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Abstract
Many approaches to query answering in Description Logics (DLs) adopt the certain answer semantics,

which is natural for standard query languages without negation, but falls short when negation is involved.

Since negation plays a crucial role in many applications, alternative semantics are needed. Core universal

models are increasingly accepted as a means to give a semantics to queries with negation. In this paper, we

consider the problem of evaluating (possibly recursive) SHACL expressions over the core universal model

of an ℰℒℋℐ KB. SHACL, recently proposed as a standard constraint language for RDF data, is a natural

and powerful query language, and the fragment we consider adds regular path navigation to semi-positive

monadic Datalog with acyclic rule bodies. We first propose a construction of a finite representation of

the core universal model, based on a novel calculus for ℰℒℋℐ that gives up the data-independence to

avoid the best-case exponential behaviour of similar approaches, and which we believe can lead towards

an efficient implementation. Then we leverage this finite representation to reduce validation in the

presence of ontologies to plain SHACL validation, similarly to previous algorithms but avoiding their

best-case exponential behaviour. Our algorithms yield tight data- and combined-complexity bounds for

the studied SHACL validation problem, which coincide with plain consistency testing in ℰℒℋℐ .
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1. Introduction

Evaluating queries over description logic (DL) knowledge bases has been the subject of huge

research efforts over almost two decades. Here, the certain answer semantics has played a

prominent role in elegantly handling information incompleteness for large classes of queries:

answering a query consists of computing the intersection of query answers over all models of

the input knowledge base (KB). This problem can easily become computationally very costly for

expressive DLs, and it is provably more expensive than standard reasoning in most of the popular

extensions of𝒜ℒ𝒞 [1]. But fortunately, this computational hurdle can usually be avoided in the

so-called Horn DLs, which disallow ontological statements that involve disjunction, leading in

turn to the universal model property [2, 3]. This property guarantees that a consistent KB always

has a model that represents all models (technically, that can be homomorphically mapped into

any model) and is thus sufficient to compute the certain answers to all conjunctive queries.
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The universal model property is closely related to the notion of a chase procedure known from

databases, originally studied for reasoning about integrity constraints [4]. There are several

chase variants with different properties (e.g., oblivious, Skolem, core) [5, 6, 7], and all of them

can be used to obtain a model that is universal in the sense above. Query answering is still far

from trivial even when universal models exists. For standard DLs, the chase does not terminate

in general and universal models can be infinite, so we need to reason about them without

building them explicitly. Nevertheless, the universal model property of Horn DLs has enabled

the development of several algorithms and practical implementations of query answering over

large classes of positive queries, see e.g., [2, 3, 8, 9, 10, 11] and their references.

Unfortunately, the situation is very different when queries involve negation as failure, which

allows us to query about the absence of information, e.g., to ask for objects that do not (provably)

have some property. Such queries are highly desirable in KR and have been advocated in

several papers [12, 13, 14, 15]. However, they are not closed under homomorphisms, which

means that different universal models may lead to different answers. Apparently innocuous

differences in the chase procedure may affect the query answers, and the certain answer

semantics becomes inadequate; see, e.g., the discussion in [14] and [15]. The core universal

model is increasingly accepted as a way to define the semantics of these queries [14, 15], since

it can be seen as the structure that best represents the intended meaning of the given input data

and the terminological axioms, without any superfluous structures or redundant elements.

The first major contribution of this paper is a method for computing a finite representation

of a (possibly infinite)core universal model of an ℰℒℋℐ KB. This method includes a data-aware

version of a consequence-based calculus for ℰℒℋℐ . Specifically, we define a collection of

reasoning rules that incrementally builds a finite representation of a core universal model for

a given input ABox. Unlike previous consequence-based inference procedures for ℰℒℋℐ , are

the rules in our calculus aware of input data. This avoids the main drawback of the previous

approaches: data-independent computations easily lead to best-case exponential behavior.

After presenting our calculus, we use it to address a timely and challenging problem: validation

of (possibly recursive) SHACL in the presence of ontologies. SHACL is a recently introduced

W3C recommendation for writing constraints over RDF data [16]. It has also been formalised

in logic and has connections to DLs [17, 18, 19, 20]. The SHACL standard envisions SHACL

validation performed in the presence of ontologies but does not describe how this should be

realised. SHACL is closely related to DLs and typical formalisms studied in the setting of

ontology-mediated queries. We concentrate on semi-positive SHACL shapes, which allow for

negation of ontology predicates, but not of shape names. This fragment can be seen as semi-

positive monadic Datalog queries with acyclic rule bodies and regular path expressions, and it

already raises the issues with the certain answer semantics discussed above.

Following our previous work [15], we use a core universal model of the data and ontology

for validation. This leads us to our second contribution: an algorithm for evaluating SHACL

expressions over the finite representation of a core universal model of an ℰℒℋℐ KB. This

procedure is based on the rewriting from [15], but unlike that work, the algorithm presented

here is not best-case exponential, potentially paving the way towards implementation. Moreover,

we show that checking if a given ℰℒℋℐ KB validates a shapes graph is ExpTime-complete and

PTime-complete in combined and data complexity, respectively. These bounds are the best we

could hope for, since they coincide with the complexity of consistency testing in ℰℒℋℐ .



2. Preliminaries

Let 𝑁𝐶 , 𝑁𝐼 , and 𝑁𝑅 be infinite sets of concept names, individual names, and role names,

respectively. Let 𝑁+
𝐶 := 𝑁𝐶 ∪ {⊤} and 𝑁+

𝑅 := {𝑝, 𝑝− | 𝑝 ∈ 𝑁𝑅} denote roles. For every

𝑝 ∈ 𝑁𝑅, let (𝑝−)− = 𝑝. For each set of roles 𝑅 ⊆ 𝑁+
𝑅 , set 𝑅− := {𝑟− | 𝑟 ∈ 𝑁+

𝑅 }. Let 𝑁𝐵 be

an infinite set of blank nodes disjoint from 𝑁𝐼 . Call 𝐴(𝑐) and 𝑟(𝑐, 𝑑) atoms, for each 𝐴 ∈ 𝑁𝐶 ,

𝑟 ∈ 𝑁+
𝑅 and {𝑐, 𝑑} ⊆ 𝑁𝐼∪𝑁𝐵 . We let Δ𝒜

denote the domain of𝒜, i.e. the elements of 𝑁𝐼∪𝑁𝐵

that appear in 𝒜. In case Δ𝒜 ⊆ 𝑁𝐼 , we call 𝒜 an ABox. In the rest of this paper, we assume

that for all ABoxes 𝒜, if 𝑟(𝑎, 𝑏) ∈ 𝒜, then 𝑟−(𝑏, 𝑎) ∈ 𝒜 too. For a tuple 𝑥⃗ = (𝑥1, . . . , 𝑥𝑛) and

1 ≤ 𝑗 ≤ 𝑛, we let 𝜋𝑖(𝑥⃗) = 𝑥𝑖 be its 𝑖-th projection.

Morphisms. Let 𝒜 and 𝒜′
be sets of atoms. A homomorphism from 𝒜 to 𝒜′

is a function

ℎ : Δ𝒜 → Δ𝒜′
such that for all {𝑐, 𝑑} ⊆ 𝑁𝐼∪𝑁𝐵 , all𝐴 ∈ 𝑁𝐶 and all 𝑝 ∈ 𝑁𝑅, (i) if 𝑐 ∈ Δ𝒜∩𝑁𝐼 ,

then ℎ(𝑐) = 𝑐, (ii) if 𝐴(𝑐) ∈ 𝒜, then 𝐴(ℎ(𝑐)) ∈ 𝒜′
, and (iii) if {𝑝(𝑐, 𝑑), 𝑝−(𝑑, 𝑐)} ∩ 𝒜 ≠ {},

then {𝑝(ℎ(𝑐), ℎ(𝑑)), 𝑝−(ℎ(𝑑), ℎ(𝑐))} ∩ 𝒜′ ̸= {}. A homomorphism is called strong when (ii)

and (iii) are strengthened to “𝐴(𝑐) ∈ 𝒜 iff 𝐴(ℎ(𝑐)) ∈ 𝒜′
” and “{𝑝(𝑐, 𝑑), 𝑝−(𝑑, 𝑐)} ∩ 𝒜 ̸= {} iff

{𝑝(ℎ(𝑐), ℎ(𝑑)), 𝑝−(ℎ(𝑑), ℎ(𝑐))} ∩ 𝒜′ ̸= {}”, respectively. An embedding is a strong injective

homomorphism, an isomorphism is a surjective embedding and an endomorphism of 𝒜 is a

homomorphism from 𝒜 to itself. A set of atoms is a core when all its endomorphisms are

embeddings. The core of a set of atoms 𝒜 is a set of atoms ℬ ⊆ 𝒜, such that (i) there exists an

endomorphism ℎ from 𝒜 to ℬ, (ii) ℬ is the restriction to the image of ℎ, and (iii) ℬ is a core.We

write 𝒜 core−−→ ℬ. Each finite set of atoms has a core that is unique up to isomorphism [21].

The Description logic ℰℒℋℐ. We are considering a normalised version of ℰℒℋℐ , i.e., the

axioms we consider have one of the following normal forms.

𝐴1 ⊓ . . . ⊓𝐴𝑛 ⊑ 𝐵 𝐴1 ⊑ ∃𝑟.𝐴2 ∃𝑟.𝐴1 ⊑ 𝐵 𝑟 ⊑ 𝑟′

Here, {𝐴1, . . . , 𝐴𝑛} ⊆ 𝑁+
𝐶 , 𝐵 ∈ 𝑁+

𝐶 ∪ {⊥} and {𝑟, 𝑟′} ⊆ 𝑁+
𝑅 . An ℰℒℋℐ TBox 𝒯 is a set of

such axioms. An (ℰℒℋℐ) knowledge base (𝒯 ,𝒜) consists of an ABox 𝒜 and an ℰℒℋℐ TBox

𝒯 . As usual, we use first-order interpretations to define the semantics. Note that any set of

atoms 𝒜 can be viewed as an interpretation with domain Δ𝒜
.

Building the chase. The function 𝑓𝑥, for each 𝑥 ∈ 𝑁𝐼∪𝑁𝐵 , that translates concepts into a set of

atoms is inductively defined in the following way: 𝑓𝑥(⊤) := {}, 𝑓𝑥(𝐴) := {𝐴(𝑥)}, 𝑓𝑥(∃𝑟.𝐴) :=
{𝑟(𝑥, 𝑦), 𝑟−(𝑦, 𝑥), 𝐴(𝑦)} for some fresh variable 𝑦 and 𝑓𝑥(𝐶 ⊓𝐶 ′) := 𝑓𝑥(𝐶)∪ 𝑓𝑥(𝐶 ′). We say

𝑐 is an applicable match for an axiom 𝐶 ⊑ 𝐷 ∈ 𝒯 in a set of atoms 𝒜, when there exists a

homomorphism ℎ from 𝑓𝑥(𝐶) to 𝒜, such that ℎ(𝑥) = 𝑐 and there is no homomorphism from

𝑓𝑥(𝐷) to 𝒜 such that ℎ(𝑥) = 𝑐. We use the notation (𝑐, 𝐶 ⊑ 𝐷) ∈ m∃(𝒯 ,𝒜) when 𝐷 is of

the form ∃𝑟.𝐴 for some 𝑟 ∈ 𝑁+
𝑅 , 𝐴 ∈ 𝑁+

𝐶 , and the notation (𝑐, 𝐶 ⊑ 𝐷) ∈ m(𝒯 ,𝒜) when

𝐷 ∈ 𝑁𝐶 . Similarly, (𝑐, 𝑑) is an applicable match for 𝑟 ⊑ 𝑟′ ∈ 𝒯 in a set of atoms 𝒜, when

𝑟(𝑐, 𝑑) ∈ 𝒜 and 𝑟′(𝑐, 𝑑) ̸∈ 𝒜. In that case, we write ((𝑐, 𝑑), 𝑟 ⊑ 𝑟′) ∈ m(𝒯 ,𝒜).

Definition 1. For an ℰℒℋℐ TBox 𝒯 , a set 𝐼 ⊆ 𝑁𝐼 ∪𝑁𝐵 and ABoxes 𝒜,𝒜′
, we let 𝒜 𝒯 ,𝐼−−→ 𝒜′

if

𝒜′ = 𝒜 ∪
⋃︁

(𝑐,𝐶⊑𝐷)∈m∃(𝒯 ,𝒜),𝑐∈𝐼

𝑓𝑐(𝐷) ∪
⋃︁

(𝑐,𝐶⊑𝐷)∈m(𝒯 ,𝒜)

𝑓𝑐(𝐷) ∪
⋃︁

((𝑐,𝑑),𝑟⊑𝑟′)∈m(𝒯 ,𝒜)

𝑟′(𝑐, 𝑑).

When 𝐼 = 𝑁𝐼 ∪𝑁𝐵 , we drop the 𝐼 .



Note that the 𝐼 restricts the set of nodes for which we consider applicable existential matches.

We use the notation 𝒜(→)𝜔𝒜′
to denote that there exists an 𝑛 such that 𝒜(→)𝑛𝒜′

and for

all 𝒜′′
such that 𝒜′ → 𝒜′′

we find 𝒜′ = 𝒜′′
, for each binary relation→. With ∘ we denote

the concatenation of two binary relations, that is, 𝒜 → ∘ →′ ℬ iff there exists 𝒜′
such that

𝒜 → 𝒜′
and 𝒜′ →′ ℬ, for each pair of binary relations→ and→′

.

Core chase. In the core chase, all applicable matches are fired simultaneously, followed by a

core check. This procedure is repeated until it terminates (which is not guaranteed): given a

knowledge base 𝒯 ,𝒜, the core chase is the unique, up to isomorphism, structure ℬ such that

𝒜( 𝒯−→ ∘ core−−→)𝜔ℬ [7]. This procedure finds a finite universal (core) model whenever it exists,

but it does not specify how to create an infinite structure from a series of finite chase structures:

simply taking the union of ℬ𝑖, such that 𝒜( 𝒯−→ ∘ core−−→)𝑖ℬ𝑖, does in general not produce a core.

Take for instance 𝒜 = {𝐴(𝑐)} and 𝒯 = {𝐴 ⊑ ∃𝑟.𝐴,𝐴 ⊑ ∃𝑠.𝐴, 𝑟 ⊑ 𝑠}. The core chase is

generalised to infinite structures in [22] by the so-called stable chase. The austere universal

model, introduced in [15] for DL-Liteℛ, is constructed using a good successor configuration that

ensures that the axioms are locally satisfied while preserving conditions of a core at each step.

Here we follow a similar approach, and moreover, we prove that these local conditions are

enough to obtain the core chase (whenever the procedure terminates).

3. Good Successor Configuration

In this section, we present our first major contribution: computing a finite representation of a

core universal model for a given ℰℒℋℐ KB. In a nutshell, the good successor configuration tells

us for each configuration of a node and its immediate ‘neighbourhood’, the precise configuration

of blank nodes that should be introduced as immediate successors.

In contrast to DL-Liteℛ, in ℰℒℋℐ the relevant context is not only the incoming roles 𝑟, but also

the concepts satisfied at the already existing neighbours. For simplicity, we focus on describing

the good successors of the blank nodes introduced during the chase, which have a unique

predecessor in the forest-like structure. For describing the successor configurations, we use

types and successor types. A type 𝑡 ∈ ℱ is defined as an element of 𝒫(𝑁+
𝐶 )×𝒫(𝑁+

𝑅 )×𝒫(𝑁+
𝐶 ),

and a successor type 𝑢 ∈ 𝒮 is an element of 𝒫(𝑁+
𝑅 )×𝒫(𝑁+

𝐶 ). A type 𝑡 describes a pair of nodes

and the roles between them, while a successor type describes a set of roles leading to one node.

A pair (𝑡, {𝑢1, . . . , 𝑢𝑛}) in the good configuration means that a node that is connected to its

predecessor as described by 𝑡, and needs successors as prescribed by 𝑢1, · · · , 𝑢𝑛, see Figure 1.

Furthermore, we define the inverse function inv : 𝒫(𝑁+
𝑅 )× 𝒫(𝑁+

𝐶 )→ 𝒫(𝑁+
𝐶 )× 𝒫(𝑁+

𝑅 ) on

successor types by setting inv(𝑢) := (𝜋2(𝑢), (𝜋1(𝑢))
−). (Recall that 𝜋1 and 𝜋2 are the first and

second projection of a tuple, respectively, as defined in the preliminaries.)

Defining the successors of all types that may occur in the chase for any possible ABox

would necessarily lead to a strictly exponential behaviour. While exponentiality is in general

unavoidable, as standard reasoning tasks are ExpTime complete, we want to avoid it for as

many instances as possible. Hence in the following we build the good successor configuration

carefully, to avoid best-case exponential behaviour. We start from the input ABox𝒜, and extend

it to satisfy all applicable axioms, but we restrict the satisfaction of existential axioms to only

create blank nodes that are directly neighbouring the ABox. We call this structure 𝒜1. The



freshly introduced blank nodes in𝒜1 have exactly one predecessor and can thus be described by

a type. We take exactly those types as initial live types, and compute the pre-good configuration

of successors that each live type needs. In each step of the computation we add to the live types

the new successor types. It might happen that we encounter a so-called loop computation: the

created successors may propagate some concept 𝐵 back to the current node, This information is

saved in a relation 𝐿 as the pair of the type and the implied concept, and the pre-good successor

pairs are updated with this information. Unlike DL-Liteℛ, derived information in ℰℒℋℐcan

propagate through the model, and in particular, affect the concepts satisfied by ABox individuals.

Thus the information from the loop computation 𝐿 must be used to update also the extended

ABox, from which we retrieve fresh, updated live types for the next round of building pre-good

successors. This continues in rounds until the process terminates.

Definition 2. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜). Let𝒜1 be the unique (up to isomorphism)

set of atoms such that 𝒜( 𝒯 ,𝑁𝐼−−−→)𝜔∘ core−−→ 𝒜1. Let 𝐹𝑖 be the following set of types, for each 𝑖 ≥ 1

𝐹𝑖 := {𝑡 ∈ ℱ | 𝑛 ∈ 𝑁𝐵, 𝑐 ∈ 𝑁𝐼 , 𝑟 ∈ 𝑁+
𝑅 , 𝜋1(𝑡) = {𝐴 ∈ 𝑁𝐶 | 𝐴(𝑛) ∈ 𝒜𝑖} ∪ {⊤},

𝜋2(𝑡) = {𝑟 ∈ 𝑁+
𝑅 | 𝑟(𝑛, 𝑐) ∈ 𝒜𝑖},

𝜋3(𝑡) = {𝐴 ∈ 𝑁𝐶 | 𝐴(𝑐) ∈ 𝒜𝑖} ∪ {⊤}}.

Construct the pre-good successor relation, psucc𝑖 ⊆ ℱ × 𝒫(𝒮), initially set to (𝑡, {}) ∈ psucc𝑖

for all 𝑡 ∈ 𝐹𝑖, and the loop computation relation, 𝐿 ⊆ ℱ ×𝑁𝐶 , initially empty, for each 𝑖 ≥ 1
by applying the following rules exhaustively.

1. If {(𝑡, 𝐴1), . . . , (𝑡, 𝐴𝑛)} ⊆ 𝐿 and 𝐴1 ⊓ · · · ⊓𝐴𝑛 ⊑ 𝐵 ∈ 𝒯 , then update 𝐿 by adding (𝑡, 𝐵);

2. If (𝑡, 𝑢) ∈ psucc𝑖 and 𝐴1 ⊓ · · · ⊓ 𝐴𝑛 ⊑ 𝐵 ∈ 𝒯 such that there exists 1 ≤ 𝑗 ≤ 𝑚, with 𝐴 ⊆
𝜋2(𝑢𝑗), but𝐵 ̸∈ 𝜋2(𝑢𝑗), then update the entry (𝑡, 𝑢) in psucc𝑖 to (𝑡, {𝑢1, . . . , (𝜋1(𝑢𝑗), 𝜋2(𝑢𝑗)∪
{𝐵}), . . . , 𝑢𝑚});

3. If (𝑡, 𝑢) ∈ psucc𝑖 and ∃𝑟.𝐴 ⊑ 𝐵 ∈ 𝒯 such that there exists 1 ≤ 𝑗 ≤ 𝑚, with 𝑟 ∈ 𝜋1(𝑢𝑗) and

𝐴 ∈ 𝜋2(𝑢𝑗), but 𝐵 ̸∈ 𝜋1(𝑡), then update 𝐿 by adding (𝑡, 𝐵);

4. If (𝑡, 𝑢) ∈ psucc𝑖 and ∃𝑟.𝐴 ⊑ 𝐵 ∈ 𝒯 such that there exists 1 ≤ 𝑗 ≤ 𝑚, with 𝑟− ∈ 𝜋1(𝑢𝑗)
and 𝐴 ∈ 𝜋1(𝑡) ∪ {𝐴′ | (𝑡, 𝐴′) ∈ 𝐿}, but 𝐵 ̸∈ 𝜋2(𝑢𝑗), then update the entry (𝑡, 𝑢) in psucc𝑖 to

(𝑡, {𝑢1, . . . , (𝜋1(𝑢𝑗), 𝜋2(𝑢𝑗) ∪ {𝐵}), . . . , 𝑢𝑚});

5. If (𝑡, 𝑢) ∈ psucc𝑖 and 𝑟 ⊑ 𝑟′ ∈ 𝒯 such that there exists 1 ≤ 𝑗 ≤ 𝑚, with 𝑟 ∈ 𝜋1(𝑢𝑗), but

𝑟′ ̸∈ 𝜋1(𝑢𝑗), or 𝑟− ∈ 𝜋1(𝑢𝑗), but 𝑟′− ̸∈ 𝜋1(𝑢𝑗) then update the entry (𝑡, 𝑢) in psucc𝑖 to

(𝑡, {𝑢1, . . . , (𝜋1(𝑢𝑗) ∪ {𝑟′}, 𝜋2(𝑢𝑗)), . . . , 𝑢𝑚});

6. If {(𝑡, 𝑢), (𝑡′, 𝑢′)} ⊆ psucc𝑖 such that there exists 1 ≤ 𝑗 ≤ 𝑚, with 𝜋1(𝑡) = 𝜋3(𝑡
′), 𝜋1(𝑢𝑗)

− =
𝜋2(𝑡

′) and 𝜋2(𝑢𝑗) = 𝜋1(𝑡
′), then update psucc𝑖(𝑡) to (𝑡, {𝑢1, . . . , (𝜋1(𝑢𝑗), 𝜋2(𝑢𝑗) ∪ {𝐴′ |

(𝑡′, 𝐴′) ∈ 𝐿}), . . . , 𝑢𝑚});

7. If (𝑡, 𝑢) ∈ psucc𝑖 and 𝐴 ⊑ ∃𝑟.𝐵 ∈ 𝒯 such that 𝐴 ∈ 𝜋1(𝑡), and 𝑟 ̸∈ 𝜋2(𝑡) or 𝐴 ̸∈ 𝜋3(𝑡),
and for all 1 ≤ 𝑗 ≤ 𝑚, 𝑟 ̸∈ 𝜋1(𝑢𝑗) or 𝐵 ̸∈ 𝜋2(𝑢𝑗), then update the entry (𝑡, 𝑢) in psucc𝑖 to

(𝑡, 𝑢 ∪ {({𝑟}, {⊤, 𝐵})});



𝜋1(𝑡)

𝜋3(𝑡)

𝜋2(𝑢) 𝜋2(𝑢
′)

𝜋2(𝑡)

𝜋1(𝑢) 𝜋1(𝑢
′)

Figure 1: Structure of the good
successor configuration

𝑐𝒜,𝑆 = {𝑐}
(¬𝑐)𝒜,𝑆 = Δ𝒜 ∖ {𝑐}

𝐴𝒜,𝑆 = {𝑐 | 𝐴(𝑐) ∈ 𝒜}
(¬𝐴)𝒜,𝑆 = Δ𝒜 ∖ {𝑐 | 𝐴(𝑐) ∈ 𝒜}

(𝜙1 ∧ 𝜙2)
𝒜,𝑆 = (𝜙1)

𝒜,𝑆 ∩ (𝜙2)
𝒜,𝑆

(∃𝐸.𝜙)𝒜,𝑆 = {𝑒 ∈ Δ𝒜 | ∃𝑒′ : (𝑒, 𝑒′) ∈ 𝐸𝒜 ∧ 𝑒′ ∈ 𝜙𝒜,𝑆}
𝑠𝒜,𝑆 = {𝑐 | 𝑠(𝑐) ∈ 𝑆}

Figure 2: Evaluating shape expressions

8. If (𝑡, 𝑢) ∈ psucc𝑖 and there exists 1 ≤ 𝑗, 𝑘 ≤ 𝑙 such that 𝑗 ̸= 𝑘, 𝜋1(𝑢𝑗) ⊆ 𝜋1(𝑢𝑘) and

𝜋2(𝑢𝑗) ⊆ 𝜋2(𝑢𝑘), then update the entry (𝑡, 𝑢) in psucc𝑖 to (𝑡, 𝑢 ∖ {𝑢𝑗});

9. If (𝑡, 𝑢) ∈ psucc𝑖, then for each 1 ≤ 𝑗 ≤ 𝑙, such that ((inv(𝑢𝑗), 𝜋1(𝑡)), 𝑢
′) ̸∈ psucc𝑖, for any

𝑢′, add ((inv(𝑢𝑗), 𝜋1(𝑡), {}) to psucc𝑖;

where we use the notation 𝐴, 𝑢, 𝑢′ as a shorthand for {𝐴1, . . . , 𝐴𝑛}, {𝑢1, . . . , 𝑢𝑚}, resp.

{𝑢′1, . . . , 𝑢′𝑚′}. Now, let ℬ𝑖 be the smallest set of atoms such that 𝒜𝑖 ⊆ ℬ𝑖 and, if (𝑡, 𝐵) ∈ 𝐿
and there exists 𝑐 ∈ 𝑁𝐵 , 𝑑 ∈ 𝑁𝐼 such that 𝜋1(𝑡) ⊆ {𝐴 ∈ 𝑁𝐶 | 𝐴(𝑐) ∈ ℬ𝑖} ∪ {⊤},
𝜋2(𝑡) ⊆ {𝑟 ∈ 𝑁+

𝑅 | 𝑟(𝑐, 𝑑) ∈ ℬ𝑖} and 𝜋3(𝑡) ⊆ {𝐴 ∈ 𝑁𝐶 | 𝐴(𝑑) ∈ ℬ𝑖} ∪ {⊤}, then 𝐵(𝑐) ∈ ℬ𝑖.
Define 𝒜𝑖+1 as the unique (up to isomorphism) set of atoms such that ℬ𝑖(

𝒯 ,𝑁𝐼−−−→)𝜔∘ core−−→ 𝒜𝑖+1.

Proposition 1. There exists an 𝑛 ≥ 1 such that 𝒜𝑛 = 𝒜𝑛+1. We use the notation 𝒜+
𝒯 for 𝒜𝑛.

First, note that by construction, 𝒜𝑖 ⊆ 𝒜𝑖+1. Furthermore, the amount of blank nodes

neighbouring a node in the data, such that they do not subsume each other, is restricted by the

amount of existential axioms in 𝒯 .

We can now define the good successor configuration as the limit of psucc𝑛, and the set ℱ𝒯 ,𝒜
of live types as the types occurring in it.

Definition 3. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜). Let 𝑛 ≥ 1 be the smallest 𝑛 such that

𝒜𝑛 = 𝒜𝑛+1. Set succ𝒯 ,𝒜 = psucc𝑛 and let ℱ𝒯 ,𝒜 ⊆ ℱ be such that 𝑡 ∈ ℱ𝒯 ,𝒜 iff there exists 𝑢
such that (𝑡, 𝑢) ∈ succ𝒯 ,𝒜.

In the good successor configuration, we only add successors that are directly required by

the axioms and whose set of roles can be summarised by one role that implies all others. This

will be useful later. We denote by cl𝒯 (𝑟) ⊆ 𝑁+
𝑅 the smallest set such that 𝑟 ∈ cl𝒯 (𝑟) and if

𝑟′ ∈ cl𝒯 (𝑟) and 𝑟′ ⊑ 𝑟′′ ∈ 𝒯 or 𝑟′− ⊑ 𝑟′′− ∈ 𝒯 , then 𝑟′′ ∈ cl𝒯 (𝑟).

Proposition 2. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜). If succ𝒯 ,𝒜(𝑡, 𝑢), then for each 𝑢 ∈ 𝑢
there exists a 𝐴 ⊑ ∃𝑟.𝐵 ∈ 𝒯 such that 𝐴 ∈ 𝜋1(𝑡), cl𝒯 (𝑟) = 𝜋1(𝑢) and 𝐵 ∈ 𝜋2(𝑢).

When computing the good successor configuration, we are computing all loops, that is, all

implications that may propagate back during the chase. In a nutshell, using the good successors

is analogous to doing the chase with the closure of 𝒯 under semantic consequences 𝒯 |= 𝐶 ⊑ 𝐷.



Proposition 3. Let 𝒯 * := {𝐶 ⊑ 𝐷 | 𝒯 |= 𝐶 ⊑ 𝐷}, and let ℬ be the unique (up to isomorphism)

set of atoms such that 𝒜( 𝒯 *,𝑁𝐼−−−−→)𝜔∘ core−−→ ℬ. Then 𝒜+
𝒯
∼= ℬ.

The proof relies on the fact that all relevant loop computations are covered in the construction

of the good successor configuration. As we consider live types, all possible configurations in the

anonymous parts are considered and all inferred loops are saved in the loop computation list.

4. Core Universal Model Construction

The good successor configuration allows us to easily build the desired universal core model.

We introduce some additional notation. Let 𝒜 be a set of atoms. For 𝑋 ⊆ 𝑁𝐼 ∪ 𝑁𝐵 , we

define the set 𝑛𝒜(𝑋) of neighbours of 𝑋 . We also define the type type𝒜(𝑐) of a blank node

𝑐 ∈ 𝑁𝐵 with |𝑛𝒜(𝑐)| = 1, where 𝑑 ∈ 𝑛𝒜(𝑐).

𝑛𝒜(𝑋) :=
⋃︁
𝑐∈𝑋
{𝑥 ∈ 𝑁𝐼 ∪𝑁𝐵 | 𝑟(𝑐, 𝑥) ∈ 𝒜 ∨ 𝑟(𝑥, 𝑐) ∈ 𝒜, 𝑟 ∈ 𝑁𝑅}

type𝒜(𝑐) := ({𝐴 ∈ 𝑁𝐶 | 𝐴(𝑐) ∈ 𝒜} ∪ {⊤}, {𝑟 ∈ 𝑁+
𝑅 | 𝑟(𝑐, 𝑑) ∈ 𝒜},

{𝐴 ∈ 𝑁𝐶 | 𝐴(𝑑) ∈ 𝒜} ∪ {⊤})

We can now build the model, starting from 𝒜+
𝒯 and adding successors according to succ𝒯 ,𝒜.

Definition 4. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜), define the core universal model core(𝒯 ,𝒜)
as the union of the sequence 𝑋1, 𝑋2, . . ., that is recursively defined in the following way

• 𝑋1 := 𝒜+
𝒯 ;

• 𝑋𝑛+1 is constructed from 𝑋𝑛 by adding, for each 𝑐 ∈ 𝑁𝐵 such that |𝑛𝑋𝑛(𝑐)| = 1 and

succ𝒯 ,𝒜(type𝑋𝑛
(𝑐), 𝑢) holds for some 𝑢, the following atoms for each 𝑢 ∈ 𝑢, with a fresh

𝑑 ∈ 𝑁𝐵 for each 𝑢 ∈ 𝑢

– {𝑟(𝑐, 𝑑), 𝑟−(𝑑, 𝑐)} ⊆ 𝑋𝑛+1 for each 𝑟 ∈ 𝜋1(𝑢);

– 𝐴(𝑑) ∈ 𝑋𝑛+1 for each 𝐴 ∈ 𝜋2(𝑢).

Note that we can see each entry in the sequence 𝑋1, 𝑋2, . . . as layers such that the freshly

added blank nodes in 𝑋𝑖 have distance 𝑖 to the ABox.

We can now show that 𝑐𝑜𝑟𝑒(𝒯 ,𝒜) is a model, that it is a core, and that it is universal.

Proposition 4. For all ℰℒℋℐ knowledge bases (𝒯 ,𝒜), 𝑐𝑜𝑟𝑒(𝒯 ,𝒜) is a model of (𝒯 ,𝒜).

The proof is based on the idea that all axioms that we consider are all in normal form. Thus,

the rules for the pre-good successor relation suffice to ensure that all axioms are satisfied in the

part outside of the ABox 𝒜. Closer to the data, the result follows from Proposition 3.

Proposition 5. For all ℰℒℋℐ knowledge bases (𝒯 ,𝒜), 𝑐𝑜𝑟𝑒(𝒯 ,𝒜) is a core.



Proof. A set of atoms 𝒜 has a core cover when there exist finite sets of atoms ℬ1 ⊆ ℬ2 ⊆ . . .
with 𝒜 =

⋃︀
𝑖≥1 ℬ𝑖, such that for all ℬ𝑖, each homomorphism ℎ : Δℬ𝑖 → Δ𝒜

is an embedding.

From [22], Theorem 16, we learn that each set of atoms that has a core cover is a core. Thus,

it suffices to show that ℬ𝑖 = 𝑋𝑖 is a core cover for

ℬ =
⋃︁
𝑖≥1

𝑋𝑖 = core(𝒯 ,𝒜).

It is immediate that for each 𝑖, the identity mapping ℎ𝑖 : Δ
𝑋𝑖 → Δcore(𝒯 ,𝒜)

given by 𝑥 ↦→ 𝑥 is

an embedding. By induction on 𝑖 it is shown that each homomorphism from 𝑋𝑖 to core(𝒯 ,𝒜)
is equal to the identity mapping.

• 𝑖 = 1. By definition 𝑋1 = 𝒜+
𝒯 , which is by construction a core. Note that for all endormor-

phisms on cores it holds that if one node is mapped to itself, all nodes have to be mapped to

themselves. Furthermore, note that each 𝑥 ∈ Δcore(𝒯 ,𝒜) ∖Δ𝒜+
𝒯 does not have a neighbour in

the ABox, so the image of each homomorphism from 𝒜+
𝒯 to core(𝒯 ,𝒜) is contained in 𝒜+

𝒯 . As

all nodes in Δ𝒜+
𝒯 ∩𝑁𝐼 have to be mapped to themselves, we can conclude the required.

• 𝑖 = 𝑛+1. Let us consider some 𝑥 ∈ Δ𝑋𝑛+1 ∖Δ𝑋𝑛
. By induction hypothesis, we know that

for all homomorphisms ℎ : Δ𝑋𝑛+1 → Δcore
, ℎ(𝑥′) = 𝑥′ for all 𝑥′ ∈ Δ𝑋𝑛

. Moreover, we know

there exists 𝑦 ∈ Δ𝑋𝑛
with succ𝒯 ,𝒜(type𝑋𝑛

(𝑦), 𝑢) such that there exists 𝑢 ∈ 𝑢 that led to the

introduction of 𝑥, i.e., 𝑛𝑋𝑛+1(𝑥) = {𝑦}. So, for each homomorphism ℎ : Δ𝑋𝑛+1 → Δcore(𝒯 ,𝒜)
,

we find ℎ(𝑥) ∈ 𝑛𝑐𝑜𝑟𝑒(𝒯 ,𝒜)(𝑦). By construction, the neighbourhood of 𝑦 exists of (i) 𝑧 such that

𝑛𝑋𝑛(𝑦) = {𝑧}, however, ℎ(𝑥) = 𝑧 would mean that the preconditions of introducing a new

successor type in rule 7 in Definition 2 were not applied properly, and (ii) 𝑥′ such that there

exists 𝑢′ ∈ 𝑢 with 𝑢 ̸= 𝑢′ that led to the introduction of 𝑥′, however, ℎ(𝑥) = 𝑥′ would mean

that rule 8 of Definition 2 was not properly applied. Thus, we must conclude that ℎ(𝑥) = 𝑥 for

all 𝑥 ∈ Δ𝑋𝑛+1
, which concludes this induction.

Proposition 6. For all ℰℒℋℐ knowledge bases (𝒯 ,𝒜), 𝑐𝑜𝑟𝑒(𝒯 ,𝒜) is universal.

The idea of the proof is that we only introduce new successors if there exists an applicable

existential axiom, and that all information in core(𝒯 ,𝒜) is a direct consequence of the applicable

axioms and will be derived in every model.

Finally, we show that if the core chase terminates, it results in core(𝒯 ,𝒜).

Theorem 1. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜) such thatℬ is the unique, up to isomorphism,

structure such that 𝒜( 𝒯−→ ∘ core−−→)𝜔ℬ, then ℬ ∼= core(𝒯 ,𝒜).

Proof. First, note that both ℬ, by definition, and core(𝒯 ,𝒜), by Proposition 5 are cores. There-

fore, as ℬ is finite, it suffices to show that there exists homomorphisms in both directions. Note

that core(𝒯 ,𝒜) is a model by Proposition 4. As ℬ is a universal model, [7], it follows that there

exists a homomorphism from ℬ into each model, including core(𝒯 ,𝒜). By Proposition 6 we

also have that core(𝒯 ,𝒜) is universal, which means also the other required homomorphism

must exist.

The authors of [22] show that the stable chase does not always yield a universal model for

existential rules, but it is unclear whether the same result holds for the restriction to ℰℒℋℐ . If

the stable chase for ℰℒℋℐ is universal, then Theorem 1 can be extended to the stable chase.



The core chase construction described in [7] uses multiple core computations. This makes it

unsuitable for implementation, as computing cores is hard in general [21]. The restricted chase

yields a core chase if the axioms are core-stratified [23], but there is no efficient algorithm for

determining the core-stratification order or even whether the axioms are core-stratified. Note

that the few core computations used in Definition 2 are very restricted and are thus not as hard:

our approach is one of the first efficient techniques for constructing the core chase. We note

that an effective procedure for ℰℒℋ was presented in [12], but the authors do not prove that

their construction results in the core chase.

5. SHACL Validation

We now consider the problem of SHACL validation in the presence of ℰℒℋℐ ontologies.

First we introduce the fragment of SHACL we consider, which we call semi-positive SHACL.

Like in [15], we follow the formalisation of SHACL in [17]. Let 𝑁𝑆 be an infinite set of shape

names, disjoint from 𝑁𝐼 , 𝑁𝐵 , 𝑁+
𝐶 and 𝑁+

𝑅 . A shape expression 𝜙 is built in the following way

𝜙 ::= 𝑐 | ¬𝑐 | 𝐴 | ¬𝐴 | 𝜙 ∧ 𝜙 | ∃𝐸.𝜙 | 𝑠,

for 𝑐 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 , 𝑠 ∈ 𝑁𝑆 and 𝐸 a regular path expression such that 𝐸 ::= 𝑟 | 𝐸 ∪ 𝐸 |
𝐸 ∘ 𝐸 | 𝐸*

, for 𝑟 ∈ 𝑁+
𝑅 , where "∪" is the standard union of relations, "∘" concatenation as

described in the preliminaries and "*" the Kleene star. A constraint is an expression of the form

𝑠 ← 𝜙, for 𝑠 ∈ 𝑁𝑆 and 𝜙 a shape expression. A shapes graph (𝒞,𝒢) is a pair consisting of

a set of constraints 𝒞 and a set of targets 𝒢. Targets are of the form 𝑠(𝑐), where 𝑠 ∈ 𝑁𝑆 and

𝑐 ∈ 𝑁𝐼 . Given a set of atoms 𝒜, a shape assignment is a set of shape atoms of the form 𝑠(𝑐), for

𝑠 ∈ 𝑁𝑆 , 𝑐 ∈ Δ𝒜
. Given a shape expressions 𝜙, a shape assignment 𝑆, and a set of atoms 𝒜,

define 𝜙𝒜,𝑆 ⊆ Δ𝒜
inductively as in Figure 2, where (𝑒, 𝑒′) ∈ 𝐸𝒜

if there exists 𝑤1 · . . . · 𝑤𝑛 in

the language defined by 𝐸 and {𝑤1(𝑒, 𝑒1), . . . , 𝑤𝑛(𝑒𝑛−1, 𝑒
′)} ⊆ 𝒜.

Just like in [15], we consider the least fixed point semantics for SHACL. We define an immediate

consequence operator 𝑇𝒜,𝒞 that maps shape assignments to shape assignments: 𝑇𝒜,𝒞(𝑆) :=
𝑆 ∪ {𝑠(𝑎) | 𝑠← 𝜙 ∈ 𝒞, 𝑎 ∈ (𝜙)𝒜,𝑆}. For a set of atoms 𝒜 and a shapes graph (𝒞,𝒢), we say

that𝒜 validates (𝒞,𝒢) when 𝒢 is contained in the least fixed point of 𝑇𝒜,𝒞 . In the presence of a

TBox 𝒯 , we define the semantics of validation using the core universal model. That is, we say

that (𝒯 ,𝒜) validates (𝒞,𝒢) in case core(𝒯 ,𝒜) validates (𝒞,𝒢).
Our goal is now to reduce validation in the presence of a TBox, to plain validation over a set

of atoms. The following normal form for SHACL constraints will facilitate this goal.

Definition 5. A SHACL constraint is in normal form if it has one of the following forms

(NC1) 𝑠← 𝑐 (NC2) 𝑠← ¬𝑐 (NC3) 𝑠← 𝐴
(NC4) 𝑠← ¬𝐴 (NC5) 𝑠← 𝑠′ ∧ 𝑠′′ (NC6) 𝑠← ∃𝑟.𝑠′,

where 𝑐 ∈ 𝑁𝐼 , 𝑟 ∈ 𝑁+
𝑅 , {𝑠, 𝑠′, 𝑠′′} ⊆ 𝑁𝑆 and 𝐴 ∈ 𝑁𝐶 .

Proposition 7. Each set of semi-positive SHACL constraints 𝒞 can be translated in time polynomial

in |𝒞|, into a set of semi-positive constraints 𝒞′ in normal form such that for all 𝒢 that do not use

the freshly introduced shape names, and all 𝒯 and 𝒜, we have that (𝒯 ,𝒜) validates (𝒞,𝒢) iff

(𝒯 ,𝒜) validates (𝒞′,𝒢).



Proof. With a similar construction as of Proposition 4.2 in [18], it is easy to see that each

constraint can be translated in polynomial time into the a normal form consisting of (NC1)

until (NC5) as above, and (NC6’) 𝑠 ← ∃𝐸.𝑠′. To normalise 𝑠 ← ∃𝐸.𝑠′, suppose ℳ =
(𝑄,Σ, 𝑞𝐼 ,Δ, 𝑞𝐹 ) is the nondeterministic finite automaton recognising 𝐸. Take fresh shape

names 𝑠𝑞 for each 𝑞 ∈ 𝑄 and add the following constraints 𝑠 ← 𝑠𝑞𝐼 ∧ 𝑠𝑞𝐼 , 𝑠𝑞 ← ∃𝑟.𝑠′𝑞 if

(𝑞, 𝑟, 𝑞′) ∈ Δ and 𝑠𝑞𝐹 ← 𝑠′ ∧ 𝑠′. Note that this automaton can be constructed in polynomial

time, which is a standard result in the literature, see for instance [24].

We are ready now to reduce validation to the case without a TBox. Given a TBox 𝒯 and

a set of atoms 𝒜, or more specifically, the succ𝒯 ,𝒜 that represents a universal core model of

(𝒯 ,𝒜). We transform a shapes graph (𝒞,𝒢) into a new shapes graph (𝒞𝒯 ,𝒜,𝒢) such that (𝒯 ,𝒜)
validates (𝒞,𝒢) iff 𝒜′

validates (𝒞𝒯 ,𝒜,𝒢), for some set of atoms 𝒜′
that can be easily obtained

from 𝒜 and the construction of succ𝒯 ,𝒜. Unlike the similar rewriting for DL-Liteℛ, the variant

we introduce here does not work for every set of atoms 𝒜: we can only guarantee soundness

and completeness if the set of atoms 𝒜 is such that succ𝒯 ,𝒜 represents the core universal model

of (𝒯 ,𝒜). We compromise the data independence, but in this way, we avoid the best case

exponentially of its predecessor [15].

We use a fresh concept name
̂︀𝐴 ∈ 𝑁𝐶 to decorate the outer layer of 𝒜+

𝒯 , and define 𝒜*
𝒯 :=

𝒜+
𝒯 ∪ { ̂︀𝐴(𝑐) | 𝑐 ∈ Δ𝒜+

𝒯 ∩𝑁𝐵}.The elements in our rewriting are triples (𝑡,𝑊,𝐻) ⊆ ℱ𝒯 ,𝒜 ×
𝒫({∃𝑟.𝑠 | 𝑟 ∈ 𝑁+

𝑅 , 𝑠 ∈ 𝑁𝑆})× 𝒫(𝑁𝑆): 𝑡 is a live type, 𝑊 a set of assumptions and 𝐻 a set of

shape names. The starting set 𝐼 of our rewriting is such that (𝑡,𝑊,𝐻) ∈ 𝐼 iff

• if ∃𝑟.𝑠′ ∈𝑊 , there exists 𝑠← ∃𝑟.𝑠′ ∈ 𝒞 and 𝑟 ∈ 𝜋2(𝑡), and

• 𝑠 ∈ 𝐻 iff there exists ∃𝑟.𝑠′ ∈𝑊 such that 𝑠← ∃𝑟.𝑠′ ∈ 𝒞.

Our rewriting algorithm adds shape names 𝑠 to the heads 𝐻 . Specifically, we update

(𝑡,𝑊,𝐻) ∈ 𝐼 , to (𝑡,𝑊,𝐻 ∪ {𝑠}) when any of the following holds:

1. 𝑠← 𝐴 ∈ 𝒞, 𝐴 ∈ 𝜋1(𝑡), 𝑠 ̸∈ 𝐻 , or

2. 𝑠← ¬𝐴 ∈ 𝒞, 𝐴 ̸∈ 𝜋1(𝑡), 𝑠 ̸∈ 𝐻 , or

3. 𝑠← ¬𝑐 ∈ 𝒞, 𝑠 ̸∈ 𝐻 , or

4. 𝑠← 𝑠1 ∧ 𝑠2 ∈ 𝒞, {𝑠1, 𝑠2} ⊆ 𝐻 , 𝑠 ̸∈ 𝐻 , or

5. 𝑠← ∃𝑟.𝑠1 ∈ 𝒞, and there exists (𝑡′,𝑊 ′, 𝐻 ′) ∈ 𝐼 such that, for some 𝑢 ∈ 𝑢with succ𝒯 ,𝒜(𝑡, 𝑢),
we have 𝑡′ = (inv(𝑢), 𝜋1(𝑡)), 𝑠1 ∈ 𝐻 ′

, 𝑟− ∈ 𝜋2(𝑡) and {𝑠 | ∃𝑟.𝑠 ∈𝑊 ′} ⊆ 𝐻 .

Let sat(𝐼) be the result of exhaustively adding shape names as above. The triples in sat(𝐼)
are then translated into the set of constraints 𝒞𝒯 ,𝒜 in the following way.

If (𝑡,𝑊,𝐻) ∈ sat(𝐼), then for each 𝑠 ∈ 𝐻 the following constraint is contained in 𝒞𝒯 ,𝒜

𝑠←
⋀︁

𝐴∈𝜋1(𝑡)

𝐴 ∧ ∃𝑟.
⋀︁

𝐵∈𝜋3(𝑡)

𝐵 ∧
⋀︁

∃𝑟.𝑠′∈𝑊
∃𝑟.𝑠′ ∧ ̂︀𝐴,

where 𝑟 ∈ 𝜋2(𝑡) is such that for all 𝑟′ ∈ 𝜋2(𝑡) we have 𝑟′ ∈ cl𝒯 (𝑟). Note that the existence of 𝑟
is guaranteed by Proposition 2.

This gives us the desired rewriting. Its proof of correctness is analogous to the one in [15].



Theorem 2. Given an ℰℒℋℐ knowledge base (𝒯 ,𝒜) and (𝒞,𝒢) a semi-positive SHACL shapes

graph. Then it holds that (𝒯 ,𝒜) validates (𝒞,𝒢) iff 𝒜*
𝒯 validates (𝒞𝒯 ,𝒜,𝒢).

Since we are taking the input 𝒜 into account, we do not have to consider all possible types

and 𝒞𝒯 is not best-case exponential. However, there are still ways to optimise the rewriting.

The first and simplest optimisation is to restrict the form of the starting sets even more, that

is, not all 𝑠 ∈ 𝑁𝑆 will ever interact with each other. So, let rel(𝑠) ⊆ 𝑁𝑆 be defined as the

smallest set such that 𝑠 ∈ rel(𝑠); if 𝑠′ ← 𝑠′′ ∧ 𝑠′′′ ∈ 𝒞 and {𝑠′, 𝑠′′, 𝑠′′′} ∩ rel(𝑠) ̸= {}, then

{𝑠′, 𝑠′′, 𝑠′′′} ∈ rel(𝑠); and if 𝑠′ ← ∃𝑟.𝑠′′ ∈ 𝒞 and {𝑠′, 𝑠′′} ∩ rel(𝑠) ̸= {}, then {𝑠′, 𝑠′′} ∈ rel(𝑠).
The restriction is then that (𝑡,𝑊,𝐻) is only considered to be in the starting set in case there

exists 𝑠 ∈ 𝑁𝑆 such that 𝐻 ⊆ rel(𝑠). This optimisation is mostly useful for sets of constraints

that relatively use a small amount of role names. Another more involved optimisation is based

on the close correspondence between the SHACL fragment we are considering and ℰℒℋℐ in

normalised form. We can translate the SHACL constraints into ℰℒℋℐ axioms, introducing for

each existing concept name a fresh concept name to denote the absence of this concept name

in succ𝒯 ,𝒜. A similar algorithm to the one in Section 3 will then decorate the good successor

configuration with all relevant shape names. We believe that the latter version may be better

suited for implementation.

However, all these optimisations cannot avoid ExpTime-complexity in the worst case. The

proof of the next claim is an easy generalisation of the one in [15]. To show PTime-completeness

in data complexity the rewriting can be made data independent as in [15].

Theorem 3. In the presence of ℰℒℋℐ TBoxes, SHACL validation is ExpTime-complete in combined

complexity and PTime-complete in data complexity. This holds also for positive constraints.

6. Conclusions and Outlook

In this paper, we introduced a new, more efficient representation of a core universal model. We

had shown in [15] that this can be done in a data-independent way; the construction there is for

DL-Liteℛ, but a data-independent computation for ℰℒℋℐ would not be harder than the one we

have presented here. Instead, by considering the exact configurations that appear in the data,

we have chosen to focus solely on computing the relevant parts, highly reducing the number of

good successor configurations and TBox subsumptions that need to be computed. Thus, this is

a first step towards an efficient implementation of the core chase.

We further focus on one of many application areas of this technique: we use the alternative

representation of a core universal model to reduce SHACL validation combined with ℰℒℋℐ
TBoxes to plain SHACL validation. Also here, we could take all types for a data-independent

rewriting, but restricting it to the live types allows us to avoid an exponential computation in

many cases, as not all combinations of types and assumptions need to be considered. This means

the proposed algorithm also brings us closer to implementing the combination of SHACL with

ontologies. We are confident that the proposed techniques can most likely be optimised further,

but leave this for future work. To keep the presentation simple we focused on semi-positive

SHACL in this paper, but we note that the rewriting presented in the last section can be extended

to SHACL with stratified negation following the ideas of [15].
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