
KomMKonLLM / KomMKonLLM Public

KomMKonLLM / HACKING.md

KomMKonLLM Open Source Release d4a769c · 3 months ago

99 lines (73 loc) · 5.56 KB

This document offers pointers for users who want to create interfaces to additional
LLMs or covering array generators.

If you have developed a new interface and think it would be useful for others, please do
not hesitate to create a pull request!

This section gives a high-level overview o the code and directory structure of this
project.

A Docker Compose file contained in the root folder ties together the infrastructure and
offers configuring options. In most cases, you do not need to modify any further code
to adjust the behavior of our tool.

Besides this file, the following sub-projects are contained in the folder:

meta-runner is the primary controller involved in coordinating the testing process.
It contains the overall testing logic as well as methods to generate synonyms for
sentences, construct covering arrays, translate them to concrete LLM queries, and
submit them to the model interface.

pyann-model-executor contains model interface implementations. It acts as a glue
layer between the runner and the actual LLMs, offering a unified interface.

Extending KomMKonLLM

Code Structure

Preview Code Blame

KomMKonLLM/HACKING.md at main · KomMKonLLM/KomMK... https://github.com/KomMKonLLM/KomMKonLLM/blob/main/HAC...

1 of 4 7/8/2025, 6:15 PM

ResultStore implements an interface to the underlying database and additionally
contains a JupyterLab installation used for the analysis of results.

t5-flask-app is a wrapper around a T5 LLM using pretraining by HuggingFace. It is
mostly obsolete, but may be interesting to developers who wish to quickly set up
an interface for a model offered by HuggingFace.

data is initially empty and later used to store the Postgres DBMS data files, i.e. the
actual database.

example contains example test sentences, generated synonyms and associated
covering arrays as well as the LLMs output. It primarily serves as supporting
documentation to ease the understanding of our approach.

All of our code is in Python (we use 3.12 and 3.13 internally, but any version above 3.8
will likely work). The subfolders listed above commonly contain a requirements.txt file
that lists dependencies as well as a Dockerfile (for those subprojects that are built as
custom Docker images).

In most circumstances, you do not need to create your own LLM interface. We offer an
adapter for Ollama, which is a wrapper around dozens of models; see the Configuration
section in the main README. If you wish to define your own interface nonetheless,
please follow the instructions below.

There are three steps involved in creating an adapter for a new LLM:

1. Create a subclass of ModelExecutor that allows you to query and update your LLM.

2. Update the models variable in pyann-model-executor/main.py .

3. If required, update docker-compose.yaml to start your LLM in a Docker container.

LLM interfaces are implemented in pyann-model-executor/models.py . The superclass for
such interfaces is ModelExecutor ; to add your own LLM interface, create a subclass that
inherits from this class and implement the query() , set_settings() and
get_settings() methods.

A very simple example is provided using our wrapper for T5, which you can copy and
modify for your purposes:

LLM interfaces

KomMKonLLM/HACKING.md at main · KomMKonLLM/KomMK... https://github.com/KomMKonLLM/KomMKonLLM/blob/main/HAC...

2 of 4 7/8/2025, 6:15 PM

Next, you will need to update the models variable in pyann-model-executor/main.py .
The keys in this dictionary are used when parsing the MODEL_UNDER_TEST environment
variable.

Finally, update docker-compose.yaml ; if required, you can add your LLM in its own
container here. You most likely want to update the MODEL_UNDER_TEST option of
meta_runner too to test your implementation right away.

Interfaces to CA generators are implemented in meta-runner/src/payload_generator/
ca_generator.py . Create a subclass of CaGenerator and implement at least its
__init__() and generate() method, optionally overriding the read() method to

modify how CA file contents are retrieved.

A basic skeleton for creating your own CA generator wrapper looks like this:

class T5Executor(ModelExecutor):
def __init__(self):

"""Set model parameters and default values."""
self.settings = {

'early_stopping': True,
'max_length': 50,
'num_beam': 2

 }
self.endpoint = getenv('MODEL_IP', default='t5:5069')

def query(self, prompt: str) -> str:
"""Query the model with the given string."""
params = self.settings.copy()
params['prompt'] = prompt
return requests.get(f'http://{self.endpoint}/query', params=params).

def set_settings(self, settings: dict) -> dict:
"""Update the model settings."""
self.settings = settings
return self.settings

def get_settings(self) -> dict:
"""Retrieve the current model settings."""
return self.settings

CA generators

KomMKonLLM/HACKING.md at main · KomMKonLLM/KomMK... https://github.com/KomMKonLLM/KomMKonLLM/blob/main/HAC...

3 of 4 7/8/2025, 6:15 PM

See the comments in ca_generator.py for further hints and code to copy and adjust.

Do not forget to add your generator in CaGenerator::get_generator() when you are
done!

class MyGenExecutor(CaGenerator):
def __init__(self, gen_path: Path):

self.gen_path = gen_path

def generate(self, synonyms: list[list[str]], strength: int) -> tuple[Path
"""Generate a CA and return its location and number of rows."""
cardinalities = CaGenerator.cardinalities(synonyms, as_str=True)
path = CaGenerator.ca_filename(synonyms, strength)
if not (path.is_file() and path.stat().st_size > len(synonyms)):

Only generate the CA if it does not exist yet
TODO Execute your CA generator here
return path, num_rows

else:
Otherwise just open the file and count the lines
return path, len([self.read(synonyms, strength)])

KomMKonLLM/HACKING.md at main · KomMKonLLM/KomMK... https://github.com/KomMKonLLM/KomMKonLLM/blob/main/HAC...

4 of 4 7/8/2025, 6:15 PM

