
SHACL Satisfiability: What Can We Learn from DLs?
Anouk Michelle Oudshoorn

1

1

Institute of Logic and Computation, TU Wien, Austria

Abstract
Since the introduction of the SHACL standard, understanding its computational features and formal foundations

has become essential. Some research has focused on the semantics of recursive constraints and the complexity of

validation, but the satisfiability of SHACL constraints remains largely unexplored. The most significant previous

work in this direction is rather coarse, obtaining very few positive results for finite satisfiability and for fragments

with counting. In this paper, we build on description logics to paint a comprehensive and fine-grained boundary

for SHACL fragments with a decidable satisfiability problem under the supported semantics, both for unrestricted

and finite models.

Keywords
SHACL, satisfiability, finite-model property

1. Introduction

Since the SHACL standard was introduced, the need for a solid understanding of its computational fea-

tures and formal foundations has been apparent. Several works have leveraged related logic formalisms

to give semantics to recursive constraints, obtain complexity bounds, and solve basic tasks including

validation [1, 2, 3, 4], but little attention has been devoted to the satisfiability of SHACL constraints.

This problem is of major importance in the design and validation of SHACL-based solutions: as SHACL

becomes more popular, substantive efforts are put into its adoption. As part of this, we witness mining

SHACL specifications from data [5, 6, 7], but how to assess the quality of these machine-generated

constraints? And how to combine multiple, possibly generated, specifications? We note that the basic

necessary condition here is compatibility, which boils down to satisfiability. A natural next step in

assessing quality of data is tackling containment, for which satisfiability is a prerequisite. This, we

plan to study in further work. Finally, both satisfiability and containment, as statistic analysis tools, are

prerequisites for more advanced services like optimisation, incremental validation and modularity.

Given the importance of the problem, there are remarkably few results concerning its decidability

and complexity. Indeed, the most notable work in this direction, [8], is very coarse. It builds on a

tailored fragment of predicate logic to identify decidability and complexity bounds, but the basic logic

it considers is already close to the boundary of what could potentially be decidable in the presence

of cardinality constraints. The positive results are mostly limited to formalisms that do not support

counting, and more often than not consider unrestricted (that is, potentially infinite) graphs, even

though finite graphs are a more relevant setting here.

In this paper, we revisit satisfiability under the supported model semantics. We build on Description

Logics (DLs), a well-known family of languages for Knowledge Representation and Reasoning that offers

decades of research in the fine-grained study of logical fragments and the effect that the interaction

between different shapes of subformulas has on the complexity of reasoning. The close relationship

between DLs and SHACL is well-known, and in this paper, we leverage it to paint a much finer boundary

of SHACL fragments that have decidable satisfiability problems, both over unrestricted graphs and over

graphs with a finite domain.

DL 2025: 38th International Workshop on Description Logics, September 3–6, 2025, Opole, Poland

$ anouk.oudshoorn@tuwien.ac.at (A. M. Oudshoorn)

� 0009-0006-4638-5948 (A. M. Oudshoorn)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:anouk.oudshoorn@tuwien.ac.at
https://orcid.org/0009-0006-4638-5948
https://creativecommons.org/licenses/by/4.0/deed.en

Contributions. We build on the DL literature to pinpoint much tighter complexity bounds than

previously known for SHACL, based on the close connection between DL - and SHACL satisfiability; we

revisit this connection and explain how to translate complexity results in both ways. To emphasise this

tight bond, we provide a DL inspired naming convention: we write ℒ𝑆 to denote the SHACL fragment

similar to the DL ℒ. Moreover, we add some lack of finite model property results to the landscape: we

show this for 𝒜ℒ𝒞𝑆 plus counting over regular path expressions, which also provides an alternative

undecidability proof; and, we show that adding either eq(𝐸, 𝑟) or disj(𝐸, 𝑟) to 𝒜ℒ𝒞𝑆 also breaks the

finite model property of 𝒜ℒ𝒞𝑆 .

Related Literature. There are two other theoretical papers considering satisfiability of (recursive)

SHACL [8, 9]. Both works are based on a translation of SHACL into a fragment of first-order logic

and transferring complexity results. A tool for testing SHACL satisfiability based on this translation is

presented in [10]. Our work differs in considering different fragments by starting from a smaller base

logic: the smallest logic considered in those works corresponds to 𝒜ℒ𝒞ℐ𝒪𝑆 extended with universal

roles. Another work considering the close connection between SHACL and DLs for deciding complexity

of reasoning problems, in their case shape containment, is [11]. However, as pointed out in [12], there

are some issues with their translation.

2. Preliminaries

Data Graphs and Interpretations. Let 𝑁𝐶 , 𝑁𝑅 and 𝑁𝐼 denote countably infinite, mutually disjoint

sets of concept names, role names, and individuals, respectively. Let 𝑁+
𝑅 := {𝑝, 𝑝− | 𝑝 ∈ 𝑁𝑅} be the set

of roles. For every 𝑝 ∈ 𝑁𝑅, set (𝑝−)− = 𝑝. An atom is an expression of the form 𝐴(𝑐) or 𝑝(𝑐, 𝑐′), for

𝐴 ∈ 𝑁𝐶 , 𝑝 ∈ 𝑁𝑅 and {𝑐, 𝑐′} ⊆ 𝑁𝐼 . An ABox (or data graph) 𝒜 is a finite set of atoms.

An interpretation is a pair ℐ = (Δℐ , ·ℐ), where Δℐ is a non-empty set (called domain) and ·ℐ is a

function that maps every 𝐴 ∈ 𝑁𝐶 to a set 𝐴ℐ ⊆ Δℐ , every 𝑝 ∈ 𝑁𝑅 to a binary relation 𝑝ℐ ⊆ Δℐ ×Δℐ ,

and every individual 𝑐 ∈ 𝑁𝐼 to an element 𝑐ℐ ∈ Δℐ . Let (𝑝−)ℐ := {(𝑐′, 𝑐) | (𝑐, 𝑐′) ∈ 𝑝ℐ}. We call an

interpretation ℐ finite when Δℐ is finite. We make the standard name assumption, meaning 𝑐ℐ = 𝑐 for

all interpretations ℐ , and all 𝑐 ∈ 𝑁𝐼 . The canonical interpretation ℐ𝒜 of a set of atoms 𝒜 is defined by

setting Δℐ𝒜 = {𝑐 | 𝐴(𝑐) ∈ 𝒜} ∪ {(𝑐, 𝑐′) | 𝑝(𝑐, 𝑐′) ∈ 𝒜}, 𝐴ℐ𝒜 = {𝑐 | 𝐴(𝑐) ∈ 𝒜} for all 𝐴 ∈ 𝑁𝐶 and

𝑝ℐ𝒜 = {(𝑐, 𝑐′) | 𝑝(𝑐, 𝑐′) ∈ 𝒜} for all 𝑝 ∈ 𝑁𝑅.

Description Logic 𝒜ℒ𝒞𝒪ℐ𝒬. An 𝒜ℒ𝒞𝒪ℐ𝒬 concept 𝐶 is defined in the following way:

𝐶 ::= 𝑐 | 𝐴 | ⊤ | ¬𝐶 | 𝐶 ⊓ 𝐶 | 𝐶 ⊔ 𝐶 |≥𝑛 𝑟.𝐶 | ∀𝑟.𝐶,

where 𝑐 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 , 𝑛 ≥ 1 and 𝑟 ∈ 𝑁+
𝑅 . An 𝒜ℒ𝒞𝒪ℐ𝒬 TBox 𝒯 is a set of axioms of the form

𝐶 ⊑ 𝐷, for 𝐶 and 𝐷 𝒜ℒ𝒞𝒪ℐ𝒬 concepts. We use 𝐶 ≡ 𝐷 as a shorthand for 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 . An

interpretation ℐ is a model of 𝒯 if for all 𝐶 ⊑ 𝐷 ∈ 𝒯 we have 𝐶ℐ ⊆ 𝐷ℐ , where 𝐶ℐ is recursively

defined as: (¬𝐶)ℐ := Δℐ ∖ 𝐶ℐ , (𝐶 ⊓ 𝐶 ′)ℐ := 𝐶ℐ ∩ 𝐶 ′ℐ , (𝐶 ⊔ 𝐶 ′)ℐ := 𝐶ℐ ∪ 𝐶 ′ℐ , (≥𝑛 𝑟.𝐶)
ℐ := {𝑐 ∈

Δℐ | |{𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝑟ℐ , 𝑐′ ∈ 𝐶ℐ}| ≥ 𝑛} and (∀𝑟.𝐶)ℐ := {𝑐 ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝑟ℐ → 𝑐′ ∈ 𝐶ℐ}. A

concept 𝐶 is satisfiable w.r.t. a TBox 𝒯 if there exists a model ℐ of 𝒯 such that 𝐶ℐ ̸= ∅.

Recursive Shape Constraint Language (SHACL). Let 𝑁𝑆 be a countably infinite set of shape

names, disjoint from 𝑁𝐼 , 𝑁𝑅 and 𝑁𝐶 . We define shape expressions, following [13], but adding recursion,

in the following way

𝜙 ::= 𝑠 | 𝑐 | 𝐴 | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | ≥𝑛𝐸.𝜙 | eq(𝐸, 𝑟) | disj(𝐸, 𝑟) | closed(𝑅),

where 𝑠 ∈ 𝑁𝑆 , 𝑐 ∈ 𝑁𝐼 , 𝐴 ∈ 𝑁𝐶 , 𝑛 ≥ 1, 𝑅 a finite subset of 𝑁+
𝑅 and 𝐸 a regular expression given by

𝐸 ::= 𝑟 | 𝐸* | 𝐸 ∘ 𝐸 | 𝐸 ∪ 𝐸,

⊤ℐ,𝑆 = 𝑁𝐼 𝑠ℐ,𝑆 = {𝑐 ∈ Δℐ | 𝑠(𝑐) ∈ 𝑆}
𝑐ℐ,𝑆 = {𝑐ℐ} (¬𝜙)ℐ,𝑆 = Δℐ ∖ (𝜙)ℐ,𝑆
𝐴ℐ,𝑆 = 𝐴ℐ (𝜙 ∧ 𝜙′)ℐ,𝑆 = (𝜙)ℐ,𝑆 ∩ (𝜙′)ℐ,𝑆

(≥𝑛𝐸.𝜙)
ℐ,𝑆 = {𝑐 ∈ Δℐ | |{𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝐸ℐ , 𝑐′ ∈ 𝜙ℐ,𝑆}| ≥ 𝑛}

(eq(𝐸, 𝑟))ℐ,𝑆 = {𝑐 ∈ Δℐ | {𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝐸ℐ} = {𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝑟ℐ}}
(disj(𝐸, 𝑟))ℐ,𝑆 = {𝑐 ∈ Δℐ | {𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝐸ℐ} ∩ {𝑐′ ∈ Δℐ | (𝑐, 𝑐′) ∈ 𝑟ℐ} = ∅}
(closed(𝑅))ℐ,𝑆 = {𝑐 ∈ Δℐ | {𝑟 ∈ 𝑁+

𝑅 ∖𝑅 | (𝑐, 𝑐′) ∈ 𝑟ℐ} = ∅}

Figure 1: Evaluating shape expressions

for 𝑟 ∈ 𝑁+
𝑅 . Here, (𝐸*)ℐ corresponds to the transitive closure of 𝐸ℐ , (𝐸 ∘ 𝐸′)ℐ := {(𝑐, 𝑐′) | (𝑐, 𝑑) ∈

𝐸ℐ , (𝑑, 𝑐′) ∈ 𝐸′ℐ}, and (𝐸 ∪ 𝐸′)ℐ := 𝐸ℐ ∪ 𝐸′ℐ . We use 𝐸𝐸′ as a shorthand for 𝐸 ∘ 𝐸′, and 𝐸+
for

𝐸𝐸*. We set 𝜙 ∨ 𝜙′ := ¬(¬𝜙 ∧ ¬𝜙′) and ∀𝐸.𝜙 := ¬≥1𝐸.¬𝜙. A shape constraint is an expression of

the form 𝑠← 𝜙, for 𝑠 ∈ 𝑁𝑆 and 𝜙 a shape expression. With 𝒞, we indicate a set of shape constraints.

For each 𝑠 ← 𝜙, let 𝑠 be the head of the constraint. In each 𝒞, we assume each shape name 𝑠 only

appears as the head of one constraint - this does not influence expressivity as ‘∨’ may be used.

A shape atom is an expression of the form 𝑠(𝑐), for 𝑠 ∈ 𝑁𝑆 and 𝑐 ∈ 𝑁𝐼 . A shape assignment 𝑆 is a

set of shape atoms. Given an interpretation ℐ and a shape assignment 𝑆, we say a individual 𝑐 ∈ 𝑁𝐼

validates a shape expression 𝜙, whenever 𝑐 ∈ (𝜙)ℐ,𝑆 , where (𝜙)ℐ,𝑆 is recursively defined in Table 1.

Given some 𝒞, we say 𝑐 validates 𝑠 ∈ 𝑁𝑆 , if 𝑐 validates 𝜙 for all 𝑠← 𝜙 ∈ 𝒞. Let 𝒢 be a set of targets of

the form 𝑠(𝑐), which we call atomic targets, or 𝑠(𝐴), for 𝑠 ∈ 𝑁𝑆 , 𝑐 ∈ 𝑁𝐼 and 𝐴 ∈ 𝑁𝐶 . A pair (𝒞,𝒢) is

called a shapes graph. In this paper, we consider the supported model semantics; given an interpretation

ℐ , we say ℐ validates (𝒞,𝒢) when there exists a shape assignment 𝑆 such that if 𝑠← 𝜙 ∈ 𝒞, we find

𝑠ℐ,𝒞 = (𝜙)ℐ,𝒞 and for all 𝑠(𝑐) ∈ 𝒢, we find 𝑐 validates 𝑠, and for all 𝑠(𝐴) ∈ 𝒢, all individuals in 𝒜ℐ
validate 𝑠. Different semantics require different constraints for the shape assignments. For readability,

we will write 𝒜 validates (𝒞,𝒢), for a set of atoms 𝒜 to mean that the canonical interpretation ℐ𝒜
validates (𝒞,𝒢).

3. SHACL Satisfiability

In this paper we study the following reasoning problems:

Satisfiability: Given a SHACL fragment ℒ𝑆 , for each shapes graph (𝒞,𝒢) expressible in ℒ𝑆 , decide

whether there exists an interpretation ℐ that validates (𝒞,𝒢).

Finite Satisfiability: Given a SHACL fragment ℒ𝑆 , for each shapes graph (𝒞,𝒢) expressible in ℒ𝑆 ,

decide whether there exists a finite interpretation ℐ that validates (𝒞,𝒢).

We also study the following property, which guarantees that these problems coincide:

Finite Model Property: A SHACL fragment ℒ𝑆 has the finite model property iff for every shapes

graph (𝒞,𝒢) expressible in ℒ𝑆 , we find that if (𝒞,𝒢) is satisfiable, then (𝒞,𝒢) is finitely satisfiable.

Clearly, having the finite model property extends to less expressive fragments, whereas the opposite,

not having the property, spreads to subsuming fragments. Similarly, for (finite) satisfiability, membership

of a complexity class spreads to less expressive fragments, and hardness to the more expressive ones. In

case a fragment has the finite model property, the membership results for general satisfiability extend

to the finite setting.

The above presented problems are not the only ones one might consider: in [9], also another

flavour of the SHACL satisfiability problem is discussed: constraint satisfiability. This corresponds to

the satisfiability problem when the constraint set only consists of one constraint, and with no extra

restrictions on the target set 𝒢. As already noted in [9], the constraint version of the problem clearly

reduces to the general version, which means upper bounds for complexity are preserved. We show here

that for recursive SHACL also the other reduction holds. First, we note that for satisfiability purposes,

we may restrict the form of the targets.

Lemma 1. For each shapes graph (𝒞,𝒢) there exists a shapes graph (𝒞′,𝒢′) such that 𝒢′ only consists of

atomic targets and for each model ℐ we have ℐ validates (𝒞,𝒢) iff ℐ validates (𝒞′,𝒢′).

Proof. Assume that for some concept name 𝐴 ∈ 𝑁𝐶 , 𝑠(𝐴) ∈ 𝒢. It suffices to replace each occurrence

of 𝐴 in 𝒞 by (𝐴 ∧ 𝑠), and remove 𝑠(𝐴) from 𝒢. In this way, we enforce that each node with an 𝐴-label,

essential in the validation of another constraint, also validates 𝑠.

Proposition 1. In recursive SHACL, the problems of deciding SHACL satisfiability and constraint satisfia-

bility are mutually reducible.

Proof. We use ‘𝜙 ↔ 𝜓′ as a shorthand for (𝜙 → 𝜓) ∧ (𝜓 → 𝜙), and ‘𝜙 → 𝜓′ for ¬𝜙 ∨ 𝜓. Given a

shapes graph (𝒞,𝒢), such that all targets in 𝒢 are atomic. We distinguish two cases.

In case the considered SHACL fragment does not contain nominals, satisfiability of (𝒞,𝒢) is equivalent

to satisfiability of all (𝒞,𝒢𝑐) separately, where 𝒢𝑐 := {𝑠(𝑐) ∈ 𝒢}, for all 𝑐 ∈ 𝑁𝐼 such that 𝑐 appears in

𝒢. Furthermore, note we may replace multiple targets using the same 𝑐 by a single target 𝑠(𝑐) for some

fresh shape name 𝑠, given we add 𝑠←
⋀︀

𝑠′(𝑐)∈𝒢 𝑠
′
to the set of constraints. Thus, we further assume

that 𝒢 = {𝑠(𝑐)}.
The next step is to encode all constraints within a single one: satisfiability of (𝒞, {𝑠(𝑐)}) can be

reduced to satisfiability of ({𝑠̂← 𝜙̂}, {𝑠̂(𝑐)}), for a fresh shape name 𝑠̂, and 𝜙̂ defined in the following

way:

𝜙̂ := 𝑠 ∧ ∀(
l

𝑟∈𝑅
𝑟)*.

⋀︁
𝑠′←𝜙∈𝒞

(𝑠′ ↔ 𝜙),

where 𝑅 ⊆ 𝑁+
𝑅 contains all roles appearing in any constraint in 𝒞.

In the case the SHACL fragment does contain nominals, the above described reduction to single-

element targets may no longer be sound. Instead, we use the nominals in the newly defined constraint

in the following way: satisfiability of (𝒞,𝒢) may be reduced to satisfiability of ({𝑠̂← 𝜙̂}, {𝑠̂(𝑐)}) for

each 𝑐 ∈ 𝑁𝐼 appearing in 𝒢, such that

𝜙̂ := ∀(
l

𝑟∈𝑅
𝑟)*.

⋀︁
𝑠(𝑐)∈𝒢

(𝑐→ 𝑠) ∧
⋀︁

𝑠←𝜙∈𝒞
(𝑠↔ 𝜙),

where 𝑅 ⊆ 𝑁+
𝑅 contains all roles appearing in any constraint in 𝒞.

Names for fragments of SHACL. Let𝒜ℒ𝒞𝑆 be the fragment of SHACL such that shape expressions

𝜙 are of the form:

𝜙 ::= 𝑠 | 𝐴 | ⊤ | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ∃𝑟.𝜙 | ∀𝑟.𝜙,

for 𝑟 ∈ 𝑁𝑅. Let ∃𝑟.𝜙 be a shorthand for ≥1 𝑟.𝜙. Partly following the naming convention of Description

Logics, we identify the SHACL fragments in the way presented in Table 1. We write ℒ𝑋𝑆 to denote the

SHACL fragment by extending ℒ𝑆 with the features described by some 𝑋 ⊆ {𝒪, ℐ,ℱ ,𝒩 ,𝒬, ℰ ,𝒫}.
With the superscript ℒe , we denote that the feature eq(𝑟, 𝑟′), for {𝑟, 𝑟′} ⊆ 𝑁𝑅 is added to the fragment

ℒ. Similarly, ℒd corresponds to adding the feature disj(𝑟, 𝑟′), also for {𝑟, 𝑟′} ⊆ 𝑁𝑅. In case the fragment

ℒ contains the letter ℐ , {𝑟, 𝑟′} ⊆ 𝑁+
𝑅

Note that adding closed(𝑅) does not increase the expressivity of 𝒜ℒ𝒞𝑆 . Introducing ≥1𝐸.𝜙 does

increase expressivity of 𝒜ℒ𝒞𝑆 in the supported model semantics, but not in, among others, the least-

fixed point semantics [14].

Lemma 2. For each shapes graph (𝒞,𝒢) expressible in 𝒜ℒ𝒞𝑆 extended with expressions of the form

closed(𝑅), there exists a constraint set 𝒞′ expressible in 𝒜ℒ𝒞𝑆 such that (𝒞,𝒢) is (finitely) satisfiable iff

(𝒞′,𝒢) is (finitely) satisfiable.

Proof. Since we are in the restricted context of SHACL satisfiability, that is, roles not mentioned in the

constraints are irrelevant, we may replace each occurrence of ‘closed(𝑅)’ by ‘

d
𝑟∈𝑅𝑐 ¬∃𝑟.⊤’, where

𝑅𝑐 := {𝑟 ∈ 𝑁𝑅 ∖𝑅 | 𝑟 appears in 𝒞}, to construct 𝒞′.

Name Syntax Symbol

Nominals 𝑐 𝒪
Inverses 𝑟− ℐ
Functionality ≤1 𝑟.⊤ ℱ
Unqualified number restriction ≥𝑛 𝑟.⊤ 𝒩
Qualified number restriction ≥𝑛 𝑟.𝜙 𝒬
Unqualified regular path counting ≥𝑛𝐸.⊤ ℰ
Qualified regular path counting ≥𝑛𝐸.𝜙 𝒫

Table 1
Fragments of SHACL following the DL naming convention, extended with counting over regular paths.

𝑓(𝑐) := 𝑐 𝑔(𝑐) := 𝑐
𝑓(𝐴) := 𝑠𝐴 𝑔(𝐴) := 𝐴, 𝑔(𝑠) := 𝐴𝑠

𝑓(⊤) := ⊤ 𝑔(⊤) := ⊤
𝑓(¬𝐶) := ¬𝑓(𝐶) 𝑔(¬𝜙) := ¬𝑔(𝜙)

𝑓(𝐶 ⊓ 𝐶 ′) := 𝑓(𝐶) ∧ 𝑓(𝐶 ′) 𝑔(𝜙 ∧ 𝜙′) := 𝑔(𝜙) ⊓ 𝑔(𝜙′)
𝑓(𝐶 ⊔ 𝐶 ′) := 𝑓(𝐶) ∨ 𝑓(𝐶 ′) 𝑔(𝜙 ∨ 𝜙′) := 𝑔(𝜙) ⊔ 𝑔(𝜙′)
𝑓(≥𝑛 𝑟.𝐶) := ≥𝑛 𝑟.𝑓(𝐶) 𝑔(≥𝑛 𝑟.𝜙) := ≥𝑛 𝑟.𝑔(𝜙)
𝑓(∀𝑟.𝐶) := ∀𝑟.𝑓(𝐶) 𝑔(∀𝑟.𝜙) := ∀𝑟.𝑔(𝜙)

Figure 2: Translation functions mapping 𝒜ℒ𝒞𝒪ℐ𝒬 concepts into 𝒜ℒ𝒞𝒪ℐ𝒬𝑆 shape expressions, and vice

versa.

4. SHACL to OWL and back again

Most of the results in this work are based on the tight connection between SHACL and DLs. In this

section, we look at their connection and provide a translation for satisfiability purposes.

Translation. We note that for 𝒜ℒ𝒞 and more expressive DLs, it is immediate that we can restrict the

logic to equivalence axioms only, without affecting its expressivity. That is, 𝐶 ⊑ 𝐷 may be replaced

by ⊤ ≡ ¬𝐶 ⊔𝐷. In these cases, we may also assume without loss of generality that one side of the

equivalence is a concept name: it is always possible to introduce a fresh concept name as middle ground.

Furthermore, we note that when considering satisfiability of a concept name 𝐴 w.r.t. a TBox 𝒯 , we

can reduce axioms of the form ⊤ ≡ 𝐶 to 𝐴𝐶 ≡
⨆︀

𝑟∈𝑅 ∀𝑟.(𝐴𝐶 ⊓ 𝐶), where 𝑅 ⊆ 𝑁+
𝑅 contains all

roles appearing in 𝒯 . In this case, we find that 𝐴 is satisfiable w.r.t. 𝒯 iff 𝐴 ⊓ 𝐴𝐶 is satisfiable w.r.t.

(𝒯 ∪ {𝐴𝐶 ≡
⨆︀

𝑟∈𝑅 ∀𝑟.(𝐴𝐶 ⊓ 𝐶)}) ∖ {⊤ ≡ 𝐶}. That is, in this paper, it will be sufficient to consider

axioms of the form 𝐴 ≡ 𝐶 , for 𝐴 ∈ 𝑁𝐶 ∖ ⊤. Moreover, we assume that each considered TBox 𝒯
contains for each 𝐴 ∈ 𝑁𝐶 at most one concept 𝐶 , possibly making use of ‘⊔’, such that 𝐴 ≡ 𝐶 ∈ 𝒯 .

As we set 𝑠← 𝜙 ∈ 𝒞 implies (𝑠)ℐ,𝑆 = (𝜙)ℐ,𝑆 , this aligns well with the semantics of recursive SHACL

we are considering.

Let us define two translations: 𝑓 , a function translating any𝒜ℒ𝒞𝒪ℐ𝒬 concept into a shape expression,

and 𝑔, a function in the opposite direction, translating any shape expression expressible in 𝒜ℒ𝒞𝒪ℐ𝒬𝑆

into an 𝒜ℒ𝒞𝒪ℐ𝒬 concept. These functions are recursively defined in Table 2, where 𝑠𝐴 ∈ 𝑁𝑆 is a

fresh shape name introduced for every concept name 𝐴 ∈ 𝑁𝐶 , and 𝐴𝑠 is a fresh concept name for each

𝑠 ∈ 𝑁𝑆 . Note that fragments are preserved: an ℒ𝑆 shape expression translates into an ℒ concept, and

vice versa.

Proposition 2. Let 𝒯 be an 𝒜ℒ𝒞𝒪ℐ𝒬 TBox such that all axioms are of the form 𝐴 ≡ 𝐶 , and such that

no pair {𝐵 ≡ 𝐶,𝐵 ≡ 𝐶 ′}, for 𝐶 ̸= 𝐶 ′ is contained in 𝒯 . Then, ℐ is a model of 𝒯 such that 𝐴ℐ ̸= ∅ iff ℐ
validates (𝒞,𝒢) given by 𝒢 = {𝑠𝐴(𝑐) | 𝑐 ∈ 𝐴ℐ} and

𝒞 = {𝑠𝐴 ← 𝑓(𝐶) ∧𝐴 | 𝐴 ≡ 𝐶 ∈ 𝒯 } ∪ {𝑠𝐴 ← 𝐴 | 𝐴 ≡ 𝐶 ̸∈ 𝒯 }.

Proposition 3. Let (𝒞,𝒢) be any 𝒜ℒ𝒞𝒪ℐ𝒬𝑆 shapes graph such that 𝒢 only contains atomic targets.

Then ℐ validates (𝒞,𝒢), because of the shape assignment 𝑆, iff ℐ ′ is a model of {𝐴𝑠 ≡ 𝑔(𝜙) | 𝑠← 𝜙 ∈ 𝒞},

such that if 𝑠(𝑐) ∈ 𝒢, then 𝑐 ∈ 𝐴ℐ′𝑠 . Here, ℐ ′ has domain Δℐ = Δℐ
′
, and is further defined as: for all

𝐴 ∈ 𝑁𝐶 ∖ {𝐴𝑠 | 𝑠 ∈ 𝑁𝑆}, 𝐴ℐ = 𝐴ℐ
′

and for all 𝐴 ∈ {𝐴𝑠 | 𝑠 ∈ 𝑁𝑆}, 𝐴ℐ
′

𝑠 = {𝑐 ∈ 𝑁𝐼 | 𝑠(𝑐) ∈ 𝑆}.

Note that correctness of both propositions is based on the fact that shape and concept names can be

considered as very similar, namely as unary labels for individuals, in the setting of determining (finite)

satisfiability.

Joint Satisfiability of SHACL and OWL. As envisioned in the W3C SHACL specification [15,

Section 1.5] and argued in [3], it is promising to combine SHACL and OWL (under the unique name

assumption), another prominent W3C standard for managing data, whose profiles are based on DLs

[16]. Combining these formalisms gives rise to a whole new set of challenges, like how to reconcile the

open- and closed-world semantics these specifications bring along [3, 17]. Fortunately, the semantics

proposed in [3] and [14], i.e., SHACL validation over the core universal model of the A- and TBox,

can be reduced to plain SHACL validation [3, 14]. Also the complexity of validation is discussed there.

However, nothing is known regarding joint satisfiability of SHACL and OWL, that is, the following

reasoning problems.

Joint Satisfiability: Given a SHACL fragment ℒ𝑆 and OWL fragment ℒ′, for each shapes graph (𝒞,𝒢)
expressible inℒ𝑆 and each TBox 𝒯 expressible inℒ′, decide whether there exists an interpretation

ℐ that validates (𝒞,𝒢) and is a model of 𝒯 .

Finite Joint Satisfiability: Given a SHACL fragment ℒ𝑆 and OWL fragment ℒ′, for each shapes

graph (𝒞,𝒢) expressible in ℒ𝑆 and each TBox 𝒯 expressible in ℒ′, decide whether there exists a

finite interpretation ℐ that validates (𝒞,𝒢) and is a model of 𝒯 .

Given the above presented translation, it follows that the complexity of deciding (finite) joint satisfia-

bility of SHACL in presence of OWL corresponds to the complexity of deciding (finite) satisfiability in

the least-expressive description logic capturing the expressivity of both the translated SHACL fragment,

as the OWL fragment.

5. Inverses, Nominals and Counting

The following propositions are well-known results in the Description Logic community. These results

extend to our setting, using a translation as described in the previous section.

Proposition 4 (for instance [18, 19, 20]). 𝒜ℒ𝒞𝒪ℐ𝑆 and 𝒜ℒ𝒞𝒪𝒬𝑆 have the finite model property,

𝒜ℒ𝒞ℐℱ𝑆 does not.

Proposition 5 ([20, 21], and their references). Deciding (finite) satisfiability in 𝒜ℒ𝒞𝑆 , 𝒜ℒ𝒞𝒪ℐ𝑆 ,

𝒜ℒ𝒞𝒪𝒬𝑆 , and 𝒜ℒ𝒞ℐ𝒬𝑆 is ExpTime-complete.

Proposition 6. Deciding (finite) satisfiability in 𝒜ℒ𝒞𝒪ℐℱ𝑆 and 𝒜ℒ𝒞𝒪ℐ𝒬𝑆 is NExpTime-complete.

The lower bound for 𝒜ℒ𝒞𝒪ℐℱ𝑆 follows from constructing a torus of finite size [22]; the upper

bound from translating 𝒜ℒ𝒞𝒪ℐ𝒬𝑆 into the two-variable fragment of first-order logic with counting

quantifiers 𝐶2
[23], in which (finite) satisfiability is NExpTime-complete [24].

Proposition 7. 𝒜ℒ𝒞ℰ𝑆 and 𝒜ℒ𝒞𝒫𝑆 do not have the finite model property.

Proof. Consider the following constraints, with the target 𝑠(0, 0):

𝑠← ∀𝑢+. =1 𝑟
+𝑑.⊤ ∧ ∀(𝑟 ∪ 𝑢)*.(𝑠𝑓 ∧ 𝑠𝑔)

𝑠𝑓 ← =1𝑢.⊤∧ =1 𝑟.⊤∧ =1 (𝑟𝑢 ∪ 𝑢𝑟).⊤
𝑠𝑔 ← ¬≥1 𝑑.⊤ ∨ ∀𝑢+.¬≥1 𝑑.⊤

𝑟

𝑢
𝑟

𝑢
𝑟

𝑢

𝑟

𝑢
𝑟

𝑢
𝑟

𝑢

𝑟

𝑢
𝑟

𝑢
𝑟

𝑢
𝑟 𝑟 𝑟

𝑢

𝑢

𝑢

𝑠

Figure 3: Infinite grid that, after adding 𝑠𝑓 and 𝑠𝑔 as label to every node, shows satisfiability of 𝑠. The red

diagonal arrows denote the role 𝑑.

𝒜ℒ𝒞𝑆

𝒜ℒ𝒞𝒬𝑆𝒜ℒ𝒞𝒪𝑆𝒜ℒ𝒞ℐ𝑆

𝒜ℒ𝒞𝒪𝒬𝑆𝒜ℒ𝒞ℐ𝒬𝑆𝒜ℒ𝒞ℐ𝒪𝑆 𝒜ℒ𝒞ℐ𝒩/ℱ𝑆 𝒜ℒ𝒞𝒪𝒩/ℱ𝑆

𝒜ℒ𝒞𝒫𝑆 𝒜ℒ𝒞ℰ𝑆

𝒜ℒ𝒞𝒩𝑆 𝒜ℒ𝒞ℱ𝑆

𝒜ℒ𝒞𝒪ℐ𝒬𝑆 𝒜ℒ𝒞𝒪ℐ𝒩𝑆 𝒜ℒ𝒞𝒪ℐℱ𝑆

Figure 4: Decidability and complexity of SHACL fragments. Ellipse-shaped nodes denote (finite) satisfiability is

decidable in ExpTime (yellow border), or NExpTime (green border). Squared-shaped nodes indicate satisfiability is

undecidable. A yellow filling indicates the presence of the finite model property, whereas a red filling stands for

the lack of it. Arrows indicate subsumption of fragments.

Here, =1 .𝜙 is a shorthand for≥1 .𝜙 ∧ ≤1 .𝜙. Clearly, a way to satisfy the above constraints is in a simple

grid on the natural numbers with a diagonal, where 𝑠 true in (0, 0) and 𝑠𝑓 and 𝑠𝑔 validated everywhere.

Here the interpretation of 𝑑 is {(𝑖, 𝑖), (𝑖+1, 𝑖+1) | 𝑖 ∈ N}, for 𝑢 it is {((𝑖, 𝑗), (𝑖, 𝑗 +1)) | {𝑖, 𝑗} ⊆ N},
and for 𝑟 the set {((𝑖, 𝑗), (𝑖+ 1, 𝑗)) | {𝑖, 𝑗} ⊆ N}.

Assume for contradiction there exists a finite model. As 𝑠𝑓 must hold in 𝑠 and every indi-

vidual reachable by 𝑢, there exists 𝑎0, . . . , 𝑎𝑖 such that 𝑎0 is reachable by 𝑢* from (0, 0) and

{(𝑎0, 𝑎1), . . . , (𝑎𝑖−1, 𝑎𝑖), (𝑎𝑖, 𝑎0)} is contained in the interpretation of 𝑢. Note that because of having

to validate =1 𝑟.⊤∧ =1 (𝑟𝑢 ∪ 𝑢𝑟).⊤ in every individual reachable by 𝑟 or 𝑢, it can be concluded that

the set of individuals {𝑏0, . . . , 𝑏𝑗} reachable by 𝑟 from any individual in {𝑎0, . . . , 𝑎𝑖} must also contain

a loop in the interpretation of 𝑢. Clearly, this generalises to: every individual reachable by 𝑟+ from any

individual in {𝑎0, . . . , 𝑎𝑖} has a 𝑢+-path leading to itself. As every individual appearing in a loop of 𝑢’s

cannot have an outgoing 𝑑-edge, because of the constraint 𝑠𝑔 ← ¬≥1 𝑑.⊤ ∨ ∀𝑢+.¬≥1 𝑑.⊤, it follows

that every individual reachable by 𝑟+ from any individual in {𝑎0, . . . , 𝑎𝑖} cannot have an outgoing

𝑑-edge. As all individuals in {𝑎0, . . . , 𝑎𝑖} are reachable by 𝑢+ from (0, 0), we cannot validate the first

conjunct of 𝑠 in (0, 0). This is the contradiction which concludes the proof.

Note the above proof produces a grid, which means only a few more rules need to be introduced

to reduce the undecidable domino problem [25] to 𝒜ℒ𝒞ℰ𝑆 . It is easy to check this is possible, making

the satisfiability problem undecidable. This result is already known for different sublogics of 𝒜ℒ𝒞ℰ𝑆 ,

which is discussed in the remainder of this section.

More Fine-Grained Analysis. In the following, we will restrict the expressivity of the regular expres-

sions used in ≥𝑛𝐸.⊤ and ≥𝑛𝐸.𝜙. That is, with 𝒜ℒ𝒞𝒩 (𝑋)𝑆 or 𝒜ℒ𝒞𝒬(𝑋)𝑆 , for 𝑋 any combination

of the role constructs *, ∘ and ∪, we denote the SHACL fragment allowing regular expressions build

from only the role constructs in 𝑋 in number restrictions. That is, 𝒜ℒ𝒞𝒩 (*, ∘,∪)𝑆 = 𝒜ℒ𝒞ℰ𝑆 and

𝒜ℒ𝒞𝒬(*, ∘,∪)𝑆 = 𝒜ℒ𝒞𝒫𝑆 . We note that the translation presented in Section 4 naturally extends to

also capture *, ∘ and ∪ in the number restrictions. Again, we can rely on the vast DL literature: the

derived complexity results are the following.

Proposition 8. Satisfiability in 𝒜ℒ𝒞𝒩 (∘)𝑆 is undecidable.

This is a direct consequence of Theorem 6 in [26].

Proposition 9. Satisfiability in 𝒜ℒ𝒞𝒩 (*,∪)𝑆 is undecidable.

Proof. We can adapt the undecidability proof of unrestricted 𝒮ℋ𝒩 in [27] in the following way. That

is, instead of using the hierarchy and the given axioms, we consider the following shape expressions.

𝑠𝐴 ← ¬𝑠𝐵 ∧ ¬𝑠𝐶 ∧ ¬𝑠𝐷 ∧ ∃𝑥1.𝑠𝐵 ∧ ∃𝑦1.𝑠𝐶 ∧ ≤3 (𝑥1 ∪ 𝑦1)*.⊤
𝑠𝐵 ← ¬𝑠𝐴 ∧ ¬𝑠𝐶 ∧ ¬𝑠𝐷 ∧ ∃𝑥2.𝑠𝐴 ∧ ∃𝑦1.𝑠𝐷 ∧ ≤3 (𝑥2 ∪ 𝑦1)*.⊤
𝑠𝐶 ← ¬𝑠𝐴 ∧ ¬𝑠𝐵 ∧ ¬𝑠𝐷 ∧ ∃𝑥1.𝑠𝐷 ∧ ∃𝑦2.𝑠𝐴 ∧ ≤3 (𝑥1 ∪ 𝑦2)*.⊤
𝑠𝐷 ← ¬𝑠𝐴 ∧ ¬𝑠𝐵 ∧ ¬𝑠𝐶 ∧ ∃𝑥2.𝑠𝐶 ∧ ∃𝑦2.𝑠𝐵 ∧ ≤3 (𝑥2 ∪ 𝑦2)*.⊤

Note that satisfiability of 𝑠𝐴(𝑐) corresponds to existence of a grid. Now it is easy to check we can

encode a domino tiling problem like in [28]. Thus, the undecidability of the domino problem transfers

to this logic, which concludes our proof.

Deciding (finite) satisfiability in 𝒜ℒ𝒞𝒬(∪)𝑆 is ExpTime-complete. This result is subsumed by

Proposition 12 in the next section.

6. Equality and Disjointness

Recall we introduced the superscripts ℒd and ℒe to denote the addition of the features disj(𝑟, 𝑟′) and

eq(𝑟, 𝑟′), respectively. Following the naming convention introduced in the previous section, for 𝑋
any combination of the role constructs *, ∘ and ∪, let ℒ(𝑋)d , resp. ℒ(𝑋)e , be the SHACL fragment

allowing regular expressions build from only the role constructs in 𝑋 in the disjointness, resp. equality

feature, and in number restrictions, in case 𝒩 or 𝒬 is contained in ℒ. That is, recursive SHACL as

introduced in the preliminaries, and for satisfiability purposes, corresponds to 𝒜ℒ𝒞𝒪ℐ𝒬(*, ∘,∪)d ,e𝑆 .

We start with a positive result: adding disjointness does not increase complexity, although the finite

model property is easily lost.

Proposition 10. Deciding satisfiability in 𝒜ℒ𝒞ℐ(*, ∘,∪)d𝑆 is ExpTime-complete, and this fragment does

not have the finite model property. In fact, 𝒜ℒ𝒞(*, ∘)d𝑆 already lacks this property.

Proof. The upper bound follows from Theorem 4.8 in [29]. To see this, note that disj(𝐸, 𝑟) is equivalent

to the expression ∀(𝐸 ∩ 𝑟).⊥. As the amount of nestings of ‘∩’ in this expression is bounded by a

constant, namely 1, the tighter upper bound of ExpTime can be derived.

For the lack of finite model property, consider the following shapes graph (𝒞,𝒢):

𝒞 = {𝑠← disj(𝑟𝑟+, 𝑟) ∧ ∃𝑟.𝑠}

and set 𝒢 = {𝑠(𝑎)}. Clearly, the infinite chain of 𝑟’s, in which every individual is labelled with an 𝑠 is

an infinite model. In fact, it must be possible to homomorphically map this chain into any interpretation

that validates (𝒞,𝒢). As disj(𝑟𝑟+, 𝑟) has to be true in each individual on the chain, it suffices to check

that each approach to loop this chain breaks the disjointness.

Even though equality and disjointness might appear to be duals, this belief is quickly crashed: equality

is much harder and easily leads to undecidability.

Proposition 11. Deciding satisfiability in 𝒜ℒ𝒞(∘)e𝑆 is undecidable and 𝒜ℒ𝒞(*, ∘)e𝑆 does not have the

finite model property.

Proof. The undecidability result directly follows from results for Description Logics with role value

maps [30]. An easy way to also see why the equality feature leads to undecidability is the following

constraint set, which encodes a grid.

𝑠← eq(𝑢𝑟, 𝑑) ∧ eq(𝑟𝑢, 𝑑) ∧ ∃𝑟.𝑠 ∧ ∃𝑢.𝑠 ∧ ∀𝑟.𝑠 ∧ ∀𝑢.𝑠

For the lack of finite model property, consider the following shapes graph (𝒞,𝒢):

𝒞 = {𝑠← eq(𝑟*, 𝑡) ∧ ¬eq(𝑟+, 𝑡) ∧ ∃𝑟.𝑠},

and set 𝒢 = {𝑠(𝑎)}. Clearly, the infinite chain of 𝑟’s, with 𝑡 the reflexive and transitive closure of

𝑟, in which every individual is labelled with an 𝑠 is an infinite model. In fact, it must be possible to

homomorphically map this chain into any interpretation that validates (𝒞,𝒢). As eq(𝑟*, 𝑡)∧¬eq(𝑟+, 𝑡)
has to be true in each individual on the chain, it suffices to check that each approach to loop this chain

breaks successful validation.

It looks much better when solely allowing ‘∪’ in the equality and disjointness axioms: (finite)

satisfiability in 𝒜ℒ𝒞(∪)d,e𝑆 is ExpTime-complete. In fact, this holds for much stronger fragments.

Proposition 12. Deciding satisfiability in 𝒜ℒ𝒞ℐ𝒬(∪)d,e𝑆 , and (finite) satisfiability in 𝒜ℒ𝒞𝒪𝒬(∪)d,e𝑆

and 𝒜ℒ𝒞𝒪ℐ(∪)d,e𝑆 is ExpTime-complete, and the latter two fragments have the finite model property.

Proof. Note that for 𝑅 a union of roles, eq(𝑅, 𝑟) may be reduced to ∀((𝑅 ∖ 𝑟) ∪ (𝑟 ∖ 𝑅)).⊥, where

𝐸 ∖ 𝐸′ := 𝐸ℐ ∖ 𝐸′ℐ , and disj(𝑅, 𝑟) to ∀(𝑅 ∩ 𝑟).⊥. Thus, in case only ‘∪’ is allowed, the equality and

disjointness features reduce to simple roles, which means the above fragments can be reduced to the

description logics 𝒵ℐ𝒬, 𝒵𝒪𝒬, resp. 𝒵𝒪ℐ . For all these logics, satisfiability is known to be decidable

in ExpTime [31]. Furthermore, 𝒵𝒪𝒬, and 𝒵𝒪ℐ have the finite model property [32].

We note that the results described in this paper do not provide a complete picture of all known

decidability results in the DL setting.

7. Conclusion and Outlook

We looked at the tight connection between Description Logics and SHACL. In this way, we derived

many new complexity results for deciding (finite) satisfiability in SHACL. Specifically, for the general

satisfiability problem the picture looks quite complete: as far as the author knows, only some small

fragments remain unclear, like𝒜ℒ𝒞(*,∪)e𝑆 , or𝒜ℒ𝒞(*)d,e𝑆 . However, when looking at finite satisfiability,

the status is quite the opposite: a lot of work remains to be done. Specifically in the setting of SHACL,

one of the standard tools for managing concrete data sets, the latter case is of uttermost importance.

Another direction for future work is to look at different semantics: in this paper, we considered

(finite) satisfiability under the supported model semantics. However, there are more possibilities to

consider: for instance the stable-model, or well-founded semantics. As far as the author knows there are

no known complexity results regarding satisfiability or containment for any semantics other than the

supported model semantics, leaving a major gap. Specifically, as researching complexity of satisfiability

and containment problems is essential for determining which semantics are suitable in optimised

SHACL-based solutions.

Acknowledgments

I would like to thank Magdalena Ortiz and Bartosz Bednarczyk for their support in this project, and the

anonymous reviewers for their feedback.

The project leading to this application has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 101034440.

Declaration on Generative AI

The author has not employed any Generative AI tools.

References

[1] J. Corman, J. L. Reutter, O. Savkovic, Semantics and validation of recursive SHACL, in: D. Vrandecic,

K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L. Kaffee, E. Simperl (Eds.),

The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA,

USA, October 8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in Computer Science,

Springer, 2018, pp. 318–336. URL: https://doi.org/10.1007/978-3-030-00671-6_19. doi:10.1007/
978-3-030-00671-6_19.

[2] M. Andresel, J. Corman, M. Ortiz, J. L. Reutter, O. Savkovic, M. Simkus, Stable model semantics

for recursive SHACL, in: Y. Huang, I. King, T. Liu, M. van Steen (Eds.), WWW ’20: The Web

Conference 2020, Taipei, Taiwan, April 20-24, 2020, ACM / IW3C2, 2020, pp. 1570–1580. URL:

https://doi.org/10.1145/3366423.3380229. doi:10.1145/3366423.3380229.

[3] S. Ahmetaj, M. Ortiz, A. Oudshoorn, M. Simkus, Reconciling SHACL and ontologies: Semantics and

validation via rewriting, in: K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, R. Radulescu (Eds.), ECAI

2023 - 26th European Conference on Artificial Intelligence, volume 372 of Frontiers in Artificial

Intelligence and Applications, IOS Press, 2023, pp. 27–35. URL: https://doi.org/10.3233/FAIA230250.

doi:10.3233/FAIA230250.

[4] C. Okulmus, M. Simkus, SHACL validation under the well-founded semantics, in: P. Marquis,

M. Ortiz, M. Pagnucco (Eds.), Proceedings of the 21st International Conference on Principles of

Knowledge Representation and Reasoning, KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024.

URL: https://doi.org/10.24963/kr.2024/52. doi:10.24963/KR.2024/52.

[5] P. G. Omran, K. Taylor, S. J. R. Méndez, A. Haller, Learning SHACL shapes from knowledge

graphs, Semantic Web 14 (2023) 101–121. URL: https://doi.org/10.3233/SW-223063. doi:10.3233/
SW-223063.

[6] D. Fernández-Álvarez, J. E. L. Gayo, D. Gayo-Avello, Automatic extraction of shapes using

shexer, Knowl. Based Syst. 238 (2022) 107975. URL: https://doi.org/10.1016/j.knosys.2021.107975.

doi:10.1016/J.KNOSYS.2021.107975.

[7] K. Rabbani, M. Lissandrini, K. Hose, Extraction of validating shapes from very large knowl-

edge graphs, Proc. VLDB Endow. 16 (2023) 1023–1032. URL: https://www.vldb.org/pvldb/vol16/

p1023-rabbani.pdf. doi:10.14778/3579075.3579078.

[8] P. Pareti, G. Konstantinidis, F. Mogavero, Satisfiability and containment of recursive SHACL, J.

Web Semant. 74 (2022) 100721. URL: https://doi.org/10.1016/j.websem.2022.100721. doi:10.1016/
J.WEBSEM.2022.100721.

[9] P. Pareti, G. Konstantinidis, F. Mogavero, T. J. Norman, SHACL satisfiability and containment,

in: J. Z. Pan, V. Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Seneviratne, L. Kagal

(Eds.), The Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, Athens,

Greece, November 2-6, 2020, Proceedings, Part I, volume 12506 of Lecture Notes in Computer Science,

Springer, 2020, pp. 474–493. URL: https://doi.org/10.1007/978-3-030-62419-4_27. doi:10.1007/
978-3-030-62419-4_27.

[10] P. Pareti, SHACL2FOL: an FOL toolkit for SHACL decision problems, CoRR abs/2406.08018

(2024). URL: https://doi.org/10.48550/arXiv.2406.08018. doi:10.48550/ARXIV.2406.08018.

arXiv:2406.08018.

[11] M. Leinberger, P. Seifer, T. Rienstra, R. Lämmel, S. Staab, Deciding SHACL shape containment

through description logics reasoning, in: J. Z. Pan, V. Tamma, C. d’Amato, K. Janowicz, B. Fu,

A. Polleres, O. Seneviratne, L. Kagal (Eds.), The Semantic Web - ISWC 2020 - 19th International

Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part I, volume 12506

https://doi.org/10.1007/978-3-030-00671-6_19
http://dx.doi.org/10.1007/978-3-030-00671-6_19
http://dx.doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1145/3366423.3380229
http://dx.doi.org/10.1145/3366423.3380229
https://doi.org/10.3233/FAIA230250
http://dx.doi.org/10.3233/FAIA230250
https://doi.org/10.24963/kr.2024/52
http://dx.doi.org/10.24963/KR.2024/52
https://doi.org/10.3233/SW-223063
http://dx.doi.org/10.3233/SW-223063
http://dx.doi.org/10.3233/SW-223063
https://doi.org/10.1016/j.knosys.2021.107975
http://dx.doi.org/10.1016/J.KNOSYS.2021.107975
https://www.vldb.org/pvldb/vol16/p1023-rabbani.pdf
https://www.vldb.org/pvldb/vol16/p1023-rabbani.pdf
http://dx.doi.org/10.14778/3579075.3579078
https://doi.org/10.1016/j.websem.2022.100721
http://dx.doi.org/10.1016/J.WEBSEM.2022.100721
http://dx.doi.org/10.1016/J.WEBSEM.2022.100721
https://doi.org/10.1007/978-3-030-62419-4_27
http://dx.doi.org/10.1007/978-3-030-62419-4_27
http://dx.doi.org/10.1007/978-3-030-62419-4_27
https://doi.org/10.48550/arXiv.2406.08018
http://dx.doi.org/10.48550/ARXIV.2406.08018
http://arxiv.org/abs/2406.08018

of Lecture Notes in Computer Science, Springer, 2020, pp. 366–383. URL: https://doi.org/10.1007/

978-3-030-62419-4_21. doi:10.1007/978-3-030-62419-4_21.

[12] B. Bogaerts, M. Jakubowski, J. V. den Bussche, SHACL: A description logic in disguise, in:

G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming and Nonmonotonic Reasoning

- 16th International Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings,

volume 13416 of Lecture Notes in Computer Science, Springer, 2022, pp. 75–88. URL: https://doi.org/

10.1007/978-3-031-15707-3_7. doi:10.1007/978-3-031-15707-3_7.

[13] B. Bogaerts, M. Jakubowski, J. V. den Bussche, Expressiveness of SHACL features and extensions

for full equality and disjointness tests, Log. Methods Comput. Sci. 20 (2024). URL: https://doi.org/

10.46298/lmcs-20(1:16)2024. doi:10.46298/LMCS-20(1:16)2024.

[14] A. Oudshoorn, M. Ortiz, M. Simkus, Reasoning with the core chase: the case of SHACL validation

over ELHI knowledge bases, in: L. Giordano, J. C. Jung, A. Ozaki (Eds.), Proceedings of the

37th International Workshop on Description Logics (DL 2024), Bergen, Norway, June 18-21,

2024, volume 3739 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL: https://ceur-ws.org/

Vol-3739/paper-7.pdf.

[15] W3C, Shape constraint language (SHACL), Technical Report. (2017). https://www.w3.org/TR/shacl.

[16] M. Krötzsch, OWL 2 profiles: An introduction to lightweight ontology languages, in: T. Eiter,

T. Krennwallner (Eds.), Reasoning Web. Semantic Technologies for Advanced Query Answering -

8th International Summer School 2012, Vienna, Austria, September 3-8, 2012. Proceedings, volume

7487 of Lecture Notes in Computer Science, Springer, 2012, pp. 112–183. URL: https://doi.org/10.

1007/978-3-642-33158-9_4. doi:10.1007/978-3-642-33158-9_4.

[17] O. Savkovic, E. Kharlamov, S. Lamparter, Validation of SHACL constraints over KGs with OWL

2 QL ontologies via rewriting, in: P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri, A. J. G.

Gray, V. López, A. Haller, K. Hammar (Eds.), The Semantic Web - 16th International Conference,

ESWC 2019, Portorož, Slovenia, June 2-6, 2019, Proceedings, volume 11503 of Lecture Notes in

Computer Science, Springer, 2019, pp. 314–329. URL: https://doi.org/10.1007/978-3-030-21348-0_21.

doi:10.1007/978-3-030-21348-0_21.

[18] S. Rudolph, Foundations of description logics, in: A. Polleres, C. d’Amato, M. Arenas, S. Handschuh,

P. Kroner, S. Ossowski, P. F. Patel-Schneider (Eds.), Reasoning Web. Semantic Technologies for

the Web of Data - 7th International Summer School 2011, Galway, Ireland, August 23-27, 2011,

Tutorial Lectures, volume 6848 of Lecture Notes in Computer Science, Springer, 2011, pp. 76–136.

URL: https://doi.org/10.1007/978-3-642-23032-5_2. doi:10.1007/978-3-642-23032-5_2.

[19] C. Lutz, C. Areces, I. Horrocks, U. Sattler, Keys, nominals, and concrete domains, J. Artif. Intell.

Res. 23 (2005) 667–726. URL: https://doi.org/10.1613/jair.1542. doi:10.1613/JAIR.1542.

[20] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description

Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, 2003.

[21] C. Lutz, U. Sattler, L. Tendera, The complexity of finite model reasoning in description logics, Inf.

Comput. 199 (2005) 132–171. URL: https://doi.org/10.1016/j.ic.2004.11.002. doi:10.1016/J.IC.
2004.11.002.

[22] S. Tobies, The complexity of reasoning with cardinality restrictions and nominals in expressive

description logics, J. Artif. Intell. Res. 12 (2000) 199–217. URL: https://doi.org/10.1613/jair.705.

doi:10.1613/JAIR.705.

[23] S. Tobies, Complexity results and practical algorithms for logics in knowledge representation,

Ph.D. thesis, RWTH Aachen University, Germany, 2001. URL: http://sylvester.bth.rwth-aachen.de/

dissertationen/2001/082/01_082.pdf.

[24] I. Pratt-Hartmann, Complexity of the two-variable fragment with counting quantifiers, J.

Log. Lang. Inf. 14 (2005) 369–395. URL: https://doi.org/10.1007/s10849-005-5791-1. doi:10.1007/
S10849-005-5791-1.

[25] R. Berger, The undecidability of the domino problem, 66, American Mathematical Soc., 1966.

[26] F. Baader, U. Sattler, Expressive number restrictions in description logics, J. Log. Comput. 9 (1999)

319–350. URL: https://doi.org/10.1093/logcom/9.3.319. doi:10.1093/LOGCOM/9.3.319.

[27] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for very expressive description logics, Log. J.

https://doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-030-62419-4_21
http://dx.doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/978-3-031-15707-3_7
http://dx.doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.46298/lmcs-20(1:16)2024
https://doi.org/10.46298/lmcs-20(1:16)2024
http://dx.doi.org/10.46298/LMCS-20(1:16)2024
https://ceur-ws.org/Vol-3739/paper-7.pdf
https://ceur-ws.org/Vol-3739/paper-7.pdf
https://www.w3.org/TR/shacl
https://doi.org/10.1007/978-3-642-33158-9_4
https://doi.org/10.1007/978-3-642-33158-9_4
http://dx.doi.org/10.1007/978-3-642-33158-9_4
https://doi.org/10.1007/978-3-030-21348-0_21
http://dx.doi.org/10.1007/978-3-030-21348-0_21
https://doi.org/10.1007/978-3-642-23032-5_2
http://dx.doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1613/jair.1542
http://dx.doi.org/10.1613/JAIR.1542
https://doi.org/10.1016/j.ic.2004.11.002
http://dx.doi.org/10.1016/J.IC.2004.11.002
http://dx.doi.org/10.1016/J.IC.2004.11.002
https://doi.org/10.1613/jair.705
http://dx.doi.org/10.1613/JAIR.705
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
http://sylvester.bth.rwth-aachen.de/dissertationen/2001/082/01_082.pdf
https://doi.org/10.1007/s10849-005-5791-1
http://dx.doi.org/10.1007/S10849-005-5791-1
http://dx.doi.org/10.1007/S10849-005-5791-1
https://doi.org/10.1093/logcom/9.3.319
http://dx.doi.org/10.1093/LOGCOM/9.3.319

IGPL 8 (2000) 239–263. URL: https://doi.org/10.1093/jigpal/8.3.239. doi:10.1093/JIGPAL/8.3.
239.

[28] F. Baader, U. Sattler, Number restrictions on complex roles in description logics: A preliminary

report., in: KR, 1996, pp. 328–339.

[29] S. Göller, M. Lohrey, C. Lutz, PDL with intersection and converse: satisfiability and infinite-state

model checking, J. Symb. Log. 74 (2009) 279–314. URL: https://doi.org/10.2178/jsl/1231082313.

doi:10.2178/JSL/1231082313.

[30] M. Schmidt-Schauß, Subsumption in KL-ONE is undecidable, in: R. J. Brachman, H. J. Levesque,

R. Reiter (Eds.), Proceedings of the 1st International Conference on Principles of Knowledge

Representation and Reasoning (KR’89). Toronto, Canada, May 15-18 1989, Morgan Kaufmann,

1989, pp. 421–431.

[31] D. Calvanese, T. Eiter, M. Ortiz, Regular path queries in expressive description logics with

nominals, in: C. Boutilier (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference

on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, 2009, pp. 714–720. URL:

http://ijcai.org/Proceedings/09/Papers/124.pdf.

[32] B. Bednarczyk, E. Kieronski, Finite entailment of local queries in the Z family of description logics,

in: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference

on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on

Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March

1, 2022, AAAI Press, 2022, pp. 5487–5494. URL: https://doi.org/10.1609/aaai.v36i5.20487. doi:10.
1609/AAAI.V36I5.20487.

https://doi.org/10.1093/jigpal/8.3.239
http://dx.doi.org/10.1093/JIGPAL/8.3.239
http://dx.doi.org/10.1093/JIGPAL/8.3.239
https://doi.org/10.2178/jsl/1231082313
http://dx.doi.org/10.2178/JSL/1231082313
http://ijcai.org/Proceedings/09/Papers/124.pdf
https://doi.org/10.1609/aaai.v36i5.20487
http://dx.doi.org/10.1609/AAAI.V36I5.20487
http://dx.doi.org/10.1609/AAAI.V36I5.20487

	1 Introduction
	2 Preliminaries
	3 SHACL Satisfiability
	4 SHACL to OWL and back again
	5 Inverses, Nominals and Counting
	6 Equality and Disjointness
	7 Conclusion and Outlook

