
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Communication and Energy Efficient Edge 

Artificial Intelligence Framework for 

Internet of Things 

Endbericht | Call 18 | Stipendium ID 6801 

Lizenz CC BY 



 

netidee Call 18 Endbericht Stipendium-ID 6801     

 

2 

Inhalt 
 

1 Introduction......................................................................................................................................... 3 

2 General ................................................................................................................................................. 3 

3 Results .................................................................................................................................................. 4 

4 Planned Follow‑up Activities ........................................................................................................... 5 

5 Suggestions for Continuation by Third Parties............................................................................. 5 

6 Bibliography  ....................................................................................................................................... 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

netidee Call 18 Endbericht Stipendium-ID 6801     

 

3 

 
  

1 Introduction 
The research is focused on developing communication and energy efficient Edge-AI 

framework to overcome the limitations of centralized learning to pave the way for 

futuristic applications enabled by widespread adoption of smart but resource-constrained 

IoT devices. The literature review conducted during this work led to the discovery of the 

most critical issue namely the inability to cater to the needs geographically distributed 

clients faced by the current proposed solutions which consequently led to the 

development of a novel federated learning framework termed pHFedKD (personalized 

Hierarchical Federated Learning via Knowledge Distillations) to address such limitations. 

This document encompasses and presents the general information regarding the research 

conducted during this project, outcome of the project along with the planned future 

research activities, and last but not the least the set of guidelines for the interested parties 

including academics and the likes for extending or utilizing our work. 

2 General  
The proliferation of IoT sensors have given rise to a new set of futuristic applications such 

smart cities, smart environmental and precision medicine. These constellations of smart 

devices scattered across the globe generate massive amounts of data and hold potential 

to addressing some of the most pressing issues of the contemporary times such as climate 

change. Although the advancements in IoT and AI present new opportunities at the same 

time they pose significant challenges to traditional centralized computing due to the share 

volumes of the data being generated at the edge of network. It puts a massive strain on the 

network to transfer this much amount of data. Additionally, transporting data from remote 

places to a centralized server for data analysis raises service concerns about privacy and 

latency. This mandates developing efficient Edge-AI systems for resource-constrained 

devices to mitigate these challenges. 

Federated learning (FL) allows distributed clients to collaboratively train a model without 

requiring them to share their private data. Each client is supposed to keep their data 

private instead only shares the weights of its locally trained model. After a few rounds of 

local training, clients share their updates with the global parameter server which 

aggregates these updates from the clients to generate the global model. FL works well in 

homogeneous settings in which clients’ data are sampled from the same distribution. 

However, its performance deteriorates significantly in the face of data heterogeneity or 

more formally known as non-IID problem. As a direct consequence of this, FL struggles to 

be as effective in large environments with a large number of geographically dispersed 
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clients. Moreover, frequent communication between the clients and single central server 

could incur huge communication costs. 

The core objective of this work was to develop a framework leveraging the entire spectrum 

of computing continuum which addresses the aforementioned challenges. The research 

question that we set out to find an answer for was “can we leverage the client 

heterogeneity to our advantage instead of merely treating it as a problem? “. The way we 

do is first by quantifying the heterogeneity (diversity) among clients and later utilizing that 

for segregating homogeneous (similar) clients into clusters. Subsequently, the complex 

task of learning a single global model is divided into smaller tasks by assigning each 

cluster to an edge server and learning cluster-specific edge models. Hence, we develop a 

framework, which leverages client heterogeneity to learn individual client, cluster, and 

global model simultaneously. 

 

3 Results 
We introduce a hierarchical federated learning framework called pHFedKD which 

addresses client heterogeneity, concept drift, and scalability in FL for decentralized 

environments with diverse client data distributions. The proposed framework combines 

dynamic clustering, multi-level hierarchical aggregation, and multi-teacher knowledge 

distillation to optimize performance of the client, cluster, and global models. 

Our key contributions made to the domain through this work are listed below:  

• We introduce federated geospatial clustering (FGC) based on a novel client affinity 

(CA) metric to quantify data and client similarity. This dynamic clustering method 

adapts to spatio-temporal client mobility and concept drift by reassigning clients 

during training.  

• We introduce a hierarchical federated learning framework which spans three 

computing continuum levels; client, edge, and cloud. At level 0, clients train local 

models using their private data. At level 1, edge server aggregate local models to 

generate cluster-specific models. At level 2, cloud server aggregate cluster models 

to yield the global model.  

• We introduce multi-teacher knowledge distillation to enable inter-cluster 

knowledge sharing and enhance global and edge models. This ensures that clusters 

are able to retain their unique characteristics while simultaneously benefiting from 

the shared global knowledge. 

We conduct through evaluations of our proposed framework using real-world CityScapes 

dataset for semantic segmentation in both static and dynamic settings and compare it to 
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the state-of-the-art baselines such as FedAvg, FedProx, and HierFavg. pHFedKD 

outperforms baselines under both static and dynamic conditions, achieving substantial 

gains in model accuracy and communication efficiency. More specifically, it achieves up to 

19% improvement in client-level accuracy and 24.7% in edge-level accuracy. Furthermore, 

it reduces communications costs up to 50% transmitting only lightweight logit vectors 

instead of the entire weight vectors. 

 

4 Planned Follow‑up Activities  
The finished work is currently submitted for publication and under review at the IEEE 

International Conference on Parallel and Distributed Processing Symposium (IEEE IPDPS). 

The developed framework was evaluated on an autonomous vehicle urban scene 

understanding use case; however, it can easily be extended to other domains. Validation 

of its effectiveness on additional use cases is ongoing. Currently, we are adapting the 

framework for an intelligent farming application focused on tracking animals in remote 

alpine regions. 

In parallel, the preparation of the dissertation is underway. The next planned steps 

include: 

• Submitting the complete draft for internal review and incorporating feedback. 

• Finalizing the dissertation and submitting it formally for evaluation. 

• Coordinating with the examination committee to schedule the defense. 

• Preparing for the oral defense through presentation rehearsals and potential Q&A 

simulations. 

These steps are aimed at completing the dissertation process and achieving a successful 

defense in the coming months. 

5 Suggestions for Continuation by Third Parties 
The proposed framework can be applied in diverse real-world applications such as 

autonomous systems, smart cities, and precision agriculture, where heterogeneity, 

mobility, and data privacy and real-time requirements are critical. Furthermore, pHFedKD 

offers potential for interoperability studies to explore integration with existing federated 

learning frameworks and edge computing infrastructures. 

Third parties could investigate incorporating advanced clustering methods, such as meta 

learning-driven adaptive clustering, to further optimize dynamic grouping. Additionally, 

integrating pHFedKD with privacy-preserving mechanisms, such as differential privacy or 

secure multi-party computation, could expand its applicability in domains with stringent 



 

netidee Call 18 Endbericht Stipendium-ID 6801     

 

6 

regulatory requirements, like healthcare or finance. Finally, pHFedKD can be studied 

alongside resource optimization techniques to explore trade-offs between computational 

cost and personalization, particularly in energy-constrained environments like IoT devices. 
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