popular. Establishing security guarantees of
such applications is mostly driven by formal analysis of the underlying cryptographic
protocols [MSCB13, Bla14, WLC+19, KNT20]. While powerful, these efforts cannot
capture malicious actions that are possible in spite of formal cryptographic guarantees.
Game-theoretic security analysis has therefore emerged [ZBPBS21, RAKM23], intro-
ducing variants of extensive form games (EFGs) [OR94] for embedding punishment
mechanisms within blockchain analysis.

In a nutshell, game-theoretic security analysis enables reasoning about incentive-compati-
bility: that is, whether malicious yet cryptographically-possible behavior is discouraged
via punishment mechanisms. It also enables detecting and even preventing scenarios
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that could lead directly to security attack vectors [MMSS+19]. Feasibility of game-
theoretic models for investigating an underlying protocol’s security partially depends on
the game completeness, that is, on expressing all possible interactions between players.
In consequence, accurate models are likely to be rather large and complex games. For
example, while [RAKM23] introduces a so-called Closing Game to precisely model the
closing phase in Bitcoin’s Lightning Network [PD16], we show there are trillions of possible
joint strategies (combinations of player strategies) for the Closing Game (see Example 3.4).
As such, manually analyzing game-theoretic security models is not practically viable.

In this work, we therefore introduce the CheckMate framework for automating reasoning
about game-theoretic security of blockchain protocols. To the best of our knowledge,
CheckMate provides the first automated reasoning framework for enforcing game-
theoretic security, (dis)proving, for example, security of real-world protocols used within
Bitcoin’s Lightning Network (Section 3.6). Related reasoning approaches for (extensive
form) games exist [KNPS20], but current techniques are limited to processing games with
numeric values as game utility variables enacting punishment or reward mechanisms.
In CheckMate, we advocate for the use of symbolic values, guaranteeing security for
every possible numeric value, e.g., every possible account balance in decentralized finance
applications.

The distinctive feature of CheckMate is a formalization of security properties over
game strategies in such a way that the result can be (dis)proved using “only" first-order
arithmetic reasoning with limited quantification (Section 3.4). To this end, we turn
applications of blockchain security into a satisfiability modulo theory (SMT) problem, by
showing that first-order linear real arithmetic provides an expressive logic to formulate
and prove game-theoretic security (Lemma 3.1). Our first-order encoding is exact
and, unlike the work of [KNPS21, KNPS20], does not feature probabilistic (reward)
operators. Instead, we provide a decidable logic for game-theoretic security and omit the
computational burden of reasoning with uncertainty.

The added value of our first-order encoding is witnessed when formalizing that deviating
from the protocol is never rational (incentive compatibility), and that even if adversaries
deviate, honest users are not financially harmed (Byzantine fault-tolerance) (Section 3.2).
We show the formalization is sound and complete: our security proofs imply game-
theoretic security and vice versa (Corollary 3.1). In this respect, we introduce novel
reasoning approaches on top of SMT solving, scaling, and using formal verification not
only for enforcing game-theoretic security, but also providing counterexamples and/or
refining preconditions where security properties are violated (Section 3.5).

Contributions. We bring the following main contributions

(i) We formalize game-theoretic security properties as first-order arithmetic formulas
over EFG joint strategies (Section 3.4), reducing security analysis of blockchain
transactions to arithmetic reasoning over honest game histories with symbolic game
utilities (Lemma 3.1). The use of symbolic utilities differentiates our work from
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other game-theoretic frameworks [KNPS21, KNPS20]: symbolic utilities allow us
to avoid concurrent game strategies while providing a deterministic, game-theoretic
behavior. As such, we also avoid reasoning with probabilistic (reward) operators.

(ii) Since players may be willing to forgo some intangible assets, such as opportunity cost,
but not actual resources, we introduce weaker immunity (Definition 3.4), strength-
ening the state of the art in game-theoretic security analysis. Our formalization is
sound and complete with respect to their game-theoretic definitions (Corollary 3.1),
and inhabits a decidable fragment of first-order arithmetic.

(iii) Unlike [RAKM23, ZBPBS21], our EFG security properties avoid the use of non-
trivial sets, functions and quantifier alternations. We show that this arguably
simple logical formalization is both sufficient and necessary to precisely capture
game-theoretic security (Theorem 3.3). Moreover, we provide tailored automated
reasoning approaches over EFG strategies and bring them into the landscape of
SMT solving (Algorithm 3.1).

(iv) Since we reason about symbolic utilities, proving arithmetic relations naturally
yields case splits. We guide these case distinctions via unsatisfiable (unsat) core
computation in SMT solving (Section 3.5.1).

(v) For EFG properties that are not secure, we provide attack vectors as concrete
counterexamples to a violated security property (Section 3.5.2, Algorithm 3.2).
In addition, we give weakest ordering conditions on utilities which, if assumed as
preconditions, ensure security (Section 3.5.3, Algorithm 3.3).

(vi) We implement our approach in the new tool CheckMate, a fully automated security
reasoning engine for EFGs that requires no user guidance (Section 3.6). We evaluate
CheckMate on challenging EFGs, including variants of real-world protocols
namely closing and routing phases of Bitcoin’s Lightning Network. Experiments
demonstrate applicability and scalability of CheckMate, (dis)proving security of
EFGs with trillions of strategies and thousands of nodes. While for readability’s
sake, our running examples use simplified game models of Lightning’s closing and
routing phases (Figures 3.1–3.2), our experiments show that CheckMate succeeds
when analyzing the respective protocols in full (Table 3.1).

3.2 Motivating Examples
We motivate and illustrate our work by considering simplified versions of the closing and
routing protocol phases of Bitcoin’s Lightning Network [RAKM23]. Let us emphasize that
our running examples from Figures 3.1–3.2 are simplified only for the sake of readability.
In experiments, we also evaluate CheckMate on full models of the respective protocols of
Bitcoin’s Lightning Network (Section 3.6). In particular, the last two entries of Tables 3.1
and 3.2 report on our results when analyzing Bitcoin’s Lightning Network in its full
complexity.
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The closing and routing phases of the Lightning Network are modeled as EFGs and
visualized as trees in Figures 3.1 and 3.2. The start of an EFG is the root, and players’
choices lead to different branches. The game ends when a leaf is reached, where a player’s
gain or loss is called their utility.

Example 3.1 (Simplified Closing Game). In the Simplified Closing Game of Figure 3.1,
player A starts the game and chooses between three options: closing honestly (H),
collaboratively honestly (Ch), or dishonestly (D). If A chooses H, both players get the
benefit of closing the channel α, but player A has to wait until the closing times out, so
the utility is reduced by the opportunity cost ε. If A chooses Ch, player B gets to choose
between ignoring (I), i.e. the funds remain locked, or signing (S), where both players get
the benefit of closing α. If A chooses to close dishonestly with some deviating amount
dA, then if B chooses to ignore (I), the funds for B are lost; however, if B proves (P ) the
attempt was dishonest, all of A’s funds (a) are redistributed to B, but the transaction
fee f has to be paid. Note that the utilities in the leaves of the game tree are actual
variables (α, a, f , etc.), not numeric values, and α, ε are infinitesimals (see Section 3.3).

Example 3.2 (Simplified Routing Game). CheckMate can handle games with any
finite number of players. To show how an attack vector can arise from collusion between
players and outline the main structure of the model of the routing protocol, we include
in Figure 3.2 an EFG with five players, modeling a Simplified Routing Game. Player
A is the initiator of the routing transaction, player B is the receiver and players P1, P2
and P3 are intermediaries. The routing starts when player B sends a hash of a secret to
player A; this step is modeled with action SH . Then, a so-called locking phase follows
(the four actions L), where players lock funds for the next player in the routing path to
unlock, provided they can present B’s secret: player A locks the amount m+ 3f (where
f represents the routing fee), player P1 locks m+ 2f , player P2 locks m+ f and player
P3 locks m. Next, the game enters an unlocking phase, where players choose between
the honest action U of unlocking their contracts, or to ignore unlocking (IU ), resulting in
a state where all contracts still locked expire and a leaf is reached. The end utilities of
players depend on which contracts are unlocked, which are expired and additionally on
two subjective values: the benefit of updating, modeled as a positive infinitesimal ρ, and
the opportunity cost, modeled as an infinitesimal ε.

A

B

(−a,−b)
I

(α, α)

S

Ch

(α− ε, α)

H
B

(dA + α− ε,−dA + α)

I
(−a, a− f + α)

P

D

Figure 3.1: Simplified Closing Game with α, a, ε, f, dA > 0 and α, ε infinitesimals.
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U

(−ε,−ε,−ε,−ε, 0)

IU

LLLLSH

Figure 3.2: Simplified Routing Game with m, f, ρ, ε > 0 and ρ, ε infinitesimals.

The path that represents honest behavior is depicted in thick blue lines. CheckMate
disproves security of the game, as the path depicted in dashed purple deviates from the
honest behavior and corresponds to the so-called Wormhole attack [MMSS+19]. Within
this dishonest behavior (attack), player P3 can additionally choose to share the secret
with player P1 and thus bypass player P2 entirely. If P1 chooses to unlock, it results in a
negative utility (−ε) for player P2, who is further deprived of earning the routing fee f
for enabling the transaction, which they would get in the honest scenario depicted in
blue.

3.3 Preliminaries

We introduce game-theoretic material needed for our work. We assume familiarity with
standard first-order logic [Smu95], linear (real) arithmetic [Sch99], and SMT solving over
both [BT18, DDM06a, GDM09].

3.3.1 Game Theory

As in the previous chapter, we define a game to be a static finite object with finitely
many players. Players choose from finitely many actions until the game ends, whereupon
they receive a utility. We focus on perfect-information Extensive Form Games (EFGs)
in which players choose actions sequentially with full knowledge of all previous actions.
Games may yield collective benefit or loss, i.e., they are not necessarily zero-sum.

The following definition of an extensive form game is more intuitive yet equivalent to the
one in Chapter 2 (Definition 2.9), as indicated by Definition 2.10. Since the previous
chapter advocates for the use of EFGs rather than the simpler normal form games (NFGs),
a more technical definition, which is easier to relate to NFGs, was necessary.
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Definition 3.1 (Extensive Form Game — EFG). An extensive form game Γ = (N,G) is
determined by a finite non-empty set of players N together with a finite tree G = (V,E).
A game path h = (e1, ..., en), ei ∈ E starting from the root of G is called a history. We
denote the set of histories by H . There is a bijection between nodes v ∈ V and histories
h ∈H that lead to these nodes.

• A history that leads to a leaf is called terminal and belongs to the set of terminal
histories T ⊆H . Terminal histories t are associated with a utility for each player.

• Non-terminal histories h are those histories that are not terminal h ∈ H \ T .
Non-terminal histories h have a player P (h) ∈ N whose turn it is, who may choose
from a set of possible actions A(h) to take after h.

In game theory, utilities are usually real- or integer-valued numeric constants. Similarly
to [RAKM23], in our work, we, however, consider utilities as symbolic terms in linear
arithmetic, capturing all possible utilities with certain constraints. We evaluate variables
and constants over the real numbers R extended by a finite set of infinitesimals, closer to
zero than any real number. Infinitesimals model subjective inconveniences or benefits
that do not relate directly to funds, such as opportunity cost. For our purposes, we model
infinitesimals by considering linear terms over R× R, ordered lexicographically: the first
component represents the real part, the second the infinitesimal. We write real for the
first projection and avoid writing pairs; that is, we write 0 for (0, 0). In the sequel, we
use a, b, c . . . for real variables, and write α, β, γ, . . . for infinitesimals. The utility term
a+ α− ε is therefore represented in our work as (a, 0) + (0, α)− (0, ε), that is (a, α− ε).

Example 3.3. The Simplified Closing Game has two players N = {A,B}. After empty
history ∅, it is the turn of player P (∅) = A to choose from actions A(∅) = {H,Ch, D}.
After terminal history (H), player A receives utility α− ε and B receives α.

While utilities depend only on terminal histories, we relate utilities to joint strategies,
facilitating the formulation of security properties in the sequel. The next definition is
also consistent with the analog ones from Chapter 2.

Definition 3.2 (EFG Properties). Let Γ = (N,G) be an EFG.

Joint Strategy A joint strategy σ is a function mapping every non-terminal history
h ∈H \T to an action a ∈ A(h). The set of joint strategies is S .

Single Strategy A strategy σp ∈ Sp of player p is a function mapping non-terminal
histories h ∈H \T with P (h) = p to an action a ∈ A(h). Similarly, a group of
players S ⊂ N may have a strategy σS ∈ SS.

Strategy Deviation If player p deviates from a joint strategy σ ∈ S with another
strategy τp ∈ Sp, the resulting joint strategy is denoted σ[τp/σp]. Similarly, for a
deviating group of players S ⊂ N , we write σ[τS/σS ].
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Resulting History The resulting terminal history H(σ) of a strategy σ is the unique
history obtained by following chosen actions in σ from root to leaf.

Extended Strategy An extended joint strategy β ∈ S of a history h ∈ T is a strategy
whose resulting history is h. Thus, H(β) = h.

Players’ Subhistories Let H S
t denote the set of non-empty histories leading to terminal

history t where the last turn was one of the players’ p ∈ S. That is, H S
t := {(h, a) |

∃h′. t = (h, a, h′) ∧ P (h) ∈ S}. For simplicity, let H p
t := H

{p}
t .

Utility Function The utility function up(σ) assigns a utility for every joint strategy
σ ∈ S to player p ∈ N . We sometimes write all player utilities for a joint strategy
as u(σ), denoting a tuple of size |N |. Since utilities only depend on σ’s terminal
history h = H(σ), we define up(h) := up(σ).

Subgames Subgames Γ|h of Γ are formed from the same set N of players and a subtree
of G, and are therefore identified by a history h leading to the subtree G|h. Histories
H|h of Γ|h are histories in H with prefix h, and similarly for the utility function
u|h and strategies σ|h ∈ S|h.

Example 3.4. In Figure 3.1, a joint strategy τ could be player A taking action H
initially, with player B taking S after (Ch) and P after (D). Player A’s single strategy
τA takes action H initially. Player B receives uB(τ) = α. The history resulting from τ
is (H), and τ is a strategy extending history (H). The subgame for history (Ch) has
players N = {A,B} and has a tree where player B must choose between action I with
utility (−a,−b) and action S with utility (α, α).

The Simplified Closing Game has 3 · 2 · 2 joint strategies as player A chooses one out of
three possible actions, and independently of that, B picks one action out of two in both
subtrees. Similarly, we reach the conclusion that the Closing Game [RAKM23] listed in
Table 3.1 has 1.6307 . . . · 1013 (16 trillion) joint strategies.

3.3.2 Game-Theoretic Security Properties

We restate the following concepts and definitions from Chapter 2 for readability. Since
an adversary may perform an attack for one of two reasons (personal gain or harming
somebody), a protocol is game-theoretically secure according to [ZBPBS21, RAKM23], if
the following two properties hold:

(P1) (Byzantine Fault-Tolerance) Even in the presence of adversaries, honest players do
not suffer loss; thus, in a secure protocol an honest player will not receive negative
utility, independent of others’ behavior. Therefore, there are no "attacks" where
somebody is harmed.
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(P2) (Incentive-Compatibility) Rational agents do not deviate from the honest behavior,
as the honest behavior yields the best payoff. Hence, in a secure protocol, a rational
"attacker" is behaving honestly and no adversary gets personal gain by deviation.

In the sequel, we fix an arbitrary EFG Γ = (N,G) and give all definitions relative to Γ.
Based on [RAKM23], property (P1) is ensured by weak immunity as follows.

Definition 3.3 (Weak Immunity). A joint strategy σ ∈ S in EFG Γ is weak immune if
all players p that follow σ always receive non-negative utility:

γwi(σ) : ∀p ∈ N ∀τ ∈ S . up(τ [σp/τp]) ≥ 0 . (γwi)

Strategy τ from Example 3.4 is weak immune, as long as α ≥ ε and a ≥ f .

In our work, we found weak immunity to be too restrictive (see Section 3.6). We therefore
refine Chapter 2 and propose weaker immunity to ensure (P1) as follows:

Definition 3.4 (Weaker Immunity). A joint strategy σ in EFG Γ is weaker immune if
all players p that follow σ always receive at least a negative infinitesimal:

γweri(σ) : ∀p ∈ N ∀τ ∈ S . real(up(τ [σp/τp])) ≥ 0 . (γweri)

(P2) is ensured by collusion resilience and practicality. Collusion resilience requires honest
behavior to yield the best payoff, even in the presence of collusion.

Definition 3.5 (Collusion Resilience). A joint strategy σ in EFG Γ is collusion resilient
if colluding players S ⊂ N cannot profit from deviation:

γcr(σ) : ∀S ⊂ N ∀τ ∈ S .
∑︂
p∈S

up(σ) ≥
∑︂
p∈S

up(σ[τS/σS ]) . (γcr)

Strategy τ from Example 3.4 is not collusion resilient, since player A could deviate
by choosing Ch initially and obtain α, while by following τ they receive only α − ϵ.
Practicality ensures that for all player decisions, the honest behavior is also “greedy”: if
all players act selfishly (that is, maximizing their own utilities), the honest choice yields
the best utility.

Definition 3.6 (Practicality). A joint strategy σ in EFG Γ is practical if it is a subgame
perfect equilibrium, i.e., a Nash equilibrium in every subgame:

γpr(σ) : ∀h ∈H ∀p ∈ N ∀τ ∈ S|h.

u|h,p(σ|h) ≥ u|h,p(σ|h[τp/σ|hp
]) .

(γpr)

Strategy τ from Example 3.4 is not practical. In the subgame after history (Ch), the
selfish choice for B is to choose action S. Assuming player B acts this way, player A’s
greedy strategy is to choose action Ch initially with expected utility α instead of α− ϵ.
Using (γwi), (γcr), and (γpr), we formalize security as in [RAKM23]:
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Definition 3.7 (Security). A terminal history h∗ of an EFG Γ is secure if there are
three strategies extending h∗ that satisfy (γwi), (γcr) and (γpr), respectively.

Our notion of security given in Definition 3.7 ensures that players can defend against every
attack. As the defense strategy may vary depending on the attack, different strategies
for (γwi), (γcr), and (γpr) are allowed.

3.4 First-Order Arithmetic Theory of Security Properties

We now introduce our first-order formalization of game-theoretic security by exploiting
and adjusting the EFG security properties of Section 3.3 within the first-order theory of
linear real arithmetic. Our formalization ensures that if a first-order (security) formula is
satisfiable, a model for the formula provides a joint strategy for a given honest history of
an EFG (Section 3.4.1). We present our first-order formalization piecewise, as constraints
on such models, imposing, among others, that models must form a joint strategy, the
joint strategy should result in a given honest history, and user-supplied assumptions
should be considered (Section 3.4.2–Section 3.4.4). We consider the game utilities to be
symbolic terms evaluated over pairs of real values, as mentioned in Section 3.3.1. We
therefore universally quantify their symbolic variables in our encoding. As before, EFG
Γ = (N,G) is arbitrarily fixed.

3.4.1 Joint Strategies and Honest Histories

A joint strategy for an EFG Γ = (N,G) selects exactly one action for each internal node
of the tree. We introduce Boolean action variables vha to indicate whether at non-terminal
history h a player chooses action a, and constrain these variables vha so that exactly one
variable is assigned for each h. We thus have

⋀︂
h∈H \T

⎛⎝ ⋁︂
a∈A(h)

vha

⎞⎠
⏞ ⏟⏟ ⏞

(ALO)

∧
⋀︂

ai,aj∈A(h), ai ̸=aj

(︂
¬vhai

∨ ¬vhaj

)︂
⏞ ⏟⏟ ⏞

(AMO)

. (ϕstrat)

Constraint (ALO) ensures that each non-terminal history h has at least one action
variable set. The at-most-one constraint (AMO) [NM15] ensures that no more than one
vha is set. Our next lemma then concludes that a model I of ϕstrat uniquely describes a
joint strategy σ ∈ S and vice versa.

Lemma 3.1 (Model-Strategy Translation). Consider the EFG Γ with joint strategies S .
Let M be models of the formula ϕstrat. Then, f :M→ S , where

f(I) = σ ⇐⇒ ∀h ∈H \T : σ(h) = a↔ I(vha) = ⊤ (3.1)

is a well-defined bijection.
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Proof. Recall that

S = {σ| σ : H \T →
⋃︂

h∈H \T

A(h), σ(h) ∈ A(h)} and

M = {I| I : (vha)h∈H \T
a∈A(h) → {true,false}, I(ϕstrat) = true} .

We start by showing that f is well-defined. Let I ∈ M and define σ := f(I). From
I(ϕstrat) = true, it follows that for all h ∈ H \ T , there exists an action a ∈ A(h)
such that I(vha) = true as well as there cannot be two different ai, aj ∈ A(h) such that
I(vhai

) = I(vhaj
) = true. By definition of f , this says exactly that for every h ∈H \T ,

there exists precisely one action a ∈ A(h) such that σ(h) = a. Therefore, σ is a function
from H \T to

⋃︁
h∈H \T A(h) with σ(h) ∈ A(h) for all h. Hence, σ ∈ S .

Next, we show the injectivity of f . Let I, I′ ∈ M, I ̸= I′. Then, there exists a vha such
that I(vha) ̸= I′(vha). Without loss of generality, we assume I(vha) = true. For σ := f(I),
σ′ := f(I′), it follows σ(h) = a ̸= σ′(h). Thus, σ ̸= σ′ and hence, f is injective. Lastly, we
show the surjectivity of f . We pick an arbitrary σ ∈ S and consider I with I(vha ) = true

iff σ(h) = a. This I is a function (vha)h∈H \T
a∈A(h) → {true,false}. Since σ is a function

with σ(h) ∈ A(h), we know that for all h ∈ H \ T , there exists exactly one a ∈ A(h)
such that I(vha) = true. Therefore, I is a model of ϕstrat and I ∈M. We conclude f is
surjective and thus a well-defined bijection.

Lemma 3.1 is the crux of our work, reducing game-theoretic security analysis to satisfia-
bility modulo first-order linear real arithmetic: game-theoretic security holds iff first-order
formulas describing security properties are satisfiable. In what follows, we introduce
the first-order formulas capturing game-theoretic security, which then together with
Lemma 3.1 enable the automation of (dis)proving game-theoretic security (Section 3.5).
To this end, we extend honest histories and hence further constrain EFG joint strategies.
We do so by ensuring that all action variables in the honest history are set. That is, for
an honest history h∗ = (a1, . . . , an), we obtain

v∅
a1 ∧ · · · ∧ v

(a1,...,an−1)
an

. (ϕhist)

Example 3.5. Consider the Simplified Closing Game with honest history (Ch, S).
From ϕstrat and ϕhist, we obtain the following constraints on action variables:

(︂
v∅
H ∨ v

∅
Ch
∨ v∅

D

)︂
∧
(︂
¬v∅

H ∨ ¬v
∅
Ch

)︂
⏞ ⏟⏟ ⏞

Constraints from ϕstrat for A.

∧
(︂
¬v∅

H ∨ ¬v
∅
D

)︂
∧
(︂
¬v∅

Ch
∧ v∅

D

)︂
⏞ ⏟⏟ ⏞

Constraints from ϕstrat for A.
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∧
(︂
v

(Ch)
I ∨ v(Ch)

S

)︂
∧
(︂
¬v(Ch)

I ∨ ¬v(Ch)
S

)︂
⏞ ⏟⏟ ⏞

Constraints from ϕstrat for B.

∧
(︂
v

(D)
I ∨ v(D)

P

)︂
∧
(︂
¬v(D)

I ∨ ¬v(D)
P

)︂
⏞ ⏟⏟ ⏞

Constraints from ϕstrat for B.

∧ v∅
Ch
∧ v(Ch)

S⏞ ⏟⏟ ⏞
Constraints from ϕhist.

3.4.2 Weak and Weaker Immunity

A joint strategy is weak immune (γwi) if the utility of each player following the strategy is
non-negative, no matter how other players behave. For each possible terminal history, we
thus need to ensure that if a player takes the corresponding actions, the resulting utility
for the player is greater than or equal to 0. The set of non-terminal histories leading to a
terminal history t where it is the turn of player p is H p

t , as defined in Definition 3.2. We
then formalize weak immunity as

⋀︂
p∈N

⋀︂
t∈T

⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ up(t) ≥ 0. (ϕwi)

Moreover, we express weaker immunity (γweri) as

⋀︂
p∈N

⋀︂
t∈T

⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ real(up(t)) ≥ 0. (ϕweri)

To ensure that models of ϕwi and ϕweri yield weak(er) immune joint strategies of our
EFG Γ, we respectively combine the constraints ϕstrat and ϕhist with ϕwi and ϕweri.

Example 3.6. In order to find a weak immune joint strategy for the Simplified Closing
Game, we add the following formula to the constraints from Example 3.5:

(v∅
H → α− ε ≥ 0) ∧ (v∅

Ch
→ −a ≥ 0)

∧ (v∅
D → dA + α− ε ≥ 0)

∧ (v∅
D → −a ≥ 0) ∧ (v∅

Ch
→ α ≥ 0)

⎫⎪⎪⎬⎪⎪⎭ Constraints for A.

∧ α ≥ 0 ∧ (v(Ch)
I → −b ≥ 0)

∧ (v(Ch)
S → α ≥ 0)

∧ (v(D)
I → −dA + α ≥ 0)

∧ (v(D)
P → a− f + α ≥ 0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Constraints for B.

Note that the first constraint for player B does not contain an implication. This is
because player B does not make a choice at terminal history (H) and consequently, the
empty antecedent is omitted. If we consider the honest history (Ch, S), we can simplify
the formula by ϕhist and propositional reasoning, but weak immunity does not hold as
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the constraint v∅
Ch
→ −a ≥ 0 is not satisfied for a > 0. When in turn checking for weaker

immunity, we can disregard infinitesimal terms, so the constraints from ϕweri simplify to:

(v∅
Ch
→ −a ≥ 0) ∧ (v∅

D → dA ≥ 0) ∧ (v∅
D → −a ≥ 0)⏞ ⏟⏟ ⏞

Constraints for A.

∧

(v(Ch)
I → −b ≥ 0) ∧ (v(D)

I → −dA ≥ 0) ∧ (v(D)
P → a− f ≥ 0)⏞ ⏟⏟ ⏞

Constraints for B.

3.4.3 Collusion Resilience

Within a collusion resilient joint strategy, no subgroup of players benefits when deviating
from the honest behavior (γcr). We thus need to ensure that all possible deviations of a
group of players receive total utility less than that obtained by honest behavior. Hence,
our formalization in this respect needs to include only the action variables of the players
that do not belong to the deviating subgroup, as these are the players whose choices are
in accordance with the desired joint strategy. For an honest history h∗, we formalize
collusion resilience as:

⋀︂
S⊂N

⋀︂
t∈T

⎡⎢⎣ ⋀︂
(h,a)∈H

N\S
t

vha

⎤⎥⎦→∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(t). (ϕcr)

Example 3.7. Collusion resilience of the Simplified Closing Game is captured by:

(v(Ch)
I → α ≥ −a) ∧ (v(Ch)

S → α ≥ α)

∧ (v(D)
I → α ≥ dA + α− ε)

∧ (v(D)
P → α ≥ −a)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ Subgroup {A}.

∧ (v∅
H → α ≥ α) ∧ (v∅

Ch
→ α ≥ −b)

∧ (v∅
Ch
→ α ≥ α)

∧ (v∅
D → α ≥ −dA + α)

∧ (v∅
D → α ≥ a− f + α)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Subgroup {B}.

Since the game has only two players, the two singleton sets of players are the only strict
subgroups of players. If we consider the honest history (Ch, S), we set the action variables
v∅
Ch
, v

(Ch)
S ,¬v∅

H and ¬v(Ch)
I . The resulting formula is satisfied for all possible values of

a, b, α and ε that satisfy the initial conditions. Hence, the Simplified Closing Game is
collusion resilient.

Example 3.8. We also illustrate how our work disproves collusion resilience using
the Simplified Routing Game with the honest history (SH , L, L, L, L, U, U, U, U). For
the subgroup {P1, P3} and the terminal history (SH , L, L, L, L, U, SSP1 , U), we get the
following implication as an instance of ϕcr:

v∅
SH
∧ v(SH)

L ∧ v(SH ,L,L)
L ∧ v(SH ,L,L,L,L)

U → 2f ≥ 3f − ε

68



3.4. First-Order Arithmetic Theory of Security Properties

All action variables are set to true as they are part of the honest history. As f > ε > 0,
the formula is not satisfiable. The Simplified Routing Game is thus not collusion resilient
as players P1 and P3 can collude profitably.

3.4.4 Practicality

In practical joint strategies, no player has an incentive to deviate in any subgame (γpr).
Thus, we need to inspect deviations from a joint strategy in a subgame starting from
some history h, so we write H S

|h,t to denote H S
t in the subgame h.

As already presented in [RAKM23], a practical strategy can be constructed iteratively
bottom-up: at every internal node, assuming we have a practical strategy (and thus
utility) for its subgames, we can choose the action that yields the best utility for the
current player. Using this idea, we formalize practicality as follows:

⋀︂
h∈H \T

⋀︂
t,r∈T|h

⎡⎢⎣ ⋀︂
(h′,a)∈H N

|h,t
, h′ ̸=∅

v(h,h′)
a ∧

⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎤⎥⎦
→ uP (h)(h, r) ≥ uP (h)(h, t).

(ϕpr)

The formula first quantifies (as a conjunction) over all subgames, represented by non-
terminal histories h, and then over terminal histories in the subgames starting at h.
We read the implication as follows: the terminal history r is the one that the practical
strategy yields, as on the left-hand side of the implication all of r’s actions are asserted.
On the right-hand side of the implication it is required that the utility at r of the current
player (at history h) is better than the utilities from the practical strategies of other
children (note that for terminal history t we do not require the first action to be asserted,
but only the actions in the child subgame).

Example 3.9. We analyze practicality of the Simplified Closing Game. For the subgame
starting at history (Ch), we obtain:

(v(Ch)
I → −b ≥ α)⏞ ⏟⏟ ⏞

With t = (S) and r = (I).

∧ (v(Ch)
S → α ≥ −b)⏞ ⏟⏟ ⏞

With t = (I) and r = (S).
(3.2)

For the honest history (Ch, S), this is satisfiable with v
(Ch)
S and ¬v(Ch)

I . If (Ch, I) were
the honest history, there would be no strategy, as in the subgame starting at (Ch) we
should have −b ≥ α, which contradicts initial conditions.

3.4.5 Equivalence to Game-Theoretic Definitions

The first-order encoding of the game-theoretic security properties established in Sec-
tions 3.4.1 to 3.4.4 is correct. That means the SMT formulas Equations (ϕwi) to (ϕpr)
are equivalent to their game-theoretic versions Equations (γwi) to (γpr). To prove this
claim, we need the following lemmas.
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Lemma 3.2. Let I be a model of ϕstrat and h ∈H \T . Then, there exists exactly one
r ∈ T|h such that

I

⎛⎜⎝ ⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎞⎟⎠ = true.

Proof. Let I be such that I(ϕstrat) = true and σ := f(I) ∈ S as in Lemma 3.1. Let us
now fix an arbitrary h ∈H \T and consider the restricted strategy σ|h after history h and
its generated history H(σ|h) ∈ T|h. We show that r = H(σ|h). Let (h̃, c) ∈ H N

|h,H(σ|h).

This is equivalent to σ(h, h̃) = c. By definition of σ, this implies I(v(h,h̃)
c ) = true.

Therefore, r = H(σ|h). Assume there exists a different r′ that makes the conjunction true.
At some history t, the next actions c and c′ of r and r′ have to differ for the first time.
Then, I(vtc′) = I(vtc) = true. By definition of σ, this implies σ(h, t) = c′ and σ(h, t) = c,
which contradicts σ ∈ S .

Lemma 3.3. Under the assumption (ϕstrat), the formula (ϕpr) is equivalent to

⋀︂
h∈H \T

⋀︂
p∈N

⋀︂
t,r∈T|h

⎡⎢⎢⎣ ⋀︂
(h′,a)∈H

N\{p}
|h,t

v(h,h′)
a ∧

⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎤⎥⎥⎦
→ up(h, r) ≥ up(h, t).

(3.3)

Proof. We first prove (3.3) =⇒ (ϕpr). Let us fix h ∈H \T , r, t ∈ T|h and assume (3.3)
and LHS of (ϕpr). Consider the LHS of (3.3) for p = P (h): since (∅, a) /∈H

N\P (h)
|h, t , the

LHS of (3.3) for p = P (h) holds and therefore its RHS does too (for p = P (h)), which is
the same as (ϕpr)’s RHS. Hence, the implication is satisfied. To show (ϕpr) =⇒ (3.3), we
prove (ϕpr) =⇒ (N ′

pr) and (N ′
pr) =⇒ (3.3) instead by the following two lemmas, where

(N ′
pr) is as follows:

⋀︂
h∈H \T

⋀︂
t,r∈T|h

⎡⎢⎢⎣ ⋀︂
(h′,a)∈H

N\P (h)
|h,t

v(h,h′)
a ∧

⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎤⎥⎥⎦
→ uP (h)(h, r) ≥ uP (h)(h, t).

(N ′
pr)

Lemma 3.4. Formula (ϕpr) implies formula (N ′
pr).
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Proof. We transcribe (N ′
pr) to an equivalent form as follows:

⋀︂
t∈T

⋀︂
h∈H N

t \{t}

⋀︂
r∈T|h

⎡⎢⎢⎣ ⋀︂
(h′,a)∈H

N\P (h)
|h,t′

v(h,h′)
a ∧

⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎤⎥⎥⎦
→ uP (h)(h, r) ≥ uP (h)(h, t′),

(N ′′
pr)

where t = (h, t′) and we prove (ϕpr) implies (N ′′
pr). Let I be a model of (ϕpr) and (ϕstrat),

we show I also models (N ′′
pr). Let t = (a1, . . . , an) ∈ T . We prove the formula (N ′′

pr) for
all h ∈H N

t \ {t} by induction on the number of choices P (h) makes in t, so by induction
on the structure of t.

Base cases: Let h ∈H N
t \ {t} be such that t = (h, t′) and player P (h) makes no choices

in t′. For example, h = (a1, . . . , an−1) and t′ = (an) is such a case, as t′ is a terminal
history after h and there are no choices available after an. In fact, there is precisely
one base case for every player p making a choice in t. Assume the last choice p makes
is aj , then our base case is h = (a1, ..., aj−1), t′ = (aj , ..., an). For such h, it holds that
H

N\P (h)
|h,t = H N

|h,t \ {(∅, a)}, since obviously P (h)’s only turn is after h and therefore the
formulas are identical.

Inductive cases: Assume for hn ∈H N
t \ {t} such that t = (hn, tn) and P (hn) makes n

choices in tn, that the implication in (N ′′
pr) holds. Consider h ∈H N

t \ {t} and r ∈ T|h
such that t = (h, t′), the player P (h) makes n + 1 choices in t′ and the LHS of the
implication in (N ′′

pr) holds. According to Lemma 3.2, this means that H(σ|h) = r, where
σ = f(I) is the strategy generated by I. Let now hp be the shortest non-empty subhistory
of t′ with P (h) = P (h, hp), i.e. t = (h, hp, tn).

Then, for (h, hp) ∈ H N
t \ {t} and rn := H(σ|(h,hp)) ∈ T|(h,hp), player P (h) makes n

choices in tn. By construction of tn as subsequence of t′, and rn, the LHS in (N ′′
pr) is

true. Applying our hypothesis, we get that

uP (h,hp)(h, hp, rn) ≥ uP (h,hp)(h, hp, tn).

Together with P (h, hp) = P (h) and t = (hp, tn) this yields

uP (h)(h, hp, rn) ≥ uP (h)(t).

Finally, we show uP (h)(h, r) ≥ uP (h)(h, hp, rn), by considering (ϕpr) with h, r, (hp, rn).
As r = H(σ|h), we know ⋀︂

(h̃,c)∈H N
|h,r

v(h,h̃)
c .

We also know ⋀︂
(h′,a)∈H N

|h,(hp,rn),h
′ ̸=∅

v(h,h′)
a
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because the actions of hp also occur in the conjunction⋀︂
(h′,a)∈H

N\P (h)
|h,(hp,rn)

v(h,h̃)
c

since P (h) is never the player and the actions of rn have to hold because rn = H(σ|(h,hp))
and hence the corresponding action variables have to be true by definition of σ. Therefore,
the RHS of (ϕpr) also has to hold, which yields uP (h)(h, r) ≥ uP (h)(h, hp, rn). Putting
the two inequalities together, we reach uP (h)(h, r) ≥ uP (h)(h, t). This concludes the
induction.

Lemma 3.5. Formula (N ′
pr) implies formula (3.3).

Proof. Let I be a model of (ϕstrat) and (N ′
pr), we show I is also a model of (3.3). We fix

h ∈H \ T , r, t ∈ T|h, p ∈ N and assume I models the LHS of (3.3) for these h, r, t, p.
For p = P (h), trivially also LHS of (N ′

pr) and thus RHS of (N ′
pr) and RHS of (3.3) hold.

For p ≠ P (h), we know H(σ|h) = r, i.e. the resulting history σ = f(I) of the strategy
modeled by I restricted to h has to be r, by applying Lemma 3.2. Let now ai be the first
action in r after which it is player p’s turn, i.e. r = (a1, ..., ai, rp) and P (h, a1, .., ai) = p.
If there is no such action ai, then H

N\{p}
|h,t = H N

|h,t and since LHS of (3.3) and (ϕstrat)
hold, r = t, so the RHS of (3.3) trivially holds. Since⋀︂

(h′,a)∈H
N\{p}

|h,t

v(h,h′)
a ,

we have σ(h, h′) = a for h′ after which it is not p’s turn. But from H(σ|h) = r it follows
that t = (a1, .., ai, tp) for some tp. That means r and t start with the same sequence of
actions a1, .., ai, after which it is p’s turn.

Now consider (N ′
pr) with (h, a1, ..ai), rp and tp: The LHS is implied by the LHS of (3.3)

with h, r, t, as the considered action variables are a superset of the required ones in (N ′
pr).

Hence, the RHS of (N ′
pr) holds:

uP (h,a1,..,ai)(h, a1, ..ai, rp) ≥ uP (h,a1,..,ai)(h, a1, .., ai, tp) .

Further, P (h, a1, .., ai) = p, (a1, .., ai, rp) = r and (a1, .., ai, tp) = t. Therefore, the RHS
of (3.3) holds, which concludes the implication proof.

We can now state a proof of correctness of the first-order formulas for the security
properties. This means that every model of the first-order formulas provides a joint
strategy that satisfies the game-theoretic security property.

Theorem 3.1 (Strategy Equivalence). Let the honest history of an EFG Γ = (N,G) be
h∗ = (a1, ..., an). For every choice of actions σ and every Boolean interpretation I of the
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action variables (vha)h∈H \T
a∈A(h) holds: If σ(h) = a ⇐⇒ I(vha) = true, then the following

formulas are equivalent:

σ ∈ S ∧H(σ) = h∗ ∧ γsp(σ) ⇐⇒ I(ϕstrat ∧ ϕhist ∧ ϕsp) = true , (3.4)

where sp ∈ {wi,weri, cr, pr}.

Proof. Let us fix an interpretation I and such a choice of actions σ, with σ(h) = a ⇐⇒
I(vha) = true. We need to show that σ is a well-defined strategy.
Step 1: σ ∈ S ⇐⇒ I(ϕstrat) = true. From Lemma 3.1 we know for a σ ∈ S , f−1(σ) is
a model of ϕstrat and by definition of f , we know f−1(σ) = I. The same argument works
vice versa since f is a bijection.
Step 2: H(σ) = h∗ ⇐⇒ I(ϕhist) = true. Since h∗ = (a1, .., an), we know σ(a1, .., ai) =
ai+1 for i ∈ {1, 2, . . . , n−1}. This is equivalent to I(v(a1,..,ai)

ai+1 ) = true for i ∈ {1, 2, . . . , n−
1}, which is equivalent to I(ϕhist) = true.
Step 3: Assuming σ ∈ S and H(σ) = h∗, then γsp(σ) ⇐⇒ I(ϕsp) = true, sp ∈
{wi,weri, cr, pr}. We consider each security property separately.

Case sp = wi: We have to show that

I

⎛⎝ ⋀︂
p∈N

⋀︂
t∈T

⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ up(t) ≥ 0

⎞⎠ = true

is equivalent to
∀p ∈ N. ∀τ ∈ S . up(τ [σp/τp]) ≥ 0.

By the rules of first-order logic, we reach the following equivalences. Note that the
truth values of up(t) ≥ s and up(τ) ≥ s for some expression s are independent of our
interpretation I and our choice of actions σ. We therefore consider them Boolean values
that depend on t or τ respectively.

I

⎛⎝ ⋀︂
p∈N

⋀︂
t∈T

⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ up(t) ≥ 0

⎞⎠ = true

⇐⇒ ∀p ∈ N. ∀t ∈ T . I

⎛⎝⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ up(t) ≥ 0

⎞⎠ = true

⇐⇒ ∀p ∈ N. ∀t ∈ T .
(︂
∀(h, a) ∈H p

t . I(vha) = true
)︂
→ up(t) ≥ 0

⇐⇒ ∀p ∈ N. ∀t ∈ T . (∀(h, a) ∈H p
t . σ(h) = a)→ up(t) ≥ 0

The truth value of a formula does not change by adding redundant comparisons. We
can therefore consider all strategies τ ∈ S and reason about their terminal histories
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H(τ) ∈ T to continue the above equivalent transformation:

⇐⇒ ∀p ∈ N. ∀τ ∈ S .
(︂
∀(h, a) ∈H p

H(τ). σ(h) = a
)︂
→ up(H(τ)) ≥ 0

⇐⇒* ∀p ∈ N. ∀τ ∈ S . τp = σp → up(τ) ≥ 0
⇐⇒ ∀p ∈ N. ∀τ ∈ S . up(τ [σp/τp]) ≥ 0 .

The equivalence (*) holds because a strategy τ which satisfies ∀(h, a) ∈H p
H(τ)σ(h) = a is

exactly a strategy that coincides with σ along the resulting history H(τ) on every action a
that player p takes. Since only the resulting history H(τ) matters for the utility function
u, we can instead just ask for τ and σ to coincide on every action a player p chooses.
Formally, τp = σp. The last equivalence, finally, is only a syntactic transformation, as
τ [σp/τp] are precisely the strategies that coincide with σ along p’s choices.

Case sp = weri: The weak immunity proof works for weaker immunity, too. We only
have to replace up by real(up). We can do this, as the truth value of up(t) ≥ s (resp.
up(τ) ≥ s) for an expression s is independent of our interpretation I and our choice of
actions σ.

Case sp = cr: We show that

∀S ⊂ N ∀τ ∈ S .
∑︂
p∈S

up(σ) ≥
∑︂
p∈S

up(σ[τS/σS ])

is equivalent to

I

⎛⎜⎝ ⋀︂
S⊂N

⋀︂
t∈T

⎡⎢⎣ ⋀︂
(h,a)∈H

N\S
t

vha

⎤⎥⎦→∑︂
p∈S

uT
p (h∗) ≥

∑︂
p∈S

up(t)

⎞⎟⎠ = true.

By performing the analogous equivalence transformations as for the weak immunity proof,
we get

I

⎛⎜⎝ ⋀︂
S⊂N

⋀︂
t∈T

⎡⎢⎣ ⋀︂
(h,a)∈H

N\S
t

vha

⎤⎥⎦→∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(t)

⎞⎟⎠ = true

equivalent to

∀S ⊂ N ∀τ ∈ S .
∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(τ [σN\S/τN\S ]) .

Since H(σ) = h∗, it follows that up(h∗) = up(σ). Finally, the fact that τ [σN\S/τN\S ] =
σ[τS/σS ] (for p ∈ S it is τp and for p ∈ N \ S it is σp) concludes the proof of equivalence.
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Case sp = pr: We know that ϕpr and (3.3) are equivalent under our assumptions ϕstrat
from Lemma 3.3. It therefore suffices to prove I((3.3)) = true iff γpr(σ), that is, proving

∀h ∈H ∀p ∈ N ∀τ ∈ S|h. u|h,p(σ|h) ≥ u|h,p(σ|h[τp/σ|h,p])

equivalent to

I

⎛⎜⎜⎜⎝
⋀︁
h∈H \T

⋀︁
p∈N

⋀︁
t,r∈T|h[︃⋀︁

(h′,a)∈H
N\{p}

|h,t

v
(h,h′)
a ∧

⋀︁
(h̃,c)∈H N

|h,r
v

(h,h̃)
c

]︃
→ up(h, r) ≥ up(h, t)

⎞⎟⎟⎟⎠ = true.

Note that in γpr(σ) we can equivalently only consider h ∈ H \ T in γpr(σ), since for
h ∈ T the strategy is empty and thus the inequality is trivially satisfied. We can now
proceed with equivalently rewriting (3.3) analogous to the other security properties.
We rewrite I(v(h,h̃)

c ) = true as σ(h, h̃) = c for all (h̃, c) such that r(h̃) = c, which is
equivalent to H(σ|h) = r. We obtain that

∀h ∈H \T ∀p ∈ N ∀t, r ∈ T|h.(︂
∀(h′, a) ∈H

N\{p}
|h,t . σ|h(h′) = a ∧H(σ|h) = r

)︂
→ up(h, r) ≥ up(h, t)

is equivalent to

∀h ∈H \T ∀p ∈ N ∀t ∈ T h.(︂
∀(h′, a) ∈H

N\{p}
|h,t . σ|h(h′) = a

)︂
→ up(h,H(σ|h))) ≥ up(h, t) .

This equivalence holds because for every h ∈H \ T , there exists precisely one r that
satisfies H(σ|h) = r, namely H(σ|h) itself. Therefore, replacing r by H(σ|h) in the utility
function up does not change the truth value of the formula. From there, we can again
proceed as we did for the other security properties and reach

∀h ∈H \T ∀p ∈ N ∀τ ∈ S|h. u|h,p(σ|h) ≥ u|h,p(σ|h[τp/σ|h,p]),

which is precisely (γpr).

Finally, we put the three steps together, which yields σ ∈ S ∧H(σ) = h∗ ∧ γsp(σ) iff
σ ∈ S ∧H(σ) = h∗ ∧ I(ϕsp) = true iff I(ϕstrat ∧ ϕhist ∧ ϕsp) = true.

3.5 Automated Reasoning of Game-Theoretic Security
The first-order formulas of Section 3.4, combined with Lemma 3.1, provide us with
the theoretical foundations for automating security analysis of blockchain protocols
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presented as EFG trees. We now present our algorithmic advancement on top of
satisfiability checking modulo linear real arithmetic (Algorithm 3.1), allowing us to
(dis)prove formulas from Section 3.4 and hence provide game-theoretic security guarantees.
Further, our work yields natural extensions for generating concrete counterexamples
whenever security properties are violated (Section 3.5.2) and infers preconditions to
enforce security (Algorithm 3.3).

For proving the security formulas of Section 3.4, we focus on automating reasoning about
a tuple

Π = (Γ,O, inf , C, Cwi, Cweri, Ccr, Cpr), where

• Γ is an EFG modeling the protocol of interest;

• O ⊆ T is a set of honest histories representing expected behavior;

• inf is a set of infinitesimals occurring in the players’ utilities;

• C is the set of initial constraints on variables occurring in player utilities;

• Cwi, Cweri, Ccr, and Cpr are sets of constraints on variables to hold when checking
formulas of Section 3.4, namely weak immunity (Cwi), weaker immunity (Cweri),
collusion resilience (Ccr) and practicality (Cpr), respectively.

Note that the sets C, Cwi, Cweri, Ccr and Cpr may possibly be empty. For every honest
history in O, our work constructs the respective first-order security formula of Section 3.4
and uses SMT solving for establishing satisfiability of the respective formula: if a model
is found, we construct a joint strategy as described in Lemma 3.1. Since security
properties must hold for all possible values of the utility variables that adhere to the
initial conditions C, we universally quantify over all variables and add an implication to
account for preconditions. We hence translate game-theoretic analysis from Section 3.4
into the satisfiability solving of

∀x⃗.

⎡⎣ ⋀︂
c∈C∪Csp

c[x⃗]→ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])

⎤⎦ , (3.5)

where x⃗ = (x1, x2, . . . , xℓ) are all variables appearing in utilities of players and Csp ∈
{Cwi, Cweri, Ccr, Cpr}. By Lemma 3.1, a model I ∈ I of (3.5) is a joint strategy satisfying
the respective security property of Section 3.4.

We next detail our solution towards solving (3.5), yielding our automated reasoning
approach to prove game-theoretic security in Algorithm 3.1.

3.5.1 Security Reasoning with Case Splitting

We note that formula (3.5) is too restrictive, as next illustrated.
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A

(a, a)

q

B

(a, b)
r

(a,−b)

y
l

Figure 3.3: EFG Splitswi Necessitating Case Splits During Reasoning. We Assume a > 0.

Example 3.10 (Splitswi). Consider the EFG of Figure 3.3 with N = {A,B} and honest
history (q), where a > 0. We aim to find a weak immune strategy for this game. Clearly,
A must take action q, but if A deviates, B must have non-negative utility. The action of
B depends on b: if b > 0, B should choose r; if b < 0, y should be chosen; and otherwise,
either choice is possible. The game is therefore weak immune for history (q), but requires
different strategies for different cases.

Example 3.10 shows that during security analysis, we may need to consider several
different orderings of linear terms within utilities. Such case splits turn out to be also
necessary for real-world protocols, such as the Closing Game [RAKM23]. In order to
account for possible case splits, we modify (3.5) and introduce preconditions to order
terms. To this end, we compute the set Tu of linear terms appearing in the constructed
formulas; for example, for collusion resilience we have:

Tu =

⎧⎨⎩∑︂
p∈S

up(t) | S ⊂ N, t ∈ T

⎫⎬⎭ . (3.6)

We then consider all consistent total orders ⪯ over Tu. As we must find models for all
such orders ⪯, we reduce solving (3.5) to solving

∀ (⪯, Tu) total order. ∃ I ∈ I.

I
(︄
∀x⃗.

⋀︂
c∈⪯∪C∪Csp

c[x⃗]→ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])
)︄

= ⊤,
(3.7)

where quantification over total orders ⪯ happens outside SMT solving (see Remark 5)
and ⪯ is interpreted as the set of ordering constraints over elements of Tu, representing
the total order it yields. This is, in fact, equivalent to the desired all-quantified formula
∀x⃗ ∃I, as shown next.

Theorem 3.2. For an EFG Γ = (N,G), the formula (3.7) for sp ∈ {wi,weri, cr, pr} is
equivalent to the eagerly all-quantified formula:

∀x⃗. ∃I ∈ I. I

⎛⎝ ⋀︂
c∈C∪Csp

c[x⃗]→ ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]

⎞⎠ = true, (∀x⃗ ∃I)

where x⃗ are the variables appearing in the utilities of the game tree.
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Proof. Case (∀x⃗ ∃I) ⇐ (3.7): Fix x⃗ = (x1, . . . , xℓ) ∈ Rℓ. This defines precisely one total
ordering on Tu, call it ⪯. We use (3.7) with ⪯ to obtain a model I such that

I
(︄
∀z⃗.

⋀︂
c∈⪯∪C∪Csp

c[z⃗]→ ϕstrat ∧ ϕhist ∧ ϕsp[z⃗]
)︄

= true. (3.8)

We take the same model (the same assignment of the action variables) as a candidate for
our model. We need to prove

I

⎛⎝ ⋀︂
c∈C∪Csp

c[x⃗]→ ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]

⎞⎠ = true.

We set z⃗ = x⃗ in the formula (3.8). Now we know that
⋀︁
c∈⪯ c[x⃗] holds by construction,

so the formula simplifies to the desired one.

Case (∀x⃗ ∃I) ⇒ (3.7): Suppose (∀x⃗ ∃I) holds. Let ⪯ be a total order on Tu. If1⎛⎝ ⋀︂
c∈⪯∪C∪Csp

c

⎞⎠ = false,

then the formula
∀x⃗.

⋀︂
c∈⪯∪C∪Csp

c[x⃗]→ ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]

is a tautology (as the left-hand side of the implication is false), so every assignment of
the action variables is a suitable model for I ∈ I. So, suppose r⃗ = (r1, . . . , rℓ) ∈ Rℓ is
such that ⋀︂

c∈⪯∪C∪Csp

c[r⃗] = true. (3.9)

We use (∀x⃗ ∃I) with r⃗ to obtain a model I ∈ I and we claim I is also a model for (3.7)
with the ordering ⪯. From (3.9) we can conclude that

I(ϕstrat) ∧ I(ϕhist) ∧ I(ϕsp[r⃗]) = true. (3.10)

Now let z⃗ = (z1, z2, . . . , zℓ) ∈ Rℓ be such that
⋀︁
c∈⪯∪C∪Csp c[z⃗] holds. We need to prove

that
I(ϕstrat) ∧ I(ϕhist) ∧ I(ϕsp[z⃗]) = true.

From (3.10) we know that I(ϕstrat) ∧ I(ϕhist) = true, so we just need to prove that
I(ϕsp[z⃗]) = true.

We make the following observation: since r⃗ and z⃗ both satisfy the total order ⪯ on Tu[r⃗]
(respectively Tu[z⃗]), for every e, e′ ∈ Tu[x⃗] we have that

e(r⃗) ⪯ e′(r⃗) iff e(z⃗) ⪯ e′(z⃗). (3.11)
1This is decidable because it is just linear arithmetic.
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To prove I(ϕsp[z⃗]) = true, we consider security properties separately.

Case sp = wi: The equation I(ϕwi[z⃗]) = true corresponds to

⋀︂
p∈N

⋀︂
t∈T

⎡⎣ ⋀︂
(h,a)∈H p

t

I(vha)

⎤⎦→ up(t)[z⃗] ≥ 0.

Suppose p ∈ N and t ∈ T such that⎛⎝ ⋀︂
(h,a)∈H p

t

I(vha)

⎞⎠ = true.

From (3.10) we know that up(t)[r⃗] ≥ 0 and since up(t)[x⃗] ∈ Tu[x⃗] and 0 ∈ Tu[x⃗], we can
from (3.11) conclude the desired inequality up(t)[z⃗] ≥ 0.

Case sp = weri: The proof is similar to the case sp = wi.

Case sp = cr: The equation I(ϕcr[z⃗]) = true corresponds to

⋀︂
S⊂N

⋀︂
t∈T

⎡⎢⎣ ⋀︂
(h,a)∈H

N\S
t

I(vha)

⎤⎥⎦→∑︂
p∈S

up(h∗)[z⃗] ≥
∑︂
p∈S

up(t)[z⃗].

Suppose S ⊂ N and t ∈ T such that ⋀︂
(h,a)∈H

N\S
t

I(vha).

From (3.10) we know that ∑︂
p∈S

up(h∗)[r⃗] ≥
∑︂
p∈S

up(t)[r⃗]

and since
∑︁
p∈S up(h∗)[x⃗] ∈ Tu[x⃗] and

∑︁
p∈S up(t)[x⃗] ∈ Tu[x⃗], we can conclude the desired

inequality from (3.11) ∑︂
p∈S

up(h∗)[z⃗] ≥
∑︂
p∈S

up(t)[z⃗].

Case sp = pr: We first use Lemma 3.3 with model I and thus the goal to prove becomes
the following: ⋀︂

h∈H \T

⋀︂
p∈N

⋀︂
t,t′∈T|h⎡⎢⎢⎣ ⋀︂

(h′,a)∈H
N\{p}

|h,t

I(v(h,h′)
a ) ∧

⋀︂
(t̃,c)∈H N

|h,t′

I(v(h,t̃)
c )

⎤⎥⎥⎦
→ up(h, t′)[z⃗] ≥ up(h, t)[z⃗].
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Suppose h ∈H \T , p ∈ N and t, t′ ∈ T|h are such that⎡⎢⎢⎣ ⋀︂
(h′,a)∈H

N\{p}
|h,t

I(v(h,h′)
a ) ∧

⋀︂
(t̃,c)∈H N

|h,t′

I(v(h,t̃)
c )

⎤⎥⎥⎦ = true.

From (3.10) we know that
up(h, t′)[r⃗] ≥ up(h, t)[r⃗]

and since up(h, t′)[x⃗] ∈ Tu[x⃗] and up(h, t)[x⃗] ∈ Tu[x⃗], we can from (3.11) conclude the
desired inequality

up(h, t′)[z⃗] ≥ up(h, t)[z⃗].

We conclude the following result.

Theorem 3.3 (Game-Theoretic Security). Let Γ = (N,G) be an EFG with honest history
h∗, the formula (3.7) for sp ∈ {wi,weri, cr, pr} is equivalent to its game-theoretic analog:

∀x⃗. ∀c ∈ C ∪ Csp. c[x⃗]→ ∃σ ∈ S . H(σ) = h∗ ∧ γsp(σ)[x⃗], (3.12)

where x⃗ = (x1, . . . , xℓ) are the variables occurring in the utility terms (interpreted over
reals), and C and Csp are finite sets of linear preconditions on x⃗.

Proof. If we can show that for a game Γ = (N,G) with honest history h∗, formula (3.12)
is equivalent to formula (∀x⃗ ∃I), then the theorem follows from Theorem 3.2, which shows
the equivalence of (∀x⃗ ∃I) and (3.7).

We, therefore, prove the claimed equivalence. In the following, we write p[x⃗] for⋀︁
c∈C∪Csp c[x⃗] in (∀x⃗ ∃I) . For fixed σ and I we know that σ ∈ S ∧H(σ) = h∗ ∧ γsp(σ)[x⃗]

iff I(ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) = true, where I(vha) = true iff σ(h) = a, from Theorem 3.1.
Thus,

∃σ ∈ S . H(σ) = h∗ ∧ γsp(σ)[x⃗]
⇐⇒ ∃I ∈ I. I(ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) = true .

Let us now fix arbitrary x⃗ = (x1, . . . , xℓ) ∈ Rℓ.

Case 1: p[x⃗] = true. Then,

p[x⃗]→ ∃I ∈ I. I(ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) = true

is equivalent to ∃I ∈ I. I(ϕstrat ∧ ϕhist ∧ ϕsp(x⃗)) = true, which is equivalent to ∃I ∈
I. I(p[x⃗]→ ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) = true.

Case 2: p[x⃗] = false. Then, I(p[x⃗] → ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) is true for all I. Also,
p[x⃗]→ ∃I ∈ I. I(ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) = true holds.

Hence, the claimed equivalence holds for all values of x⃗.
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Note that every model I of (3.7) translates to a strategy σ in (3.12) and vice versa, by
letting σ(h) = a iff I(vha) = true. The above theorem yields the following result.

Corollary 3.1 (Soundness and Completeness of Encoding). The encoding of the game-
theoretic properties weak immunity, weaker immunity, collusion resilience, and practicality
using the formulas ϕstrat, ϕhist together with ϕwi, ϕweri, ϕcr, and ϕpr, respectively, including
case splits (3.12), is sound and complete.

Proof. The corollary follows directly from Theorem 3.3

Note that our first-order formulas encoding game-theoretic security properties are ex-
pressed in the decidable theory of first-order linear real arithmetic [Col75], [JDM12].
Since the number of total orders in (3.7) is finite, our formalization is decidable.

Remark 5. For efficient handling of (3.7), we compute unsatisfiable (unsat) cores to
detect which linear terms require case splitting. We introduce labels for inequalities
appearing in the formula ϕsp — one of ϕwi, ϕweri, ϕcr or ϕpr. For example, if ϕsp contains
x < y, we introduce a label ℓ(x,y) as a new Boolean variable2, replace the inequality with
the implication ℓ(x,y) → x < y, and add ℓ(x,y) to our encoding. The weak immunity
formula ϕwi then becomes

⋀︂
p∈N

⋀︂
t∈T

⎛⎝⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ ℓ(up(t),0) → up(t) ≥ 0

⎞⎠ ∧ ℓ(up(t),0)

The adjusted formula for weaker immunity, ϕweri, reads as follows:

⋀︂
p∈N

⋀︂
t∈T

⎛⎝⎡⎣ ⋀︂
(h,a)∈H p

t

vha

⎤⎦→ ℓ(real(up(t)),0) → real(up(t)) ≥ 0

⎞⎠ ∧ ℓreal(up(t)),0).

The constraint for collusion resilience, ϕcr, is rewritten as:

⋀︂
S⊂N

⋀︂
t∈T

⎛⎜⎝
⎡⎢⎣ ⋀︂

(h,a)∈H
N\S

t

vha

⎤⎥⎦→ ℓ(
∑︁

p∈S
up(h∗),

∑︁
p∈S

up(t)) →
∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(t)

⎞⎟⎠
∧ ℓ(∑︁

p∈S
up(h∗),

∑︁
p∈S

up(t)) .

The formula for practicality, ϕpr, is amended as follows:

⋀︂
h∈H \T

⋀︂
t,r∈T|h

⎛⎜⎝
⎡⎢⎣ ⋀︂

(h′,a)∈H N
|h,t

, h′ ̸=∅

v(h,h′)
a ∧

⋀︂
(h̃,c)∈H N

|h,r

v(h,h̃)
c

⎤⎥⎦→

ℓ(uP (h)(h,r),uP (h)(h,t)) → uP (h)(h, r) ≥ uP (h)(h, t)

⎞⎟⎠ ∧ ℓ(uP (h)(h,r),uP (h)(h,t)).

2We actually use two labeling Boolean variables in our implementation, one each for the infinitesimal
and real components of the inequality.
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If unsatisfiability of the formula is established, we extract an unsat core composed of
our labels and retrieve candidate linear terms for case splits. Example 3.10 yields an
unsat core composed of labels ℓ0,−b and ℓb,0, from which we conclude that the following
three cases need to be analyzed: b > 0, b = 0 and b < 0. Yet, even for a small number of
linear terms, there might be a very large number of possible orderings ⪯ between terms
to be considered. The number of ⪯ can, however, be significantly reduced by making two
observations: (i) orderings ⪯ must be compatible with C and Csp; and (ii) orderings must
be consistent with real arithmetic. For example, with the set of linear terms a,−a, 0, we
should consider a > 0 > −a, −a > 0 > a, and a = −a = 0, but not e.g. a > −a > 0 or
a = 0 > −a.

Based on the above, Algorithm 3.1 summarizes our reasoning approach for proving
game-theoretic security properties based on our first-order formalization with case splits.
Given an input Π, Algorithm 3.1 establishes satisfiability of a game-theoretic property
(cf. Lemma 3.1), by using an auxiliary SMT solver A to track (remaining) possible terms
orderings. If at any point A reports unsatisfiability, there are no more possible orderings
⪯. Constraints C and Csp are added immediately to A. To get an ordering, we ask A
for a model — which maps real variables to numeric values — from which we infer an
ordering ⪯ on linear terms over variables (EvaluateModel). For example, if the model is
a = 1, b = 2, c = 3, we obtain the ordering on linear terms 2c− b > a+ b = c > 0 > a− c.
If we find a strategy for a case split, we add a conflict clause to ensure we do not consider
the same ordering twice.

We note that in Algorithm 3.1 the only properties considered are weak(er) immunity,
collusion resilience, and practicality; these properties are enough to enforce game-theoretic
security (Definition 3.7). However, Algorithm 3.1 can be applied to any game-theoretic
formula about an EFG as long as this formula can be expressed as a first-order linear
inequality over two computable functions f, g, with utility function u, set of players N
and set of strategies S , that is f(u,N,S ) ≤ g(u,N,S ). Our work yields a generic way
to translate such game-theoretic formulas to SMT formulas.

3.5.2 Generating Counterexamples to Security

In case there is no joint strategy fulfilling the security property ϕsp within Algorithm 3.1,
our work provides automated formal analysis explaining why the conditions of ϕsp are
violated and derives concrete counterexamples to security.

Weak(er) Immunity. For the weak(er) immunity property ϕwi, a counterexample is a
harmed player p together with a partial strategy of the other players N − p such that —
while following the honest history — no matter how p acts, they cannot avoid receiving
a real-valued negative utility. We say that a strategy for a player p follows the honest
history h∗ if at every node appearing in h∗, where p is making a choice, the strategy will
choose the action in h∗.
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Algorithm 3.1: Game-Theoretic Security Reasoning
input : an input instance Π = (Γ,O, inf , C, Cwi, Cweri, Ccr, Cpr), an honest

history ho ∈ O and the name of a security property
sp ∈ {wi,weri, cr, pr}

output :true if ϕsp is satisifiable in Π, false otherwise
1 S ← Solver()
2 A ← Solver()
3 AddConstraints (S, ComputeStrategyConstraints (Γ, ho))
4 AddConstraints (A, C ∪ Csp)
5 T ← ∅
6 while Solve (A) = sat do
7 M ← GetModel (A)
8 O ← {EvaluateModel (M , x, y) : (x, y) ∈ Combinations (T )}
9 if Check (S, sp, C ∪ Csp ∪ O) = sat then

10 // found strategy for current ordering, add conflict clause
AddConstraints (A, {

⋁︁
c∈O ¬c})

11 end
12 else
13 T ′ ← ∅
14 foreach ℓx,y ∈ GetUnsatCore(S) do
15 T ′ ← T ′ ∪ {t : t ∈ {x, y}, t /∈ T }
16 if T ′ = ∅ then // no new expressions, considered every case
17 return false
18 end
19 T ← T ∪ T ′

20 end

21 end
22 return true

Definition 3.8 (Counterexamples of Weak(er) Immunity). Let Γ be an EFG and h∗ the
considered honest history. A counterexample to h∗ being weak(er) immune is a player
p together with a partial strategy sN−p ⊆ τN−p ∈ SN−p of the other players such that
sN−p extended by any strategy σp of player p, which follows the honest history h∗, yields
a terminal history t and it is minimal with that property. Further, we have

∀σp ∈ Sp (∀(h, a) ∈H p
h∗ . σp(h) = a)→ up(t) < 0 (3.13)

for weak immunity (wi), and respectively

∀σp ∈ Sp (∀(h, a) ∈H p
h∗ . σp(h) = a)→ real(up(t)) < 0 (3.14)
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for weaker immunity (weri).

Minimality of the partial strategy sN−p states that, if any information point sN−p(h) = a
is removed, there exists a strategy σp of player p such that the tuple (σp, s′

N−p) does not
yield a terminal history, where the s′

N−p is sN−p without action a. That means, when
following only actions of (σp, s′

N−p), we get stuck at an internal node of the tree.

Example 3.11. The Simplified Closing Game of Figure 3.1 with honest history (Ch, S)
is not weak immune. The counterexample is the player A and the partial strategy for
player B taking action I after Ch (and therefore making the utility of A negative). The
partial strategy is minimal, because if we remove the choice of action I for player B,
after A chooses action Ch, we get stuck at the internal node of the game (where B is
making a choice), rather than ending in a leaf node, where the utilities of players are
known. Note that the partial strategy says nothing about the tree in the subgame after
D, as we only consider strategies where player A chooses Ch at the root node, to follow
the honest history.

Collusion Resilience. A counterexample to collusion resilience ϕcr consists of a group
of deviating players S and their partial strategy sS ∈ S leading to better-than-honest
joint utility for S, no matter how the other players N − S react – while following the
honest history.

Definition 3.9 (Counterexamples Collusion Resilience). Let Γ be an EFG and h∗ the
considered honest history. A counterexample to h∗ being collusion resilient (cr) is a set
of deviating players S together with their partial strategy sS ⊆ τS ∈ SS such that sS
extended by any strategy σN−S of players N − S, which follows the honest history h∗,
yields a terminal history t and it is minimal with that property. Further,

∀σN−S ∈ SN−S . (3.15)
(∀(h, a) ∈H N−S

h∗ . σN−S(h) = a)→
∑︂
p∈S

up(t) >
∑︂
p∈S

up(h∗) .

The minimality of sS is similar to the minimality of the partial strategy for weak(er)
immunity.

Example 3.12. In the Simplified Routing Game of Figure 3.2, the terminal his-
tory (SH , L, L, L, L, U, SSP1 , U) results in a strictly better outcome for the subgroup
{P1, P3, B} than the honest history, modeling the Wormhole attack (see Section 3.2).
While choosing the honest actions L and L, the other players A and P2 are powerless in
this scenario.

Practicality. Intuitively, a counterexample to practicality of h∗ has to provide a reason
why a rational player would not follow h∗. That is, somewhere along h∗, assume after a
prefix h, there exists an action a which promises the current player P (h) a strictly better
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utility than h∗. However, a “promised" utility has to be one that results from a practical
history t in the subgame after (h, a), otherwise it would not be an actual counterexample
to the practicality of h∗. Therefore, we define a counterexample to practicality as follows.

Definition 3.10 (Counterexamples to Practicality). For an EFG Γ and honest history
h∗, a counterexample to practicality of h∗ is a prefix h of h∗ together with an action
a ∈ A(h), such that for all practical terminal histories t in the subgame Γ|(h,a) it holds
that uP (h)(h∗) < uP (h)((h, a, t)).

Example 3.13. The Simplified Closing Game of Figure 3.1 with honest history (H)
is not practical. The counterexample is action Ch at the root. That is, the prefix h of
the honest history (H) is the empty history, and the deviating action is Ch. The only
practical terminal history in the subgame ΓCh

is (S), since it yields a strictly better
utility for B than action I. Finally, the utility for P (h) = A after the honest history (H)
is α− ε, while A’s utility after (Ch, S) is α. Action Ch at the root is, therefore, a valid
counterexample to the practicality of honest history (H).

Correctness of Counterexamples. The various counterexamples to security prop-
erties, as introduced above, are evidence for a violated security property, as stated
below.

Theorem 3.4 (Counterexamples to Security). For an EFG Γ and an honest history
h∗, there exists a counterexample to wi, weri, cr or pr of h∗ according to Definition 3.8–
Definition 3.10 iff h∗ is not weak(er) immune, collusion resilient, or practical, respectively.

Proof. We start with weak immunity. We show first that the existence of a counterexample
implies that h∗ is not weak immune.

Let p ∈ N and sN−p ⊆ τN−p be a counterexample to the weak immunity of h∗ in Γ
according to Definition 3.8. We first extend the partial strategy sN−p to an arbitrary
strategy τN−p ∈ SN−p, sN−p ⊆ τN−p and consider the formula

∀σp ∈ Sp (∀(h, a) ∈H p
h∗ . σp(h) = a)→ up(σp, τN−p) < 0 . (3.16)

The utility remains unchanged as the extension does not impact the generated terminal
history. By definition, the history h∗ is not weak immune if

∀σ ∈ S H(σ) = h∗ →
∃p ∈ N ∃τN−p ∈ SN−p. up(σp, τN−p) < 0 . (3.17)

Let us now pick an arbitrary σ ∈ S with H(σ) = h∗ in (3.17). the restriction of this σ
to p’s single strategy σp satisfies the LHS of (3.16). Therefore, up(σp, τN−p) < 0, which
concludes this direction of the proof.

For the other implication, that whenever h∗ is not weak immune there exists a coun-
terexample according to Definition 3.8, we consider the SMT formula for weak immunity,
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which was proven equivalent (modulo the labels ℓp,t) in Theorem 3.3:

ϕstrat ∧ ϕhist ∧⋀︂
p∈N

⋀︂
t∈T

(︁
ℓp,t → ((

⋀︂
(h,a)∈H p

t

vha)→ up(t) ≥ 0)
)︁
∧ ℓp,t. (3.18)

We assume h∗ is not weak immune, therefore, the above formula is unsat. By construction
of the formula, we know that we can satisfy ϕstrat∧ϕhist. We therefore consider a minimal
unsat core of the labels ℓp,t. Since within each player p the relevant action variables vha
are independent of the other players (we only consider actions made by p in H p

t ), a
minimal unsat core only contains labels of one player p. Thus, a minimal unsat core L
consists of finitely many labels ℓp,t, representing terminal histories t that yield a negative
utility for player p, if p chose actions according to these histories. As L is a minimal unsat
core, at least one of those terminal histories had to be chosen by p to find a strategy,
but none of them can be. If we now remove p’s actions a from the terminal histories
t of the unsat core, and collect the remaining choices of actions, we receive a partial
strategy sN−p of the other players N − p. The fact that L is a minimal core ensures that
there is at most one action at each internal node. It also makes the constructed partial
strategy sN−p minimal in the number of asserted actions. Finally, by adding the actions
of a single strategy σp to sN−p, we have a path of actions from root to leaf, since the
unsat core has to contain a problem (which is label, which is terminal history) for every
possible behavior of p.

The proofs for the correctness of weaker immunity and collusion resilience are similar.

To show the correctness of the practicality counterexamples according to Definition 3.10,
we start with implication ⇒. We prove the existence of a practicality counterexample
implies the game Γ with honest history h∗ is not practical, by assuming the negation
(exists counterexample and Γ is practical) and leading it to a contradiction:

First, we show the following observation for any history h′ ∈H and practical strategy
σ ∈ S , also σ|h′ ∈ S|h′ is practical. The strategy σ|h′ ∈ S|h′ is practical, iff

∀h ∈H|h′ ∀p ∈ N ∀τ ∈ S|(h′,h).

u|(h′,h),p(σ|(h′,h)) ≥ u|(h′,h),p(σ|(h′,h)[τp/σ|(h′,h),p]) .

By fixing h, p and τ the inequality follows from the practicality of σ, by considering the
history (h′, h) ∈H (player p and strategy τ remain unchanged).

Assuming now there exists a counterexample to practicality, we fix the prefix h of h∗, and
the action a ∈ A(h) of said counterexample. We also assume the game is practical and
fix an honest practical strategy σ ∈ S . Then, we construct a strategy τ ∈ S|h as follows:
let τ(h) := a, τ|(h,a) := σ|(h,a), and the rest be arbitrary. For these values, the inequality

u|h,P (h)(σ|h) < u|h,P (h)(σ|h[τP (h)/σ|h,P (h)]) (3.19)

holds (as detailed next), which is a contradiction to the practicality of σ.
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It remains to show that the above inequality (3.19) is correct. Since σ is an honest
strategy, it follows u|h,P (h)(σ|h) = uP (h)(h∗). Also

H|h(σ|h[τP (h)/σ|h,P (h)]) = (a,H|(h,a)(σ|(h,a))) (3.20)

by the definition of τ and the fact that at history h it is the turn of player P (h). Consider
now that H|(h,a)(σ|(h,a)) is a practical history in Γ|(h,a), since σ|(h,a) is practical according
to our observation above. From (3.20) and the definition of counterexample, it follows

u|h,P (h)(σ|h) = uP (h)(h∗) < uP (h)(h, a,H|(h,a)(σ|(h,a))) = u|h,P (h)(σ|h[τP (h)/σ|h,P (h)]) .

This concludes the proof of (3.19) and therefore implication ⇒.

For the other implication ⇐, we proceed by contraposition, which means we assume
there exists no counterexample, and show that the game is practical. If there is no
counterexample to the practicality of a game, then for all prefixes h of h∗ and all actions
a ∈ A(h):

∃t ∈ T|(h,a). t is practical ∧ uP (h)(h∗) ≥ uP (h)(h, a, t) . (3.21)

A terminal history t ∈ T|(h,a) is practical iff there exists a practical strategy σ(h,a) ∈ S|(h,a)
that extends t, i.e. H(σ(h,a)) = t. Hence (3.21) is equivalent to

∃σ(h,a) ∈ S|(h,a). σ
(h,a) is practical ∧ uP (h)(h∗) ≥ u|(h,a),P (h)(σ(h,a)) . (3.22)

Based on this, we can now construct a strategy σ ∈ S . For all prefixes h of h∗, let σ pick
the honest action a∗, i.e. σ(h) := a∗. For all other choices a ∈ A(h) after h, we define
σ|(h,a) := σ(h,a), where σ(h,a) is the practical strategy from (3.22).

Strategy σ ∈ S is fully defined since every history in the game tree is either along the
honest history or has a joint prefix with the honest history (possibly empty), at which
point a dishonest action a ̸= a∗ was followed. It further yields the honest history h∗ by
definition. Only the strategy’s practicality remains to be proven. To do so, we fix an
arbitrary history h′ ∈H , player p ∈ N and strategy τ ∈ S|h′ .

Case 1. History h′ is not along the honest history. Then the required inequality
u|h′,p(σ|h′) ≥ u|h′,p(σ|h′ [τp/σ|h′,p]) follows from the practicality of the respective σ(h,a).
Where h is the common prefix of h∗ and h′, and a is the deviation choice away from h∗.
Hence h′ = (h, a, k), where k ∈H|(h,a).

Case 2. History h′ is along the honest history and p = P (h′). We further distinguish
whether τ deviates from σ at h′.

Case 2.1. a′ := τ(h′) ̸= σ(h′). Then, by the fact that it is the turn of player P (h′) at h′

and the definition of σ it follows:

u|h′,P (h′)(σ|h′ [τP (h′)/σ|h′,P (h′)]) =
u|(h′,a′),P (h′)(σ|(h′,a′)[τ|(a′),P (h′)/σ|(h′,a′),P (h′)]) =

u|(h′,a′),P (h′)(σ(h′,a′)[τ|(a′),P (h′)/σ
(h′,a′)
P (h′) ]) .
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Further, by the practicality of σ(h′,a′) we proceed with

u|(h′,a′),P (h′)(σ(h′,a′)[τ|(a′),P (h′)/σ
(h′,a′)
P (h′) ]) ≤ u|(h′,a′),P (h′)(σ(h′,a′)) .

Finally, applying (3.22) to the right expression we conclude

u|(h′,a′),P (h′)(σ(h′,a′)) ≤ uP (h′)(h∗) = u|h′,P (h′)(σ|h′) .

Hence, the required inequality is shown.

Case 2.2. τ(h′) = σ(h′). Consider the first deviation point d of σ|h′ [τP (h′)/σ|h′,P (h′)] from
h∗ (i.e τ(h′, d) ̸= σ(h′, d)) if it exists and the corresponding deviating action ad. Note
that P (h′) = P (h′, d) as only P (h′) deviates from σ. Then, by these facts

u|h′,P (h′)(σ|h′ [τP (h′)/σ|h′,P (h′)]) =
u|(h′,d),P (h′,d)(σ|(h′,d)[τ|d,P (h′,d)/σ|(h′,d),P (h′,d)]) .

From there, the same reasoning steps as in Case 2.1 apply and yield the required inequality.
In case no such deviation point d exists, σ|h′ [τP (h′)/σ|h′,P (h′)] and σ|h′ yield the same
history (the honest history). Hence, the inequality trivially holds.

Case 3. History h′ is along the honest history and p ̸= P (h). If it is never player p’s turn
after h′ along h∗, then u|h′,p(σ|h′) = u|h′,p(σ|h′ [τp/σ|h′,p]). Thus, the inequality is trivially
satisfied.

Otherwise, consider the first time after h′ along h∗ where it is player p’s turn. We call the
respective history k. Then u|h′,p(σ|h′) = u|(h′,k),p(σ|(h′,k)), since h′ and (h′, k) are along
h∗ and H(σ) = h∗. Also

u|h′,p(σ|h′ [τp/σ|h′,p]) = u|(h′,k),p(σ|(h′,k)[τ|k,p/σ|(h′,k),p]) ,

for the same reasons and because player p has no turn in history k. By definition of k,
we know that P (h′, k) = p. Hence, Case 3 reduces to Case 2 with history (h′, k) along
h∗ and P (h′, k) = p, which was already proven. We, therefore, showed the necessary
inequality in all cases, which implies the constructed strategy σ is practical.

Computing Counterexamples to ϕwi, ϕweri and ϕcr. Within our work, we find
counterexamples to (violated) ϕwi, ϕweri and ϕcr using an approach similar to case splitting
over term orderings. We first amend formulas ϕwi, ϕweri and ϕcr with suitable labels.
This allows us to detect at which histories the checked property is violated and for which
player(s), by inspecting labels in the reasoning core. Each history reflects one choice in
the counterexample strategy. For the purpose of counterexample generation, the formula
for weak immunity ϕwi is then rewritten as follows:

⋀︂
p∈N

⋀︂
t∈T

⎛⎝ℓp,t →
⎡⎣ ⋀︂

(h,a)∈H p
t

vha

⎤⎦→ up(t) ≥ 0

⎞⎠ ∧ ℓp,t .
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The constraint for weaker immunity, ϕweri, is amended in the following way:

⋀︂
p∈N

⋀︂
t∈T

⎛⎝ℓp,t →
⎡⎣ ⋀︂

(h,a)∈H p
t

vha

⎤⎦→ real(up(t)) ≥ 0

⎞⎠ ∧ ℓp,t .

And finally for collusion resilience, ϕcr, is adjusted as follows:

⋀︂
S⊂N

⋀︂
t∈T

⎛⎜⎝ℓS,t →
⎡⎢⎣ ⋀︂

(h,a)∈H
N\S

t

vha

⎤⎥⎦→∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(t)

⎞⎟⎠ ∧ ℓS,t .

We generate counterexamples to ϕwi, ϕweri and ϕcr by enumerating minimal unsat
cores [LPMMS16]. From these unsat cores, (groups of) players and partial strategies
are identified, yielding counterexamples to the respective security property. Each unsat
core represents a counterexample; thus, by listing and interpreting all unsat cores, we
generate all counterexamples to ϕwi, ϕweri and ϕcr.

Computing Counterexamples to ϕpr. Generating counterexamples to ϕpr is sum-
marized in Algorithm 3.23, requiring a different approach than for ϕwi, ϕweri and ϕcr.

Algorithm 3.2 takes as input a game Γ, an honest history ho and the case of term orderings
for which practicality analysis failed. Algorithm 3.2 returns a set of counterexamples (CE)
to ϕpr, that is, a set of terminal histories, and a subcase of the initial case. Note that the
set CE contains all the counterexamples to ϕpr in the given refined problematic case. In
each iteration of the while loop of Algorithm 3.2 (lines 6–25), all practical histories that
yield a strictly better utility for the deviator are listed, then the game tree is cut such
that new counterexamples can be revealed (line 7). The variables GT (current game tree),
h (guidance on what to cut) and subgame (subgame to be considered) keep track of the
cutting and ensure that the correct terminal histories are added to CE. Additionally, it
might be necessary to further specify the ordering of the utility terms, which is considered
in line 16 of Algorithm 3.2.

Based on the above considerations, all counterexamples to practicality for a specific term
ordering are thus generated via Algorithm 3.2, as proven next.

Theorem 3.5 (Correctness of Algorithm 3.2). Consider the output (CE, subcase) of
Algorithm 3.2. Then, the set CE computed by Algorithm 3.2 contains exactly all coun-
terexamples to h∗ being practical in subcase4.

Proof. (i) We first prove that c ∈ CE implies c is a counterexample in subcase. Let the
honest history be h∗ and c ∈ CE. Assuming subcase, we show that c is of the form

3Algorithm 3.2 is based on the assumption made in [BKK+23a] that for a counterexample with
history h and action a, there exists only one practical terminal history t in Γ|(h,a) and it is summarized
as c := (h, a, t).

4This result is also based on the only-one-practical-terminal-history assumption of [BKK+23a].
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Algorithm 3.2: Counterexamples to Practicality
input : an input instance Π = (Γ,O, inf , C, Cwi, Cweri, Ccr, Cpr), an honest

history ho ∈ O and the case case for which practicality failed
output : the set of all counterexamples CE to the practicality of ho in a

subcase of case, together with that subcase subcase
1 CE ← ∅
2 GT ← Γ
3 ho ← ho
4 subgame ← ()
5 subcase ← case
6 while ho ¬pr ∧ GT ̸= leaf do
7 prStrat ← {h′|h′pr in GT ∧ uP (h)(ho) < uP (h)(h′)}
8 // h is the maximal common prefix of h′ with ho
9 if prStrat = ∅ then

10 // in subgame no more counterexamples
11 h← first action of ho
12 end
13 else
14 h← shortest prefix h in prStrat
15 end
16 subcase.RefineSubcase ()
17 // if further case split was done in line 7
18 foreach c ∈ prStrat do
19 CE.Add ( (subgame, c) )
20 end
21 ho ← ho− h
22 subgame ← subgame + h
23 GT.Remove (direct subtrees of h that occur in prStrat)
24 GT ← GT|h
25 end
26 return CE, subcase

(prefix, a, h′′), where prefix is the maximal common prefix of c with h∗, a an action such
that uP (prefix)(h∗) < uP (prefix)(c) and h′′ practical in Γ|(prefix,a).

By Algorithm 3.2 (line 7), when c = (subgame, h′), we have that h′ is practical for some
ho, subcase and GT. Additionally, uGT

P (h)(ho) < uGT
P (h)(h

′), where h is the maximal common
prefix of h′ with ho. Note that in every iteration of the loop ho is a suffix of h∗, as only
prefixes h of h∗ are cut off (line 11, 14, and 21). Further, subcase is a subcase of subcase,
since subcase is only refined in the algorithm (line 16). The game GT is the subgame of
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Γ after subgame, possibly without some already removed direct subtrees. This holds as
we always consider subgames after h (line 24), which are pieces of h∗ and are collected
in subgame (line 22). The direct subtree removal happens in line 23 of Algorithm 3.2.
We hence conclude that uP (subgame,h)(h∗) = uGT

P (h)(ho) < uGT
P (h)(h

′) = uP (subgame,h)(c) in
subcase. Additionally, c is a terminal history of the input game Γ. The property left
to show is that h′ = (a, h′′), such that h′′ is practical in Γ|(subgame,a). Note that only
direct subtrees of Γ|subgame have been removed in GT, hence GT|(a) = Γ|(subgame,a). Since
h′ = (a, h′′) is practical in GT, h′′ has to be practical in GT|a = Γ|(subgame,a) in subcase.
Therefore, c is a counterexample in subcase and thus also in subcase, concluding direction
(i) of the proof.

(ii) We next show the reverse direction of (i); that is, c is a counterexample in subcase
implies c ∈ CE. Let C be the set of all counterexamples in the case subcase. As subcase
does not necessarily yield a total order on the utility terms, we fix an arbitrary total
order ≤s on the utility terms which is compatible with subcase. We now order elements
c ∈ C according to

1. length of the common prefix h of c with the honest history h∗ (shortest first) and
within this group into

2. subgroups according to the value uP (h)(c) (decreasingly). Within these subgroups,
the order does not matter.

Towards a contradiction, we assume c ∈ C is the first (according to the ordering above)
that is not in CE. Let c = (h, a, t) and uP (h)(c) =: u, such that t is practical in Γ|(h,a),
u > uP (h)(h∗) and h the maximal common prefix with h∗. We distinguish between the
following possible cases.

Case 1: (a, t) is not practical in Γ|h in total order ≤s. Thus, there is a (a′, t′) ∈H|h such
that u′ := uP (h)(h, a′, t′) >s u, and t′ practical in Γ|(h,a′) which is a counterexample to (a, t)
being practical in ≤s. This also yields a counterexample c′ = (h, a′, t′) to c being practical
in ≤s. It also is another counterexample to h∗ being practical (u′ >s u > u(P (h))(h∗)) in
≤s and thus subcase. Therefore, c′ ∈ C and it occurs in the same group but in a strictly
earlier subgroup than c. Thus, by our assumption that c is the first to not appear in CE,
we get c′ ∈ CE.

In Algorithm 3.2, every c ∈ CE occurs once in prStrat5 as the element with the shortest
common prefix with h∗. This holds as we always remove at least one direct subtree or move
further along h∗. Let us now consider the last occurrence of c′ in prStrat. In this iteration,
the tree GT will be cut to at most Γ|h − {a′ : c′ = (h, a′, t′)}. Since all counterexamples
c′′ with the same prefix h as c and with greater utilities uP (h)(c′′) >s uP (h)(c) have been
found in CE, the corresponding branches are removed from GT in the following iterations
of Algorithm 3.2 as well.

5only the respective suffix of c occurs since we add the subgame prefix only later to CE.
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We consider now under which condition (a, t) from c = (h, a, t) becomes practical in a
partial tree of Γ|h in subcase: since t is practical in Γ|(h,a) it suffices if uP (h)(h, a, t) ≥
uP (h)(h, a′′, t′′) in subcase, for all a′′ ∈ A(h), t′′ practical in Γ|(h,a). Note that each
such (a′′, t′′) that violates this property yields a counterexample c′′ = (h, a′′, t′′) to h∗’s
practicality in subcase with a utility strictly better or incomparable to c. We observe that
incomparability at this step in the algorithm could not have happened, as it would have
caused a further case split (line 16) which contradicts the fact that subcase is the output
value of the case split. Let us thus consider the case of strictly better utility: Since ≤s is
compatible with subcase, we know uP (h)(c′′) >s uP (h)(c) implies uP (h)(c′′) > uP (h)(c) in
subcase. Thus, all such (a′′, t′′) have at this point already been removed from GT.

Therefore, (a, t) of c = (h, a, t) is practical in this tree, implying that (a, t) has to appear
in prStrat in the next iteration and hence also c ∈ CE. This contradicts the assumption
of Case 1.

Case 2: (a, t) is practical in Γ|h in ≤s, yielding two further cases.

Case 2.1: c = (h, a, t) is in the first group C, that is, there is no counterexample with
a shorter prefix. In this case, c = (h, a, t) has to be practical in Γ in ≤s. By assuming
the contrary, there exists a counterexample c′ = (h′, a′, t′), where h′ is a prefix of c, t′
is practical in Γ|(h′,a′) in ≤s, and uP (h′)(c) <s uP (h′)(c′). Then, h′ cannot be a prefix of
h, as this contradicts c being in the first group of C. Further, h can not be a prefix of
h′, since this contradicts the fact that (a, t) is practical in Γ|h in ≤s. Therefore, c is
practical in Γ in ≤s, implying however that c has to occur in the first iteration of the
loop in prStrat (being practical in subcase). Another case is not possible (similar to Case
1) as a further case split of subcase did not happen.

Case 2.2: c = (h, a, t) is not in the first group in C. Let then h′ be the maximal common
prefix with h∗ in the group directly before c. All the counterexamples c′ of this group
have uP (h′)(c′) > uP (h′)(h∗). Similar to Case 1, as they all appear in CE, we reach the
following tree to be considered: Γ|h′ minus all the immediate dishonest branches that
contain counterexamples. In the subsequent iteration of the algorithm, prStrat has to
be empty as there are no more branches that make the condition uP (h′)(c′) > uP (h′)(h∗)
true. Therefore, we go to the if-branch in line 9 and consider Γ|(h′,a∗) in the following
iteration. The action a∗ is the next action in h∗ after h′. Note that for the tree Γ|(h′,a∗),
c is in the first group of counterexamples by construction. Therefore, Case 2.1 applies
for the game Γ|h′,a∗ , thus counterexample c has to be practical in Γ|(h′,a∗) and hence has
to occur in prStrat in this iteration. This contradicts the assumption that c /∈ CE and
overall concludes direction (ii) of the proof.

3.5.3 Inferring Preconditions for Security

In addition to identifying concrete counterexamples (Section 3.5.2) in case a security
property ϕsp is not satisfied in Algorithm 3.1, our work can also determine additional
assumptions necessary to ensure that property ϕsp holds. We support such an extended
security analysis by iteratively computing preconditions for the input EFG.
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Definition 3.11 (Preconditions to Security). Given a game Γ, an honest history h∗, a
security property sp and initial conditions C and Csp such that h∗ violates sp, we say π
is a precondition if

∀ (⪯, Tu) total order. ∃ I ∈ I.

I
(︄
∀x⃗.

⋀︂
c∈⪯∪C∪Csp∪{π}

c[x⃗]→ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])
)︄

= ⊤.

We note that in Definition 3.11, the precondition π strengthens the initial constraints by
making the left-hand side of the above implication satisfiable for fewer total orders, thus
ensuring validity of the above implication for more of them.

In Algorithm 3.3, we show our adjustment of Algorithm 3.1, allowing us to generate
the weakest precondition under which a security property sp is satisfied. If precondition
generation is enabled in our work, the solving routine at line 16 in Algorithm 3.1 does
not terminate; instead, it adds the negation of the ordering in the unsolved case O to
preconditions in C (the variable pre in line 20 of Algorithm 3.3) and restarts the solving
routine with the new set of initial constraints. With such an adjustment of Algorithm 3.1,
Algorithm 3.3 allows us to generate weakest preconditions to sp, in the following sense: if
π and ψ are preconditions, then π is weaker than ψ if⋀︂

c∈⪯∪C∪Csp∪{π}
c[x⃗]

is satisfiable for more total orders ⪯ than⋀︂
c∈⪯∪C∪Csp∪{ψ}

c[x⃗].

For proving correctness of Algorithm 3.3, we first prove the following helping lemma.

Lemma 3.6 (Unique Weakest Precondition). Given a game Γ, an honest history h∗, a
security property sp and finite sets of initial constraints C and Csp, there exists a unique
(modulo equivalence) weakest precondition π to make history h∗ satisfy sp.

Proof. Let π be a precondition, by Definition 3.11, it holds that

∀ (⪯, Tu) total order. ∃ I ∈ I.

I
(︄
∀x⃗.

⋀︂
c∈⪯∪C∪Csp∪{π}

c[x⃗]→ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])
)︄

= ⊤.

As noted after Corollary 3.1, the satisfiability of the formula depends only on the finitely
many total orders of terms in Tu. Thus, any precondition can be weakened to a list of
term orderings to be avoided, which are finitely many. The weakest of these is the one
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Algorithm 3.3: Generating Weakest Preconditions
input : an input instance Π = (Γ,O, inf , C, Cwi, Cweri, Ccr, Cpr), an honest

history ho ∈ O and the name of a security property
sp ∈ {wi,weri, cr, pr}

output : weakest precondition under which ϕsp is satisifiable in Π
1 S ← Solver()
2 A ← Solver()
3 pre ← true // the precondition to be constructed
4 φ ← true // the conflict clauses to reach the next case
5 AddConstraints (S, ComputeStrategyConstraints (Γ, ho))
6 AddConstraints (A, C ∪ Csp)
7 T ← ∅
8 while Check (A, φ) = sat do
9 M ← GetModel (A, φ)

10 O ← {EvaluateModel (M , x, y) : (x, y) ∈ Combinations (T )}
11 if Check (S, sp, C ∪ Csp ∪ {pre} ∪ O) = sat then
12 // found strategy for current ordering, add conflict clause
13 φ ← φ ∧ (

⋁︁
c∈O ¬c)

14 end
15 else
16 T ′ ← ∅
17 foreach ℓx,y ∈ GetUnsatCore(S) do
18 T ′ ← T ′ ∪ {t : t ∈ {x, y}, t /∈ T }
19 if T ′ = ∅ then // no new expressions, case is unsat
20 pre ← pre ∧ (

⋁︁
c∈O ¬c)

21 φ ← φ ∧ (
⋁︁
c∈O ¬c)

22 end
23 T ← T ∪ T ′

24 end

25 end
26 return pre

that allows precisely all total orderings of terms in Tu that are satisfiable and forbids all
others, and is thus unique up to equivalence (as a quantifier-free first-order formula can
be expressed in many equivalent ways).

We next proceed with proving correctness of Algorithm 3.3.

Theorem 3.6 (Weakest Preconditions – Correctness of Algorithm 3.3). Given a game Γ,
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an honest history h∗ and a security property sp that h∗ violates, Algorithm 3.3 generates
the weakest precondition π which makes h∗ satisfy sp.

Proof. As Algorithm 3.3 adjusts Algorithm 3.1, we only prove that whenever Algorithm 3.3
terminates (which it does, because we only need to consider finitely many total orders of
Tu), the generated precondition π (i) is indeed a precondition and (ii) is the weakest.

(i) By construction, π is a conjunction of negated term orderings:

π =

⎛⎝ ⋁︂
c∈O1

¬c

⎞⎠ ∧ · · · ∧
⎛⎝ ⋁︂
c∈On

¬c

⎞⎠ .
Let us write ¬Oi for

(︂⋁︁
c∈Oi
¬c
)︂
. By construction, we leave out only the term orderings

for which the security property holds (line 11 in the Algorithm 3.3), and hence π is a
precondition.

(ii) Let ψ be the weakest precondition given by Lemma 3.6. Towards a contradiction,
assume that ψ is strictly weaker than π; that is, there exists a total order ⪯ such that⋀︂

c∈⪯∪C∪Csp∪{ψ}
c[x⃗] (3.23)

is satisfiable and ⋀︂
c∈⪯∪C∪Csp∪{π}

c[x⃗] (3.24)

is unsatisfiable. Let M be a model for x⃗ that satisfies (3.23). Since M does not
satisfy (3.24), we know that M(π) = false. Let Oi be the first ordering in the
conjunction π such that M(¬Oi) = false. Consider line 20 of Algorithm 3.3 at the
point when ¬Oi was added to the precondition π: the else case of the condition of line 11
implies that the security property is not satisfied in the case Oi; further, line 19 implies
that there are no more comparisons to be added. As such, for every total order ⪯i that
implies the case Oi, we have

∀ I ∈ I. I
(︄
∀x⃗.

⋀︂
c∈⪯i∪C∪Csp

c[x⃗]→ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])
)︄

= false,

which is equivalent to

∀ I ∈ I. ∃x⃗.
⋀︂

c∈⪯i∪C∪Csp

c[x⃗] ∧ ¬ I (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) . (3.25)

The inequalities in ϕsp[x⃗] only depend on the total order ⪯i and not on the actual values
of x⃗. Thus,

∃x⃗.
⋀︂

c∈⪯i∪C∪Csp

c[x⃗] ∧ ¬ I (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗])
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implies
∀x⃗.

⋀︂
c∈⪯i∪C∪Csp

c[x⃗]→ ¬ I (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) .

Using (3.25), we get

∀ I ∈ I. ∀x⃗.
⋀︂

c∈⪯i∪C∪Csp

c[x⃗]→ ¬ I (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) . (3.26)

Consider now⪯M the total order on Tu induced by the model M . Since M(¬Oi) = false,
we know that M satisfies Oi, so ⪯M implies Oi as well and (3.26) holds for ⪯M too. As
ψ is a precondition, by using Definition 3.11 with ⪯M , we obtain I′ ∈ I such that

∀x⃗.
⋀︂

c∈⪯M ∪C∪Csp∪{ψ}
c[x⃗]→ I′ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) (3.27)

holds. Using (3.26) with total order ⪯M and I′ ∈ I, we obtain

∀x⃗.
⋀︂

c∈⪯M ∪C∪Csp

c[x⃗]→ ¬ I′ (ϕstrat ∧ ϕhist ∧ ϕsp[x⃗]) . (3.28)

With the model M for x⃗, the antecedent of the implication in (3.27) holds as M satis-
fies (3.23) (and thus satisfies the constraints in C, Csp and ψ). Therefore, the formula
I′ (ϕstrat ∧ ϕhist ∧ ϕsp[M(x⃗)]) holds. With the model M for x⃗, the antecedent of the impli-
cation in (3.28) is also valid, yielding ¬ I′ (ϕstrat ∧ ϕhist ∧ ϕsp[M(x⃗)]). We thus obtained
a contradiction, concluding the proof.

Example 3.14. The weak immunity property ϕwi of the game from Example 3.10 for
honest history (l, r) is not satisfied if b < 0. Our work identifies this case and reports
that there is no weak immune joint strategy given that b < 0. The solving routine
of Algorithm 3.1 is restarted with b ≥ 0 added to C in Algorithm 3.3, triggering the
satisfiability of the such revised weak immunity property ϕwi. In this case, Algorithm 3.3
returns one additional precondition, namely b ≥ 0.

We conclude this section by noting that finding sufficient (nontrivial) preconditions to
satisfy a security property ϕsp is not always possible with Algorithm 3.3: if the existing
preconditions C imply the ordering O for which there is no adequate joint strategy, the
security property ϕsp cannot be satisfied by adding more assumptions about the EFG
utilities. In this case, the weakest precondition returned by Algorithm 3.3 is false.

3.6 Implementation and Experimental Evaluation
Implementation. We implemented our game-theoretic security analysis in the new
CheckMate tool6, written in Python and using Z3 [DMB08] as the underlying SMT

6Our tool is available at https://github.com/apre-group/checkmate/tree/ccs23.
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Game Nodes Players History Security Calls Time
Splitswi 5 2 (q) ✓ 8 0.38
Splitscr 5 2 (n) ✓ 10 0.76
Market Entry 5 2 (e, i) ✗ 6 0.32

(wi,weri)
Pirate 52 4 (y, n, n, ✗ 11 1.88

n, y, y) (wi,weri,cr,pr)
Simplified 8 2 (H) ✗ 5 0.36
Closing (pr)

(Ch, S) ✗ 6 0.36
(wi,weri)

Simplified 17 5 (SH , L, L, L, ✗ 6 0.57
Routing L,U,U, U, U) (wi,cr)
Closing 221 2 (H) ✗ 5 16.4

(pr)
(Ch, S) ✓ 6 17.8

3-player Routing 21,688 3 (SH , L, L, ✗ 149 1222
U,U) (wi,cr,pr)

Table 3.1: CheckMate results, time in seconds. ✓means that all security properties are
satisfied. ✗(sp) indicates that the history is not secure as property "sp" failed.

solver of Algorithm 3.1. The input for CheckMate is a JSON [ISO17] encoding of an
input instance Π of Algorithm 3.1, which is also the current representation language for the
EFG. The instance Π is parsed into an internal representation, which is used to construct
SMT constraints for (any subset of) the security properties presented in Section 3.4.
CheckMate then executes Algorithm 3.1 for each property, logging intermediate results
such as case splits. CheckMate outputs a joint strategy if a property is satisfied,
or a list of counterexamples otherwise; in the latter case, CheckMate also produces
preconditions (Section 3.5.3). In addition, CheckMate supports a verification mode to
check whether a joint strategy satisfies a security property.

CheckMate only supports EFGs with finite game trees. However, EFGs are known
to have the capacity to model many protocols. Further, every step in the game can
model an arbitrary long time in the protocol (e.g., the "ignore" actions model unlimited
time). An advantage of the trees being finite is that the game-theoretic properties will
only quantify over finite sets, implying that the respective security properties can be
translated to first-order linear real arithmetic (as shown in Section 3.4).

Benchmarks. We evaluated CheckMate using the examples of Section 3.2, Exam-
ples 3.15 to 3.17, which are briefly described below, as well as real-world blockchain
protocols from Bitcoin’s Lightning Network [PD16]. These examples are listed as the
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last four entries of Table 3.1. Namely, we used the complete model of the Closing Game
of [RAKM23] and the full model of the routing phase corresponding to the Routing Game
of [RAKM23] with three players. The honest behavior of the full routing game is similar
to the Simplified Routing Game, but players have many more actions available, such as
sharing the secrets or varying the way they lock funds. The full Routing Game for five
(and more) players is a task for future work.

A

(t, 0)
n

B

(j, 0)
o

(f, 0)
d

a

Figure 3.4: Splitscr Game with t > 0 and j > t > f ∨ f > t > j.

Example 3.15 (Splitscr). In the game depicted in Figure 3.4, player A starts by choosing
between action n and action a. Picking action n results in a utility of t for player A,
with t > 0. If they take action a, player B has to choose either action o or action d.
Action o yields the utility j for player A, while action d results in the utility f , with
j > t > f ∨ f > t > j. Player B always receives a payoff of 0 in this game.

T

(0, 2p)
o

E

(p, p)
i

(−a,−a)
s

e

Figure 3.5: Market Entry Game with a, p > 0.

Example 3.16 (Market Entry Game). The Market Entry Game displayed in Figure 3.5
is an adaptation of the Chain-Store Game defined in [OR94]. Player T starts by either
choosing action o or action e. If they pick action o, the game ends, yielding the utility 0
for T and 2p for E, with p > 0. Otherwise, it is player E’s turn: E either takes action i,
resulting in utility p for both players, or action s, which yields the utility −a for both
players, with a > 0.

Example 3.17 (Pirate Game). The Pirate Game displayed in Figure 3.6 (and Figure 3.7
and Figure 3.8, respectively, for the subgames SB and SC) is an adapted version of the
“puzzle for pirates” introduced by Stewart [Ste99]. It models a voting scenario: Each
player proposes a joint utility whose sum is g. First, the players decide if they want to
accept A’s proposed distribution (in alphabetical order). If the majority of players are
in favor of the proposal (indicated by taking action y when it is their turn), the game
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Figure 3.6: Pirate Game with d, g, ap, bp, cp ≥ 0 for p ∈ N and g = aA + aB + aC + aD,
g = bB + bC + bD = cC + cD. The subgame SB is displayed in Figure 3.7.
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Figure 3.7: Subgame SB of the Pirate Game (Figure 3.6).

C

(−d,−d, cC , cD) (−d,−d,−d, g)

y n

Figure 3.8: Subgame SC of the Pirate Game (Figures 3.6 and 3.7).

ends with the utility aA for player A, aB for player B, and so on. Otherwise, i.e., if
the majority picks action n, player A is eliminated from the game, which results in the
utility −d for player A when the game ends, with d > 0. The process repeats with the
joint utility proposed by player B, where player B gets the utility bB, C receives bC , etc.
If B’s proposal is rejected, B is eliminated as well, and the remaining players vote on
player C’s proposed distribution. In case of a tie, the decision of the proposing player is
the casting vote.

As the modeling process of real-world protocols as EFGs is an intricate and time-consuming
process, representing a challenge on its own, we so far have a restricted but representative
benchmark set, showcasing the logical expressivity provided by CheckMate to efficiently
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Game Property CE PC
Market Entry wi 1 false
(e, i) weri 1 false
Pirate wi 141 false
(y, n, n, n, y, y) weri 141 false

cr >80 false
pr 1 π

Simplified Closing (H) pr 1 false
Simplified Closing (Ch, S) wi 1 false

weri 1 false
Simplified Routing wi 9 false
(SH , L, L, L, L, U, U, U, U) cr 16 false
Closing (H) pr 5 false
3-player Routing wi 41 false
(SH , L, L, U, U) cr 2 false

pr >0* TO

Table 3.2: Counterexample (CE) and Precondition (PC) analysis provided by Check-
Mate. >N indicates that we found N counterexamples in 10 minutes, but generation has
not terminated yet. The practicality result (*) for 3-player Routing is computationally
demanding, but begins to produce results after the time limit. At around 60 minutes, we
have over 100 counterexamples. TO indicates a timeout after 2 hours.

(dis)prove blockchain security. We are not aware of other efforts providing practical
challenges for evaluating formal methods in support of blockchain security. We believe
our EFG examples provide an initial set of examples to be further used in verifying
blockchain security.

Experimental Results. Table 3.1 summarizes our experimental results, using an
Apple M1 Pro CPU with 10 cores and 32 GB of RAM. The sizes of our EFG examples in
terms of nodes and players are listed in columns 2–3. For each honest history (column 4),
Table 3.1 displays CheckMate’s results for game-theoretic security. We also report
execution times for complete analysis of all properties, without counterexample generation.
In column 6 (Calls), the number of SMT calls within CheckMate is listed. Both protocol
benchmarks (the Closing Game and the 3-Player Routing Game) hint that even for bigger
game trees, the number of case splits is relatively low.

Table 3.2 displays the number of counterexamples found for each violated property, as
well as a precondition strong enough to make the respective property true. We write
false to indicate that no precondition (except false) is strong enough to satisfy the
property. Thus, the problem is inherent to the game and is not a matter of the variable
values. Due to its size, we do not state the nontrivial precondition π of the Pirate Game,
generated by CheckMate in 37 seconds.
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Experimental Analysis. CheckMate successfully analyzes the games of Section 3.2
and correctly identifies the Wormhole attack as one of the 16 counterexamples to collusion
resilience in the Simplified Routing Game. Applied to the Closing Game, CheckMate
terminates after about 17 seconds for each honest history and correctly identifies required
case splits for history (Ch, S). The Routing Game is not weak immune, but weaker
immune: honest players will not lose “real” resources but may suffer opportunity cost.
The 3-player Routing Game has 21,688 nodes, compared to 221 nodes for the Closing
Game.

Our experiments demonstrate the usability and scalability of CheckMate. For example,
for analyzing real-world applications (closing and routing phases in the last two lines of
Table 3.1), CheckMate enabled the automation of reasoning about trillions of game
strategies and thousands of game nodes. We are not aware of other automated reasoning
approaches handling such and similar EFGs.

The mostly trivial preconditions in Table 3.2 are not surprising, since we asserted
constraints we were aware of as initial conditions. For the Closing Game and history
(Ch, S), for example, we inherited initial constraints a, b ≥ f for weak immunity and
c ̸= pA for practicality from [RAKM23]. When removing those constraints, CheckMate
finds a precondition equivalent to a, b ≥ f for weak immunity and one equivalent to
c ̸= pA ∨ b− pA + dB = f for practicality. Thus, CheckMate provides a less restrictive
but still sufficient precondition than [RAKM23].

3.7 Related Work

Game theory opens up new venues in security and privacy analysis [DTH+17], particularly
within blockchain technologies [LNW+19]. Game-theoretic modeling approaches in sup-
port of blockchain security have recently emerged [ZBPBS21, RAKM23], complemented
by specific analysis of several attack vectors, such as the griefing attack [MBS+22]. Our
work complements these efforts as we express game-theoretic security in first-order linear
real arithmetic and turn protocol security into an SMT-solving problem. Extended with
game-theoretic case splitting and counterexample generation, we scale game-theoretic
security to large protocols and fully automate it. Our work is thus orthogonal to
[RAKM23].

The work of [CGP19] focuses on game-theoretic security specific to the Ethereum
blockchain [Woo14], but does not reason about punishment mechanisms. While these
works provide rigorous game-theoretic models, they lack support for automated reasoning,
hindering their scalability and computer-aided certification.

Focusing on formal verification for security, the Tamarin [MSCB13], Verifpal [KNT20],
and Proverif [Bla14] frameworks study general protocols, while the Verisol approach
targets the Ethereum blockchain [WLC+19]. These methods operate on cryptographic
security properties, proving whether certain actions are cryptographically possible. Our
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work complements these techniques by analyzing and establishing whether punishment
mechanisms work as intended.

A similar line of research is analysis of cryptographic security properties in rational
cryptography [GLR13, AL09, Gra10, IML05, LT06]. Rational cryptography does not
assume players to be inherently honest or malicious, but instead rational. However,
rational cryptography verifies cryptographic alignment of rationality and honesty, whereas
our work in CheckMate focuses on incentive/punishment mechanisms modeled via
games.

Another game-theoretic security reasoning framework was introduced [KNPS20, KNPS21].
Here, concurrent stochastic game structures (CGSs) are modeled within probabilistic
asynchronous-time temporal logic with rewards (rPATL). The respective CGSs are verified
via model-checking of PATL formulas. Unlike this framework, our work does not reason
with uncertainty. Instead, we provide a decidable first-order logic fragment for proving
game-theoretic security. Thanks to our logical precision, we can avoid the computational
burden of handling probability (reward) operators. Our EFGs also avoid concurrent
game strategies and provide a deterministic game structure.

When it comes to automated game-theoretic analysis, it is worth noting the modeling
and verification support offered by Gambit [MMT05], PRISM-games [KNPS20] and
Open Games [GHWZ18]. These frameworks, however, are restricted to constant numeric
utilities and cannot process symbolic utilities, limiting their applicability to reason about
all game actions/strategies. We are not aware of other game-theoretic frameworks that
natively support symbolic utilities, which is a key feature of CheckMate. Compositional
reasoning in Open Games [GHWZ18] does enable modular analysis, which we aim to
further investigate in order to split large EFGs (such as routing games) into subgames.

3.8 Conclusion

Game-theoretic security analysis provides new ways to derive security guarantees and
identify attack vectors. Yet, automation in this area was so far limited, if at all, hindering
the applicability and scalability of game-theoretic security analysis. Our work addresses
these obstacles and implements novel methods for deciding security properties in games
with symbolic utilities. We reduce security analysis to satisfiability solving over game
strategies expressed in first-order theory of linear arithmetic. We provide full automation
within the new CheckMate framework, scaling security analysis to very large game
trees, by automatically identifying necessary case splits for efficient reasoning. In addition,
CheckMate supports the generation of counterexamples and necessary preconditions to
security, enabling model repair and synthesis of game properties.

Limitations and Challenges for Future Work. Modeling protocols requires con-
siderable expertise, and the precision of our analysis depends on the accuracy of the
underlying model. To maximize application of the CheckMate framework, we must
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provide ways to accurately and efficiently model protocols as EFGs. Partial automation
of the EFG modeling process is therefore a valuable task to be addressed further.

Currently, CheckMate only supports linear utilities. However, protocols exist that
naturally involve nonlinear terms over utilities. For example, ratios in market settings
produce terms containing multiplication of two variables. While CheckMate internally
already supports nonlinear arithmetic formulas over utilities, it comes with the caveat
that the resulting SMT queries are also nonlinear and therefore significantly harder.
Improving the performance of SMT solving over nonlinear arithmetic in the setting of
CheckMate is its own challenge, which we aim to address in the future.

Finally, extending CheckMate with compositional game analysis is another direction
we are already investigating. We believe compositionality may enable us to support
randomized game aspects, for example, model behavior that is not controllable by any
player. In addition, compositional game analysis might ease modeling further real-world
protocols as EFGs.
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CHAPTER 4
The Game-Theoretic Security Tool

CheckMate

This chapter is based on the conference paper [RBK+24]:

Sophie Rain, Lea Salome Brugger, Anja Petković Komel, Laura Kovács, and Michael
Rawson. Scaling Checkmate for Game-Theoretic Security. In Proceedings of 25th
Conference on Logic for Programming, Artificial Intelligence and Reasoning, pages
222–231, Stockport, UK, 2024.

4.1 Problem Statement

Ensuring the security of decentralized protocols becomes even more critical in the context
of decentralized finance. Once deployed on the blockchain, vulnerabilities cannot be
corrected and have the potential for significant monetary loss. Various existing approaches
for the analysis and verification of blockchain protocols [Bla14, Cer, HBS23, MSCB13,
OMA+23, TMSS23, WLC+19] focus on cryptographic and algorithmic correctness or, in
other words, whether it is possible to steal assets or gain secret information. However, eco-
nomic aspects must also be considered: whether it is possible for a group of users to profit
from unintended behavior within the protocol itself, leading to vulnerabilities [MMSS+19].
Algorithmic game theory [Hal08, OR94] precisely captures such economic aspects.

This chapter describes our open-source tool CheckMate1 for the automation of game-
theoretic protocol analysis. To the best of our knowledge, CheckMate is the first
fully automated tool that enforces game-theoretic security. CheckMate constructs and
proves game-theoretic security properties in the first-order theory of real arithmetic while
ensuring that game-theoretic security is precisely captured via Byzantine fault tolerance

1available at https://github.com/apre-group/checkmate/tree/lpar25
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and incentive compatibility of the analyzed protocol. As introduced in our previous
work [BKK+23a], Byzantine fault tolerance of a protocol guarantees that as long as users
follow protocol instructions, they cannot be harmed, independently of how other users
behave. Incentive compatibility ensures that the intended course of action is also the
most profitable to the users, implying that no user has an economic incentive to deviate.
We refer to this intended course of action as honest behavior, captured by an honest
history in game theory.

Following our previous work [RAKM23], inputs to CheckMate are extensive form
games (EFGs). CheckMate translates Byzantine fault tolerance into the EFG property
weak(er) immunity, whereas incentive compatibility is expressed in CheckMate via the
EFG properties collusion resilience and practicality. As such, protocol verification in
CheckMate becomes the task of proving weak(er) immunity, collusion resilience, and
practicality, for which CheckMate implements novel reasoning engines in first-order
arithmetic.

The purpose of this tool chapter is to describe what CheckMate can do (Section 4.2)
and how it can be used (Section 4.3). Theoretical details are covered in our previous
work [BKK+23a], but we also improve the algorithmic setting here. CheckMate is
no longer restricted to linear input constraints, improves case splitting over arithmetic
formulas, and revises counterexamples to practicality, as well as weakest precondition
generation and strengthening. For efficiency reasons, CheckMate has an entirely new
implementation in C++, using about 2,800 lines of code tightly integrated with the
satisfiability modulo theory (SMT) solver Z3 [DMB08]. Our experimental results show
the practical gains made over our previous work and also add 7 new benchmarks to the
landscape of game-theoretic security analysis. Overall, we used CheckMate to decide
the security of 15 benchmarks, including five based on real-world protocols.

4.2 Structure and Components

CheckMate analyzes game-theoretic security of game models. Given an EFG G,
CheckMate decides whether G satisfies the security properties of (i) weak(er) immunity
– denoted wi respectively weri in Figure 4.1, (ii) collusion resilience – cr, and (iii)
practicality – pr. Properties (i)-(iii) imply game-theoretic security of G [BKK+23a].

Pipeline. Figure 4.1 summarizes the CheckMate pipeline. After parsing and pre-
processing an input EFG G, CheckMate processes one honest history and security
property (i)–(iii) at a time. For this history and property, CheckMate constructs an
SMT formula ϕ such that ϕ is satisfiable iff the EFG satisfies the security property –
without the need for further case analysis – with respect to the history. To this end,
the SMT formula ϕ consists of three constraints, listed as (a)–(c) in the following. The
constraints (a)–(c) are based on the central concept of encoding each action in the game
as a Boolean variable that is set to true iff the corresponding action is taken in the
game. In more detail, (a) the joint strategy constraint ensures that exactly one action
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Figure 4.1: The CheckMate Pipeline.

is chosen at each turn. Further, (b) the honest history constraint guarantees that the
chosen set of actions yields the honest history. Finally, (c) the property constraint uses
a universally-quantified formula to enforce that all variables occurring in the player’s
pay-offs satisfying a set of preconditions also satisfy the respective security property
(i)–(iii) of the EFG.

The formula ϕ is passed to the case splitting engine of CheckMate, which calls Z3
iteratively to decide whether ϕ is satisfiable. If not, case analysis is applied and the
resulting constraints are added in turn to the preconditions of constraint (c) of ϕ. This
iterative process is terminating as CheckMate is both sound and complete [BKK+23a].
If ϕ is satisfiable, we extract a model – if required by the user – and output the result. If ϕ
is unsatisfiable and no further case splits apply, CheckMate implements various actions
controlled by command-line options: listing cases that violate ϕ; producing counterexam-
ples witnessing why ϕ was violated; and/or computing the weakest precondition that, if
added to G as an additional constraint, satisfies ϕ. We describe the main components of
CheckMate using Figure 4.2.

Illustrative Example. The EFG in Figure 4.2 has two players, A and B. Nodes
represent the player whose turn it is and edges their choices. On reaching a leaf, the
game ends, and the pay-off utility for each player is given. Here, player A starts and
chooses between actions lA and rA. If lA is chosen, the game ends, and A receives utility
a− 1, whereas player B receives a. Otherwise, rA is chosen, and player B continues in a
further subgame. We assume a > 0 and specify the honest history of G to be (rA, lB):
that is, we fix the “honest” choice of player A to be rA and of B to be lB.
When analyzing whether G satisfies the security property of weak immunity (wi), Check-
Mate constructs the SMT formula ϕ with the following three components: (a) the
joint strategy constraint given by (lA ∨ rA) ∧ ¬(lA ∧ rA) ∧ (lB ∨ rB) ∧ ¬(lB ∧ rB); (b)
the honest history constraint captured by rA ∧ lB; and (c) the property constraint of
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∀a, b. a > 0→ wi (G).

A

(a− 1, a)

lA

B

(a− 2, b)

lB

(b, a)

rB

rA

Figure 4.2: Game G with a > 0, honest history (rA, lB).

4.2.1 CheckMate Input

CheckMate takes as input a JSON file [ISO17] with a specific structure containing the
EFG to be analyzed together with its honest histories. Figure 4.3 shows the encoding
of the EFG from Figure 4.2, conforming to the JSON schema of CheckMate2. The
schema defines the structure of the input as an object with the following keys:

players A list of all players, represented as strings.

actions A list of all possible actions throughout the game, represented as strings.

constants Symbolic constants occurring in the players’ utilities.

infinitesimals Symbolic constants occurring in the players’ utilities that are treated
as infinitely closer to 0 than the constants in constants. Symbolic values in
utilities must be included either in infinitesimals or constants.

initial_constraints Initial constraints to be enforced on the otherwise uncon-
strained symbolic values in utilities.

property_constraints Further initial constraints specifically for each security prop-
erty of weak(er) immunity, collusion resilience, or practicality. This key lets the
user specify the weakest possible assumptions for each security property.

honest_histories A list of honest histories, i.e., each history is one of the desired
courses of EFG actions. Each history is the game-theoretic behavior that is (dis-
)proved secure by CheckMate sequentially. An honest history is a list of actions;
therefore, this key expects a list of lists of strings.

tree The structure of the EFG. Each node in the game tree is either a branch or a leaf.
Each branch is represented by an object with the following keys:

player The name of the player whose turn it is.
2input.schema.json in the repository (https://github.com/apre-group/checkmate/

tree/lpar25)
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1 { "players": ["A","B"],
2 "actions": ["l A","r A","l B","r B"],
3 "constants": ["a","b"],
4 "infinitesimals": [],
5 "initial constraints": ["a > 0"],
6 "property constraints": {"weak immunity": [],
7 "weaker immunity": [],
8 "collusion resilience": [],
9 "practicality": []},

10 "honest histories": [["r A","l B"]],
11 "tree" : {
12 "player": "A",
13 "children": [
14 {"action": "l A",
15 "child": {"utility": [{"player": "A","value": "a-1"},
16 {"player": "B","value": "a" }]}},
17 {"action": "r A",
18 "child": {"player": "B",
19 "children": [
20 {"action": "l B",
21 "child": {"utility": [{"player": "A","value": "a-2"},
22 {"player": "B","value": "b" }]}},
23 {"action": "r B",
24 "child": {"utility": [{"player": "A","value": "b"},
25 {"player": "B","value": "a"}]}}]}}]}}

Figure 4.3: CheckMate Input Encoding Figure 4.2.

children A list of branches the player can choose from. Each branch is encoded
as another object with keys action and child. The action key provides
the action that the player takes to reach child, another tree.

Each leaf of tree is encoded as an object with a single key utility. As leaves
represent one way of finishing the game, it contains the pay-off information for each
player in this scenario. utility contains the players’ utilities, using these keys:

player The name of the player.

value The player’s utility. This can be any term over infinitesimals, constants,
and reals provided as strings.

CheckMate Formulas. CheckMate uses infix notation in arithmetic and Boolean
expressions over real numbers, constants, and infinitesimals declared in the input. It
supports +, -, and * in arithmetic expressions with the usual meanings, but multiplication
is allowed only if at least one of the multiplicands is not an infinitesimal. The Boolean
expressions =, !=, <, <=, >, and >= have their usual meanings. Booleans can be combined
only with disjunction spelled |, but this is not a limitation in practice.
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Example (EFG in JSON format). In the JSON encoding of Figure 4.3 corresponding
to the game G of Figure 4.2, we have the following keys. The players are A and B, the
actions of G are l A, r A, l B, and r B. The only symbolic values of G are a and
b. None of them are supposed to be infinitesimals; thus, they are both listed under
constants. The only initial constraint we enforce is that a is strictly positive, that
is, a > 0, as specified in the caption of Figure 4.2. We do not assume any property
constraints, so the corresponding lists in Figure 4.3 are empty. As defined in Figure 4.2,
we consider (r A,l B) the only honest history. In G, it is player A’s turn at the first
internal node, which has two children. The first child, which is led to through action
l A, is an internal node containing utilities a-1 for player A and a for player B. The
other child, accessible via action r A, leads to another internal node, where it is the turn
of player B.

4.2.2 CheckMate Output

Given an input as detailed in Section 4.2.1, CheckMate analyzes each specified secu-
rity property (<current property>) for each honest history (<current honest
history>). To this end, CheckMate answers the following question in its output:

Is history <current honest history> <current property>? (Q)

Figure 4.4 shows the CheckMate output for the input of Figure 4.3, when considering
the security property of weak immunity.

By answering the above question (Q), CheckMate outputs intermediate logs about
necessary case splits, term comparisons used during splitting, and partial results during
CheckMate reasoning. Intermediate logs are displayed via indentation in the Check-
Mate output (see lines 4–6 in Figure 4.4). A partial CheckMate result indicates the
satisfiability of the considered security property in the currently analyzed case (line 6
in Figure 4.4). Once an answer to (Q) is derived (line 8 of Figure 4.4), CheckMate
reports – without indentation – either

• NO, it is not <current property>, in which scenario the EFG does not
satisfy the analyzed security property and is, therefore, not game-theoretically
secure;

• YES, it is <current property>, in which case the EFG with the considered
honest history has the analyzed property and may be game-theoretically secure.
If a game and a history satisfy each security property, that is, not only the one
currently analyzed but each of the three properties of weak(er) immunity, collusion
resilience, and practicality, the EFG is game-theoretically secure.

In addition, CheckMate can be instrumented by the user to also report on strategies
(Section 4.2.4), counterexamples (Section 4.2.5), and weakest preconditions (Section 4.2.6)
produced while answering question (Q).
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1 WEAK IMMUNITY
2
3 Is history [r_A, l_B] weak immune?
4 Require case split on (>= b 0.0)
5 Require case split on (>= (- a 2.0) 0.0)
6 Case [(>= b 0.0), (>= (- a 2.0) 0.0)] satisfies property.
7 Case [(>= b 0.0), (< (- a 2.0) 0.0)] violates property.
8 NO, it is not weak immune.
9

10 Counterexample for [(>= b 0.0), (< (- a 2.0) 0.0)]:
11 Player A can be harmed if:
12 Player B takes action l_B after history [r_A]
13
14 Weakest Precondition:
15 (and (>= a 2.0) (>= b 0.0))

Figure 4.4: CheckMate Output for Analyzing the Weak Immunity of the EFG of
Figure 4.3, with Counterexample and Weakest Precondition Generation.

4.2.3 Case Splitting in CheckMate

The case splitting engine takes as input the generated SMT formula ϕ corresponding
to the analyzed security property. CheckMate uses Z3 to determine satisfiability of
ϕ. If ϕ is satisfiable, CheckMate uses the model satisfying ϕ, which is provided by Z3
and proceeds to the next reasoning engine. Otherwise, Z3 reports an unsat core, a set of
constraints that are a sufficient reason why ϕ is unsatisfiable. The case splitting engine
uses this unsat core to decide whether unsatisfiability is due to (i) a necessary case split
on the utilities’ values that has not yet been considered; or (ii) the EFG structure.

If (i), CheckMate creates two new Z3 queries: one where we add the new utility
constraint to ϕ, and one with its negation. The property is satisfied only if both queries
are satisfiable, which might require case splitting recursively. We record models for each
case, again recursively if necessary. If (ii), CheckMate records the current case split
as an unsat case together with its unsat core: these are used later for counterexample
and precondition generation. If requested by the user, there is also a feature to keep
exploring all cases, even after encountering unsatisfiability. This allows us to provide
counterexamples to unsat cases or compute weakest preconditions to be further used in
redesigning protocols without unintended behavior.

4.2.4 Strategy Extraction

If requested by the user and if the property was satisfied by the current honest history,
CheckMate produces explicit strategies as follows. We take as input the list of cases that
we divided into in Section 4.2.3, together with their models, and infer the corresponding
game-theoretic strategy per case. These strategies provide a witness for the game and
its honest history, satisfying the security property. The list of cases with their witness
strategies is subsequently provided in the CheckMate output.
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4.2.5 Counterexamples

If requested by the user (Section 4.3) and if the honest history violated the security
property, CheckMate additionally computes counterexamples as to why the security
property was violated. Depending on further flags (Section 4.3), one or all counterexamples
for one or all unsat cases are produced. Accordingly, the counterexamples engine receives
one or all unsat cases and their unsat cores. For all received cases, we study the unsat
core to extract counterexamples.

To compute all counterexamples, we forbid the game choices that led to the found
counterexample by adding their negation to the SMT formula ϕ’s constraints and
checking satisfiability. We then iterate until the extended ϕ satisfies the property. As in
previous work [BKK+23a], counterexamples to practicality are computed differently, i.e.,
without the use of unsat core, while following the same iterative procedure to produce all
counterexamples.

Lines 10–12 of Figure 4.4 list a counterexample to the weak immunity of Figure 4.3.
Within a counterexample to weak immunity, CheckMate reports on the harmed player
p (line 11 of Figure 4.4) and lists the actions the other players can take to attack p.
These actions cannot be prevented by the honest player p, which leads to p being harmed
(line 12 of Figure 4.4). In a counterexample to collusion resilience, CheckMate provides
the group of players that profits from an attack and also lists the attack. An attack is
a set of deviating actions the malicious group takes to profit, while the honest players
cannot prevent these actions. In a counterexample to practicality, CheckMate lists a
player p, a rational subhistory r different from the honest one, and the part of the honest
history after which p profits from deviating to r.

4.2.6 Weakest Preconditions

To extract the weakest precondition, that – if added to the set of initial constraints –
makes the honest history satisfy the security property, all unsat cases have to be computed
in the case splitting engine (see Section 4.2.3). This list of unsat cases operates as the
input to the weakest preconditions routine. We apply tailored simplification steps to
reduce the list of unsat cases to an equivalent and readable formula.

This only applies if the user sets the weakest precondition flag of CheckMate (see
Section 4.3) and the analyzed honest history violated the respective security property.
In this case, the computed weakest precondition is provided as output. Lines 14–15 of
Figure 4.4 list the weakest precondition for the weak immunity of Figure 4.3 and history
(rA, lB).

4.3 Usage
CheckMate invocations are of the form checkmate GAME FLAGS, where GAME is an
input file as specified in Section 4.2.1 and FLAGS are described below. CheckMate
accepts the following options to modify its behavior:
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-preconditions If a security property is not satisfied, CheckMate computes the
weakest precondition, which, if enforced additionally, would satisfy the security
property.

-counterexamples If a security property is not satisfied, CheckMate provides a
counterexample showing why the property does not hold, i.e., an attack vector.
The number of considered scenarios is controlled by the all_cases flag.

-all_counterexamples If a security property is not satisfied, CheckMate provides
all counterexamples for the violated case(s).

-all_cases If a security property is not satisfied, CheckMate computes all violated
cases.

-strategies If a security property is satisfied, CheckMate provides evidence in the
form of a strategy that satisfies it.

Additionally, the user can choose which security properties to analyze with the op-
tions -weak_immunity, -weaker_immunity, -collusion_resilience, and also
-practicality. If no property is specified, then all four of them will be analyzed by
default. For instance, to generate the output shown in Figure 4.4, we execute

checkmate GAME -weak immunity -counterexamples -preconditions,

where GAME is an input file containing the JSON encoding of the game in Figure 4.3.

4.4 Evaluation

We evaluated our tool on 15 benchmarks. Table 4.1 surveys our examples, with its last
7 lines listing new benchmarks compared to [BKK+23a]. Out of our 15 examples, 5
describe blockchain protocols with 2, 3, or 5 players – these are the Simplified Closing,
Simplified Routing, Closing, 3-Player Routing and Unlocking Routing. The
Auction example of Table 4.1 models the economic behaviors of an auction; Tic Tac
Toe as well as Tic Tac Toe Concise a game of tic-tac-toe; whereas the 7 other examples
of Table 4.1 are game-theoretic problems with 2 to 4 players. Table 4.1 summarizes our
experimental results. CheckMate was run in default mode; that is, none of the flags
described in Section 4.3 were set, and all four security properties were analyzed. In each
of the terminating benchmarks, the current CheckMate version (version v1), presented
in this work, is significantly faster than its initial prototype (version v0) [BKK+23a]. As
mentioned in Section 4.1, this is due to our optimized and reshaped C++ implementation,
as well as thanks to an improved case splitting algorithm.

Experimental Analysis. Our tool improvements make even the 5-player game Un-
locking Routing, with 36,113 nodes, feasible to analyze. Our biggest game Tic Tac
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Toe, on which CheckMate does not terminate within one hour, is modeled in an unnec-
essarily huge way on purpose to show CheckMate’s limitations: the majority of EFG
branches could be removed for symmetry reasons. A game-theoretically equivalent pruned
game tree is analyzed in benchmark Tic Tac Toe Concise, for which CheckMate
terminates in 107.84 seconds. Scaling CheckMate further is an interesting challenge for
future work.

Of the 7 new benchmarks, only Tic Tac Toe Concise was secure for the honest history
incorporating the known tie-yielding behavior. For the game-theoretic problems G,
Centipede, and EBOS, none of the security properties hold. This is not surprising as
game-theoretic problems often model dilemmas, which by their nature are not secure.
Surprisingly, many of the necessary preconditions were not false, but rather readable
and short. For example, the weakest precondition to make the EBOS benchmark satisfy
practicality is 2d + f ≥ p, where d, f , and p are variables occurring in the utilities of
EBOS.

Auction violates weak immunity and collusion resilience. The model assigns the auc-
tioneer a negative value in case the item is not being sold, while the bidders get negative
values if they do not receive the item; hence, Auction cannot be weak immune and is
reported as such by CheckMate. Ignoring the inconvenience of not selling the item,
respectively not receiving it, Auction then becomes weak immune. This ignoring of
small negative values is what weaker immunity incorporates [BKK+23a]. Further, the
auctioneer and one of the bidders can collude to ensure this one bidder gets the item,
which contradicts collusion resilience and is also reported by CheckMate. The weakest
precondition to imply security is false.

Finally, Unlocking Routing violates weak immunity for similar reasons as Auction,
and thus also satisfies weaker immunity. It is practical, but is not collusion resilient,
as it is vulnerable to the known Wormhole attack [RAKM23]. For this benchmark too,
the weakest precondition to make it secure is false. That means the structure of the
protocol has to be changed to enable security, a mere restriction of values is not enough.

4.5 Related Work and Conclusion
We describe the CheckMate tool for automating the security analysis of blockchain
protocols. CheckMate complements the state of the art in protocol verification
with game-theoretic security analysis, providing economic security guarantees in ad-
dition to algorithmic correctness. CheckMate differs from existing static analyz-
ers [Cer, HBS23, OMA+23] of Ethereum smart contracts, as these techniques merely
consider cryptographic security and formally verify the Solidity [Aut25] implementation
of smart contracts. Formal methods are also used in the cryptographic verification of
more general protocols [Bla14, KNT20, MSCB13], yet without game-theoretic considera-
tions. On the other hand, existing game-based analyzers [GHWZ18, KNPS20, MMT05]
exhibit stochastic concurrent games and provide probabilistic results about likely be-
haviors [KNPS20] or apply compositional techniques for simulating game behavior.
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Game Nodes Players Histories Time Time
(v1) (v0)

Splitswi 5 2 3 0.03 0.35
Splitscr 5 2 3 0.03 0.35
Market Entry 5 2 3 0.02 0.28
Simplified Closing 8 2 2 0.02 0.26
Simplified Routing 17 5 1 0.02 0.31
Pirate 52 4 40 1.07 27.08
Closing 221 2 2 0.34 9.60
3-Player Routing 21,688 3 1 6.83 242.54
G (Figure 4.2) 5 2 1 0.02 0.18
Centipede 19 3 1 0.07 0.48
EBOS 31 4 1 0.02 0.53
Auction 92 4 1 0.11 1.72
Unlocking Routing 36,113 5 1 10.85 478.58
Tic Tac Toe Concise 58,748 2 1 107.84 254.87
Tic Tac Toe 549,946 2 1 TO TO

Table 4.1: Results of the current CheckMate (v1) versus its initial prototype (v0)
from [BKK+23a]. Runtimes in seconds; timeout (TO) after one hour; using a 12-core
AMD Ryzen 9 7900X processor running at 4.7 GHz and 128 GB of DDR5 memory clocked
at 4800 MHz.

Unlike [GHWZ18, KNPS20, MMT05], CheckMate supports SMT-based precise reason-
ing over symbolic utilities without predicting/simulating its EFG properties. Security
analysis in CheckMate becomes a theorem-proving task in first-order real arithmetic,
for which CheckMate implements novel, SMT-based techniques. With its various
features and modes, CheckMate helps blockchain developers not only to analyze their
protocols but also to “debug” and revise their protocol modeling and verification tasks.
In particular, the counterexamples generated by CheckMate capture attack vectors
to be mitigated, whereas the weakest preconditions computed by CheckMate provide
constraints to be enforced in the protocols. Our experimental results demonstrate the
real-world scalability of CheckMate, verifying, for example, the closing and routing
phases of Bitcoin’s Lightning Network [PD16].
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CHAPTER 5
Compositional Game-Theoretic

Security

This chapter is based on article [BKK+25]:

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Raw-
son. Divide and Conquer: A Compositional Approach to Game-Theoretic Security.
EasyChair Preprint no. 15785, 2025.

This article is an extended version of a paper that is currently under review.

5.1 Problem Statement

Decentralized systems based on blockchain technology, such as cryptocurrencies [Nak08]
and decentralized finance [Woo14], are in need of security guarantees. Establishing such
guarantees is usually approached by formal analysis of the underlying cryptographic
protocols [MSCB13, Bla14, WLC+19, KNT20]; or by game-theoretic security analy-
sis [ZBPBS21, RAKM23] to ensure economic incentives in a protocol align with intended
outcomes and capture malicious actions preventable by punishment mechanisms within
blockchain analysis. This work focuses on game-theoretic security.

Recent work shows that automatic analysis of game trees is tractable via satisfiability
modulo theory (SMT) solving in first-order real arithmetic. In particular, game-theoretic
analysis is reduced to solving a single large SMT instance [BKK+23a], and this approach
scales to mid-size games [RBK+24]. However, this style of automated analysis has
inherent limitations. A major problem is scalability: full game trees of large protocols
are huge, yielding enormous SMT instances that cannot be solved in reasonable time.
Another challenge is game-theoretic modeling: it is much more convenient to reason
about subgames in a modular, independent manner and compose subgames’ results into
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results over the entire protocol. Such convenience becomes even more pronounced in the
presence of repeated subgames.

This work addresses the aforementioned challenges and introduces a compositional
approach to game-theoretic security (Section 5.5). Given a protocol, we model parts of
a protocol independently as subgames, analyze the security of the resulting subgames,
and combine subgame securities to enforce security of the game modeling the entire
protocol. In other words, we perform a divide-and-conquer approach for game-theoretic
security analysis, whose automation is feasible via SMT solving (Section 5.6). As the
same subgame might occur multiple times in the game tree, the reasoning effort involved
is dramatically reduced by compositional game design, thus scaling SMT-based reasoning
to large game trees (Section 5.7).

Compositional reasoning is, however, not trivial, as illustrated by Example 5.11, which
shows that SMT queries may not be naïvely split into subgames, as constraints in
one subgame may interact with constraints in other subgames (Section 5.4). Further,
a security result of a subgame cannot be just simply propagated upwards, as in our
experiments we have encountered all four possible scenarios: a subgame is not secure, but
the entire game is; a subgame is secure, but the entire game is not; both subgame and
entire game are secure; and both not secure. Our divide-and-conquer approach provides
a theoretically sound and complete way to decompose reasoning into fine-grained SMT
queries over subgames (Theorem 5.8).

To the best of our knowledge, our approach is the first compositional method for game-
theoretic security. We implement our work as the next generation of CheckMate called
CheckMate2.0. Our experiments demonstrate that divide-and-conquer reasoning
enables game-theoretic modeling and analysis of complex real-world protocols with
millions of nodes.

Contributions. We bring the following contributions.

• We introduce a compositional framework for game-theoretic security analysis (Sec-
tion 5.5). Our framework defines player-dependent notions of security properties,
which in turn enable divide-and-conquer reasoning over game trees. We divide
games into subgames while ensuring that the resulting reasoning is both sound and
complete.

• We advocate divide-and-conquer algorithmic reasoning to automate compositional
modeling and security analysis (Section 5.6). We interleave subgame and supergame
(parent game) reasoning, by using the security result of a subgame within leaves of
their respective supergames.

• Our compositional framework naturally supports the generation of counterexamples
if security properties are violated. Moreover, we revise game preconditions in order
to strengthen and enforce security. When security is established, we extract a game
strategy as a proven security certificate (Sections 5.6.3 and 5.6.4).
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• We implement compositional game reasoning in the CheckMate2.0 tool. Our
experiments show that compositionality significantly improves runtime and supports
efficient case-splitting over symbolic game utilities (Section 5.7).

5.2 Preliminaries

We assume familiarity with standard first-order logic [Smu95] and real arithmetic in
the context of SMT solving [BT18, BN24]. We next introduce game-theoretic concepts
relevant to our work. For readability and to ease reasoning about parts of games, the
definitions of extensive form games and their properties from Chapter 3 are slightly
reformulated.

A game is a static finite object with finitely many players. Players choose from a finite set
of actions until the game ends, whereupon they receive a utility. The focus is on perfect
information Extensive Form Games (EFGs) [OR94] in which the actions are chosen
sequentially with full knowledge of all previous actions. Games may yield collective
benefit or loss, i.e., they are not necessarily zero-sum.

Definition 5.1 (Extensive Form Game — EFG). An extensive form game Γ = (N,G) is
determined by a finite non-empty set of players N together with a finite tree G = (V,E).
A game path h = (e1, ..., en), with ei ∈ E, that starts from the root of G is called a
history. We denote the set of histories H . There is a bijection between nodes v ∈ V and
histories h ∈H that lead to these nodes.

• A history that leads to a leaf is called terminal and belongs to the set of terminal
histories T ⊆H . Terminal histories t are associated with a utility for each player.

• Non-terminal histories are those histories that are not terminal. Non-terminal
histories h have assigned a next player denoted as P (h) ∈ N . Player P (h) chooses
from the set A(h) of possible actions following h.

In an EFG Γ, we call a terminal history h∗ honest if it represents the expected behavior
in Γ. An EFG Γ can have many honest histories; security analysis over Γ is always
performed relative to a chosen and fixed honest history (Section 5.3.1).

Example 5.1 (Market Entry Game). Consider the Market Entry game Γme of Figure 5.1.
In this game, there are two players: M representing a new company and E an established
company. At the root, it is the turn of player P (∅) = M to choose from actions
A(∅) = {n, e}. Action n represents not entering the market, producing a terminal history
(n) where M gets 0 utility and E gets all of the profits p > 0. Action e represents entering
the market, in which case E can respond by either ignoring this move and thus splitting
profits equally, or by entering a price war that damages both players.
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M

(0, p)

n

E

(p/2, p/2)

i

(−a,−a)

pw

e

Figure 5.1: Market Entry Game Γme, with a, p > 0. Utility tuples state M ’s utility first,
E’s second.

Utilities in game theory are usually numeric constants. We generalize utilities to symbolic
terms in real arithmetic and thus encode all possible values within given constraints.
Variables and numeric constants are evaluated over the real numbers extended by a finite
set of infinitesimals, closer to zero than any real number. Infinitesimals model subjective
(in)conveniences that do not relate directly to funds, such as opportunity cost. We model
infinitesimals with terms over R × R, ordered lexicographically: the first component
represents the real part, the second the infinitesimal. We write real for the first projection
and avoid writing pairs, using a, b, c . . . for real variables, and α, β, γ, . . . for infinitesimals.
The utility term a+ α− ε is therefore represented as (a, 0) + (0, α)− (0, ε) = (a, α− ε).

Example 5.2. We could modify the Market Entry game from Example 5.1 by adding an
infinitesimal α > 0 to the utility of player M at (e, i). The utility p

2 + α represents half
of the profit p and the additional benefit of entering the market α, as M is motivated to
establish a new entity on the market.

We use the Market Entry game as a running example for its simplicity. Our approach is
also evaluated on real-world models in Section 5.7, such as the Closing game, the 3-Player
Routing game, or the Auction game. To formulate game-theoretic security properties, we
need the following definitions for EFGs.

Definition 5.2 (EFG Properties). Let Γ = (N,G) be an EFG.

Strategy A strategy σ for a group of players S ⊆ N is a function mapping non-terminal
histories h ∈H \T , where one of the players in group S has a turn P (h) ∈ S, to
the possible actions A(h). We write SS for the set of strategies for group S, and
S for SN , which we call joint strategies. We refer to the union of strategies with
disjoint domains as a combined strategy and denote it as a tuple. To combine e.g.
σS ∈ SS and τN−S ∈ SN−S, we write (σS , τN−S) ∈ S 1.

Resulting History The resulting terminal history H(σ) of a joint strategy σ ∈ S is
the unique history obtained by following chosen actions in σ from root to leaf.

1This tuple notation is consistent with the substitution notation in the previous chapters, e.g.
(σS , τN−S) = τ [σS/τS ] but more convenient when it comes to reasoning about parts of games.
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Following Honest History A strategy for a player p follows the honest history h∗ if,
at every node along the honest history, where p is making a choice, the strategy
chooses the action in h∗. For every other node, there is no constraint.

Utility Function The utility function up(σ) assigns to player p ∈ N their utility at the
resulting terminal history of the joint strategy σ ∈ S , that is up(σ) := up(H(σ)).
We sometimes write all player utilities for a joint strategy σ ∈ S as u(σ), denoting
a tuple of size |N |.

Subgame Subgames Γ|h of Γ are formed from the same set N of players and a subtree of
G, and are therefore identified by the history h leading to the subtree G|h. Histories
H|h of Γ|h are histories in H with prefix h, strategies σ|h ∈ S|h of Γ|h are strategies
restricted to the nodes in G|h and the utility function u|h of Γ|h assigns each joint
strategy σ|h ∈ S|h the utility of the yielded leaf u|h(σ|h) := u(h,H(σ|h)). This
includes trivial subgames: leaves or the entire tree Γ at the empty history.

Supergame If h′ is a prefix of h, Γ|h′ is a supergame of Γ|h.

Subtree along/off Honest History Let h∗ be the honest history. A subgame Γ|h is
along the honest history iff h is a prefix of h∗; that is, there is a history g ∈H|h in
the subtree such that (h, g) = h∗. Otherwise, Γ|h is off the honest history.

Intuitively, a subgame is the part of the game that is still to be played after some
actions have been taken already. A supergame of a subgame is any game tree that
embeds the subgame as the subtree. For the sake of readability, we use the following
simplifications. We use subgame/subtree and supergame/supertree interchangeably. We
write u(σS , τN−S) := u((σS , τN−S)) for the combined strategy (σS , τN−S) ∈ S . For
history k ∈H , we write k|h to express the suffix of k after h, that is (h, k|h) = k.

Example 5.3. Consider again the Market Entry game Γme in Figure 5.1. A joint strategy
τ could have M taking action n initially, and player E taking i after (e). M ’s strategy
τM ∈ SM takes action n initially. E receives uE(τ) = p. The history resulting from τ is
(n), and τ is a strategy extending history (n).

The subgame for history (e) has players {M,E} and a tree where E must choose between
action i with utility (p2 ,

p
2) and action pw with utility (−a,−a). For honest history (e, i)

the subtree Γme|(e) after action e is along the honest history (e, i), whereas the trivial
subtree Γme|(n) after action n is off the honest history (e, i).

The Market Entry game has 2× 2 = 4 joint strategies as M chooses from two possible
actions, and independently E picks one action out of two in the subtree Γme|(e).

5.3 Game-Theoretic Security Properties
Our work models real-life protocols as extensive form games (EFGs). Subsequently, we
reduce the security analysis of a protocol to the game-theoretic security analysis of its
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corresponding EFG. According to [ZBPBS21] an adversary could execute an attack in a
protocol for personal gain or harming somebody. Therefore, we consider a protocol to be
game-theoretically secure if the following properties hold:

(P1) Byzantine Fault-Tolerance. Even in the presence of adversaries, honest players
do not suffer loss. That is, in a secure protocol an honest player will not receive
negative utility, independent of others’ behavior. Therefore, there are no "attacks"
where somebody is harmed.

(P2) Incentive Compatibility. Rational agents do not deviate from the honest
behavior, as it yields the best payoff. Hence, in a secure protocol, a rational
"attacker" is behaving honestly and no adversary gets personal gain by deviation.

5.3.1 Security Properties for Subgames

To accommodate a compositional game-theoretic approach (Section 5.5), we define the
security properties weak immunity, collusion resilience, and practicality for any subtree
of Γ, soundly generalizing their definitions in the previous chapters. Property (P1) is
ensured by weak immunity and (P2) by the combination of collusion resilience and
practicality. We assume a total order on symbolic utility terms, lifted in Section 5.3.2.

Definition 5.3 (Weak Immunity). A subtree Γ|h of game Γ with honest history h∗ is
weak immune, if a strategy σ ∈ S|h exists such that all players p following σ always
receive non-negative utility:

∃σ ∈ S|h.∀p ∈ N ∀τ ∈ S|h. up(σp, τN−p) ≥ 0 . (wi(Γ|h))

If h is along h∗, additionally σ has to follow h∗
|h, i.e. H|h(σ) = h∗

|h.

Example 5.4. The Market Entry game from Example 5.1 with honest history (n) is
weak immune: if M behaves honestly both players get a nonnegative utility; if M deviates
via e, player E can choose action i and obtains a positive utility p

2 .

Sometimes, weak immunity is too restrictive and we take weaker immunity to ensure
(P1).

Definition 5.4 (Weaker Immunity). A subtree Γ|h of game Γ with honest history h∗ is
weaker immune, if there exists a strategy σ ∈ S|h, such that all players p that follow σ
always receive at least a negative infinitesimal:

∃σ ∈ S|h.∀p ∈ N ∀τ ∈ S|h. real(up(σp, τN−p)) ≥ 0 . (weri(Γ|h))

If h is along h∗, additionally H|h(σ) = h∗
|h.

Next, the property of collusion resilience requires the honest behavior to yield the best
payoff, even in the presence of collusion.
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Definition 5.5 (Collusion Resilience). A subtree Γ|h of the game Γ with honest history
h∗ is collusion resilient if there exists a strategy σ ∈ S|h such that no strict subgroup of
players can deviate to receive a joint utility greater than their joint honest utility:

∃σ ∈ S|h.∀S ⊂ N ∀τ ∈ S|h.
∑︂
p∈S

up(h∗) ≥
∑︂
p∈S

up(σN−S , τS) . (cr(Γ|h))

If h is along h∗, also H|h(σ) = h∗
|h has to hold.

Note that the collusion resilience of a subtree according to the above definition depends
on the honest utility, the utility resulting from the honest history in the entire game Γ.
The node containing the honest utility is not necessarily part of the considered subtree.

Example 5.5. Consider again the Market Entry game from Example 5.1 with the honest
history (n). This is collusion resilient: we can take actions n for player M and pw for
player E. Since it is a two-player game, the colluding group of players can only be a
singleton. If M deviates from the honest behavior, they get utility −a, which is less than
0 in the honest case. If E deviates, the history is not affected, since M chooses action n.
Thus, the game is collusion resilient.

The next property of practicality ensures that, for all player decisions, the honest behavior
is also “greedy”: if all players act selfishly, that is they maximize their own utilities, the
honest choice yields the best utility.

Definition 5.6 (Practicality). A subtree Γ|h of the game Γ with honest history h∗ is
practical, if there exists a strategy σ ∈ S|h such that no player can deviate in any subtree
to receive a strictly greater utility in the subtree:

∃σ ∈ S|h ∀g ∈H|h ∀p ∈ N ∀τ ∈ S|(h,g). (pr(Γ|h))
u|g,p(σ|g) ≥ u|g,p(τp, σ|g,N−p) .

If h is along h∗, also H|h(σ) = h∗
|h has to hold.

Example 5.6. The Market Entry game from Example 5.1 with the honest history (n)
is not practical. Player E should choose i, as it yields a better utility. It is then not
practical for M to choose n, as it yields utility 0, whereas action e yields the better utility
p
2 .

We finally note that every subtree Γ|h of a game Γ that is off the honest history is always
practical.

Lemma 5.1 (Subtrees off Honest History are Practical). Every subtree Γ|h of a game Γ
that is off the honest history is practical.
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Proof. We fix an arbitrary subtree Γ|h not along the honest history for which we prove
practicality. We construct a strategy σ ∈ S|h in the following inductive way bottom-up:
We consider histories k in Γ|h, such that for all possible actions a ∈ A|h(k) after k the
strategy σ has been defined already for the subtree after (k, a). Initially, this is only the
case for histories k, where all actions a ∈ A|h(k) lead to leaves.

At each such history k we compare the utilities for the current player P (k) after the
possible choices a ∈ A|h(k) according to σ: u|(h,k,a),P (k)(σ|(k,a)). We define strategy σ
to pick an action a′ = σ(k) ∈ A|h(k) which maximizes P (k)’s utility. If this is done
iteratively, one eventually reaches the root of Γ|h, at which point the strategy σ ∈ S|h is
fully defined.

We now show σ is practical for the fixed case split. According to Definition 5.6, we pick
an arbitrary history g ∈H|h, a player p ∈ N and a strategy τ ∈ S|(h,g) in the subgame
after g, and prove:

u|(h,g),p(σ|g) ≥ u|(h,g),p(τp, σ|g,N−p) . (5.1)

If τp and σ|g,p are identical, the inequality holds trivially, hence we assume them to
be distinct. The strategy σ|g generates a history which we call hσ = H(σ|g) and
H(τp, σ|g,N−p) = hτ . Note that the strategies differ only in choices player p made. We
will now use induction on the deviation points ℓn of σ along hτ to show Equation (5.1).
Our induction hypothesis is

u|(h,g,ℓn),p(σ|(g,ℓn)) ≥ u|(h,g,ℓn),p(τ|ℓn,p, σ|(g,ℓn),N−p) . (5.2)

For the base case, we consider the last point along the generated history hτ , where the
choice taken in strategy (τp, σ|g,N−p) differs from the one taken in σ|g. We call the history
leading to this point ℓ1 ∈ H|(h,g). The player at ℓ1 has to be p. Revisiting now the
construction of σ, at ℓ1 we chose σ|g(ℓ1) =: a1 to maximize the utility of P (ℓ1) = p.
Therefore, we know for c1 := τ(ℓ1)

u|(h,g,ℓ1,a1),p(σ|(g,ℓ1,a1)) ≥ u|(h,g,ℓ1,c1),p(σ|(g,ℓ1,c1))
= u|(h,g,ℓ1,c1),p(τ|(ℓ1,c1),p, σ|(g,ℓ1,c1),N−p).

The equality holds, because σ and (τp, σN−p) are identical on Γ|(h,g,ℓ1,c1). By definition
of a1 and c1 we also know

u|(h,g,ℓ1),p(σ|(g,ℓ1)) ≥ u|(h,g,ℓ1),p(τ|ℓ1,p, σ|(g,ℓ1),N−p) , (5.3)

which concludes the base case.

For the inductive case, we assume the induction hypothesis Equation (5.2), for the
previous deviation point ℓn−1 and consider deviation point ℓn along hτ . We define
cn := τ(ℓn) an an := σ|g(ℓn). By the definition of σ, we have

u|(h,g,ℓn,an),p(σ|(g,ℓn,an)) ≥ u|(h,g,ℓn,cn),p(σ|(g,ℓn,cn)) . (5.4)
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We further know that

u|(h,g,ℓn,cn),p(σ|(g,ℓn,cn)) = u|(h,g,ℓn−1),p(σ|(g,ℓn−1)) . (5.5)

This is the case, since by definition of ℓn and ℓn−1 as subsequent deviation points, the
history of σ|g between (ℓn, cn) and ℓn−1 is identical to the one of (τp, σ)|g,N−p. Combining
now Equation (5.4), Equation (5.5) and the inductive hypothesis we derive

u|(h,g,ℓn,an),p(σ|(g,ℓn,an)) ≥ u|(h,g,ℓn−1),p(τ|ln−1,p, σ|(g,ℓn−1),N−p) . (5.6)

By the definition of an (for the left-hand side of the equation) and the fact that ℓn and
ℓn−1 are along hτ (for the right-hand side), we conclude that Equation (5.2) holds also
for ℓn.

To finalize the proof, we consider the first point ℓM along hτ , where σg and (τp, σ|g,N−p)
differ. This is exactly the splitting point of hσ and hτ , thus

u|(h,g),p(σ|g) = u|(h,g,ℓM ),p(σ|(g,ℓM )) , and (5.7)
u|(h,g),p(τp, σ|g,N−p) = u|(h,g,ℓM ),p(τ|lM ,p, σ|(g,ℓM ),N−p) . (5.8)

From this, together with Equation (5.2), Equation (5.1) follows, which shows that σ
is indeed practical. Hence, we proved that any subtree not along the honest history is
practical.

Example 5.7. Consider the Market Entry subgame after the non-terminal history (e),
marked by teal dashed lines in Figure 5.1. We can always choose the action that yields
the best utility for the current player E. The only way we can violate practicality is by
having the best choice conflicting with the honest choice, which cannot happen when the
subtree is off honest history.

The terms weak(er) immunity, collusion resilience, and practicality can be extended to
strategies and terminal histories in the following way.

Definition 5.7 (Security Properties of Strategies and Histories). A strategy σ ∈ S of a
game Γ weak(er) immune, collusion resilient, or practical, iff it can serve as the witness
strategy in (wi(Γ|h)), (weri(Γ|h)), (cr(Γ|h)), or (pr(Γ|h)), respectively.

A terminal history t ∈ T of the game Γ is weak(er) immune, collusion resilient, or
practical, iff there exists a strategy σ ∈ S that has the respective property and extends
history t, that is H(σ) = t.

5.3.2 Total Orders

Similarly to [BKK+23a], in order to lift the assumption that we know how all utility
terms relate, we make the security analysis relative to a finite set C of initial constraints
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on the symbolic variables appearing in the utility terms and explicitly universally quantify
over the variables, as follows

∀x⃗.
(︄⋀︂
c∈C

c[x⃗]
)︄
→ ∃σ ∈ S . H(σ) = h∗ ∧ sp(σ)[x⃗] , (5.9)

where x⃗ = (x1, . . . , xℓ) are the real variables occurring in the utility terms Tu and
sp(σ) is a formula pertaining to the security property sp ∈ {wi,weri, cr, pr} after
existential quantification of the strategy. For weak immunity wi(σ) = ∀p ∈ N ∀τ ∈
S|h. up(σp, τN−p) ≥ 0, and similarly for the other properties.

Furthermore, to efficiently handle the comparison of symbolic utilities in an SMT solver,
we implement an equivalent version of the above formula by considering all consistent
total orders ⪯ over the set Tu of utility terms appearing in the game tree Γ.

Theorem 5.1 (Game-Theoretic Security with Total Orders). For an EFG Γ with honest
history h∗ and a finite set of initial constraints C, property (5.9) is equivalent to

∀(⪯, Tu) ∃σ ∈ S . H(σ) = h∗ ∧ ∀x⃗.

⎛⎝ ⋀︂
c∈C∪⪯

c[x⃗]

⎞⎠→ sp(σ)[x⃗] . (5.10)

Proof. To show implication “⇐”, we pick arbitrary values for the variables x⃗ that satisfy
all initial constraints in C. We then consider the total order ⪯ on Tu that is consistent
with the choice of values for variables x⃗. By Equation (5.10), there has to exist a strategy
σ yielding the honest history such that for all x⃗ consistent with ⪯ and satisfying the
initial constraints C the security property sp(σ)[x⃗] holds. Since the picked x⃗ satisfies ⪯
and C, the strategy σ works. Hence, 5.9 is implied.

For implication “⇒”, let ⪯ be an arbitrary total order over the symbolic terms Tu and
x⃗ values that satisfy ⪯ as well as C. Then, from (5.9) there exists an honest strategy
σ such that sp(σ)[x⃗]. Note that whether sp(σ)[x⃗] holds depends only on the relation of
terms in Tu and not on the actual values of x⃗. Therefore, sp(σ)[x⃗] is true for one x⃗ iff it
is true for all x⃗ consistent with the same term order ⪯. Thus, 5.10 holds.

5.3.3 Counterexamples

If there is no joint strategy satisfying a security property (wi, weri, cr, or pr), we can
investigate why not. Counterexamples serve the important purpose of providing attack
vectors and thus pinpointing weaknesses of a protocol underlying the game model.

Counterexamples to Weak(er) Immunity. For the weak(er) immunity property, a
counterexample is a harmed honest player p and a partial strategy of the other players
N − p such that no matter what honest actions p chooses, the other players cannot avoid
receiving a real-valued negative utility.
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Definition 5.8 (Counterexamples to Weak(er) Immunity). Let Γ be an EFG and h∗ the
considered honest history. A counterexample to h∗ being weak(er) immune is a player
p together with a partial strategy sN−p such that sN−p extended by any strategy σp of
player p who follows the honest history h∗, yields a terminal history H(sN−p, σp) = tσp

with up(tσp) < 0 (resp. for weaker immunity real(up(tσp)) < 0) and it is minimal with
that property.

Minimality of the partial strategy sN−p states that, if any information point sN−p(h) = a
is removed, there exists a strategy σp of player p such that (σp, s′

N−p) does not yield a
terminal history, where s′

N−p is sN−p without action a. That is, when following only
actions of (σp, s′

N−p), we get stuck at an internal node of the tree.

Example 5.8. A counterexample to the weak immunity of the Market Entry game
of Example 5.1 with the honest history (e, i) would be player M and a partial strategy
for E, where they choose action pw. If M behaves honestly and chooses action e, they
end up with the negative utility of −a after the terminal history (e, pw).

Counterexample to Collusion Resilience. A counterexample to collusion resilience
(Definition 5.9) consists of a group of deviating players S and their partial strategy
sS ∈ S , such that the joint utility of S is better than the honest utility, no matter how
the other players N − S react, while still following the honest history.

Definition 5.9 (Counterexamples to Collusion Resilience). Let Γ be an EFG and h∗ the
considered honest history. A counterexample to h∗ being collusion resilient is a set of
deviating players S together with their strategy sS such that sS extended by any strategy
σN−S of players N − S, which follows the honest history h∗, yields a terminal history
H(σN−S , sS) = tσN−S with ∑︂

p∈S
up(tσN−S ) >

∑︂
p∈S

up(h∗)

and it is minimal with that property. The minimality of sS is similar to the minimality
of the partial strategy for weak(er) immunity.

Example 5.9. In the Market Entry game of Example 5.1, a counterexample to the
honest history (e, pw) being collusion resilient is a deviating group {E} with a partial
strategy that takes action i. Since the honest player M can only take action e, the
deviating utility for E is p

2 , which is greater than the honest one −a.

Counterexamples to Practicality. Intuitively, a counterexample to practicality of
the honest history h∗ has to provide a reason why a rational player would not follow
h∗. At some point along h∗ after a prefix h, there is an action a promising the current
player P (h) a strictly better utility than h∗. Further, in the subgame Γ|(h,a) after (h, a)
all practical utilities have to be better for P (h), otherwise other players could choose
actions in Γ|(h,a) that would disincentivize P (h) to deviate from h∗.

127



5. Compositional Game-Theoretic Security

M

(0, p)

n

E

(p/2, p/2)

i

(−a,−a)

pw

e

M

(0, p)

n

¬wi

e

Figure 5.2: Naive Compositionality of Weak Immunity for Market Entry Game, a, p > 0.

Definition 5.10 (Counterexamples to Practicality). For an EFG Γ and honest history
h∗, a counterexample to practicality of h∗ is a prefix h of h∗ together with an action
a ∈ A(h), such that for all practical terminal histories t in the subgame Γ|(h,a) it holds
that uP (h)(h∗) < uP (h)((h, a, t)).

Example 5.10. Recall that the Market Entry game from Example 5.1 with the honest
history (n) is not practical. A counterexample to practicality is the empty prefix h = ∅
and the action e, as the practical utility in the subgame after history (e) yields p

2 for
player M , which is strictly better than the 0 in the honest case.

5.4 Unsound Naïve Approach to Compositionality

For a divide-and-conquer style of compositional game-theoretic security analysis, we
would like to analyze a game tree by propagating security results of subtrees upwards to
the parent/ancestor nodes of the supertree. However, naïvely propagating the yes/no
security result of the subtree does not suffice, as shown in Example 5.11.

Example 5.11. Consider the Market Entry game (Example 5.1) reproduced on the
left-hand side of Figure 5.2, with honest history (n). Example 5.6 shows this game is
weak immune. Now consider a naïve compositional approach looking at the subgame
after non-terminal history (e), marked by teal dashed lines. Since player E can take
action pw — leading to negative utility for M — this subtree is not weak immune. To
mimic a naïve compositionality approach, we replace the subtree after (e) by ¬wi, shown
on the right. Asked whether this supertree is weak immune, one would say no, as M
could deviate from the honest history via e, which leads to a subtree that is not weak
immune. This is an incorrect conclusion since the Market Entry game is weak immune
for the honest history (n).

The main reason why the naïve approach above fails is that we need more information
to be able to propagate a result from a subtree to its parent, namely that the subtree
is not weak immune only for player M . In the parent, player M can achieve weak
immunity by behaving honestly and choosing action n, ensuring weak immunity of the
entire game tree. Similar additional information (see Theorem 5.3) is needed for the
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other security properties: collusion resilience requires which colluding groups the subtree
is secure against; practicality requires the practical utilities resulting from the subtree,
and whether the utility of the honest history is practical. We now show that propagating
this information yields a sound and complete compositional approach to game-theoretic
security.

5.5 Compositional Game-Theoretic Security
Our compositional framework for game-theoretic security analyses is materialized via
two crucial components:

1. Stratified analysis of security properties over players, capturing player-wise security
properties (Section 5.5.1)

2. Splitting player-wise security properties into subgames, enabling us to propagate
subgame reasoning for deriving supergame security (Section 5.5.2).

For simplicity, we assume a total order ⪯ on the occurring utility terms Tu in order
to relate symbolic game utilities. As before, this assumption is relaxed in Section 5.6,
generalizing our approach.

5.5.1 Security Properties Stratified over Players

We start with the following observation. While Example 5.11 shows that there are no
implications of subtree and supertree results in general, subtrees along the honest history
can, in fact, soundly pass negative (not secure) results up to their parents.

Theorem 5.2 (Equivalence of Non-Secure Games). A game Γ with honest history h∗

violates one of the security properties of weak(er) immunity, collusion resilience, or
practicality iff there exists a history h along the honest history h∗ such that Γ|h violates
the respective security property.

Proof. The direction "Γ violates security property ⇒ ∃h ∈H . h along h∗ ∧ Γ|h violates
security property" is easy to show. Just pick the trivial history h = ∅, which is always
along the honest history.

For the other direction, we consider the security properties individually. We start with
weak immunity and assume that Γ|h is along the honest history h∗ and is not weak
immune. We fix an arbitrary strategy σ ∈ S in the entire game Γ that yields the
honest history H(σ) = h∗ and show it is not weak immune. To do so, we consider
σ|h ∈ S|h which still yields the honest history in the subgame: H|h(σ|h) = h∗

|h. Since
Γ|h is not weak immune, there exists a player p ∈ N and a strategy τh ∈ S|h such that
u|h,p(τhN−p, σ|h,p) < 0. We now construct a strategy τ ∈ S extending τh. I.e. τ|h = τh.
Everywhere else, we set τ to be identical to σ.
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Since σ yields the honest history, H(σ) = h∗, and Γ|h lies along the honest history,
we get H(τN−p, σp) = (h,H|h(τ|h,N−p, σ|h,p)). By construction of τ also H(τN−p, σp) =
(h,H|h(τhN−p, σ|h,p)) holds. Thus, their utilities have to be identical up(τN−p, σp) =
u|h,p(τhN−p, σ|h,p) < 0. Hence, σ is not weak immune and as it was chosen arbitrarily,
it follows that Γ with honest history h∗ is not weak immune. The proof for weaker
immunity is analog.

The proof of the second direction for collusion resilience follows the same idea. We pick
an arbitrary σ ∈ S yielding the honest history h∗ and show it is not collusion resilient,
assuming that Γ|h is along the honest history and is not collusion resilient. Hence there
exists a deviating group S ⊂ N and a strategy τh ∈ S|h such that

∑︁
p∈S u|h,p(σ|h) <∑︁

p∈S u|h,p(σ|h,N−S , τ
h
S ). We again construct a strategy τ ∈ S extending τh: τ|h = τh.

Everywhere else τ is identical to σ. Applying the same reasoning as before, we know that
H(σN−S , τS) = (h,H|h(σ|h,N−S , τ

h
S )) as well as H(σ) = (h,H(σ|h)), which implies

∑︂
p∈S

up(σ) =
∑︂
p∈S

u|h,p(σ|h)

<
∑︂
p∈S

u|h,p(σ|h,N−S , τ
h
S ) =

∑︂
p∈S

up(σN−S , τS) . (5.11)

Therefore, σ is not collusion resilient, and since it was chosen arbitrarily, it follows that
Γ with honest history h∗ is not collusion resilient.

Proving this for practicality is straightforward: we again pick an arbitrary honest strategy
σ ∈ H and assume h ∈ H is along the honest history and Γ|h is not practical. I.e.
there exists a history k ∈ H|h, a player p ∈ N and a strategy τ ∈ S|(h,k) such that
u|(h,k),p(σ|(h,k)) < u|(h,k),p(τp, σ|(h,k),N−p). Using now ℓ := (h, k) ∈ H , the player p and
τ , one can see easily that

u|ℓ,p(σ|ℓ) < u|ℓ,p(τp, σ|ℓ,N−p)

and therefore σ is not practical and neither is Γ.

Intuitively, the honest history h∗ “enforces” a path down the tree Γ: when a non-
secure subtree Γ|h is encountered along this path, there is no way to compensate for it.
Theorem 5.2, however, only propagates non-secure properties along the honest history.
To allow for analysis results propagating from subgames to supergames, we stratify game-
theoretic security analysis over individual players. This means we can analyze the security
properties for a player (weak immunity: Definition 5.11, practicality: Definition 5.13), or
player group (collusion resilience: Definition 5.12) at a time, without interfering with
results of other players or groups (Theorem 5.3).

Definition 5.11 (Weak Immunity for a Player). A subgame Γ|h with honest history h∗

is weak immune for player p ∈ N , if there exists a strategy σ ∈ S|h such that no matter
to which strategy τ ∈ S|h other players deviate, p’s utility will be non-negative and, if h
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is along h∗, then also H|h(σ) = h∗
|h :

∃σ ∈ S|h. (h along h∗ → H|h(σ) = h∗
|h) ∧ (wip(Γ|h))

∀τ ∈ S|h. u|h,p(σp, τN−p) ≥ 0 .

An analogous definition applies to weaker immunity.

Example 5.12 (Player-Wise Weak Immunity). Let us revisit the Market Entry game
Γme with honest history (n) from Example 5.1, considering one player at a time.

The first player is M . The subgame Γme|(e) after history (e) is not weak immune for M ,
since E could take action pw. Propagating this result to the supertree Γme, we report
weak immunity for M : as M will honestly take action n, we avoid Γme|(e).

For E, Γme|(e) is weak immune as action i can always be chosen, yielding positive utility.
Propagating this result, we conclude that Γme is weak immune for E: all choices of M
(whom we do not assume to be honest in the analysis of E), lead to either non-negative
utility for E or to a subtree which is weak immune for E.

The definition for collusion resilience against a given player group is similar to Defini-
tion 5.11, by lifting the quantifier over the player subgroups S ⊂ N to the front of the
formula.

Definition 5.12 (Collusion Resilience against a Player Group). A subgame Γ|h of game
Γ with honest history h∗ is collusion resilient against a group of players S ⊂ N , if there
exists a strategy σ ∈ S|h such that no matter to which strategy τ ∈ S|h the players in S
deviate, their joint utility will be not greater than their honest joint utility and, if h is
along h∗, then also H|h(σ) = h∗

|h :

∃σ ∈ S|h. (h along h∗ → H|h(σ) = h∗
|h) ∧ (crS(Γ|h))

∀τ ∈ S|h.
∑︂
p∈S

u|h,p(σ) ≥ u|h,p(τS , σN−S) .

Defining practicality for a single player, though, requires slight changes: instead of
considering an arbitrary player p, we define practicality for that player whose turn it is
in the considered subtree.

Definition 5.13 (Practicality for the Current Player). A subgame Γ|h of a game Γ with
honest history h∗ is practical for the current player, if there exists a strategy σ ∈ S|h
such that in each subtree Γ|(h,g) no matter to which strategy τ ∈ S|(h,g) the current player
P (h, g) deviates, the utility of P (h, g) in the subtree will not increase strictly and, if h is
along h∗, then also H|h(σ) = h∗

|h :

∃σ ∈ S|h. (prP (Γ|h))
(h along h∗ → H|h(σ) = h∗

|h) ∧ ∀g ∈H|h ∀τ ∈ S|(h,g).

u|(h,g),P (h,g)(σ|g) ≥ u|(h,g),P (h,g)(τP (h,g), σ|g,N−P (h,g)) .
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We now state our first crucial result towards compositionality: stratification of security
analysis over players.

Theorem 5.3 (Player-Wise Security Properties). A game Γ satisfies a security property iff
it satisfies the respective security property player-wise. That is, the following equivalences
hold:

1. Γ weak immune ⇔ ∀p ∈ N. Γ weak immune for p.

2. Γ weaker immune ⇔ ∀p ∈ N. Γ weaker immune for p.

3. Γ collusion resilient ⇔ ∀S ⊂ N. Γ collusion resilient against S.

4. Γ practical ⇔ Γ practical for the current player.

Proof of Theorem 5.3.1-2. We start with equivalence (1) for weak immunity.

Implication “ ⇒”. By Definition 5.3 the game Γ, with honest history h∗, is weak immune
if

∃σ ∈ S . H(σ) = h∗ ∧ ∀p ∈ N ∀τ ∈ S . up(σp, τN−p) ≥ 0 . (wi)

Assuming Γ is weak immune, we consider such a strategy and call it σ′. The right-hand
side of the equivalence is

∀p ∈ N ∃σ ∈ S . H(σ) = h∗ ∧ ∀τ ∈ S . up(σp, τN−p) ≥ 0 . (wi∀p)

Therefore, we can just pick σ′ for all the players and be done.

Implication “ ⇐”. We assume Equation (wi∀p), i.e. Γ is weak immune for all players
pi ∈ N , i = 1, . . . , n, where n = |N |. Let their corresponding weak immune for pi
strategies be σi ∈ S , for i = 1, . . . , n. Further let σ ∈ S be a new strategy constructed
from the σi in the following way σ := (σ1

p1 , . . . , σ
n
pn

). That means at a history h where
it is player pi’s turn, the choice in σ is the one from σi: σ(h) = σi(h). The strategy σ
yields the honest history H(σ) = h∗, since all σi yield h∗ and combining strategies that
extend the same history leads to the new strategy extending the same one.

It remains to show that σ is weak immune, i.e. that this one strategy works for all the
players (right conjunct in Equation (wi)). We therefore consider an arbitrary player
pi ∈ N and an arbitrary strategy τ ∈ S . By construction of σ and the fact that σi is
weak immune for pi, it follows upi(σpi , τN−pi) = upi(σipi

, τN−pi) ≥ 0. This concludes the
proof that σ is weak immune, which implies that Γ is weak immune.

The proof of Theorem 5.3.2 is analog.
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Proof of Theorem 5.3.3. Implication “ ⇒”. For readability, let us restate the formula for
collusion resilience of Γ

∃σ ∈ S . H(σ) = h∗ ∧ ∀S ⊂ N ∀τ ∈ S .∑︂
p∈S

up(σ) ≥
∑︂
p∈S

up(τS , σN−S) , (cr)

as well as for collusion resilience against all subgroups of the game Γ

∀S ⊂ N ∃σ ∈ S . H(σ) = h∗ ∧ ∀τ ∈ S .∑︂
p∈S

up(σ) ≥
∑︂
p∈S

up(τS , σN−S). (cr∀S)

The implication then again follows from the definitions cr and cr∀S . The one strategy σ
in cr can be used for all S ⊂ N in cr∀S .

Implication “ ⇐”. We prove this direction by contraposition, showing ¬cr ⇒ ¬cr∀S .
In [BKK+23a], it is shown that ¬cr is equivalent to the existence of a counterexample
(Definition 5.9): There exists a set of deviating players S together with their strategy sS
such that sS extended by any strategy σ′

N−S of players N − S, which follows the honest
history h∗, yields a terminal history H(σ′

N−S , sS) = tσ′
N−S

with∑︂
p∈S

up(tσ′
N−S

) >
∑︂
p∈S

up(h∗) (5.12)

Let a group of deviating players S ⊂ N and their strategy sS be a counterexample. To
show ¬cr∀S we fix an arbitrary σ ∈ S that yields the honest history h∗. For the strategy
τ = (sS , σN−S) we have by Equation (5.12):∑︂

p∈S
up(σ) =

∑︂
p∈S

up(h∗)

<
∑︂
p∈S

up(H(σN−S , sS)) =
∑︂
p∈S

up(τS , σN−S).

Therefore, ¬cr∀S holds and implication “⇐” is proven.

Proof of Theorem 5.3.4. Implication “ ⇒”. We again restate the formulae for better
readability. Practicality of Γ:

∃σ ∈ S . H(σ) = h∗ ∧ ∀h ∈H ∀p ∈ N ∀τ ∈ S|h.

u|h,p(σ|h) ≥ u|h,p(σ|h,N−p, τp) (pr)

and practicality for the current player of Γ:

∃σ ∈ S . H(σ) = h∗ ∧ ∀h ∈H ∀τ ∈ S|h.

u|h,P (h)(σ|h) ≥ u|h,P (h)(σ|h,N−P (h), τP (h)) . (prP (h))
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It is now easy to see that pr implies prP (h), since for all h ∈H , P (h) ∈ N .

Implication “ ⇐”. Assuming Equation (prP (h)) holds, we fix σ that satisfies it and show
σ also satisfies Equation (pr). Let h ∈H , p ∈ N and τ ∈ S|h as in (pr) be arbitrary.

If p = P (h), then the inequality u|h,p(σ|h) ≥ u|h,p(σ|h,N−p, τp) is immediately implied
by prP (h). If p ̸= P (h), we consider the first point in H|h(σ|h) where it is player
p’s turn and call the corresponding history t ∈ H|h. In case no such t exists, then
H|h(σ|h) = H|h(σ|h,N−p, τp), and hence u|h,p(σ|h) = u|h,p(σ|h,N−p, τp).

If such a t exists, we know from (prP (h)) that u|(h,t),p(σ|(h,t)) ≥ u|(h,t),p(σ|(h,t),N−p, τ|t,p),
since p = P (h, t). From the fact that t lies along H|h(σ|h) follows u|(h,t),p(σ|(h,t)) =
u|h,p(σ|h), and as player p has no choices in t, it follows

H|h(σ|h,N−p, τp) = (t,H|(h,t)(σ|(h,t),N−p, τ|t,p))

which leads to identical utilities. Therefore, the inequality in pr is also proven for p ̸= P (h).
This concludes the proof of the theorem, as h, p, and τ were chosen arbitrarily.

5.5.2 Splitting and Combining Player-Wise Security Properties

Theorem 5.3 proves that the security analysis of a game can be carried out player-wise,
instead of analyzing interactions between all (groups of) players. We now show that
not only can players be treated individually, but (super)game security can also be split
into subgame security. That is, the security of a supergame can be proven by proving
player-wise security over subgames. This implies compositional game-theoretic security
is sound and complete.

Theorem 5.4 (Compositional Game-Theoretic Security). The game-theoretic security
of an EFG Γ with honest history h∗ can be computed compositionally. That is, the only
information needed of a subtree Γ|h, to decide whether Γ satisfies security property is

• for weak(er) immunity: for which players p ∈ N the subtree Γ|h is weak(er) immune;

• for collusion resilience: against which player groups S ⊂ N the subtree Γ|h is
collusion resilient;

• for practicality:

– if h is along h∗: whether h∗
|h is practical in Γ|h;

– if h is not along h∗: the set U(h) containing all practical utilities of Γ|h. A
utility u(t) after terminal history t ∈ T is practical in subgame Γ|h iff t is
practical in Γ|h.

Proof of Theorem 5.4. The theorem follows from the Theorems 5.5 to 5.7.
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Theorems 5.5 to 5.7 establish how to compositionally compute player-wise security for
each security property, yielding a constructive proof of Theorem 5.4.

Theorem 5.5 (Compositional Weak Immunity). Let Γ be an EFG with honest history
h∗ and p ∈ N a player. The following holds.

1) A leaf of Γ is weak immune for p iff p’s utility is non-negative:

∀t ∈ T . wip(Γ|t) ⇔ up(t) ≥ 0 .

2) A branch of Γ is weak immune for p, where p is not the current player, iff all children
are weak immune for p:

∀h ∈H \T . p ̸= P (h) ⇒
(︁
wip(Γ|h) ⇔ ∀a ∈ A(h). wip(Γ|(h,a))

)︁
.

3) A branch of Γ along the honest history h∗ is weak immune for the current player p,
iff the child following h∗ is weak immune for p. Let a∗ ∈ A(h) be the honest choice, i.e.
(h, a∗) along h∗, then:

∀h ∈H \T . p = P (h) ∧ h along h∗ ⇒(︁
wip(Γ|h) ⇔ wip(Γ|(h,a∗))

)︁
.

4) A branch of Γ off the honest history h∗ is weak immune for the current player p, iff
there exists a child that is weak immune for p:

∀h ∈H \T . p = P (h) ∧ h off h∗ ⇒(︁
wip(Γ|h) ⇔ ∃a ∈ A(h). wip(Γ|(h,a))

)︁
.

Proof. We start by proving 1). By Definition 5.3, there has to exist a strategy σ ∈ S|t
such that for all τ ∈ S|t u|t,p(σp, τN−p) ≥ 0. But for a terminal history t ∈ T , the utility
function u|t,p = up(t) is just a constant and the only strategy in S|t is the empty strategy.
Thus, equivalence 1) holds by definition.

For equivalence 2), let h ∈ H \ T be a non-terminal history such that p is not the
current player p ̸= P (h). We prove implication “⇒” first: Assuming Γ|h is weak immune
for p, there exists a strategy σ ∈ Sh such that – if h is along h∗, it yields the honest
history and – for all τ ∈ S|h the player p’s utility u|h,p(σp, τN−p) ≥ 0. Let now a ∈ A(h)
be an arbitrary choice after history h. We consider σ|(a) ∈ S|(h,a) – if (h, a) along h∗,
then H|(h,a)(σ|(a)) = h∗

|(h,a). Let further τa ∈ S|(h,a) be arbitrary. For τ ′ ∈ S|h, such
that τ ′

|(a) = τa and τ ′(h) = a we know by assumption that u|h,p(σp, τ ′
N−p) ≥ 0. Since

p ̸= P (h) and τ ′(h) = a, it follows H|h(σp, τ ′
N−p) = (a,H|(h,a)(σ|(a),p, τ

a
N−p)). Therefore,

u|(h,a),p(σ|(a),p, τ
a
N−p) = u|h,p(σp, τ ′

N−p) ≥ 0. As τ ′ was chosen arbitrarily, σ|(a) was
constructed based on a, and a was also chosen arbitrarily, it follows the right-hand side
of the equivalence: ∀a ∈ A(h). wip(Γ|(h,a)).

To show implication “⇐”, we assume ∀a ∈ A(h). wip(Γ|(h,a)) and we construct a σ′ ∈ S|h
weak immune for p. For all a ∈ A(h) let σ′

|(a) := σa, where σa ∈ S|(h,a) weak immune
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for p – and if (h, a) along h∗, then σa also yields the honest history. Such strategies
have to exist according to our assumptions. If h is along h∗, then define σ′(h) := a∗,
where a∗ is the next choice in h∗ after h, which makes H|h(σ′) = h∗

h. Otherwise, let
it be arbitrary. For an arbitrary τ ∈ S|h, call τ(h) = a′. Since p ̸= P (h), follows
H|h(σ′

p, τN−p) = (a′, H|(h,a′)(σap , τ|(h,a),N−p)). Hence, as σa was weak immune for p, we
get u|h,p(σ′

p, τN−p) = u|(h,a′),p(σap , τ|(h,a),N−p) ≥ 0. Strategy τ was chosen arbitrarily;
therefore, Γ|h is weak immune for player p.

We proceed by showing equivalence 3). Let h ∈ H \ T be such that p = P (h) and h
along h∗. We further fix the honest choice after h to be a∗ ∈ A(h), i.e. (h, a∗) is along h∗.
Let an honest (i.e. h∗-yielding) strategy σ′ ∈ S|h and an honest strategy σa∗ ∈ S|(h,a∗)
be connected in the following way: σ′

|(a∗) = σa
∗ . Then, one of them is weak immune for

p iff the other is. Assume σ′ is weak immune for p. Pick an arbitrary τa∗ ∈ S|(h,a∗), any
extension of τa∗ to a τ ∈ S|h has the property τa

∗
N−p = τN−p, since p = P (h). As σ′ is

weak immune for p, we know u|h,p(σ′
p, τN−p) ≥ 0. Further, by definition of σa∗ , follows

H|h(σ′
p, τN−p) = (a∗, H|(h,a∗)(σa

∗
p , τ

a∗
N−p)) and thus u|(h,a∗),p(σa

∗
p , τ

a∗
N−p) ≥ 0. Strategy

τa
∗ ∈ S|(h,a∗) was arbitrary, so σa∗ is weak immune for p. The other direction works the

same way.

For equivalence 4), let h ∈ H \ T be such that p = P (h) and h not along h∗. For
implication “⇒”, we assume σ ∈ S is weak immune for p in Γ|h. Let a := σ(h) ∈ A(h)
and σa := σ|(a) ∈ S|(h,a). We now fix an arbitrary τa ∈ S|(h,a), let τ ∈ S|h be any
extension of τa, i.e. τ|(a) = τa. Then, since p = P (h), we know H|h(σp, τN−p) =
(a,H|(h,a)(σap , τaN−p), which further implies u|(h,a),p(σap , τaN−p) = u|h,p(σp, τN−p) ≥ 0. As
τa was chosen arbitrarily and as we are not along h∗, that means σa is weak immune for p
in Γ(h,a), which proves the implication. For the other direction “⇐”, the same reasoning
applies, when we assume σa ∈ S|(h,a) is weak immune for p in Γ(h,a) and construct σ ∈ S
such that σ(h) = a, σ|(a) = σa and the rest arbitrary. This concludes the last implication
and, therefore, the proof of the theorem.

Similar results to Theorem 5.5 hold for weaker immunity.

Example 5.13 (Compositional Weak Immunity). We revisit the Market Entry game
Γme of Figure 5.1, with honest history (n). We compute that Γme is weak immune using
our compositional approach, where we stratify over players first and then split Γme into
subtrees.

We start with player M . Theorem 5.5 implies that Γme is weak immune for M iff Γme|(n)
is weak immune for M ; since Γme|(n) is a leaf, we must check that the utility of M is
non-negative, i.e. 0 ≥ 0. As this is true, game Γme is weak immune for M .

Next, E. According to Theorem 5.5, the game Γme is weak immune iff Γme|(n) and Γme|(e)
are weak immune for E. The subgame Γme|(n) is weak immune for E if their utility is
non-negative, i.e. p ≥ 0, true by assumption. The subtree Γme|(e) is now weak immune
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for E iff either Γme|(e,i) or Γme|(e,pw) is. E’s utility at Γme|(e,i) is p/2 ≥ 0. Therefore Γme
is weak immune for E, and from Theorem 5.3 it follows that Γme is weak immune.

Theorem 5.6 (Compositional Collusion Resilience). Let Γ be an EFG with honest history
h∗ and honest utility u∗ = u(h∗). The following equivalences hold.

1) A leaf of Γ is collusion resilient against S ⊂ N iff the honest joint utility of the
deviating players p ∈ S is greater than or equal to their joint utility at that leaf:

∀t ∈ T . crS(Γ|t) ⇔
∑︂
p∈S

u∗
p ≥

∑︂
p∈S

up(t) .

2) A branch of Γ, where the current player is in the deviating group S ⊂ N , is collusion
resilient against S iff all children are collusion resilient against S:

∀h ∈H \T . P (h) ∈ S ⇒(︁
crS(Γ|h) ⇔ ∀a ∈ A(h). crS(Γ|(h,a))

)︁
.

3) A branch of Γ along the honest history h∗, where the current player is not in the
deviating group S ⊂ N , is collusion resilient against S iff the child following h∗ is
collusion resilient against S. Let a∗ ∈ A(h) be the honest action, i.e. (h, a∗) along h∗,
then:

∀h ∈H \T . P (h) /∈ S ∧ h along h∗ ⇒(︁
crS(Γ|h) ⇔ crS(Γ|(h,a∗))

)︁
.

4) A branch of Γ off the honest history h∗, where the current player is not in the deviating
group S ⊂ N , is collusion resilient against S iff there exists a child that is collusion
resilient against S:

∀h ∈H \T . P (h) /∈ S ∧ h off h∗ ⇒(︁
crS(Γ|h) ⇔ ∃a ∈ A(h). crS(Γ|(h,a))

)︁
.

Proof. We show equivalence 1) first. By Definition 5.12 there has to exist a σ ∈
S|t (yielding h∗ if applicable) such that for all τ ∈ S|t the inequality

∑︁
p∈S u

∗
p ≥∑︁

p∈S u|t,p(σN−S , τS) holds. Since t is a terminal history, the utility function u|t,p = up(t)
is constant and the only existing strategy is the empty strategy. Hence, the collusion
resilience against S of Γ|t is equivalent to

∑︁
p∈S u

∗
p ≥

∑︁
p∈S up(t).

To show claim 2), we assume h ∈H \T is a non-terminal history at which a player from
the deviating group S has a turn P (h) ∈ S. We start with implication “⇒”, assuming σ ∈
S is a collusion resilient strategy against S in Γ|h. We pick an arbitrary action a ∈ A(h)
and define strategy σa := σ|(a) ∈ S|(h,a). If (h, a) is along the honest history h∗, then so is
h. Thus the collusion resilient against S strategy σ yields the honest history H|h(σ) = h∗

|h
which implies H|(h,a)(σa) = h∗

|(h,a). Let τa ∈ S|(h,a) be arbitrary. We extend it to τ ∈ S|h
by defining τ(h) = a, τ|(a) = τa and letting the rest be arbitrary. With this construction
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and the fact that P (h) ∈ S we get H|h(σN−S , τS) = (a,H|(h,a)(σaN−S , τ
a
S)). Therefore, also∑︁

p∈S u
∗
p ≥

∑︁
p∈S u|h,p(σN−S , τS) =

∑︁
p∈S u|(h,a),p(σaN−S , τ

a
S), by the collusion resilience

against S of σ. As τa was chosen arbitrarily, and σa was constructed for an arbitrary a
the implication was proven.

For the other direction of 2) “⇐”, we assume for all a ∈ A(h) that σa ∈ S|(h,a) is collusion
resilient against S. Let σ ∈ S|h be such that for all a ∈ A(h) σ|(a) := σa, and if h is
along h∗, we additionally require σ(h) = a∗, where a∗ is the honest choice after h. In
this case follows H|h(σ) = h∗

|h, since H|(h,a∗)(σa
∗) = h∗

|(h,a∗) by assumption. We now
pick an arbitrary strategy τ ∈ S|h and consider a′ := τ(h) ∈ A(h). As P (h) ∈ S, for
τa

′ := τ|a′ , it holds H|h(σN−S , τS) = (a′, H|(h,a′)(σa
′
N−S , τ

a′
S )). Thus, also their utilities are

identical which implies by the assumption that σa′ is collusion resilient against S, that∑︁
p∈S u

∗
p ≥

∑︁
p∈S u|(h,a),p(σaN−S , τ

a
S) =

∑︁
p∈S u|h,p(σN−S , τS). Hence, σ – and therefore

Γ|h – is collusion resilient against S.

To show equivalence 3), we assume h ∈ H \ T is a non-terminal history along the
honest history h∗ at which a not-deviating player has a turn P (h) /∈ S. We again start
by proving implication “⇒” and assume strategy σ ∈ S|h yields the honest history
and is collusion resilient against S in Γ|h. We define σa∗ := σ|(a∗) ∈ S|(h,a∗), which
by construction also yields the honest history. For an arbitrary τa

∗ ∈ S|(h,a∗), let
τ ∈ S|h be an extension, i.e. τ|(a∗) := τa

∗ , rest arbitrary. Then, due to P (h) /∈ S and
σ(h) = a∗, follows H|h(σN−S , τS) = (a∗, H|(h,a∗)(σa

∗
N−S , τ

a∗
S )). As before, this implies that

the collusion resilience against S of σ∗ and, therefore, the collusion resilience against S
of Γ|(h,a∗). For the other direction “⇐”, we assume σa∗ ∈ S|(h,a∗) is honest and collusion
resilient against S. We construct σ ∈ S|h such that σ|(a∗) := σa

∗ , σ(h) = a∗ and the rest
arbitrary, with similar reasoning as before we conclude that σ yields the honest history
and is collusion resilient against S.

For the last equivalence 4), let h ∈ H \ T be a non-terminal history not along the
honest history h∗ at which a not-deviating player has a turn P (h) /∈ S. The first
implication “⇒” can be shown by assuming σ ∈ S is collusion resilient against S and
by choosing σa := σ|(a) ∈ S|(h,a), where a := σ(h). Fixing now an arbitrary τa ∈ S|(h,a),
and an extension τ ∈ S of it, since σ(h) = a and P (h) /∈ S, follows H|h(σN−S , τS) =
(a,H|(h,a)(σaN−S , τ

a
S)). As shown before this implies σa is collusion resilient against S

in Γ|(h,a). The other implication “⇐” is similar to prove. Assume a ∈ A(h) is such that
σa ∈ S|(h,a) is collusion resilient against S in Γ|(h,a). We construct a strategy σ ∈ S|h,
by setting σ(h) = a and σ|(a) := σa, the rest can be arbitrary. Let now be τ ∈ S|h
arbitrary. With τa := τ|(a) ∈ S|(h,a), we arrive at H|h(σN−S , τS) = (a,H|(h,a)(σaN−S , τ

a
S)).

This again implies that σ is collusion resilient against S in Γ|h, which concludes the proof
of equivalence 4) and hence the theorem.

Note that, if a player is in a deviating group, all child subtrees need to be collusion
resilient even if we are along honest history, as the deviator might choose any action
and potentially harm honest players. In contrast, for an honest player and a node off
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honest history, there needs to merely exist one collusion resilient child that the player
can choose to defend against the deviating group.

Example 5.14 (Compositional Collusion Resilience). We compositionally compute the
collusion resilience of the Market Entry game Γme (Figure 5.1) with honest history (n).
We have two possible colluding groups, both singletons {M} and {E}.

Consider {M}. At the root of Γme, since the player M is in the colluding group, all
subtrees must be collusion resilient against {M}. Along the honest history we reach a
leaf Γme|(n), which is collusion resilient (it is the honest leaf). For subtree Γme|(e) there
needs to exist a collusion resilient child, which is the case in the leaf after (e, pw): utility
−a is strictly smaller than the honest utility 0.

Next, {E}. At the root, M is not in the deviating group. Hence, only the honest
child Γme|(n) need be collusion resilient against {E}, which it is, as it is the honest leaf;
so the utility is equal to the honest one in part (1) of Theorem 5.6. This suffices to
establish collusion resilience against {E}; checking Γme|(e) is unnecessary.

Using Theorem 5.3, it follows that Γme is collusion resilient.

To establish compositional practicality, we need the following small lemma.

Lemma 5.2. A strategy σ ∈ S|h is practical in subtree Γ|h iff strategy σ|g ∈ S|(h,g) is
practical in subtree Γ|(h,g), for all g ∈H|h.

Proof. By Definition 5.6 and Definition 5.7, a strategy σ ∈ S|h is practical if for all
g′ ∈ H|h and all τ ∈ S|(h,g′) the utility inequality holds. Whereas, σ|g ∈ S|(h,g) is
practical for all g ∈H|h, if for all k ∈H|(h,g) and for all τ ∈ S|(h,g,k) the utility inequality
holds. Hence, by substituting g′ = (g, k) in the above-sketched formulae, it is easy to see
that they are equivalent.

Theorem 5.7 (Compositional Practicality). Let Γ be an EFG with honest history h∗ and
U(h) be the set of practical utilities of subtree Γ|h. Let u∗ be the honest utility u∗ = u(h∗).
Then the following identities and equivalences hold.

1) In a leaf of Γ the only practical utility is that of the leaf.

∀t ∈ T . U(t) = {u(t)} .

2) The honest utility u∗ is practical in a branch of Γ along h∗ iff it is practical in the
child following h∗ and if for every other child at least one practical utility is not greater
than u∗ for the current player. Let a∗ ∈ A(h) be the honest action after h, then:

∀h ∈H \T . h along h∗ ⇒
(︁
pr(Γ|h) ⇔

pr(Γ|(h,a∗)) ∧ ∀a ∈ A(h) \ {a∗} ∃u ∈ U((h, a)). u∗
P (h) ≥ uP (h)

)︁
.
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3) A utility is practical in a branch of Γ off the honest history h∗ iff it is practical in
a child and if, for every other child, at least one practical utility is not greater for the
current player.

∀h ∈H \T . h off h∗ ⇒
(︁
∀t ∈ T|h. u(t) ∈ U(h) ⇔

∃a ∈ A(h). u(t) ∈ U((h, a)) ∧
∀a′ ∈ A(h) \ {a} ∃u′ ∈ U((h, a′)). uP (h)(t) ≥ u′

P (h)
)︁
.

Proof. We show claim 1) first. By Definitions 5.7 and 5.13, we know that the utility in
the leaf after terminal history t is practical in subtree Γ|h, if there is σ ∈ S|h, extending
history t and ∀g ∈H|h ∀τ ∈ S|(h,g). u|(h,g),P (h,g)(σ|g) ≥ u|(h,g),P (h,g)(σ|g,N−P (h,g), τP (h,g)).
In our case, we have h = t; hence the only strategy σ ∈ S|t is the empty one. Further,
the only history g ∈ H|t is the empty history (hence (h, g) = t), and thus also the
only strategy τ ∈ S|t is the empty strategy. This leaves us with u(t) being practical iff
u|t,P (t)(σ) ≥ u|t,P (t)(τ), which is equivalent to uP (t)(t) = uP (t)(t). Therefore, u(t) ∈ U(t),
and since there are no other utilities is Γ|t, follows U(t) = {u(t)}.

To show equivalence 2), we fix a history h ∈H \T , which is along the honest history,
and let a∗ be the honest action after h. For implication “⇒” we assume strategy σ ∈ S|h
is practical in Γ|h and yields the honest history. Theorem 5.2 implies that also Γ|(h,a∗)
is practical. To show the other conjunct of the right-hand side, let a ∈ A(h) \ {a∗}
be arbitrary. We apply Lemma 5.2, to get that σ|(a) is practical in Γ|(h,a). Hence,
u := u|(h,a)(σ|(a)) ∈ U(h, a). Since σ is practical in Γ|h, for g = ∅ ∈H|h and τ ∈ S|h such
that τ(h) = a and τ|(a) = σ|(a) follows

u∗ = u|h,P (h)(σ) ≥ u|h,P (h)(τP (h), σN−P (h)) = u|(h,a)(σ|(a)) .

The last utility is exactly the considered u ∈ U(h, a), which concludes the proof of the
implication.

To show the other direction “⇐”, we assume the right-hand side holds. I.e. there
exists an honest strategy σa∗ ∈ S|(h,a∗) that is practical in Γ|(h,a∗) as well as strategies
σa ∈ S|(h,a) for a ̸= a∗, that are practical in Γ|(h,a) and whose utilities ua ∈ U(h, a)
satisfy u∗

P (h) ≥ uaP (h). We now construct a strategy σ ∈ S|h in the following way: Let
σ(h) = a∗ and for all a ∈ A(h) (including a∗) let σ|(a) = σa. First, we note that σ
yields the honest history by construction. Second, we prove it is practical in Γ|h by
picking an arbitrary history g ∈H|h and an arbitrary strategy τ ∈ S|(h,g) and showing
u|(h,g),P (h,g)(σ|g) ≥ u|(h,g),P (h,g)(τP (h,g), σ|g,N−P (h,g)):

Case 1: g = ∅. Then u|(h),P (h)(σ) = u∗
P (h), as σ yields the honest history and h

along h∗. Also, u|(h),P (h)(τP (h), σN−P (h)) = u|(h,a),P (h)(τ|(a),P (h), σ|(a),N−P (h)), where
a = τ(h). Using Theorem 5.3 and the fact that σ|(a) is practical in Γ|(h,a), follows
u|(h,a),P (h)(τ|(a),P (h), σ|(a),N−P (h)) ≤ u|(h,a),P (h)(σ|(a)) = uaP (h). Applying our assumption
u∗
P (h) ≥ uaP (h), the required inequality holds. Case 2: g = (a, g′), where a ∈ A(h),
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g′ ∈H|(h,a). Then, u|(h,g),P (h,g)(σ|g) = u|(h,g),P (h,g)(σa|g′) which is – due to the practicality
of σa – greater than or equal to

u|(h,g),P (h,g)(τP (h,g), σ
a
|g′,N−P (h,g))

= u|(h,a,g′),P (h,a,g′)(τP (h,a,g′), σ
a
|g′,N−P (h,a,g′))

= u|(h,g),P (h,g)(τP (h,g), σ|g,N−P (h,g)).

Hence, the second direction of the second claim is proven.

For equivalence 3), let h ∈H \ T be off the honest history h∗ and t ∈ T|h. We prove
implication “⇒” first and assume u|h(t) ∈ U(h) is a practical utility in Γ|h. Thus, there
exists a strategy σ ∈ S|h such that H(σ) = t and σ is practical. History t is terminal,
while h is not. Therefore, t is not empty. Hence, we can split it into t := (at, t′), where
at is the first action along t. Applying Lemma 5.2, we know that also σ(at) ∈ S|(h,at) is
practical. Since H(σ) = t, follows σ(t′) = at, and thus u(t) = u|(h,at)(σ|(at)) ∈ U(h, at)
which proves the first conjunct of the implication. For the second, pick an arbitrary
a ∈ A(h) \ {at} and consider the strategy σ ∈ S|h from before. Using Lemma 5.2
again, it follows that also σ|(a) ∈ S|(h,a) is practical and by definition of U we know
u|(h,a)(σ|(a)) ∈ U(h, a). Towards using the practicality of σ in Γ|h, let τ ∈ S|h be
such that τ(h) = a and τ|(a) = σ|(a). Finally, we conclude u|h,P (h)(t) = u|h,P (h)(σ) ≥
u|h,P (h)(τP (h), σN−P (h)) = u|(h,a),P (h)(σ|(a)). Hence, also the second conjunct holds, and
the implication is proven.

The other direction, “⇐” of equivalence 3), can be shown similarly to “⇐” of equivalence
2). We assume u|h(t) ∈ U(h, a′) and for all other actions a ∈ A(h) \ {a′} exists a practical
utility ua ∈ U(h, a) such that u|h,P (h)(t) ≥ uaP (h). Then, we construct a strategy σ ∈ S|h
in the following way. Let σ(h) = a′. For all a ∈ A(h) \ {a′}, let σ|(a) = σa, where σa is a
practical strategy in Γ|(h,a) with practical utility ua = u|(h,a)(σa) ∈ U(h, a). For a′, let
σ(a′) be the practical strategy in Γ|(h,a′) that yields utility u|h(t). It follows that strategy
σ also yields utility u|h(t). With this construction, we can proceed as in equivalence 2),
direction “⇐”, to prove the practicality of σ which implies the practicality of u|h(t) in
Γ|h to conclude the proof of the theorem.

Example 5.15 (Compositional Practicality). To compositionally compute the practicality
of the Market Entry game Γme of Figure 5.1 with honest history (n), we start with the
leaves of the tree, where the practical utilities are the utilities of the leaves. Moving
upwards in the tree, we look at the subtree Γme|(e), which is off the honest history, so
we take the better utility for player E, setting U(e) = {(p2 ,

p
2)}. At the root of the tree,

which is along the honest history, the practical utility of the honest subtree (0, p) should
be practical. Since all practical utilities of the non-honest child (there is just one) are
better for player M (as p

2 > 0), the honest utility is not practical. Theorem 5.3 then
implies that Γme is not practical.
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5.6 Automating Compositional Security Analysis
Section 5.5 assumed a total order ⪯ on game utility terms Tu. This section lifts fixed
ordering constraints (⪯, Tu) and interprets the game variables in the utility terms Tu as
real-valued variables x⃗, as explained in Section 5.3.2. The results of Theorem 5.1 are also
propagated to our player-wise security properties from Theorem 5.3, as the universal
quantification over players, player groups, subgames, and strategies is independent of
the values x⃗ the variables in the utility terms take. As such and as an example, weak
immunity (5.9) becomes equivalent to the player-wise weak immunity property:

∀(⪯, Tu) ∀p ∈ N ∃σ ∈ S . H(σ) = h∗ ∧ ∀τ ∈ S .

∀x⃗.

⎛⎝ ⋀︂
c∈C∪⪯

c[x⃗]

⎞⎠→ up(σp, τN−p)[x⃗] ≥ 0 . (5.13)

Mapping game-theoretic security from Theorem 5.1 to the player-wise security of Theo-
rem 5.3 is crucial for automating compositional security: we only forward relatively small
first-order expressions of the form

∀x⃗.

⎛⎝ ⋀︂
c∈C∪⪯

c[x⃗]

⎞⎠→ ut1[x⃗] ≥ ut2[x⃗] , (5.14)

to an SMT solver, where ut1 and ut2 are term expressions over x⃗; checking such formulas
is very feasible for SMT solvers.

As usual, to check whether (5.14) is a theorem, the property is first negated, and then an
SMT solver is used to check satisfiability. This is where the simplified quantified structure
of (5.14) becomes especially friendly for automation: The SMT solving of (5.14) happens
in a purely existential fragment, for which efficient decision procedures exist [BT18, BN24].
The remaining reasoning in (5.13), about the players and the existence of strategies σ
witnessing player-wise security, is performed using the compositional security results of
Theorems 5.5 to 5.7, without burdening the SMT solver. Such an interplay between SMT
solving and compositional security eases automation, as illustrated below and detailed
further in Section 5.6.1.

Example 5.16 (SMT Reasoning for Compositional Security). Revisiting the Market
Entry game Γme of Figure 5.1, we study the SMT formulae resulting from (5.14). Initial
constraints C = {a > 0, p > 0}. All symbolic utility terms occurring in the security
properties of Γme are already totally ordered by the constraints in C. Hence, the only
relevant total order ⪯ here is that consistent with C, −a ≺ 0 ≺ p/2 ≺ p.

To analyze, for example, the weak immunity of the Market Entry game for player E
compositionally, we follow the algorithm induced by Theorem 5.5. The SMT reasoning is
only needed when we reach a leaf, such as the one after history (n). The resulting SMT
query is

∀a, p. a > 0 ∧ p > 0→ p ≥ 0 ,

142



5.6. Automating Compositional Security Analysis

which is trivially valid. Hence, the subtree after history (n) is weak immune for E for all
allowed utility values.

5.6.1 Divide-and-Conquer Algorithms for Compositional Security

Our compositionality results from Theorem 5.3 and Theorems 5.5 to 5.7, extended
by a lazy total-order approach, induce a divide-and-conquer approach for splitting and
combining reasoning over game subtrees and supertrees. Our overall divide-and-conquer
framework for automating compositional game-theoretic reasoning is summarized in
Algorithm 5.1, which in turn relies upon Algorithm 5.3 as well as upon Algorithms 5.2,
5.4 and 5.5 from the appendix. We compositionally compute the game-theoretic security
of a protocol, analyzing the (protocol) game for all real-valued variables x⃗ of utitilty
terms Tu, considering all total orders ⪯ at once. If we fail, we split the total orders into
multiple cases, unless we can conclude that the respective security property cannot be
satisfied even if we restrict the values of x⃗ to one total order ⪯. The case split we consider
is induced by an SMT query as in property (5.14) when some but not all x⃗ satisfy the
implication. We then split into total orders that enforce ut1[x⃗] ≥ ut2[x⃗], respectively
ut1[x⃗] < ut2[x⃗], in (5.14).

Algorithm 5.1: Function SatisfiesProperty. In Algorithm 5.1 an instance Π,
which contains the game tree Γ, the set of infinitesimal variables inf (as introduced
in Section 5.2), and the set of initial constraints C, is given as input. The input to
Algorithm 5.1 also contains the honest history h∗, the security property to be analyzed,
and the currently considered case case.

The function SatisfiesProperty in Algorithm 5.1 is called initially with the empty
case to analyze all total orders. This case can be refined throughout Algorithm 5.1, using
case splits. Hence, in the first call of the function, the set S, representing the constraints
handed to an SMT solver, contains only the initial constraints C. The relevant player
groups RelevantGroups of security property sp are set according to the stratified
definitions of sp from Section 5.5.1: N for w(er)i, as we stratify over players; 2N \ {∅, N}
for cr, as we stratify over deviating subgroups; and {“none”} for pr.

Function ComputeSP in line 6 of Algorithm 5.1 stands for ComputeWI, ComputeWERI,
ComputeCR or ComputePR (Algorithms 5.3 to 5.5), depending on the security property
sp, as summarized in Algorithm 5.2.

The result of ComputeSP depends on whether Γ with honest history h∗ satisfies property
sp for/against pg, given the constraints in S. Here, we also keep track of utility comparisons
we cannot decide. Importantly, the constraint ut1[x⃗] ≥ ut2[x⃗] to whether Γ satisfies sp in
case is returned as splitpg, if it exists.

The loop in lines 5–12 of Algorithm 5.1 incorporates player-wise security from Theorem 5.3.
It additionally provides a necessary case split if the security property is violated for a
player group. Subsequently, the respective results are returned: true for all groups
yields true; false but nothing to split on for at least one group yields false; and
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Algorithm 5.1: Function SatisfiesProperty for Compositional Game-
Theoretic Security Reasoning.

input : input instance Π = (Γ, inf, C), honest history h∗, the name of a
security property sp ∈ {wi,weri, cr, pr}, and the currently analyzed
case (as set of SMT constraints) case.

output :true if Π satisfies sp in case case, false otherwise
1 S ← ∅
2 AddConstraints (S, C ∪ case)
3 result ← true
4 split ← null
5 for pg ∈ RelevantGroups(Π, sp) do
6 (resultpg, splitpg) ← ComputeSP (Π,h∗,S,sp,pg)
7 if resultpg = false then
8 result ← resultpg
9 split ← splitpg

10 break
11 end
12 end
13 if result = true then
14 return true
15 end
16 if split = null then
17 return false
18 end
19 for constr ∈ {split,¬split} do
20 if ¬SatisfiesProperty(Π, h∗, sp,case ∪ {constr}) then
21 return false
22 end
23 end
24 return true

false together with a split leads to further case splits (lines 19–24). If we split the
total orders into multiple cases, all the cases have to return true for the property to be
satisfied.

Example 5.17. Let us revisit the Market Entry game from Example 5.1, but this
time let us assume only p > 0 is the initial constraint and a ∈ R can take any value.
We check whether the honest history (n) is collusion resilient. Algorithm 5.1 will in
line 5 consider each singleton player group individually, suppose we start with {M}.
The function ComputeCR, specified in Algorithm 5.4, returns (false, 0 ≥ −a), as
the comparison between 0 and −a is missing to determine collusion resilience. So the
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Algorithm 5.2: Relay Function ComputeSP.
input : input instance Π, honest history h∗, security property

sp ∈ {wi,weri, cr, pr}, set S containing initial constraints and
currently analyzed case, player group pg.

output : (result, split), where result states whether Π satisfies sp for pg, given S,
and split a crucial utility comparison we cannot decide.

1 if sp = wi then
2 return ComputeWI(Γ, h∗, S, pg)
3 else if sp = weri then
4 return ComputeWERI(Γ, h∗, S, pg)
5 else if sp = cr then
6 return ComputeCR(Γ, h∗, S, pg)
7 else
8 (result, split)← ComputePR(Γ, h∗,S)
9 if result = ∅ then

10 return (false, split)
11 else
12 return (true, split)
13 end
14 end

result is set to false and split to 0 ≥ −a. For the colluding group {E} the function
ComputeCR returns (true, null), as the honest player M can choose a collusion resilient
honest action. Algorithm 5.1 then proceeds with line 19, refining the constraints by
first adding 0 ≥ −a to the case. The function SafisfiesProperty will return true
(and empty split); and then adding the negated constraint 0 < −a to the case, at which
point SafisfiesProperty will return false, since M can profit by deviating from
the honest action (n), as both p

2 and −a are better utilities than 0. Algorithm 5.1 thus
terminates by returning false.

The security-property-specific function variants of ComputeSP recursively apply the
compositional results of Theorem 5.4. To illustrate case splitting of total orders, we
describe function ComputeWI of Algorithm 5.3 in detail.

Algorithm 5.3: Function ComputeWI The function ComputeWI of Algorithm 5.3
is initially called with the entire game tree Γ from function SatisfiesProperty of
Algorithm 5.1. We then proceed recursively, according to Theorem 5.5. Note that the
player group pg is just one player.

In a leaf, GetUtility in Algorithm 5.3 returns ut(x⃗) as the utility of player pg. We
then – in line 2 of Algorithm 5.3 – check whether the constraints in S together with
ut(x⃗) < 0 are unsat. This is equivalent to the constraints in S implying ut(x⃗) ≥ 0,
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which is an instance of property (5.14), except that we do not (necessarily) have one
total order ⪯ at hand, only some constraints from case. If the implication holds, we
return true.

Algorithm 5.3: Function ComputeWI for Weak Immunity.
input : game tree Γ, honest history h∗, set S containing initial constraints

and current case, player group pg.
output : (result, split), where result states whether Γ is weak immune for pg,

given S, and split a crucial utility comparison we cannot decide.
1 if isLeaf(Γ) then
2 if Check(S,GetUtility(Γ, pg) < 0) = unsat then
3 return (true, null)
4 end
5 if Check(S,GetUtility(Γ, pg) ≥ 0) = unsat then
6 return (false, null)
7 end
8 return (false,GetUtility(Γ, pg) ≥ 0)
9 end

10 if CurrentPlayer(Γ) ̸= pg then
11 for a ∈ Actions(Γ) do
12 (result, split)← ComputeWI(Γ|(a), h

∗,S, pg)
13 if result = false then
14 return (result, split)
15 end
16 end
17 return (true, null)
18 end
19 if AlongHonest(Γ, h∗) then
20 a∗ ← HonestAction(Γ, h∗)
21 return ComputeWI(Γ|(a∗), h

∗,S, pg)
22 end
23 newsplit← null
24 for a ∈ Actions(Γ) do
25 (result, split)← ComputeWI(Γ|(a), h

∗,S, pg)
26 if result = true then
27 return (true, null)
28 else if split ̸= null then
29 newsplit← split
30 end
31 end
32 return (false, newsplit)
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Otherwise, we check the opposite condition, by asking in line 5 of Algorithm 5.3 whether

∀x⃗.
⋀︂

c∈C∪case
c[x⃗]→ ut[x⃗] < 0 (5.15)

holds. If it does (line 6), the leaf is not weak immune. Otherwise (line 8), the leaf’s weak
immunity depends on the total order, which induces a case split on ut[x⃗] ≥ 0.

At a branch (lines 10–32 of Algorithm 5.3), we check in which of the cases of Theorem 5.5
we are. We then call the function ComputeWI recursively on immediate subgames Γ|(a)
and propagate the result accordingly. Note that, for simplicity, in line 13 of Algorithm 5.3
we do not wait for a null split that would immediately return false, but rather proceed
with a split. However, as there are only finitely many possible case splits, we will
eventually see the null split for a false subtree if it exists and return it to reach the
correct result.

Example 5.18. We mimic the execution of the function ComputeWI from Algorithm 5.3
on the Market Entry game from Example 5.1, but this time only assume a > 0 is the
initial constraint, and p ∈ R can take any value. Suppose we enter Algorithm 5.3 with
the entire tree Γme, honest history (e, i) and player pg = M . Since the root of the
tree is along the honest history, the function will jump to line 19, and recursively call
ComputeWI for the honest subtree Γme|(e). Then the current player E is not pg, so we
proceed with line 10, and iterate through the actions pw and i. Suppose we first look at
the action pw and, from line 12, recursively compute the weak immunity for the leaf after
(e, pw). Algorithm 5.3 will execute lines 1 and 2, and since the utility of player M is 0,
which is a non-negative number, the check in line 2 will be unsat, so the function returns
(true, null). For the other action i, we recursively compute (line 12 of the algorithm)
the weak immunity for the leaf after (e, i). The function GetUtility(Γme|(e,i),M)
will return p

2 , for which we cannot decide whether it is non-negative (there are no initial
constraints on p). Both conditions from lines 2 and 5 are thus false and we return the
pair (false, p2 ≥ 0) in line 8. Proceeding from the supertree Γme|(e) in line 12, with the
result being false, we return in line 14 the pair (false, p2 ≥ 0).

Function ComputeWERI. The function for weaker immunity is identical to ComputeWI
in Algorithm 5.3, except that GetUtility returns only the real part of the requested
utility.

Algorithm 5.4: Function ComputeCR. The function in Algorithm 5.4 is similar to
ComputeWI in Algorithm 5.3. It differs in the considered utility comparison ut1[x⃗] ≥
ut2[x⃗]. While ut1 was player pg’s utility and ut2 = 0, for collusion resilience, ut1 is the
sum of the honest utilities of the deviating players pg and ut2 is the sum of the utilities of
the deviating players p ∈ pg in the current leaf. Hence pg is a group of players rather than
a single player. Other than that, in the branch-case (lines 10–32) the roles of whether the
current player CurrentPlayer(Γ) is in pg or not, are reversed, as it is in Theorem 5.6.
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Algorithm 5.4: Function ComputeCR for Collusion Resilience.
input : a game tree Γ, an honest history h∗, the set S containing the initial

constraints and the current case, and the player group pg.
output : (result, split), where result is true iff Γ is collusion resilient against pg,

given S, and split a crucial utility comparison we cannot decide.
1 if isLeaf(Γ) then
2 if Check(S,GetUtility(h∗, pg) < GetUtility(Γ, pg)) = unsat then
3 return (true, null)
4 end
5 if Check(S,GetUtility(h∗, pg) ≥ GetUtility(Γ, pg)) = unsat then
6 return (false, null)
7 end
8 return (false,GetUtility(h∗, pg) ≥ GetUtility(Γ, pg)))
9 end

10 if CurrentPlayer(Γ) ∈ pg then
11 for a ∈ Actions(Γ) do
12 (result, split)← ComputeCR(Γ|(a), h

∗,S, pg)
13 if result = false then
14 return (result, split)
15 end
16 end
17 return (true, null)
18 end
19 if AlongHonest(Γ, h∗) then
20 a∗ ← HonestAction(Γ, h∗)
21 return ComputeCR(Γ|(a∗), h

∗,S, pg)
22 end
23 newsplit← null
24 for a ∈ Actions(Γ) do
25 (result, split)← ComputeCR(Γ|(a), h

∗,S, pg)
26 if result = true then
27 return (true, null)
28 else if split ̸= null then
29 newsplit← split
30 end
31 end
32 return (false, newsplit)
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Algorithm 5.5: Function ComputePR for Practicality.
input : a game tree Γ, honest history h∗, set S containing the initial

constraints and the current case.
output : (UΓ, split), where UΓ are all practical (and honest if along h∗) utilities

in Γ, and split a crucial utility comparison that cannot be decided.
1 if isLeaf(Γ) then
2 return ([GetUtility(Γ)], null)
3 end
4 subtrees← [ComputePR(Γ|(a), h

∗, S) for a ∈ Actions(Γ)]
5 p← CurrentPlayer(Γ)
6 UΓ ← ∅
7 if AnyUtilityEmpty(subtrees) then
8 return subtrees.ReturnEmpty()
9 end

10 if AlongHonest(Γ, h∗) then
11 ([u∗], split∗)← GetHonestResult(subtrees)
12 for (Ua,_) ∈ subtrees \ {([u∗], split∗)} do
13 (result, split)← ExistsDominated(Ua, u∗,S, p)
14 if ¬result then
15 return (∅, split)
16 end
17 end
18 return ([u∗], null)
19 end
20 for (Ua, splita) ∈ subtrees do
21 for u ∈ Ua do
22 toAdd ← true
23 for (Us,_) ∈ subtrees \ (Ua, splita) do
24 (result, split)← ExistsDominated(Us, u,S, p)
25 if ¬result ∧ split ̸= null then
26 return (∅, split)
27 else if ¬result ∧ split = null then
28 toAdd← false
29 end
30 end
31 if toAdd then
32 UΓ.Add(u)
33 end
34 end
35 return (UΓ, null)
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Algorithm 5.5: Function ComputePR. The function ComputePR to compute the
practicality of game tree Γ for honest history h∗, and in the case specified in set S operates
a little differently than the ones for the other properties. As described in Theorem 5.7, we
have to keep track of all practical utilities of subtrees, in order to decide the practicality
of h∗.

Hence, for a leaf, trivially, the only practical utility is its utility (lines 1–3). For branches,
we first check if any results of the subtrees yield an empty list of practical utilities in
lines 4–9. If yes, then either we need a case split (if split ̸= null) or the honest history
was not practical in a subtree, which implies that it is not practical in the entire tree
(Theorem 5.2), otherwise. In any case, returning the respective ComputePR result does
precisely that.

If none of the subtrees led to an empty set of practical utilities, we distinguish between
whether the current subtree Γ is along the honest history h∗ (AlongHonest(Γ, h∗)). If
so, in lines 10–19 it is analyzed whether the honest utility u∗ dominates at least one
practical utility for each sibling, thereby proceeding as in Theorem 5.7. In case we found
a dominated utility per sibling, the honest utility is returned (line 18), otherwise the
empty list of utilities, together with a crucial case split (if it exists) is returned (line 15).

The function ExistsDominated, as defined in Algorithm 5.6, computes whether one of
the utilities in U has to be less than or equal to u for the current player p for all values
of x⃗ that satisfy the preconditions in S. If the relation of two terms cannot be decided,
we store it in split.

For the case where Γ is not along h∗ (lines 20–35), the list of all practical utilities has to
be computed. Similarly, as before, a utility that was practical in a subtree is practical
now if it dominates at least one practical utility of each sibling. To decide domination,
again function ExistsDominated is employed. If a further case distinction is needed,
the empty list together with that split is returned (line 26); otherwise, the list of practical
utilities together with the null-split (line 35).

In addition to compositional security via Algorithm 5.1, our work supports additional
features to debug a protocol and better understand its structure. Those include (i)
strategy extraction in case the considered security property was satisfied (Section 5.6.3),
(ii) finding counterexamples (Section 5.6.4), and (iii) providing weakest preconditions to
make the game secure otherwise. Computing preconditions in our compositional setting
can be done by collecting all cases where the security property is violated, and then
conjoining and negating them afterwards.

5.6.2 Correctness of the Algorithm

To prove Theorem 5.8, we need some preliminary results first. We start with two lemmas
about the ComputePR function.

Lemma 5.3. Let Γ be a subtree of a game Γ′, h∗ an honest history of the Γ′, S be a set
of initial constraints C and case case, and ComputePR(Γ, h∗, S) = (UΓ, split). If a utility
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Algorithm 5.6: Function ExistsDominated.
input : a list of utility tuples U, a single utility tuple u, set S containing the

initial constraints and the current case, a player p.
output : (result, split), where result is true if there exists a utility u′ ∈ U such

that up ≥ u′
p for all values that satisfy S; false otherwise; and split

a crucial utility comparison that cannot be decided.
1 existsDominated ← false
2 split ← null
3 for u′ ∈ U do
4 if Check(S, u[p] < u′[p]) = unsat then
5 existsDominated ← true
6 else if Check(S, u[p] ≥ u′[p]) = sat then
7 split ← u[p] ≥ u′[p]
8 end
9 end

10 return (existsDominated, split)

u is an element of UΓ, then for all values x⃗ satisfying C ∪ case u[x⃗] is practical in Γ,
and – if Γ is along h∗ – u = u(h∗).

Proof. We prove this claim using structural induction. For the base case, we assume Γ is
a leaf. Then, according to Algorithm 5.5, lines 1–3, the utility of the leaf will be returned.
It is by definition also the only practical utility of the leaf (for all values of x⃗). If the leaf
is along the honest history, it is further the honest utility, hence the base case is shown.

Let us now assume Γ is a branch and that we have shown the property for all subtrees
of Γ. We first consider the case where Γ is along h∗. Then, by induction hypothesis
and assuming a∗ is the honest action, if UΓ|(a∗) contains an element ua∗ it has to be
the honest utility ua∗ = u(h∗) and it has to be practical for all values of x⃗ that satisfy
C ∪ case. Hence, u∗ = u(h∗) in line 11. Following lines 12–17 of the algorithm and
Algorithm 5.6, u(h∗) is returned iff for all siblings Γa of Γ(a∗) exists a (by induction
hypothesis practical) utility ua such that the (by construction satisfiable) constraints
in S together with the constraint up(h∗) < ua,p is unsatisfiable, where p is the current
player at Γ. This equivalent to all x⃗ that satisfy C ∪ case also satisfy up(h∗)[x⃗] ≥ ua,p[x⃗].
Applying now Theorem 5.7, it follows that u(h∗)[x] is practical in Γ for all x⃗ that satisfy
C ∪ case in this exact case. Hence, if u ∈ UΓ, then u = u(h∗) and it is practical for all x⃗
that satisfy C ∪ case.

Secondly, assume Γ is not along the honest history. Again, by induction hypothesis all
utilities occurring in line 4 subtrees, are practical in their subgames for all x⃗ satisfying
C ∪ case. A utility ua ∈ UΓ|(a) is now added to the returned set UΓ, exactly if for all
siblings Γ|b there exists a (by induction hypothesis practical in Γ|b for the x⃗ satisfying the
constraints) utility ub such that C ∪case∪ua,p < ub,p is unsat. Which is again according
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to Theorem 5.7 equivalent to ua being practical in Γ for all x⃗ satisfying C ∪ case. This
concludes the induction step and hence the proof of the lemma.

Lemma 5.4. Let Γ be a subtree of a game Γ′, h∗ an honest history of Γ′, S a set of
initial constraints C and a case case, and ComputePR(Γ, h∗, S) = (UΓ, null). If a utility
u from Γ is not an element of UΓ, then for all values x⃗ satisfying C ∪ case the utility
u[x⃗] is not practical in Γ, or – if Γ is along h∗ – u ̸= u(h∗).

Proof. We prove the lemma by structural induction. For the base case we assume Γ is a
leaf. If a utility is not in UΓ, that means that it is not the leaf utility which is equivalent
to not being practical in Γ.

For the inductive case, we assume Γ is a branch. First, we further assume that Γ is along
h∗. By induction hypothesis, Lemma 5.3 and by Algorithm 5.5, the only candidate for
being in UΓ is u(h∗), if it was in UΓ|(a∗) . All others are by the algorithm not in UΓa∗

and by induction hypothesis therefore either not u(h∗) or are u(h∗) but not practical in
Γ|(a∗). In any case, all of those are also in Γ not u(h∗) or are u(h∗) but not practical
in Γ, according to Theorem 5.7. Therefore, assume u(h∗) ∈ UΓ|(a∗) , but is not in U|Γ.
Following the algorithm, this implies that there is a child Γ|(a), for which all practical
utilities u ∈ UΓ|(a) (by induction hypothesis and Lemma 5.3) the constraints in S imply
up(h∗) < up, where p is the current player. This has to be the case because otherwise
either the returned split would not have been null or u(h∗) ∈ UΓ. It, however, implies
that u(h∗) is not practical for all x⃗ satisfying the constraints in S.

Finally, we assume Γ is not along the honest history. We know that only utilities that
occurred in a UΓ|(a) are candidates to be in UΓ, the others are not. The others are,
according to the induction hypothesis, not practical in UΓ|(a) for all x⃗ satisfying the
constraints in S. Therefore, they are also not practical in UΓ for all x⃗ satisfying the
constraints in S. The ones that are in a UΓ|(a) are practical for all such x⃗ by Lemma 5.3.
Hence, if a utility u ∈ UΓ|(a) but not in UΓ according to the algorithm, there has to exist
a sibling Γ|(a′) such that for all their practical utilities ua′ , the constraints of S together
with up ≥ ua′,p are unsatisfiable. Otherwise, either the split would not be null, or u would
have been added to UΓ. By Theorem 5.7, u is not practical in Γ for all x⃗ that satisfy the
constraints in S.

The next lemma reasons about the negative output of ComputeSP.

Lemma 5.5. Given an input instance Π, an honest history h∗, a security property sp
and S the set of initial constraints C and a case case, if there exists a player group pg
such that

ComputeSP(Π, h∗,S, sp, pg) = (false, null) ,

then

∀x⃗. ∀c ∈ C ∪ case. c[x⃗]→ ¬sp(Γ, h∗)[x⃗] .
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Proof. We prove the lemma per security property algorithm. First, we consider security
properties weak and weaker immunity: There exists a player group such that ComputeSP
returns (false, null), iff ComputeWI returns (false, null) for pg. We proceed by struc-
tural induction. For the base case, we assume Γ is a leaf. Following Algorithm 5.3, one
can see in lines 1–9 that (false, null) is returned if C ∪ case ∪ upg < 0 is satisfiable but
C ∪ case ∪ upg ≥ 0 is unsatisfiable, where u is the utility of the leaf respectively its real
part for weaker immunity. This implies that for all x⃗ that satisfy C ∪ case the inequality
upg < 0 holds. Therefore, ¬sp(Γ, h∗) for all such x⃗.

For the induction step we assume Γ is a branch and by induction hypothesis all subtrees
of Γ satisfy the property. For the first case we assume pg is not the current player in Γ.
If (false, null) is returned from ComputeWI, there had to be a child Γ|(a) of Γ such that
ComputeWI returned false in line 14. Applying the induction hypothesis this implies
that for all x⃗ satisfying the constraints in S Γ|(a) is not weak(er) immune for pg. Let
us now fix such an x⃗ arbitrarily. Following Theorem 5.5, we know that for values x⃗ the
game Γ is not weak(er) immune for pg. Since x⃗ was chosen arbitrarily, Γ is not weak(er)
immune for pg for all x⃗ that satisfy the constraints in S.

Secondly, assume pg is the current player and Γ is along h∗ and ComputeWI returned
(false, null). Following Algorithm 5.3 lines 19–21, this can only happen, if (false, null)
was returned in line 21. By induction hypothesis this implies that for all x⃗ satisfying the
constraints in S the subgame Γ|(a∗) is not weak(er) immune for pg. By Theorem 5.5, it
follows that also Γ is not weak(er) immune for pg, for all x⃗ satisfying the constraints in S.

Lastly, we assume pg is the current player and Γ is not along h∗ and ComputeWI returned
(false, null). According to the algorithm, that implies that all children had returned
(false, null) in line 25. By induction hypothesis, this means that all children are not
weak(er) immune for pg for all x⃗ satisfying the constraints in S. Applying Theorem 5.5,
it follows that also Γ is not weak(er) immune for pg for all x⃗ satisfying C ∪ case.

The property for collusion resilience holds due to the same reasoning as for weak(er)
immunity. For practicality, note that ComputeSP(Π, h∗, S, pr, pg) = (false, null) iff
ComputePR(Γ, h∗,S) returns (∅, null).

According to Lemma 5.4 ComputePR(Γ, h∗,S) = (∅, null) implies that first Γ has to be
along h∗ (as otherwise no utility would be practical in Γ for an arbitrary x⃗ satisfying the
constraints in S, which was proven impossible in Lemma 5.1) and second that the honest
history is not practical in Γ for all x⃗ that satisfy the constraints in S. This concludes the
proof for practicality and, thus, the lemma.

The last lemma we need to prove the theorem gives insight into the positive output of
the ComputeSP function:

Lemma 5.6. Given an input instance Π, an honest history h∗, a security property sp
and a set S of initial constraints C and a case case, if for all player groups pg

ComputeSP(Π, h∗, S, sp, pg) = (true, split) ,
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independent of what split is, then

∀x⃗. ∀c ∈ C ∪ case. c[x⃗]→ sp(Γ, h∗)[x⃗] .

Proof. Let us fix a player group pg and assume sp is not pr. We again prove the lemma
by structural induction on the game tree Γ. For the base case we assume Γ is a leaf
and the return value is (true, split). According to Algorithms 5.3 and 5.4, this can only
happen if C ∪ case together with the negated property inequality of the leaf utility u
(upg < 0, respectively upg(h∗) < upg) is unsat. This implies according to Theorems 5.5
and 5.6, that for all x⃗ satisfying C ∪ case the game Γ does not satisfy the security
property for/against pg. The induction step is analogous to that of Lemma 5.5.

For sp = pr, we employ Lemma 5.3 to conclude that Γ with honest history h∗ is practical
for all x⃗ that satisfy the constraints in S.

We showed that for all x⃗ that satisfy the constraints in S, Γ with honest history h∗

satisfies sp for/against pg. Since pg was chosen arbitrarily, it holds for all player groups.
We can further separate the for-all quantification into both sides of the implication. As
the player group quantification and the x⃗ quantification are independent, their order can
be switched. By Theorem 5.3, it finally follows that for all x⃗ that satisfy the constraints
in S, the sp(Γ, h∗) holds.

Theorem 5.8 (Correctness of Algorithm 5.1). The compositional approach to compute
the game-theoretic security of an input instance Π for honest history h∗ described in
Algorithm 5.1 is sound and complete. That is, SatisfiesProperty(Π, h∗, sp, ∅) = true
iff Π with honest history h∗ satisfies the property sp. Otherwise, it returns false.

Proof. We prove direction “⇐” first, by contraposition. That is, we assume the function
SatisfiesProperty(Π, h∗, sp, ∅) returns false and show that Π with honest history
h∗ does not satisfy the security property sp. From our assumption and Algorithm 5.1,
we know that for the return value to be false, there has to exist a set of utility term
comparisons case such that

SatisfiesProperty(Π, h∗, sp, case) = false .

This implies that there has to exist a player group pg such that ComputeSP(Π, h∗, S, sp, pg)
returns (false, null), where S contains the constraints from C, (defined in Π) and case.

We can now apply Lemma 5.5 to conclude that for all values of x⃗ that satisfy the
(satisfiable) set of constraints in S, the game Γ (of Π) with honest history h∗ violates
security property sp for player group pg. The constraint set case can be extended to
a total order ⪯ on the utility terms Tu. Thus, by the fact the all x⃗ that satisfy C∪ ⪯
also satisfy C ∪ case, it follows that for all x⃗ that satisfy C∪ ⪯ security property sp
does not hold for player group pg. Using Theorem 5.1, this means Equation (5.9) does
not hold. That means exactly ¬sp(Π, h∗). Hence, the entire input instance Π violates
security property sp in general.
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For the other direction “⇒”, we first assume that SatisfiesProperty(Π, h∗, sp, ∅) returns
true. Following then the Algorithm 5.1, this implies that all final cases returned true.
Further, all considered cases are pairwise disjoint, and their disjunction is a tautology.
Considering one such case case, it has to be the case that for all player groups pg

ComputeSP(Π, h∗, S, sp, pg) = (true, split) ,

where the value of split is irrelevant and S contains the constraints of C and case.
According to Lemma 5.6, this implies that for all x⃗ that satisfy C and case that security
property sp holds for player group pg, game Γ and honest history h∗. As before, this
implies that for all total orders ⪯ extending case, the security property holds for pg.
Further, the disjunction of all total orders that extend case is equivalent to case itself.
Since this result holds for all the considered cases and those cases span the considered
universe, it follows that for all total orders ⪯ holds that all x⃗ that satisfy C∪ ⪯ satisfy the
security property for all player groups. According to Theorem 5.1, follows Equation (5.9)
holds. Hence, the input instance Π with honest history h∗ satisfies the security property.

Finally, we have to show that SatisfiesProperty always returns either true or
false. This is equivalent to proving termination. The Compute<SP> functions ter-
minate since they walk through the finite game tree once, and all SMT queries are
decidable, as unquantified non-linear real arithmetic is decidable. Further, the function
SatisfiesProperty splits only on utility comparisons of players/groups of players,
which are also finitely many. Hence, the algorithm terminates.

5.6.3 Extracting Compositional Strategies

The way compositional security analysis in Algorithm 5.1 works, unfortunately, does not
immediately provide witness strategies. However, Algorithm 5.1 can still carry around
enough information to compute witnesses.

Theorem 5.9 (Weak(er) Immune Strategies). For a weak(er) immune game Γ, with
honest history h∗ and total order ⪯, strategy σ is honest and weak(er) immune for all x⃗
satisfying ⪯, where

σ := (σp1 , . . . , σp|N|) ,

and σpi ∈ Spi is a strategy for player pi. Strategy σpi picks the honest choice along the
honest history, whereas at other nodes, where it is pi’s turn, it picks an arbitrary action a
that yields a weak(er) immune for pi subtree after action a.

Proof. Consider σpi ∈ Spi as in the theorem. This strategy is weak(er) immune for pi. To
show this, consider an arbitrary joint strategy τ . Then upi(τN−pi , σ

pi) ≥ 0 (respectively
its real part), since along the generated history of (τN−pi , σ

pi) either it is not player pi’s
turn, in which case according to Theorem 5.5, all choices have to be weak(er) immune for
pi, or it is player pi’s turn, in which case we chose a weak(er) immune for pi action for
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σpi . Eventually, we thus have to reach a weak(er) immune for pi leaf. A leaf is weak(er)
immune for pi, iff its (real part of the) utility for pi is non-negative for all x⃗ satisfying ⪯.

Applying now the proof of Theorem 5.3 for weak(er) immunity, it follows that strategy σ
is weak(er) immune for all x⃗ satisfying ⪯.

Theorem 5.9 is constructive in nature, yielding thus an algorithmic approach for ex-
tracting a weak(er) immune strategy. For each player pg, function ComputeWI (and
ComputeWERI) proceeds as follows. If it is their turn after history h, h off h∗, and we
found a weak(er) immune choice, we store this action as the choice of a possible weak(er)
immune and honest strategy σ. If the game is weak(er) immune for all players, we can
simply compute σ by collecting all the stored choices throughout the tree.

Example 5.19. We compute the weak immune strategy of the Market Entry game
from Example 5.1 with honest history (n), which was analyzed as in Example 5.13. The
strategy σM for player M has to choose the honest action n at the root, which is the only
choice point for M . The strategy σE for player E needs to choose one weaker immune
subtree after history (e). Since the subtree after history (e, i) is the only candidate, we
set σE(e) = i. The strategy σ = (σM , σE) is the desired weak immune strategy.

For collusion resilience it is also possible to compute an honest collusion resilient strategy
compositionally. However, proving that the constructed strategy is collusion resilient
requires more involved reasoning.

Theorem 5.10 (Collusion Resilient Strategies). For a collusion resilient game Γ, with
honest history h∗ and total order ⪯, strategy σ is honest and collusion resilient for all x⃗
satisfying ⪯, where we proceed top-down and breadth-first, to pick the following action
for strategy σ at history h ∈H \T :

1. if h is along h∗, pick the honest action a∗: σ(h) = a∗;

2. otherwise, maintain the set of players S ⊆ N that had to deviate from σ to reach h.
Then pick an arbitrary action a, for which the subtree Γ|(h,a) is collusion resilient
against all supersets of S other than N .

Note that in case (2) of Theorem 5.10, there always exists an action a, such that the
subtree Γ|(h,a) is collusion resilient against all supersets of S other than N . Theorem 5.10
is also constructive, yielding an algorithmic way to compute a collusion resilient strategy.
We can proceed in the same way as for weak immunity in Theorem 5.9: during analysis
for each player group pg and each branch, we store whether the branch is collusion
resilient against pg. If the game turns out to be collusion resilient, we can collect the
choices for σ according to the theorem.

Proof. First, we have to prove that such a strategy always exists, provided that h∗ is
collusion resilient. We fix an arbitrary total order ⪯ and consider only values for x⃗ that
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satisfy ⪯. Towards a contradiction, we assume we cannot pick an action according to the
theorem at history h. We further assume h is a shortest history with that property. As
we can always pick the honest choice along h∗, h has to be off the honest history and for
each choice a ∈ A(h) there has to exist a superset of S (other than N) against which
Γ|(h,a) is not collusion resilient.

Consider the set S of players who had to deviate from the partially defined strategy σ
to reach h. Pick now the last time in h where a player p /∈ S has a turn, and call the
respective history t. If only players of S ever have turns along h, we define t := ∅. In any
case Γ|t is collusion resilient against all supersets of S (other than N) by construction
(since we could pick an action according to the theorem to reach t; and if t = ∅ because
Γ is collusion resilient).

From the proof of Theorem 5.3.3 for collusion resilience follows that there exists a strategy
σS that is collusion resilient against all supersets S′ of S, S′ ̸= N .

Consider action a ∈ A(h), with σS(h) = a. Such an a has to exist since Γ|t is a supertree
of Γ|h. By assumption, Γ|(h,a) is not collusion resilient against at least one S′. Fix such
an S′. Therefore, there exists a strategy τa ∈ S|(h,a) such that∑︂

p∈S′

u∗
p <

∑︂
p∈S′

u|(h,a),p(σS|(t′,a),N−S′ , τaS′) , (5.16)

where u∗ is the honest utility u(h∗) and t′ is the suffix of h after t: (t, t′) = h.

Towards a contradiction, we construct τ ∈ S|t as follows. Let τ|(t′,a) = τa, and let τ yield
(t′, a). The rest can be picked arbitrarily. It can be observed that

u|(h,a)(σS|(t′,a),N−S′ , τaS′) = u|t(σSN−S′ , τS′) , (5.17)

as only players p ∈ S′ have turns in t′, σS(h) = a, τ(h) = a and h = (t, t′). But σS is
collusion resilient against S′ in Γt, hence∑︂

p∈S′

u|t,p(σSN−S′ , τS′) ≤
∑︂
p∈S′

u∗
p . (5.18)

Finally, Equations (5.16) to (5.18) yield a contradiction.

What remains to be shown is that the constructed strategy σ is collusion resilient and
honest in Γ. It yields the honest history h∗ by construction. We again prove the collusion
resilience by contradiction and assume σ is not cr (but the tree Γ still is collusion resilient,
for another strategy). Then, there has to exist a set of players S ⊂ N and a strategy
τ ∈ S such that ∑︂

p∈S
up(σ) =

∑︂
p∈S

u∗
p <

∑︂
p∈S

up(σN−S , τS) . (5.19)

Let h be the prefix of history H(σN−S , τS) at which for the last time in H(σN−S , τS) an
honest player p = P (h) /∈ S has a turn. Note that such an h has to exist and has to be
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off the honest history h∗. If this were not the case, τ would cause every honest strategy
to not be collusion resilient as the right side of inequality in (5.19) would not depend on
σN−S at all, which would imply that h∗ is not collusion resilient.

By the construction of σ, we know that a = σ(h) leads to a subtree Γ|(h,a) that is collusion
resilient against the set of deviating players Sd (deviating from σ to h) and all supersets
(other than N). Further, S ⊇ Sd is such a superset, since more players could deviate
from σ in other parts of the tree. Hence, there exists a strategy σS ∈ S|(h,a) that is
collusion resilient against S. Therefore, also for the considered strategy τ∑︂

p∈S
u∗
p ≥

∑︂
p∈S

u|(h,a),p(σSN−S , τ|(h,a),S) . (5.20)

Note that after h no more honest players have a turn in H(σN−S , τS), and (σN−S , τS)(h) =
σ(h) = a, because P (h) ∈ N − S. Therefore, H(σN−S , τS) = (h, a,H(τ|(h,a))). This
implies that also no honest player has a turn in H(σSN−S , τ|(h,a),S), as H(σSN−S , τ|(h,a),S) =
H(τ|(h,a)). Since the histories align, the strategies also have to yield the same utilities
u(σN−S , τS) = u|(h,a)(σSN−S , τ|(h,a),S). This contradicts Equations (5.19) and (5.20) and
shows that σ is an honest and collusion resilient strategy.

Lastly, we describe how to extract practical strategies in our compositional framework.

Theorem 5.11 (Practical Strategies). Let Γ be a game tree, ⪯ a total order, h ∈ H
a history. Further, let u be a utility practical (under ⪯) in Γ|h. The following strategy
σu ∈ S|h yields utility u and is practical (under ⪯).

1. For action a ∈ A(h), where u is practical in Γ|(h,a) (under ⪯) we set σu(h) = a
and σu|(a) = σu,a, where σu,a ∈ S|(h,a) is a practical strategy in Γ|(h,a) that yields
utility u.

2. For all other a′ ∈ A(h) \ {a} we define σu|(a′) = σu
′,a′ , where u′ is a utility practical

in Γ|(h,a′), σu|(a′) a practical strategy yielding u′ and for all x⃗ satisfying ⪯: uP (h)[x⃗] ≥
u′
P (h)[x⃗].

Similarly to our previous results, Theorem 5.11 provides an algorithmic solution to
extract a practical strategy for the honest history. For a game tree Γ with practical
honest history h∗ and total order ⪯, an honest and practical strategy can be computed as
follows: bottom-up, for each subtree and each practical utility, a corresponding practical
strategy is stored. When proceeding one level up, we do as stated in Theorem 5.11.
Along the honest history, the only stored practical strategy is the one for the honest
utility u∗ = u(h∗) as, ultimately, this is the only one required at the root.

Proof. According to Theorem 5.7, u can only be practical in Γ|h, if it was practical in at
least one child Γ|(h,a). For every other child a′ there had to exist a utility u′ practical in

158



5.6. Automating Compositional Security Analysis

Γ|(h,a′) such that uP (h) ≥ u′
P (h). Hence, strategy σu can always be constructed. It further

yields utility u (by construction) and is practical since by construction and the proof of
Lemma 5.1 no player can at any point of the game deviate profitably.

5.6.4 Finding Compositional Counterexamples

Counterexamples to the security properties, as defined in Definitions 5.8 to 5.10, serve the
important purpose of providing attack vectors and thus pinpointing the weaknesses of a
protocol underlying the considered game model. We use the following pseudo-algorithms
to compute counterexamples compositionally.

Compositional Counterexamples to Weak(er) Immunity. We first store infor-
mation during Algorithm 5.3: When analyzing the weak(er) immunity for a player p,
whenever it is not p’s turn and there exists an action leading to a not weak(er) immune
subtree (line 14 with split = null in Algorithm 5.3), we store the action, the current
history and the player p.

Secondly, after the analysis terminated and the result was not weak(er) immune, we
generate a counterexample to the weak(er) immunity of player p by walking through the
tree again. Assume the current history is h and we proceed from the root as follows.

• If p is the current player and h is along the honest history, we follow the honest
action to a subtree. This is sufficient since an honest p follows the honest history.

• If it is p’s turn but h is not along the honest history, all choices had to lead to not
weak(er) immune for p subtrees for the current tree to be not weak(er) immune for
p. We, therefore, have to follow all choices to compute a counterexample.

• Otherwise, if it is not p’s turn, we check our stored data for a not weak(er) immune
for p choice a. By construction and using Theorem 5.5, it has to exist. We add it
to our partial strategy sN−p, i.e. sN−p(h) = a. Then, we continue at history (h, a).

• At a leaf nothing has to be considered. A not weak(er) immune for p leaf leads to
a negative (real) utility for p.

According to Theorem 5.5, the steps outlined above provide a player p and a partial
strategy sN−p for the other players N − p, no matter how the honest p behaves off
the honest history. It also yields only negative utilities for p and it thus provides a
counterexample to the weak(er) immunity of p and, therefore, a counterexample to the
weak immunity of the game with the considered honest history.

Example 5.20. Let us adapt the Market Entry game from Example 5.1 by changing
the initial constraint on the variable p to p < 0. The honest history (n) is not weak
immune for player E, as they get a negative utility p < 0 in the honest leaf. We can thus
construct the counterexample as follows: starting from the root, it is not E’s turn and
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the not weak immune choice is (n), so we add the action n to the partial strategy for
player M . We then continue at history (n), which is a leaf, so we are done.

Compositional Counterexamples to Collusion Resilience. When analyzing the
collusion resilience against a group of players S, whenever it is the turn of one of the
players in S and there exists an action leading to a not collusion resilient against S
subtree (line 14 with split = null in Algorithm 5.4), we store the action, the current
history and player group S.

After the analysis terminated and the result was not collusion resilient, we generate a
counterexample of the collusion resilience against player group S by walking through the
tree again: Starting from the root, we proceed as follows, assuming the current history is
h.

• If P (h) /∈ S and h is along the honest history, we follow the honest action to the
honest subtree. This is sufficient since an honest player P (h) follows the honest
history.

• If P (h) /∈ S but h is not along the honest history, all choices had to lead to not
collusion resilient against S subtrees for the current tree to be not collusion resilient
against S. We, therefore, have to follow all choices to compute a counterexample.

• Otherwise, if P (h) ∈ S, we check our stored data for a choice a that is not collusion
resilient against S. By construction and Theorem 5.6, it has to exist. We add it to
our partial strategy sS , i.e. sS(h) = a. Then, we continue at history (h, a).

• At a leaf nothing has to be considered. A not collusion resilient against S leaf has
a joint utility for S greater than their joint honest utility.

With the same arguments as for weak(er) immunity, we conclude that the generated
partial strategy sS together with player group S is a counterexample to the collusion
resilience of game Γ with the considered honest history.

Compositional Counterexamples to Practicality. When analyzing the tree ac-
cording to Algorithm 5.5, we can only return “false” (i.e. an empty list), together with
case split null along the honest history. This is the case exactly when, for at least one
sibling, all practical utilities are strictly better for the current player than the honest one
(line 15). Before returning, we store the action a leading to said sibling together with
the set of its practical utilities U(h, a). For convenience, we also provide the histories
t ∈H|(h,a) to those utilities u(t) = u ∈ U(h, a). Using Theorem 5.7, we thus computed a
counterexample to practicality.

Remark 6. It is also possible to compute all counterexamples to a security property. This
can be done by simply storing all actions that lead to not weak(er) immune, respectively
collusion resilient subtrees in the pseudo-algorithms, for weak(er) immunity and collusion
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resilience. For practicality, it requires storing all siblings along the entire honest history,
whose practical utilities lead to a better-than-honest utility.

5.7 Experimental Evaluation

We implemented the compositional security approach of Section 5.5 by exploiting its
divide-and-conquer reasoning nature from Section 5.6. Our implementation is available
online in the CheckMate2.0 tool2.

Experimental Setup. We evaluated our tool using a machine with 2 AMD EPYC 7502
CPUs clocked at 2.5GHz with 32 cores and 1TB RAM using 16 game-theoretic security
benchmarks. Our dataset contains the 15 examples from [RBK+24], which include
realistic models of real-world blockchain protocols along with game scenarios of various
sizes. Additionally, we detail later in this section one large example, named 4-Player
Routing, in order to showcase the impact of interleaved sub- and supertree reasoning. To
the best of our knowledge, the only other automated approach for game-theoretic security
is the conventional CheckMate framework [RBK+24]. Our experiments also compare
CheckMate2.0 to CheckMate.

Experimental Results. Tables 5.1 and 5.2 summarize our experiments. We report
both on the results of CheckMate2.0 and CheckMate; the respective columns on times,
nodes, and calls in Tables 5.1 and 5.2 detail these comparisons. In particular, the columns
“Nodes evaluated” and “Nodes evaluated (reps)” of Table 5.1 indicate the number of game
tree nodes visited during the security analysis without and, respectively, with repetitions.
The “Calls" column of Table 5.1 shows the number of calls made to the SMT solver while
proving the security property listed in column 4.

Experimental Analysis. Table 5.1 demonstrates that the compositional approach
of CheckMate2.0 significantly outperforms the non-compositional CheckMate setting
in execution time across nearly all benchmarks. The scalability of CheckMate2.0 is
especially evident in the Tic Tac Toe benchmark, which involves a substantial 548,946
nodes. In this example, for the properties weak immunity (wi), weaker immunity
(weri), and collusion resilience (cr), CheckMate2.0 completes the security analysis
in approximately 5 seconds, whereas CheckMate requires between 255 and 287 seconds.
When proving practicality (pr) of Tic Tac Toe, the conventional CheckMate fails to
terminate within 8 hours while CheckMate2.0 succeeds in less than 37 seconds.

In some benchmarks, where a security property is not satisfied, CheckMate2.0 explores
significantly fewer nodes, see 3-Player Routing for weak immunity and collusion resilience,
the Pirate game for weak immunity, and Auction for weak immunity and collusion
resilience.

2https://github.com/apre-group/checkmate/tree/CCS25
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Table 5.1: Selected experimental results of game-theoretic security, using the compo-
sitional CheckMate2.0 approach and the non-compositional CheckMate setting of
[RBK+24]. A full summary of our experiments is in Table 5.4. Runtimes are given in
seconds, with timeout (TO) after 8 hours. For each game, columns 2–3 list the size (tree
nodes and game players) of the game from column 1. Column 4 shows the game-theoretic
security property we analyzed and (dis)proved, as indicated in column 5. Columns 6–9
present the results of CheckMate2.0 compared to CheckMate, using the slash / sign.
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Game Property Time (one CE) Time (all CEs)
CheckMate2.0/CheckMate CheckMate2.0/CheckMate

Pirate cr 0.041 / 0.039 3.232 / 79.839
(y, n, n, n, y, y)
Auction wi 0.012 / 0.048 0.025 / 4.172
(E,E, I, I) cr 0.018 / 0.066 0.036 / 15.106
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(SH , L, L, U, U) cr 0.279 / 5.619 1.657 / 7.815

pr 33.561 / 46.480 291.236 / 3 033.784

Table 5.2: Selected experiments on counterexample (CE) generation using our Check-
Mate2.0 approach and the non-compositional CheckMate tool of [RBK+24]. Full details
and experiments are given Table 5.5. Runtimes are given in seconds.

We note that CheckMate2.0 requires considerably more SMT-solving calls. Notable
examples include the Closing Game (38,220 CheckMate2.0 calls vs. 1 CheckMate call
for practicality), 3-Player Routing (546,418 vs. 13 calls for practicality), and Tic Tac
Toe (10,694 vs. 1 call for weak(er) immunity and collusion resilience). Despite the higher
number of SMT calls in CheckMate2.0, the SMT queries generated by CheckMate2.0
are considerably smaller than those of CheckMate; moreover, CheckMate2.0 calls
inhabit a quantifier-free fragment, easing reasoning significantly as reflected in the
improved execution times.

In general, CheckMate2.0 analysis may occasionally result also in suboptimal splits,
leading to longer execution times. This issue is exemplified in the Closing game when
analyzing practicality of the honest history (Ch, S). Additionally, analyzing collusion
resilience can sometimes take longer, particularly when more players are involved, for
example in the Pirate game. This might be explained by the very large number of colluding
groups combined with a small game resulting in many trivial SMT calls compared to
CheckMate.

Counterexamples and Strategies. Table 5.2 presents the CheckMate2.0 runtimes
to generate counterexamples compared to CheckMate, for selected benchmarks. It reports
the execution time required to find one counterexample (for one case split) as well as
finding all counterexamples in all cases for violated security properties. The former is
useful for quickly identifying scenarios where the property is not met, while the latter
proves particularly helpful when revising and refining a protocol. Comprehensive data
for all benchmarks can be found in Table 5.5.

The use of compositionality in CheckMate2.0 demonstrates notable improvements
in execution time, particularly when retrieving all counterexamples. Additionally, the
execution times for compositional analysis with and without counterexample extraction
are quite similar, indicating that CheckMate2.0 enables counterexample extraction
with minimal overhead. The counterexamples to collusion resilience for the Pirate game
show this clearly. While CheckMate2.0 requires slightly more time for property
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5. Compositional Game-Theoretic Security

Game Property Time
CheckMate2.0/CheckMate

Splitswi wi 0.010 / 0.019
(q) weri 0.010 / 0.018

cr 0.010 / 0.015
pr 0.011 / 0.017

Splitscr wi 0.011 / 0.018
(n) weri 0.011 / 0.018

cr 0.011 / 0.019
pr 0.011 / 0.018

Market Entry cr 0.010 / 0.014
(e, i) pr 0.010 / 0.014
Simplified Closing wi 0.009 / 0.012
(H) weri 0.009 / 0.011

cr 0.009 / 0.012
(Ch, S) cr 0.010 / 0.012

pr 0.010 / 0.014
Simplified Routing weri 0.010 / 0.011
(SH , L, L, L, L, U, U, U, U) pr 0.010 / 0.012
Auction weri 0.017 / 0.028
(E,E, I, I) pr 0.022 / 0.153
Closing wi 0.011 / 0.025
(H) weri 0.011 / 0.022

cr 0.023 / 0.025
(Ch, S) wi 0.012 / 0.025

weri 0.011 / 0.021
cr 0.024 / 0.025
pr 2.185 / 0.0364

3-Player Routing (SH , L, L, U, U) weri 0.539 / 1.163
Unlocking Routing weri 2.194 / 4.233
(U,U, U, U) pr 4.241 / 5.718
Tic Tac Toe Concise wi 0.556 / 7.003
(CM,LU,RU, weri 0.561 / 7.780
LD,LM,RM, cr 1.883 / 8.894
CU,CD,RD) pr 8.644 / 219.689
Tic Tac Toe wi 5.509 / 276.333
(CM,RU,LU, weri 5.507 / 306.763
RD,RM,LM, cr 18.608 / 347.093
CU,CD,LD) pr 276.719 / TO

Table 5.3: Full experiments on strategy extraction using our CheckMate2.0 approach
and the non-compositional CheckMate tool of [RBK+24]. Runtimes are given in seconds,
with a timeout (TO) after 8 hours.

analysis compared to CheckMate, we note that the new CheckMate2.0 identifies all
counterexamples across all cases in approximately 3 seconds, whereas CheckMate takes
almost 80 seconds. Similarly, in the case of the 3-Player Routing game, CheckMate2.0
retrieves all counterexamples for all cases within 291 seconds, while it takes CheckMate
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over 3,000 seconds (50 minutes).

Similar benefits of CheckMate2.0 can also be observed for strategy extraction, with
details in Table 5.3. The findings closely mirror those observed for counterexamples:
Firstly, strategy extraction in the compositional approach outperforms the previous
method across nearly all benchmarks. Secondly, the compositional approach incurs
almost no additional overhead for strategy extraction, maintaining its overall runtime
efficiency. One benchmark that stands out is Tic Tac Toe, where the additional overhead
for strategy extraction is clearly noticeable for collusion resilience and practicality.
However, strategy extraction for these properties is still achievable within a reasonable
time, namely 18 seconds for collusion resilience and 276 seconds for practicality. This
represents a significant improvement over the non-compositional approach, which takes
347 seconds for collusion resilience and fails to terminate within the 8-hour time limit for
practicality.

Sub– and Supertree Reasoning. One of the most significant contributions of compo-
sitional reasoning is that CheckMate2.0 enables analyzing subtrees independently and
integrating only their security results in the supertree. This feature of CheckMate2.0 is
particularly beneficial in larger models. For instance, the 3-Player Routing and Routing
Unlocking benchmarks based on the routing protocol [PD16] are generated using a script,
as it is not feasible to model protocols of this size manually. Modeling the routing
protocol for 3 players results in a game with 21,688 nodes (3-Player Routing), taking 20
MB on disk.

We next detail a more challenging routing example with 4 players, called 4-Player Routing,
which has 144,342,306 nodes. This example exceeds our 200 GB of allocated disk space,
and thus could not even be created fully. However, by leveraging compositionality, we
intertwine model generation and analysis, making it possible to discard generated subtrees
after the results of security analysis have been obtained. Specifically, during the game
generation process, each subtree corresponding to a specific phase of the protocol called
the unlocking phase (a total of 1440 subtrees) is analyzed on the fly, with only the results
kept. The final outcome, the 4-Player Routing game, is a supertree with 396 regular
nodes and 1440 nodes representing subtrees, or 1,836 nodes in total. The supertree
has a size of about 60 MB and in it all subtrees for the unlocking phase have already
been solved. This allows us to directly apply CheckMate2.0 to the supertree. Using
CheckMate2.0 compositionally, we conclude that 4-Player Routing is weaker immune,
but not weak immune, nor collusion resilient, nor practical.

5.8 Related Work and Conclusion

We present the first approach to compositionally analyze the security properties of game-
theoretic protocol models. By mapping our work to SMT-based reasoning in combination,
we introduce a divide-and-conquer framework to automate compositional reasoning in a
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Game Nodes Players Security Secure Time Nodes Nodes Calls
property yes/no evaluated evaluated

CheckMate2.0/CheckMate
Splitswi 5 2 wi y 0.010 / 0.018 5 18 / 10 10 / 3
(q) weri y 0.010 / 0.018 5 18 / 10 10 / 3

cr y 0.010 / 0.015 4 / 5 6 / 10 3 / 1
pr y 0.011 / 0.017 5 25 / 5 19 / 3

Splitscr 5 2 wi y 0.011 / 0.019 4 / 5 6 / 10 3 / 1
(n) weri y 0.011 / 0.019 4 / 5 6 / 10 3 / 1

cr y 0.011 / 0.018 5 16 / 10 10 / 3
pr y 0.011 / 0.018 5 15 / 5 20 / 3

Market Entry 5 2 wi n 0.011 / 0.014 5 8 / 10 5 / 1
(e, i) weri n 0.010 / 0.014 5 8 / 10 5 / 1

cr y 0.010 / 0.014 5 8 / 10 4 / 1
pr y 0.010 / 0.015 5 5 2 / 1

G 5 2 wi n 0.010 / 0.012 5 / 5 28 / 10 18 / 4
(rA, lB) weri n 0.009 / 0.012 5 / 5 28 / 10 18 / 4

cr n 0.008 / 0.010 2 / 5 2 / 10 2 / 1
pr n 0.009 / 0.010 5 / 5 9 / 5 5 / 1

Simplified Closing 8 2 wi y 0.009 / 0.012 8 10 / 16 8 / 1
(H) weri y 0.009 / 0.011 8 10 / 16 8 / 1

cr y 0.008 / 0.011 7 / 8 9 / 16 6 / 1
pr n 0.009 / 0.012 8 8 8 / 1

(Ch, S) wi n 0.008 / 0.012 3 / 8 3 / 16 2 / 1
weri n 0.008 / 0.011 3 / 8 3 / 16 2 / 1
cr y 0.008 / 0.012 8 11 / 16 7 / 1
pr y 0.009 / 0.013 8 8 6 / 1

Simplified Routing 17 5 wi n 0.008 / 0.012 7 / 17 7 / 85 2 / 1
(SH , L, L, L, L, U, U, U, U) weri y 0.009 / 0.011 17 77 / 85 28 / 1

cr n 0.010 / 0.017 16 / 17 105 / 510 24 / 1
pr y 0.009 / 0.012 17 17 8 / 1

Centipede 19 3 wi n 0.044 / 0.051 19 602 / 57 345 / 18
(C,C,C,C,C,C,C,C,C) weri n 0.033 / 0.052 19 602 / 57 345 / 18

cr n 0.044 / 0.038 19 534 / 114 305 / 9
pr n 0.011 / 0.028 19 103 / 19 39 / 7

EBOS 31 4 wi n 0.009 / 0.013 28 / 31 38 / 124 21 / 1
(Mine,Mine,Mine,Mine) weri n 0.008 / 0.013 28 / 31 38 / 124 21 / 1

cr n 0.039 / 0.021 31 476 / 434 304 / 4
pr n 0.019 / 0.024 31 167 / 31 184 / 5

Pirate 79 4 wi n 0.010 / 0.015 10 / 79 10 / 316 5 / 1
(y, n, n, n, y, y) weri n 0.009 / 0.016 10 / 79 10 / 316 5 / 1

cr n 0.041 / 0.029 79 622 / 1106 368 / 4
pr n 0.036 / 0.049 79 482 / 79 554 / 8

Auction 92 4 wi n 0.012 / 0.033 16 / 92 16 / 368 9 / 1
(E,E, I, I) weri y 0.016 / 0.027 90 / 92 229 / 368 162 / 1

cr n 0.018 / 0.030 66 / 92 128 / 1,288 103 / 1
pr y 0.021 / 0.145 92 92 188 / 1

Closing 221 2 wi y 0.011 / 0.024 20 / 221 22 / 442 16 / 1
(H) weri y 0.010 / 0.021 20 / 221 22 / 442 16 / 1

cr y 0.012 / 0.023 44 / 221 46 / 442 36 / 1
pr n 0.097 / 0.346 221 568 / 221 1454 / 1

(Ch, S) wi y 0.011 / 0.024 33 / 221 36 / 442 25 / 1
weri y 0.011 / 0.020 33 / 221 36 / 442 25 / 1
cr y 0.013 / 0.023 60 / 221 63 / 442 48 / 1
pr y 2.144 / 0.345 221 14353 / 221 38220 / 1

3-Player Routing 21,688 3 wi n 0.248 / 0.984 16 / 21,688 16 / 65,064 9 / 1
(SH , L, L, U, U) weri y 0.514 / 1.008 7,084 / 21,688 7,570 / 65,064 5,441 / 1

cr n 0.272 / 1.886 430 / 21,688 474 / 130,128 299 / 1
pr n 33.162 / 34.717 21,688 416,156 / 21,688 569,418 / 13

Unlocking Routing 36,113 5 wi n 0.621 / 2.121 1,184 / 36,113 1,184 / 180,565 714 / 1
(U,U, U, U) weri y 1.525 / 1.625 32,429 / 36,113 55,090 / 180,565 27,897 / 1

cr n 0.584 / 15.247 319 / 36,113 373 / 1,083,390 60 / 1
pr y 2.848 / 4.382 36,113 / 36,113 36,113 / 36,113 46,636 / 1

Tic Tac Toe Concise 58,748 2 wi y 0.557 / 6.372 1,345 / 58,748 1,355 / 117,496 698 / 1
(CM,LU,RU,LD,LM weri y 0.541 / 6.373 1,345 / 58,748 1,355 / 117,496 698 / 1
RM,CU,CD,RD) cr y 0.543 / 7.352 1,345 / 58,748 1,355 / 117,496 698 / 1

pr y 3.937 / 227.807 58,748 / 58,748 58,748 / 58,748 57,250 / 1
Tic Tac Toe 549,946 2 wi y 5.276 / 255.368 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
(CM,RU,LU,RD,RM, weri y 5.256 / 255.600 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
LM,CU,CD,LD) cr y 5.302 / 286.574 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1

pr y 36.530 / TO 549,946 / TO 549,946 / TO 527,198 / TO

Table 5.4: Full experimental results of game-theoretic security, using the compositional
CheckMate2.0 approach and the non-compositional CheckMate setting of [RBK+24].
Runtimes are given in seconds, with a timeout (TO) after 8 hours. For each game,
columns 2–3 list the size (tree nodes and game players) of the game from column 1.
Column 4 shows the game-theoretic security property we analyzed and (dis)proved, as
indicated in column 5. Columns 6–9 present the results of CheckMate2.0 compared to
CheckMate, using the slash / sign.
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Game Property Time (one CE) Time (all CE)
CheckMate2.0/CheckMate CheckMate2.0/CheckMate

Market Entry wi 0.010 / 0.016 0.010 / 0.023
(e, i) weri 0.010 / 0.017 0.009 / 0.019
G wi 0.010 / 0.013 0.010 / 0.020
(rA, lB) weri 0.010 / 0.014 0.009 / 0.020

cr 0.008 / 0.011 0.008 / 0.013
pr 0.009 / 0.016 0.009 / 0.028

Simplified Closing (H) pr 0.009 / 0.019 0.008 / 0.019
(Ch, S) wi 0.009 / 0.014 0.008 / 0.016

weri 0.009 / 0.014 0.008 / 0.014
Simplified Routing wi 0.009 / 0.014 0.010 / 0.033
(SH , L, L, L, L, U, U, U, U) cr 0.010 / 0.023 0.016 / 0.096
Centipede wi 0.046 / 0.049 0.080 / 0.495
(C,C,C,C,C,C,C,C,C) weri 0.034 / 0.050 0.061 / 0.495

cr 0.045 / 0.047 0.078 / 0.538
pr 0.012 / 0.062 0.022 / 0.400

EBOS wi 0.010 / 0.015 0.011 / 0.058
(Mine,Mine,Mine,Mine) weri 0.010 / 0.015 0.010 / 0.057

cr 0.040 / 0.028 0.057 / 10.760
pr 0.020 / 0.032 0.021 / 0.032

Pirate wi 0.010 / 0.020 0.157 / 9.465
(y, n, n, n, y, y) weri 0.009 / 0.020 0.157 / 9.495

cr 0.041 / 0.039 3.232 / 79.839
pr 0.037 / 0.064 7.414 / 35.227

Auction wi 0.012 / 0.048 0.025 / 4.172
(E,E, I, I) cr 0.018 / 0.066 0.036 / 15.106
Closing (H) pr 0.096 / 0.650 2.204 / 8.846
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(SH , L, L, U, U) cr 0.279 / 5.619 1.657 / 7.815

pr 33.561 / 46.480 291.236 / 3 033.784
Unlocking Routing wi 0.602 / 5.219 2.090 / 1 988.997
(U,U, U, U) cr 0.564 / 116.906 3.562 / error

Table 5.5: Full experiments on counterexample (CE) generation using our CheckMate2.0
approach and the non-compositional CheckMate tool of [RBK+24]. Runtimes are given in
seconds; error means we encountered an exception thrown from CheckMate’s Z3 backend.

sound and complete manner. Our experiments clearly showcase scalability improvements,
especially for real-world protocols with millions of nodes/actions.

Our compositional approach is a strong enhancement over the non-compositional setting
of [BKK+23a]. We not only improve practical usage but also provide a sound and
complete way to split and combine game-theoretic properties of subgames/supergames.
Compared to [BKK+23a], we minimize the use of SMT solving by applying it only over
game leaves.

Compositional game theory, without considering game-theoretic security, is also addressed
in [GHWZ18, GKLNF20, BHZ23]. Here, so-called open games are introduced to represent
games played relative to a given environment. Open games are, however, restricted to
constant numeric utilities and assuming rational behavior of players. Unlike these works,
we work with symbolic utilities and capture honest/rational behavior, and thus security,
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5. Compositional Game-Theoretic Security

in games.

Related to compositional verification, [WCN+21] presents compositional analysis of smart
contracts. Instead of verifying a smart contract relative to all users, a few representative
users are chosen, thereby avoiding intractability due to state explosion. While game-
theoretic security is not addressed in [WCN+21], program verification and synthesis are
worthy approaches to be further considered in our future work.

Importantly, (automatically) synthesizing game models from the protocol’s definition,
respectively source code in the case of smart contracts, is a challenge we aim to address
in the future. Allowing infinite games and modeling game actions impacted by external
factors are other tasks for future work, allowing us to model uncontrollable protocol
effects, such as price changes.
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CHAPTER 6
Further Reasoning about
Implementation Security

This chapter is based on article [ERI+21b]:

Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács, and Mooly Sagiv. Summing
up Smart Transitions. arXiv preprint, 2021.

This article is an extended version of the publication [ERI+21a]:

Neta Elad, Sophie Rain, Neil Immerman, Laura Kovács, and Mooly Sagiv. Summing
up Smart Transitions. In Proceedings of 33rd International Conference on Computer
Aided Verification, pages 317–340, Cham, Switzerland, 2021.

6.1 Problem Statement

A basic challenge in smart contract verification is how to express the functional correctness
of transactions, such as currency minting or transferring between accounts. Typically,
the correctness of such a transaction can be verified by proving that the transaction
leaves the sum of certain account balances unchanged.

Consider, for example, the task of minting an unbounded number of tokens in the
simplified ERC-20 token standard of the Ethereum community [VB15], as illustrated in
Figure 6.11. This example deposits the minted amount (n) into the receiver’s address (a)
and we need to ensure that the mint operation only changed the balance of the receiver.
To do so, in addition to (i) proving that the balance of the receiver has been increased by
n, we also need to verify that (ii) the account balance of every user address a′ different

1The old- prefix denotes the value of a function before the mint transition, and the new- prefix
denotes the value afterwards.
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a: Address
n: Nat

mint(a,n)

# Post-conditions
assert new-bal(a) = old-bal(a) + n #(i)
for each Address a′ ̸= a: #(ii)

assert new-bal(a′) = old-bal(a′)
assert new-sum() = old-sum() + n #(iii)

Figure 6.1: Minting n Tokens in ERC-20.

than a has not been changed during the mint operation and that (iii) the sum of all
balances changed exactly by the amount that was minted. The validity of these three
requirements (i)-(iii), formulated as the post-conditions of Figure 6.1, imply its functional
correctness.

Surprisingly, proving formulas similar to the post-conditions of Figure 6.1 is challenging for
state-of-the-art automated reasoners, such as SMT solvers [DMB08, BCD+11, DDM06b]
and first-order provers [KV13, Eme90, WDF+09]: it requires reasoning that links local
changes of the receiver (a) with a global state capturing the sum of all balances, as well
as constructing that global state as an aggregate of an unbounded but finite number of
Address balances. Moreover, our encoding of the problem uses discrete coins that are
minted and deposited, whose number is unbounded but finite as well.

In this work, we address verification challenges of software transactions with aggregate
properties, such as preservation of sums by transitions that manipulate low-level, individ-
ual entities. Such properties are best expressed in higher-order logic, hindering the use of
existing automated reasoners for proving them. To overcome such a reasoning limitation,
we introduce Sum Logic (SL) as a generalization of first-order logic, in particular of Pres-
burger arithmetic. Previous works [Lib99, Vää97, Ete97] have also introduced extensions
of first-order logic with aggregates by counting quantifiers or generalized quantifiers. In
Sum Logic (SL) we only consider the special case of integer sums over uninterpreted
functions, allowing us to formalize SL properties with and about unbounded sums, in
particular, sums of account balances, without higher-order operations (Section 6.3). We
prove the decidability of one of our SL extensions and the undecidability of a slightly
richer one (Section 6.4). Given previous results [Lib99], our undecidability result is not
surprising. In contrast, what may be unexpected is our decidability result and the fact
that we can use our first-order fragment for a convenient and practical new way to verify
the correctness of smart contracts.

We further introduce first-order encodings which enable automated reasoning over software
transactions with summations in SL (Section 6.5). Unlike [BREO+19], where SMT-
specific extensions supporting higher-order reasoning have been introduced, the logical
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encodings we propose allow one to use existing reasoners without any modification. We
are not restricted to SMT reasoning, but can also leverage generic automated reasoners,
such as first-order theorem provers, supporting first-order logic. We believe our results
ease applying automated reasoning to smart contract verification even for non-experts.

We demonstrate the practical applicability of our results by using SMT solvers and first-
order provers for validating the correctness of common financial transitions appearing
in smart contracts (Section 6.6). We refer to these transitions as smart transitions. We
encode SL into pure first-order logic by adding another sort that represents the tokens of
the cryptocurrency themselves (which we dub “coins”).

Although the encodings of Section 6.5 do not translate to our decidable SL fragment from
Section 6.4, our experimental results show that automated reasoning engines can handle
them consistently and fast. The decidability results of Section 6.5 set the boundaries
for what one can expect to achieve, while our experiments from Section 6.5 demonstrate
that the unknown middle-ground can still be automated.

While our work is mainly motivated by smart contract verification, our results can be
used for arbitrary software transactions implementing sum/aggregate properties. Further,
when compared to the smart contract verification framework of [WLC+19], we note that
we are not restricted to proving the correctness of smart contracts as finite-state machines,
but can deal with semantic properties expressing financial transactions in smart contracts,
such as currency minting/transfers.

While ghost variable approaches [HJ19] can reason about changes to the global state (the
sum), our approach allows the verifier to specify only the local changes and automatically
prove the impact on the global state.

Contributions. In summary, we make the following contributions:

• We present a generalization to Presburger arithmetic (SL, in Section 6.3) that
allows expressing properties about summations. We show how we can formalize
verification problems of smart contracts in SL.

• We discuss the decidability problem of checking validity of SL formulas (Section 6.4):
we prove that it is undecidable in the general case, but also that there exists a
small decidable fragment.

• We show different encodings of SL to first-order logic (Section 6.5). To this end, we
consider theory-specific reasoning and variations of SL, for example by replacing
non-negative integer reasoning with term algebra properties.

• We evaluate our results with SMT solvers and first-order theorem provers, by using
31 new benchmarks encoding smart transitions and their properties (Section 6.6).
Our experiments demonstrate the applicability of our results within automated
reasoning, in a fully automated manner, without any user guidance.
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6.2 Preliminaries
We consider many-sorted first-order logic (FOL) with equality, defined in the standard
way. The equality symbol is denoted by ≈.

We denote by STRUCT [Σ] the set of all structures for the vocabulary Σ. A structure
A ∈ STRUCT [Σ] is a pair (D, I), where for each sort s, its domain in A is D(s), and for
each symbol S, its interpretation in A is I(S). Note that models of a formula φ over a
vocabulary Σ are structures A ∈ STRUCT [Σ].

A first-order theory is a set of first-order formulas closed under logical consequence.
We will consider the first-order theory of the natural numbers with addition. This is
Presburger arithmetic (PA) which is of course, decidable [Pre29].

We write N to denote the set of natural numbers. We consider 0 ∈ N and write N+ to
explicitly exclude 0 from N. The vocabulary of PA is ΣPresburger =

(︁
0, 1, c1, . . . , cl,+2)︁,

with all constants 0, 1, ci of sort Nat. A structure A = (D, I) ∈ STRUCT [ΣPresburger] is
called a Standard Model of Arithmetic when D(Nat) = N and +2 is interpreted as the
standard binary addition + function over the naturals. The vocabulary ΣPresburger can
be extended with a total order relation, yielding Σ∗

Presburger =
(︁
0, 1,+2,≤2)︁, where ≤2 is

interpreted as the binary relation ≤ in Standard Models of Arithmetic.

6.3 Sum Logic (SL)
We now define Sum Logic (SL) as a generalization of Presburger arithmetic, extending
Presburger arithmetic with unbounded sums. SL is motivated by applications of financial
transactions over cryptocurrencies in smart contracts. Smart contracts are decentralized
computer programs executed on a blockchain-based system, as explained in [SEM18].
Among other tasks, they automate financial transactions such as transferring and minting
money. We refer to these transactions as smart transitions. The aim of this work and
SL in particular is to express and reason about the post-conditions of smart transitions
similar to Figure 6.1.

SL expresses smart transition relations among sums of accounts of various kinds, e.g., at
different banks, times, etc. Each such kind, j, is modeled by an uninterpreted function
symbol, bj , where bj(a) denotes the balance of a’s account of kind j, and a constant
symbol sj , which denotes the sum of all outputs of bj . As such, our SL generalizes
Presburger arithmetic with (i) a sort Address corresponding to the (unbounded) set of
account addresses; (ii) balance functions bj mapping account addresses from Address
to account values of sort Nat; and (iii) sum constants sj of sort Nat capturing the total
sum of all account balances represented by bj . Formally, the vocabulary of SL is defined
as follows.

Definition 6.1 (SL Vocabulary). Let

Σl,m,d
+,≤ =

(︂
a1, . . . , al, b

1
1, . . . , b

1
m, c1, . . . , cd, s1, . . . , sm, 0, 1,+2,≤2

)︂
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Function Encoding in SL Reference in ERC-20
sum s or s′ totalSupply
bal(a) b(a) or b′(a) balanceOf
mint(a, v) b′(a) ≈ b(a) + v transfer
transferFrom(f, t, v) b′(t) ≈ b(t) + v ∧ b(f) ≈ b′(f) + v transferFrom

Table 6.1: ERC-20 Token Standard

be a sorted first-order vocabulary of SL over sorts {Address,Nat}, where

• (Addresses) The constants a1, . . . , al are of sort Address;

• (Balance functions) b1
1, . . . , b

1
m are unary function symbols from Address to Nat;

• (Constants and Sums) The constants c1, . . . , cd, s1, . . . , sm and 0, 1 are of sort Nat;

• +2 is a binary function Nat× Nat→ Nat;

• ≤2 is a binary relation over Nat× Nat.

In what follows, when the cardinalities in an SL vocabulary are clear from context, we
simply write Σ instead of Σl,m,d

+,≤ . Further, by Σl,m,d

�+,�≤
we denote the sub-vocabulary where

the crossed-out symbols are not available. Note that even when addition is not available,
we still allow writing numerals larger than 1.

We restrict ourselves to universal sentences over an SL vocabulary, with quantification
only over the Address sort.

We now extend the Tarskian semantics of first-order logic to ensure that the sum constants
of an SL vocabulary (s1, . . . , sm) are equal to the sum of outputs of their associated
balance functions (bj for each sj) over the respective entire domains of sort Address.

Let Σ be an SL vocabulary. An SL structure A = (D, I) ∈ STRUCT [Σ] representing a
model for an SL formula φ is called an SL model iff

I(sj) =
∑︂

a∈D(Address)
[I(bj)] (a), for each 1 ≤ j ≤ m. (Sum Property)

We write A ⊨SL φ to mean that A is an SL model of φ. When it is clear from context,
we simply write A ⊨ φ.

Example 6.1 (Encoding ERC-20 in SL). As a use case of SL, we showcase the encoding
of the ERC-20 token standard of the Ethereum community [VB15] in SL. To this end,
we consider an SL vocabulary Σl,2,d. We respectively denote the balance functions and
their associated sums as b, b′, s, s′ in the SL structure over Σl,2,d. The resulting instance
of SL can then be used to encode ERC-20 operations/smart transitions as SL formulas,
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as shown in Table 6.1. Using this encoding, the post-condition of Figure 6.1 is expressed
as the SL formula

b′(a) ≈ b(a) + n ∧ ∀a′ ̸≈ a.b′(a′) ≈ b(a′) ∧ s′ ≈ s+ n (6.1)

formalizing the correctness of the smart transition of minting n tokens in Figure 6.1.
In the applied verification examples in Section 6.6, rather than verifying the low-level
implementation of built-in functions such as mintn, we assume their correctness by
including suitable axioms.

6.4 Decidability of SL
We consider the decidability problem of verifying formulas in SL. We show that when
there are several function symbols bj to sum over, the satisfiability problem for SL
becomes undecidable. We first present, however, a useful decidable fragment of SL2.

6.4.1 A Decidable Fragment of SL

We prove decidability for a fragment of SL, which we call the (l, 1, d)-FRAG fragment
of SL (Theorem 6.4). To do so, we reduce the fragment to Presburger arithmetic, by
using regular Presburger constructs to encode SL extensions, that is the uninterpreted
functions and sum constants of SL.

The first step of our reduction proof is to consider distinct models, which are models where
the Address constants ai represent distinct elements in the domain D(Address). While
this restriction is somewhat unnatural, we show that for each vocabulary and formula
that has a model, there exists an equisatisfiable formula over a different vocabulary that
has a distinct model (Theorem 6.1). The crux of our decidability proof is then proving
that (l, 1, d)-FRAG has small Address space: given a formula φ, if it is satisfiable,
then there exists a model where |D(Address)| ≤ κ(|φ|), |φ| is the length of φ, and κ(.)
is some computable function (Theorem 6.3)3.

Distinct Models. An SL structure A is considered distinct when the l Address
constants represent l distinct elements in D(Address). I.e.,

|{I(a1), . . . , I(al)}| = l .

Since each SL model induces an equivalence relation over the Address constants,
we consider partitions P over {a1, . . . , al}. For each possible partition P we define a
transformation of terms and formulas TP that substitutes equivalent Address constants
with a single Address constant. The resulting formulas are defined over a vocabulary
that has |P | Address constants. We show that given an SL formula φ, if φ has a

2The proofs of the results in this section are given in [ERI+21b].
3The function κ(.) is defined per decidable fragment of SL, and not per formula.
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model, we can always find a partition P such that each of its classes corresponds to an
equivalence class induced by that model.

Theorem 6.1 (Distinct Models). Let φ be an SL formula over Σ, then φ has a model
iff there exists a partition P of {a1, . . . , al} such that TP (φ) has a distinct model.

Small Address Space. In order to construct a reduction to Presburger arithmetic, we
bound the size of the Address sort. For a fragment of SL to be decidable, we therefore
need a way to bound its models upfront. We formalize this requirement as follows.

Definition 6.2 (Small Address Space). Let FRAG be some fragment of SL over vocabu-
lary Σ = Σl,m,d

+,≤ . FRAG is said to have small Address space if there exists a computable
function κΣ(.), such that for any SL formula φ ∈ FRAG, φ has a distinct model iff φ has
a distinct model A = (D, I) with small Address space, where |D(Address)| ≤ κΣ(|φ|).

We call κΣ(.) the bound function of FRAG; when the vocabulary is clear from context we
simply write κ(.).

One instance of a fragment (or rather, family of fragments) that satisfies this property is
the (l, 1, d)-FRAG fragment: the simple case of a single uninterpreted “balance” function
(and its associated sum constant), further restricted by removing the binary function +
and the binary relation ≤. Therefore, we derive the following theorem:

Theorem 6.2 (Small Address Space of (l, 1, d)-FRAG). For any l, d, it holds (l, 1, d)-
FRAG, the fragment of SL formulas over the SL vocabulary

Σl,1,d
�+,�≤

=
(︂
a1, . . . , al, b

1, c1, . . . , cd, s, 0, 1
)︂
,

has small Address space with bound function κ(x) = l + x+ 1.

An attempt to trivially extend Theorem 6.2 for a fragment of SL with two balance
functions falls apart in a few places, but most importantly when comparing balances to
the sum of a different balance function. In Section 6.4.2 we show that these comparisons
are essential for proving our undecidability result in SL.

Presburger Reduction. For showing decidability of some FRAG fragment of SL, we
describe a Turing reduction to pure Presburger arithmetic. We introduce a transformation
τ(.) of formulas in SL into formulas in Presburger arithmetic. It maps universal quantifiers
to disjunctions, and sums to explicit addition of all balances. In addition, we define
an auxiliary formula η(φ), which ensures only valid addresses are considered, and that
invalid addresses have zero balances. The formal definitions of τ(.) and η(φ) can be
found in [ERI+21b]. By relying on the properties of distinctness and small Address
space we get the following results.

Theorem 6.3 (Presburger Reduction). An SL formula φ has a distinct, SL model with
small Address space iff τ(φ) ∧ η(φ) has a Standard Model of Arithmetic.
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Theorem 6.4 (SL Decidability). Let FRAG be a fragment of SL that has small Address
space, as defined in Definition 6.2. Then, FRAG is decidable.

Proof of Theorem 6.4. Let φ be a formula in FRAG. Then φ has an SL model iff for
some partition P of {a1, . . . , al}, TP (φ) has a distinct SL model. For any P , the formula
TP (φ) is in FRAG, therefore TP (φ) has a distinct SL model iff it has a distinct SL model
with small Address space.

From Theorem 6.3, we get that for any P , φP ≜ TP (φ) has a distinct SL model iff
τ(φP )∧ η(φP ) has a Standard Model of Arithmetic. By using the PA decision procedure
as an oracle, we obtain the following decision procedure for a FRAG formula φ:

• For each possible partition P of {a1, . . . , al}, let φP = TP (φ);

• Using a PA decision procedure, check whether τ(φP ) ∧ η(φP ) has a model for each
P ;

• If a model for some partition P was found, the formula φP has a distinct SL model,
and therefore φ has SL model;

• Otherwise, there is no distinct SL model for any partition P , and therefore there is
no SL model for φ.

Remark 7. Our decision procedure for Theorem 6.4 requires Bl Presburger queries,
where Bl is Bell’s number for all possible partitions of a set of size l.

Using Theorem 6.4 and Theorem 6.2, we then obtain the following result.

Corollary 6.1. (l, 1, d)-FRAG is decidable.

6.4.2 SL Undecidability

We now show that simple extensions of our decidable (l, 1, d)-FRAG fragment lose its
decidability (Theorem 6.5). For doing so, we encode the halting problem of a two-counter
machine using SL with 3 balance functions, thereby proving that the resulting SL
fragment is undecidable.

Consider a two-counter machine, whose transitions are encoded by the Presburger formula
π(c1, c2, p, c

′
1, c

′
2, p

′) with 6 free variables: 2 for each of the three registers, one of which
is the program counter (pc). We assume w.l.o.g. that all three registers are within N+,
allowing us to use addresses with a zero balance as a special “separator”. In addition, we
assume that the program counter is 1 at the start of the execution, and that there exists
a single halting statement at line H. That is, the two-counter machine halts iff the pc is
equal to H.
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Address l(Address) c(Address) g(Address)

Time-step #0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 1 0
1 1 c1 at #0
2 1 c2 at #0

a0 3 1 pc at #0 = 1
...

...
...

...

Time-step #i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 4i 1 0
x2 4i+ 1 1 c1 at #i
x3 4i+ 2 1 c2 at #i
x4 4i+ 3 1 pc at #i

Time-step #(i + 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x5 4i+ 4 1 0
x6 4i+ 5 1 c1 at #(i+ 1)
x7 4i+ 6 1 c2 at #(i+ 1)
x8 4i+ 7 1 pc at #(i+ 1)
...

...
...

...

Time-step #n = sc
4 − 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sc − 4 1 0
sc − 3 1 c1 at #n
sc − 2 1 c2 at #n

a1 sc − 1 1 pc at #n = H

Table 6.2: Transition System of a 2-Counter Machine, Array View.

Reduction Setting. We have 4 Address elements for each time-step, 3 of them hold
one register each, and one is used to separate each group of Address elements (see
Table 6.2). We have 3 uninterpreted functions from Address to Nat (“balances”). For
readability we denote these functions as c, l, g (instead of b1, b2, b3) and their respective
sums as sc, sl, sg:

1. Function c : Cardinality function, used to force size constraints. We set its value
for all addresses to be 1, and therefore the number of addresses is sc.

2. Function l : Labeling function, to order the time-steps. We choose one element to
have a maximal value of sc − 1 and ensure that l is injective. This means that the
values of l are distinctly [0, sc − 1].

3. Function g : General purpose function, which holds either one of the registers or 0
to mark the Address element as a separating one.

Each group representing a time-step is a 4 Address element, ordered as follows:

1. First, a separating Address element x (where g(x) is 0).

2. Then, the two general-purpose counters.
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3. Lastly, the program counter.

In addition we have 2 Address constants, a0 and a1 which represent the pc value at
the start and at the end of the execution. The element a1 also holds the maximal value
of l, that is, l(a1) + 1 ≈ sc. Further, a0 holds the fourth-minimal value, since it is the
last element of the first group, and each group has four elements.

Formalization Using a Two-Counter Machine. We now formalize our reduction,
proving undecidability of SL.

(i) We impose an injective labeling

φ1 = ∀x, y. (l(x) ≈ l(y))→ (x ≈ y)

(ii) We next formalize properties over the program counter pc. The Address constant
that represents the program counter pc value of the last time-step is set to have the
maximal labeling, that is

φ2 = ∀x.l(x) ≤ l(a1)

Further, the Address constant that represents the pc value of the first time-step has
the fourth labeling, hence

φ3 = l(a0) ≈ 3

Finally, the first and last values of the program counter are respectively 1 and H, that is

φ4 = g(a0) ≈ 1 ∧ g(a1) ≈ H

(iii) We express cardinality constraints ensuring that there are as many Address elements
as the labeling of the last Address constant (a1) + 1. We assert

φ5 = (sc ≈ l(a1) + 1) ∧ ∀x. (c(x) ≈ 1)

(iv) We encode the transitions of the two-counter machine, as follows. For every 8
Address elements, if they represent two sequential time-steps, then the formula for the
transitions of the two-counter machine is valid for the registers it holds.

φ6 = ∀x1, . . . , x8. (F1 ∧ F2 ∧ F3)
→ π (g(x2), g(x3), g(x4), g(x6), g(x7), g(x8))

where the conjunction F1 ∧ F2 ∧ F3 expresses that x1, . . . , x8 are two sequential time-
steps, with F1, F2 and F3 defined as below. In particular, F1, F2 and F3 formalize
that x1, . . . , x8 have sequential labeling, starting with one zero-valued Address element
(“separator”) and continuing with 3 non-zero elements, as follows:

• Sequential:
l(x2) ≈ l(x1) + 1 ∧ · · · ∧ l(x8) ≈ l(x7) + 1 (F1)
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• Time-steps:

g(x1) ≈ 0 ∧ g(x2) > 0 ∧ g(x3) > 0 ∧ g(x4) > 0 , (F2)
g(x5) ≈ 0 ∧ g(x6) > 0 ∧ g(x7) > 0 ∧ g(x8) > 0 (F3)

Based on the above formalization, the formula φ = φ1 ∧ · · · ∧ φ6 is satisfiable iff the two-
counter machine halts within a finite number of time steps (and the exact amount would
be given by sc

4 ). Since the halting problem for two-counter machines is undecidable, our
SL, already with 3 uninterpreted functions and their associated sums, is also undecidable.

Theorem 6.5. For any l ≥ 2,m ≥ 3 and d, any fragment of SL over Σl,m,d
+,≤ is undecidable.

Remark 8. Note that in the above formalization the only use of associated sums comes
from expressing the size of the set of Address elements. As for our uninterpreted
function c(.) we have ∀x.c(x) ≈ 1, its sum sc is thus the number of addresses. Hence,
we can encode the halting problem for two-counter machines in an almost identical way
to the encoding presented here, using a generalization of PA with two uninterpreted
functions for l(.) and g(.), and a size operation replacing c(.) and its associated sum.

6.5 SL Encodings of Smart Transitions
The definition of SL models in Sections 6.3 and 6.4 ensured that the summation constants
sj were respectively equal to the actual summation of all balances bj(.). In this section,
we address the challenge to formalize relations between sj and bj(.) in a way that the
resulting encodings can be expressed in the logical frameworks of automated reasoners,
in particular of SMT solvers and first-order theorem provers.

In what follows, we consider a single transaction or one time-step of multiple transactions
over sj , bj(.). We refer to such transitions as smart transitions. Smart transitions are
common in smart contracts, expressing, for example, the minting and/or transferring of
some coins, as evidenced in Figure 6.1 and discussed later.

Based on Section 6.3, our smart transitions are encoded in the Σl,2,d fragment of SL.
Note, however, that neither decidability nor undecidability of this fragment is implied
by Theorem 6.4, nor Theorem 6.5. In this section, we show that our SL encoding of
smart transitions is expressible in first-order logic. We first introduce a sound, implicit
SL encoding, by “hiding” away sum semantics and using invariant relations over smart
transitions (Section 6.5.1). This encoding does not allow us to directly assert the values
of any balance or sum, but we can prove that this implicit encoding is complete, relative
to a translation function (Section 6.5.2).

By further restricting our implicit SL encoding to this relative complete setting, we
consider counting properties to explicitly reason with balances and directly express
verification conditions with unbounded sums on sj and bj(.). This is shown in Section 6.5.3,
and we evaluate different variants of the explicit SL encoding in Section 6.6, showcasing
their practical use and relevance within automated reasoning.
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To directly present our SL encodings and results in the smart contract domain, in what
follows, we rely on the notation of Table 6.1. As such, we respectively denote b, b′ by
old-bal, new-bal and write old-sum, new-sum for s, s′. As already discussed in
Figure 6.1, the prefixes old- and new- refer to the entire state expressed in the encoding
before and after the smart transition. We explicitly indicate this state using old-world,
new-world respectively. The non-prefixed versions bal and sum are stand-ins for both
the old- and new- versions — Figure 6.2 illustrates our setting for the smart transition
of minting one coin.

With this SL notation at hand, we are thus interested in finding first-order formulas that
verify smart transition relations between old-sum and new-sum, given the relation
between old-bal and new-bal. In this work, we mainly focus on the smart transitions
of minting and transferring money, yet our results could be used in the context of other
financial transactions/software transitions over unbounded sums.

Example 6.2. In the case of minting n coins in Figure 6.1, we require formulas that (a)
describe the state before the transition (the old-world, thus pre-condition), (b) formal-
ize the transition (the relation between old-bal and new-bal; (i)-(ii) in Figure 6.1)
and (c) imply the consequences for the new-world ((iii) in Figure 6.1). These formulas
verify that minting and depositing n coins into some address result in an increase of the
sum by n, that is new-sum = old-sum + n, as expressed in the functional correctness
formula (6.1) of Figure 6.1.

6.5.1 SL Encoding using Implicit Balances and Sums

The first encoding we present is a set of first-order formulas with equality over sorts
{Coin, Address}. No additional theories are considered. The Coin sort represents
money, where one coin is one unit of money. The Address sort represents the account
addresses as before. As a consequence, balance functions and sum constants only exist
implicitly in this encoding. As such, the property sum =

∑︁
a∈Address bal(a) cannot be

directly expressed in this encoding. Instead, we formalize this property by using so-called
smart invariant relations between two predicates has-coin and active over coins
c ∈ Coin and a ∈ Address, as follows.

Definition 6.3 (Smart Invariants). Let has-coin ⊆ Address× Coin and consider
active ⊆ Coin. A smart invariant of the pair (has-coin, active) is the conjunction
of the following three formulas

1. Only active coins c can be owned by an address a:

∀c : Coin. ∃a : Address. has-coin(a, c)→ active(c) . (I1)

2. Every active coin c belongs to some address a:

∀c : Coin. active(c)→ ∃a : Address. has-coin(a, c) . (I2)
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Figure 6.2: Implicit SL Encoding of mint1, where Addr is Short for Address.

3. Every coin c belongs to at most one address a:

∀c : Coin.∀a, a′ : Address. (I3)(︁
has-coin(a, c) ∧ has-coin(a′, c)→ a ≈ a′)︁ .

We write inv(has-coin, active) to denote the smart invariant (I1) ∧ (I2) ∧ (I3) of
(has-coin, active) .

Intuitively, our smart invariants ensure that a coin c is active iff it is owned by precisely
one address a. Our smart invariants imply the soundness of our implicit SL encoding, as
follows.

Theorem 6.6 (Soundness of SL Encoding). Given that sum = |active| and for every
a ∈ Address it holds bal(a) = |{c ∈ Coin | (a, c) ∈ has-coin}|, then the following
implication is true: inv(has-coin,active) =⇒ sum =

∑︁
a∈Address bal(a).

Proof. The result follows from Theorem 6.9 by stating the properties of function f
(Definition 6.8).

We say that a smart transition preserves smart invariants, when

inv(old-has-coin,old-active)
⇐⇒ inv(new-has-coin,new-active),
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where old-has-coin, old-active and new-has-coin, new-active respectively
denote the functions has-coin, active in the states before and after the smart
transition. Based on the soundness of our implicit SL encoding, we formalize smart
transitions preserving smart invariants as first-order formulas. We only discuss smart
transitions implementing minting n coins here, but other transitions, such as transferring
coins, can be handled in a similar manner. We first focus on minting a single coin, as
follows.

Definition 6.4 (Transition mint1(a, c)). Let there be c ∈ Coin, a ∈ Address. The
transition mint1(a, c) activates coin c and deposits it into address a.

1. The coin c was inactive before and is active now:

¬old-active(c) ∧ new-active(c) . (M1)

2. The address a owns the new coin c:

new-has-coin(a, c) ∧ ∀a′ : Address. ¬old-has-coin(a′, c) . (M2)

3. Everything else stays the same:

∀c′ : Coin. c′ ̸≈ c→
(︁
new-active(c′)↔ old-active(c′)

)︁
, (M3)

∀c′ : Coin. ∀a′ : Address. (c′ ̸≈ c ∨ a′ ̸≈ a)→ (M4)(︁
new-has-coin(a′, c′)↔ old-has-coin(a′, c′)

)︁
.

The transition mint1(a, c) is defined as (M1) ∧ (M2) ∧ (M3) ∧ (M4).

By minting one coin, the balance of precisely one address, that is of the receiver’s address,
increases by one, whereas all other balances remain unchanged. Thus, the expected
impact on the sum of account balances is also increased by one, as illustrated in Figure 6.2.
The following theorem proves that the definition of mint1 is sound. That is, mint1
affects the implicit balances and sums as expected and hence mint1 preserves smart
invariants.

Theorem 6.7 (Soundness of mint1(a, c)). Let c ∈ Coin, a ∈ Address such that
mint1(a, c). Consider the balance functions old-bal, new-bal : Address→ N, the
non-negative integer constants old-sum, new-sum, the unary predicates old-active,
new-active ⊆ Coin and the binary predicates old-has-coin, new-has-coin ⊆
Address× Coin such that

|old-active| = old-sum , |new-active| = new-sum,

and for every address a′, we have

old-bal(a′) =
⃓⃓{︁
c′ ∈ Coin | (a′, c′) ∈ old-has-coin

}︁⃓⃓
,

new-bal(a′) =
⃓⃓{︁
c′ ∈ Coin | (a′, c′) ∈ new-has-coin

}︁⃓⃓
.
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Then, new-sum = old-sum + 1, new-bal(a) = old-bal(a) + 1. Moreover, for all
other addresses a′ ̸= a, it holds new-bal(a′) = old-bal(a′).

Proof. To show that new-sum = old-sum + 1, we consider the subformula (M3)
of mint1(a, c). It follows that old-active\{c} = new-active\{c}. Now using
(M1), we get old-active = old-active\{c} and (new-active\{c}) ∪ {c} =
new-active. Thus, old-active ∪̇ {c} = new-active and hence |old-active|+
1 = |old-active ∪̇ {c}| = |new-active| which implies new-sum = old-sum + 1.

Similar reasoning works to show new-bal(a) = old-bal(a) + 1. From (M4) it follows

{d | (a, d) ∈ old-has-coin}\{c} = {d | (a, d) ∈ new-has-coin}\{c} .

Now using (M2) we get

{d | (a, d) ∈ old-has-coin} = {d | (a, d) ∈ old-has-coin}\{c} and
{d | (a, d) ∈ new-has-coin}\{c} ∪ {c} = {d | (a, d) ∈ new-has-coin} .

As before, we have

{d | (a, d) ∈ old-has-coin} ∪̇ {c} = {d | (a, d) ∈ new-has-coin} ,

which implies new-bal(a) = old-bal(a) + 1.

Finally, new-bal(b) = old-bal(b) for b ≠ a follows from (M4), since it implies
{d | (b, d) ∈ old-has-coin} = {d | (b, d) ∈ new-has-coin}.

Smart transitions minting an arbitrary number of n coins, as in our Figure 6.1, is
then realized by repeating the mint1 transition n times. Based on the soundness of
mint1, ensuring that mint1 preserves smart invariants, we conclude by induction that n
repetitions of mint1, that is minting n coins, also preserves smart invariants, as detailed
below.

To define the smart transition mintn we need one pair of predicates for every time step.
Thus we have an additional "parameter" i, the i-th time step, in active and has-coin
instead of using the prefixes old-- and new--. Other than that, the definition and the
soundness result are analogous to the setting of mint1.

Definition 6.5 (Transition mintn(a)). Let a ∈ Address. Then, the transition mintn(a)
activates n coins and deposits them into address a, one coin c in each time step.

1. The coin c was inactive before and is active now:

¬active(c, i) ∧ active(c, i+ 1) . (N1)

2. The address a owns the new coin c:

has-coin(a, c, i+ 1) ∧ ∀a′ : Address. ¬has-coin(a′, c, i) . (N2)
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3. Everything else stays the same:

∀c′ : Coin. ∀a′ : Address. (c′ ̸≈ c ∨ a′ ̸≈ a)→ (N3)(︁
(active(c′, i+ 1)↔ active(c′, i))∧
(has-coin(a′, c′, i+ 1)↔ has-coin(a′, c′, i+ 1))

)︁
.

The transition mintn(a) is defined as ∀i : Nat. ∃c : Coin. (N1) ∧ (N2) ∧ (N3).

The soundness result we get is similar to Theorem 6.7 but extended by the new parameter.

Theorem 6.8 (Soundness of mintn(a)). Let a ∈ Address such that mintn(a). Con-
sider a balance function bal : Address×N→ N, a summation function sum : N→ N+,
a binary predicate active ⊆ Coin×N and a ternary predicate has-coin ⊆ Address×
Coin× N such that for every i ∈ N

|active(., i)| = sum(i)

and for every address a′ and i ∈ N, we have

bal(a′, i) =
⃓⃓{︁
c′ ∈ Coin | (a′, c′, i) ∈ has-coin

}︁⃓⃓
.

Then for an arbitrary n ∈ Nat, sum(n) = sum(0) + n, bal(a, n) = bal(a, 0) + n.
Moreover, for all other addresses a′ ̸= a, it holds bal(a′, n) = bal(a′, 0).

Proof. We prove Theorem 6.8 by induction over n ∈ N. The base case n = 0 is trivially
satisfied. For the induction step, we get the induction hypothesis sum(n) = sum(0) + n,
bal(a, n) = bal(a, 0) + n, ∀a′ ̸= a. bal(a′, n) = bal(a′, 0). By defining old-sum ≜
sum(n), new-sum ≜ sum(n+ 1) and analogously for active, bal and has-coin, all
the preconditions of Theorem 6.7 hold. Therefore, we get sum(n + 1) = sum(n) + 1,
bal(a, n + 1) = bal(a, n) + 1, ∀a′ ̸= a. bal(a′, n + 1) = bal(a, n), by applying
Theorem 6.7. Together with the induction hypothesis this yields sum(n+ 1) = sum(0) +
n+ 1, bal(a, n+ 1) = bal(a, 0) + n+ 1, ∀a′ ̸= a. bal(a′, n+ 1) = bal(a′, 0) and thus
concludes the induction proof.

6.5.2 Completeness Relative to a Translation Function

Smart invariants provide sufficient conditions for ensuring soundness of our SL encodings
(Theorem 6.6). We next show that, under additional constraints, smart invariants are
also necessary conditions, establishing thus (relative) completeness of our encodings.

A straightforward extension of Theorem 6.6 however does not hold. Namely, only under
the assumptions of Theorem 6.6, the following formula is not valid:

sum =
∑︂

a∈Address
bal(a) ⇐⇒ inv(has-coin, active) .
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As a counterexample, assume (i) sum = |active|, (ii) for every a ∈ Address it holds
that bal(a) = |{c ∈ Coin | (a, c) ∈ has-coin}|, that is the assumptions of Theorem 6.6.
Further, let (iii) the smart invariants inv(has-coin, active) hold for all but the coins
c1, c2 ∈ Coin and all but the addresses a1, a2 ∈ Address. We also assume that (iv) c1
is active but not owned by any address and (v) c2 is active and owned by the two distinct
addresses a1, a2. We thus have sum =

∑︁
a∈Address bal(a), yet inv(has-coin, active)

does not hold.

To ensure completeness of our encodings, we therefore introduce a translation function f
that restricts the set F ≜ 2Address×Coin×2Coin of (has-coin,active) pairs, as follows.
We exclude from F those pairs (has-coin,active) that violate smart invariants by
both (i) not satisfying (I2), as (I2) ensures that there are not too many active coins,
and by (ii) not satisfying at least one of (I1) and (I3), as (I1) and (I3) ensure that
there are not too few active coins. The required translation function f assigns every
pair (bal,sum) the set of all (has-coin,active) ∈ F that satisfy sum = |active|,
bal(a) = |{c ∈ Coin | has-coin(a, c)}| for every address a and have not been excluded.

In order to establish a formal definition of f , some concepts have to be stated first. The
mentioned exclusion of certain elements of F is based on an equivalence relation ∼.

Definition 6.6 (Relation ∼ ). Let the pairs p1 = (has-coin1,active1) ∈ F and
p2 = (has-coin2,active2) ∈ F . Then p1 ∼ p2 iff

1. |active1| = |active2| ,

2. |{c ∈ Coin | has-coin1(a, c)}| = |{c ∈ Coin | has-coin2(a, c)}|, for all a ∈
Address,

3. p1 violates (I2) in V≤ cases and p2 violates (I2) also V≤ times,

4. p1 does not satisfy (I1) and (I3) in all together V≥ cases, which is also the number
of times p2 violates (I1) and (I3),

where V≤ and V≥ are as defined in Definition 6.7.

The violation numbers V≤ and V≥ are introduced next.

Definition 6.7. Given a pair (active,has-coin) ∈ F . For an address a, we define
Ca ≜ {c ∈ Coin | has-coin(a, c)}. Further, we define three types of error coins:

1. MInact ≜ {c ∈ Coin | ¬active(c) ∧ ∃a. c ∈ Ca},

2. MLeast ≜ {c ∈ Coin | active(c) ∧ ∀a. c /∈ Ca} and

3. MMost ≜ {c ∈ Coin | ∃a, b. a ̸≈ b ∧ c ∈ Ca ∧ c ∈ Cb}
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and one type of error pairs MPairs ≜ {(a, c) | c ∈ Ca ∧ ∃b. a ̸≈ b ∧ c ∈ Cb} to refine the
number of mistakes caused by the violation of (I3).
The number of violations of (I2) is now V≤ ≜ |MLeast|. and the number of violations of
(I1) and (I3) is defined as V≥ ≜ |MInact|+ |MPairs| − |MMost|.

Lemma 6.1. The relation ∼ is an equivalence relation on F .

Proof. We have to show the reflexivity, symmetry, and transitivity of ∼.

• Reflexivity of ∼.
Let (has-coin,active) ∈ F , then clearly |active| = |active|, for all a we
have |Ca| = |Ca| and also V≤ = V≤, V≥ = V≥. Hence (has-coin,active) ∼
(has-coin,active).

• Symmetry of ∼.
Let p1, p2 ∈ F such that p1 ∼ p2, then due to symmetry of = also p2 ∼ p1 holds.

• Transitivity of ∼.
Let p1, p2, p3 ∈ F , such that p1 ∼ p2 and p2 ∼ p3 then due to the transitivity of =
also p1 ∼ p3 holds.

The translation function f can now be defined as a function that assigns every pair
(bal,sum) a class from F/∼.

Definition 6.8 (Translation Function f). The function f : NAddress × N → F/∼,
(bal,sum) ↦→ [(has-coin,active)]∼, is defined to satisfy the following conditions for
an arbitrary (has-coin,active) ∈ [(has-coin,active)]∼.

1. sum = |active| .

2. For every a ∈ Address it holds bal(a) = |{c ∈ Coin | has-coin(a, c)}|.

3. At least one of V≤ = 0 and V≥ = 0 holds.

The function f is well-defined and injective, ensuring soundness and completeness of our
SL encodings relative to f .

Theorem 6.9 (Relative Completeness of SL Encoding). Let (bal,sum) ∈ NAddress ×N
and let (has-coin,active) ∈ f(bal,sum) be arbitrary. Then,

sum =
∑︂

a∈Address
bal(a) ⇐⇒ inv (has-coin, active) .
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Proof. The proof is organized in 4 steps. The first step provides a technicality that is
needed for steps 2 and 3, and finally, in the last step, the claim is proven.

1. Consider any pair (has-coin,active) ∈ F with V≤ = V≥ = 0. Then, since
there are no coins nor addresses violating the invariants here, we thus have⋃︁
a∈AddressCa = active and all the Ca are disjoint. Thus,

∑︁
a∈Address |Ca| =

|
⋃︁
a∈AddressCa| = |active|.

2. Now we only assume V≥ = 0. Consider

MLeast = {c ∈ Coin | active(c) ∧ ∀a. c /∈ Ca} ⊆ active .

Then the pair p′ = (has-coin,active\MLeast) satisfies V ′
≤ = V ′

≥ = 0, because
all the coins were not active originally are active now and we did not change the
any of the other mistake sets. From the first step we now get∑︂

a∈Address
|C ′
a| = |active\MLeast|

and therefore ∑︂
a∈Address

|Ca| = |active|+ V≥ − V≤ .

3. Similarly to the second step we now only assume V≤ = 0. By definition it holds
that MInact ∩ active = ∅, MPairs ⊆ has-coin and MMost ⊆ active ∪MInact.
We now consider the pair

p′′ = (has-coin\MPairs, (active ∪MInact)\MMost) .

Clearly, there is no coin assigned to two different addresses in p′′. However, all
the coins that were in two different addresses before are now not assigned to any
address; this is why these coins have to be removed from active ∪MInact. Also,
there are no coins that are active without belonging to any address. Further, all
active coins are still assigned to an address as the problematic ones have been
removed. Hence, V ′′

≤ = V ′′
≥ = 0. Now, we can again apply the result of the first step

to get ∑︂
a∈Address

|Ca| − |MPairs| = |active|+ |MInact| − |MMost|

and thus ∑︂
a∈Address

|Ca| = |active|+ V≥ − V≤ .

4. Using the results of the previous two steps, we can now prove the theorem. Let
(bal,sum) ∈ NAddress×N and (has-coin,active) ∈ f(bal,sum), then V≤ = 0
or V≥ = 0. In both cases it follows

∑︁
a∈Address |Ca| = |active| + V≥ − V≤ and

therefore by definition of f it holds
∑︁
a∈Address bal(a) = sum+ V≥ − V≤. Assume

now
∑︁
a∈Address bal(a) = sum. It follows V≥ − V≤ = 0 and since we know that
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one of these values has to be zero by definition of f it holds V≤ = V≥ = 0.
But this statement is equivalent to inv (has-coin, active). For the other
direction assume inv (has-coin, active), this implies V≤ = V≥ = 0 and hence∑︁
a∈Address bal(A) = sum. This concludes the proof.

6.5.3 SL Encodings using Explicit Balances and Sums

We now restrict our SL encoding from Section 6.5.1 to explicitly reason with balance
functions during smart transitions. We do so by expressing our translation function f
from Section 6.5.2 in first-order logic. We now use the summation constant sum ∈ N
and the balance function bal : Address → N in our SL encoding. In particular,
we use our smart invariants inv(has-coin, active) in this explicit SL encoding
together with two additional axioms (Ax1, Ax2), ensuring that sum = |active| and
bal(a) = |{c ∈ Coin | has-coin(a, c)}| for all a ∈ Address.

To formalize the additional properties, we introduce two counting mechanisms in our SL
encoding. The first one is a bijective function count : Coin→ N+ and the second one
is a function idx : Address× Coin → N+, where idx(a, .) : Coin → N+ is bijective
for every a ∈ Address. To ensure that count and idx(a, .) count coins, we impose the
following two properties:

∀c : Coin. active(c) ⇐⇒ count(c) ≤ sum , (Ax1)

∀c : Coin. ∀a : Address. has-coin(a, c) ⇐⇒ idx(a, c) ≤ bal(a) . (Ax2)

Figure 6.3 illustrates our revised SL encoding for our smart transition mint1. We next
ensure soundness of our resulting explicit encoding for summation, as follows.

Theorem 6.10 (Soundness of Explicit SL Encodings). Let there be a pair (bal,sum) ∈
NAddress × N, a pair (has-coin,active) ∈ F , and functions count : Coin → N+

and idx : Address× Coin→ N+.

Given that count is bijective, idx(a, .) : Coin→ N+ is bijective for every a ∈ Address,
and that (Ax1), (Ax2) and inv (has-coin, active) hold, then, sum = |active| and
bal(a) = |{c ∈ Coin : has-coin(a, c)}|, for every a ∈ Address.

In particular, we have sum =
∑︁
a∈Address bal(a).

Proof. Consider (bal,sum), (has-coin,active) as in the theorem. Then by property
(Ax1) and the codomain of count we have active = {c ∈ Coin | count(c) ∈ [1,sum]}.
Since count is bijective, it holds

|active| = |{c ∈ Coin | count(c) ∈ [1,sum]}| = sum .
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Figure 6.3: Explicit SL Encoding of mint1, where Addr is Short for Address.

Similarly, by (Ax2) and the codomain of idx(a, .) we know Ca = {c ∈ Coin | idx(a, c) ∈
[1,bal(a)]}. As idx(a, .) is bijective as well it follows

|Ca| = |{c ∈ Coin | idx(a, c) ∈ [1,bal(a)]}| = bal(a) .

Hence (has-coin,active) ∈ f(bal,sum) and by Theorem 6.9, we get∑︂
a∈Address

bal(a) = sum ,

since inv (has-coin, active).

When compared to Section 6.5.1, our explicit SL encoding introduced above uses our
smart invariants as axioms of our encoding, together with (Ax1) and (Ax2). In our explicit
SL encoding, the post-conditions asserting functional correctness of smart transitions
express thus relations among old-sum to new-sum. For example, for mintn we are
interested in ensuring

mintn ⇒ new-sum = old-sum + n . (6.2)

By using two new constants old-total, new-total ∈ N, we can use sum = total
as smart invariant for mintn. As a result, the property to be ensured is then

(old-sum = old-total ∧ new-total = old-total + n ∧ mintn)
⇒ (new-sum = new-total) . (6.3)

It is easy to see that the negations of (6.2) and (6.3) are equisatisfiable. We note however
that the additional constants old-total, new-total used in (6.3) lead to unstable
results within automated reasoners, as discussed in Section 6.6.
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6.6 Experimental Evaluation

6.6.1 From Theory to Practice

To make our explicit SL encodings handier for automated reasoners, we improved the
setting illustrated in Figure 6.3 by applying the following restrictions without losing any
generality.

(i) The predicates has-coin and active were removed from the explicit SL encodings,
by replacing them with their equivalent expressions (Ax1)-(Ax2).

(ii) The surjectivity assertions of count and idx were restricted to the relevant intervals
[1,sum], [1,bal(a)] respectively.

(iii) Compared to Figure 6.3, only one mutual count and one mutual idx functions
were used. We, however, conclude that we do not lose expressivity of our resulting SL
encoding, as shown in Theorem 6.11.

(iv) When our SL encoding contains expressions such as ∀c : Coin. idx(a0, c) ∈
[l0, u0] ⇐⇒ idx(a1, c) ∈ [l1, u1], with a0, a1 being distinct addresses such that ei-
ther ui ≤ bal(ai) or li > bal(ai), i ∈ {0, 1}, then it can be assumed that the coins in
those intervals are in the same order for both functions (Theorem 6.12).

No Loss of Generality: Restricting idx and count. To prove we do not lose
any generality when considering mutual count and idx functions for the old- and the
new-world, we need the following two preliminary lemmas.

Lemma 6.2. Given two pairs hx ≜ (x-bal,x-sum), hy ≜ (y-bal,y-sum) with∑︁
a∈Address z-bal(A) = z-sum, for z ∈ {old,new} and x-sum ≤ y-sum. Further, let

px = (x-has-coin,x-active) ∈ f(hx).

Then there exists py = (y-has-coin,y-active) ∈ f(hy) satisfying the following
properties:

1. x-active ⊆ y-active.

2. x-bal(a) ≤ y-bal(a) ⇒ Cx,a ⊆ Cy,a.

3. y-bal(a) ≤ x-bal(a) ⇒ Cy,a ⊆ Cx,a.

Proof. We proceed by constructing py = (y-has-coin,y-active) ∈ f(hy) such that it
satisfies properties (1)-(3). To fulfill property (1), let y-active ≜ x-active∪S, where
S ∈ Coin\x-active and |S| = y-sum−x-sum. Then also |y-active| = y-sum holds.
To construct the Cy,a properly, the set y-active has to be partitioned, since py ∈ f(hy)
and thus inv(y-has-coin,y-active). For every a with x-bal(a) ≤ y-bal(a) we
require Cx,a ⊆ Cy,a. Therefore there are∑︂

a: x-bal(a)>y-bal(a)
x-bal(a)− y-bal(a)
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additional spare coins. For a with x-bal(a) ≥ y-bal(a) we want Cy,a ⊆ Cx,a, which
leaves us with ∑︂

a: x-bal(a)<y-bal(a)
y-bal(a)− x-bal(a)

missing coins. Hence, the difference is

y-sum− x-sum +
∑︂

a∈Address,
x-bal(a)>y-bal(a)

x-bal(a)− y-bal(a)

−
∑︂

a∈Address,
y-bal(a)>x-bal(a)

y-bal(a)− x-bal(a) .

By replacing z-sum by
∑︁
a∈Address z-bal(a) all the summands with either y-bal(a) >

x-bal(a) or x-bal(a) > y-bal(a) disappear and the remaining value is 0. Therefore,
such a partition of y-active exists and thus, there exists

py = (y-active,y-has-coin) ∈ f(hy)

satisfying (1), (2) and (3).

Lemma 6.3. Given two pairs hx, hy with
∑︁
a∈Address z-bal(a) = z-sum, pz ∈ f(hz),

for z ∈ {x,y} and x-sum ≤ y-sum as in Lemma 6.2. Then, there exist a bijective
function count : Coin → N+ with count(z-active) = [1,z-sum] and bijective
functions idx(a, .) : Coin → N+, with idx(Cz,a) = [1,z-bal(a)], for z ∈ {x,y},
a ∈ Address.

Proof. At first, we construct count. We know y-active = x-active ∪̇ S, where
|y-active| = y-sum, |x-active| = x-sum and |S| = y-sum− x-sum. Thus, we can
easily find an injective function with count(x-active) = [1,x-sum] and count(S) =
[x-sum+1,y-sum]. Further, this function can be bijectively extended onto N+. Similarly,
for the addresses a, we construct idx(a, .) in the following way. Since we know |Cz,a| =
z-bal(a), we can find an injective function with idx(a,Cx,a) = [1,x-bal(a)]. For
all a, where y-bal(a) ≤ x-bal(a), we can assume that idx(a,Cy,a) = [1,y-bal(a)],
as Cy,a ⊆ Cx,a. For these addresses a, idx(a, .) can now also be extended bijectively
onto N+. Finally, for a with x-bal(a) ≤ y-bal(a) we know Cx,a ⊆ Cy,a and can thus
assume idx(a,Cy,a\Cx,a) = [x-bal(a) + 1,y-bal(a)]. Now also these idx(a, .) can be
extended bijectively onto N+.

Having these two lemmas at hand, we can now state and prove the following result.

Theorem 6.11. Given pairs ho ≜ (old-bal,old-sum), hn ≜ (new-bal,new-sum)
with

∑︁
a∈Address z-bal(a) = z-sum, for z ∈ {old,new}. There exist bijective functions

count : Coin → N+ and idx(a, .) : Coin → N+, for every a ∈ Address, such
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that there exist a po = (old-active,old-has-coin) ∈ f(ho), as well as a pn =
(new-active,new-has-coin) ∈ f(hn) with

∀c.
(︁
z-active(c)↔ count(c) ≤ z-sum

)︁
and (6.4)

∀a, c.
(︁
z-has-coin(a, c)↔ idx(a, c) ≤ z-bal(a)

)︁
. (6.5)

Proof. Let hx ∈ {ho, hn} such that x-sum = min {old-sum,new-sum}. The other pair
gets the prefix ’y-’ from now on. Also, elements in f(hx) and f(hy) will be named
accordingly.

Let (x-active,x-has-coin) ∈ f(hx) arbitrary, (y-has-coin,y-active) ∈ f(hy)
as in Lemma 6.2 and count, idx as in Lemma 6.3.

Then it holds count(z-active) = [1,z-sum]. Thus, ∀c. c ∈ z-active→ count(c) ∈
[1,z-sum]. As count is bijective and therefore injective, it follows ∀c. c /∈ z-active→
count(c) /∈ [1,z-sum]. Together with the fact that the codomain of count is N+ we get
Formula 6.4. The analog argumentation works for Formula 6.5. We know idx(a,Cz,a) =
[1,z-bal(a)]. Thus ∀c. c ∈ Cz,a → idx(a, c) ∈ [1,z-bal(a)]. Also idx(a, .) is bijective
and therefore injective which implies ∀c. c /∈ Cz,a → idx(a, c) /∈ [1,z-bal(a)]. By
definition of Cz,a and the codomain of idx(a, .) Formula 6.5 holds. This concludes the
proof.

No Loss of Generality: Ordering of Coins. The property to prove is that whenever
a block of coins has the same order in two of our counting functions and they are not
crossing their crucial value (sum, bal(ai)), then we can assume that they are ordered
in the same way. In order to do so, we have to formalize the notion of the former
invariants inv’(idx,count). They are the formulas one gets by replacing has-coin
and active by count and idx according to (Ax1) and (Ax2) in the invariants (I1)-(I3).

Definition 6.9. Let count : Coin→ N+ and idx : Address×Coin→ N+, then with
the formulas

∀c. (∃a. idx(a, c) ≤ bal(a))↔ count(c) ≤ sum , (I1’)
∀a, b, c. (idx(a, c) ≤ bal(a) ∧ idx(b, c) ≤ bal(b))→ a ≈ b (I2’)

we define inv’(idx,count) ≜ I1’ ∧ I2’.

Theorem 6.12. We assume the following

(i) (old-bal,old-sum), (new-bal,new-sum) ∈ NAddress × N,

(ii) count : Coins→ N+ bijective,

(iii) idx : Address× Coin→ N+, such that idx(A, .) bijective for every a and

(iv) inv’(idx,count).
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If now

(v) ∀c : Coin. f0(c) ∈ [l0, u0]↔ f1(c) ∈ [l1, u1], where f0, f1 ∈ {count} ∪ {idx(a, .) :
a ∈ Address} and

(vi) either ui ≤ xi or xi < li for i ∈ {0, 1}, where
xi ≜ bal(ai), if fi = idx(ai, .), or
xi ≜ sum, if fi = count,

then there exist idx′, count′ with the properties (i)-(vi) and ∀c : Coin. f ′
0(c) ∈ [l0, u0]→

f ′
0(c) + l1 ≈ f ′

1(c) + l0.

Proof. For simplicity assume f0 = idx(a0, .) and f1 = idx(a1, .). However, the proof
works in an analogous way for count. We proceed by constructing idx’ and count’ and
then showing properties (i)-(vi) and ∀c : Coin. f ′

0(c) ∈ [l0, u0]→ f ′
0(c) + l1 = f ′

1(c) + l0
hold.
The function count′ ≜ count. We construct idx’ the following way.

∀a, c. (a ̸≈ a1 ∨ idx(a1, c) /∈ [l1, u1]) let idx′(a, c) ≜ idx(a, c) and
∀c. idx(a1, c) ∈ [l1, u1] we define idx′(a1, c) ≜ idx(a0, c)− l0 + l1 .

With these definitions the properties (i), (ii), (vi) and ∀c : Coin. f ′
0(c) ∈ [l0, u0] →

f ′
0(c) + l1 = f ′

1(c) + l0 obviously hold.

To show property (v) we first fix a coin c and assume idx′(a0, c) ∈ [l0, u0]. By definition
of idx’ we know that also idx(a0, c) ∈ [l0, u0] and then using (v) we get idx(a1, c) ∈
[l1, u1]. Again by definition of idx’, we have idx′(a1, c) = idx(a0, c) − l0 + l1. Since
idx(a0, c) ∈ [l0, u0], it follows idx′(a1, c) = idx(a0, c) − l0 + l1 ∈ [l1, u0 − l0 + l1].
From property (v) and the bijectivity of the idx(a, .) functions, it follows that the
intervals have the same size and thus u0 − l0 = u1 − l1. Therefore we end up having
idx′(a1, c) ∈ [l1, u1]. For the other direction of the equivalence, we fix c and assume
idx′(a0, c) /∈ [l0, u0]. Then idx(a0, c) /∈ [l0, u0] and using (v) we get idx(a1, c) /∈ [l1, u1]
and thus idx′(a1, c) = idx(a1, c) /∈ [l1, u1]. This concludes the proof of (v). Note that
(v) implies idx′(a1, c) ∈ [l1, u1] if and only if idx(a1, c) ∈ [l1, u1].

The proof of property (iii) only requires showing idx′(a1, .) is bijective. To show
injectivity, assume idx′(a1, c) = idx′(a1, d). where c ≠ d. Then clearly idx(a1, c) ̸=
idx(a1, d). Thus, one of idx(a1, c),idx(a1, d) ∈ [l1, u1], since otherwise idx′(a1, c) =
idx(a1, c) and idx′(a1, d) = idx(a1, d). From the implication of (v), we know that
idx′(a1, c) = idx′(a1, d) ∈ [l1, u1] and thus idx(a1, c), idx(a1, d) ∈ [l1, u1]. Therefore
idx(a0, c)−l0+l1 = idx′(a1, c) = idx′(a1, d) = idx(a0, d)−l0+l1 and thus idx(a0, c) =
idx(a0, d) which is a contradiction to the bijectivity of idx.

For surjectivity of idx′(a1, .) let n ∈ N+ be arbitrary. Assume n /∈ [l1, u1] first. Then
by surjectivity of idx(a1, .) it follows that there is a c such that idx(a1, c) = n and as
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n /∈ [l1, u1], we have idx′(a1, c) = n. Assume now n ∈ [l1, u1], then by surjectivity of
idx(a0, .), there exists c such that idx(a0, c) = n− l1 + l0. With the same reasoning as
above it follows n− l1 + l0 ∈ [l0, u0] and therefore we conclude idx′(a1, c) = idx(a0, c)−
l0 + l1 = n. This completes the surjectivity proof.

Finally, we have to prove (iv). Once we have shown idx(a, c) ≤ bal(a) iff idx′(a, c) ≤
bal(a) for all a and for all c the property follows immediately, since count′ = count.
For all a, c with one of a ̸= a1 or idx(a1, c) /∈ [l1, u1] the equivalence follows from the
definition of idx′. Consider now a1 with a c such that idx(a1, c) ∈ [l1, u1]. Using the
implication of (v), we get idx′(a1, c) ∈ [l1, u1]. Now using property (vi), we know that
either u1 ≤ bal(a1), in which case idx(a1, c), idx′(a1, c) ≤ bal(a1), or bal(a1) < l1
which implies idx(a1, c), idx′(a1, c) > bal(a1). This concludes the proof of property
(iv) and thus of the theorem.

Based on the above, we derive three different explicit SL encodings to be used in
automated reasoning about smart transitions. We respectively denote these explicit SL
encodings by int, nat and id, and describe them next.

6.6.2 Experiments

Benchmarks. In our experiments, we consider four smart transitions mint1, mintn,
transferFrom1 and transferFromn, respectively denoting minting and transferring
one and n coins. These transitions capture the main operations of linear integer arithmetic.
In particular, mintn implements the smart transition of our running example from
Figure 6.1.

For each of the four smart transitions, we implement four SL encodings: the implicit
SL encoding uf from Section 6.5.1 using only uninterpreted functions and three explicit
encodings int, nat and id as variants of Section 6.5.3. We also consider three additional
arithmetic benchmarks using int, which are not directly motivated by smart contracts.
Together with variants of int and nat presented in the sequel, our benchmark set
contains 31 examples altogether, with each example being formalized in the SMT-LIB
input syntax [BFT16]. In addition to our encodings, we also proved consistency of the
axioms used in our encodings.

SL Encodings and Relaxations. Our explicit SL encoding int uses linear integer
arithmetic, whereas nat and id are based on natural numbers. As naturals are not a
built-in theory in SMT-LIB, we assert the axioms of Presburger arithmetic directly in
the encodings of nat and id.

In our id encodings, inductive datatypes are additionally used to order coins. There
exists one linked list of all coins for count and one for each idx(a, .), a ∈ Address.
Additionally, there exists a “null” coin, which is the first element of every list and
is not owned by any address. As shown in Figure 6.4, the numbering of each coin
is defined by its position in the respective list. This way surjectivity for count and
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Figure 6.4: Linked Lists in id.

idx can respectively be asserted by the formulas ∃c : Coin. count(c) ≈ sum and
∀a : Address. ∃c : Coin. idx(a, c) ≈ bal(a). However, asserting surjectivity for int
and nat cannot be achieved without quantifying over N+. Such quantification would
drastically affect the performance of automated reasoners in (fragments of) first-order
logics. As a remedy, within the default encodings of int and nat, we only consider
relevant instances of surjectivity.

Further, we consider variations of int and nat by asserting proper surjectivity to
the relevant intervals of idx and count (denoted as surj) and/or adding the total
constants mentioned in Section 6.5.3 (denoted as with total, no total) . These
variations of int and nat are implemented for mint1 and transferFrom1.

Experimental Setting. We evaluated our benchmark set of 31 examples using SMT
solvers Z3 [DMB08] and CVC4 [BCD+11], as well as the first-order theorem prover
Vampire [KV13]. Our experiments were run on a standard machine with an Intel Core
i5-6200U CPU (2.30GHz, 2.40GHz) and 8 GB RAM. The time is given in seconds and
we ran all experiments with a time limit of 300s. Time out is indicated by the symbol
×. The default parameters were used for each solver, unless stated otherwise in the
corresponding tables, indicated by the superscripts ∗, †, and ‡. The precise calls of the
solvers are listed in Table 6.3. Examples of the encodings can be found in Figures 6.5
to 6.74.

Experimental Analysis. We first report on our experiments using different variations
of int and nat. Table 6.4 shows that asserting complete surjectivity for int and nat
is computationally hard and indeed significantly affects the performance of automated
reasoners. Thus, for the following experiments only relevant instances of surjectivity, such
as ∃c : Coin.count(c) = sum were asserted in int and nat. Table 6.4 also illustrates
the instability of using the total constant. Some tasks seem to be easier, even though
their reasoning difficulty increased strictly by adding additional constants.

Our most important experimental findings are shown in Table 6.5, demonstrating that our
SL encodings are suitable for automated reasoners. Thanks to our explicit SL encodings,
each solver can certify every smart transition in at least one encoding. Our explicit SL
encodings are more relevant than the implicit encoding uf as we can express and compare
any two non-negative integer sums, whereas for uf handling arbitrary values n can only

4All encodings are available at https://github.com/SoRaTu/SmartSums.
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Z3 z3 -smt2 <file-name>
CVC4 cvc4 -lang=smtlib2.6 -full-saturate-quant <file-name>
Vampire vampire -input syntax smtlib2 <file-name>

except for the cases with superscripts ∗, † or ‡:
∗ vampire -input syntax smtlib2 <file-name>

-forced options
"aac=none:add=large:afp=40000:afq=1.2:amm=off:
anc=none:bd=off:fsr=off:gsp=input only:
inw=on:irw=on:lma=on:nm=64:nwc=1:sos=on:
sp=occurrence:tha=off:updr=off:awr=5:s=1011:
sa=discount:ind=math"

† vampire -input syntax smtlib2 -thsq on -thsqd 6
-thsqc 6 -thsqr 10,1 <file-name>

‡ options from ∗ to prove the property in ind property id.smt,
options from † to prove the actual property and its lemmas, if any

Table 6.3: Precise Calls of the Solvers in Tables 6.4 to 6.6.

mint1 transferFrom1
no total Z3 CVC4 Vampire no total Z3 CVC4 Vampire
nat 0.02 × 0.92 nat × × 15.35
nat surj. × × × nat surj. 100.03 × ×
int 0.02 0.03 × int 0.02 0.07 ×
int surj. × 5.96 × int surj. 1.02 × ×

with total Z3 CVC4 Vampire with total Z3 CVC4 Vampire
nat 0.03 × 2.92 nat 0.28 × 22.54
nat surj. 0.11 × × nat surj. 38.24 × ×
int 0.02 0.03 × int 0.02 0.10 ×
int surj. 3.81 5.95 × int surj. × 6.56 ×

Table 6.4: Results of mint1 and transferFrom1 using nat and int, with/without
the total Constants and with/without Surjectivity.

be done by iterating over the mint1 (or transferFrom1) transition. This iteration
requires inductive reasoning, which currently only Vampire could do [HHK+20], as
indicated by the superscript ∗. Nevertheless, the transactions mint1, transferFrom1,
which involve only one coin in uf, require no inductive reasoning as the actual sum is
not considered; each of our solvers can certify these examples.

We note that the tasks mintn and transferFromn from Table 6.5 yield a huge search
space when using their explicit SL encodings within automated reasoners. We split these
tasks into proving intermediate lemmas and proved each of these lemmas independently,
by the respective solver. In particular, we used one lemma for mintn and four lemmas
for transferFromn. In our experiments, we only used the recent theory reasoning
framework of Vampire with split queues [GS20] and indicate our results by superscript †.

We further remark that our explicit SL encoding id using inductive datatypes also
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Encoding Task
mint1 transferFrom1 mintn transferFromn

uf
Z3:
CVC4:
Vampire:

0.01
0.02
0.18

Z3:
CVC4:
Vampire:

0.02
0.03
0.19

Z3:
CVC4:
Vampire:

×
×

0.35∗

Z3:
CVC4:
Vampire:

×
×

0.44∗

nat
Z3:
CVC4:
Vampire:

0.02
×

0.92

Z3:
CVC4:
Vampire:

×
×

15.35

Z3:
CVC4:
Vampire:

×
×

23.23†

Z3:
CVC4:
Vampire:

×
×

228.22†

int
Z3:
CVC4:
Vampire:

0.02
0.03
×

Z3:
CVC4:
Vampire:

0.02
0.07
×

Z3:
CVC4:
Vampire:

0.03
0.05
×

Z3:
CVC4:
Vampire:

0.11
0.35
×

id
Z3:
CVC4:
Vampire:

×
×

7.36‡

Z3:
CVC4:
Vampire:

×
×

17.16‡

Z3:
CVC4:
Vampire:

×
×

23.52‡

Z3:
CVC4:
Vampire:

×
×
×

Table 6.5: Smart Transitions using Implicit/Explicit SL Encodings.

Task TimeTransition Impact

new-bal(a0) = old-bal(a0) + 3
new-bal(a1) = old-bal(a1)− 3 new-sum = old-sum

Z3:
CVC4:
Vampire:

0.20
1.28
×

new-bal(a0) = old-bal(a0) + 4
new-bal(a1) = old-bal(a1)− 2 new-sum = old-sum + 2

Z3:
CVC4:
Vampire:

0.58
7.14
×

new-bal(a0) = old-bal(a0) + 5
new-bal(a1) = old-bal(a1)− 3
new-bal(a2) = old-bal(a2)− 1

new-sum = old-sum + 1
Z3:
CVC4:
Vampire:

1.52
155.20
×

Table 6.6: Arithmetic Reasoning in the Explicit SL Encoding int.

requires inductive reasoning about smart transitions and beyond. The need for induction
explains why SMT solvers failed to prove our id benchmarks, as shown in Table 6.5. We
note that Vampire found a proof using built-in induction [HHK+20] and theory-specific
reasoning [GS20], as indicated by superscript ‡.

We conclude by showing the generality of our approach beyond smart transitions. It in
fact enables fully automated reasoning about any two summations

∑︁
i∈I g(i),

∑︁
i∈I h(i)

of non-negative integer values g(i), h(i) (i ∈ I) over a mutual finite set I. The examples
of Table 6.6 affirm this claim.

6.7 Related work

Smart Contract Safety. Formal verification of smart contracts is an emerging hot topic
because of the value of the assets stored in smart contracts, e.g. the DeFi software [Com20].
Due to the nature of the blockchain, bugs in smart contracts are irreversible and thus
the demand for provably bug-free smart contracts is high.

The K interactive framework has been used to verify safety of a smart contract, e.g.
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1 (set-logic UFLIA)
2 (declare-sort Coin 0 )
3 (declare-sort Address 0)
4 (declare-fun old-sum () Int)
5 (declare-fun new-sum () Int)
6 (declare-fun old-total () Int)
7 (declare-fun new-total () Int)
8 (declare-fun a0 () Address)
9 (declare-fun old-bal (Address) Int)

10 (declare-fun new-bal (Address) Int)
11 (declare-fun count (Coin) Int)
12 (declare-fun ind (Coin Address) Int)
13 ; axioms on sum and count
14 (assert (<= 0 old-sum)) ; sum non-negative
15 (assert (<= 0 new-sum)) ; sum non-negative
16 (assert (forall ((C Coin)) (< 0 (count C)) ) ) ; count positive
17 (assert (forall ((C Coin) (D Coin))
18 (=> (= (count C) (count D)) (= C D) ))) ; count injective
19 (assert (forall ((N Int)) (=>
20 (and (< 0 N) (or (<= N old-sum) (<= N new-sum)) )
21 (exists ((C Coin)) (= (count C) N) )))) ; count surjective
22 ; axioms on bal and find
23 (assert (forall ((A Address)) (<= 0 (old-bal A)) )) ; bal non-negative
24 (assert (forall ((A Address)) (<= 0 (new-bal A)) )) ; bal non-negative
25 (assert (forall ((C Coin)(A Address)) (< 0 (ind C A)) )) ; ind positive
26 (assert (forall ((C Coin) (D Coin) (A Address))
27 (=> (= (ind C A) (ind D A)) (= C D) ))) ; ind(A,.) injective
28 (assert (forall ((N Int) (A Address)) (=>
29 (and (< 0 N) (or (<= N (new-bal A)) (<= N (old-bal A))))
30 (exists ((C Coin)) (= (ind C A) N) )))) ; ind(A,.) subjective
31 ; axioms between sum and bal
32 (assert (forall ((C Coin)) (=
33 (exists ((A Address)) (<= (ind C A) (old-bal A)) )
34 (<= (count C) old-sum) ))) ; find<=bal iff count<=sum
35 (assert (forall ((C Coin)) (=
36 (exists ((A Address)) (<= (ind C A) (new-bal A)) )
37 (<= (count C) new-sum) ))) ; find<=bal iff count<=sum
38 (assert (forall ((A Address)(B Address)(C Coin)) (=>
39 (and (<= (ind C A) (old-bal A)) (<= (ind C B) (old-bal B)) )
40 (= A B) ))) ; only once find<=bal
41 (assert (forall ((A Address)(B Address)(C Coin)) (=>
42 (and (<= (ind C A) (new-bal A)) (<= (ind C B) (new-bal B)) )
43 (= A B) ))) ; only once find<=bal
44 ; transition and expected impact
45 (assert (and (= (new-bal a0) (+ (old-bal a0) 1)) (forall ((A Address))
46 (=> (distinct A a0) (= (old-bal A) (new-bal A)) )))) ; mint1
47 (assert (= (+ old-sum 1) new-sum) ) ; expected impact
48 ; invariants
49 (assert (= old-sum old-total) ) ; pre-invariant
50 (assert (distinct new-sum new-total) ) ; negated post-invariant
51 (check-sat)

Figure 6.5: Encoding of mint1, Full Surjectivity, with total, int Version.
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1 (set-logic UFLIA)
2 (declare-sort Coin 0 )
3 (declare-sort Address 0)
4 (declare-fun act (Coin Int) Bool )
5 (declare-fun hc (Address Coin Int) Bool)
6 (declare-fun induct (Int) Bool)
7 (declare-const a1 Address)
8 (declare-const a2 Address)
9 (declare-const n Int)

10 ; inductive predicate definition
11 (assert (forall ((I Int)) (= (induct I)
12 (and (forall ((C Coin))
13 (= (exists ((A Address)) (hc A C I)) (act C I)) ))
14 (forall ((A Address) (B Address) (C Coin))
15 (=> (and (hc A C I) (hc B C I)) (= A B)) )))))
16 ; pre-invariants
17 (assert (forall ((C Coin)) (= (exists ((A Address)) (hc A C 0))
18 (act C 0) ))) ; inactive coins and at least one
19 (assert (forall ((A Address)(B Address)(C Coin))
20 (=> (and (hc A C 0) (hc B C 0)) (= A B) ))) ; at most one
21 ; transition
22 (assert (forall ((I Int)) (=> (<= 0 I)
23 (and (forall ((D Coin)) (= (act D I) (act D (+ I 1)) ))
24 (exists ((C Coin)) (and
25 (hc a1 C I) (not (hc a2 C I))
26 (not (hc a1 C (+ I 1))) (hc a2 C (+ I 1))
27 (forall ((D Coin) (A Address))
28 (=> (or (distinct C D)
29 (and (distinct A a1) (distinct A a2)) )
30 (= (hc A D (+ I 1)) (hc A D I)) ))))))))
31 ; negated post-invariant
32 (assert (and (<= 0 n) (not (induct n)) ))
33 (check-sat)

Figure 6.6: Encoding of transferFromN, uf Version.

1 (set-logic UFLIA)
2 (declare-sort Coin 0 )
3 (declare-sort Address 0)
4 (declare-fun old-sum () Int)
5 (declare-fun new-sum () Int)
6 (declare-fun a0 () Address)
7 (declare-fun a1 () Address)
8 (declare-fun a2 () Address)
9 (declare-fun old-bal (Address) Int)

10 (declare-fun new-bal (Address) Int)
11 (declare-fun count (Coin) Int)
12 (declare-fun ind (Coin Address) Int)
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13 ; axioms on sum and count
14 (assert (<= 0 old-sum)) ; sum non-negative
15 (assert (<= 0 new-sum)) ; sum non-negative
16 (assert (forall ((C Coin)) (< 0 (count C)) ) ) ; count positive
17 (assert (forall ((C Coin) (D Coin))
18 (=> (= (count C) (count D)) (= C D) ))) ; count injective
19 (assert (exists ((C Coin)) (= (count C) old-sum) ))
20 (assert (exists ((C Coin)) (= (count C) (+ old-sum 1)) ))
21 (assert (exists ((C Coin)) (= (count C) new-sum) ))
22 ; count instances of surjectivity
23 ; axioms on bal and find
24 (assert (forall ((A Address)) (<= 0 (old-bal A)) )) ; bal non-negative
25 (assert (forall ((A Address)) (<= 0 (new-bal A)) )) ; bal non-negative
26 (assert (forall ((C Coin)(A Address)) (< 0 (ind C A)) )) ; ind positive
27 (assert (forall ((C Coin) (D Coin) (A Address))
28 (=> (= (ind C A) (ind D A)) (= C D) ))) ; ind(A,.) injective
29 (assert (exists ((C Coin)) (= (ind C a0) (old-bal a0)) ))
30 (assert (exists ((C Coin)) (= (ind C a0) (+(old-bal a0) 1))))
31 (assert (exists ((C Coin)) (= (ind C a0) (+(old-bal a0) 2))))
32 (assert (exists ((C Coin)) (= (ind C a0) (+(old-bal a0) 3))))
33 (assert (exists ((C Coin)) (= (ind C a0) (+(old-bal a0) 4))))
34 (assert (exists ((C Coin)) (= (ind C a0) (+(old-bal a0) 5))))
35 (assert (exists ((C Coin)) (= (ind C a1) (new-bal a1)) ))
36 (assert (exists ((C Coin)) (= (ind C a1) (+(new-bal a1) 1))))
37 (assert (exists ((C Coin)) (= (ind C a1) (+(new-bal a1) 2))))
38 (assert (exists ((C Coin)) (= (ind C a1) (+(new-bal a1) 3))))
39 (assert (exists ((C Coin)) (= (ind C a2) (new-bal a2)) ))
40 (assert (exists ((C Coin)) (= (ind C a2) (+(new-bal a2) 1))))
41 ; find(A,.) instances of surjectivity
42 ; axioms between sum and bal
43 (assert (forall ((C Coin)) (=
44 (exists ((A Address)) (<= (ind C A) (old-bal A)) )
45 (<= (count C) old-sum) ))) ; find<=bal iff count<=sum
46 (assert (forall ((C Coin)) (=
47 (exists ((A Address)) (<= (ind C A) (new-bal A)) )
48 (<= (count C) new-sum) ))) ; find<=bal iff count<=sum
49 (assert (forall ((A Address)(B Address)(C Coin)) (=>
50 (and (<= (ind C A) (old-bal A)) (<= (ind C B) (old-bal B)) )
51 (= A B) ))) ; only once find<=bal
52 (assert (forall ((A Address)(B Address)(C Coin)) (=>
53 (and (<= (ind C A) (new-bal A)) (<= (ind C B) (new-bal B)) )
54 (= A B) ))) ; only once find<=bal
55 ; transition and negated impact
56 (assert (and (forall ((A Address)) (=>
57 (and (distinct A a0) (distinct A a1) (distinct A a2))
58 (= (old-bal A) (new-bal A)) ))))
59 (= (new-bal a0) (+ (old-bal a0) 5))
60 (= (old-bal a1) (+ (new-bal a1) 3))
61 (= (old-bal a2) (+ (new-bal a2) 1)) ; plus5 minus3 minus1
62 (assert (distinct (+ old-sum 1) new-sum) ) ; negated impact
63 (check-sat)

Figure 6.7: Encoding of bal(a0) + 5, bal(a1)− 3, bal(a2)− 1.
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in [PZR20]. Isabelle [Nip12] was also shown to be useful in manual, interactive verification
of smart contracts [Hir17]. We, however, focus on automated approaches.

There are also efforts to perform deductive verification of smart contracts both on the
source level in languages such as Solidity [WLC+19, Alt19, HJ19] and Move [ZCQ+20],
as well as on the Ethereum virtual machine (EVM) level [Cer, SGSM20]. This work
improves the effectiveness of these approaches by developing techniques for automatically
reasoning about unbounded sums. This way, we believe we support a more semantic-based
verification of smart contracts.

Our approach differs from works using ghost variables [HJ19], since we do not manually
update the “ghost state”. Instead, the verifier needs only to reason about the local changes,
and the aggregate state is maintained by the axioms. That means other approaches
assume (a) the local changes and (b) the impact on ghost variables (sum), whereas we
only assume (a) and automatically prove a⇒ b. This way, we reduce the user-guidance
in providing and proving (b).

Our work complements approaches that verify smart contracts as finite state ma-
chines [WLC+19] and methods, like ZEUS [KGDS18], using symbolic model checking
and abstract interpretation to verify generic safety properties for smart contracts.

The work in [SFM+21] provides an extensive evaluation of ERC-20 and ERC-721 tokens.
ERC-721 extends ERC-20 with ownership functions, one of which being “approve”. It
enables transactions on another party’s behalf. This is independent of our ability to
express sums in first-order logic, as the transaction’s initiator is irrelevant to its effect.

Reasoning about Financial Applications. Recently, the Imandra prover introduced
an automated reasoning framework for financial applications [PCI+20, Pas18, PI17].
Similarly to our approach, these works use SMT procedures to verify and/or generate
counterexamples to safety properties of low- and high-level algorithms. In particular,
results of [PCI+20, Pas18, PI17] include examples of verifying ranking orders in matching
logics of exchanges, proving high-level properties such as transitivity and anti-symmetry
of such orders. In contrast, we focus on verifying properties relating local changes in
balances to changes of the global state (the sum). Moreover, our encodings enable
automated reasoning both in SMT solving and first-order theorem proving.

Automated Aggregate Reasoning. The theory of first-order logic with aggregate
operators has been thoroughly studied in [HLNW01, Lib99]. Though proven to be
strictly more expressive than first-order logic, both in the case of general aggregates
as well as simple counting logics, in this work we present a practical way to encode a
weakened version of aggregates (specifically sums) in first-order logic. Our encoding
(as in Section 6.5) works by expressing particular sums of interest, harnessing domain
knowledge to avoid the need of general aggregate operators.

Previous works [KNR05, BREO+19] in the field of higher-order reasoning do not directly
discuss aggregates. The work of [KNR05] extends Presburger arithmetic with Boolean
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algebra for finite, unbounded sets of uninterpreted elements. This includes a way to
express the set cardinalities and to compare them against integer variables, but does not
support uninterpreted functions, such as the balance functions we use throughout our
approach.

The SMT-based framework of [BREO+19] takes a different, white-box approach, modify-
ing the inner workings of SMT solvers to support higher-order logic. We, on the other
hand, treat theorem provers and SMT solvers as black-boxes, constructing first-order
formulas that are tailored to their capabilities. This allows us to use any off-the-shelf
SMT solver.

In [DDC10], an SMT module for the theory of FO(Agg) is presented, which can be used
in all DPLL-based SAT, SMT and ASP solvers. However, FO(Agg) only provides a way
to express functions that have sets or similar constructs as inputs, but not to verify their
semantic behavior.

6.8 Conclusion
We present a methodology for reasoning about unbounded sums in the context of smart
transitions, that is transitions that occur in smart contracts modeling transactions. Our
sum logic SL and its usage of sum constants, instead of fully-fledged sum operators, turns
out to be most appropriate for the setting of smart contracts. We show that SL has
decidable fragments (Section 6.4.1), as well as undecidable ones (Section 6.4.2). Using
two phases to first implicitly encode SL in first-order logic (Section 6.5.1), and then
explicitly encode it (Section 6.5.3), allows us to use off-the-shelf automated reasoners in
new ways, and automatically verify the semantic correctness of smart transitions.

Showing the (un)decidability of the SL fragment with two sets of uninterpreted functions
and sums is an interesting step for further work, as this fragment supports encoding
smart transition systems. Another interesting direction of future work is to apply our
approach to different aggregates, such as minimum and maximum and to reason about
under which conditions these values stay above/below certain thresholds. A slightly
modified setting of our SL axioms can already handle min/max aggregates in a basic way,
namely by using ≥ and ≤ instead of equality and dropping the injectivity/surjectivity
(respectively) axioms of the counting mechanisms.

Summation upon multidimensional arrays in various ways is yet another direction of
future research. Our approach supports the summation over all values in all dimensions
by adding the required number of parameters to the predicate idx and by adapting the
axioms accordingly.
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CHAPTER 7
Summary and Outlook

In this thesis, we addressed two aspects of blockchain security. First and foremost, we
developed a comprehensive framework for game-theoretic security analysis, combining
extensive form games, symbolic payoffs, and automated reasoning techniques to rigorously
model and evaluate a protocol’s incentive structures. Additionally, this dissertation
extends to implementation security, proposing methods for formalizing and verifying
unbounded summations in smart contracts. Thereby enabling both theoretical and
practical advancements in blockchain security.

Game-Theoretic Security. This thesis introduced a novel approach to modeling
blockchain protocols for game-theoretic security analysis by leveraging extensive form
games with symbolic payoffs. By defining game-theoretic security based on weak immunity,
collusion resilience, and practicality, we provide a rigorous framework for assessing the
incentive structures of blockchain protocols. The proof-of-concept application to Bitcoin’s
Lightning Network demonstrates the ability to model and analyze real-world components
with mathematical precision. These models are the first to accurately capture relevant
aspects, such as arbitrary deviations, and establish formal criteria for when these protocols
are secure. Our approach sets the stage for further game-theoretic modeling of blockchain
protocols, in particular through offering clear criteria for when incentive structures should
be deemed secure.

Significant advancements in the automated analysis of game-theoretic security were made
in this thesis. We developed a framework based on SMT solving, which enables the
automatic analysis of game models with symbolic payoffs. This approach allows for the
efficient and rigorous evaluation of complex game models through a sound and complete
encoding of game-theoretic concepts into first-order logic. Additionally, the introduction
of methods for automatically computing weakest preconditions, counterexamples, and
witness strategies further enhances the utility of the framework, rendering it an effective
approach for security analysis in blockchain protocols.
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7. Summary and Outlook

The novel techniques for SMT-based automated game-theoretic security analysis were
implemented in the newly developed tool CheckMate. Our experiments, evaluated
on multiple benchmarks, demonstrate the scalability and effectiveness of CheckMate,
with results obtained in seconds for most models. They, however, also show their limits.
Our tool was not able to analyze a model with over 500,000 nodes. To the best of our
knowledge, our tool is the first to allow for automated game-theoretic security analysis
and the first to support symbolic payoffs.

The method for compositional reasoning over the game-theoretic security properties that
we established allowed us to push the limits of automated game-theoretic analysis beyond
game models of 100,000,000 nodes. Thus, making it possible for complex real-world
blockchain protocols to have verified incentive structures. To this end, we leveraged
divide-and-conquer techniques, defined compositional variations of game-theoretic secu-
rity properties, and proved their equivalence to the original definitions. This enables
the independent analysis of subgames, significantly reducing computational and storage
requirements. We further implemented these concepts in CheckMate2.0, the next gen-
eration of our framework. It demonstrates substantial runtime improvements and allows
iterative and memory-efficient analysis of large-scale game models. This compositional
approach not only overcomes practical barriers to analyzing massive game models but
also paves the way for more modular game-theoretic security evaluations.

Implementation Security. Concerning reasoning about unbounded summations
in smart contracts, we generalized Presburger arithmetic to express properties about
summations and provided a formal framework for verifying the correctness of smart
contract operations, such as maintaining the total supply of tokens during transactions.
Our approach explores the decidability of this extended logic and offers sound encodings
into first-order logic for practical verification. Our experimental evaluation on 31 new
benchmarks demonstrated the encodings’ applicability to real-world smart contract
properties. This line of work aims to enhance the implementation security in blockchain
systems by offering a framework for reasoning about unbounded summations in a formal
manner.

Outlook. Using the results of this thesis as a basis, two major directions of future
research arise. During the modeling of protocols, it became apparent that many decen-
tralized finance applications rely on chance in addition to the users’ choices. While we
still believe that modeling the protocols as extensive form games was the right decision,
we are convinced that an enhancement of EFGs to support chance would be invaluable.
Such an extension is relevant to applications like decentralized gambling but also to
blockchain protocols that depend on price fluctuations in various markets. We think the
compositional approach to game-theoretic security implemented in CheckMate2.0 can
be leveraged to accomplish said enhancement.

The other most evident avenue of further work is the automated modeling of a blockchain
protocol as a game. The current overhead of modeling is the main bottleneck that keeps
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game-theoretic security analysis from being widely used. The main challenge, in our
opinion, is the lack of formal descriptions of blockchain protocols. Without a rigorous
specification, automated modeling is severely hindered. Nonetheless, there is a class of
protocols that does have precise documentation: In a smart contract, it is clearly stated
which capabilities each user has, as code is law. We, therefore, believe automating the
modeling of a smart contract as a game is a promising direction to improve the usability
of game-theoretic security.

Further, it would be interesting to investigate the applicability of our results to other
areas. Specifically, one could explore whether game-theoretic analyses are also meaningful
and beneficial in other research fields. More generally, it would be worthwhile to study
whether the verification of cryptographic security, implementation security, and game-
theoretic security can all be symbiotically combined in a unified framework. Such an
approach would enable users to formally model their protocol only once.
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Overview of Generative AI Tools
Used

I used ChatGPT-4 to rephrase some of my sentences more formally or clearer throughout
Chapter 1 and Chapter 7. Additionally, I used it to provide synonyms.
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