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 a b s t r a c t

SHACL and OWL are two prominent W3C standards for managing RDF data. These languages 
share many features, but they have one fundamental difference: OWL, designed for inferring facts 
from incomplete data, makes the open-world assumption, whereas SHACL is a constraint language 
that treats the data as complete and must be validated under the closed-world assumption. The 
combination of both formalisms is very appealing and has been called for, but their semantic gap 
is a major challenge, semantically and computationally. In this paper, we advocate a semantics 
for SHACL validation in the presence of ontologies based on core universal models. We provide a 
technique for constructing these models for ontologies in the rich data-tractable description logic 
Horn-. Furthermore, we use a finite representation of this model to develop a rewriting 
technique that reduces SHACL validation in the presence of ontologies to standard validation. 
Finally, we study the complexity of SHACL validation in the presence of ontologies, and show 
that even very simple ontologies make the problem ExpTime-complete, and PTime-complete in 
data complexity.

1.  Introduction

The Shape Constraint Language (SHACL) [1] and Web Ontology Language (OWL) [2] are two prominent W3C standards for 
managing RDF data, a graph-based data model of the Web [3]. These standards are based on fundamentally different assumptions 
and designed to be complementary. OWL was standardised shortly after RDF, with the key aim of enhancing RDF datasets with 
domain knowledge that enables the inference of missing facts from potentially incomplete data graphs. OWL and its profiles are 
based on Description Logics (DLs) [4] and, like other classical logics, make the open-world assumption (OWA), which intuitively means 
that the data only presents an incomplete description of the domain of interest: it asserts facts that are known to be true, but does 
not rule out that additional facts may also be true, as long as they are consistent with the current world description. OWL has been 
adopted in a wide range of applications over the years, and thousands of OWL ontologies have been developed. SHACL, in contrast, 
was created for a different purpose: to describe and validate constraints on datasets. The main task of interest is validation of a given 
a set of constraints paired with a selection of target nodes or concepts from a given graph. Unlike OWL, SHACL operates under the 
closed-world assumption (CWA): it assumes that the given data graph is complete, and validators evaluate the constraints over the 
input graph as is.

A natural question is how to do validation in the presence of both OWL ontologies and SHACL constraints. That is, if 
we have a possibly incomplete graph and ontological knowledge that implies additional facts, can we validate given SHACL
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$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\mathit {can}(\T ,\A )$


$(\T ,\A )$


$\mathcal {ALCHIQ}$


$\protect \mathcal  {ALCHIQ}$


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\G $


$(\T ,\A )$


$\G $


$\mathit {can}(\T ,\A )$


$\G $


$\mathcal {ALCHIQ}$


$\I $


$\I $


$\I $


$\A $


$\B \subseteq \A $


$h$


$\A $


$\B $


$\B $


$h$


$\B $


$\A \xrightarrow {\core } \B $


\begin {align*}X = \{\powner (\linda ), \bird (\blu ),\haswp (\linda ,&\blu ), \hasp (\linda ,\blu ),\\ & \haswp (\linda ,b), \hasp (\linda ,b), \hasp (\linda ,c)\}\end {align*}


$b$


$c$


$\blanks $


$\{\linda ,\blu \} \subseteq \NI $


$X$


$X$


$X$


$\linda $


$\blu $


$b$


$c$


$h: X \rightarrow X$


$h(\linda ) = \linda $


$h(\blu ) = \blu $


$h(b) = \blu $


$h(c) = \blu $


$h$


$X$


$X$


$\heartsuit $


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\can (\T ,\A )$


$\I $


$\I _1 \subseteq \I _2 \subseteq \ldots $


$\I = \bigcup _{i> 0} \I _i$


$\I _i$


$h: \I _i \rightarrow \I $


$can_{n}(\T ,\A )$


$n$


$can(\T ,\A )$


$\Delta ^{can_{n}(\T ,\A )} := \{x \in \Delta ^{can(\T ,\A )} \mid |x| \leq n\}$


$a^{can_{n}(\T ,\A )} := a^{can(\T ,\A )}$


$a \in N_I$


$C^{can_{n}(\T ,\A )} := \{x \in C^{can(\T ,\A )} \mid |x| \leq n\}$


$C \in N_C$


$r^{can_{n}(\T ,\A )} := \{(x,y) \in r^{can(\T ,\A )}\mid |x| \leq n, |y| \leq n\}$


$r \in N_R^+$


$\cann $


$(\T ,\A )$


$n$


$\cann = \mathit {can}(\T ,\A )$


$\A = \{A(a)\}$


$\T = \{A \isa \exists r.A\}$


$t = (\{A\},\{r\},\{A\})$


$t \in \childt (t)$


$n$


$n$


$\Delta ^{can_{n}(\T ,\A )} = \{at^i \mid i < n\}$


$A^{can_{n}(\T ,\A )} = \{at^i \mid i < n\}$


$r^{can_{n}(\T ,\A )} := \{(at^i,at^{i+1}) \mid i < n-1\}$


$t^i$


$i$


$t$


$\heartsuit $


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\mathit {can}(\T ,\A )$


$\I _i = \cani $


\begin {equation*}\I = \bigcup _{i > 0} \cani = \mathit {can}(\T ,\A ).\end {equation*}


$i$


$h_i: \Delta ^{\I _i} \rightarrow \Delta ^{\can (\T ,\A )}$


$x \mapsto x$


$i$


$|x|$


$h: \Delta ^{\I _i} \rightarrow \Delta ^{\can (\T ,\A )}$


$h(x) = h_i(x) = x$


$|x| = 1$


$\{x \in \Delta ^{\I _i}\mid |x| =1\} = \Delta ^{\I _i} \cap \NC $


$h$


$h(x) = x$


$|x| \leq n+1\leq i$


$ak_1\ldots k_n \in \Delta ^{\I _i}$


$h$


$h(ak_1\ldots k_{n-1}) = ak_1\ldots k_{n-1}$


$(ak_1\ldots k_{n-1},ak_1\ldots k_n) \in r^{\I _i}$


$r$


$k_n$


$(ak_1\ldots k_{n-1},h(ak_1\ldots k_n)) \in r^{\can (\T ,\A )}$


$h(ak_1\ldots k_n) \in \{ak_1\ldots k_{n-2}\} \cup \{ak_1\ldots k_{n-1}k'_n \mid k'_n \in \childt (k_{n-1}) \}$


$h$


$h(ak_1\ldots k_n) \not = ak_1\ldots k_{n-2}$


$h(ak_1\ldots k_n) = ak_1\ldots k'_{n}$


$k'_{n} \not = k_n$


$h(ak_1\ldots k_n) = ak_1\ldots k_{n}$


$h_i$


$h: \I _i \rightarrow \can (\T ,\A )$


$\clubsuit $


$\mathit {can}_n(\T ,\A )$


$\mathcal {ALCHIQ}$


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\can (\T ,\A ).$


$\I $


$\I _1 \subseteq \I _2 \subseteq \ldots $


$\I = \bigcup _{i> 0} \I _i$


$\I _i$


$h: \I _i \rightarrow \I $


$\I _i = \can _i(\T ,\A )$


$\can (\T ,\A )$


$\can (\T ,\A )$


$\J $


$(\T ,\A )$


$\can (\T ,\A )$


$\J $


$\J $


$\can (\T ,\A )$


$\J $


$\can (\T ,\A )$


$\clubsuit $


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\can (\T ,\A )$


$\A $


$\Delta ^\A $


$f_x$


$x \in \NI \cup \blanks $


$f_x(\top ) := \emptyset $


$f_x(A) := \{A(x)\}$


$f_x(\exists (r_0 \sqcap \ldots \sqcap r_n).C) := \{r_0(x,y),r_0^-(y,x),\ldots ,r_n(x,y),r_n^-(y,x)\} \cup f_y(C)$


$y$


$f_x(C \sqcap C') := f_x(C) \cup f_x(C')$


$\mdat (\T ,\A )$


$\NI \cup \NB $


$\mathcal {ALCHIQ}$


$(c,C \isa D) \in \mdat (\T ,\A )$


$C \isa D \in \T $


$h$


$f_x(C)$


$\A $


$h(x) = c$


$f_x(D)$


$\A $


$h(x) = c$


$((c,d), r \isa r') \in \mrol (\T ,\A )$


$r \isa r' \in \T $


$r(c,d) \in \A $


$r'(c,d) \not \in \A $


$\mdat (\T ,\A )$


$\mathcal {ALCHIQ}$


$\T $


$\A ,\A '$


$\A \xrightarrow {\T } \A '$


\begin {align*}\A ' = \A \cup \bigcup _{(c,C \isa D) \in \mdat (\T ,\A )} f_c(D) \cup \bigcup _{((c,d),r \isa r') \in \mrol (\T ,\A )} r'(c,d).\end {align*}


$A \isa \geq _1 r.B$


$\T $


$\{A(x),r(x,y),B(y),r(x,z),B(z)\}$


$\A '$


$\{x,y,z\}\subseteq \NI \cup \NB $


$y$


$z$


$\A '$


$y \not \in \NI $


$\rightarrow $


$\A \;(\rightarrow )^\omega \; \A '$


$n$


$\A (\rightarrow )^n \A '$


$\A ''$


$\A ' \rightarrow \A ''$


$\A ' = \A ''$


$\circ $


$\A \rightarrow \circ \rightarrow ' \B $


$\A '$


$\A \rightarrow \A '$


$\A ' \rightarrow ' \B $


$\rightarrow $


$\rightarrow '$


$\A \xrightarrow {\core } \B $


$\B $


$\A $


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\B $


$\A \;(\xrightarrow {\T } \circ \xrightarrow {\mathit {core}})^\omega \; \B $


$\A = \{A(a)\}$


$\T = \{A \isa \exists r.A\}$


\begin {equation*}\A \;(\xrightarrow {\T } \circ \xrightarrow {\mathit {core}})^n \;\{A(a),r(a,a_1),A(a_1),r(a_1,a_2),A(a_2),\ldots ,r(a_{n-1},a_n),A(a_{n})\}\end {equation*}


$n$


$\heartsuit $


$\mathcal {ALCHIQ}$


$\mathcal {ALCHIQ}$


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$\can (\T ,\A )$


$\B $


$\A (\xrightarrow {\T } \circ \xrightarrow {\mathit {core}})^\omega \B $


\begin {equation*}\B \cong \can (\T ,\A ).\end {equation*}


$\B $


$\can (\T ,\A )$


$\can (\T ,\A )$


$\B $


$\B $


$\can (\T ,\A )$


$\can (\T ,\A )$


$\clubsuit $


$N_S$


$N_C \cup N_R \cup N_I \cup \blanks $


$s \gets \varphi $


$s \in N_S$


$\varphi $


$s$


$\varphi $


$s$


$s \gets \varphi $


$s$


$\varphi $


\begin {align*}\varphi ::= c\mid s \mid \neg s \mid A \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists (\bigsqcap R).\varphi \mid \exists E.\varphi \mid c \land \EQ (E,E') \mid c \land \disj (E,E'),\end {align*}


$c \in N_I$


$s \in N_S$


$A \in \NCp $


$R \subseteq \roles $


$E$


$E'$


$\roles $


$c \land \EQ (E,E')$


$c \land \disj (E,E')$


$E' \in \roles $


$E'$


$c \in \NI $


$\exists R.\varphi $


$R$


$\roles $


$\mathcal {ALCHIQ}$


$S$


$s \gets \varphi \in \C $


$(\varphi )^{\I ,S} \subseteq s^{\I ,S}$


$S$


$s(c)$


$s\in N_S$


$c\in N_I$


$s(c)$


$(\C ,\G )$


$\C $


$\G $


$S$


$s$


$s'\gets \varphi $


$\neg s$


$\varphi $


$s$


$\C $


$s\gets \varphi \in \C $


$\varphi $


$\C $


$\C _0,\ldots ,\C _k$


$0 \leq i \leq k$


$i< k$


$s'$


$\varphi $


$s\gets \varphi \in \C _i$


$s'$


$\C _{i+1}\cup \ldots \cup \C _k$


$s'$


$\varphi $


$s\gets \varphi \in \C _i$


$s'$


$\C _i\cup \ldots \cup \C _k$


$(V,E,E^*)$


$V$


$E^*$


$E$


$E^* \subseteq E$


$s$


$s'$


$(s,s') \in E$


$s$


$s'$


$(s,s') \in E^*$


$X$


$s \in X$


$(s',s) \in E$


$s' \in X$


$s \in X$


$s' \in V$


$(s',s) \in E^*$


$X$


$T_{\mathcal {I},\mathcal {C}}$


$S$


$\C $


$S$


$\I $


$\C $


$\I $


$\NI \subseteq \Delta ^{I}$


$T_{\mathcal {I},\mathcal {C}}$


\begin {equation*}T_{\mathcal {I},\mathcal {C}}(S):=S\cup \{s(a)\mid s\gets \varphi \in \mathcal {C}, a\in (\varphi )^{\mathcal {I},S}\}.\end {equation*}


$\C $


$\C $


$T_{\mathcal {I},\mathcal {C}}$


$S \subseteq S'$


$T_{\mathcal {I},\mathcal {C}}(S) \subseteq T_{\mathcal {I},\mathcal {C}}(S')$


$T_{\mathcal {I},\mathcal {C}}$


$T_{\mathcal {I},\mathcal {C}}(\bigcup _{n=0}^{\infty } S_n)\subseteq \bigcup _{n=0}^{\infty } T_{\mathcal {I},\mathcal {C}}(S_n)$


$S_0\subseteq S_1\subseteq \dots $


$T_{\mathcal {I},\mathcal {C}}$


$T_{\mathcal {I},\mathcal {C}}(S_2)\subseteq T_{\mathcal {I},\mathcal {C}}(S_3)$


$S_1,S_2,S_3$


$S_1\subseteq S_2 \subseteq S_3 \subseteq T_{\mathcal {I},\mathcal {C}}\uparrow ^{\omega }(S_1)$


$\I $


$\C _0,\ldots ,\C _k$


$\C $


$T_{\mathcal {I},\mathcal {C}_0},\dots ,T_{\mathcal {I},\mathcal {C}_k}$


$S$


$0 \leq j \leq k$


$T_{\mathcal {I},\mathcal {C}_j} \uparrow ^{\omega }(S)$


$T_{\mathcal {I},\mathcal {C}_j}$


$\C _0,\ldots ,\C _k$


$\C $


$\I $


$\C $


$\C _0,\ldots ,\C _k$


$\C $


\begin {align*}M_0 := & \;T_{\mathcal {I},\mathcal {C}_0}{\uparrow }^{\omega }(\emptyset ) \\ M_{i} := & \;T_{\mathcal {I},\mathcal {C}_{i}}{\uparrow }^{\omega }(M_{i-1}) \quad \hbox {for each $1 \leq i \lt k$.}\end {align*}


$M_k$


$\C $


$\I $


$\PA (\C ,\I ) := M_k$


$\I $


$\A $


$(\C ,\G )$


$\G \subseteq \PA (\C ,\I )$


$\G \subseteq \PA (\C ,\I _\A )$


$\mathcal {ALCHIQ}$


$\T $


$\A $


$(\C ,\G )$


$(\T ,\A )$


$(\C ,\G )$


$\can (\T ,\A )$


$(\C ,\G )$


\begin {align*}&\text {(NC1) } s \gets c &\text {(NC4) } s \gets s' \land s''\quad \:\:\\ &\text {(NC2) } s \gets s' &\text {(NC5) } s \gets \exists (\bigsqcap R).s'\\ &\text {(NC3) } s \gets A &\text {(NC6) } s \gets \lnot s',\qquad \:\:\:\end {align*}


$c \in \NI $


$R \subseteq \roles $


$\{s,s',s''\} \subseteq N_S$


$A \in \NCp $


$R = \{r\}$


$s \gets \exists r.s'$


$s \gets \exists (\bigsqcap R).s'$


$\C $


$|\C |$


$\C '$


$\G $


$\mathcal {ALCHIQ}$


$(\T ,\A )$


$(\T ,\A )$


$(\C ,\G )$


$(\T ,\A )$


$(\C ',\G )$


$\T = \emptyset $


$s \gets \varphi \lor \varphi '$


$s \gets \varphi $


$s \gets \varphi '$


$s \gets c \land \EQ (E, E')$


$s \gets c \land \disj (E,E')$


$s \gets \exists E .s'$


$s \gets \exists E .s'$


$s \gets \exists E .s'$


$\M = (Q,\Sigma ,q_I,\Delta ,q_F)$


$E$


$s_q$


$q \in Q$


$s'$


$s_{q_I}$


$E$


$s'$


$s \gets c \land \EQ (E, E')$


$\M = (Q,\Sigma ,q_I,\Delta ,q_F)$


$\M ' = (Q',\Sigma ,q'_I,\Delta ',q'_F)$


$E$


$E'$


$Q \cap Q' = \emptyset $


$s_{\mathit {error}}$


$s_{\mathit {noerror}}$


$s_{\mathit {pos}}$


$s_{\mathit {neg}}$


$s_q$


$q \in Q \cup Q'$


$c$


$s_{\mathit {pos}}$


$s_{\mathit {neg}}$


$c$


$s_{\mathit {error}} \gets \exists r. s_{\mathit {error}}$


$r$


$s \gets c \land \disj (E, E')$


$s \gets c \land \EQ (E, E')$


$s_{\mathit {error}}$


$s_{\mathit {error}} \gets s_{q_F} \land s_{q'_F}$


$\clubsuit $


$\A _\T $


$\T $


$\C $


$\T $


$\C $


$\C _\T $


$\A $


$\T $


$\G $


\begin {equation*}(\T ,\A ) \text { validates } (\C ,\G ) \text { iff } \A _\T \text { validates } (\C _\T ,\G ).\end {equation*}


$(t,P,Q,H)$


$t$


$(t,P,Q,H)$


$\pi _1(t)$


$P$


$Q$


$H$


$t$


$P$


$\top $


$c$


$\exists r.s$


$r \in \roles $


$s\in \NS $


$c \in \NI $


$\exists (\poort R).\poort N$


$R \subseteq \roles $


$N \subseteq \NC $


$P$


$Q$


$H$


$\NS $


$t$


$\T \models A_1 \sqcap \ldots \sqcap A_n \isa B$


$\{A_1,\ldots ,A_n\} \subseteq \pi _i(t)$


$B \in \pi _i(t)$


$i \in \{1,3\}$


$\T \models {\poort R} \isa r'$


$R \subseteq \pi _2(t)$


$r' \in \pi _2(t)$


$A \isa \forall r.B \in \T $


$A \in \pi _1(t)$


$r \in \pi _2(t)$


$B \in \pi _3(t)$


$A \isa \forall r.B \in \T $


$A \in \pi _3(t)$


$r^- \in \pi _2(t)$


$B \in \pi _1(t)$


$\bot $


$\mathcal {ALCHIQ}$


$\T $


$\mathcal {C}$


$\NC ^\T \subseteq \NC $


$\T $


$\C $


$\psatct $


$\quadruple $


$t$


$Q$


$\exists (\poort R).(\poort N) \in Q$


$(R,N) \in \succt (t)$


$R \subseteq \pi _2(t)$


$N \subseteq \pi _3(t)$


$(t,\bar {Q},Q,\emptyset )$


$\psatct $


\begin {equation*}\bar {Q} := \{\top \} \cup \{\exists (\poort R).(\poort N) \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset )), \exists (\poort R).(\poort N) \not \in Q\}.\end {equation*}


$\{\quadruple ,(t,P',Q',H')\} \subseteq \psatct $


$\exists (\poort R).(\poort N) \in Q$


$\exists (\poort R).(\poort N) \in Q'$


$(t,P \cup P', Q \cup Q', H \cup H')$


$\psatct $


$s\gets S \in \mathcal {C}$


$S$


$(t,P,Q,H) \in \psatct $


$(t,P \cup (\{S\}\setminus \NC ),Q,H \cup \{s\})$


$\psatct $


$S = c$


$c \in \NI $


$c \not \in Q$


$S = A$


$A \in \pi _1(t)$


$S = \exists r.s'$


$r \in \pi _2(t)$


$\exists (\bigsqcap R).(\bigsqcap N) \in P$


$r \in R$


$\exists r.s' \not \in Q$


$s\gets s' \in \mathcal {C}$


$(t,P,Q,H)\in \psatct $


$\{s'\} \subseteq H$


$(t,P,Q,H\cup \{s\})$


$\psatct $


$s\gets s_1\land s_2 \in \mathcal {C}$


$(t,P,Q,H)\in \psatct $


$\{s_1,s_2\} \subseteq H$


$(t,P,Q,H\cup \{s\})$


$\psatct $


$s \gets \exists (\bigsqcap R). s' \in \mathcal {C}$


$\{(t,P,Q,H),(t',P',Q',H')\} \subseteq \psatct $


$R^- \subseteq \pi _2(t')$


$P' \cap \NI = \emptyset $


$s' \in H'$


$\inv (t') \in \childt (\inv (t))$


$\exists (\bigsqcap R').(\bigsqcap N') \in P'$


$(R',N') \in \succt ((\pi _1(t'),\emptyset ,\emptyset )) \setminus \succt (t')$


$\{s'' \mid \exists r''.s'' \in P'\} \subseteq H$


$(t, P, Q ,H\cup \{s\})$


$\psatct $


$\pi _1(t)$


$\T $


$P$


$Q$


$c \not \in Q$


$\mathcal {ALCHIQ}$


$\T $


$\mathcal {C}$


$K$


$\quadruple $


$\mathcal {C}_{\T ,K}$


$\C $


$(t,P,Q,H)\in K$


$s\in H$


\begin {align}\label {constraint:triplestoshapes} s\gets \bigwedge _{A \in \pi _1(t)} A \land \bigwedge _{A \in \NC ^\T \setminus \pi _1(t)} \lnot A \land \bigwedge _{X \in P} X \land \bigwedge _{Y \in Q} \lnot Y.\end {align}


$\pi _1(t)$


$\A _\T $


$P$


$Q$


$P$


$\pi _2(t)$


$\pi _3(t)$


$\T = \{A \isa \exists p.B, B \isa \exists q.C\}$


$\C $


\begin {align*}& s \gets \exists p.s \qquad s \gets \exists q.s \qquad s \gets s' \land s'' \qquad s' \gets \exists p^-.s' \qquad s' \gets \exists q^-.s' \qquad s' \gets A \qquad s'' \gets C.\end {align*}


$t = (\{A\},\{p\},\{B\})$


$t' = (\{B\},\{q\},\{C\})$


$\inv (t) = (\{B\},\{p^-\},\{A\})$


$\inv (t)$


$\inv (t')$


$t_A := (\{A\},\emptyset ,\emptyset )$


$\psatct $


\begin {align*}(t_A,\{\top \},\{\exists p.B\},\emptyset ), \qquad (\inv (t),\{\top \},\{\exists q.C\},\emptyset ), \qquad (\inv (t'),\{\top \},\emptyset ,\emptyset ).\end {align*}


\begin {align*}(t_A,\{\top \},\{\exists p.B\},\{s'\}), \quad (\inv (t),\{\top ,\exists p^-.s'\},\{\exists q.C\},\{s'\}), \quad (\inv (t'),\{\top ,\exists q^-.s'\},\emptyset ,\{s',s''\}).\end {align*}


$s'$


$A$


$\pi _1(t_A)$


$\exists p^-.s'$


$s'$


$\psatct $


$C$


$\pi _1(\inv (t'))$


$\exists q^-.s'$


$(\inv (t'),\{\top ,\exists q^-.s'\},\emptyset ,\{s,s',s''\})$


$s \gets s' \land s''$


$s \gets \exists q.s$


$(\inv (t),\{\top ,\exists p^-.s'\},\{\exists q.C\},\{s'\})$


$(\inv (t'),\{\top ,\exists q^-.s'\},\emptyset ,\{s,s',s''\})$


$(\inv (t),\{\top ,\exists p^-.s'\},\{\exists q.C\},\{s,s'\})$


$\psatct $


$s$


$q$


$\{q^-\} \subseteq \pi _2(\inv (t'))$


$s$


$s \in H'$


$\inv (\inv (t')) \in \childt (\inv (\inv (t)))$


$P' \cap \NI = \emptyset $


$\exists r.s$


$s$


$r$


$s$


$s' \in H$


$\exists (\poort R').(\poort N')$


$R' \subseteq \pi _2(t')$


$N' \subseteq \pi _3(t')$


$(R',N') \in \succt ((\pi _1(t'),\emptyset ,\emptyset )) \setminus \succt (t')$


$\exists (\poort R').(\poort N')$


$P'$


$(t_A,\{\top \},\{\exists p.B\},\{s'\})$


$s \gets \exists p.s$


$(t_A,\{\top \},\{\exists p.B\},\{s,s'\}) \in \psatct $


$\C _{\T ,\emptyset }$


\begin {align*}s \gets A \land \lnot B \land \lnot C \land \top \land \lnot \exists p.B.\end {align*}


$\A = \{A(a),p(a,b)\}$


$\G = \{s(a)\}$


$s(a)$


$\A _\T $


$\A $


$\can (\T ,\A )$


$\can (\T ,\A )$


$\A = \{A(a),p(a,b)\}$


$\T = \{A \isa \exists p.B, B \isa \exists q.C\}$


$(\C ,\G )$


$\can (\T ,\A )$


$(\C ,\G )$


$\heartsuit $


$\T $


$\C $


$\T $


$\A _\T $


$\A $


$\rho = \quadruple $


$s \in H$


$s_\rho $


$s_{\rho }$


\begin {align*}s_\rho \gets \bigwedge _{A \in \pi _1(t)} A \land \bigwedge _{A \in \NC ^\T \setminus \pi _1(t)} \lnot A \land \bigwedge _{X \in P} X \land \bigwedge _{Y \in Q} \lnot Y.\end {align*}


$s_\rho $


$s$


$s_\rho (c)$


$s(c)$


$\C \cup s_\rho $


$s_\rho $


$\C $


$c$


$\can _{|c|}(\T ,\A )$


$\I _{|c|}$


$c$


$s_\rho (c)$


$\can _{|c|}(\T ,\A )$


$c$


$|c| = 1$


$c \in \NI $


$s(c)$


$s'(c)$


$s''(c)$


$s \gets s' \land s''$


$\mathcal {ALCHIQ}$


$\T $


$\C $


$\G $


$\A $


$\T $


$(\T ,\A )$


$(\C , \G )$


$\can _0(\T ,\A )$


$(\mathcal {C}_{\T }, \G )$


$n$


$\I _i = \can _{i}(\T ,\A )$


$S_n = T_{\can (\T ,\A ),\C } \uparrow ^n (\emptyset )$


$s(c) \in S_{n+1}$


$\rho = \quadruple \in \psatct $


$s \in H$


$s_{\rho }(c) \in T_{\I _{|c|},\C _\T \cup s_{\rho }} (S_n)$


$c \in \NK \setminus \NI $


$t = \inv (\tail (c))$


$P \supseteq \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset )) \setminus \succt (t)\}$


$P \cap \NI = \emptyset $


$Q \supseteq \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset ))\}$


$c \in \NI $


$t = (\{A \in \NC \mid A(c) \in \A _\T \},\emptyset ,\emptyset )$


$P \supseteq \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt (t), c \in (\exists (\bigsqcap R).(\bigsqcap N))^{\A _\T }\}$


$(P \cap \NI ) \setminus \{c\} = \emptyset $


$Q \supseteq \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt (t), c \not \in (\exists (\bigsqcap R).(\bigsqcap N))^{\A _\T }\}$


$(n = 0)$


$s \gets c \in \C $


$s \gets A \in \C $


$\rho = (t,P \cup \{c\},Q,\{s\})$


$t = (\{A \in \NC \mid A(c) \in \A _\T \},\emptyset ,\emptyset )$


$P$


$Q$


$\{c\}$


$t = \inv (\tail (c))$


$t = (\{A \in \NC \mid A(c) \in \A _\T \},\emptyset ,\emptyset )$


$c \not \in \NI $


$s_\rho (c) \in T_{\I _0,\C _\T \cup s_\rho } (\emptyset )$


$s(c) \in S_{n+1} \setminus S_n$


$s(c)$


$s \gets \exists r.s' \in \C $


$s'(d) \in S_n$


$r$


$d$


$c$


$|d| \leq |c|$


$|d| > |c|$


$|d| \leq |c|$


$t$


$dt = c$


$r^- \in \pi _2(t)$


$\{c,d\} \subseteq \NI $


$dt = c$


$(\inv (t),P,Q,\emptyset ) \in \psatct $


$s \gets \exists r.s' \in \C $


$\rho = (\inv (t),P \cup \{\exists r.s'\},Q,\{s\}) \in \psatct $


$s'(d) \in S_n$


$s_\rho (c) \in T_{\I _{|c|},\C _\T \cup s_\rho } (S_n)$


$\{c,d\} \subseteq \NI $


$(t,P,Q,\emptyset ) \in \psatct $


$t = (\{A \in \NC \mid A(c) \in \I _0\},\emptyset ,\emptyset )$


$\rho = (t,P \cup \{\exists r.s'\},Q,\{s\}) \in \psatct $


$s_\rho (c) \in T_{\I _0,\C _\T \cup s_\rho } (S_n)$


$|d| > |c|$


$ct' = d$


$t'$


$c \in \NK \setminus \NI $


$c \in \NI $


$s'(d) \in S_n$


$\rho ' = (\inv (t'),P',Q',H') \in \psatct $


$r^- \in \pi _2(\inv (t'))$


$P' \cap \NI = \emptyset $


$s' \in H'$


$\exists (\bigsqcap R).(\bigsqcap N) \in P'$


$(R,N) \in \succt ((\pi _1(t'),\emptyset ,\emptyset )) \setminus \succt (t')$


$\NK $


$t' \in \childt (\tail (c))$


$\quadruple $


$\{s'' \mid \exists r''.s'' \in P'\} \in H$


$\exists r''.s'' \in P'$


$s_{\rho '}(d) \in T_{\I _{|d|},\C _\T \cup s_{\rho '}} (S_n)$


$s''(c) \in S_n$


$s''(c)$


$\rho _{s''} = (\inv (\tail (c)),P_{s''},Q_{s''},H_{s''}) \in \psatct $


$P_{s''}$


$Q_{s''}$


$s'' \in H_{s''}$


$s_{\rho _{s''}}(c) \in T_{\I _{|c|},\C _\T } (S_n)$


$\exists r''.s'' \in P'$


$s_{\rho ''}$


\begin {equation*}\rho '' = (\inv (\tail (c)),\bigcup _{\exists r''.s'' \in P'} P_{s''}, \bigcup _{\exists r''.s'' \in P'} Q_{s''}, \bigcup _{\exists r''.s'' \in P'} H_{s''}) \in \psatct ,\end {equation*}


\begin {equation*}\rho = (\inv (\tail (c)),\bigcup _{\exists r''.s'' \in P'} P_{s''}, \bigcup _{\exists r''.s'' \in P'} Q_{s''}, \bigcup _{\exists r''.s'' \in P'} H_{s''} \cup \{s\}) \in \psatct ,\end {equation*}


$\rho _{s''}$


$s_{\rho ''}(c) \in T_{\I _{|c|},\C _\T \cup s_{\rho ''}} (S_n)$


$\exists r''.s'' \in P'$


$s_{\rho _{s''}}(c) \in T_{\I _{|c|},\C _\T \cup s_{\rho _{s''}}} (S_n)$


$s_\rho (c) \in T_{\I _{|c|},\C _\T \cup s_{\rho }}(S_n)$


$\{s'' \mid \exists r''.s'' \in P'\} = \emptyset $


$\rho = \quadruple $


$P = \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset )) \setminus \succt (t)\}$


$Q = \{\exists (\bigsqcap R).(\bigsqcap N) \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset ))\}$


$s_{\rho }(c)\in T_{\I _{|c|},\C _\T \cup s_\rho }(S_n)$


$\clubsuit $


$\mathcal {ALCHIQ}$


$\T $


$\C $


$\G $


$\A $


$\T $


$\can _0(\T ,\A )$


$(\mathcal {C}_{\T }, \G )$


$(\T ,\A )$


$(\C , \G )$


$i=0$


$\I _i = \can _{i}(\T ,\A )$


$\rho = (t,P,Q,H) \in \psatct $


$s \in H$


$s_{\rho }(c) \in \PA (\C _\T \cup \{s_{\rho }\}, \I _i)$


$c \in \NK $


$|c| = i$


$s(c) \in \PA (\C , \can (\T ,\A ))$


$i$


$\C \subseteq \C _\T $


$i = n$


$i = n-1$


$s_{\rho }(c) \in \PA (\C _\T \cup \{s_{\rho }\}, \I _{n-1})$


$|c| = n-1$


$\rho $


$s$


$H$


$s \gets \exists r.s' \in \C $


$\{(t,P,Q,H\setminus \{s\}),(t',P',Q',H')\} \in \psatct $


$s'\in H'$


$\rho ' = (t',P',Q',H')$


$s'_{\rho '}(ct') \in \PA (\C _\T \cup \{s'_{\rho '}\},\I _n)$


$\I _n$


$ct'$


$\pi _1(t')$


$\exists (\poort R).\poort N \in P'$


$R \subseteq \pi _2(t')$


$N \subseteq \pi _3(t')$


$\exists r'.s'' \in P$


$s''$


$H$


$s''$


$(t,P,Q,H \setminus \{s\})$


$s''(c) \in \PA (\C , \can (\T ,\A ))$


$s''(c) \in \PA (\C _\T , \I _n)$


$ct' \in (\exists r'.s'')^{\I _n,\emptyset }$


$ct'$


$\I _n$


$Q'$


$s'_{\rho '}(ct') \in \PA (\C _\T \cup \{s'_{\rho '}\},\I _n)$


$i = n$


$s'(ct') \in \PA (\C , \can (\T ,\A ))$


$s \gets \exists r.s' \in \C $


$r^- \in \pi _2(t')$


$s(c) \in \PA (\C , \can (\T ,\A ))$


$\clubsuit $


$\mathcal {ALCHIQ}$


$\T $


$\C $


$\G $


$\A $


$\T $


$(\T ,\A )$


$(\C , \G )$


$\A _\T $


$(\mathcal {C}_{\T }, \G )$


$\C $


$\C $


$\C $


$(t,P,Q,H)$


$H$


$\neg s$


$s$


$K$


$(t,P,Q,H)$


$K$


$(t,P,Q,H)\in K$


$H' \supset H$


$(t,P,Q,H') \in K$


$\compct (K)$


$K$


$\mathcal {ALCHIQ}$


$\T $


$\C $


\begin {equation*}\compct (K) = \{ (t,P,Q \cup Q', H \cup \bar {H}) \mid (t,P,Q,H) \mbox {~is maximal in~} K \},\end {equation*}


\begin {align*}\bar {H} &:= \{\lnot s \mid s \mbox { occurs in } \C , s \not \in H\}\\ Q' &:= \{\exists r.s' \mid s \gets \exists r.s' \in \C , s \not \in H \} \cup \{c \mid s \gets c \in \C , s \not \in H\}.\end {align*}


$s\gets \lnot s'$


$Q$


$\satct (K)$


$\psatct (K)$


$\lnot \exists r.s$


$\lnot s$


$\mathcal {ALCHIQ}$


$\T $


$\mathcal {C}$


$\satct (K)$


$K$


$\psatct $


$\satct (K)$


$s \gets \exists r. s' \in \mathcal {C}$


$\{(t,P,Q,H),(t',P',Q',H')\} \subseteq \satct (K)$


$r^- \in \pi _2(t')$


$P' \cap \NI = \emptyset $


$s' \in H'$


$\inv (t') \in \childt (\inv (t))$


$\exists (\poort R).\poort N \in P'$


$(R,N) \in \succt (\pi _1(t'),\emptyset ,\emptyset ) \setminus \succt (t')$


$\{s'' \mid \exists r''.s'' \in P'\} \cup \{\lnot s'' \mid \exists r''.s'' \in Q', r'' \in \pi _2(t')\} \subseteq H$


$(t, P, Q ,H\cup \{s\})$


$\satct (K)$


$s\gets \lnot s' \in \mathcal {C}$


$(t,P,Q,H)\in \satct (K)$


$\lnot s' \in H$


$(t,P,Q,H\cup \{s\})$


$\satct (K)$


$\T $


$\C $


$\C _0, \ldots ,\C _n$


$K_0 = \mathit {psat}_{\C _0, \T }$


$0 < i \leq n$


\begin {equation*}K_i = \sat _{\C _i,\T }(comp_{\C _{i-1},\T }(K_{i-1})).\end {equation*}


$\C _{\T } =\C _{\T ,K_{n}}$


$\C _{\T ,K_{n}}$


$\T = \{A \isa \exists p.B\}$


$\C = \C _0 \cup \C _1$


\begin {align*}\C _0 = \{s_C &\gets C, \qquad \qquad \; s' \gets \exists p.s_C\}\\ \C _1 = \{\;\!s'' &\gets \exists p.\Bar {s_C}, \qquad \Bar {s_C} \gets \lnot s_C, \qquad \, s \gets s' \land s''\}.\end {align*}


$t_A := (\{A\},\emptyset ,\emptyset )$


$t := (\{A\},\{p\},\{B\})$


$K_0$


\begin {align*}(t_A,\{\top \},\{\exists p.B\},\emptyset ), \qquad (\inv (t),\{\top \},\emptyset ,\emptyset ).\end {align*}


$(t_A,\{\top ,\exists p.s_C\},\{\exists p.B\},\{s'\})$


$K_0$


$\compcot $


\begin {align*}&(t_A,\{\top \},\{\exists p.B,\exists p.s_C\},\{\lnot s' \lnot s_C\}), \qquad (t_A,\{\top ,\exists p.s_C\},\{\exists p.B\},\{s', \lnot s_C\}), \qquad (\inv (t),\{\top \},\{\exists p.s_C\},\{\lnot s', \lnot s_C\}).\end {align*}


$K_1$


$\Bar {s_C}$


$(t_A,\{\top ,\exists p.s_C\},\{\exists p.B\},\{s', \lnot s_C, \Bar {s_C}\})$


$(\inv (t),\{\top \},\{\exists p.s_C\},\{\lnot s', \lnot s_C,\Bar {s_C}\})$


$s'' \gets \exists p.\lnot s_C$


\begin {align*}(t_A,\{\top ,\exists p.s_C\},\{\exists p.B\},\{s', \lnot s_C, \Bar {s_C}, s''\}) \in K_1\end {align*}


$s \gets s' \land s'' \in \C _1$


\begin {align*}s \gets A \land \lnot B \land \lnot C \land \exists p.s_C \land \lnot \exists p.B \in \C _\T ,\end {align*}


$\A = \{A(a),p(a,b),C(b)\}$


$\G = \{s(a)\}$


$\A = \A _\T $


$(\C _\T ,\G )$


$\A _\T $


$\can (\T ,\A )$


$\{A(a),p(a,b),C(b),p(a,at),B(at)\}$


$(\T ,\A )$


$(\C ,\G )$


$\heartsuit $


$\C $


$\C _0,\ldots ,\C _n$


$\C _{\leq i} := \C _0 \cup \ldots \cup \C _i$


$\C _{\T ,\leq i}$


$\C _{\T ,K_0} \cup \ldots \cup \C _{\T ,K_i}$


$\mathcal {ALCHIQ}$


$\T $


$\C $


$\C _0,\ldots ,\C _n$


$\G $


$\A $


$\T $


$(\T ,\A )$


$(\C , \G )$


$\A _\T $


$(\mathcal {C}_{\T }, \G )$


$\Rightarrow $


$i$


$\I _i = \can _i(\T ,\A )$


$c \in \NK $


$0 \leq i \leq n$


$\rho = (t,P,Q,H) \in K_i$


$K_i$


$c \in \NK \setminus \NI $


$t = \inv (\tail (c))$


$P \supseteq \{\exists (\poort R).\poort N \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset )) \setminus \succt (t)\}$


$P \cap \NI = \emptyset $


$Q \supseteq \{\exists (\poort R).\poort N \mid (R,N) \in \succt ((\pi _1(t),\emptyset ,\emptyset ))\}$


$c \in \NI $


$t = (\{A \in \NC \mid A(c) \in \A _\T \},\emptyset ,\emptyset )$


$P \supseteq \{\exists (\poort R).\poort N \mid (R,N) \in \succt (t), c \in (\exists (\poort R).\poort N)^{\A _\T }\}$


$(P \cap \NI ) \setminus \{c\} = \emptyset $


$Q \supseteq \{\exists (\poort R).\poort N \mid (R,N) \in \succt (t), c \not \in (\exists (\poort R).\poort N)^{\A _\T }\}$


$H = \{s \mid s(c) \in \PA (\can (\T ,\A ),\C _{\leq i})\} \cup \{\lnot s \mid s(c) \not \in \PA (\can (\T ,\A ),\C _{\leq i}), s \mbox {~defined in~} \C _{i-1}\}$


$s_{\rho }(c) \in \PA (\I _{|c|},\C _{\T ,\leq i} \cup s_{\rho })$


$s$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq 0})$


$(t,P_s,Q_s,H_s) \in \mathit {sat}_{\C _0,\T }(\emptyset ) = K_0$


$s \in H_s$


$X = \{s \mid s(c) \in \PA (\can (\T ,\A ),\C _{\leq 0})\}$


$(t,\bigcup _{s\in X} P_s, \bigcup _{s \in X} Q_s, \bigcup _{s \in X} H_s) \in K_0$


$(t,P_s,Q_s,H_s)$


$s \in H_s$


$X \subseteq \bigcup _{s \in X} H_s$


$H_s \setminus X \not = \emptyset $


$i = j+1$


$c \in \NI \cup \NK $


$(t,P,Q,H) \in K_{j}$


$i = j$


$\compcjt $


$(t,P,Q,H)$


$(t,P,Q \cup Q',H \cup \bar {H}) \in K_{j+1}$


$s \in H$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq j})$


$\lnot s \in \bar {H}$


$s(c) \not \in \PA (\can (\T ,\A ),\C _{\leq j})$


$s$


$\C _{\leq j}$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq j+1}) \setminus \PA (\can (\T ,\A ),\C _{\leq j})$


$s \gets C \in \C $


$C = \lnot s'$


$s'$


$\C _{\leq j}$


$s'(c) \not \in \PA (\can (\T ,\A ),\C _{\leq j})$


$\lnot s' \in \bar {H}$


$(t,P,Q \cup Q',H \cup \bar {H} \cup \{s\}) \in K_{j+1}$


$C$


$Y \in Q'$


$Y = \exists r.s'$


$s \gets \exists r.s' \in \C _{\leq j}$


$s \not \in H$


$Y = c$


$s \gets c \in \C _{\leq j}$


$s \not \in H$


$s \not \in H$


$s(c) \not \in \PA (\can (\T ,\A ),\C _{\leq j})$


$Y$


$\Leftarrow $


$\I _i = \can _i(\T ,\A )$


$i$


$c \in \NK $


$\rho = \quadruple \in K_i$


$s_{\rho }(c) \in \PA (\I _{|c|},\C _{\T ,\leq i} \cup s_{\rho })$


$s \in H$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq i})$


$c \in \NK $


$\quadruple \in K_{i+1}$


$(t,P,Q',H') \in K_i$


$K_i$


$\quadruple $


$(t,P,Q',H')$


$(t,P,Q' \cup Q'', H' \cup \bar {H'}) \in \compcit $


$s \gets \lnot s' \in \C _{i+1}$


$\lnot s' \in \bar {H'}$


$s' \gets C \in \C $


$s'(c) \in \PA (\can (\T ,\A ),\C _{\leq i})$


$C \in \NC $


$C \in \pi _1(t)$


$s' \in H'$


$(t,P,Q',H')$


$C \not \in \pi _1(t)$


$\lnot C$


$s_{\quadruple }$


$c \not \in C^{\can (\T ,\A )}$


$C \in \NI $


$\lnot s' \in \bar {H'}$


$C \in Q$


$C^{\can (\T ,\A )} \not = c^{\can (\T ,\A )}$


$C \in \{s'', s'' \land s''' \mid \{s'',s'''\} \subseteq \NS \}$


$s''$


$s'''$


$C = \exists r.s''$


$r \in \NR $


$s \in \NS $


$\lnot s' \in \bar {H'}$


$C \in Q$


$i$


$s$


$n$


$c$


$|c| \leq n$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq i})$


$s(c) \in \PA (\I _n,\C _{\T ,\leq i})$


$(a)$


$s''(d) \not \in \PA (\can (\T ,\A ),\C _{\leq i})$


$dt = c$


$r^- \in \pi _2(t)$


$d = ct$


$r \in \pi _2(t)$


$s''(d) \in \PA (\can (\T ,\A ),\C _{\leq i})$


$\rho _d = (\inv (t),P_d,Q_d,H_d) \in K_i$


$s'' \in H_d$


$s_{\rho _d}(d) \in \PA (\I _{|d|},\C _{\leq i, \T } \cup s_{\rho _d})$


$(\inv (t),P_d',Q_d',H_d') \in K_i$


$|\{\exists r.s \in P_d'\}| < |\{\exists r.s \in P_d\}|$


$\{\lnot s \mid \exists r.s \in Q_d\} \subseteq H$


$s$


$\lnot s \not \in H$


$s \in H$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq i})$


$s_{\rho _d}(d) \not \in \PA (\can _{|d|}(\T ,\A ),\C _{\leq i, \T } \cup s_{\rho _d})$


$\{s \mid \exists r.s \in P_d\} \subseteq H$


$s' \gets \exists r.s''$


$(t,P,Q',H')$


$\{s \mid \exists r.s \in P_d\} \not \subseteq H$


$\{s \mid \exists r.s \in P_d\} \setminus H$


$\exists r.s$


$P_d$


$s''(d)$


$s''(d) \not \in \PA (\can (\T ,\A ),\C _{\leq i})$


$d$


$(c,d) \in (r)^{\can (\T ,\A )}$


$C = \lnot s''$


$s \gets \lnot s' \in \C _{i+1}$


$s' \gets \lnot s'' \in \C _{\leq i}$


$\lnot s''$


$\bar {H'}$


$\lnot s'' \in H'$


$(t,P,Q',H')$


$s' \in H'$


$s'(c) \not \in \PA (\can (\T ,\A ),\C _{\leq i})$


$s(c) \in \PA (\can (\T ,\A ),\C _{\leq i+1})$


$\clubsuit $


$\mathcal {ALCHI}$


$\A _\T $


$\C '$


$(\T ,\A )$


$(\C ,\G )$


$\A $


$(\C ',\G )$


$\A $


$T_\T $


$A \isa {\leq _1} r.B$


$\A _\T $


$r_0 \sqcap \ldots \sqcap r_n \isa r$


$\{r \isa r_1, r_1 \isa r_2, \ldots , r_n \isa r\}$


$\mathcal {ALCHI}$


$\mathcal {ALCHI}$


$\mathcal {ALCHI}$


$\T $


$\T $


\begin {align*}\text {(F1)}\quad A_0 \sqcap \ldots \sqcap A_n \isa B \qquad \qquad \qquad &\text {(F3)}\quad A \isa \forall r.B\\ &\text {(F4)}\quad A \isa \exists r.B,\end {align*}


$\{A,A_0,\ldots ,A_n,B\} \subseteq \NCp $


$r \in \roles $


$\T $


$r \isa r'$


$\{r,r'\} \subseteq \roles $


$\mathcal {ALCHI}$


$\T $


$T_\T $


$A \in \NC $


$s_A \in \NS $


$\mathcal {ALCHI}$


$\T $


$\T _s$


$\T \models A_0 \sqcap \ldots \sqcap A_n \isa B$


\begin {align}\label {constraint:aisab} s_B \gets \bigwedge _{0 \leq i \leq n} s_{A_i} \in \T _s,\end {align}


$A \isa \forall r.B \in \T $


$\T \models S \isa r$


\begin {align}\label {constraint:aisaforallrb} s_B \gets \exists S^-.s_A \in \T _s,\end {align}


$A \in \NCp $


\begin {align}\label {constraint:conceptstoshapenames} s_A \gets A \in \T _s.\end {align}


$\mathcal {ALCHI}$


$\T $


$\C _\T ^+$


$\C _\T $


$A \in \NC $


$\C _\T $


$s_A$


$\T \models \poort R \isa r$


$R \cup \{r\} \subseteq R'$


$\poort R'$


$\poort R'$


$\poort (R' \setminus \{r\})$


$\C _\T ^+ \cup \T _s$


$\C _\T $


$\A _\T $


$\mathcal {ALCHI}$


$\T $


$\C $


$\G $


$\A $


$\T $


$\can _0(\T ,\A )$


$(\mathcal {C}_{\T }, \G )$


$\A $


$(\C _\T ^+ \cup \T _s, \G )$


$\can _0(\T ,\A )$


$\A _\T $


$A_0 \sqcap \ldots \sqcap A_n \isa B$


$A \isa \forall r.B$


$\T \models S \isa r'$


$\A _\T \setminus \A $


$r \isa r'$


$\clubsuit $


$\C _\T ^+ \cup \T _s$


$\mathcal {ALCHI}$


$\T $


$\C $


$\G $


$\A $


$\T $


$(\T ,\A )$


$(\C , \G )$


$\A $


$(\C _{\T }^+, \G )$


$^{b}$


$\mathcal {ALCHIQ}$


$^{b}$


$b$


$^{b}$


$\mathcal {ALCHIQ}$


$^{b}$


$s \gets \varphi $


$b \gets \psi $


$\{s,b\} \subseteq \NS $


\begin {align*}\varphi &::= c\mid s \mid A \mid \varphi \land \varphi \mid \neg \varphi \mid \exists \psi . \varphi \\ \psi &::= s? \mid b \mid r \mid \psi \cup \psi \mid \psi \cap \psi \mid \psi \cdot \psi \mid \psi ^* \mid \psi ^- \mid \psi \setminus \psi ,\end {align*}


$c \in N_I$
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constraints over graphs containing the implied facts? Consider as an example a toy database of pet owners containing the facts 
ℎ𝑎𝑠𝑃 𝑒𝑡𝐵𝑖𝑟𝑑(𝑙𝑖𝑛𝑑𝑎, 𝑏𝑙𝑢), ℎ𝑎𝑠𝑃 𝑒𝑡(𝑗𝑜ℎ𝑛, 𝑎𝑐𝑒); the simple constraint 𝑝𝑒𝑡𝑂𝑤𝑛𝑒𝑟𝑆ℎ𝑎𝑝𝑒← ∃ℎ𝑎𝑠𝑃 𝑒𝑡.⊤, which says that everyone that has a pet 
is a pet owner; and the target pet owners 𝑙𝑖𝑛𝑑𝑎 and 𝑗𝑜ℎ𝑛. Clearly, we would like to leverage the knowledge that all pet birds are pets, 
written as ℎ𝑎𝑠𝑃 𝑒𝑡𝐵𝑖𝑟𝑑 ⊑ ℎ𝑎𝑠𝑃 𝑒𝑡 in description logics, which allows us to validate both targets. This type of validation is very natural, 
even more so in the light of the large amount of ontologies that are already being used for describing data on the web. It is in fact 
envisioned in the W3C SHACL specification, which calls for graph validation in the presence of OWL entailment [1, Section 1.5], but 
unfortunately, does not provide guidance on how to realise this. Nevertheless, there are approaches of reconciling the two [5,6], and 
concrete ontology and constraint pairs being constructed [7].

The first major challenge we must face is that the semantics of SHACL constraints in the presence of ontologies is not obvious, 
as we must simultaneously account for the open-world semantics of description logics and for the closed-world view of SHACL. The 
knowledge in the ontology implies additional facts, which can be added to the data graph so that it satisfies all the ontological 
axioms. All such possible completions are models that must be taken into account according to the traditional OWL/description logics 
semantics. However, SHACL allows for negation, which makes this certain answer semantics too weak, and quickly results in non 
validation. Update for example the toy database of pet owners we considered before to ℎ𝑎𝑠𝑃 𝑒𝑡(𝑗𝑜ℎ𝑛, 𝑎𝑐𝑒),𝐻𝑎𝑚𝑠𝑡𝑒𝑟(𝑎𝑐𝑒), but with the 
constraint 𝑝𝑒𝑡𝑂𝑤𝑛𝑒𝑟𝑆ℎ𝑎𝑝𝑒← ∃ℎ𝑎𝑠𝑃 𝑒𝑡.⊤ ∧ ∀ℎ𝑎𝑠𝑃 𝑒𝑡.¬𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠. Like before, this expresses that pet owners own a pet. Moreover it is 
required that all pets are not dangerous. For 𝑗𝑜ℎ𝑛 to validate the 𝑝𝑒𝑡𝑂𝑤𝑛𝑒𝑟𝑆ℎ𝑎𝑝𝑒, it is not enough to make explicit in the ontology 
that hamsters are not dangerous animals; it should also be enforced that any possible pet 𝑗𝑜ℎ𝑛 might have cannot be dangerous.

For lightweight DLs, fragments of classical Horn logics that cannot express disjunctive information, universal models can be obtained 
using standard, database-inspired chase procedures. These models can be used for evaluating conjunctive, navigational and graph 
queries in the presence of ontologies, see [8–13] and their references. One of these options, using minimal models of the Skolemnisation 
of the DL ontology, has been advocated for in the case of integrity constraints [6,14]. But even such models give very weak semantics 
in formalisms with negation such as SHACL. Let us for example consider again another version of the toy database containing 
pet owners: assume it contains the facts ℎ𝑎𝑠𝑃 𝑒𝑡(𝑗𝑜ℎ𝑛, 𝑎𝑐𝑒), 𝑃 𝑒𝑡𝑂𝑤𝑛𝑒𝑟(𝑗𝑜ℎ𝑛),𝐻𝑎𝑚𝑠𝑡𝑒𝑟(𝑎𝑐𝑒). It is conceivable to find an axiom like 
𝑃𝑒𝑡𝑂𝑤𝑛𝑒𝑟 ⊑ ∃ℎ𝑎𝑠𝑃 𝑒𝑡.⊤ in the accompanying ontology. Now let the 𝑜𝑛𝑙𝑦𝐻𝑎𝑚𝑠𝑡𝑒𝑟𝑆ℎ𝑎𝑝𝑒 be given by the constraint enforcing all pets 
to be hamsters, 𝑜𝑛𝑙𝑦𝐻𝑎𝑚𝑠𝑡𝑒𝑟𝑆ℎ𝑎𝑝𝑒 ← ∀ℎ𝑎𝑠𝑃 𝑒𝑡.𝐻𝑎𝑚𝑠𝑡𝑒𝑟, which we want to validate for 𝑗𝑜ℎ𝑛. This is clearly the case for the original 
database. It is also true that the given database is already satisfying all given ontology axioms, so it seems there is no reason to change 
the validation result. However, the minimal model under the Skolem semantics adds a fresh node as a ℎ𝑎𝑠𝑃 𝑒𝑡-child of 𝑗𝑜ℎ𝑛, without 
the label 𝐻𝑎𝑚𝑠𝑡𝑒𝑟, changing the validation result to negative.

To obtain stronger and more intuitive semantics, and to avoid the problems presented in the previous example, we advocated in 
[15] for an austere canonical model in which axioms are satisfied minimally, introducing as few successors as possible without losing 
universality. We showed that for ontologies in DL-Lite—the logic underlying OWL 2 QL [16]—such a model can be represented 
by a so-called immediate successor function that describes the minimal set of facts that need to be added to satisfy the axioms at a 
given point of the model construction. The model itself can then be obtained in a deterministic, step-by-step fashion. We extend 
this construction in Section 3 to the significantly more expressive Horn-, one of the largest fragments of OWL that is still 
contained in Horn logic. Crucially, we show that the resulting model is a core in the traditional database sense. This provides strong 
evidence in favour of our chosen semantics, since cores are often advocated as the adequate choice for languages that are not closed 
under homomorphisms, but satisfy the weaker property of being closed under isomorphisms [17–19]. In the light of this relationship, 
our austere model construction provides a novel technique for building core models without the expensive core-checking step of 
traditional core chase procedures. As we point out, the same applies to some previous model constructions from the DL literature 
[11,18].

With our semantics based on austere (i.e., core) models in place, we can tackle the problem of devising an algorithm for validation. 
Constructing the austere model may be infeasible in practice, since it is infinite in general. Instead, we use our finite representation 
of the model. Ideally, we would like to realise validation via rewriting. That is, we want to compile a given ontology and a set of 
SHACL constraints into a new set of SHACL constraints that incorporate the relevant knowledge of the ontology in such a way that 
the implicit facts are taken into account in validation, without having to explicitly add them to the graph. Rewriting techniques 
are very desirable as they open the way to reuse standard SHACL validators to perform validation in the presence of ontologies. 
We use the finite representation of the austere canonical model to construct a complex structure that stores so-called 2-types, which 
intuitively represent an abstract copy of a possible object and its neighbours in the austere model of a given data graph—enriched 
with information about the shapes that are (not) satisfied in implied substructures. This structure is used to induce a modified set 
of SHACL constraints that validate over a given data graph exactly when the original constraints validate over the austere canonical 
model of the input graph and the ontology. We first develop the technique for a positive fragment of SHACL (with minor restrictions) 
and then lift it to the case of stratified SHACL which allows both recursion and negation, but restricts their interaction.1

The contributions of this paper can be summarised as follows:

• In Section 3, we provide a semantics for validating SHACL in presence of ontologies, and argue why it is intuitive. For this, we 
introduce the notion of the austere canonical model, a canonical model which locally does not contain redundant structures, and 
advocate checking for validation over this specific model.

1 The impossibility of such a rewriting for SHACL with negation given in Theorem 4.4 of [6] does not hold, neither for our semantics nor for the 
minimal-model semantics adopted in that work, as acknowledged by the authors in personal communication, and shown by the results of this work.
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• In Section 4, we discuss that, although the austere canonical model may be infinite, we can provide a finite representation in 
the form of the good successor configuration. We show that the result of our construction coincides with the model construction 
proposed in [11] and is indeed universal. Moreover, we show that the local minimality of the austere canonical model suffices for 
global minimality: the austere canonical model is a core, and it is the unique universal core model of the consistent Horn-
TBox.

• In Section 5, we define a fragment of recursive SHACL named stratified SHACL. Our notion of stratification is based on the well-
known class of stratified logic programs [20]. We define a least fixed point semantics for it that coincides with both the stable [21] 
and the well-founded [22] semantics. We also show that our fragment has a rather simple normal form with the same expressivity.

• In Sections 6 and 7, we are able to bring validation over the possibly infinite austere canonical model back to validation of 
a rewritten set of constraints over an enriched ABox. We do this by combining the normal form of stratified SHACL with the 
information captured in the good successor configuration.

• In Section 8, we discuss some techniques to create a pure rewriting of SHACL with ontologies into plain SHACL. One of these 
techniques proposes an extension of SHACL, SHACL𝑏, which also allows to define labels for roles.

• Lastly, in Section 9, we determine the complexity of validating SHACL with ontologies. We find that in presence of Horn-
TBoxes, SHACL validation is ExpTime complete in combined complexity, and PTime complete in data complexity. Moreover, we 
show that validating a very simple fragment of SHACL, simple SHACL, over a rather light (less expressive than DL-Lite) description 
logic ontology already suffices to find ExpTime hardness in combined complexity.

2.  Preliminaries

Data Graphs and Interpretations. Let 𝑁𝐶 , 𝑁𝑅, 𝑁𝐼  and 𝑁𝐵 denote countably infinite, mutually disjoint sets of concept names (also known 
as class names), role names (or, property names), individuals (or, constants), and blank nodes respectively. Let 𝑁𝑅 ∶= {𝑝, 𝑝− ∣ 𝑝 ∈ 𝑁𝑅}
denote roles, and let 𝑁𝐶 ∶= 𝑁𝐶 ∪ {⊤,⊥}. For every 𝑝 ∈ 𝑁𝑅, let (𝑝−)− = 𝑝. For each set of roles 𝑅 ⊆ 𝑁𝑅, set 𝑅− ∶= {𝑟− ∣ 𝑟 ∈ 𝑁𝑅}. An 
atom (or, assertion) is an expression of the form 𝐴(𝑒) or 𝑝(𝑒, 𝑒′), for 𝐴 ∈ 𝑁𝐶 , 𝑝 ∈ 𝑁𝑅 and {𝑒, 𝑒′} ⊆ 𝑁𝐼 ∪𝑁𝐵 . An ABox (or a data graph) 
 is a finite set of atoms such that no blank nodes are used.

An interpretation is a pair  = (Δ , ⋅ ), where Δ is a non-empty set (called domain) and ⋅ is a function that maps every 𝐴 ∈ 𝑁𝐶
to a set 𝐴 ⊆ Δ , every 𝑝 ∈ 𝑁𝑅 to a binary relation 𝑝 ⊆ Δ × Δ , and every individual and blank node 𝑒 ∈ 𝑁𝐼 ∪𝑁𝐵 to an element 
𝑒 ∈ Δ . Let (𝑝−) ∶= {(𝑒′, 𝑒) ∣ (𝑒, 𝑒′) ∈ 𝑝}. We make the standard name assumption, which means 𝑒 = 𝑒 for all interpretations , and 
all 𝑒 ∈ 𝑁𝐼 ∪𝑁𝐵 .

The canonical interpretation  for an ABox  is defined by setting Δ = 𝑁𝐼 ∪𝑁𝐵 , 𝐴 = {𝑐 ∣ 𝐴(𝑐) ∈ } for all 𝐴 ∈ 𝑁𝐶 , 𝑝 =
{(𝑐, 𝑑) ∣ 𝑝(𝑐, 𝑑) ∈ } for all 𝑝 ∈ 𝑁𝑅, and 𝑒 = 𝑒 for every individual or blank node 𝑒 ∈ 𝑁𝐼 ∪𝑁𝐵 . We consider an interpretation to be 
finite whenever 𝐴 and 𝑝 are finite sets, for each 𝐴 ∈ 𝑁𝐶 and 𝑝 ∈ 𝑁𝑅, and only finitely many concepts and roles have a non-empty 
interpretation.

Morphisms. Let  and ′ be sets of atoms. A homomorphism from  to ′ is a function ℎ ∶ Δ → Δ′  such that for all {𝑒, 𝑒′} ⊆
𝑁𝐼 ∪𝑁𝐵 , all 𝐴 ∈ 𝑁𝐶 and all 𝑝 ∈ 𝑁𝑅, (i) if 𝑒 ∈ Δ ∩𝑁𝐼 , then ℎ(𝑒) = 𝑒, (ii) if 𝐴(𝑒) ∈ , then 𝐴(ℎ(𝑒)) ∈ ′, and (iii) if 𝑝(𝑒, 𝑒′) ∈ , then 
𝑝(ℎ(𝑒), ℎ(𝑒′)) ∈ 𝐴′. A homomorphism is called strong if (ii) and (iii) are strengthened to “𝐴(𝑒) ∈  iff 𝐴(ℎ(𝑒)) ∈ ′” and “𝑝(𝑒, 𝑒′) ∈ 
iff 𝑝(ℎ(𝑒), ℎ(𝑒′)) ∈ 𝐴′”, respectively. An embedding is a strong injective homomorphism, an isomorphism is a surjective embedding and 
an endomorphism of  is a homomorphism from  to itself.

Syntax and Semantics of normalised Horn-. Given a set 𝑀 = {𝑀0,… ,𝑀𝑘} consisting of only concept or role names, let 
⨅

𝑀 ∶=𝑀0 ⊓… ⊓𝑀𝑘. (𝑋) denotes the power set of 𝑋. For a tuple ⃗𝑥 = (𝑥1,… , 𝑥𝑛) and 1 ≤ 𝑗 ≤ 𝑛, we let 𝜋𝑖(𝑥⃗) = 𝑥𝑖 be its 𝑖th projection.
In a normalised Horn- TBox   each concept inclusion takes one of the following forms:

(F1) 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵 (F3) 𝐴 ⊑ ∀𝑟.𝐵

(F2) 𝐴 ⊑ ≤1𝑟.𝐵 (F4) 𝐴 ⊑ ∃𝑟.𝐵

for {𝐴,𝐴0,… , 𝐴𝑛, 𝐵} ⊆ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅. Furthermore,   may contain role inclusions of the form 𝑟 ⊑ 𝑟′, for {𝑟, 𝑟′} ⊆ 𝑁𝑅. For more 
details and a discussion regarding going beyond normalised Horn-, we refer the reader to Section 10.

The semantics of normalised Horn- is defined in terms of interpretations : a role or concept inclusion axiom 
𝐶 ⊑ 𝐷 is satisfied whenever 𝐶 ⊆ 𝐷 . To this end, the interpretation function is extended in the following way: ⊤ ∶= Δ , ⊥ ∶=
∅, (𝐴0 ⊓… ⊓ 𝐴𝑛) ∶= 𝐴

0 ∩… ∩ 𝐴
𝑛 , (≤1𝑟.𝐵) ∶= {𝑒 ∈ Δ ∣ |{𝑒′ ∈ Δ ∣ (𝑒, 𝑒′) ∈ 𝑟 , 𝑒′ ∈ 𝐵}| ≤ 1}, (∀𝑟.𝐵) ∶= {𝑒 ∈ Δ ∣ ∀𝑒′ ∈ Δ .(𝑒, 𝑒′) ∈

𝑟 → 𝑒′ ∈ 𝐵}, (∃𝑟.𝐵) ∶= {𝑒 ∈ Δ ∣ ∃𝑒′ ∈ Δ .(𝑒, 𝑒′) ∈ 𝑟 ∧ 𝑒′ ∈ 𝐵}. We say a TBox   is satisfied in  if all its axioms are satisfied. In 
that case, we say  is a model of  . To denote logical entailment, we may write  ⊧ 𝛾 if every model of the TBox   is also a model of 
𝛾 (where the latter may be any inclusion, a TBox, or an ABox). We call the combination of a Horn- TBox   and any ABox 
 a Horn- knowledge base ( ,). We say that  is consistent with   (or, that ( ,) is consistent) if there is a model of 
and  .

We call an interpretation  a universal model (of a knowledge base ( ,)) whenever  is a model of ( ,) and there exists a 
homomorphism of  into any model of ( ,). Every consistent ( ,) has a universal model [23]. Moreover, the universal model of 
( ,) coincides with the universal model of ( 𝑝𝑜𝑠,), where  𝑝𝑜𝑠 contains all axioms in   that do not contain ⊥. Therefore, we may 
assume that there are no occurrences of ⊥ if ( ,) is consistent.
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Fig. 1. Evaluating shape expressions.

Regular Path Expressions. Let 𝐸 be any regular expression over some alphabet Σ, and 𝐿𝐸 the language defined by some regular 
expression 𝐸. We say 𝐸 is a regular path expression, if Σ = 𝑁𝑅. For each interpretation  and each regular path expression 𝐸 over the 
alphabet 𝑁𝑅, set (𝑒, 𝑒′) ∈ 𝐸 if there exists 𝑟0 ⋯ 𝑟𝑛 ∈ 𝐿𝐸 and {𝑒1,… , 𝑒𝑛} ⊆ Δ such that (𝑒, 𝑒1) ∈ 𝑟0 , (𝑒𝑛, 𝑒′) ∈ 𝑟𝑛  and for all 1 ≤ 𝑖 ≤ 𝑛 − 1, 
(𝑒𝑖, 𝑒𝑖+1) ∈ 𝑟𝑖 .

Furthermore, for each language 𝐿𝐸 , there exists a non-deterministic finite automaton  = (𝑄,Σ, 𝑞𝐼 ,Δ, 𝑞𝐹 ) that accepts exactly 
all words in 𝐿𝐸 . Here 𝑄 is a set of states, Σ the alphabet, {𝑞𝐼 , 𝑞𝐹 } ⊆ 𝑄 the initial and final state, and Δ ⊆ 𝑄 × Σ ×𝑄 the transition 
relation. In this case, we say  recognises 𝐿𝐸 .

Non-Recursive Shape Constraint Language (SHACL). We define shape expressions, following [24], in the following way 
𝜑 ∶∶= 𝑐 ∣ 𝐴 ∣ ⊤ ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 𝜑 ∨ 𝜑 ∣ ∃≥𝑛𝐸.𝜑 ∣ 𝖾𝗊(𝐸, 𝑟) ∣ 𝖽𝗂𝗌𝗃(𝐸, 𝑟) ∣ 𝖼𝗅𝗈𝗌𝖾𝖽(𝑅),

where 𝑐 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 , 𝑛 ≥ 1, 𝑅 a finite subset of 𝑁𝑅 and 𝐸 a regular path expression. We use ⊤ as a shorthand for 𝐴 ∨ ¬𝐴, for some 
concept name 𝐴 ∈ 𝑁𝐶 . As we impose restrictions on the use of negation later in this work, we add 𝜑 ∨ 𝜑 and 𝜑 ∧ 𝜑 explicitly to the 
syntax.

Given an interpretation , we say a node 𝑒 ∈ 𝑁𝐼 ∪𝑁𝐵 validates a shape expression 𝜑, if 𝑒 ∈ (𝜑), where (𝜑) is inductively defined 
in Fig. 1. Furthermore, let  be a set of targets of the form 𝜑(𝑐) or 𝜑(𝐴), where 𝜑 is a shape expression, 𝑐 ∈ 𝑁𝐼  and 𝐴 ∈ 𝑁𝐶 . Given 
an interpretation , we say  validates  if for all 𝜑(𝑐) ∈ , we find 𝑐 validates 𝜑, and for all 𝜑(𝐴) ∈ , if 𝑐 ∈ 𝐴 , then 𝑐 validates 𝜑. 
Considering readability, we will also write  validates , for any set of atoms , instead of using the canonical interpretation .

In this definition, we do not allow shape names in shape expressions, as introduced in Section 5. This makes SHACL non-recursive
and allows for the simple semantics we define above. In general, SHACL allows shape names in shapes expressions and may be 
recursive, in which case there is no unique accepted semantics [21,22,25]. For simplicity, we formulate all the results in Sections 3 
and 4 for non-recursive SHACL. However, the results and definitions can be directly applied to recursive SHACL under all the semantics 
considered in [21,22,25]. Starting from Section 5, we concentrate on a recursive form of SHACL, stratified SHACL, extending the 
work presented in [15]. The fragment we study in this work is not the full stratified, recursive version; it lacks counting quantifiers 
and the closed-operator, and only treats a guarded version of disjointness and equality. This is discussed in more detail in Sections 5 
and 10. Removing these constraints leads to new interesting problems we leave for future work.

3.  Validation with ontologies

In this section we propose a semantics for SHACL validation in the presence of a Horn- ontology. More precisely, for a 
given TBox  , an ABox , and a set of targets , we aim to define when ( ,) validates . A natural first idea would be to follow 
the usual open-world semantics of Horn- and check validation on all models of  and  . While this works well for positive 
constraints, it does not yield a natural semantics in the presence of negation, as illustrated in the following simple example.
Example 3.1. Consider the ABox  consisting of the facts ℎ𝑎𝑠𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑏𝑙𝑢), 𝐵𝑖𝑟𝑑(𝑏𝑙𝑢), an empty TBox   and the target 𝜑(𝑙𝑖𝑛𝑑𝑎) such 
that 𝜑 is given by 

𝜑 = ∃ℎ𝑎𝑠𝑃 𝑒𝑡.¬𝐷𝑜𝑔.

Naturally,  validates , as 𝑙𝑖𝑛𝑑𝑎 indeed validates 𝜑, which corresponds to having a pet that is not a dog. Note that since we have an 
empty TBox, we would like to be in the usual setting of validation here. That is, one would expect ( ,) to validate . However, if 
we consider all possible models of ( ,), we find non-validation: the case in which 𝑏𝑙𝑢 is both a 𝐵𝑖𝑟𝑑 and a 𝐷𝑜𝑔 is also a model of 
( ,). This shows that the certain answer semantics, guaranteeing validation in all models, is not always meaningful in the presence 
of negation. ♡

The above example illustrates the problem of finding an intuitive semantics for shape expressions, or, on the same note, queries, 
with negation. Similar issues show up in shape expressions containing a more hidden form of negation, like equality, disjointness 
and the closed-operator. Also counting quantifiers have the capability of distinguishing between different universal models. Roughly 
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Fig. 2. Result of oblivious or Skolem chase (left) and austere canonical model (right). We use hasWP and hasP as a shorthand for hasWingedPet 
and hasPet.

speaking, adding facts to the data may cause a previously validated setting to become invalid. To this end, we aim at an intuitive 
semantics that coincides with the usual validation in case the TBox is empty, but also lets the TBox axioms influence the validation 
results in the relevant cases. As done in related settings (see e.g., [14,18,26]) we rely on the chase procedure [27] known from 
Knowledge Representation and Database Theory. The idea is that a chase procedure takes as input an ABox and TBox and iteratively 
applies the axioms of the TBox to the data by adding atoms over possibly fresh individuals until all the axioms in the TBox are 
satisfied. The result of the chase is a so-called canonical or universal model. Since there exists a homomorphism of all models of this 
type into every other model of the ABox and TBox, a canonical model is often used as a representative of all models.

There are several chase variants producing canonical models with different properties [26]. While for positive shape expressions 
these differences do not lead to different validation results, shape expressions using negation can distinguish between them. Thus, 
the semantics we propose is based on a particular variant of the set of universal models, based on local minimality. The idea is to 
avoid redundant structures as much as we can: as illustrated in the next example, we do not wish to assume the existence of a second 
pet of 𝑙𝑖𝑛𝑑𝑎 if there is no need for this assumption. At the same time, we do not want to give up on the model being universal. This 
specific model, the austere canonical model, will be constructed in the rest of this section.

In the following example, we show that shape expressions with negation can indeed distinguish between different universal 
models, and illustrate how the austere canonical model does not have the redundant structures that may appear in other universal 
models.

Example 3.2. Consider the ABox  = {𝑃𝑒𝑡𝑂𝑤𝑛𝑒𝑟(𝑙𝑖𝑛𝑑𝑎), ℎ𝑎𝑠𝑊 𝑖𝑛𝑔𝑒𝑑𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑏𝑙𝑢), 𝐵𝑖𝑟𝑑(𝑏𝑙𝑢)} and the following three axioms:

𝑃𝑒𝑡𝑂𝑤𝑛𝑒𝑟 ⊑ ∃ℎ𝑎𝑠𝑃 𝑒𝑡, ℎ𝑎𝑠𝑊 𝑖𝑛𝑔𝑒𝑑𝑃 𝑒𝑡 ⊑ ℎ𝑎𝑠𝑃 𝑒𝑡,

𝑃 𝑒𝑡𝑂𝑤𝑛𝑒𝑟 ⊑ ∃ℎ𝑎𝑠𝑊 𝑖𝑛𝑔𝑒𝑑𝑃 𝑒𝑡.

The austere canonical model (right in Fig. 2) will only add a ℎ𝑎𝑠𝑃 𝑒𝑡-role from 𝑙𝑖𝑛𝑑𝑎 to 𝑏𝑙𝑢𝑒, as we will see below. In contrast, the 
canonical model obtained from the oblivious chase or Skolem chase (left in Fig. 2) will introduce two fresh objects to satisfy the two 
axioms with existential restrictions.

When graphically representing interpretations, domain objects are written in rectangular boxes (individuals in red and blank 
nodes in orange boxes), followed by a semicolon and the concept names in whose interpretations it participates, if any. Roles are 
depicted as labelled arrows.

Now let us consider the same shape expression and target as in the previous example: 𝜑 = ∃ℎ𝑎𝑠𝑃 𝑒𝑡.¬𝐵𝑖𝑟𝑑} and  = {𝜑(𝑙𝑖𝑛𝑑𝑎)}. The 
target asks to validate whether 𝑙𝑖𝑛𝑑𝑎 has a pet that is not a bird. Clearly, the austere canonical model provides the expected answer, 
as it does not validate . In contrast, the canonical model on the left-hand-side of the figure, also the semantics of [14] adopted for 
SHACL in [6], results in the unintended validation of (,). ♡

In the rest of this section, we will make the above precise.

3.1.  Good successor configuration

To capture local minimality, we define the auxiliary notion of the good successor configuration. It determines, for each point 𝑒 in 
a model, the set of fresh successor individuals and the roles connecting them to 𝑒 in the austere canonical model, together with the 
concepts that must hold at 𝑒. To describe the good successor configuration, we use 2-types, 1½-types and 1-types. We say 𝑡 is a 2-type 
if 𝑡 ∈ (𝑁𝐶 ) × (𝑁𝑅) × (𝑁𝐶 ). Similarly, we let 𝑢 be a 1½-type in case 𝑢 ∈ (𝑁𝑅) × (𝑁𝐶 ). A 2-type describes a pair of nodes and 
the roles between them, while a 1½-type describes a set of roles leading to one node. A 1-type 𝑐 ∈ (𝑁𝐶 ) is simply a set of concept 
names. Furthermore, we define the inverse function 𝑖𝑛𝑣 mapping a 2-type to a 2-type by setting 𝑖𝑛𝑣(𝑡) ∶= (𝜋3(𝑡), (𝜋2(𝑡))−, 𝜋1(𝑡)).

To understand the good successor configuration, assume we are building a model in a chase-like step-by-step manner. We want 
to introduce the children that a node 𝑐 needs to satisfy the TBox. Let 𝑐1,… , 𝑐𝑛 be the neighbours that 𝑐 already has (either multiple 
neighbours already given in the ABox, or the one single neighbour/parent 𝑐1 has in the anonymous part). We use a set 𝐹  of 2-types 
to describe 𝑐 and its environment as follows. For each 𝑐𝑖, some type 𝑡𝑖 ∈ 𝐹  describes 𝑐 in relation to 𝑐𝑖: (i) 𝜋1(𝑡𝑖) is the 1-type of 𝑐, that 
is, the concept names whose interpretations contain 𝑐, (ii) 𝜋3(𝑡𝑖) is the 1-type of 𝑐𝑖, and (iii) 𝜋2(𝑡𝑖) contains all role names connecting 
𝑐 and 𝑐𝑖. Note that, by item (i), 𝜋1(𝑡𝑖) = 𝜋1(𝑡𝑗 ) for all {𝑡𝑖, 𝑡𝑗} ⊆ 𝐹 . The good successor configuration succ , which is defined in the 
following definition, is a function that takes such an 𝐹 , and returns the description of the children that 𝑐 needs to satisfy all axioms 
in  , as a set of 1½-types: we will add a new blank node 𝑑𝑖 for each 𝑢𝑖 ∈ succ (𝐹 ); 𝑑𝑖 will be connected to 𝑐 via the roles in 𝜋1(𝑢𝑖), 
and have 1-type 𝜋2(𝑢𝑖).
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Fig. 3. Given the TBox   as in Example 3.4, the good successor configurations for the sets of 2-types 𝐹 = {({𝐵0, 𝐵1}, {𝑟1}, {𝐴2}), ({𝐵0, 𝐵1}, {𝑟1}, {𝐴2})}
and 𝐹 ′ = {({𝐵0, 𝐵1}, {𝑟1, 𝑟2}, {𝐴2})}, are succ (𝐹 ) = {({𝑟0, 𝑟1}, {𝐴0, 𝐴1}), ({𝑟2}, {𝐴2})} and succ (𝐹 ′) = {({𝑟0, 𝑟1}, {𝐴0, 𝐴1})}.

However, the good successor configuration does not just take specific neighbourhoods of the nodes in some database as input; 
it is defined for all possible 𝐹 ’s. This makes the good successor configuration data independent. Thus, when determining the data 
complexity of any algorithm using the good successor configuration, its size does not have to be considered.

Moreover, the following definition defines a unique set of 1½-types; this is proven at the end of this subsection. Finally, note that 
we use expressions of the form ∃(⨅𝑅).

⨅

𝑁 below, for 𝑅 ⊆ 𝑁𝑅, 𝑁 ⊆ 𝑁𝐶 with the following semantics:
(∃(

⨅

𝑅).
⨅

𝑁) ∶= {𝑒 ∈ Δ ∣ ∃𝑒′ ∈ Δ∀𝑟 ∈ 𝑅.(𝑒, 𝑒′) ∈ 𝑟 ∧ 𝑒′ ∈ (
⨅

𝑁)}.

Definition 3.3. Given a normalised Horn- TBox   and set of 2-types 𝐹  such that 𝜋1(𝑡) = 𝜋1(𝑡′) for all {𝑡, 𝑡′} ⊆ 𝐹 , the good 
successor configuration succ (𝐹 ) is a possibly empty set of 1½-types 𝑢 such that:

(R1) If (i) 𝑀 ⊆ 𝜋1(𝑡) for some 𝑡 ∈ 𝐹 , (ii)  ⊧
⨅

𝑀 ⊑ ∃(
⨅

𝑅).
⨅

𝑁 for some 𝑁 ⊆ 𝑁𝐶 , 𝑅 ⊆ 𝑁𝑅, and (iii) for all 𝑡 ∈ 𝐹 , 𝑅 ⊈ 𝜋2(𝑡) or 
𝑁 ⊈ 𝜋3(𝑡), then there exists 𝑢 ∈ succ (𝐹 ) such that 𝑅 ⊆ 𝜋1(𝑢) and 𝑁 ⊆ 𝜋2(𝑢);

(R2) If 𝑢 ∈ succ (𝐹 ), then there exist 𝑀 ⊆ 𝜋1(𝑡) for some 𝑡 ∈ 𝐹 , such that  ⊧
⨅

𝑀 ⊑ ∃(
⨅

𝜋1(𝑢)).
⨅

𝜋2(𝑢);
(R3) There does not exist {𝑢, 𝑢′} ⊆ succ (𝐹 ) with 𝑢 ≠ 𝑢′ such that 𝜋1(𝑢) ⊆ 𝜋1(𝑢′) and 𝜋2(𝑢) ⊆ 𝜋2(𝑢′);
(R4) If 𝑢 ∈ succ (𝐹 ), then 𝜋1(𝑢) ⊈ 𝜋2(𝑡) or 𝜋2(𝑢) ⊈ 𝜋3(𝑡), for all 𝑡 ∈ 𝐹 .

A child of a 2-type 𝑡 is a 2-type 𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑡) such that 𝜋1(𝑡′) = 𝜋3(𝑡) and (𝜋2(𝑡′), 𝜋3(𝑡′)) ∈ succ (𝑖𝑛𝑣(𝑡)).
For readability, we define the good successor configuration of a single type as the good successor configuration of the set containing 

only this type.
As mentioned, the good successor configuration focusses on checking which axioms are not yet satisfied in the context described 

by 𝐹 . For each such unsatisfied axiom (R1) implies the existence of a child 𝑑𝑖 represented by some 𝑢𝑖 that ensures the satisfaction of 
the axiom. (R2) represents the other direction: for each child 𝑑𝑖, there must exist an axiom implying the information in the 1½-type 
𝑢𝑖. Lastly, (R3) and (R4) check whether there are no superfluous children: they enforce we do not add two children 𝑑𝑖 and 𝑑𝑗 such 
that all information about 𝑑𝑖 is subsumed by 𝑑𝑗 , or a child 𝑑𝑖 that is already subsumed by the environment described in 𝐹 . We will 
use these properties extensively in Section 5 to prove that the austere canonical model is in fact a core.

In the following example, we compute the good successor configuration for a concrete case.
Example 3.4. Consider the axioms below, together forming the TBox  .

(T1) 𝐵0 ⊑ ∃𝑟0.𝐴0 (T5) 𝑟0 ⊑ 𝑟1
(T2) 𝐵0 ⊑ ∃𝑟1.𝐴1 (T6) 𝐵1 ⊑ ∃𝑟2.⊤

(T3) 𝐵1 ⊑ ≤1𝑟1.𝐴1 (T7) 𝐵0 ⊑ ∀𝑟2.𝐴2

(T4) 𝐴0 ⊑ 𝐴1

We want to compute the good successor configuration for the following sets of 2-types: 𝐹 =
{({𝐵0, 𝐵1}, {𝑟1}, {𝐴2}), ({𝐵0, 𝐵1}, {𝑟1}, {𝐴2})} and 𝐹 ′ = {({𝐵0, 𝐵1}, {𝑟1, 𝑟2}, {𝐴2})}.

First, note that (T1–5) together lets us conclude  ⊧ 𝐵0 ⊓ 𝐵1 ⊑ ∃(𝑟0 ⊓ 𝑟1).(𝐴0 ⊓ 𝐴1). Moreover, combining (T6) and (T7) gives 
us  ⊧ 𝐵0 ⊓ 𝐵1 ⊑ ∃𝑟2.𝐴2. Thus, by (R1), we find that there must exist {𝑢, 𝑢′} ⊆ succ (𝐹 ) such that {𝑟0, 𝑟1} ⊆ 𝜋1(𝑢), {𝐴0, 𝐴1} ⊆ 𝜋2(𝑢), 
{𝑟2} ⊆ 𝜋1(𝑢′) and {𝐴2} ⊆ 𝜋2(𝑢′). Note that considering 𝜋1(𝑢) = {𝑟0, 𝑟1}, 𝜋2(𝑢) = {𝐴0, 𝐴1}, 𝜋1(𝑢′) = {𝑟2} and 𝜋2(𝑢′) = {𝐴2} suffices, as we 
know that these are the axioms carrying most information that can be derived. It is easy to check that indeed succ (𝐹 ) = {𝑢, 𝑢′}; see 
also Fig. 3.

For computing the good successor configuration of 𝐹 ′, we can mostly follow the above strategy. However, 𝑢′ cannot be added by 
(R1), as 𝑢′ is already contained in the environment described by 𝐹 ′. This does not hold for 𝑢, so it is easy to check that succ (𝐹 ′) = {𝑢}. 
♡

Essential to the rest of this article is the uniqueness and existence of the good successor configuration. This implies that the 
construction described in the next chapter creates a unique structure.
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Proposition 3.5. Given a normalised Horn- TBox  , for each set of 2-types 𝐹 , such that 𝜋1(𝑡) = 𝜋1(𝑡′) for all {𝑡, 𝑡′} ⊆ 𝐹 , there 
exists a unique good successor configuration 𝑠𝑢𝑐𝑐 (𝐹 ).
Proof.  To show uniqueness, suppose for a given set of 2-types 𝐹 , such that 𝜋1(𝑡) = 𝜋1(𝑡′) for all {𝑡, 𝑡′} ⊆ 𝐹 , there exist two good 
successor configurations 𝑈 ≠ 𝑈 ′. W.l.o.g., assume that there exists 𝑢 ∈ 𝑈 , such that 𝑢 ∉ 𝑈 ′. By (R2), we know that there exists 𝑀 ⊆
𝜋1(𝑡) for some 𝑡 ∈ 𝐹  such that  ⊧

⨅

𝑀 ⊑ ∃(
⨅

𝜋1(𝑢)).
⨅

𝜋2(𝑢). Moreover, by (R4), we can conclude that 𝜋1(𝑢) ⊈ 𝜋2(𝑡) or 𝜋2(𝑢) ⊈ 𝜋3(𝑡)
for all 𝑡 ∈ 𝐹 , so we can apply rule (R1) with respect to 𝑈 ′: there must exist 𝑢′ ∈ 𝑈 ′ such that 𝜋1(𝑢) ⊆ 𝜋1(𝑢′) and 𝜋2(𝑢) ⊆ 𝜋2(𝑢′). By 
similar reasoning, we find that there must exist 𝑢′′ ∈ 𝑈 such that 𝜋1(𝑢′) ⊆ 𝜋1(𝑢′′) and 𝜋2(𝑢′) ⊆ 𝜋2(𝑢′′). Combining this with (R4), we 
find that 𝜋1(𝑢) = 𝜋1(𝑢′′) and 𝜋2(𝑢) = 𝜋2(𝑢′′), from which we derive that 𝑢 ∈ 𝑈 ′, which is a contradiction. Thus, 𝑈 = 𝑈 ′. For existence, 
note that we can first add all possible 1½-types that are not eliminated by (R2). It follows that (R1) is clearly satisfied. Then, remove 
all 1½-types that are eliminated because of (R3) or (R4). ♣

By using the inference rules from Table 2 in [11], combined with the approach described in this proof, it becomes clear that the 
good successor configuration can actually be computed.

3.2.  Austere canonical model

The good successor configuration locally describes how to satisfy the TBox axioms based on some incentives; minimality and 
universality. Before we use it as a building block in the austere canonical model, we first want to complete  under all but the 
axioms with existential restrictions. We will use the notation   for this completed ABox, which is in fact the least fixed point of an 
immediate consequence operator, a monotone function. Note that a function 𝑓 is monotone if 𝑥 ⊆ 𝑦 implies 𝑓 (𝑥) ⊆ 𝑓 (𝑦). The point of 
this operator is to mimic firing the axioms without existential restrictions as soon as they become applicable. We perform the least 
fixed point starting from a non-empty set: the ABox. This is made precise in the following definitions.

Definition 3.6. Let 𝑋 be any set and 𝑇 ∶ 𝑋 → 𝑋 be any monotone function, which we will call an immediate consequence operator, 
define for any 𝑆 ⊆ 𝑋, 𝑇 ↑𝜔 (𝑆) as follows:

1. 𝑇 ↑0 (𝑆) ∶= 𝑆,
2. 𝑇 ↑𝑛+1 (𝑆) ∶= 𝑇 (𝑇 ↑𝑛 (𝑆)) for 𝑛 ≥ 0, and
3. 𝑇 ↑𝜔 (𝑆) ∶=

⋃∞
𝑛=0 𝑇 ↑𝑛 (𝑆).

Definition 3.7  (Completion  ). Given a normalised Horn- TBox  , define an immediate consequence operator 𝑇  that 
maps a set of atoms 𝑋 to a set of atoms as follows:

𝑇 (𝑋) ∶= 𝑋∪{𝐵(𝑎) ∣ {𝐴0(𝑎),… , 𝐴𝑛(𝑎)} ⊆ 𝑋,  ⊧ 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵}

∪{𝐵(𝑎) ∣ {𝑟(𝑏, 𝑎), 𝐴(𝑏)} ⊆ 𝑋,𝐴 ⊑ ∀𝑟.𝐵 ∈  }

∪{𝑟(𝑎, 𝑏) ∣ 𝑟′(𝑎, 𝑏) ∈ 𝑋,  ⊧ 𝑟′ ⊑ 𝑟}

∪{𝑟(𝑏, 𝑎) ∣ 𝑟′(𝑎, 𝑏) ∈ 𝑋,  ⊧ 𝑟′ ⊑ 𝑟−}

∪{𝐵𝑖(𝑏) ∣ {𝐴(𝑎), 𝐴1(𝑎),… , 𝐴𝑛(𝑎), 𝑟(𝑎, 𝑏), 𝐵(𝑏)} ⊆ 𝑋,𝐴 ⊑ ≤1𝑟.𝐵 ∈  ,

 ⊧ 𝐴1 ⊓… ⊓ 𝐴𝑛 ⊑ ∃(𝑟1 ⊓… ⊓ 𝑟𝑚).𝐵1 ⊓… ⊓ 𝐵𝑚, 𝐴 = 𝐴𝑗 , 𝑟 = 𝑟𝑘 for some 𝑗, 𝑘}
∪{𝑟𝑖(𝑎, 𝑏) ∣ {𝐴(𝑎), 𝐴1(𝑎),… , 𝐴𝑛(𝑎), 𝑟(𝑎, 𝑏), 𝐵(𝑏)} ⊆ 𝑋,𝐴 ⊑ ≤1𝑟.𝐵 ∈  ,

 ⊧ 𝐴1 ⊓… ⊓ 𝐴𝑛 ⊑ ∃(𝑟1 ⊓… ⊓ 𝑟𝑚).𝐵1 ⊓… ⊓ 𝐵𝑚, 𝐴 = 𝐴𝑗 , 𝑟 = 𝑟𝑘 for some 𝑗, 𝑘}.
Given any ABox , let 𝑁𝐼 () be the set of individuals occurring in . We set 𝐴(𝑎) ∈   and 𝑟(𝑎, 𝑏) ∈  , iff 𝐴(𝑎) ∈ 𝑇 ↑𝜔 (), 
respectively 𝑟(𝑎, 𝑏) ∈ 𝑇 ↑𝜔 (), for all 𝐴 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅, {𝑎, 𝑏} ⊆ 𝑁𝐼 (). 

It can be verified how the rules in this definition mimic the completion rules for ABoxes under Horn- ontologies in [11].

Example 3.8.  Let  = {𝐵0(𝑎), 𝑟0(𝑎, 𝑏), 𝑟2(𝑎, 𝑏), 𝐴0(𝑏)} and   as in Example 3.4. Then  =  ∪ {𝑟1(𝑎, 𝑏), 𝐴1(𝑏), 𝐴2(𝑏)}. ♡

Now we are ready to define the austere canonical model. In this model, we use words to represent the elements in the anonymous 
parts of the model: the first letter corresponds to an individual in the data graph, followed by a letter for each node connecting the 
named node to the data graph. Thus, the length of the word naming an anonymous node indicates its ‘distance’ from the data graph. 
We mainly use this distance in the next section in which we discuss the relation to core models.

Definition 3.9. Let ( ,) be a normalised Horn- knowledge base, and let 𝑁( ,) ⊆ 𝑁𝐵 be the set of finite words of the 
form 𝑎𝑘1 … 𝑘𝑛, with 𝑎 ∈ 𝑁𝐼 () such that for all 1 ≤ 𝑖 ≤ 𝑛, 𝑘𝑖 is a 2-type such that the following hold:

1. 𝜋1(𝑘1) = {𝐴 ∣ 𝐴(𝑎) ∈  } and (𝜋2(𝑘1), 𝜋3(𝑘1)) ∈ succ (𝑇𝑎), for
𝑇𝑎 = {({𝐴 ∣ 𝐴(𝑎) ∈  }, ∅, ∅)} ∪

⋃

𝑏∈𝑁𝐼 ,𝑟(𝑎,𝑏)∈

{({𝐴 ∣ 𝐴(𝑎) ∈  }, {𝑟 ∣ 𝑟(𝑎, 𝑏) ∈  }, {𝐴 ∣ 𝐴(𝑏) ∈  })};

2. for every 1 ≤ 𝑖 < 𝑛, 𝑘𝑖+1 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑘𝑖).
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We use 𝑡𝑎𝑖𝑙(𝑤) to denote the last 2-type 𝑘𝑛 in, and |𝑤| = 𝑛 + 1 as the length of a word 𝑤 ∈ 𝑁( ,) of the form 𝑎𝑘1 … 𝑘𝑛.
The austere canonical model 𝑐𝑎𝑛( ,) of a normalised Horn- knowledge base ( ,) is the interpretation 𝑐𝑎𝑛( ,) with 

domain Δ𝑐𝑎𝑛( ,) ∶= 𝑁𝐼 () ∪𝑁( ,) such that for all 𝑎 ∈ 𝑁𝐼 (), concept names 𝐴 and roles 𝑟, the following hold:

𝑎𝑐𝑎𝑛( ,) ∶= 𝑎

𝐴𝑐𝑎𝑛( ,) ∶= {𝑎 ∈ 𝑁𝐼 ∣ 𝐴(𝑎) ∈  } ∪ {𝑤 ∈ 𝑁( ,) ∣ 𝐴 ∈ 𝜋3(𝑡𝑎𝑖𝑙(𝑤))}

𝑟𝑐𝑎𝑛( ,) ∶= {(𝑎, 𝑏) ∈ 𝑁𝐼 ×𝑁𝐼 ∣ 𝑟(𝑎, 𝑏) ∈  }} ∪ {(𝑤1, 𝑤2) ∈ (𝑁𝐼 ∪𝑁( ,)) ×𝑁( ,) ∣ 𝑤2 = 𝑤1𝑘, 𝑟 ∈ 𝜋2(𝑘)}∪

{(𝑤2, 𝑤1) ∈ (𝑁𝐼 ∪𝑁( ,)) ×𝑁( ,) ∣ 𝑤2 = 𝑤1𝑘, 𝑟
− ∈ 𝜋2(𝑘)}.

This is illustrated in the following example.
Example 3.10.  Let  = {𝐵0(𝑎), 𝐵1(𝑎), 𝑟1(𝑎, 𝑏), 𝑟1(𝑎, 𝑐), 𝐴2(𝑏), 𝐴2(𝑐)} and suppose   contains the same axioms as in Example 3.4. We 
find that  = , as none of the axioms there can derive any new information about ABox individuals.

Now consider the set 𝐹𝑎 = {({𝐵0, 𝐵1}, {𝑟1}, {𝐴2}), ({𝐵0, 𝐵1}, {𝑟1}, {𝐴2})}, based on the neighbours of 𝑎. The good successor config-
uration of this set has already been computed in 3.4: succ (𝐹𝑎) = {𝑢, 𝑢′}, where 𝑢 = ({𝑟0, 𝑟1}, {𝐴0, 𝐴1}) and 𝑢′ = ({𝑟2}, {𝐴2}). Following 
the definition of the austere canonical model, we find {𝑎𝑡, 𝑎𝑡′} ⊆ 𝑁( ,), for 𝑡 = ({𝐵0, 𝐵1}, 𝜋1(𝑢), 𝜋2(𝑢)) and 𝑡′ = ({𝐵0, 𝐵1}, 𝜋1(𝑢′), 𝜋2(𝑢′)). 
Now we can read off the structure of the anonymous part of the constructed model: we find for instance that (𝑎, 𝑎𝑡) ∈ 𝑟𝑐𝑎𝑛( ,)

0  and 
𝑎𝑡 ∈ 𝐴𝑐𝑎𝑛( ,)

0 . ♡

For a consistent knowledge base ( ,), the austere canonical model 𝑐𝑎𝑛( ,) exists and is unique, which follows directly from 
the uniqueness and existence of the good successor configuration and  .

Note that the austere canonical model coincides with the result of the model construction presented in [11]. In that construction, 
is first closed2 under all implied axioms, except for the ones with existential restrictions, followed by applying all so-called ‘maximal’ 
axioms with existential restrictions in a chase like manner whenever applicable. To see the correspondence with our construction, it 
suffices to check that Definition 3.7 formalises the first step, whilst the good successor configuration captures exactly the ‘maximality’ 
of axioms in (R3) and the applicability in (R3) and (R4).
Corollary 3.11. For each normalised Horn- knowledge base ( ,), 𝑐𝑎𝑛( ,) is (i) a model of ( ,) that is (ii) universal.

This result follows directly from Proposition 5.4 in [11] and justifies the name ‘canonical’ we gave to our construction. Finally, 
we define SHACL validation with Horn- as validation of SHACL over the austere canonical model.
Definition 3.12  (Validation with Horn-). Given a normalised Horn- knowledge base ( ,) and a set of targets 
, we say ( ,) validates  if 𝑐𝑎𝑛( ,) validates . 

In general, given any semantics for SHACL validation, we define the semantics of SHACL validation with Horn- on-
tologies, as validation of SHACL over the austere canonical model. In particular, this approach will be used for stratified SHACL, a 
fragment of recursive SHACL. We refer the reader to Section 5 for more details.

4.  Finite and infinite cores

In database theory, the property of an interpretation or structure being a core is well studied. It is a property that ultimately 
represents the lack of redundant structures. Therefore, this property is not only nice to have, but particularly relevant in our setting. 
In fact, we will show that the austere canonical model is a core. Before we get there, we first provide the required theoretical 
background.

To start, we say an interpretation  is a core if each endomorphism of  is an embedding. That is, each homomorphism of  into 
itself is both strong and injective. The core of a set of atoms  is a set of atoms  ⊆ , such that (i) there exists an endomorphism ℎ
from  to , (ii)  is the restriction to the image of ℎ, and (iii)  is a core. We write  𝑐𝑜𝑟𝑒

←←←←←←←←←←←←←←←←→ . Each finite set of atoms has a core 
that is unique up to isomorphism [28].
Example 4.1.  Recall Fig. 2, which illustrates the results of the oblivious chase and the austere canonical model of some given 
knowledge base. The oblivious chase model is the following set of facts:

𝑋 = {𝑃𝑒𝑡𝑂𝑤𝑛𝑒𝑟(𝑙𝑖𝑛𝑑𝑎), 𝐵𝑖𝑟𝑑(𝑏𝑙𝑢), ℎ𝑎𝑠𝑊 𝑖𝑛𝑔𝑒𝑑𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎,𝑏𝑙𝑢), ℎ𝑎𝑠𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑏𝑙𝑢),

ℎ𝑎𝑠𝑊 𝑖𝑛𝑔𝑒𝑑𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑏), ℎ𝑎𝑠𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑏), ℎ𝑎𝑠𝑃 𝑒𝑡(𝑙𝑖𝑛𝑑𝑎, 𝑐)}

where 𝑏 and 𝑐 are unknown individuals, i.e., elements of the set 𝑁𝐵 , whereas {𝑙𝑖𝑛𝑑𝑎, 𝑏𝑙𝑢} ⊆ 𝑁𝐼 . Thus, in each homomorphism from 
𝑋 to 𝑋, that is, each endomorphism of 𝑋, ‘𝑙𝑖𝑛𝑑𝑎’, and ‘𝑏𝑙𝑢’ must be mapped to themselves, which is not true for 𝑏 and 𝑐. It is easy 
to check that ℎ ∶ 𝑋 → 𝑋 given by ℎ(𝑙𝑖𝑛𝑑𝑎) = 𝑙𝑖𝑛𝑑𝑎, ℎ(𝑏𝑙𝑢) = 𝑏𝑙𝑢, ℎ(𝑏) = 𝑏𝑙𝑢 and ℎ(𝑐) = 𝑏𝑙𝑢 is an homomorphism, but not injective or 
strong. Thus, ℎ is not an embedding and 𝑋 is not a core. Nevertheless, the austere canonical model described in the same Fig. 2, is a 
core, and also the core of 𝑋. ♡

2 The conclusion of rule 𝐑≤ should be updated to 𝑀 ⊓𝑀 ′ ⊓ 𝐴 ⊑ ∃(𝑆 ⊓ 𝑆′ ⊓ 𝑟).(𝑁 ⊓𝑁 ′ ⊓ 𝐵), as confirmed by the authors of [11].
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In the rest of this section, we first show that the austere canonical model is the unique universal core model of a given normalised 
Horn- knowledge base ( ,). After that, we discuss the tight connection between the austere canonical model and the core 
chase.

In the rest of this section, we also allow sets of atoms to be models. This is a shorthand for saying that the canonical interpretation 
of this set is a model.

4.1.  Universal core model

To show that 𝑐𝑎𝑛( ,) is a core, we use the notion core cover: an interpretation  has a core cover whenever there exist a series of 
finite interpretations 1 ⊆ 2 ⊆… with  =

⋃

𝑖>0 𝑖, such that for all 𝑖, each homomorphism ℎ ∶ 𝑖 →  is an embedding. Showing 
there exists a core cover is enough to show our structure is a core.
Definition 4.2. Set 𝑐𝑎𝑛𝑛( ,) for each positive natural number 𝑛 as a finite approximation of 𝑐𝑎𝑛( ,), as follows:

1. Δ𝑐𝑎𝑛𝑛( ,) ∶= {𝑥 ∈ Δ𝑐𝑎𝑛( ,) ∣ |𝑥| ≤ 𝑛};
2. 𝑎𝑐𝑎𝑛𝑛( ,) ∶= 𝑎𝑐𝑎𝑛( ,), for all 𝑎 ∈ 𝑁𝐼 ;
3. 𝐶𝑐𝑎𝑛𝑛( ,) ∶= {𝑥 ∈ 𝐶𝑐𝑎𝑛( ,) ∣ |𝑥| ≤ 𝑛}, for all 𝐶 ∈ 𝑁𝐶 ;
4. 𝑟𝑐𝑎𝑛𝑛( ,) ∶= {(𝑥, 𝑦) ∈ 𝑟𝑐𝑎𝑛( ,) ∣ |𝑥| ≤ 𝑛, |𝑦| ≤ 𝑛}, for all 𝑟 ∈ 𝑁+

𝑅 .

Note that 𝑐𝑎𝑛𝑛( ,) is not per se a model of ( ,). However, if the 𝑛th approximation is a model, then 𝑐𝑎𝑛𝑛( ,) = 𝑐𝑎𝑛( ,).

Example 4.3. Suppose  = {𝐴(𝑎)} and  = {𝐴 ⊑ ∃𝑟.𝐴}. Let 𝑡 = ({𝐴}, {𝑟}, {𝐴}) be a 2-type. First, notice that 𝑡 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑡). Then the 
𝑛th approximation is a chain of length 𝑛: Δ𝑐𝑎𝑛𝑛( ,) = {𝑎𝑡𝑖 ∣ 𝑖 < 𝑛}, 𝐴𝑐𝑎𝑛𝑛( ,) = {𝑎𝑡𝑖 ∣ 𝑖 < 𝑛} and 𝑟𝑐𝑎𝑛𝑛( ,) ∶= {(𝑎𝑡𝑖, 𝑎𝑡𝑖+1) ∣ 𝑖 < 𝑛 − 1}, 
where 𝑡𝑖 denotes the concatenation of 𝑖 times 𝑡. ♡

Theorem 4.4. For each normalised Horn- knowledge base ( ,), 𝑐𝑎𝑛( ,) is a core.
Proof.  From [29], Theorem 16, we learn that each interpretation that has a core cover is a core. Thus, it suffices to show that 
𝑖 = 𝑐𝑎𝑛𝑖( ,) is a core cover for

 =
⋃

𝑖>0
𝑐𝑎𝑛𝑖( ,) = 𝑐𝑎𝑛( ,).

It is immediate that for each 𝑖, the identity mapping ℎ𝑖 ∶ Δ𝑖 → Δ𝑐𝑎𝑛( ,) given by 𝑥 ↦ 𝑥 is an embedding.
Consider a fixed 𝑖. By induction on |𝑥| it is shown that for all homomorphisms ℎ ∶ Δ𝑖 → Δ𝑐𝑎𝑛( ,), ℎ(𝑥) = ℎ𝑖(𝑥) = 𝑥 holds.

•
|𝑥| = 1. As by definition, {𝑥 ∈ Δ𝑖 ∣ |𝑥| = 1} = Δ𝑖 ∩𝑁𝐶 , it follows directly that for each homomorphism ℎ, ℎ(𝑥) = 𝑥.

•
|𝑥| ≤ 𝑛 + 1 ≤ 𝑖. Let us consider some 𝑎𝑘1 … 𝑘𝑛 ∈ Δ𝑖 . By induction hypothesis, we know that for all homomorphisms ℎ, 
ℎ(𝑎𝑘1 … 𝑘𝑛−1) = 𝑎𝑘1 … 𝑘𝑛−1. As (𝑎𝑘1 … 𝑘𝑛−1, 𝑎𝑘1 … 𝑘𝑛) ∈ 𝑟𝑖  for all roles 𝑟 in 𝑘𝑛, we also have to ensure (𝑎𝑘1 … 𝑘𝑛−1, ℎ(𝑎𝑘1 … 𝑘𝑛)) ∈
𝑟𝑐𝑎𝑛( ,), which means that we can already restrict ℎ(𝑎𝑘1 … 𝑘𝑛) ∈ {𝑎𝑘1 … 𝑘𝑛−2} ∪ {𝑎𝑘1 … 𝑘𝑛−1𝑘′𝑛 ∣ 𝑘

′
𝑛 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑘𝑛−1)} for each pos-

sible homomorphism ℎ. By (R4) of Definition 3.3, we find that ℎ(𝑎𝑘1 … 𝑘𝑛) ≠ 𝑎𝑘1 … 𝑘𝑛−2. Similarly, (R3) eliminates ℎ(𝑎𝑘1 … 𝑘𝑛) =
𝑎𝑘1 … 𝑘′𝑛 for all 𝑘′𝑛 ≠ 𝑘𝑛. So, the only option is ℎ(𝑎𝑘1 … 𝑘𝑛) = 𝑎𝑘1 … 𝑘𝑛, which concludes the induction step.

Thus, ℎ𝑖 is the only homomorphism ℎ ∶ 𝑖 → 𝑐𝑎𝑛( ,) and the identity mapping is trivially an embedding, which concludes the 
proof. ♣

The following corollary can be shown with a similar proof.
Corollary 4.5.  Every finite approximation 𝑐𝑎𝑛𝑛( ,) of the austere canonical model is a core.

Next to being a core, the austere canonical model is also the unique core universal model, up to isomorphism, for each normalised 
Horn- knowledge base. This is proven in the following theorem.
Theorem 4.6. Each consistent normalised Horn- knowledge base ( ,) has a unique (up to isomorphism) universal core model, 
namely the austere canonical model 𝑐𝑎𝑛( ,).

Before we get into the actual proof, note that the definition of a core was originally solely intended for finite structures. There 
are multiple ways to define a core for infinite structures that all coincide for finite cases [30,31]. One of these approaches, requiring 
that each endomorphism is an embedding, is the one used up till now in this section. A stronger considered version is to also require 
each endomorphism to be surjective, that is, requiring that each endomorphism is an isomorphism. To distinguish this case from the 
core definitions discussed before, we say such an interpretation is a strong core. According to Bauslaugh [30], these stronger cores 
have the nicest behaviour in the infinite case. However, they might not exist: an infinite chain of blank nodes can be a core and at 
the same time not a strong core.

In the following proof, we prove that the austere canonical model is also a strong core. Some properties of this stronger definition 
then help to show that there exists indeed a unique universal core model, up to isomorphism. In line with the definition above, we 
say an interpretation  has a strong core cover if there exist finite interpretations 1 ⊆ 2 ⊆… with  =

⋃

𝑖>0 𝑖, such that for all 𝑖, 
each homomorphism ℎ ∶ 𝑖 →  is an isomorphism.
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Proof.  First, note that the proof of Theorem 16 in [29] can easily be extended to also hold in this case: if an instance has a strong 
core cover then it is a strong core.

From the proof of Theorem 4.4, it is clear that 𝑖 = 𝑐𝑎𝑛𝑖( ,) is a strong core cover for 𝑐𝑎𝑛( ,), and thus that 𝑐𝑎𝑛( ,) is 
a strong core. Now suppose there exists another universal core model   of the knowledge base ( ,). Because both models are 
universal, there exists homomorphisms in both directions. Since each endomorphism of 𝑐𝑎𝑛( ,) must be bijective and strong, and 
each one of   injective and strong, it is straightforward to conclude that the homomorphism mapping   to 𝑐𝑎𝑛( ,) must be bijective 
and strong too:   and 𝑐𝑎𝑛( ,) are indeed isomorphic, as required. ♣

Corollary 4.7.  Each consistent normalised Horn- knowledge base ( ,) has a unique universal strong core model, namely 
𝑐𝑎𝑛( ,).

4.2.  Core chase

The core chase is a method that is complete for finding the unique (up to isomorphism) finite universal core model, whenever it 
exists [26]. We specifically note that the core chase never produces an infinite structure, that is, it is only relevant to compare the 
austere canonical model to the result of the core chase in case the core chase terminates and produces a finite universal core model. 
In fact, we will see that in that case, the results coincide. Following this same paper, we will now briefly introduce the core chase. 
Recall we may view any set of atoms  as an interpretation with domain Δ. As chase procedures are often seen as series of sets of 
atoms, this assumption makes the following definitions more in line with the literature on chase procedures.

The core chase is constructed by alternating the application of two operations: firing all not-yet satisfied axioms and taking the 
core of the resulting structure. This procedure is repeated until it terminates, producing a series of sets of atoms where the last set is 
defined to be the result of the core chase. If the series does not terminate, the core chase is undefined.

We start by formalising the first operation. For this, we consider a function that fires the right-hand side of axioms: the function 
𝑓𝑥, defined for each 𝑥 ∈ 𝑁𝐼 ∪𝑁𝐵 . This function translates a concept into a set of atoms, and is inductively defined in the following 
way: 𝑓𝑥(⊤) ∶= ∅, 𝑓𝑥(𝐴) ∶= {𝐴(𝑥)}, 𝑓𝑥(∃(𝑟0 ⊓… ⊓ 𝑟𝑛).𝐶) ∶= {𝑟0(𝑥, 𝑦), 𝑟−0 (𝑦, 𝑥),… , 𝑟𝑛(𝑥, 𝑦), 𝑟−𝑛 (𝑦, 𝑥)} ∪ 𝑓𝑦(𝐶) for some fresh variable 𝑦 and 
𝑓𝑥(𝐶 ⊓ 𝐶 ′) ∶= 𝑓𝑥(𝐶) ∪ 𝑓𝑥(𝐶 ′).

To determine which axioms we want to fire, we define a set of matches 𝑚( ,) containing pairs of one or two nodes in 𝑁𝐼 ∪𝑁𝐵
and a Horn- axiom. We say (𝑐, 𝐶 ⊑ 𝐷) ∈ 𝑚( ,) iff there exists an axiom 𝐶 ⊑ 𝐷 ∈   and a homomorphism ℎ from 𝑓𝑥(𝐶) to 
, such that ℎ(𝑥) = 𝑐 and there is no homomorphism from 𝑓𝑥(𝐷) to  such that ℎ(𝑥) = 𝑐. Similarly, we say ((𝑐, 𝑑), 𝑟 ⊑ 𝑟′) ∈ 𝑚( ,)
iff there exists an axiom 𝑟 ⊑ 𝑟′ ∈   such that 𝑟(𝑐, 𝑑) ∈  and 𝑟′(𝑐, 𝑑) ∉ . No other elements are contained in 𝑚( ,).

Combining the above, we can fully define the first operation: for an normalised Horn- TBox   and ABoxes ,′, we let 



←←←←←←←←→ ′ iff 

′ =  ∪
⋃

(𝑐,𝐶⊑𝐷)∈𝑚( ,)
𝑓𝑐 (𝐷) ∪

⋃

((𝑐,𝑑),𝑟⊑𝑟′)∈𝑚( ,)
𝑟′(𝑐, 𝑑).

If there exists an axiom of the form 𝐴 ⊑≥1 𝑟.𝐵 in  , such that {𝐴(𝑥), 𝑟(𝑥, 𝑦), 𝐵(𝑦), 𝑟(𝑥, 𝑧), 𝐵(𝑧)} would be contained in ′ for some 
{𝑥, 𝑦, 𝑧} ⊆ 𝑁𝐼 ∪𝑁𝐵 , a simple substitution of all 𝑦’s by 𝑧’s is performed to get the final ′, assuming 𝑦 ∉ 𝑁𝐼 .

Furthermore, for any binary relation →, we use the notation  (→)𝜔 ′ to denote that there exists a natural number 𝑛 such that 
(→)𝑛′ and for all ′′ such that ′ → ′′ we find ′ = ′′. With ◦ we denote the concatenation of two binary relations, that is, 
 → ◦ →′  iff there exists ′ such that  → ′ and ′ →′ , for each pair of binary relations → and →′. Recall we write  𝑐𝑜𝑟𝑒

←←←←←←←←←←←←←←←←→ 
in case  is the core of .
Definition 4.8  ([26]).  Given a normalised Horn- knowledge base ( ,), the core chase is the unique, up to isomorphism, 
set of atoms  such that  (


←←←←←←←←→ ◦

𝑐𝑜𝑟𝑒
←←←←←←←←←←←←←←←←→)𝜔 . 

Clearly, this series is not guaranteed to be finite, see for instance the following example.
Example 4.9.  Suppose  = {𝐴(𝑎)} and  = {𝐴 ⊑ ∃𝑟.𝐴}. Then

 (

←←←←←←←←→ ◦

𝑐𝑜𝑟𝑒
←←←←←←←←←←←←←←←←→)𝑛 {𝐴(𝑎), 𝑟(𝑎, 𝑎1), 𝐴(𝑎1), 𝑟(𝑎1, 𝑎2), 𝐴(𝑎2),… , 𝑟(𝑎𝑛−1, 𝑎𝑛), 𝐴(𝑎𝑛)}

for each natural number 𝑛. ♡

As mentioned before, in non-terminating cases, the core chase does not produce a result. Simply taking the union of the sets in 
the core chase construction is in any case not a good idea. More on this topic is discussed in [29], combined with a proposal on how 
to generalise the core chase construction to an infinite setting: the stable chase. A drawback of this approach is that the result of 
the stable chase in general misses the universality property. It is unclear whether the stable chase for description logics might result 
in an non-universal model too. In case the result of the stable chase for normalised Horn- is indeed universal, this result 
coincides with the austere canonical model, up to isomorphism, which can be shown in a similar fashion as Theorem 4.6.

To conclude, drawbacks of the core chase construction are that it is unclear whether the core chase terminates and produces a 
result. Furthermore, the process of performing the core chase construction itself is expensive, as taking the core of a structure is 
expensive and happens regularly. The good news is that for normalised Horn-, the austere canonical model coincides with 
the result of the core chase, if existent. This means the above troubles are resolved: the austere canonical model is always defined 
and is constructed without having to take cores of structures.
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Fig. 4. Evaluating shape expressions.

Theorem 4.10. Given a normalised Horn- knowledge base ( ,) such that 𝑐𝑎𝑛( ,) is finite, and let  be the unique, up to 
isomorphism, structure such that (


←←←←←←←←→ ◦

𝑐𝑜𝑟𝑒
←←←←←←←←←←←←←←←←→)𝜔, then

 ≅ 𝑐𝑎𝑛( ,).

Proof.  We note that  is a core by definition, and the same holds for 𝑐𝑎𝑛( ,) by Theorem 4.4. Since both are cores, it suffices to 
show that there exists homomorphisms in both directions.

Note that 𝑐𝑎𝑛( ,) is a model by Proposition 3.11. As  is a universal model [26], it follows that there exists a homomorphism 
from  into each model, including 𝑐𝑎𝑛( ,). By Proposition 3.11 we also have that 𝑐𝑎𝑛( ,) is universal, which means also the 
other required homomorphism must exist. ♣

5.  Recursive SHACL

In the third section, we described non-recursive SHACL validation in presence of ontologies. We will continue the rest of the paper 
considering a fragment of SHACL that allows recursion: stratified SHACL. There is no unique way to extend the simple semantics we 
discussed before to the recursive case, and some alternatives have been explored in the literature, like the stable model semantics [21], 
the supported model semantics [25] and the well-founded semantics [22]. The semantics we will discuss here is the least fixed point
semantics. We note it coincides with the stable model semantics and the well-founded semantics on each set of stratified constraints.

As discussed, recursive SHACL allows shape names in the definition of shape constraints. To this end, let 𝑁𝑆 denote a countably 
infinite set of shape names that is disjoint from 𝑁𝐶 ∪𝑁𝑅 ∪𝑁𝐼 ∪𝑁𝐵 . A shape constraint is an expression of the form 𝑠 ← 𝜑, where 
𝑠 ∈ 𝑁𝑆 and 𝜑 a shape expression defined like in the preliminaries, with the addition of allowing referencing shape names 𝑠 within 𝜑. 
We call 𝑠 the head of a constraint 𝑠 ← 𝜑. Note that we allow 𝑠 to appear as the head of multiple constraints. In the rest of this article, 
we impose some additional restrictions and consider only a fragment of recursive SHACL. We leave the generalisation of our results 
to full recursive SHACL for future work.

That is, let 𝜑 be defined in the following way 

𝜑 ∶∶= 𝑐 ∣ 𝑠 ∣ ¬𝑠 ∣ 𝐴 ∣ 𝜑 ∨ 𝜑 ∣ 𝜑 ∧ 𝜑 ∣ ∃(
⨅

𝑅).𝜑 ∣ ∃𝐸.𝜑 ∣ 𝑐 ∧ 𝖾𝗊(𝐸,𝐸′) ∣ 𝑐 ∧ 𝖽𝗂𝗌𝗃(𝐸,𝐸′),

where 𝑐 ∈ 𝑁𝐼 , 𝑠 ∈ 𝑁𝑆 , 𝐴 ∈ 𝑁𝐶 , 𝑅 ⊆ 𝑁𝑅, and 𝐸 and 𝐸′ regular expressions over the alphabet 𝑁𝑅.
First, note that our versions of path equality and disjointness, 𝑐 ∧ 𝖾𝗊(𝐸,𝐸′) and 𝑐 ∧ 𝖽𝗂𝗌𝗃(𝐸,𝐸′), distinguish themselves from the 

version in the preliminaries and the SHACL standard in two ways. First, the standard requires 𝐸′ ∈ 𝑁𝑅. We generalise this and allow 
𝐸′ to be any regular expression. Secondly, for technical reasons, we add a ‘guard’ in the form of an individual 𝑐 ∈ 𝑁𝐼 . Furthermore, 
this fragment lacks counting over regular path expressions and closure constraints. We note that our results do not simply extend 
to the setting without these restrictions; especially counting over regular paths is a feature that requires a lot of attention, and that 
no results for the unrestricted setting are known in the literature. We refer the reader to Section 10 for a more extensive discussion. 
Lastly, we increase the expressivity of SHACL slightly by adding conjunction of roles in the form ∃𝑅.𝜑, for 𝑅 a conjunction of roles 
in 𝑁𝑅, which we use to reduce Horn--reasoning combined with SHACL to plain SHACL reasoning.

The semantics of recursive SHACL is defined in terms of a shape assignment. A shape assignment is a set of shape atoms 𝑆, such 
that the rules specified in Fig. 4 are satisfied, taken into account that 𝑠 ← 𝜑 ∈  implies that (𝜑),𝑆 ⊆ 𝑠,𝑆 . As mentioned before, there 
is no agreement on a unique semantics for recursive SHACL in the literature. Nevertheless, what all semantics have in common is 
that the shape assignment 𝑆, a set of shape atoms, of the form 𝑠(𝑐), for 𝑠 ∈ 𝑁𝑆 and 𝑐 ∈ 𝑁𝐼 , satisfies this same set of rules.
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In the recursive setting, the form of targets is changed: we now consider a set of shape atoms 𝑠(𝑐). We will discuss this further in 
Section 10. As we are considering shape atoms, we also need constraints providing meaning to the shape names. Thus, the notion of 
targets is replaced by shape graphs. A shape graph is a pair (,), where  is a set of shape constraints and  is a set of shape atoms.

5.1.  Stratified SHACL

In this article, we are interested in shape assignments where each shape atom has a proper justification. That is, we do not wish 
to consider any set of shape atoms 𝑆, but put some constraints on the type of shape assignments we accept. One option would be to 
resort to the full stable model semantics, but only if we want to give up on polynomial time data complexity. Thus, we focus on a more 
straight-forward semantics, based on stratified sets of constraints. This is a fragment of recursive SHACL which supports negation to a 
certain extend, but restricts the full combination of recursion and negation. To this end and following the logic programming literature 
[20], a partition of constraints (stratification) is defined such that a justified shape assignment can be constructed by processing each 
partition individually.
Definition 5.1. We say a shape name 𝑠 occurs negatively in a shape constraint 𝑠′ ← 𝜑 if ¬𝑠 occurs in 𝜑. We say a shape name 𝑠 is 
defined in a set  of constraints if 𝑠← 𝜑 ∈  for some 𝜑.

A set  of constraints is stratified if it can be partitioned into sets 0,… ,𝑘, called strata, such that, for all 0 ≤ 𝑖 ≤ 𝑘, the following 
hold.

1. If 𝑖 < 𝑘 and 𝑠′ occurs in 𝜑 for some 𝑠 ← 𝜑 ∈ 𝑖, then 𝑠′ is not defined in 𝑖+1 ∪… ∪ 𝑘.
2. If 𝑠′ occurs negatively in 𝜑 for some 𝑠← 𝜑 ∈ 𝑖, then 𝑠′ is not defined in 𝑖 ∪… ∪ 𝑘.

A set of constraints is stratified if it admits a stratification.
Without loss of generality, we can assume that all constraints with the same head are defined in the same stratum.
A standard way to obtain a stratification is to define a dependency graph (𝑉 ,𝐸,𝐸∗) with the set of shape names used as the nodes 

𝑉 . In this graph, there are two types of edges: marked edges 𝐸∗ and standard edges 𝐸, such that 𝐸∗ ⊆ 𝐸. We use the standard edges 
to mark that 𝑠 occurs in a shape constraint with head 𝑠′. In that case, we set (𝑠, 𝑠′) ∈ 𝐸. If this is not just any occurrence, but 𝑠 occurs 
negatively in a shape constraint with head 𝑠′, then we also set (𝑠, 𝑠′) ∈ 𝐸∗. The lowest stratum is the biggest set of nodes 𝑋 such that 
if 𝑠 ∈ 𝑋 and (𝑠′, 𝑠) ∈ 𝐸, then 𝑠′ ∈ 𝑋 and for all 𝑠 ∈ 𝑋, there does not exist any 𝑠′ ∈ 𝑉  such that (𝑠′, 𝑠) ∈ 𝐸∗. To find the next lowest 
stratum, simply remove all shape names in 𝑋 from the dependency graph and repeat the above. This may be repeated until all shape 
names are assigned a stratum.

Given any stratification of a set of constraints, we compute the shape assignment of stratified SHACL with a least fixed point 
operator over each stratum, with negation as failure to compute the opposite in an earlier stratum. To do so, we first define the 
notion of an immediate consequence operator 𝑇, that, given a shape assignment 𝑆, adds new shape atoms to satisfy the constraints 
that are fired by the constraints in  based on 𝑆 and .
Definition 5.2. Given a set of constraints  and an interpretation  with 𝑁𝐼 ⊆ Δ𝐼 , we define an immediate consequence operator 
𝑇, that maps shape assignments to shape assignments as follows:

𝑇, (𝑆) ∶= 𝑆 ∪ {𝑠(𝑎) ∣ 𝑠 ← 𝜑 ∈ , 𝑎 ∈ (𝜑),𝑆}.

The following two propositions are a direct consequence of the characterisations from [20] in the context of stratified logic 
programs. Here, we will again use the definition of the least fixed point starting from a given set. We refer the reader back to 
Definition 3.6 for the precise definition.
Proposition 5.3.  If  is a constraint set that does not define any shape names that occur negatively in , then the following hold:
1. 𝑇, is monotonic, i.e. if 𝑆 ⊆ 𝑆′, then 𝑇, (𝑆) ⊆ 𝑇, (𝑆′);
2. 𝑇, is finitary, i.e. 𝑇, (

⋃∞
𝑛=0 𝑆𝑛) ⊆

⋃∞
𝑛=0 𝑇, (𝑆𝑛) for all infinite sequences 𝑆0 ⊆ 𝑆1 ⊆…;

3. 𝑇, is growing, i.e. 𝑇, (𝑆2) ⊆ 𝑇, (𝑆3) for all 𝑆1, 𝑆2, 𝑆3 such that 𝑆1 ⊆ 𝑆2 ⊆ 𝑆3 ⊆ 𝑇, ↑𝜔 (𝑆1).

Proposition 5.4.  If  is an interpretation and 0,… ,𝑘 is a stratification of , then each 𝑇,0 ,… , 𝑇,𝑘  is monotone, finitary, and growing. 
Thus, for any shape assignment 𝑆 and each 0 ≤ 𝑗 ≤ 𝑘, 𝑇,𝑗 ↑𝜔 (𝑆) is a fixpoint of 𝑇,𝑗 . 
Based on the above, we can now define the computation of the desired shape assignment along a stratification 0,… ,𝑘 of .
Definition 5.5. Assume  is an interpretation,  is a stratified set of constraints, and let 0,… ,𝑘 be a stratification of . Then let

𝑀0 ∶= 𝑇,0↑
𝜔(∅)

𝑀𝑖 ∶= 𝑇,𝑖↑
𝜔(𝑀𝑖−1) for each 1 ≤ 𝑖 < 𝑘.

We call 𝑀𝑘 be the perfect assignment for  and , and use the notation 𝑃𝐴(,) ∶=𝑀𝑘. An interpretation  (resp., ABox ) validates
a shapes graph (,) if  ⊆ 𝑃𝐴(,) (resp.,  ⊆ 𝑃𝐴(,)).

A well-known result is that the particular stratification chosen does not matter: any stratification will give the same perfect 
assignment [20]. Given this semantics, it is now straightforward to extend Definition 3.12 to recursive SHACL and shapes graphs.
Definition 5.6.  Given a normalised Horn- TBox   and ABox , and a shapes graph (,), we say ( ,) validates (,)
if 𝑐𝑎𝑛( ,) validates (,). 
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5.2.  Normal form

A nice feature of the SHACL fragment introduced at the start of this section, is that it has a rather succinct normal form with 
the same expressivity. In the rest of the paper, we will assume that all the given sets of constraints are in normal form. This will be 
particularly useful in the following two sections, restricting the shapes of constraints we need to consider.
Definition 5.7.  A SHACL constraint is in normal form if it has one of the following forms

(NC1) 𝑠← 𝑐 (NC4) 𝑠 ← 𝑠′ ∧ 𝑠′′

(NC2) 𝑠← 𝑠′ (NC5) 𝑠← ∃(
⨅

𝑅).𝑠′

(NC3) 𝑠← 𝐴 (NC6) 𝑠 ← ¬𝑠′,

where 𝑐 ∈ 𝑁𝐼 , 𝑅 ⊆ 𝑁𝑅, {𝑠, 𝑠′, 𝑠′′} ⊆ 𝑁𝑆 and 𝐴 ∈ 𝑁𝐶 . 
We use the term negative constraints to refer to constraints of the form (NC6) and positive constraints for constraints of the form 

(NC1)–(NC5). Clearly, each set of positive constraints is automatically stratified. Furthermore, for simplicity, if 𝑅 = {𝑟}, we may write 
𝑠 ← ∃𝑟.𝑠′ instead of 𝑠 ← ∃(

⨅

𝑅).𝑠′.
We can indeed rewrite parts of SHACL into this restricted, normalised, form of SHACL, as formalised below.

Proposition 5.8. Each set of constraints  can be translated in time polynomial in ||, into a set of constraints ′ in normal form such that 
for all  and each normalised Horn- knowledge base ( ,), we have ( ,) validates (,) iff ( ,) validates (′,).

In particular, the above statement holds for  = ∅, that is, the standard case of SHACL validation, without ontologies. Furthermore, 
normalising a set of constraints in the way described below does not influence it being stratified or not.
Proof.  We extend the results for normal forms of [21] and [32]. That is, we first recursively introduce fresh shapes for sub-expressions 
that appear in constraints, as in [21].

Next to that, we also allow shape names to appear as heads in multiple constraints, which means that 𝑠 ← 𝜑 ∨ 𝜑′ can be replaced 
by 𝑠 ← 𝜑 and 𝑠 ← 𝜑′ without affecting validation. Now, what is left to show is that also constraints of the form 𝑠 ← 𝑐 ∧ 𝖾𝗊(𝐸,𝐸′), 
𝑠 ← 𝑐 ∧ 𝖽𝗂𝗌𝗃(𝐸,𝐸′) and 𝑠 ← ∃𝐸.𝑠′ can be translated into constraints in normal form in polynomial time. The last case, 𝑠 ← ∃𝐸.𝑠′, we 
already covered in [32], but is repeated here for completeness.

• 𝑠 ← ∃𝐸.𝑠′. Suppose  = (𝑄,Σ, 𝑞𝐼 ,Δ, 𝑞𝐹 ) is the automaton recognising 𝐸. Take fresh shape names 𝑠𝑞 for each 𝑞 ∈ 𝑄 and add the 
following constraints

𝑠 ← 𝑠𝑞𝐼
𝑠𝑞 ← ∃𝑟.𝑠′𝑞  if (𝑞, 𝑟, 𝑞′) ∈ Δ
𝑠𝑞𝐹 ← 𝑠′.

Here, the idea is to encode the states of the automaton in the set of shape names. However, we do not consider them in the 
standard initial state towards final state mode, but the other way around. In the end, the idea is that we let every state that is an 
𝑠′ be a final state, and see whether we can work our way back through the automaton to an initial state. Thus, we find that a node 
is assigned 𝑠𝑞𝐼  iff that node has an 𝐸-path to a node that is an 𝑠′.

• 𝑠 ← 𝑐 ∧ 𝖾𝗊(𝐸,𝐸′). Suppose  = (𝑄,Σ, 𝑞𝐼 ,Δ, 𝑞𝐹 ) and ′ = (𝑄′,Σ, 𝑞′𝐼 ,Δ
′, 𝑞′𝐹 ) are the automata recognising 𝐸 and 𝐸′ respectively, 

such that 𝑄 ∩𝑄′ = ∅. Take fresh shape names 𝑠𝑒𝑟𝑟𝑜𝑟, 𝑠𝑛𝑜𝑒𝑟𝑟𝑜𝑟 𝑠𝑝𝑜𝑠, 𝑠𝑛𝑒𝑔 , and 𝑠𝑞 for each 𝑞 ∈ 𝑄 ∪𝑄′ and add the following constraints 
𝑠𝑞 ← 𝑐  if 𝑠𝑞 ∈ {𝑠𝑞𝐼 , 𝑠𝑞′𝐼 }
𝑠𝑞′ ← ∃𝑟−.𝑠𝑞  if (𝑞, 𝑟, 𝑞′) ∈ Δ ∪ Δ′

𝑠𝑝𝑜𝑠 ← 𝑠𝑞  if 𝑠𝑞 ∈ {𝑠𝑞𝐹 , 𝑠𝑞′𝐹 }
𝑠𝑛𝑒𝑔 ← ¬𝑠𝑞  if 𝑠𝑞 ∈ {𝑠𝑞𝐹 , 𝑠𝑞′𝐹 }
𝑠𝑒𝑟𝑟𝑜𝑟 ← 𝑠𝑝𝑜𝑠 ∧ 𝑠𝑛𝑒𝑔
𝑠𝑒𝑟𝑟𝑜𝑟 ← ∃𝑟.𝑠𝑒𝑟𝑟𝑜𝑟  if 𝑟 ∈ Σ
𝑠𝑛𝑜𝑒𝑟𝑟𝑜𝑟 ← ¬𝑠𝑒𝑟𝑟𝑜𝑟
𝑠 ← 𝑠𝑞 ∧ 𝑠𝑛𝑜𝑒𝑟𝑟𝑜𝑟.
In this case, because of the ‘guard’ 𝑐, there is only one node considered to be the initial state of both automata. From there, 

we assign the states using their encoding in shape names. This time, we consider the states of the automaton from initial state 
towards, possibly, a final state somewhere. After finishing assigning states, it is decided which nodes are the final state of any of 
the two automata. The last thing to do is to see whether there exists a node that is the final state of one of the two automata (thus 
being assigned 𝑠𝑝𝑜𝑠), but not of the other automaton (thus also being assigned 𝑠𝑛𝑒𝑔). The last thing to do is to bring this information 
back towards 𝑐, with the constraints 𝑠𝑒𝑟𝑟𝑜𝑟 ← ∃𝑟.𝑠𝑒𝑟𝑟𝑜𝑟 for each 𝑟 appearing in the automata.

• 𝑠 ← 𝑐 ∧ 𝖽𝗂𝗌𝗃(𝐸,𝐸′). Similar solution as 𝑠← 𝑐 ∧ 𝖾𝗊(𝐸,𝐸′), but define the error shape 𝑠𝑒𝑟𝑟𝑜𝑟 as 𝑠𝑒𝑟𝑟𝑜𝑟 ← 𝑠𝑞𝐹 ∧ 𝑠𝑞′𝐹 .

Note that the automata can be constructed in polynomial time, which is a standard result in the literature, see for instance [33]. ♣

6.  Rewriting for positive SHACL

Now we will return to problem of SHACL validation in presence of ontologies. In Section 3, we defined the semantics of SHACL in 
presence of ontologies as SHACL validation over the core universal model. This was independent of the chosen semantics for SHACL. 
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As we decided on the least fixed point semantics for SHACL in the previous section, it is now clear what the intended meaning is of 
a knowledge base validating a shapes graph.

However, we also care about computability. To this end, we do not wish to materialise the full, possibly infinite, core universal 
model. Instead, we will bring SHACL validation over the core universal model back to SHACL validation over the enriched ABox  , 
as defined in Definition 3.7, by rewriting the set of constraints. More precisely, given a TBox   and a set of stratified constraints , 
we want to compile   and  into a new set   of stratified constraints so that for every ABox  consistent with  , and every target 
, we have

( ,) validates (,) iff   validates ( ,).
This will be achieved by means of an inference procedure that uses a collection of inference rules to capture the possible “propagation” 
of shape names in the anonymous part of the austere canonical model. In the following, the rewriting procedure for SHACL without 
any occurrence of negation is discussed, followed by the general case of recursive SHACL.

6.1.  Rewriting algorithm

The idea of the rewriting is that we can encode all reasoning of axioms in the constraints. The core of our technique is an inference 
procedure that derives a set of quadruples (𝑡, 𝑃 ,𝑄,𝐻), where 𝑡 a 2-type, as introduced at the start of Section 3.1. Intuitively, deriving 
(𝑡, 𝑃 ,𝑄,𝐻) tells us that an object that satisfies all concept names in 𝜋1(𝑡), that satisfies all expressions (assumptions) in 𝑃 , and does 
not satisfy every single expression in 𝑄, must validate all shape names in 𝐻 . Note that there may be some overlap in the information 
stored in 𝑡 and 𝑃 .
Definition 6.1. Let ⊤, 𝑐, ∃𝑟.𝑠, be basic shape expressions, for 𝑟 ∈ 𝑁𝑅, 𝑠 ∈ 𝑁𝑆 , and 𝑐 ∈ 𝑁𝐼 . Moreover, let ∃(

⨅

𝑅).
⨅

𝑁 be called a basic 
concept expression, for each 𝑅 ⊆ 𝑁𝑅 and 𝑁 ⊆ 𝑁𝐶 . 

Syntactically, 𝑃  and 𝑄 are sets of basic shape and basic concept expressions, whereas the set 𝐻 may only contain shape names in 
𝑁𝑆 .

Definition 6.2.  A 2-type 𝑡 is called locally consistent if the following are satisfied.

• If  ⊧ 𝐴1 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵 and {𝐴1,… , 𝐴𝑛} ⊆ 𝜋𝑖(𝑡), then 𝐵 ∈ 𝜋𝑖(𝑡), for 𝑖 ∈ {1, 3}.
• If  ⊧

⨅

𝑅 ⊑ 𝑟′ and 𝑅 ⊆ 𝜋2(𝑡), then 𝑟′ ∈ 𝜋2(𝑡).
• If 𝐴 ⊑ ∀𝑟.𝐵 ∈  , 𝐴 ∈ 𝜋1(𝑡) and 𝑟 ∈ 𝜋2(𝑡), then 𝐵 ∈ 𝜋3(𝑡).
• If 𝐴 ⊑ ∀𝑟.𝐵 ∈  , 𝐴 ∈ 𝜋3(𝑡) and 𝑟− ∈ 𝜋2(𝑡), then 𝐵 ∈ 𝜋1(𝑡).

Recall that we are only considering consistent knowledge bases. As discussed in the preliminaries, this means we may ignore all 
axioms containing ‘⊥’ in the universal model construction. On the same note, there is also no need to consider those axioms in the 
following rewriting procedure.
Definition 6.3. Given a normalised Horn- TBox   and  a set of normalised constraints, let 𝑁

𝐶 ⊆ 𝑁𝐶 be the (finite) set 
of concepts occurring in   or . We let 𝑝𝑠𝑎𝑡,  be the smallest set of quadruples (𝑡, 𝑃 ,𝑄,𝐻) that is closed under the following rules.

1. If 𝑡 is a locally consistent 2-type, and 𝑄 is a set of basic shape expressions such that for all ∃(⨅𝑅).(
⨅

𝑁) ∈ 𝑄, we have (𝑅,𝑁) ∈
succ (𝑡) and not both 𝑅 ⊆ 𝜋2(𝑡) and 𝑁 ⊆ 𝜋3(𝑡), then (𝑡, 𝑄̄, 𝑄, ∅) belongs to 𝑝𝑠𝑎𝑡, , where

𝑄̄ ∶= {⊤} ∪ {∃(
⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅)),∃(
⨅

𝑅).(
⨅

𝑁) ∉ 𝑄}.

2. If {(𝑡, 𝑃 ,𝑄,𝐻), (𝑡, 𝑃 ′, 𝑄′,𝐻 ′)} ⊆ 𝑝𝑠𝑎𝑡,  such that ∃(⨅𝑅).(
⨅

𝑁) ∈ 𝑄 iff ∃(⨅𝑅).(
⨅

𝑁) ∈ 𝑄′, then (𝑡, 𝑃 ∪ 𝑃 ′, 𝑄 ∪𝑄′,𝐻 ∪𝐻 ′) belongs to 
𝑝𝑠𝑎𝑡, .

3. If 𝑠 ← 𝑆 ∈  for some basic shape expression 𝑆 and (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑝𝑠𝑎𝑡, , then (𝑡, 𝑃 ∪ ({𝑆} ⧵𝑁𝐶 ), 𝑄,𝐻 ∪ {𝑠}) belongs to 𝑝𝑠𝑎𝑡,  if 
either

• 𝑆 = 𝑐, for 𝑐 ∈ 𝑁𝐼  and 𝑐 ∉ 𝑄; or
• 𝑆 = 𝐴, for 𝐴 ∈ 𝜋1(𝑡); or
• 𝑆 = ∃𝑟.𝑠′ and 𝑟 ∈ 𝜋2(𝑡) or there exists ∃(

⨅

𝑅).(
⨅

𝑁) ∈ 𝑃  such that 𝑟 ∈ 𝑅 and ∃𝑟.𝑠′ ∉ 𝑄.
4. If 𝑠 ← 𝑠′ ∈ , (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑝𝑠𝑎𝑡,  and {𝑠′} ⊆ 𝐻 , then (𝑡, 𝑃 ,𝑄,𝐻 ∪ {𝑠}) belongs to 𝑝𝑠𝑎𝑡, .
5. If 𝑠 ← 𝑠1 ∧ 𝑠2 ∈ , (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑝𝑠𝑎𝑡,  and {𝑠1, 𝑠2} ⊆ 𝐻 , then (𝑡, 𝑃 ,𝑄,𝐻 ∪ {𝑠}) belongs to 𝑝𝑠𝑎𝑡, .
6. If 𝑠 ← ∃(

⨅

𝑅).𝑠′ ∈ , {(𝑡, 𝑃 ,𝑄,𝐻), (𝑡′, 𝑃 ′, 𝑄′,𝐻 ′)} ⊆ 𝑝𝑠𝑎𝑡, , 𝑅− ⊆ 𝜋2(𝑡′), 𝑃 ′ ∩𝑁𝐼 = ∅, 𝑠′ ∈ 𝐻 ′ and 𝑖𝑛𝑣(𝑡′) ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑖𝑛𝑣(𝑡)) such that
• ∃(

⨅

𝑅′).(
⨅

𝑁 ′) ∈ 𝑃 ′ iff (𝑅′, 𝑁 ′) ∈ succ ((𝜋1(𝑡′), ∅, ∅)) ⧵ succ (𝑡′); and
• {𝑠′′ ∣ ∃𝑟′′.𝑠′′ ∈ 𝑃 ′} ⊆ 𝐻 ,

then (𝑡, 𝑃 ,𝑄,𝐻 ∪ {𝑠}) belongs to 𝑝𝑠𝑎𝑡, .

In this definition, Rule 1 ensures that for each possible node in a data graph, there is a quadruple describing the 1-type of that node 
in 𝜋1(𝑡), restricted to the concept names occurring in  . Furthermore, the set of neighbours this 1-type needs to have in all models 
is partitioned into a set of neighbours we observe (𝑃 ), and which will be introduced as children of this 1-type (𝑄). Because of this, 
we may consider the first three entries of the quadruple as a description of a small part of a model, containing all information about 
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Fig. 5. Austere Canonical Model 𝑐𝑎𝑛( ,), for  = {𝐴(𝑎), 𝑝(𝑎, 𝑏)} and  = {𝐴 ⊑ ∃𝑝.𝐵, 𝐵 ⊑ ∃𝑞.𝐶}.

its type and neighbours that might be relevant. In this way, it contains enough information to mimic the least fixed point operator 
for shape names step by step by Rules 3–6. Note that because we are considering the 2-type from the ‘perspective’ of the node, that 
is, ‘looking back towards the data’, we have to consider their inverses when checking the child-relationship in Rule 6. Lastly, Rule 2 
is not necessary, but eases the completeness proof. We note that the same set of rules will be reused for the rewriting of stratified 
SHACL. Because of this, certain conditions do not have a purpose yet, like 𝑐 ∉ 𝑄 in Rule 3, which will always be met in the current 
positive setting.

Definition 6.4  (Rewriting Procedure). Consider a normalised Horn- TBox  ,  a set of normalised constraints and 𝐾 a set 
of quadruples (𝑡, 𝑃 ,𝑄,𝐻). Let  ,𝐾 be the set of constraints that contains , and moreover, for each (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾 and each 𝑠 ∈ 𝐻 , 
the constraint 

𝑠←
⋀

𝐴∈𝜋1(𝑡)
𝐴 ∧

⋀

𝐴∈𝑁
𝐶 ⧵𝜋1(𝑡)

¬𝐴 ∧
⋀

𝑋∈𝑃
𝑋 ∧

⋀

𝑌∈𝑄
¬𝑌 . (1)

Note that only 𝜋1(𝑡) and not the full 2-type is taken into account when transforming a triple into a constraint. This suffices as 
we are considering axioms in normal form. Thus, knowing exactly which concept names are true in a node implies knowing exactly 
which structures may appear in the anonymous tree structure with this node as its root. The next step is eliminating the superfluous 
substructures of this anonymous tree, similar to what can be expected in any core universal model construction. This boils down to 
knowing exactly which of the substructures of depth at most 1 are already present in the enriched ABox  . Dividing all relevant 
substructures in the positive or negative set 𝑃  and 𝑄 happens in Rule 1. As 𝑃  is subsuming the information stemming from 𝜋2(𝑡) and 
𝜋3(𝑡), it does not have to be repeated in (1).

Example 6.5.  Suppose  = {𝐴 ⊑ ∃𝑝.𝐵, 𝐵 ⊑ ∃𝑞.𝐶} and consider the following constraints : 

𝑠← ∃𝑝.𝑠 𝑠← ∃𝑞.𝑠 𝑠← 𝑠′ ∧ 𝑠′′ 𝑠′ ← ∃𝑝−.𝑠′ 𝑠′ ← ∃𝑞−.𝑠′ 𝑠′ ← 𝐴 𝑠′′ ← 𝐶.

Let 𝑡 = ({𝐴}, {𝑝}, {𝐵}) and 𝑡′ = ({𝐵}, {𝑞}, {𝐶}) and recall the definition of the inverse of a 2-type: 𝑖𝑛𝑣(𝑡) = ({𝐵}, {𝑝−}, {𝐴}). Note that 
both 𝑖𝑛𝑣(𝑡), 𝑖𝑛𝑣(𝑡′) and 𝑡𝐴 ∶= ({𝐴}, ∅, ∅) are locally consistent 2-types. Thus, according to the Rule 1 of Definition 6.3, the following 
quadruples belong to 𝑝𝑠𝑎𝑡, : 

(𝑡𝐴, {⊤}, {∃𝑝.𝐵}, ∅), (𝑖𝑛𝑣(𝑡), {⊤}, {∃𝑞.𝐶}, ∅), (𝑖𝑛𝑣(𝑡′), {⊤}, ∅, ∅).

Given these quadruples and following Rule 3 (of Definition 6.3) multiple times, we can also derive the following quadruples: 

(𝑡𝐴, {⊤}, {∃𝑝.𝐵}, {𝑠′}), (𝑖𝑛𝑣(𝑡), {⊤,∃𝑝−.𝑠′}, {∃𝑞.𝐶}, {𝑠′}), (𝑖𝑛𝑣(𝑡′), {⊤,∃𝑞−.𝑠′}, ∅, {𝑠′, 𝑠′′}).

That is, in the first quadruple, 𝑠′ is added as a conclusion as 𝐴 is contained in 𝜋1(𝑡𝐴). For the second quadruple, we add ∃𝑝−.𝑠′ to 
the set of positive assumptions, thus also describing an environment in which 𝑠′ can be concluded. To see that the third quadru-
ple is contained in 𝑝𝑠𝑎𝑡, , Rule 3 is applied twice: once because 𝐶 is contained in 𝜋1(𝑖𝑛𝑣(𝑡′)), and once because of the addition 
∃𝑞−.𝑠′ to the positive assumptions. The last quadruple may be updated to (𝑖𝑛𝑣(𝑡′), {⊤,∃𝑞−.𝑠′}, ∅, {𝑠, 𝑠′, 𝑠′′}) because of 𝑠 ← 𝑠′ ∧ 𝑠′′. Now 
Rule 6 can be used based on 𝑠 ← ∃𝑞.𝑠, (𝑖𝑛𝑣(𝑡), {⊤,∃𝑝−.𝑠′}, {∃𝑞.𝐶}, {𝑠′}) and the quadruple (𝑖𝑛𝑣(𝑡′), {⊤,∃𝑞−.𝑠′}, ∅, {𝑠, 𝑠′, 𝑠′′}) to infer that 
(𝑖𝑛𝑣(𝑡), {⊤,∃𝑝−.𝑠′}, {∃𝑞.𝐶}, {𝑠, 𝑠′}) must belong to 𝑝𝑠𝑎𝑡,  too. That is, we compare the environments described by these two quadru-
ples: the main idea is that we want to derive 𝑠 in the first quadruple because of a 𝑞 connecting the first environment to the second 
one (reflected by the check {𝑞−} ⊆ 𝜋2(𝑖𝑛𝑣(𝑡′))), where 𝑠 will be derived (𝑠 ∈ 𝐻 ′). The existence of this second environment must be 
supported by its type being a child of the first type (𝑖𝑛𝑣(𝑖𝑛𝑣(𝑡′)) ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑖𝑛𝑣(𝑖𝑛𝑣(𝑡)))) and thus cannot have an individual name in the 
set of positive assumptions (𝑃 ′ ∩𝑁𝐼 = ∅). Lastly, every assumption of the form ∃𝑟.𝑠 assumes, in case of an anonymous node, that its 
parent must be an 𝑠, and in case of a data node, that there exists an 𝑟-neighbour that is an 𝑠. As the second environment is assumed to 
describe an anonymous node, with as ‘parent environment’ the first quadruple, we have to check whether 𝑠′ ∈ 𝐻 . Similarly, positive 
assumptions of the form ∃(⨅𝑅′).(

⨅

𝑁 ′) must be evaluated ‘upwards towards the parent environment’ as well, that is 𝑅′ ⊆ 𝜋2(𝑡′) and 
𝑁 ′ ⊆ 𝜋3(𝑡′). Note that this exactly corresponds to (𝑅′, 𝑁 ′) ∈ succ ((𝜋1(𝑡′), ∅, ∅)) ⧵ succ (𝑡′) for all ∃(

⨅

𝑅′).(
⨅

𝑁 ′) that may appear in 𝑃 ′. 
Using this derived quadruple and again Rule 6, but now together with the quadruple (𝑡𝐴, {⊤}, {∃𝑝.𝐵}, {𝑠′}) and constraint 𝑠← ∃𝑝.𝑠, 
we also find (𝑡𝐴, {⊤}, {∃𝑝.𝐵}, {𝑠, 𝑠′}) ∈ 𝑝𝑠𝑎𝑡, . Thus, the following constraint is contained in  ,∅: 

𝑠← 𝐴 ∧ ¬𝐵 ∧ ¬𝐶 ∧ ⊤ ∧ ¬∃𝑝.𝐵.

Now let  = {𝐴(𝑎), 𝑝(𝑎, 𝑏)}. The target we wish to validate is  = {𝑠(𝑎)}. It is now simple to check that this target, 𝑠(𝑎), is validated 
by considering the above constraint on  , which coincides with  in this example.

The other approach to test validation is to build 𝑐𝑎𝑛( ,), graphically depicted in Fig. 5, and then check validation of (,). In 
this figure, the same notation is used as described in Example 3.2. It is straightforward to check that 𝑐𝑎𝑛( ,) indeed validates (,), 
as required. ♡
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We note that, even in the best-case scenario, Definition 6.3 creates an amount of quadruples exponential in size of   and . This 
expressive power is used to describe all possible relevant settings that may appear at the border between the data and anonymous 
part of the austere canonical model. However, what is considered relevant, is only dependent on the TBox  ; concept names that do 
not appear in any axiom cannot be introduced or introduce anything new and may thus be ignored. This means that the exponential 
blow-up observed in this definition does not influence the data complexity of determining SHACL validation in presence of ontolo-
gies. Moreover, as the described SHACL constraint rewriting happens completely independent of the data, the same rewritten shape 
constraint sets may be reused for different data graphs.

6.2.  Completeness and correctness

In the rest of this section, we will show completeness and correctness of the presented rewriting technique to translate (positive) 
SHACL validation in presence of ontologies to plain SHACL validation over the enriched ABox  . After that we aim further: in 
the next subsection, we discuss how to handle stratified negation in the rewriting, followed by a section on how to achieve a pure 
rewriting, that is, to plain SHACL validation over the original ABox .

For a quadruple 𝜌 = (𝑡, 𝑃 ,𝑄,𝐻) a shape name 𝑠 ∈ 𝐻 and a fresh shape name 𝑠𝜌, we define the constraint 𝑠𝜌 as follows: 

𝑠𝜌 ←
⋀

𝐴∈𝜋1(𝑡)
𝐴 ∧

⋀

𝐴∈𝑁
𝐶 ⧵𝜋1(𝑡)

¬𝐴 ∧
⋀

𝑋∈𝑃
𝑋 ∧

⋀

𝑌∈𝑄
¬𝑌 .

Note that this definition is very close to Definition 6.4. However, it has a different purpose. In the following proofs, we will focus on 
validating 𝑠𝜌 instead of 𝑠. This makes the connection to a certain quadruple precise. And clearly, if 𝑠𝜌(𝑐) is contained in some perfect 
assignment, also 𝑠(𝑐) is contained in that same assignment. We will use the notation  ∪ 𝑠𝜌 to denote that the constraint defining 𝑠𝜌
as above is added to the constraints in .

Furthermore, we note that quadruples are designed to model the direct environment of a node that is on the ‘border’ of the model 
under construction. More precisely, they model the environment of 𝑐 in 𝑐𝑎𝑛

|𝑐|( ,) (sometimes shortened to 
|𝑐|,) the approximation 

of the austere canonical model, as defined in Definition 4.2. In this interpretation, 𝑐 is missing its successors. For this reason, we 
will evaluate 𝑠𝜌(𝑐) specifically on 𝑐𝑎𝑛|𝑐|( ,). When proving this in general, it definitely also holds for all 𝑐 such that |𝑐| = 1, or put 
differently, all 𝑐 ∈ 𝑁𝐼 .

To clarify which shape atoms depend on others, we consider the immediate consequence operator defined in Definition 5.2. 
Where ‘depending’ is intended in the sense that 𝑠(𝑐) depends on 𝑠′(𝑐) and 𝑠′′(𝑐) in case of the constraint 𝑠 ← 𝑠′ ∧ 𝑠′′. Recall that the 
perfect assignment for positive constraints consists simply of the least fixed point of this operator. With all this machinery, we can 
demonstrate how the rules in Definition 6.3 can mimic all these types of dependencies. In this way, we show first the completeness, 
and then, in Proposition 6.8, the correctness of the rewriting for positive constraints.

Proposition 6.6. Given a normalised Horn- TBox   and  a set of positive, normalised constraints, for every target  and every 
ABox  that is consistent with  , we have that if ( ,) validates (,), then 𝑐𝑎𝑛0( ,) validates ( ,).
Proof.  It suffices to prove the following claim, which will be shown by induction on 𝑛.

Claim 6.7.  Let 𝑖 = 𝑐𝑎𝑛𝑖( ,) and 𝑆𝑛 = 𝑇𝑐𝑎𝑛( ,), ↑𝑛 (∅). If 𝑠(𝑐) ∈ 𝑆𝑛+1, there exists a quadruple 𝜌 = (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑝𝑠𝑎𝑡,  such that 
𝑠 ∈ 𝐻 , 𝑠𝜌(𝑐) ∈ 𝑇

|𝑐| , ∪𝑠𝜌 (𝑆𝑛) and furthermore:

1. if 𝑐 ∈ 𝑁( ,) ⧵𝑁𝐼 , then
(a) 𝑡 = 𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐));
(b) 𝑃 ⊇ {∃(

⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅)) ⧵ succ (𝑡)} and 𝑃 ∩𝑁𝐼 = ∅;
(c) 𝑄 ⊇ {∃(

⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅))};
2. for all other 𝑐 ∈ 𝑁𝐼 , we have
(a) 𝑡 = ({𝐴 ∈ 𝑁𝐶 ∣ 𝐴(𝑐) ∈  }, ∅, ∅);
(b) 𝑃 ⊇ {∃(

⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ (𝑡), 𝑐 ∈ (∃(
⨅

𝑅).(
⨅

𝑁)) } and (𝑃 ∩𝑁𝐼 ) ⧵ {𝑐} = ∅;
(c) 𝑄 ⊇ {∃(

⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ (𝑡), 𝑐 ∉ (∃(
⨅

𝑅).(
⨅

𝑁)) };

For (𝑛 = 0), note that either 𝑠← 𝑐 ∈  or 𝑠 ← 𝐴 ∈ . In the first case, 𝜌 = (𝑡, 𝑃 ∪ {𝑐}, 𝑄, {𝑠}) can be constructed by performing Rule 1, 
followed by Rule 3, where 𝑡 = ({𝐴 ∈ 𝑁𝐶 ∣ 𝐴(𝑐) ∈  }, ∅, ∅), and 𝑃  and 𝑄 are the smallest sets that satisfy the criteria. Removing {𝑐}
from the second entry in the quadruple, and possibly using 𝑡 = 𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐)) instead of 𝑡 = ({𝐴 ∈ 𝑁𝐶 ∣ 𝐴(𝑐) ∈  }, ∅, ∅) in case 𝑐 ∉ 𝑁𝐼 , 
suffices for the second case. It is then easy to check that indeed 𝑠𝜌(𝑐) ∈ 𝑇0 , ∪𝑠𝜌 (∅).

Now suppose 𝑠(𝑐) ∈ 𝑆𝑛+1 ⧵ 𝑆𝑛. In this induction step, we will only focus on the case 𝑠(𝑐) got derived from 𝑠 ← ∃𝑟.𝑠′ ∈  and 𝑠′(𝑑) ∈
𝑆𝑛, for some 𝑟-neighbour 𝑑 of 𝑐, as the other derivation options are reflected in a straightforward way in the rules of Definition 6.3. 
We distinguish two cases: |𝑑| ≤ |𝑐|, which we call ‘upwards’, and |𝑑| > |𝑐|, which we call ‘downwards’.

For the upwards case, if |𝑑| ≤ |𝑐| then either there exists a 2-type 𝑡 such that 𝑑𝑡 = 𝑐 and 𝑟− ∈ 𝜋2(𝑡), or {𝑐, 𝑑} ⊆ 𝑁𝐼 .

• 𝑑𝑡 = 𝑐. By Rule 1, we find (𝑖𝑛𝑣(𝑡), 𝑃 ,𝑄, ∅) ∈ 𝑝𝑠𝑎𝑡, , such that 1a, 1b and 1c of the claim are satisfied. With Rule 3, recalling 
that we assumed 𝑠 ← ∃𝑟.𝑠′ ∈ , we can update this quadruple to find 𝜌 = (𝑖𝑛𝑣(𝑡), 𝑃 ∪ {∃𝑟.𝑠′}, 𝑄, {𝑠}) ∈ 𝑝𝑠𝑎𝑡, . As 𝑠′(𝑑) ∈ 𝑆𝑛, it is 
straightforward to see that 𝑠𝜌(𝑐) ∈ 𝑇

|𝑐| , ∪𝑠𝜌 (𝑆𝑛), which concludes this case.
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• {𝑐, 𝑑} ⊆ 𝑁𝐼 . Again, by Rule 1, we find (𝑡, 𝑃 ,𝑄, ∅) ∈ 𝑝𝑠𝑎𝑡, , where 𝑡 = ({𝐴 ∈ 𝑁𝐶 ∣ 𝐴(𝑐) ∈ 0}, ∅, ∅) and such that 1a, 1b and 1c of the 
claim are satisfied. Applying Rule 3, means that also 𝜌 = (𝑡, 𝑃 ∪ {∃𝑟.𝑠′}, 𝑄, {𝑠}) ∈ 𝑝𝑠𝑎𝑡, . With similar reasoning as in the previous 
case, it is clear that indeed 𝑠𝜌(𝑐) ∈ 𝑇0 , ∪𝑠𝜌 (𝑆𝑛).

In the second case, downwards, we have |𝑑| > |𝑐|, that is, 𝑐𝑡′ = 𝑑, for some 2-type 𝑡′. In the following argument, we assume 
𝑐 ∈ 𝑁( ,) ⧵𝑁𝐼 , but a similar argument works for 𝑐 ∈ 𝑁𝐼 . Because we assumed that 𝑠′(𝑑) ∈ 𝑆𝑛, we can apply the induction hypothesis 
to find 𝜌′ = (𝑖𝑛𝑣(𝑡′), 𝑃 ′, 𝑄′,𝐻 ′) ∈ 𝑝𝑠𝑎𝑡,  such that (i) 𝑟− ∈ 𝜋2(𝑖𝑛𝑣(𝑡′)), (ii) 𝑃 ′ ∩𝑁𝐼 = ∅, (iii) 𝑠′ ∈ 𝐻 ′, (iv) ∃(⨅𝑅).(

⨅

𝑁) ∈ 𝑃 ′ iff (𝑅,𝑁) ∈
succ ((𝜋1(𝑡′), ∅, ∅)) ⧵ succ (𝑡′). Furthermore, by construction of elements in 𝑁( ,), we find 𝑡′ ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑡𝑎𝑖𝑙(𝑐)). This means that to 
perform Rule 6, we only need a second quadruple (𝑡, 𝑃 ,𝑄,𝐻) for which we have to ensure that {𝑠′′ ∣ ∃𝑟′′.𝑠′′ ∈ 𝑃 ′} ∈ 𝐻 .

So, suppose ∃𝑟′′.𝑠′′ ∈ 𝑃 ′. Since, by induction hypothesis, 𝑠𝜌′ (𝑑) ∈ 𝑇
|𝑑| , ∪𝑠𝜌′

(𝑆𝑛), we know 𝑠′′(𝑐) ∈ 𝑆𝑛. Thus, we can also apply the 
induction hypothesis to 𝑠′′(𝑐), to find that 𝜌𝑠′′ = (𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐)), 𝑃𝑠′′ , 𝑄𝑠′′ ,𝐻𝑠′′ ) ∈ 𝑝𝑠𝑎𝑡,  such that 𝑃𝑠′′  and 𝑄𝑠′′  satisfy the constraints in 
1b and 1c of the claim we are currently proving, and 𝑠′′ ∈ 𝐻𝑠′′ . Furthermore, we find that 𝑠𝜌𝑠′′ (𝑐) ∈ 𝑇

|𝑐| , (𝑆𝑛).
For each ∃𝑟′′.𝑠′′ ∈ 𝑃 ′, we can construct such a quadruple 𝑠𝜌′′  and combine them with Rule 2 to conclude

𝜌′′ = (𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐)),
⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝑃𝑠′′ ,

⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝑄𝑠′′ ,

⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝐻𝑠′′ ) ∈ 𝑝𝑠𝑎𝑡, ,

which can serve exactly as the quadruple we were looking for to apply Rule 6, which we also do. Thus, we find that
𝜌 = (𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐)),

⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝑃𝑠′′ ,

⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝑄𝑠′′ ,

⋃

∃𝑟′′ .𝑠′′∈𝑃 ′
𝐻𝑠′′ ∪ {𝑠}) ∈ 𝑝𝑠𝑎𝑡, ,

too. Note that this quadruple satisfies all properties requested in the claim, which naturally follows from the point that all 𝜌𝑠′′  satisfy 
these properties. Furthermore, note that 𝑠𝜌′′ (𝑐) ∈ 𝑇

|𝑐| , ∪𝑠𝜌′′
(𝑆𝑛) holds, because for each ∃𝑟′′.𝑠′′ ∈ 𝑃 ′, we have 𝑠𝜌𝑠′′ (𝑐) ∈ 𝑇

|𝑐| , ∪𝑠𝜌𝑠′′
(𝑆𝑛). 

Thus, we can conclude that 𝑠𝜌(𝑐) ∈ 𝑇
|𝑐| , ∪𝑠𝜌 (𝑆𝑛), as required.

In case {𝑠′′ ∣ ∃𝑟′′.𝑠′′ ∈ 𝑃 ′} = ∅, the above does not work. Instead, we can simply apply Rule 1 to construct the re-
quired 𝜌 = (𝑡, 𝑃 ,𝑄,𝐻), such that 𝑃 = {∃(

⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅)) ⧵ succ (𝑡)} and 𝑄 = {∃(
⨅

𝑅).(
⨅

𝑁) ∣ (𝑅,𝑁) ∈
succ ((𝜋1(𝑡), ∅, ∅))}. Then a simple argument suffices to show that 𝑠𝜌(𝑐) ∈ 𝑇

|𝑐| , ∪𝑠𝜌 (𝑆𝑛), which concludes the induction step. ♣

Proposition 6.8. Given a normalised Horn- TBox   and  a set of positive, normalised constraints, for every target  and every 
ABox  that is consistent with  , we have that if 𝑐𝑎𝑛0( ,) validates ( ,), then ( ,) validates (,).
Proof.  We consider the following claim. Taking 𝑖 = 0 suffices to conclude the above proposition.
Claim 6.9.  Let 𝑖 = 𝑐𝑎𝑛𝑖( ,). If 𝜌 = (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑝𝑠𝑎𝑡,  with 𝑠 ∈ 𝐻 and 𝑠𝜌(𝑐) ∈ 𝑃𝐴( ∪ {𝑠𝜌},𝑖) for some 𝑐 ∈ 𝑁( ,) such that 
|𝑐| = 𝑖, then 𝑠(𝑐) ∈ 𝑃𝐴(, 𝑐𝑎𝑛( ,)).

We show this by letting 𝑖 decrease step-by-step until reaching 0. Note that because we are considering a least fixed point computation 
and  ⊆  , there must exist an 𝑖 = 𝑛 such that the above naturally holds.

Assume 𝑖 = 𝑛 − 1. Suppose that 𝑠𝜌(𝑐) ∈ 𝑃𝐴( ∪ {𝑠𝜌},𝑛−1), such that |𝑐| = 𝑛 − 1. The proof is based on unwinding how 𝜌 got 
constructed, by an induction on the construction. Without loss of generality, we can assume 𝑠 got added to 𝐻 in the last rule applied. 
Now suppose the last rule applied was Rule 6 (the other cases are rather straightforward). Thus, there exists some 𝑠 ← ∃𝑟.𝑠′ ∈  and 
moreover we find that {(𝑡, 𝑃 ,𝑄,𝐻 ⧵ {𝑠}), (𝑡′, 𝑃 ′, 𝑄′,𝐻 ′)} ∈ 𝑝𝑠𝑎𝑡, , such that 𝑠′ ∈ 𝐻 ′. Let 𝜌′ = (𝑡′, 𝑃 ′, 𝑄′,𝐻 ′) and note that because 
we were able to perform Rule 6, we can conclude that 𝑠′𝜌′ (𝑐𝑡′) ∈ 𝑃𝐴( ∪ {𝑠′𝜌′},𝑛). By construction of the austere core model, it is 
clear that in 𝑛 the node 𝑐𝑡′ satisfies exactly all concept names mentioned in 𝜋1(𝑡′); if ∃(

⨅

𝑅).
⨅

𝑁 ∈ 𝑃 ′, it follows that 𝑅 ⊆ 𝜋2(𝑡′)
and 𝑁 ⊆ 𝜋3(𝑡′); and if ∃𝑟′.𝑠′′ ∈ 𝑃 , then 𝑠′′ must be contained in 𝐻 , which means we can first perform this same proof on 𝑠′′ and the 
quadruple (𝑡, 𝑃 ,𝑄,𝐻 ⧵ {𝑠}) to conclude that 𝑠′′(𝑐) ∈ 𝑃𝐴(, 𝑐𝑎𝑛( ,)), and thus 𝑠′′(𝑐) ∈ 𝑃𝐴( ,𝑛) by Proposition 6.6. This means that 
indeed 𝑐𝑡′ ∈ (∃𝑟′.𝑠′′)𝑛 ,∅, as required. As 𝑐𝑡′ will not have any successor nodes in 𝑛, the conditions posed by 𝑄′ are enforced too.

Combining 𝑠′𝜌′ (𝑐𝑡′) ∈ 𝑃𝐴( ∪ {𝑠′𝜌′},𝑛) with assuming the claim holds for 𝑖 = 𝑛, we derive that 𝑠′(𝑐𝑡′) ∈ 𝑃𝐴(, 𝑐𝑎𝑛( ,)). Since 
𝑠 ← ∃𝑟.𝑠′ ∈ , and 𝑟− ∈ 𝜋2(𝑡′) we find 𝑠(𝑐) ∈ 𝑃𝐴(, 𝑐𝑎𝑛( ,)) too, as required. ♣

These results can be summarised in the following way.
Theorem 6.10. Given a normalised Horn- TBox   and  a set of positive, normalised constraints, for every target  and every 
ABox  that is consistent with  , we have that ( ,) validates (,) iff   validates ( ,).

7.  Rewriting for stratified SHACL

We now extend the rewriting to constraint sets  with stratified negation. Intuitively, this is done by running a saturation procedure 
in the rewriting for each stratum of , starting with the lowermost. For the transition to the next stratum in the rewriting procedure, 
we need to ensure that the outcome of the saturation at a non-topmost stratum is completed with negative information. To this end, 
we w.l.o.g. assume that all constraints from  with the same shape name on the left-hand-side occur together in the same stratum.

We will operate again on quadruples (𝑡, 𝑃 ,𝑄,𝐻), which are similar to the ones in the previous section, except that 𝐻 might 
additionally contain expressions of the form ¬𝑠 for a shape name 𝑠. For a set 𝐾 of such quadruples, we say (𝑡, 𝑃 ,𝑄,𝐻) is maximal in 
𝐾 if (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾 and there is no 𝐻 ′ ⊃ 𝐻 with (𝑡, 𝑃 ,𝑄,𝐻 ′) ∈ 𝐾. Then the notion of completion is defined as follows:
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Definition 7.1.  The completion 𝑐𝑜𝑚𝑝, (𝐾) of a set 𝐾 of quadruples w.r.t. a normalised Horn- TBox   and a set of constraints 
 is a set, defined as follows:

𝑐𝑜𝑚𝑝, (𝐾) = {(𝑡, 𝑃 ,𝑄 ∪𝑄′,𝐻 ∪ 𝐻̄) ∣ (𝑡, 𝑃 ,𝑄,𝐻) is maximal in 𝐾},

where

𝐻̄ ∶= {¬𝑠 ∣ 𝑠 occurs in , 𝑠 ∉ 𝐻}

𝑄′ ∶= {∃𝑟.𝑠′ ∣ 𝑠 ← ∃𝑟.𝑠′ ∈ , 𝑠 ∉ 𝐻} ∪ {𝑐 ∣ 𝑠 ← 𝑐 ∈ , 𝑠 ∉ 𝐻}.

We need to augment the inference rules of the rewriting procedure for positive constraints with an additional rule to handle constraints 
of the form 𝑠 ← ¬𝑠′. Furthermore, Rule 6, is updated to also consider the newly added information to 𝑄. Note that using the following 
updated definition of 𝑠𝑎𝑡, (𝐾) will give the same results as the previously defined 𝑝𝑠𝑎𝑡, (𝐾) in Definition 6.3 on the first stratum, 
as the proposed changes do not have any effect if no ¬∃𝑟.𝑠’s or ¬𝑠’s are present in the quadruples.
Definition 7.2.  Given a normalised Horn- TBox   and  a set of normalised constraints, we let 𝑠𝑎𝑡, (𝐾) be the smallest 
set of pairs containing 𝐾 closed under Rules 2–5 defined of Definition 6.3, where ‘𝑝𝑠𝑎𝑡, ’ is replaced by ‘𝑠𝑎𝑡, (𝐾)’, and additionally 
under the following Rule 6’ and 7:

6’. If 𝑠 ← ∃𝑟.𝑠′ ∈ , {(𝑡, 𝑃 ,𝑄,𝐻), (𝑡′, 𝑃 ′, 𝑄′,𝐻 ′)} ⊆ 𝑠𝑎𝑡, (𝐾), 𝑟− ∈ 𝜋2(𝑡′), 𝑃 ′ ∩𝑁𝐼 = ∅, 𝑠′ ∈ 𝐻 ′ and 𝑖𝑛𝑣(𝑡′) ∈ 𝑐ℎ𝑖𝑙𝑑 (𝑖𝑛𝑣(𝑡)) such that
• ∃(

⨅

𝑅).
⨅

𝑁 ∈ 𝑃 ′ iff (𝑅,𝑁) ∈ succ (𝜋1(𝑡′), ∅, ∅) ⧵ succ (𝑡′);
• {𝑠′′ ∣ ∃𝑟′′.𝑠′′ ∈ 𝑃 ′} ∪ {¬𝑠′′ ∣ ∃𝑟′′.𝑠′′ ∈ 𝑄′, 𝑟′′ ∈ 𝜋2(𝑡′)} ⊆ 𝐻 ,
then (𝑡, 𝑃 ,𝑄,𝐻 ∪ {𝑠}) belongs to 𝑠𝑎𝑡, (𝐾).

7. If 𝑠 ← ¬𝑠′ ∈  and (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝑠𝑎𝑡, (𝐾) such that ¬𝑠′ ∈ 𝐻 , then (𝑡, 𝑃 ,𝑄,𝐻 ∪ {𝑠}) belongs to 𝑠𝑎𝑡, (𝐾).

Now can we define the inference procedure that processes strata from the lowest to the topmost, performing saturation using the 
updated set of rules at every stratum, interleaved with a computation of the completion in between.
Definition 7.3. For a TBox   and a constraint set  with stratification 0,… ,𝑛, we let 𝐾0 = 𝑝𝑠𝑎𝑡0 ,  and for each 0 < 𝑖 ≤ 𝑛

𝐾𝑖 = 𝑠𝑎𝑡𝑖 , (𝑐𝑜𝑚𝑝𝑖−1 , (𝐾𝑖−1)).

We let  =  ,𝐾𝑛 , where  ,𝐾𝑛  is defined as in Definition 6.4. 
Example 7.4. Suppose  = {𝐴 ⊑ ∃𝑝.𝐵} and consider the following set of constraints  = 0 ∪ 1:

0 = {𝑠𝐶 ← 𝐶, 𝑠′ ← ∃𝑝.𝑠𝐶}

1 = {𝑠′′ ← ∃𝑝. ̄𝑠𝐶 , ̄𝑠𝐶 ← ¬𝑠𝐶 , 𝑠 ← 𝑠′ ∧ 𝑠′′}.

We consider the following two 2-types in the rest of this example: 𝑡𝐴 ∶= ({𝐴}, ∅, ∅) and 𝑡 ∶= ({𝐴}, {𝑝}, {𝐵}). Because of Rule 1, we find 
that the following two quadruples are contained in 𝐾0: 

(𝑡𝐴, {⊤}, {∃𝑝.𝐵}, ∅), (𝑖𝑛𝑣(𝑡), {⊤}, ∅, ∅).

Here, the first one can be updated to (𝑡𝐴, {⊤,∃𝑝.𝑠𝐶}, {∃𝑝.𝐵}, {𝑠′}). Note that all three quadruples are maximal in 𝐾0, which means we 
find the following quadruples in 𝑐𝑜𝑚𝑝0 , : 

(𝑡𝐴, {⊤}, {∃𝑝.𝐵,∃𝑝.𝑠𝐶}, {¬𝑠′¬𝑠𝐶}), (𝑡𝐴, {⊤,∃𝑝.𝑠𝐶}, {∃𝑝.𝐵}, {𝑠′,¬𝑠𝐶}), (𝑖𝑛𝑣(𝑡), {⊤}, {∃𝑝.𝑠𝐶}, {¬𝑠′,¬𝑠𝐶}).

By definition, these quadruples are also contained in 𝐾1, and thus, because of Rule 7, also the versions in which ̄𝑠𝐶 is added to the 
fourth set in each quadruple. Then, we can apply Rule 6’ to (𝑡𝐴, {⊤,∃𝑝.𝑠𝐶}, {∃𝑝.𝐵}, {𝑠′,¬𝑠𝐶 , ̄𝑠𝐶}), (𝑖𝑛𝑣(𝑡), {⊤}, {∃𝑝.𝑠𝐶}, {¬𝑠′,¬𝑠𝐶 , ̄𝑠𝐶})
and the constraint 𝑠′′ ← ∃𝑝.¬𝑠𝐶 , to find 

(𝑡𝐴, {⊤,∃𝑝.𝑠𝐶}, {∃𝑝.𝐵}, {𝑠′,¬𝑠𝐶 , ̄𝑠𝐶 , 𝑠′′}) ∈ 𝐾1

too. After applying Rule 5 based on the constraint 𝑠 ← 𝑠′ ∧ 𝑠′′ ∈ 1, we can extract the following rewritten constraint: 
𝑠← 𝐴 ∧ ¬𝐵 ∧ ¬𝐶 ∧ ∃𝑝.𝑠𝐶 ∧ ¬∃𝑝.𝐵 ∈  ,

Now let  = {𝐴(𝑎), 𝑝(𝑎, 𝑏), 𝐶(𝑏)} and set the target to  = {𝑠(𝑎)}. As  =  , we indeed find a positive answer when validating ( ,)
over  . Notice 𝑐𝑎𝑛( ,) corresponds to the canonical interpretation of {𝐴(𝑎), 𝑝(𝑎, 𝑏), 𝐶(𝑏), 𝑝(𝑎, 𝑎𝑡), 𝐵(𝑎𝑡)}. Thus, we can conclude that 
( ,) validates (,) too. ♡

Given a stratified set of constraints  with stratification 0,… ,𝑛, let ≤𝑖 ∶= 0 ∪… ∪ 𝑖. Similarly, we will use  ,≤𝑖 to denote 
 ,𝐾0

∪… ∪  ,𝐾𝑖 .

Theorem 7.5. Given a normalised Horn- TBox   and  a set of stratified constraints with stratification 0,… ,𝑛, for every target 
 and every ABox  that is consistent with  , we have that ( ,) validates (,) iff   validates ( ,).
Proof.  (⇒). We will prove completeness by proving the following claim by induction on 𝑖
Claim 7.6.  Let 𝑖 = 𝑐𝑎𝑛𝑖( ,). For each 𝑐 ∈ 𝑁( ,) and for each 0 ≤ 𝑖 ≤ 𝑛, there exists 𝜌 = (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾𝑖 that is maximal in 𝐾𝑖, and 
moreover:
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1. if 𝑐 ∈ 𝑁( ,) ⧵𝑁𝐼 , then
(a) 𝑡 = 𝑖𝑛𝑣(𝑡𝑎𝑖𝑙(𝑐));
(b) 𝑃 ⊇ {∃(

⨅

𝑅).
⨅

𝑁 ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅)) ⧵ succ (𝑡)} and 𝑃 ∩𝑁𝐼 = ∅;
(c) 𝑄 ⊇ {∃(

⨅

𝑅).
⨅

𝑁 ∣ (𝑅,𝑁) ∈ succ ((𝜋1(𝑡), ∅, ∅))};
2. for all other 𝑐 ∈ 𝑁𝐼 , we have
(a) 𝑡 = ({𝐴 ∈ 𝑁𝐶 ∣ 𝐴(𝑐) ∈  }, ∅, ∅);
(b) 𝑃 ⊇ {∃(

⨅

𝑅).
⨅

𝑁 ∣ (𝑅,𝑁) ∈ succ (𝑡), 𝑐 ∈ (∃(
⨅

𝑅).
⨅

𝑁) } and (𝑃 ∩𝑁𝐼 ) ⧵ {𝑐} = ∅;
(c) 𝑄 ⊇ {∃(

⨅

𝑅).
⨅

𝑁 ∣ (𝑅,𝑁) ∈ succ (𝑡), 𝑐 ∉ (∃(
⨅

𝑅).
⨅

𝑁) };
3. 𝐻 = {𝑠 ∣ 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖)} ∪ {¬𝑠 ∣ 𝑠(𝑐) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖), 𝑠 defined in 𝑖−1};
4. and 𝑠𝜌(𝑐) ∈ 𝑃𝐴(

|𝑐|, ,≤𝑖 ∪ 𝑠𝜌).

Analogous to Proposition 6.6, it follows that for each 𝑠 such that 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤0), there exists a quadruple (𝑡, 𝑃𝑠, 𝑄𝑠,𝐻𝑠) ∈
𝑠𝑎𝑡0 , (∅) = 𝐾0 such that 𝑠 ∈ 𝐻𝑠 and such that requirements 1, 2 and 4 of the claim hold. Now let 𝑋 = {𝑠 ∣ 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤0)}. 
Then, following Rule 2 of the rewriting algorithm in Definition 6.3, we must conclude that also (𝑡,⋃𝑠∈𝑋 𝑃𝑠,

⋃

𝑠∈𝑋 𝑄𝑠,
⋃

𝑠∈𝑋 𝐻𝑠) ∈ 𝐾0. 
This quadruple is exactly the quadruple we were looking for: requirements 1, 2 and 4 have to be satisfied, as they are satisfied for 
each (𝑡, 𝑃𝑠, 𝑄𝑠,𝐻𝑠) separately; requirement 3 follows, as 𝑠 ∈ 𝐻𝑠 implies 𝑋 ⊆

⋃

𝑠∈𝑋 𝐻𝑠, and at the same time the correctness of the 
rewriting forbids that 𝐻𝑠 ⧵𝑋 ≠ ∅. In the same way, maximality of the quadruple is implied.

For the induction step, 𝑖 = 𝑗 + 1, note that for each 𝑐 ∈ 𝑁𝐼 ∪𝑁( ,), we are given some (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾𝑗 that is maximal and satisfies 
requirements 1 to 4 for 𝑖 = 𝑗. As this quadruple is assumed to be maximal, completion 𝑐𝑜𝑚𝑝𝑗 ,  can be applied to (𝑡, 𝑃 ,𝑄,𝐻). Thus, 
we find (𝑡, 𝑃 ,𝑄 ∪𝑄′,𝐻 ∪ 𝐻̄) ∈ 𝐾𝑗+1. Since 𝑠 ∈ 𝐻 iff 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗 ), it must follow that ¬𝑠 ∈ 𝐻̄ iff 𝑠(𝑐) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗 )
and 𝑠 occurs in ≤𝑗 . Now suppose 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗+1) ⧵ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗 ), then there must exist a constraint 𝑠 ← 𝐶 ∈  that 
caused this addition.

If 𝐶 = ¬𝑠′, then 𝑠′ is defined in ≤𝑗 by the stratification rules, and 𝑠′(𝑐) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗 ), which means ¬𝑠′ ∈ 𝐻̄ , thus Rule 7 
can be applied to conclude that (𝑡, 𝑃 ,𝑄 ∪𝑄′,𝐻 ∪ 𝐻̄ ∪ {𝑠}) ∈ 𝐾𝑗+1. If 𝐶 is any of the other options, the same reasoning as in the proof 
of Proposition 6.6 can be used.

Now all that is left to show, is that each 𝑌 ∈ 𝑄′ is not blocking the satisfaction of requirement 4. By taking a closer look a the 
completion procedure, we see that 𝑌 = ∃𝑟.𝑠′ for some 𝑠 ← ∃𝑟.𝑠′ ∈ ≤𝑗 such that 𝑠 ∉ 𝐻 , or 𝑌 = 𝑐, for some 𝑠 ← 𝑐 ∈ ≤𝑗 and 𝑠 ∉ 𝐻 . For 
both cases, note that 𝑠 ∉ 𝐻 , which means 𝑠(𝑐) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑗 ). Assuming that any of these 𝑌  is indeed blocking restriction 4, 
directly leads to a contradiction with the previous observation. Thus, we have indeed found the required quadruple.

(⇐). Again, let 𝑖 = 𝑐𝑎𝑛𝑖( ,). To show correctness, we will show by induction on 𝑖 that for each 𝑐 ∈ 𝑁( ,) and for each 𝜌 =
(𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾𝑖 such that (a) 𝑠𝜌(𝑐) ∈ 𝑃𝐴(

|𝑐|, ,≤𝑖 ∪ 𝑠𝜌), we find for each 𝑠 ∈ 𝐻 that 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖).
First, note that Proposition 6.8 provides the induction basis. So, for the induction step, suppose we are given some 𝑐 ∈ 𝑁( ,)

and (𝑡, 𝑃 ,𝑄,𝐻) ∈ 𝐾𝑖+1 such that (a) holds. We will focus on the case that there exists a (𝑡, 𝑃 ,𝑄′,𝐻 ′) ∈ 𝐾𝑖 that is maximal in 𝐾𝑖, 
such that (𝑡, 𝑃 ,𝑄,𝐻) is the result of first applying completion to (𝑡, 𝑃 ,𝑄′,𝐻 ′) to find (𝑡, 𝑃 ,𝑄′ ∪𝑄′′,𝐻 ′ ∪ 𝐻̄ ′) ∈ 𝑐𝑜𝑚𝑝𝑖 , , followed by 
application(s) of rules 3–5, 6’ or 7. Here, we will only consider the result of applying Rule 7, as the treatment of the application of the 
other rules is very similar to what is discussed in Proposition 6.8. Note that Rules 1 and 2 are not really having any relevant effects 
after finishing the first stratum.

So, assume 𝑠 ← ¬𝑠′ ∈ 𝑖+1 and ¬𝑠′ ∈ 𝐻̄ ′. We argue that each 𝑠′ ← 𝐶 ∈  cannot be used to deduce 𝑠′(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖).

• 𝐶 ∈ 𝑁𝐶 . If 𝐶 ∈ 𝜋1(𝑡), we would have found 𝑠′ ∈ 𝐻 ′ by maximality of (𝑡, 𝑃 ,𝑄′,𝐻 ′). Thus, 𝐶 ∉ 𝜋1(𝑡), which means ¬𝐶 appears in 
𝑠(𝑡,𝑃 ,𝑄,𝐻). Since (a) holds, this means that 𝑐 ∉ 𝐶𝑐𝑎𝑛( ,), which suffices.

• 𝐶 ∈ 𝑁𝐼 . As ¬𝑠′ ∈ 𝐻̄ ′, we find 𝐶 ∈ 𝑄. Since (a) holds, this means 𝐶𝑐𝑎𝑛( ,) ≠ 𝑐𝑐𝑎𝑛( ,), which suffices.
• 𝐶 ∈ {𝑠′′, 𝑠′′ ∧ 𝑠′′′ ∣ {𝑠′′, 𝑠′′′} ⊆ 𝑁𝑆}. Perform this same argument for 𝑠′′ or 𝑠′′′. As we are considering a least fixed point semantics, 
this regression must terminate.

• 𝐶 = ∃𝑟.𝑠′′, for some 𝑟 ∈ 𝑁𝑅, 𝑠 ∈ 𝑁𝑆 . As ¬𝑠′ ∈ 𝐻̄ ′, we find 𝐶 ∈ 𝑄. Note we derived completeness and correctness of all strata up 
till 𝑖, that is for all 𝑠, for all natural numbers 𝑛, and all 𝑐 such that |𝑐| ≤ 𝑛, we have 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖) iff 𝑠(𝑐) ∈ 𝑃𝐴(𝑛, ,≤𝑖). 
Thus, combining this with (𝑎), we find that in any case 𝑠′′(𝑑) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖), for 𝑑𝑡 = 𝑐, such that 𝑟− ∈ 𝜋2(𝑡).

The other option we have to exclude is 𝑑 = 𝑐𝑡, for some 𝑟 ∈ 𝜋2(𝑡). For contradiction, assume 𝑠′′(𝑑) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖). So 
we know there must exist a quadruple 𝜌𝑑 = (𝑖𝑛𝑣(𝑡), 𝑃𝑑 , 𝑄𝑑 ,𝐻𝑑 ) ∈ 𝐾𝑖 such that 𝑠′′ ∈ 𝐻𝑑 and 𝑠𝜌𝑑 (𝑑) ∈ 𝑃𝐴(

|𝑑|,≤𝑖, ∪ 𝑠𝜌𝑑 ), and such 
that these there does not exist (𝑖𝑛𝑣(𝑡), 𝑃 ′

𝑑 , 𝑄
′
𝑑 ,𝐻

′
𝑑 ) ∈ 𝐾𝑖 with the same properties, but |{∃𝑟.𝑠 ∈ 𝑃 ′

𝑑}| < |{∃𝑟.𝑠 ∈ 𝑃𝑑}|. First of all, note 
that {¬𝑠 ∣ ∃𝑟.𝑠 ∈ 𝑄𝑑} ⊆ 𝐻 ; for all such 𝑠, we have ¬𝑠 ∉ 𝐻 , implies 𝑠 ∈ 𝐻 . Thus, 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖) by induction hypothesis. 
Using completeness and correctness, this implies 𝑠𝜌𝑑 (𝑑) ∉ 𝑃𝐴(𝑐𝑎𝑛

|𝑑|( ,),≤𝑖, ∪ 𝑠𝜌𝑑 ), which is a contradiction.
Now there are two options: if {𝑠 ∣ ∃𝑟.𝑠 ∈ 𝑃𝑑} ⊆ 𝐻 , then Rule 6’ could have been applied on 𝑠′ ← ∃𝑟.𝑠′′ at a certain point, which 

is in contradiction with the maximality of (𝑡, 𝑃 ,𝑄′,𝐻 ′). So, we are left with the second option: {𝑠 ∣ ∃𝑟.𝑠 ∈ 𝑃𝑑} ⊈ 𝐻 . Now we can 
repeat this same argument for each member of {𝑠 ∣ ∃𝑟.𝑠 ∈ 𝑃𝑑} ⧵𝐻 . Because we are solely considering the least amount of ∃𝑟.𝑠’s in 
𝑃𝑑 , we know they all are essential in deriving 𝑠′′(𝑑). Thus, 𝑠′′(𝑑) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖) for all 𝑑 such that (𝑐, 𝑑) ∈ (𝑟)𝑐𝑎𝑛( ,), which 
automatically implies the required result.

• 𝐶 = ¬𝑠′′. If 𝑠 ← ¬𝑠′ ∈ 𝑖+1, then 𝑠′ ← ¬𝑠′′ ∈ ≤𝑖, by definition of the strata. This means that ¬𝑠′′ cannot be part of 𝐻̄ ′. So, to apply 
Rule 7, it must be that ¬𝑠′′ ∈ 𝐻 ′. However, this is in contradiction with the maximality of (𝑡, 𝑃 ,𝑄′,𝐻 ′) that would imply 𝑠′ ∈ 𝐻 ′, 
which concludes this case.

Thus, we conclude that 𝑠′(𝑐) ∉ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖), and thus that indeed 𝑠(𝑐) ∈ 𝑃𝐴(𝑐𝑎𝑛( ,),≤𝑖+1), as required. ♣
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8.  Pure rewritings

Theorem 7.5 lets us reduce SHACL validation in the presence of Horn- TBoxes to plain SHACL validation over the com-
pleted ABox  . In this section we discuss how to update this rewriting to a pure rewriting. That is, how to produce a set of constraints 
′, in a data-independent way, such that ( ,) validates (,) iff  validates (′,).

To make the rewriting pure, we have to encode the information added to  by the immediate consequence operator 𝑇  defined in 
Definition 3.7 in new constraints. However, SHACL as introduced in [1] can only propagate information on nodes, and information 
about the properties/roles connecting the nodes cannot be directly represented.

We discuss two ways around this. First we present a solution for TBoxes that do not contain counting axioms (𝐴 ⊑ ≤1𝑟.𝐵). The role 
information added to   in this case is simple, and it can be directly derived from locally satisfying axioms of the form 𝑟0 ⊓… ⊓ 𝑟𝑛 ⊑ 𝑟. 
For the general case, we extend SHACL and enable it to describe edges, rather than just nodes.

Without loss of generality, we assume in this section that there are no cycles over role inclusions. That is, no TBox contains a set 
of role inclusions of the form {𝑟 ⊑ 𝑟1, 𝑟1 ⊑ 𝑟2,… , 𝑟𝑛 ⊑ 𝑟}. If such a cycle exists, then all roles names appearing in the cycle are replaced 
by one unique role name.

8.1.  Rewriting for normalised Horn-

Let us first focus on how to define a pure rewriting for normalised Horn-.

Definition 8.1.  A Horn- TBox   is in normal form if each of the concept inclusions in   are of one of the following forms:
(F1) 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵 (F3) 𝐴 ⊑ ∀𝑟.𝐵

(F4) 𝐴 ⊑ ∃𝑟.𝐵,

for {𝐴,𝐴0,… , 𝐴𝑛, 𝐵} ⊆ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅. Furthermore,   may contain role inclusions of the form 𝑟 ⊑ 𝑟′, for {𝑟, 𝑟′} ⊆ 𝑁𝑅. 
For each Horn- TBox  , we define the following set of constraints, capturing most of the information derived by the 

immediate consequence operator 𝑇 , defined in Definition 3.7.
Definition 8.2.  For each 𝐴 ∈ 𝑁𝐶 , we let 𝑠𝐴 ∈ 𝑁𝑆 be a fresh shape name. Given a normalised Horn- TBox  , let 𝑠 be the 
smallest set of constraints containing for each  ⊧ 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵, the constraint 

𝑠𝐵 ←
⋀

0≤𝑖≤𝑛
𝑠𝐴𝑖 ∈ 𝑠, (2)

furthermore, for each 𝐴 ⊑ ∀𝑟.𝐵 ∈   and  ⊧ 𝑆 ⊑ 𝑟 the constraint 
𝑠𝐵 ← ∃𝑆−.𝑠𝐴 ∈ 𝑠, (3)

and for each 𝐴 ∈ 𝑁𝐶 , the constraint 
𝑠𝐴 ← 𝐴 ∈ 𝑠. (4)

Definition 8.3. Given a normalised Horn- TBox  , let +
  be the set of constraints consisting of the constraints in  , taking 

into account the following alterations:

• each concept name 𝐴 ∈ 𝑁𝐶 appearing in an axiom in   is replaced by 𝑠𝐴; and
• for each  ⊧

⨅

𝑅 ⊑ 𝑟, such that 𝑅 ∪ {𝑟} ⊆ 𝑅′, and ⨅𝑅′ appears in some constraint, ⨅𝑅′ is replaced by ⨅(𝑅′ ⧵ {𝑟}).

Note that when considering +
 ∪ 𝑠 instead of  , we are introducing a new lowest stratum: the set of freshly introduced con-

straints, based on existing concept names. However, the only point of this stratum is to mimic exactly which concept names hold at 
which points in the enriched ABox  , defined in Definition 3.7.
Proposition 8.4. Given a normalised Horn- TBox   and  a set of positive constraints, for every target  and every ABox  that 
is consistent with  , we have that 𝑐𝑎𝑛0( ,) validates ( ,) iff  validates (+

 ∪ 𝑠,).

Proof.  Note that 𝑐𝑎𝑛0( ,) corresponds to  , the first layer in building the austere canonical model, defined in Definition 3.7. In 
this definition, the ABox is completed in a least fixed point manner under certain axioms (𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵 and 𝐴 ⊑ ∀𝑟.𝐵) that are 
precisely encoded in constraints of the form (2) and (3). The only difference is that we cannot translate axioms of the form  ⊧ 𝑆 ⊑ 𝑟′

directly. A simple fix suffices: as role atoms in  ⧵ can only be the result of an axiom of the form 𝑟 ⊑ 𝑟′, the replacement in 
Definition 8.3 in combination with the implied roles in constraints of the form (3) is sufficient. As we are also considering a least 
fixed point semantics for SHACL validation, the above result directly follows. ♣

Thus, considering +
 ∪ 𝑠 as rewritten set of constraints indeed provides us with a pure rewriting. The following theorem follows 

from combining the results of Theorem 7.5 and Proposition 8.4.
Theorem 8.5.  Given a normalised Horn- TBox   and  a set of stratified constraints, for every target  and every ABox  that 
is consistent with  , we have that ( ,) validates (,) iff  validates (+

 ,).

Artiϧcial Intelligence 352 (2026) 104483 

20 



A. Oudshoorn, M. Ortiz and M. Šimkus

8.2.  SHACL𝑏

For a pure rewriting of normalised Horn-, we propose a different solution: we define an extension of SHACL that we 
call SHACL𝑏. Here we also allow ‘binary’ shape constraints 𝑏: we can also express constraints on pairs of nodes. We note that not all 
operators defined in SHACL𝑏 are necessary to define a pure rewriting for normalised Horn-. However, we do resort to the 
following version to demonstrate how the imbalance between unary and binary (shape) atoms in SHACL can be fully reduced.
Definition 8.6.  Let SHACL𝑏 consist of shape constraints of the form 𝑠 ← 𝜑, or 𝑏← 𝜓 , for {𝑠, 𝑏} ⊆ 𝑁𝑆 , such that

𝜑 ∶∶= 𝑐 ∣ 𝑠 ∣ 𝐴 ∣ 𝜑 ∧ 𝜑 ∣ ¬𝜑 ∣ ∃𝜓.𝜑

𝜓 ∶∶= 𝑠? ∣ 𝑏 ∣ 𝑟 ∣ 𝜓 ∪ 𝜓 ∣ 𝜓 ∩ 𝜓 ∣ 𝜓 ⋅ 𝜓 ∣ 𝜓∗ ∣ 𝜓− ∣ 𝜓 ⧵ 𝜓,

where 𝑐 ∈ 𝑁𝐼 , {𝑠, 𝑏} ⊆ 𝑁𝑆 , 𝐴 ∈ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅. We evaluate SHACL𝑏 as defined in Fig. 4, extended with
(∃𝜓.𝜑),𝑆 ∶= {𝑒 ∈ Δ ∣ ∃𝑒′ ∈ Δ ∶ (𝑒, 𝑒′) ∈ (𝜓),𝑆 ∧ 𝑒′ ∈ (𝜑),𝑆}

(𝑠?),𝑆 ∶= {(𝑒, 𝑒) ∈ Δ × Δ ∣ 𝑒 ∈ 𝑠,𝑆}

(𝑏),𝑆 ∶= {(𝑒, 𝑒′) ∈ Δ × Δ ∣ 𝑏(𝑒, 𝑒′) ∈ 𝑆}

(𝑟),𝑆 ∶= 𝑟

(𝜓 ∪ 𝜓 ′),𝑆 ∶= (𝜓),𝑆 ∪ (𝜓 ′),𝑆

(𝜓 ∩ 𝜓 ′),𝑆 ∶= (𝜓),𝑆 ∩ (𝜓 ′),𝑆

(𝜓 ⋅ 𝜓 ′),𝑆 ∶= {(𝑒, 𝑒′) ∈ Δ × Δ ∣ ∃𝑒′′ ∈ Δ ∶ (𝑒, 𝑒′′) ∈ (𝜓),𝑆 ∧ (𝑒′′, 𝑒′) ∈ (𝜓 ′),𝑆}

(𝜓∗),𝑆 ∶= {(𝑒, 𝑒′) ∈ Δ × Δ ∣ ∃{𝑒0,… , 𝑒𝑛} ⊆ Δ ∶

∀𝑖 ∈ {0,… , 𝑛1} ∶ (𝑒𝑖, 𝑒𝑖+1) ∈ (𝜓),𝑆 ∧ 𝑒0 = 𝑒 ∧ 𝑒𝑛 = 𝑒′}

(𝜓−),𝑆 ∶= {(𝑒, 𝑒′) ∈ Δ × Δ ∣ (𝑒′, 𝑒) ∈ (𝜓),𝑆}

(𝜓 ⧵ 𝜓 ′),𝑆 ∶= (𝜓),𝑆 ⧵ (𝜓 ′),𝑆 .

The following shape expressions, although not explicitly present, are also expressible in SHACL𝑏.
∃𝑅.𝜑 = ∃(𝑟0 ∩… ∩ 𝑟𝑛).𝜑

𝖾𝗊(𝐸,𝐸′) = ¬∃.(𝐸 ⧵ 𝐸′).⊤ ∧ ¬∃.(𝐸′ ⧵ 𝐸).⊤

𝖽𝗂𝗌𝗃(𝐸,𝐸′) = ¬∃(𝐸 ∩ 𝐸′).⊤

where 𝑅 = 𝑟0 ⊓… ⊓ 𝑟𝑛.

Definition 8.7.  Define 𝑠𝐴 ∈ 𝑁𝑆 and 𝑏𝑟 ∈ 𝑁𝑆 to be a fresh shape names for each 𝐴 ∈ 𝑁𝐶 , respectively 𝑟 ∈ 𝑁𝑅. Given a normalised 
Horn- TBox  , let 𝑠 be the smallest set of binary SHACL constraints containing for each  ⊧ 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ 𝐵, the constraint 

𝑠𝐵 ←
⋀

0≤𝑖≤𝑛
𝑠𝐴𝑖 ∈ 𝑠, (5)

for each 𝐴 ⊑ ∀𝑟′.𝐵 ∈   the constraint 
𝑠𝐵 ← ∃𝑏𝑟− .𝑠𝐴 ∈ 𝑠, (6)

and, for each  ⊧ 𝐴0 ⊓… ⊓ 𝐴𝑛 ⊑ ∃(𝑟0 ⊓… ⊓ 𝑟𝑚).(𝐵0 ⊓… ⊓ 𝐵𝑘) and 𝐴 ⊑ ≤1𝑟.𝐵 ∈   such that 𝑟 ∈ {𝑟0,… , 𝑟𝑚} and 𝐵 ∈ {𝐵0,… , 𝐵𝑘}, the 
constraints

{𝑏𝑟𝑖 ← 𝑠̂? ⋅ 𝑏𝑟 ⋅ 𝑠𝐵?, 𝑠̂← 𝑠𝐴 ∧ 𝑠𝐴0
∧… ∧ 𝑠𝐴𝑛 , (7)

𝑠𝐵𝑗 ← 𝑠𝐵 ∧ ∃𝑏𝑟− .𝑠̂} ⊆ 𝑠, (8)

for each 𝑖 ∈ {0,… , 𝑚} and 𝑗 ∈ {0,… , 𝑘}, and a fresh shape name 𝑠̂, furthermore, for each 𝑟 ⊑ 𝑟′ ∈  , the constraint 
𝑏𝑟′ ← 𝑏𝑟 ∈ 𝑠, (9)

and for each 𝑟 ∈ 𝑁𝑅, 𝑝 ∈ 𝑁𝑅 the constraints 
{𝑏𝑟 ← 𝑟, 𝑏(𝑝−) ← (𝑏𝑝)−, 𝑏𝑝 ← (𝑏𝑝− )−} ⊆ 𝑠, (10)

and, lastly, for each 𝐴 ∈ 𝑁𝐶 , the constraint 
𝑠𝐴 ← 𝐴 ∈ 𝑠. (11)

Proposition 8.8.  Given a normalised Horn- TBox  , for each , we find that for all 𝐴 ∈ 𝑁𝐶 , all 𝑟 ∈ 𝑁𝑅, and all {𝑐, 𝑑} ⊆ Δ,

• 𝐴(𝑐) ∈   iff 𝑠𝐴(𝑐) ∈ 𝑃𝐴(𝑠,);
• 𝑟(𝑐, 𝑑) ∈   iff 𝑏𝑟(𝑐, 𝑑) ∈ 𝑃𝐴(𝑠,).
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Proof.  Let  ∗
𝑠  consists of the constraints in 𝑠 defined by (10) and (11). Then, it is clear that 𝐴(𝑐) ∈  iff 𝑠𝐴(𝑐) ∈ 𝑃𝐴( ∗

𝑠 ,) and 
𝑟(𝑐, 𝑑) ∈  iff 𝑏𝑟(𝑐, 𝑑) ∈ 𝑃𝐴( ∗

𝑠 ,). This means that all information of the ABox can be precisely captured in shape names. For the 
rest, note how the different lines in Definition 3.7 defining the immediate consequence operator used to build   from  correspond 
one-to-one to the constraints defined in (5) to (9), with the exception of using the shorthand 𝑠̂. As both the perfect assignment 𝑃𝐴 as 
the construction of   are based on a least fixed point semantics, the result follows. ♣

The completeness and correctness of the full rewriting now directly follow. Clearly, we concluded that all information in  , 
albeit in the form 𝑠𝐴 and 𝑏𝑟, can be derived by SHACL𝑏 constraints constructed to this end. Therefore, there is not really a difference 
between evaluating   over  , or  ∪ 𝑠 over , except that we should replace concept names and roles by their shape names 
referring to them.
Definition 8.9.  Given a normalised Horn- TBox  , let +

  be the set of constraints consisting of the axioms in  , such 
that each concept name 𝐴 ∈ 𝑁𝐶 appearing in an axiom in   is replaced by 𝑠𝐴, and similarly, each 𝑟 ∈ 𝑁𝑅 by 𝑏𝑟. 

Now that the concept and role names are replaced by their shape equivalents, we have indeed produced a pure rewriting.
Theorem 8.10.  Given a normalised Horn- TBox   and  a set of stratified constraints, for every target  and every ABox 
that is consistent with  , we have that ( ,) validates (,) iff  validates (+

 ∪ 𝑠,).

9.  Complexity results

We now discuss the computational complexity of SHACL validation in the presence of Horn- TBoxes. Specifically, we 
discuss the combined complexity and the data complexity of the problem [34]. The former is measured in terms of the combined size 
of all input components, while the latter is measured assuming all components except the ABox are of fixed size.
Theorem 9.1. The problem of SHACL validation in the presence of normalised Horn- TBoxes is ExpTime-complete in combined 
complexity and PTime-complete in data complexity.
Proof.  For data complexity, the PTime lower bound was shown in [21], which already applies in the absence of ontologies. The 
matching PTime upper bound follows from Theorem 7.5, combined with the fact that   has size polynomial in ’s size itself, and 
that validation under stratified constraints without ontologies in feasible in polynomial time in data complexity [21]. We note that 
checking whether the input graph is consistent with a TBox can also be done in polynomial time.

For the upper bound in combined complexity, we rely on the rewriting algorithm discussed in Sections 6 and 7. Let ( ,) be a 
normalised Horn- knowledge base and  any set of (stratified) constraints. Observe that the number of different quadruples 
(𝑡, 𝑃 ,𝑄,𝐻) over the signature of   and  that can be added to any 𝐾𝑖 during the rewriting is bounded by an exponential in the size 
of   and . An application of any of the rules takes polynomial time in the size of  , ,  and ⋃𝑖>0 𝐾𝑖, which means the application 
of all rules in the procedure is bounded by an exponential in the size of  ,  and . Computing  ,𝐾 is polynomial in the size of 𝐾, 
for all possible 𝐾. Thus, overall we get a procedure that runs in exponential time in the size of  ,  and .

The hardness result in combined complexity follows from the hardness of reasoning in the ontology alone: checking whether an 
atom of the form 𝑟(𝑎, 𝑏) or 𝐴(𝑎) is implied by a knowledge base is already ExpTime-complete in combined complexity [11]. ♣

The hardness inherited from the ontology alone is not the only source of complexity. ExpTime-hardness holds even for very weak 
description logics like DL-Lite and a very simple fragment of SHACL.

Define a simple shape expression 𝜑 in the following way 
𝜑 ∶∶= 𝑠 ∣ 𝐴 ∣ 𝜑 ∧ 𝜑 ∣ ∃𝑟.𝜑,

for 𝑠 ∈ 𝑁𝑆 , 𝐴 ∈ 𝑁𝐶 and 𝑟 ∈ 𝑁𝑅. Shape constraints in simple-SHACL are then build in the same way as for regular SHACL by using 
simple shape expressions instead of regular ones. All other definitions extend in a straightforward way to simple-SHACL.
Theorem 9.2. Let  be any DL that support axioms of the forms 𝐴 ⊑ ∃𝑟.⊤ and ∃𝑟1.⊤ ⊑ ∃𝑟2.⊤ and 𝑟1 ⊑ 𝑟2. In the presence of  TBoxes, 
simple-SHACL validation is ExpTime-complete in combined complexity. 
Proof.  Membership follows directly from Theorem 9.1. To prove ExpTime-hardness in combined complexity we reduce the word 
problem of polynomially space-bounded Alternating Turing Machines (ATMs) to validating shapes under an  ontology.

An ATM is defined as a tuple of the form
 = (Σ, 𝑄∃, 𝑄∀, 𝑞0, 𝑞𝑎𝑐𝑐 , 𝑞𝑟𝑒𝑗 , 𝛿)

where Σ is an alphabet, 𝑄∃ is a set of existential states, 𝑄∀ is a set of universal states, disjoint from 𝑄∃, 𝑞0 ∈ 𝑄∃ is an initial state, 
𝑞𝑎𝑐𝑐 ∈ 𝑄∃ ∪𝑄∀ is an accepting state, 𝑞𝑟𝑒𝑗 ∈ 𝑄∃ ∪𝑄∀ is a rejecting state, and 𝛿 is a transition relation of the form

𝛿 ⊆ 𝑄 × (Σ ∪ {𝐵}) ×𝑄 × (Σ ∪ {𝐵}) × {−1, 0,+1}

with 𝑄 = 𝑄∃ ∪𝑄∀. Here 𝐵 is the blank symbol. We let 𝛿(𝑞, 𝑎) = {(𝑞′, 𝑏, 𝐷) ∣ (𝑞, 𝑎, 𝑞′, 𝑏, 𝐷) ∈ 𝛿}. W.l.o.g., we assume that in  universal 
and existential states are strictly alternating: if (𝑞, 𝑎, 𝑞′, 𝑏, 𝑚) ∈ 𝛿 and 𝑞 ∈ 𝑄∃ (resp., 𝑞 ∈ 𝑄∀), then 𝑞′ ∈ 𝑄∀ (resp., 𝑞′ ∈ 𝑄∃). We further 
assume that |𝛿(𝑞, 𝑎)| = 2 for all combinations of states 𝑞 ∈ 𝑄 and symbols 𝑎 ∈ Σ ∪ {𝐵}. If 𝛿(𝑞, 𝑎) = {(𝑞1, 𝑎1, 𝐷1), (𝑞2, 𝑎2, 𝐷2)}, we let 
𝛿𝓁(𝑞, 𝑎) = (𝑞1, 𝑎1, 𝐷1) and 𝛿𝑟(𝑞, 𝑎) = (𝑞2, 𝑎2, 𝐷2).
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A run of an ATM  on an input word 𝑤 is defined as usual. We assume a word 𝑤 = 𝑑1 ⋯ 𝑑𝑛 ∈ Σ∗ with 𝑛 > 0 together with an ATM 
 that only uses the tape cells where the input word was written, i.e., it only uses the first 𝑛 cells. Checking if such  accepts 𝑤 is 
an ExpTime-hard problem.

We show how to construct a knowledge base ( ,) and shapes graph (, {𝑠𝑎𝑐𝑐 (𝑎)}) such that  accepts 𝑤 iff ( ,) validates 
(, {𝑠𝑎𝑐𝑐 (𝑎)}). The reduction takes polynomial time in the size of  and 𝑤. It uses the following symbols:

• a concept name 𝐼𝑛𝑖𝑡 and a shape name 𝑠𝑎𝑐𝑐 ;
• role names 𝑠𝑢𝑐𝑐, 𝑠𝑢𝑐𝑐𝓁 , 𝑠𝑢𝑐𝑐𝑟;
• shape names 𝑠𝑞 for all states 𝑞 ∈ 𝑄∃ ∪𝑄∀;
• shape names ℎ𝑖 for all 1 ≤ 𝑖 ≤ 𝑛;
• shape names 𝑐(𝑖)𝑏  for all 𝑏 ∈ Σ ∪ {𝐵} and 1 ≤ 𝑖 ≤ 𝑛.

Set  = {𝐼𝑛𝑖𝑡(𝑎)} and let   contain the following inclusions:
𝐼𝑛𝑖𝑡 ⊑ ∃𝑠𝑢𝑐𝑐𝓁 .⊤ 𝑠𝑢𝑐𝑐𝓁 ⊑ 𝑠𝑢𝑐𝑐 ∃𝑠𝑢𝑐𝑐−.⊤ ⊑ ∃𝑠𝑢𝑐𝑐𝓁 .⊤

𝐼𝑛𝑖𝑡 ⊑ ∃𝑠𝑢𝑐𝑐𝑟.⊤ 𝑠𝑢𝑐𝑐𝑟 ⊑ 𝑠𝑢𝑐𝑐 ∃𝑠𝑢𝑐𝑐−.⊤ ⊑ ∃𝑠𝑢𝑐𝑐𝑟.⊤.

The interpretation can( ,) provides us with an infinite binary tree. In that tree, the root is representing the starting configuration 
of  and each child of a node represents a next step in the run of the ATM .

To mimic the start configuration, we define the following shapes: 
ℎ1 ← 𝐼𝑛𝑖𝑡 𝑠𝑞0 ← 𝐼𝑛𝑖𝑡 𝑐(𝑖)𝑑𝑖 ← 𝐼𝑛𝑖𝑡 for all 1 ≤ 𝑖 ≤ 𝑛

Intuitively, this is setting the starting state to 𝑞0 (denoted by the shape name 𝑠𝑞0 ), putting the head in the starting position (ℎ1), and 
stating the input word written on each tape cell (𝑐(𝑖)𝑑𝑖 ).

The next step is to encode the transition relation of the . For each 1 ≤ 𝑖 ≤ 𝑛, each (𝑞, 𝑎) ∈ 𝑄 × (Σ ∪ {𝐵}), and 𝛾 ∈ {𝓁, 𝑟} we add 
the following shapes, where (𝑞′, 𝑏, 𝐷) = 𝛿𝛾 (𝑞, 𝑎): 

𝑠𝑞′ ← ∃𝑠𝑢𝑐𝑐−𝛾 .(𝑠𝑞 ∧ ℎ𝑖 ∧ 𝑐
(𝑖)
𝑎 ) 𝑐(𝑖)𝑏 ← ∃𝑠𝑢𝑐𝑐−𝛾 .(𝑠𝑞 ∧ ℎ𝑖 ∧ 𝑐

(𝑖)
𝑎 ) ℎ𝑖+𝐷 ← ∃𝑠𝑢𝑐𝑐−𝛾 .(𝑠𝑞 ∧ ℎ𝑖 ∧ 𝑐

(𝑖)
𝑎 ).

Furthermore, the tape cells that are not under the read-write head have their content preserved. Thus, for each 1 ≤ 𝑖 ≤ 𝑛, and 1 ≤ 𝑗 ≤ 𝑛
with 𝑖 ≠ 𝑗, add

𝑐(𝑖)𝑎 ← ∃𝑠𝑢𝑐𝑐−.(𝑐(𝑖)𝑎 ∧ ℎ𝑗 ).

We now identify subtrees that represent accepting computations. For all 𝑞 ∈ 𝑄∃ and all 𝑞′ ∈ 𝑄∀ we add the following: 
𝑠𝑎𝑐𝑐 ← 𝑠𝑞𝑎𝑐𝑐 𝑠𝑎𝑐𝑐 ← 𝑠𝑞 ∧ ∃𝑠𝑢𝑐𝑐.𝑠𝑎𝑐𝑐 𝑠𝑎𝑐𝑐 ← 𝑠𝑞′ ∧ ∃𝑠𝑢𝑐𝑐𝓁 .𝑠𝑎𝑐𝑐 ∧ ∃𝑠𝑢𝑐𝑐𝑟.𝑠𝑎𝑐𝑐 .

This concludes the reduction.
As we assumed |𝛿(𝑞, 𝑎)| = 2 for all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ ∪ {𝐵}, the run of  on an input word 𝑤 can be thought of as a binary tree with 

nodes in {0, 1}∗ and edges 𝑠𝑢𝑐𝑐𝓁 ∶= {(𝑥, 𝑥0) ∣ 𝑥 ∈ {0, 1}∗} and 𝑠𝑢𝑐𝑐𝑟 ∶= {(𝑥, 𝑥1) ∣ 𝑥 ∈ {0, 1}∗}, such that the root, 𝜖, represents the input 
word, combined with the starting position of the head and the name of the starting state; and each other node of this tree represents 
the next configurations of the run, such that if some node 𝑥 represents the word 𝑒1 ⋯ 𝑒𝑛 ∈ Σ∗, with the head in position 𝑖 and state 
name 𝑞, such that 𝛿𝓁(𝑞, 𝑒𝑖) = (𝑞′, 𝑎′, 𝐷′), then the left-child of this node, 𝑥0, represents the word 𝑒1 ⋯ 𝑒𝑖−1𝑎′𝑒𝑖+1 ⋯ 𝑒𝑛, head position 
𝑖 +𝐷 and state name 𝑞′, and similarly for the child on the right, 𝑥1, and 𝛿𝑟(𝑞, 𝑒𝑖).

Let ℎ be an homomorphism of {0, 1}∗ into 𝑐𝑎𝑛( ,). A simple check suffices to see that 𝑥 represents the word 𝑒1 ⋯ 𝑒𝑛, head position 
𝑖 and state name 𝑞 iff ℎ(𝑥) is decorated with the shape names 𝑐(𝑖)𝑒𝑖  for each 1 ≤ 𝑖 ≤ 𝑛, ℎ𝑖 and 𝑠𝑞 in the perfect assignment.

An accepting run of  on the input word 𝑤 is a binary tree as described above such that there exists a (finite) subtree in which, if 
𝑥 represents a state name 𝑞 ∈ 𝑄∃ ⧵ {𝑞𝑎𝑐𝑐}, then either 𝑥0 or 𝑥1 is part of the subtree, and if 𝑥 represents a state name 𝑞 ∈ 𝑄∀ ⧵ {𝑞𝑎𝑐𝑐}, 
then both 𝑥0 and 𝑥1 are part of the subtree. As we already concluded that 𝑥 represents a state 𝑞 iff ℎ(𝑥) is decorated with 𝑠𝑞 in the 
perfect assignment, and a decoration with 𝑠𝑎𝑐𝑐 requires a state to be an accepting state, or one successor to be decorated with 𝑠𝑎𝑐𝑐
in case of 𝑥 representing a 𝑄∃ state, resp. two in case of a 𝑄∀ state, it is immediate that there exists such a subtree with all leaves 
representing the state name 𝑞𝑎𝑐𝑐 iff we can decorate the root node 𝑎 in 𝑐𝑎𝑛( ,) with the shape name 𝑠𝑎𝑐𝑐 . Thus,  accepts 𝑤 iff 
can( ,) validates (, {𝑠𝑎𝑐𝑐 (𝑎)}). ♣

10.  Discussion and conclusion

Beyond normalised Horn-. In this article we considered Horn- TBoxes in normal form. Unfortunately, we cannot 
easily lift the results to general Horn-, as our techniques are not immune to the usual normalisation procedures. For instance, 
the procedures in [23] and [35] may significantly change the form of the universal core model; the fresh concepts introduced during 
normalisation may force us to use different objects to satisfy axioms that would otherwise be satisfied by the same object. Take 
for instance the axiom 𝐴 ⊑ ≥2𝑟.𝐵 and the ABox  = {𝐴(𝑎), 𝑟(𝑎, 𝑏), 𝐵(𝑏), 𝑟(𝑎, 𝑐), 𝐵(𝑐)}. In this case,  itself is a core universal model 
already. However, if we follow the normalisation as proposed in Lemma 2 of [23], we would find the following set of axioms, 
 = {𝐴 ⊑ ∃𝑟.𝐵1, 𝐴 ⊑ ∃𝑟.𝐵2, 𝐵1 ⊑ 𝐵,𝐵2 ⊑ 𝐵,𝐵1 ⊓ 𝐵2 ⊑ ⊥}. It is easy to check that in the core universal model 𝑐𝑎𝑛( ,), 𝑎 has four 
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outgoing 𝑟-edges to a 𝐵, instead of two. We believe it is possible to obtain similar results for full Horn-, albeit with a more 
cautious normalisation and a weaker notion of homomorphism. We leave the details for further work.

It would also be desirable to add transitivity axioms and thus cover the well-known Horn- description logic. But unfortu-
nately, in the presence of transitive roles, the uniqueness of the core universal model can no longer be guaranteed: take for instance 
 = {𝐴(𝑎)} and  = {𝐴 ⊑ ∃𝑟.𝐵, 𝐴 ⊑ ∃𝑟.𝐵′, 𝐵 ⊑ ∃𝑟.𝐵′, 𝐵′ ⊑ ∃𝑟.𝐵} where 𝑟 is transitive. In this case, there are two (not strong) core 
universal models: a chain of 𝑟’s such that the concept names along this chain are, in the first node 𝐴, and then 𝐵 and 𝐵′, in an alter-
nating fashion, closed under transitive roles, and the version in which 𝐵 and 𝐵′ swap places. Note that there exist (non-surjective) 
homomorphisms between both models. It is unclear what would be a good semantics if multiple core universal models exist.

Towards full SHACL. Extending the considered SHACL fragment is also a promising avenue. However, we first point that the ‘guard’ 𝑐
we introduced for constraints of the forms 𝖾𝗊(𝐸, 𝑟) and 𝖽𝗂𝗌𝗃(𝐸, 𝑟), cannot easily be dropped. Without it, the normalisation as described 
in the proof of Proposition 5.8 does not work well. There is no straightforward way to distinguish from which starting point it was 
possible to reach a final state, as becomes clear in the following example.

Example 10.1.  Let  = {𝑟(𝑎, 𝑐), 𝑡(𝑏, 𝑐)}. Over this graph, we wish to check validation for the constraint 𝑠 ← 𝖾𝗊(𝑟, 𝑡) with targets 𝑠(𝑎)
and 𝑠(𝑐). Clearly, we expect non-validation. However, this cannot easily be achieved by a similar rewriting technique.

To see this, let us consider the following constraints as, loosely following the construction above to rewrite 𝑠 ← 𝖾𝗊(𝑟, 𝑡) and based 
on the automata  = ({𝑞, 𝑞′}, {𝑟, 𝑡}, 𝑞, {(𝑞, 𝑟, 𝑞′)}, 𝑞′) and ′ = ({𝑞′′, 𝑞′′′}, {𝑟, 𝑡}, 𝑞′′, {(𝑞′′, 𝑡, 𝑞′′′)}, 𝑞′′′) we find the following constraints:

𝑠𝑞 ← 𝑎 𝑠𝑞 ← 𝑐 𝑠𝑞′ ← ∃𝑟−.𝑠𝑞 𝑠𝑝𝑜𝑠 ← 𝑠𝑞′ 𝑠𝑛𝑒𝑔 ← ¬𝑠𝑞′ 𝑠𝑞′′ ← 𝑎 𝑠𝑞′′ ← 𝑐 𝑠𝑞′′′ ← ∃𝑡−.𝑠𝑞′′

𝑠𝑝𝑜𝑠 ← 𝑠𝑞′′′ 𝑠𝑛𝑒𝑔 ← ¬𝑠𝑞′ 𝑠𝑒 ← 𝑠𝑝𝑜𝑠 ∧ 𝑠𝑛𝑒𝑔 𝑠𝑒 ← ∃𝑟.𝑠𝑒 𝑠𝑒 ← ∃𝑡.𝑠𝑒 𝑠𝑛𝑜𝑒 ← ¬𝑠𝑒 𝑠 ← 𝑠𝑞 ∧ 𝑠𝑛𝑜𝑒

where we shortened the names of the error-shapes to 𝑠𝑒 and 𝑠𝑛𝑜𝑒. As 𝑏 is reachable from starting states 𝑎 and 𝑐 by both an 𝑟 and a 𝑡, 𝑏
will only be assigned 𝑠𝑝𝑜𝑠, the shape name denoting being the final state of at least one of the automata, not causing any error-shape 
𝑠𝑒 to fire, which breaks our expectation of non-validation. The problem is that we cannot distinguish which initial state caused the 
positive outcome. ♡

For non-recursive SHACL, it is known that adding path equality or disjointness increases expressivity [24], but we do not know 
whether this also holds for recursive SHACL. In any case, it seems hard to include full path equality and disjointness due their 
‘non-local’ nature.

On the other hand, it might be possible to encode local counting constraints of the form ∃≤𝑛𝑟.𝜑, after a careful examination of our 
techniques. Extending counting over roles to counting over regular paths is even more interesting. It will be quite a challenge to also 
define a rewriting in which the quadruples store information on counting over regular paths. However, as the anonymous parts of 
the core universal model are tree-like, it might be possible to also achieve such a rewriting.

In parallel to increasing the expressivity of the considered shape expressions, we may also consider richer targets. Additionally 
to shape atoms, the SHACL standard considers target classes: if a concept name 𝐴 is given as target, all nodes in the interpretation of 
𝐴 must validate the given shape. For plain validation, without ontologies, class targets reduce trivially to sheer shape atoms: the set 
of domain elements is known and can replace the class or concept name. But if ontology axioms are given, this is a whole different 
story: the set of domain elements that forms the interpretation of the target concept name is not known a priori. Nevertheless, under 
the assumption that the input data graph is connected, it is possible to model this for 𝑠 ← 𝜑 with target class 𝐴, by creating new 
constraints of the form “there does not exists a path (the Kleene star of the union of all roles appearing) to an 𝐴 that does not satisfy 
𝜑". Now any domain element in the graph can be considered as the target to get a logically equivalent constraint. Clearly, a similar 
trick works if it is known which parts of the graph are connected.

Finally, we would like to emphasise that allowing full negation would be a very nice, but complicated challenge.

Conclusion. We have considered the validation of SHACL constraints in the presence of normalised Horn- ontologies. To this 
end, we defined the semantics over a carefully constructed notion of a canonical model that minimises the number of fresh successors 
introduced to satisfy the ontology axioms at each chase step and which happens to be the unique core universal model. Moreover, we 
have argued that this semantics is natural and intuitive. We proposed a normal form and a rewriting algorithm for recursive SHACL 
constraints with stratified negation. It takes as an input a SHACL shapes graph and an ontology, and constructs a new SHACL shapes 
graph (also with stratified negation) that can be used for sound and complete validation over a slightly extended version of the data 
graph alone, without needing to reason about the ontology at validation time. We also discussed some approaches to even get to 
validation over the pure data graph. We showed that, under our semantics, validation in the presence of normalised Horn-
is complete for ExpTime, but it remains PTime complete in data complexity, and hence it is not harder than validation of stratified 
SHACL alone, without the ontology axioms.
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