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1​ Introduction 
 
All the objectives planned for the project have been successfully achieved. Table 1 provides an overview of 
the key project output and the goals. The target number of academic publications for excellent success has 
already been reached. Overall, work has been carried out according to plan. 
 
Table 1: Project KPIs Overview 

KPI Current State Goal 
Academic publications 8 Minimum: 3 

Ideally: 5 
Open-source software projects 6 3 
Blog posts 8 8 

 
 

 

2​ Project Description 
 

LEO Trek explores how modern distributed applications can be executed efficiently across the emerging 
Edge–Cloud–Space 3D Continuum. This continuum extends today’s Edge–Cloud computing model by 
adding Low Earth Orbit (LEO) satellites as an additional execution layer. LEO constellations introduce new 
opportunities for low-latency connectivity and in-orbit processing, but also add strong dynamics: nodes 
move, links appear and disappear, available bandwidth fluctuates, and resource constraints are more 
pronounced than in conventional cloud environments. These characteristics make it difficult to apply 
existing orchestration, scheduling, and cost optimization techniques, which typically assume stable 
networks and static infrastructure. 

The main objective of the project is to provide open, reusable building blocks that enable the design, 
evaluation, and optimization of serverless and AI-enabled workflows in this highly dynamic environment. 
In particular, LEO Trek aims to (i) make the 3D Continuum experimentally accessible through scalable 
simulation, (ii) develop scheduling and optimization mechanisms that respect platform, workload, and 
network Service Level Objectives (SLOs), and (iii) provide a platform that enables state management and 
hardware acceleration that are required by real applications deployed across heterogeneous layers. 

The primary target groups of LEO Trek are researchers and developers working on distributed systems, 
edge-cloud-native platforms, and serverless computing, as well as teams working on Earth observation 
analytics. The outputs are particularly relevant for users who need to evaluate orchestration strategies 
under mobility and network uncertainty, such as academic groups, platform engineers, and applied R&D 
teams. Since all results are released as open-source software, the project also explicitly targets third 
parties who want to reuse and extend the artifacts for their own research prototypes or industrial proofs of 
concept. 
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The project delivers a set of complementary results that collectively span the lifecycle, from 
experimentation to real-world execution. First, Stardust provides a scalable and extensible simulation 
environment for the 3D Continuum. It allows realistic evaluation of routing and orchestration algorithms 
under dynamic topologies, supports large mega-constellations, and offers a plugin mechanism to integrate 
custom logic, making it possible to explore ideas that would be difficult or costly to test in real satellite 
systems. Second, the project introduces scheduling and optimization mechanisms for serverless 
workflows. HyperDrive is an SLO-aware scheduler for the 3D Continuum that jointly considers resource 
capacity, workload requirements, and network conditions. By explicitly accounting for satellite mobility 
and operational constraints it enables placement decisions that remain effective despite changing 
connectivity. Third, workflow-level resource optimization is addressed by ChunkFunc. ChunkFunc assigns 
resource profiles to individual functions based on their input size, improving the cost–performance 
trade-off of serverless workflows. This enables more reliable SLO compliance while reducing unnecessary 
overprovisioning. Fourth, the project tackles state management in distributed serverless workflows 
through Databelt. Databelt continuously places and propagates state along the expected execution path, 
anticipating movement in the 3D Continuum. Fusing state access for co-located functions significantly 
reduces remote storage operations and workflow latency. 

Finally, Gaia provides a practical approach to hardware acceleration for serverless AI. Gaia automates CPU 
and GPU selection, moving it from manual developer decisions to the platform by combining static code 
analysis with runtime telemetry. This ensures that performance SLOs are met while avoiding the inefficient 
use of accelerators. Overall, LEO Trek delivers an open-source toolkit for understanding and optimizing 
serverless execution in the Edge–Cloud–Space continuum. The results support reproducible 
experimentation, enable new orchestration and optimization techniques, and provide reusable system 
components for future research and practical deployments. 

 

 

3​ Status of Work Packages 
 
The work packages are proceeding according to plan. Table 2 lists the academic publications made over 
the first half of the project, and Table 3 lists the open-source software projects. 
 
Table 2: LEO Trek Academic Publications 
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No. AP Publication 
1 AP2 T. Pusztai, J. Hisberger, C. Marcelino, and S. Nastic, “Stardust: A Scalable and Extensible 

Simulator for the 3D Continuum,” in 2025 IEEE International Conference on Edge 
Computing and Communications (EDGE), 2025. 

2 AP3 T. Pusztai, C. Marcelino, and S. Nastic, “HyperDrive: Scheduling Serverless Functions in the 
Edge-Cloud-Space 3D Continuum,” in 2024 IEEE/ACM Symposium on Edge Computing 
(SEC), 2024. 



 

 

Table 3: LEO Trek Published Open-source Software 

No. AP Software URL 
1 AP2 Stardust 3D Continuum Simulator https://github.com/polaris-slo-cloud/

stardust  
2 AP3 HyperDrive Serverless Scheduler https://github.com/polaris-slo-cloud/

hyper-drive  
3 AP3 ChunkFunc Serverless Workflow Optimizer https://github.com/polaris-slo-cloud/

chunk-func  
4 AP4 FedCCL Federated Learning Framework https://github.com/polaris-slo-cloud/f

edccl  
5 AP4 Databelt Serverless Function State Management https://github.com/polaris-slo-cloud/

databelt 
6 AP4 Gaia Hybrid Serverless Runtime for AI Workloads https://github.com/polaris-slo-cloud/

gaia 
 
 
 
3.1​ AP 1 – Project Management 

This work package has been carried out and concluded according to plan. The team has shown high 
ambition and produced substantial results, as detailed in the subsequent AP results. There were no 
noteworthy issues or delays. The project costs adhered to the plan. ​
​
There has been a change to the team: Thomas Pusztai’s contract at the TU Wien expired on August 31, 
2025, and thus, he had to leave the project team. Since he had to use up his remaining vacation time, his 
last day of work was July 30. His duties have been taken over by Cynthia Marcelino and Stefan Nastic. 
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3 AP3 T. Pusztai and S. Nastic, “ChunkFunc: Dynamic SLO-aware Configuration of Serverless 
Functions,” IEEE Transactions on Parallel and Distributed Systems, 2025. 

4 AP4 M. Helcig and S. Nastic, “FedCCL: Federated Clustered Continual Learning Framework for 
Privacy-focused Energy Forecasting,” in The 9th IEEE International Conference on Fog and 
Edge Computing (ICFEC), 2025. 

5 AP4 C. Marcelino, S. Gollhofer-Berger, T. Pusztai, and S. Nastic, “Cosmos: A Cost Model for 
Serverless Workflows in the 3D Compute Continuum,” in 2025 IEEE International 
Conference on Smart Computing (SMARTCOMP), 2025. 

6 AP4 C. Marcelino, L. Guelmino, T. Pusztai, and S. Nastic, “Databelt: A Continuous Data Path for 
Serverless Workflows in the 3D Compute Continuum”. Journal of Systems Architecture, 
2025. 

7 AP4 C. Marcelino, T. Pusztai, and S. Nastic, “Roadrunner: Accelerating Data Delivery to 
WebAssembly-based Serverless Functions”. In Proceedings of the 24th International 
Middleware Conference (Middleware 25), 2025. 

8 AP4 M. Reisecker, C. Marcelino, T. Pusztai, and S. Nastic, “Gaia: Hybrid Hardware Acceleration 
for Serverless AI in the 3D​ Compute Continuum”. In Proceedings of the IEEE/ACM 12th 
International Conference on Big Data Computing, Applications and Technologies (BDCAT 25), 
2025. 

https://github.com/polaris-slo-cloud/stardust
https://github.com/polaris-slo-cloud/stardust
https://github.com/polaris-slo-cloud/hyper-drive
https://github.com/polaris-slo-cloud/hyper-drive
https://github.com/polaris-slo-cloud/chunk-func
https://github.com/polaris-slo-cloud/chunk-func
https://github.com/polaris-slo-cloud/fedccl
https://github.com/polaris-slo-cloud/fedccl
https://github.com/polaris-slo-cloud/databelt
https://github.com/polaris-slo-cloud/databelt
https://github.com/polaris-slo-cloud/gaia
https://github.com/polaris-slo-cloud/gaia


 

 
3.2​ AP 2 – Stardust Simulator 
This work package has been carried out and concluded according to plan. It resulted in one academic 
publication and one open-source software artifact. 

 
3.2.1 Stardust: A Scalable and Extensible Simulator for the 3D Continuum 

Low Earth Orbit (LEO) mega constellations provide low-latency communication between LEO and 
terrestrial nodes and among terrestrial nodes, extending the Edge-Cloud Continuum into an 
Edge-Cloud-Space 3D Continuum. Developing orchestration services and applications for the 3D 
Continuum, such as RapidREC, requires realistic simulations of the highly dynamic network conditions and 
node locations inherent to this environment. Unfortunately, existing simulators only allow for relatively 
small constellations to be simulated without scaling to a large number of host machines. Stardust is a 
scalable and extensible open-source simulator for the 3D Continuum. Our main contributions are: 
 

●​ Stardust, a scalable and extensible next-generation simulator for the 3D Continuum with support for 
simulating LEO-, Cloud-, and Edge nodes in a scalable manner. Stardust enables experiments for 
evaluating networking and orchestration algorithms for the 3D Continuum. It supports simulating 
mega constellations three times the size of the currently largest constellation, with almost 7k 
satellites on a single machine. 

●​ A dynamic routing mechanism that enables experimentation with different routing mechanisms by 
making the ISL routing protocol and the network path computation changeable. This allows, e.g., 
changing the default +Grid ISL routing to a different protocol or to introduce caching or hypergraph 
algorithms as a replacement for Dijkstra's algorithm to calculate node-to-node network paths. 

●​ SimPlugin, a plugin mechanism that serves as the integration point for custom logic that Stardust 
should execute at every step of the simulation. A SimPlugin has access to the complete infrastructure 
state and, thus, allows integrating, e.g., orchestration algorithms/software that should be evaluated 
using Stardust. 

 

3.3​ AP 3 - LEO Trek Scheduler 
This work package has been carried out and concluded according to plan. It resulted in the publication of 
two academic papers and two software artifacts. 
 
3.3.1 HyperDrive – Serverless Workflow Scheduler for the 3D Continuum 
 
HyperDrive is a platform and network Service Level Objective-aware scheduler for serverless functions in 
the 3D continuum. The 3D continuum expands the Edge-Cloud continuum to include low earth orbit (LEO) 
satellites. These satellites have enormously grown in number in the recent years and are projected to 
provide valuable compute resources, especially for Earth Observation (EO) data from satellites by avoiding 
unnecessary downlinking of the massive amounts of data. Satellite EO data can be used to survey the 
region around an accident to assess the state of the road network, predict congestion, and devise a plan 
for faster recovery. The contributions of HyperDrive include: 
 

●​ A novel Serverless Platform that introduces novel components and mechanisms tailored to the 
unique characteristics of the 3D Continuum. HyperDrive enables functions to be seamlessly 
executed anywhere in the 3D Continuum, optimizing performance and reliability. 
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●​ A Serverless scheduler for the 3D Continuum that considers constraints such as resource capacity, 

application SLO requirements, and network load to minimize the end-to-end Serverless workflow 
latency. The HyperDrive scheduler, also considers satellite position and thermal conditions to 
enable function scheduling in the 3D Continuum. By considering edge, cloud, and space 
conditions, HyperDrive executes functions that meet every SLO requirement in the 3D Computing 
Continuum. HyperDrive achieves 71% lower end-to-end (E2E) network latency than the next best 
baseline approach. 

 
The HyperDrive scheduler is designed to address the challenges that arise in the placement of serverless 
functions in the 3D Continuum using an optimization problem (see academic paper for this) and using a 
Multi Criteria Decision Making (MCDM) approach. The MCDM approach considers the vicinity of candidate 
nodes to the node of the previous function and source data, the resources of the candidate node, the 
network SLOs, and the maximum allowed operating temperature of the candidate node, if it is a satellite. 
 
3.3.2 ChunkFunc – SLO- and Input-aware Resource Optimizer for Serverless Workflows 
 
ChunkFunc is a resource optimizer for serverless workflows. It assigns resource profiles to a serverless 
workflow’s functions to ensure that the response time Service Level Objective (SLO) of the workflow is met, 
while minimizing costs. Unlike much of the state-of-the-art, ChunkFunc considers the size of the input data 
of a function when assigning resources. This ensures SLO compliance when the input is larger than average 
and saves costs when the input is smaller than average. This approach benefits applications with highly 
diverse input sizes, such as traffic analysis systems. During rush hour, the input to a periodically executed 
accident detection workflow is larger than average and during night, the input is smaller than average. 
ChunkFunc’s contributions include: 
 

●​ An SLO- and input data size-aware function performance model for determining optimized 
configurations in serverless workflows, depending on the input data size. 

●​ ChunkFunc Profiler, which automatically builds performance models for serverless functions and 
workflows based on typical input data sizes. Profiling is automatic, users only deploy a function 
and specify typical input data. A novel, auto-tuned Bayesian Optimization approach reduces the 
profiling costs by up to 90% compared to exhaustive profiling and ensures high accuracy of the 
results. 

●​ ChunkFunc Workflow Optimizer, which leverages various heuristics to dynamically adapt the 
resource configuration of functions in a workflow to meet a performance-based SLO (e.g., response 
time), while minimizing cost. Depending on the workflow it increases SLO adherence by a factor of 
1.12 to 2.0 and reduces costs by up to 53% The Workflow Optimizer is extensible with arbitrary 
performance-based SLOs. 
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Figure 1: Overview of the ChunkFunc System and Lifecycle of a Serverless Workflow. 

 

The ChunkFunc framework consists of two major components: The Profiler and the Workflow Optimizer. 
Figure 1 presents an overview of ChunkFunc and the lifecycle of a serverless workflow within the system. 
Upon their deployment, serverless functions are automatically picked up by the ChunkFunc Profiler. It 
deploys function instances using various resource configurations to execute profiling runs with their 
typical input data sizes, without any user interaction. To reduce the number of profiling runs, while 
maintaining a high accuracy of the results, the choice of resource configurations is guided by Bayesian 
Optimization. Our BO Dynamic Hyperparameter Selection picks the hyperparameter that yields the most 
accurate results for a particular function type and input size combination. Finally, the input-specific 
performance profiles are leveraged by the ChunkFunc Workflow Optimizer, which provides a suitable 
resource profile, to meet the workflow’s SLO and minimize cost, to the serverless orchestrator prior to 
invoking a function. 

 

3.4​ AP 4 - LEO Trek Platform 
 
This work package has been carried out and concluded according to plan. It resulted in the publication of 
five academic papers and two software artifacts. 
 
3.4.1 FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy 
 
Privacy-preserving distributed model training is crucial for modern machine learning applications, yet 
existing Federated Learning approaches struggle with heterogeneous data distributions and varying 
computational capabilities. Traditional solutions either treat all participants uniformly or require costly 
dynamic clustering during training, leading to reduced efficiency and delayed model specialization. 
FedCCL (Federated Clustered Continual Learning) is a framework that addresses these challenges through 
a combination of pre-training clustering and asynchronous Federated Learning. Unlike most of the existing 
approaches that perform clustering during or after training [1] [2], FedCCL employs DBSCAN clustering 
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based on static characteristics before training begins. This approach enables immediate model 
specialization while reducing coordination overhead. Furthermore, participants can belong to multiple  
 
clusters simultaneously, facilitating more nuanced knowledge sharing than strict partitioning approaches 
[3]. FedCCL's main contributions include: 
 

●​ FedCCL Framework: A Federated Learning framework that integrates clustered pre-training with an 
enhanced asynchronous FedAvg algorithm. The framework operates through a two-phase 
approach, initially clustering clients based on their inherent system properties before training, 
followed by client-driven updates with model locking during aggregation. Mitigating the 
performance degradation typically seen in asynchronous Federated Learning with heterogeneous 
data while maintaining reduced overhead. 

●​ FedCCL Predict & Evolve: Through our system property-based clustering approach, FedCCL creates 
a framework that provides a specialized model for newly joining clients without requiring prior 
exposure to their specific data distributions. In the Predict phase, new clients can immediately 
benefit from these highly specialized models to generate predictions. As clients begin contributing 
their own data, they enter the Evolve phase, where they participate in training and refining 
cluster-specific models. Our evaluation demonstrates this capability through robust generalization 
metrics, where models achieve nearly identical performance levels for both training and 
independent populations, with mean error rates showing minimal degradation of only 0.14 
percentage points for new installations. 

 
3.4.2 Cosmos: A Cost Model for Serverless Workflows in the 3D Compute Continuum 
 
To allow evaluating costs for serverless deployments in the 3D (Edge-Cloud-Space) Continuum efficiently, 
Cosmos constitutes a novel cost- and performance-cost-tradeoff model for serverless workflows that 
identifies key factors that affect cost changes across different workloads and cloud providers. Common 
approaches for serverless cost estimation include: (a) Predictions [4, 5, 6] use models, such as ML and 
math models to estimate costs based on historical execution data. This enables the estimation and 
analysis of costs without executing or even deploying a workflow. However, these high-level predictions 
often fail to provide detailed cost breakdowns or to identify the main drivers of higher expenses. (b) 
Simulations [7, 8, 9] enable users to explore how costs behave under different parameter configurations. 
They offer valuable insights into performance and expenses across various workload patterns, highlighting 
important trade-offs. However, existing simulation tools often lack fine-grained parameters to identify 
which aspects contribute to higher costs. 
 
Since current cost models are not detailed enough for precise performance-cost tradeoff decisions, users 
often err on the side of caution and incur higher costs to ensure performance. The Cosmos cost model 
enables the building of intelligent frameworks to optimize serverless costs and maximize performance. 
Our main contributions include: 
 

●​ Cosmos: A cost and a performance-cost tradeoff model for serverless workflows that incorporates 
the heterogeneity and dynamic characteristics of the 3D Continuum. Cosmos isolates the main 
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cost drivers while accounting for their interdependencies, providing an understanding of how 
different  
 
 
factors impact execution and cost, e.g., resource constraints, workload characteristics, 
communication overhead, and dynamic pricing. 

●​ A cost taxonomy that classifies the main cost drivers, enabling their identification among 
invocation, compute, data transfer, state management, and BaaS. This provides insights into 
specific cost drivers for serverless workflows across the different layers of the 3D Continuum. 

 
 

​
Figure 2: Serverless workflow costs drivers, highlighting key cost drivers: Invocation, Compute, Data Transfer, and State Management 

(partial view). 

 

3.4.3 Databelt: A Continuous Data Path for Serverless Workflows in the 3D Continuum 
 
LEO constellations extend the Edge–Cloud Continuum into an Edge–Cloud–Space 3D Continuum, where 
nodes move, links appear and vanish, and latency/bandwidth fluctuate constantly. Traditional serverless 
workflows assume stable networks and centralized storage, which quickly become a bottleneck when 
functions span satellites, the edge, and the cloud. Databelt is our state-aware serverless model and system 
that continuously places, propagates, and fuses function state along the workflow’s path, anticipating 
orbital movement and meeting application SLOs. Our key contributions are: 
 

●​ Databelt: A novel state-aware serverless model and architecture that enables state placement in 
the dynamic and heterogeneous environments of the 3D Continuum. Databelt allows serverless 
functions to move the data in orbit closer to the target function, and place functions within a 
workflow on nearby nodes, reducing workflow latency while adhering to specific environmental 
conditions of the 3D Compute Continuum; 

●​ A function state propagation mechanism that leverages node position, including edge, cloud, and 
satellite, to identify the neighbor nodes and propagate the state to specific nodes within the 
execution range while complying with SLO requirements. 

●​ A function state fusion mechanism to avoid multiple state retrievals for functions that share the 
same serverless runtime, thus minimizing storage operations to a constant request amount instead 
of a linear increase and consequently reducing latency. 
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Fig 3 shows Databelt’s execution model that proceeds in three lightweight phases. When a workflow stage 
starts, Databelt first identifies the live topology (i.e., nodes, links, and their latency/bandwidth windows),  
 
excluding nodes that are about to leave the communication range. It then computes a shortest 
propagation path, reverses it to prioritize nodes closer to the eventual destination, and selects the first 
candidate that satisfies a maximum migration time bound derived from data size and available bandwidth.  
 

                                                                                           Figure 3: Databelt Architecture 
 

Finally, it offloads state to that target; if the node is temporarily unreachable, Databelt safely falls back to 
the current executor and re-evaluates on the next step. In parallel, when several functions are co-located in  
one sandbox, a small middleware bundles their state reads and writes and serves them from local storage  
whenever possible. Access control remains strict via immutable, per-invocation Databelt State Keys, which 
allow each function to retrieve only the state it is authorized to access. 
 
3.4.4 Gaia: Hybrid Hardware Acceleration for Serverless AI in the 3D Compute Continuum 
 
Gaia addresses a central limitation of current serverless platforms for AI: hardware acceleration is still 
largely treated as a manual configuration choice instead of a first-class platform concern. As AI workloads 
move across heterogeneous environments in the 3D Compute Continuum, from edge devices and cloud 
datacenters to Low Earth Orbit satellites, they increasingly rely on GPUs to satisfy strict latency and 
throughput SLOs. Contemporary approaches either require developers to statically decide whether a 
function should run on CPU or GPU, or they perform a single device selection based on a snapshot of 
conditions. In dynamic settings with workload drift, fluctuating resource availability, and mobility effects 
such as satellite handovers, these one-time decisions break down and lead either to SLO violations or to 
inefficient, cost-intensive GPU usage. 
Gaia introduces a GPU-as-a-service model and architecture that shifts device selection from developers to 
the platform and couples static analysis with continuous runtime adaptation. Conceptually, Gaia provides 
two complementary mechanisms. The Execution Mode Identifier performs a static inspection of the 
function code at deployment time. It parses the source into an abstract syntax tree, detects deep learning 
framework imports such as PyTorch and TensorFlow, identifies explicit GPU calls, and characterizes tensor 
operations to estimate computational intensity. Based on this analysis, it assigns one of four execution 
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modes: cpu, cpu_preferred, gpu_preferred, or gpu, and embeds this classification, along with its rationale, 
into the function manifest. This allows the platform to schedule functions onto CPU or GPU-capable nodes 
without requiring code changes or explicit hardware annotations from developers. 
 
Gaia architecture, shown in Fig. 4, is organized into three planes: user, control, and data. In the user plane, 
the Static Code Analyzer classifies functions and annotates the manifest with execution hints. In the 
control plane, a coordinator performs dynamic runtime management, closing the loop with telemetry to 
enable safe and seamless mode switches. In the data plane, the function code and runtime execute, 
interfacing with the underlying hosting stack to utilize proper hardware acceleration, such as CPU or GPU 
backends, as required. 

                                                                                          Figure 4: Gaia Architecture 
 

3.5​ AP 5 - Documentation & Dissemination 

This work package has been carried out and concluded according to plan. Every software artifact includes 
documentation in its open-source repository. Additionally, each repository is accompanied by an academic 
publication. 

 

4​ Implementation of Funding Conditions 
 
No special conditions were defined for this project. 
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5​ Project End Results  

1 Projektzwischenbericht CC BY 4.0  netidee.at/leo-trek 

2 Projektendbericht CC BY 4.0  netidee.at/leo-trek 

3 Paper – Stardust: A Scalable and Extensible 
Simulator for the 3D Continuum 

CC BY 4.0  netidee.at/leo-trek/stardust-scala
ble-and-extensible-simulator-3d-
continuum &​
https://arxiv.org/abs/2506.01513 

4 Paper – HyperDrive: Scheduling Serverless 
Functions in the Edge-Cloud-Space 3D 
Continuum 

CC BY 4.0 netidee.at/leo-trek & 
https://doi.org/10.1109/SEC62691
.2024.00028 

5 Paper – ChunkFunc: Dynamic SLO-Aware 
Configuration of Serverless Functions 

 

CC BY 4.0 netidee.at/leo-trek/chunkfunc-ser
verless-workflow-resource-optimi
zer & 

https://ieeexplore.ieee.org/iel8/7
1/4359390/10959103.pdf 

6 Paper – FedCCL: Federated Clustered 
Continual Learning Framework for 
Privacy-focused Energy Forecasting 

CC BY 4.0  netidee.at/leo-trek & 
https://doi.org/10.1109/ICFEC656
99.2025.00012  

7 Paper – Cosmos: A Cost Model for Serverless 
Workflows in the 3D Compute Continuum 

CC BY 4.0 netidee.at/leo-trek/cosmos-cost-
model-serverless-workflows-3d-c
ompute-continuum & 

https://arxiv.org/pdf/2504.20189 

8 Paper – Databelt: A Continuous Data Path 
for Serverless Workflows in the 3D Compute 
Continuum 

CC BY 4.0 netidee.at/leo-trek/databelt-conti
nuous-data-path-serverless-work
flows-3d-continuum &  

https://doi.org/10.1016/j.sysarc.2
025.103577 

9 Paper – Roadrunner: Accelerating Data 
Delivery to WebAssembly-based Serverless 
Functions 

CC BY 4.0 netidee.at/leo-trek & 

https://dl.acm.org/doi/10.1145/37
21462.3770777 

10 Paper – Gaia: Hybrid Hardware Acceleration 
for Serverless AI in the 3D    Compute 
Continuum 

CC BY 4.0 netidee.at/leo-trek/gaia-hybrid-h
ardware-acceleration-serverless-
ai-3d-compute-continuum & 
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https://doi.org/10.1109/SEC62691.2024.00028
https://ieeexplore.ieee.org/iel8/71/4359390/10959103.pdf
https://ieeexplore.ieee.org/iel8/71/4359390/10959103.pdf
https://doi.org/10.1109/ICFEC65699.2025.00012
https://doi.org/10.1109/ICFEC65699.2025.00012
https://arxiv.org/pdf/2504.20189
https://doi.org/10.1016/j.sysarc.2025.103577
https://doi.org/10.1016/j.sysarc.2025.103577
https://dl.acm.org/doi/10.1145/3721462.3770777
https://dl.acm.org/doi/10.1145/3721462.3770777


 

https://doi.org/10.1145/3773276.3
774299 

11 SW – Stardust 3D Continuum Simulator Apache 2.0 netidee.at/leo-trek/stardust-scala
ble-and-extensible-simulator-3d-
continuum & 
https://github.com/polaris-slo-clo
ud/stardust-go 

12 SW – HyperDrive Serverless Scheduler Apache 2.0 netidee.at/leo-trek & 
https://github.com/polaris-slo-cl
oud/hyper-drive  

13 SW – ChunkFunc Serverless Workflow 
Optimizer 

Apache 2.0 netidee.at/leo-trek/chunkfunc-ser
verless-workflow-resource-optimi
zer & 
https://github.com/polaris-slo-clo
ud/chunk-func/ 

14 SW – FedCCL Federated Learning 
Framework 

Apache 2.0 netidee.at/leo-trek &  

https://github.com/polaris-slo-clo
ud/fedccl 

15 SW – Databelt Serverless Function State 
Management 

Apache 2.0 netidee.at/leo-trek/databelt-conti
nuous-data-path-serverless-work
flows-3d-continuum & 
https://github.com/polaris-slo-clo
ud/databelt/ 

16 SW – Gaia Hybrid Serverless Runtime for AI 
Workloads 

 

 

 

Apache 2.0 netidee.at/leo-trek/gaia-hybrid-h
ardware-acceleration-serverless-
ai-3d-compute-continuum &  

https://github.com/polaris-slo-clo
ud/gaia 

17 Entwickler_innen-DOKUMENTATION  CC BY  

Apache 2.0 

netidee.at/leo-trek/leo-trek & 

https://github.com/polaris-slo-clo
ud/stardust 

https://github.com/polaris-slo-clo
ud/hyper-drive 

https://github.com/polaris-slo-clo
ud/chunk-func 

https://github.com/polaris-slo-clo
ud/fedccl 
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https://github.com/polaris-slo-clo
ud/databelt 

https://github.com/polaris-slo-clo
ud/gaia 

18 Anwender_innen-DOKUMENTATION CC BY  

Apache 2.0 

netidee.at/leo-trek/leo-trek & 

https://github.com/polaris-slo-clo
ud/stardust 

https://github.com/polaris-slo-clo
ud/hyper-drive 

https://github.com/polaris-slo-clo
ud/chunk-func 

https://github.com/polaris-slo-clo
ud/fedccl 

https://github.com/polaris-slo-clo
ud/databelt 

https://github.com/polaris-slo-clo
ud/gaia 

19 Dokumentation Externkommunikation zur 

Erreichung Sichtbarkeit/Nachhaltigkeit (als 
Teil des Endberichtes) 

CC BY  netidee.at/leo-trek/leo-trek 

20 Veröffentlichungsfähiger Einseiter / 

Zusammenfassung 

CC BY netidee.at/leo-trek/ 

 

6​ Exploitation of the Project Results in Practice 
 

The project results are directly applicable in research and applied development. All software artifacts are 
released as open source and can be used to evaluate, design, and optimize serverless workflows in 
dynamic Edge–Cloud–Space environments. In particular, Stardust enables realistic experimentation 
without access to real satellite infrastructure, while HyperDrive and ChunkFunc support improved latency, 
cost efficiency, and SLO compliance on heterogeneous platforms. 

In practice, Databelt and Gaia address key deployment challenges related to state management and 
hardware acceleration in distributed serverless systems. Beyond academic use, the results already serve as 
a technical foundation for applied research and innovation activities, including the Starbase startup 
initiative, where selected components are being adapted for real-world Earth observation and distributed 
AI use cases. 
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7​ Dedicated Project Website 
 
There is no dedicated project website. 
 
 

8​ Dissemination and Networking 
 
All of LEO Trek’s innovations were published in academic papers. Most of them (4 out of 5) were conference 
papers and were presented to the audience at the respective conferences. This has sparked conversations 
with the attendees and plans for a Horizon Europe research project in the near future. 
 
Furthermore, the project has resulted in a business idea for a startup company, Starbase, which has been 
accepted into the TU Wien i2c incubator program. 
 

9​ Planned Activities After the End of the Netidee Project 
 

After the conclusion of the netidee project, several follow-up activities are planned to ensure sustainability 
and further impact of the results. All developed software artifacts will continue to be maintained as 
open-source projects, including bug fixes, documentation improvements, and compatibility updates with 
evolving serverless platforms. 

The project results form the foundation for ongoing and future scientific work. The developed models, 
simulators, and systems will be extended and evaluated in larger-scale and longer-term experiments, 
including additional workload classes, hardware accelerators, and emerging Edge–Cloud–Space use case 
scenarios such as Serverless Compound AI. Several follow-up publications are planned, building on the 
existing results and addressing open research challenges identified during the project. 

 

10​ Suggestions for Further Development by Third Parties 
The project results are designed to be modular, extensible, and reusable, offering multiple entry points for 
further development by third parties. Researchers can build upon the Stardust simulator to evaluate new 
routing, orchestration, or scheduling algorithms for dynamic and heterogeneous environments, or to 
extend the simulator with additional node types, mobility models, or network characteristics. 

Developers and platform providers can reuse and extend open-source components, such as HyperDrive, 
ChunkFunc, Databelt, and Gaia, to integrate advanced scheduling, cost optimization, state management, 
or hardware acceleration mechanisms into existing serverless platforms. The provided documentation and 
system abstractions enable straightforward adaptation to alternative infrastructures, cloud providers, or 
edge environments. 
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Finally, practitioners and industry partners can leverage the project results as a reference architecture for 
designing serverless and AI-enabled systems in distributed and resource-constrained settings. Potential 
further developments include tighter integration with commercial cloud services, enhanced security and 
trust mechanisms, and domain-specific optimizations for application areas such as mobility, energy 
systems, smart cities, or satellite-based data analytics. 
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