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Abstract

The rapidly growing deployment of Edge AI devices performing high-demand tasks, such
as real-time object detection, creates a critical challenge: balancing high performance
(maintaining a target confidence) against the severe constraints of intermittent power
supply from solar energy harvesting. This thesis addresses the necessity for a dynamic
policy that can effectively manage this dual-objective trade-off over long operational hori-
zons. The research establishes an empirical foundation via a parameter study conducted
on Raspberry Pi hardware, quantifying the stochastic relationship between configuration
parameters (model variant, resolution, frame rate) and actual power consumption/de-
tection confidence, which revealed median shifts of up to 1.37W in power consumption
and up to 26 percentage points in detection confidence between different operational
configurations. This data informed the construction of a custom Reinforcement Learning
(RL) environment that utilizes Kernel Density Estimation (KDE) to model hardware
stochastically and physics-based models for solar dynamics. To solve the dual-objective
problem of maximizing performance while satisfying the long-term survival goals, a Prox-
imal Policy Optimization (PPO) agent was trained within a Constrained Optimization
framework. The agent’s policy was rigorously evaluated over 24-hour and 48-hour cycles
across six dynamic scenarios against static and random baselines. The results confirm
that the PPO agent successfully learned an adaptive strategy: it consistently manages
the trade-off better than non-learning baselines, strategically scaling its resource use
based on real-time energy context. Quantitative analysis showed that the PPO agent
survived up to 1.5 hours longer than the more power-hungry baselines while achieving
at least 40 percentage points more SLA satisfaction than the least power-hungry static
policy. This work provides a validated, data-driven approach for sustainable resource
management in energy-constrained Edge AI systems.
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CHAPTER 1
Introduction

With the rapidly growing number of mobile and Internet-of-Things (IoT) devices, the
concept of Edge Computing has gained significant importance. The basic idea is to move
computation away from centralized locations like cloud data centers and closer to the
user at the network edge [1, 2]. This results in a wide array of advantages, including
lower latency, improved security, reduced network congestion, and lower overall costs [1].
Recent developments in machine learning and hardware have made it possible to deploy
models on the network edge, a practice known as Edge AI, paving the way for real-time
inference and automatic decision-making across industries from smart factories to the
automotive sector [2, 3].
However, while there are many advantages, there are also major concerns, especially
regarding sustainability. There are currently billions of edge devices deployed globally.
Even though they are individually small and lightweight, their collective energy con-
sumption is on par with large cloud data centers and cannot be ignored [4]. The number
of these systems is only set to increase [5]. Since Edge AI systems are often deployed
remotely and battery-operated, energy harvesting (deriving energy from external sources
like solar, wind, or kinetic energy) from sustainable sources is crucial to power the devices
and expand their battery life [6]. This introduces a core conflict: renewable energy sources
are often unreliable, and the power generated by them varies significantly depending on
outside conditions like weather or daytime [7]. This means the system must maximize
long-term survival while simultaneously performing highly demanding tasks at a certain
Quality of Service (QoS).
The general problem becomes clearer when applied to specific applications. Real-time
object detection is one of the most common and computationally demanding tasks for
Edge AI [8]. When this task is paired with solar power, one of the most common IoT
energy solutions, it creates a direct contradiction between the system’s requirement for
high, continuous detection confidence and its intermittent power supply [9]. The system
must therefore manage this energy conflict while continuously processing visual data,
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1. Introduction

ensuring it performs reliably (i.e., meets a target confidence) even when solar input is
unavailable. This can be achieved by dynamically adjusting parameters like resolution or
model type used at runtime depending on energy availability [10].

The heterogeneity of AI models, diverse hardware, and dynamic workloads mean simple
rule and heuristic-based policies are often inaccurate and inefficient [11]. Alternatively,
Reinforcement Learning (RL) presents a promising approach. It allows a system to
learn optimal strategies through continuous interaction with its environment and adjust
its behaviour based on real-time feedback [12]. This thesis addresses the specific dual-
objective problem within the constrained environment of a solar-powered edge device
performing real-time object detection. It aims to make an advancement for a very specific
and widely used hardware, the Raspberry Pi, by building a prototype of an RL-based
power management system and while doing so, answering the following research questions:

RQ1: What is the influence of frame rate, image resolution, and (YOLOv11) model type
on the power consumption and prediction confidence of a Raspberry Pi-based Edge
AI system performing object detection?

RQ2: How does the implemented PPO-based dynamic configuration-switching prototype
perform compared to static and random baseline strategies in maintaining inference
confidence and energy efficiency under varying environmental conditions?

The contributions of this thesis are summarized as follows: A parameter study was
conducted on the target hardware to find the relation between YOLOv11 [13] model size,
frame rate and image resolution and the power consumption and detection confidence of
the system. This study quantified the operational range, revealing median shifts of up
to 1.37W in power and up to 26 percentage points in confidence between configurations.
This work led to the development of a custom RL environment, built on the Gymnasium
[14] framework, that incorporates physics-based solar modelling and utilizes data-driven
stochastic models for power and confidence. Based on this, an RL-based energy-aware
power adaptation prototype was designed using the PPO algorithm within a constrained
optimization framework. Finally, a comprehensive evaluation was performed across
multiple dynamic scenarios against four baselines to validate the policy’s long-term
sustainability. The evaluation confirmed the prototype’s superiority, showing the PPO
agent survives up to 1.5 hours longer than power-hungry baselines while achieving at least
40 percentage points more SLA satisfaction than the most conservative baseline.

The remainder of this thesis is structured as follows: Chapter 2 provides the necessary
theoretical background and reviews related work. Chapter 3 details the methodology,
including the parameter study, simulation environment design, and agent configuration.
Chapter 4 presents the results of the evaluation, followed by an analysis of the agent’s
adaptive performance. Chapter 5 and Chapter 6 conclude the thesis, summarizing the
findings and outlining limitations.
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CHAPTER 2
The Power-Performance Conflict

and Prior Adaptive Solutions

This chapter provides the necessary theoretical foundation and contextualizes this thesis
within the existing literature. The first part establishes the operational domain by defining
Edge Computing and Real-Time Edge AI, alongside the constraints inherent to energy
harvesting systems and the principles of Self-Adaptive Systems. The second part addresses
the solution framework, detailing the Reinforcement Learning (RL) methodology and
the Proximal Policy Optimization (PPO) method. The chapter concludes with a review
of related work, identifying the specific research gaps addressed by this thesis’s approach
to energy-aware resource management.

2.1 Background

2.1.1 Edge Computing, Edge AI and Real-time Object Detection

Edge Computing describes a distributed computing paradigm where data processing and
storage occur close to the source of data generation. The primary goal is to bring the
services and utilities of Cloud Computing closer to the end user [1]. This results in
clear advantages: lower latency, better security, reduced network congestion, and lower
costs. However, edge devices operate under severe resource constraints, including limited
computational power and restricted thermal envelopes [4]. This resource scarcity creates
a fundamental conflict when executing complex tasks.

The utilization of AI on edge devices is defined as Edge AI, involving computations near
the users on the network edge [3]. Due to the reduced latency inherent in edge deployment,
real-time applications become feasible. One such application is real-time object detection,
which requires the system to continuously localize, detect, and classify objects within a
video stream using bounding boxes, labels, and confidence scores. This requires running
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sophisticated deep learning models, such as the YOLO family (You Only Look Once)
[13]. The core concept of YOLO models is that a single neural network, often using a
Convolutional Neural Network (CNN) backbone, predicts both bounding boxes and class
probabilities directly from the image in one evaluation pass, allowing the model to be
optimized end-to-end for detection performance. This design makes the YOLO family
specialized for extremely fast, high-throughput, real-time inference [15]. Running this
high-demand inference task significantly intensifies the power constraint, as the device
must process visual data quickly for timely decision-making.

2.1.2 Energy-aware Edge Computing

Energy-aware computing is highly important at the network edge because individual
devices are severely resource-constrained, and collectively due to their large number they
can contribute to energy consumption just as much as their cloud data center counterparts.
At the edge, energy efficiency involves operations across the entire data life cycle, including
data generation, processing, and transmission. This necessity means energy awareness
must be addressed at every system layer. Solutions span the entire stack: on the hardware
and architecture side, this includes implementing Dynamic Voltage Frequency Scaling
(DVFS) and power capping, optimized cache management, and ensuring reconfigurable
device designs for different scenarios. The operating system focuses on energy-aware
resource management and scheduling. In the software and services layer, solutions range
from application-specific data analytics to optimizing computation offloading policies,
ensuring energy consumption is considered alongside metrics like latency and Quality of
Service (QoS) [4].

To ensure continuous operation in autonomous edge deployments, devices often rely on
energy harvesting (EH) systems. EH is the process of powering devices by capturing
and converting small amounts of ambient environmental energy, such as solar, wind,
or thermal, into usable electrical power. EH technologies suitable for edge and IoT
applications include thermal, vibrational, radio frequency (RF), and Solar Photovoltaic
(PV) systems [9]. Solar PV is particularly relevant for outdoor deployments due to its
high power density and widespread availability [16]. However, many EH sources share
the common challenge of providing intermittent and highly variable power supply, which
necessitates sophisticated management [7].

This necessity makes Self-Adaptive Systems crucial. A Self-Adaptive System is designed
to autonomously modify its own behaviour or structure at runtime in response to changes
in its operating environment or internal goals. This capability is often conceptualized
through the MAPE-K loop (Monitor, Analyse, Plan, Execute, and Knowledge), which
describes the feedback control mechanism necessary for autonomous adaptation [17].
In Edge Computing, self-adaptation is vital for maintaining performance and resource
efficiency under constantly varying conditions [10].

This line of reasoning directly applies to the hardware model of this work, the Raspberry
Pi 4-class devices [18]. These are highly representative and widely used, low-cost IoT
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hardware [19]. While highly capable, these devices introduce a critical power-processing
conflict. Since they often run on batteries or intermittent energy sources, energy consump-
tion must be meticulously managed to ensure continuous operation. This necessity for
managing highly variable power while optimizing performance fundamentally motivates
the policy developed in this thesis.

2.1.3 Reinforcement Learning and Proximal Policy Optimization

Reinforcement Learning (RL) is a machine learning paradigm concerned with how an
agent should take actions in an environment to maximize a cumulative reward [12]. The
interaction is modelled as a sequence of decisions governed by a policy (π) within the
Markov Decision Process (MDP) framework. The agent learns the optimal policy by
observing the resulting state transitions and rewards from its taken actions over time as
well as considering possible future rewards. While doing this, the agent has to balance
exploration of new strategies with the exploitation of actions that are known to yield a
high reward [12].

The specific RL approach utilized is Proximal Policy Optimization (PPO), which belongs
to the class of policy gradient methods. With this kind of approach, instead of learning
the values of actions and then selecting actions based on estimated values, the agent
instead learns the parameter θ of a parametrized policy π(a|s, θ) (where a is the chosen
action and s the state of the environment). Policy gradient methods seek to maximize
performance based on the gradient of a scalar performance measure J(θ) with respect to
the policy parameter. Their updates approximate gradient ascent in J :

θt+1 = θt + αˆ︃∇J(θt),

where ˆ︃∇J(θ) ∈ Rd is a stochastic estimate that approximates the true gradient of
the performance measure. Since they seek to maximize performance, their updates
approximate gradient ascent in the performance measure [12].

The PPO algorithm is a state-of-the-art policy gradient method known for its stability
and strong performance in complex control problems [20]. PPO offers the benefits of
trust-region policy optimization but is significantly easier to implement. It achieves
stability by employing a clipped objective function, which restricts the policy change at
each step, preventing large, destabilizing updates. Furthermore, PPO is highly sample
efficient. Unlike standard policy gradient methods that perform one gradient update per
data sample, PPO’s objective function allows for multiple epochs of minibatch updates
per sample, extracting more signal from the gathered experience [20]. This makes PPO
robust and effective in complex, non-linear environments.

2.2 Related Work
Research on energy-aware operation of Edge AI systems spans several connected themes.
This section reviews (i) energy-harvesting and solar-powered edge systems, (ii) adaptive
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energy-aware inference at the edge, (iii) reinforcement-learning-based energy and resource
management, and (iv) optimization-based frameworks for energy efficiency.

2.2.1 Energy Harvesting and Solar-powered Edge Systems

Early work on energy-harvesting embedded systems established the foundations for
energy-neutral operation. Hsu et al. [21] developed an adaptive duty-cycling algorithm
that predicts future solar input to match consumption with harvested power, ensuring
long-term sustainability of sensor nodes. Hörmann et al. [22] empirically evaluated indoor
photovoltaic harvesting for IoT devices, showing strong dependence of harvestable power
on light conditions and placement. Abas et al. [23] presented SlugCam, a solar-powered
wireless smart-camera network, and characterized the power budget of video capture
and transmission in outdoor environments. Collectively, these studies motivate accurate
modelling of solar generation and battery storage in energy-aware system design, which
provides the contextual basis for this thesis’s simulation environment.

2.2.2 Energy-aware Edge AI and Adaptive Inference Configurations

In parallel, research on adaptive inference explores how configuration parameters influence
energy and performance on constrained devices. Tundo et al. [10] proposed an energy-
aware design-time methodology that helps developers identify pareto-optimal operating
modes, which are combinations of frame rate, resolution, and model variant using a
meta-heuristic search with weighted Grey Relational Analysis. These configurations can
later support runtime adaptation and demonstrated energy reductions exceeding 80%
with limited accuracy loss.

The EcoMLS framework [24] applied a runtime MAPE-K feedback loop to switch between
lightweight and full neural models (e.g., YOLO variants) according to monitored accuracy
and energy usage. Zhang et al. [6] optimized configuration selection and bandwidth
allocation for multi-camera edge analytics via Lyapunov optimization, balancing latency
and accuracy.

PowerPi [25] measured Raspberry Pi power draw under CPU and I/O workloads, showing
a linear relationship between CPU utilization and power. Unlike such utilization-based
modelling, this thesis relies on direct power measurements from an object-detection work-
load including the Raspberry Pi and camera module, modelled via Gaussian Kernel Density
Estimators (KDEs) to capture empirical power distributions across FPS, resolution, and
model type. These data-driven models form the foundation for simulation and adaptive
control.

2.2.3 Reinforcement Learning for Energy Management and Edge
Adaptation

Reinforcement Learning has recently become a key paradigm for optimizing energy use
and scheduling under uncertainty. Prauzek et al. [26] applied Q-learning to manage the
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duty cycle of solar-powered wireless sensor nodes, improving measurement throughput
while preventing battery depletion. Hanif et al. [16] presented The Solar AI Nexus,
a comprehensive review of RL applications in solar energy systems. They surveyed
RL approaches for photovoltaic forecasting, energy-storage dispatch, and grid control,
identifying challenges such as poor sample efficiency, computational overhead, and limited
cross-environment generalization. The authors emphasized the need for lightweight,
energy-aware RL algorithms deployable at the edge or in microgrids and highlighted
opportunities for transfer and Meta-RL to enhance adaptability. These insights motivate
the exploration of RL-based adaptive control within solar-powered Edge AI systems.

Beyond energy harvesting, RL has been widely applied for resource management in edge
and cloud environments. Tuli et al. [11] combined an A3C agent with a residual RNN
for stochastic edge-cloud scheduling, reducing energy use and SLA violations. Yang
et al. [27] used a Deep Q-Network (DQN) to schedule workloads across energy-limited
edge nodes, learning to balance job completion and energy consumption under dynamic
conditions. The agent jointly optimized energy efficiency and throughput, outperforming
heuristic schedulers even during power outages. Jayanetti et al. [28] extended this line of
work to precedence-constrained workflows using a hierarchical PPO architecture that
optimized both node selection and execution tier, achieving up to 56% energy savings and
46% faster execution than classical heuristics. Munir et al. [29] further incorporated risk-
awareness through a multi-agent A3C approach, embedding Conditional Value-at-Risk
(CVaR) into the reward to enhance reliability under renewable uncertainty. Together,
these studies demonstrate how RL can autonomously learn energy-performance trade-offs
across heterogeneous, dynamic systems, a principle this thesis adapts to configuration
switching for solar-powered Edge AI.

Collectively, these studies validate RL’s potential for multi-objective optimization in
energy-constrained systems. However, most focus on task scheduling, voltage control, or
grid optimization rather than on-device inference configuration. This thesis addresses
that gap by employing a PPO-based agent that dynamically switches model type, frame
rate, and resolution on a solar-powered Edge AI camera, learning to balance inference
confidence and energy autonomy across changing environmental conditions.

2.2.4 Optimization-based Energy and Resource Management

Classical optimization methods also contribute to energy-efficient operation of IoT and
edge systems. Wang et al. [30] proposed adaptive energy-saving algorithms that coordinate
end-node and edge-server operation. While such formulations achieve provable energy-
latency trade-offs, they rely on simplified analytical models and cannot easily capture
the non-linear, context-dependent interactions among workload configuration, confidence,
and harvested energy addressed in this thesis.
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2.2.5 Summary

Prior research has addressed solar energy harvesting, adaptive inference, and RL- or
optimization-based energy management, typically as separate problems. Few studies
integrate measured energy characterization, renewable energy supply modelling, and
learning-based configuration control in a unified framework. This thesis bridges those areas
by experimentally modelling power-performance relationships, incorporating solar and
battery dynamics, and deploying a PPO-based controller that learns to sustain inference
quality while maximizing energy autonomy in a solar-powered Edge AI system.
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CHAPTER 3
Data-driven Simulation and PPO

Policy Formulation

3.1 Overview and General Approach

This chapter details the methodology used to answer the research questions defined in
Section 1. Since the context of this work is a solar-powered edge device performing
continuous object detection inference, the operational goal is to achieve a critical balance:
the device must maximize its long-term survival while simultaneously utilizing available
power to maintain high prediction performance and a defined target confidence level.

As a first step, an empirical parameter study is conducted, for which real power con-
sumption and confidence data were collected in a lab setting. This study focuses on
three operational parameters specific to the use case: frame rate (FPS), image resolution,
and YOLO model variant. Statistical analysis of this data directly addresses the first
research question and delivers valuable insights that are used in the subsequent design of
the prototype of the energy-aware RL agent. This design process involves the creation
of a custom data-driven simulation environment based on the Gym [14] framework,
featuring specific modules for solar energy, battery dynamics, and probabilistic power
and confidence modelling.

The chapter then outlines the selection and justification of the Proximal Policy Optimiza-
tion (PPO) agent architecture and its specific training configuration and concludes by
defining the non-learning baselines, the key evaluation metrics, and the comprehensive
evaluation procedure used to test the agents’ long-term sustainability across various
dynamic scenarios.
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3. Data-driven Simulation and PPO Policy Formulation

3.2 Parameter Study

3.2.1 Data Collection and Experimental Setup

The investigation focused on three operational parameters that directly influence the
edge device’s performance-energy trade-off:

• Model Variants: Two different versions of YOLOv11 [13] (nano and small) were
selected. YOLOv11 was chosen as a state-of-the-art model for real-time object
detection that conveniently offers multiple sizes with inherent performance and
power consumption trade-offs.

• Resolution: Four resolutions were tested: 128, 256, 320, and 640 pixels, ranging
from very low to relatively high resolution.

• Frame Rate (FPS): Frame rates of 1, 3, 5, 15, and 30 FPS were investigated,
covering a range from minimal to high speed operation. Higher FPS settings were
tested initially but yielded negligible differences in power consumption as the system
was already operating at full capacity.

The experiment was carried out in the HPC laboratory at TU Wien [31]. Since the
intention was a full factorial experiment, power and confidence readings for all possible
parameter combinations were required. The physical setup consisted of a Raspberry Pi
4 [18] device, chosen as a representative and widely used low-cost Edge IoT hardware
model, connected to a Picamera2 [32] module and a digital power meter that could be
queried remotely. The Raspberry Pi was pre-configured with the two YOLOv11 models
and folders of images sourced from the COCO 2017 [33] dataset pre-scaled to the four
available resolutions.

The experiment was managed by a workload generation and automation script. The
procedure for each configuration was defined as follows: A remote command initiated the
script on the Raspberry Pi, which loaded the specified YOLO model and instructed the
Picamera to capture frames at the set FPS and resolution. As the captured frames from
the lab environment were irrelevant, they were immediately discarded and substituted
with a random image from the pre-scaled COCO 2017 folder. Inference was then run on
the substituted image. A detection was generously defined as anything with a confidence
larger than 0.25. Per image, the average confidence of all valid detections was calculated
and written out. The workload ran for 90 seconds, during which power readings from the
digital power meter and the calculated average confidences were continuously recorded.
For robustness, the entire process was repeated 5 times.

3.2.2 Statistical Analysis

The statistical analysis served to validate the visual observations and quantify the influence
of the three operational parameters on system performance and power consumption.
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3.2. Parameter Study

The raw data first required preparation. While the confidence data was ready for analysis,
the raw power traces were cropped. Specifically, the first 15 and final 15 seconds of
the 90-second traces were removed to ensure the data accurately represented power
consumption during stable operation, discarding periods associated with system warm-up
and cool-down.

Following data preparation, visual inspection was performed using boxplots (Figures 3.1
and 3.2) to assess the preliminary effects of model, resolution, and frame rate (FPS). This
inspection focused on shifts in the central tendency (median) and spread (interquartile
range, IQR) across the defined conditions.

The boxplots for power consumption (Figure 3.1) were faceted by all three parameters
(model, FPS, and resolution), clearly illustrating shifts in the central tendency and
variance across operating conditions:

• FPS Effect: Power consumption exhibits a strong positive correlation with FPS.
The median power consumption for most conditions shifts upward from spanning
approximately between 4.0W and 5.0W depending one the other parameters at
fps = 1 to consistently above 5.0W at fps = 30. This increase is accompanied by a
dramatic reduction in variability (tighter IQR) at higher FPS settings, suggesting
a saturation point where power usage is dominated by the system’s maximum
operational frequency, regardless of configuration details.

• Resolution Effect: At low FPS (fps = 1 and fps = 3), resolution is a dominant
factor. For the YOLOv11n model at fps = 1, the median power consumption spans
a broad range, from approximately 3.8W (128 pixels) to ∼ 5.1W (640 pixels). This
effect drastically diminishes at high FPS (e.g., fps = 30), where the distributions
for all four resolutions become nearly identical, clustered around a median of ∼ 5.1
W.

• Model Comparison: The YOLOv11s model consistently shows a higher median
power consumption than YOLOv11n at low and intermediate FPS. For example,
at fps = 1 (256 pixels), the YOLOv11s median is ∼ 4.9W compared to YOLOv11n
at ∼ 3.82W. Like the resolution effect, this difference vanishes at high FPS (≥ 10),
where the distributions for both models converge.

Confidence distributions (Figure 3.2) were only faceted by model and resolution, as visual
inspection confirmed that the distributions did not change across varying FPS settings.
This outcome is theoretically sound, as the requested input rate of the camera should
not influence the detection confidence score of an individual image. The YOLOv11s
model consistently outperformed YOLOv11n, achieving a higher central tendency across
all resolutions. For YOLOv11n, the lowest 128-resolution setting exhibited extremely
high variability and a low median (∼ 0.40). Performance drastically improved at 256
pixels, and further increases to 320 and 640 resolutions showed only minor marginal
gains, suggesting a performance plateau.
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Figure 3.1: Power consumption distributions across FPS, resolution and model

To confirm whether the visually observed effects were statistically significant, proper
statistical tests were carried out. Preliminary visual inspection of the boxplots showed
substantial deviations from normality, including skewness, outliers and heteroscedasticity
across groups. This was confirmed by Shapiro-Wilk tests, which returned p-values near
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Figure 3.2: Distribution of average confidence per-image by resolution and model

zero for the majority of factor combinations, indicating clear violation of the normality
assumption required for one-way ANOVA [34]. Given these violations, the Kruskal-Wallis
H-test was selected as the appropriate non-parametric alternative to ANOVA [35, 36].
Following a significant omnibus result, pairwise post-hoc comparisons were conducted
using Dunn’s test, which is the standard rank-based method for multiple comparisons
after a Kruskal-Wallis test [37, 35].

The Kruskal-Wallis H-test confirmed that for both power consumption and confidence,
each relevant parameter had at least one level that was significant. This was followed
up by Dunn’s post-hoc tests with Bonferroni correction to localize the specific level
differences. The results confirmed the quantitative trade-offs:

As can be seen in Table 3.1 model architecture exerts a highly significant impact
on power consumption, with a corresponding statistically significant shift in detection
confidence.

Table 3.1: Pairwise Dunn’s Test results for model comparison
(a) Test results on power consumption

Model Pair p-value Significant

YOLO11n vs YOLO11s 5.81 × 10−183 Yes

(b) Test results on detection confidence

Model Pair p-value Significant

YOLO11n vs YOLO11s 7.41 × 10−39 Yes
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Table 3.2 shows that resolution significantly affects both power and confidence, particularly
between low and intermediate settings. The analysis confirmed a plateau effect in both
metrics: power consumption and confidence increased significantly up to 320 pixels, but
no significant difference was observed between the 320-pixel and 640-pixel resolutions.

Table 3.2: Pairwise Dunn’s Test results for image resolution
(a) Test results on power consumption

Comparison p-value Significant

128 vs 256 9.69 × 10−184 Yes
128 vs 320 ≈ 0 Yes
128 vs 640 ≈ 0 Yes
256 vs 320 8.18 × 10−51 Yes
256 vs 640 7.85 × 10−66 Yes
320 vs 640 0.251 No

(b) Test results on detection confidence

Comparison p-value Significant

128 vs 256 0.000000 Yes
128 vs 320 0.000000 Yes
128 vs 640 4.65 × 10−272 Yes
256 vs 320 5.53 × 10−10 Yes
256 vs 640 3.01 × 10−10 Yes
320 vs 640 0.192 No

The analysis of the frame rate focused exclusively on power consumption, as previously
justified. The The Dunn’s test results shown in Table 3.3 indicated that frame rate
significantly affects power, especially at low FPS settings. However, power usage was
confirmed to plateau between 15 FPS and 30 FPS, validating the visual observation that
the hardware system nears its full processing capacity regardless of further increases in
the requested frame rate.

Table 3.3: Pairwise Dunn’s Test results for frame rate on power consumption

Comparison p-value Significant
1 vs 3 1.40 × 10−106 Yes
1 vs 5 2.25 × 10−243 Yes
1 vs 15 ≈ 0 Yes
1 vs 30 ≈ 0 Yes
3 vs 5 1.75 × 10−29 Yes
3 vs 15 2.69 × 10−128 Yes
3 vs 30 3.13 × 10−162 Yes
5 vs 15 2.70 × 10−35 Yes
5 vs 30 7.91 × 10−54 Yes
15 vs 30 2.47 × 10−2 Yes (marginal)

3.2.3 Implications for the Prototype Design

The statistical analysis of the parameter study directly informed the design of the
action space for the RL prototype. The objective was to select the minimum set of
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configurations that offer the most effective trade-off between power consumption and
confidence performance.

First, both YOLOv11 model variants (nano and small) were retained. The analysis
proved they have a highly significant influence on both power consumption and confidence,
establishing the fundamental operational range.

Second, the 128-pixel resolution was discarded. The confidence results for this setting
were too low and exhibited high variability, meaning there is virtually no use case where
that would be a good choice for the agent. The resolutions 256 and 320 pixels were
retained because they deliver acceptable confidence scores while maintaining a statistically
significant difference in power draw, offering a clear decision point for the agent. The
640-pixel resolution was also kept. Although the analysis confirmed a plateau effect
in both power and confidence above 320 pixels, the boxplots suggest it may still be
possible to squeeze out a marginal performance gain with only a slightly higher power
cost, providing the agent with the option to attempt maximum performance.

Finally, the frame rate was fixed to 1 FPS, the lowest setting, and excluded as a variable
parameter from the action space. This decision was based on two observations: FPS has
no direct influence on detection confidence, and its primary effect is a negative influence
on power consumption. Explicitly encouraging higher FPS would require implementing a
direct incentive structure in the reward function, which is not beneficial for the defined
goals of maximizing survival and achieving target confidence. Excluding FPS simplifies
the learning problem and keeps the focus on the basic power-performance trade-off defined
by the model and resolution.

Key Results RQ1

1. Core Significance: Confirmed model variant and resolution are highly sig-
nificant factors influencing both power consumption and detection confidence.

2. Power Magnitude & Plateau: Demonstrated a significant 1.37W difference
in median power consumption between operational extremes. A power plateau
was confirmed between 320px and 640px.

3. Confidence Range: Median detection confidence showed a substantial per-
formance shift, spanning from approximately 0.40 (the lowest 128px setting)
up to a peak of 0.65 across the model and resolution configurations.

4. Confidence Plateau: A clear confidence plateau was observed, with no
statistically significant gain found between the 320px and 640px resolutions.

5. FPS Role: FPS significantly impacts power consumption but was confirmed
to have no significant influence on detection confidence.
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3.3 Simulation Environment

3.3.1 Environment Overview

With the empirical constraints and the final action space defined by the parameter study
and its resulting implications, the next step involved translating these validated metrics
into the operational environment. The following section details the design of the custom
simulation environment, which utilizes the data and limits established here to accurately
model the system’s dynamics and facilitate agent training.

A simulated environment was developed to provide a feasible and reproducible platform for
training and evaluating the agent. Real-world implementation, involving live solar panel
data and continuous monitoring of an edge device in uncontrolled outdoor conditions, was
deemed unrealistic and impractical for the scope of this work. The simulation addresses
this limitation by creating a virtual learning environment where the agent can learn over
extended, continuous periods of time.

The environment is built upon the Gymnasium [14] framework and features custom
definitions for its state and action spaces, step logic, and reward function. It allows for
the simulation of multiple continuous time episodes (for example, several days), during
which it models four core components of the system: power consumption, incoming solar
energy, average prediction confidence, and the battery level of the Raspberry Pi in an
object detection scenario. The environment’s setup allows for adjustable operational
parameters such as the confidence threshold for SLA satisfaction tracking, time step
length, and episode length.

Battery ModelSolar Model

Power Consumption
ModelConfidence Model

Observation Space Action Space

RL
Agent FPS

YOLO
Model
size

Figure 3.3: Architecture of prototype

The environment operates in two primary modes: a training mode, which uses randomized
or continuous environmental conditions, and an evaluation mode, which makes it possible
to run specific, predefined scenarios (e.g., specific seasons or weather conditions). The
simulation architecture relies on specific, dedicated classes or modules responsible for
modelling each of the four core components. The overall architecture model for the

16

Julia Oberauner





3.3. Simulation Environment

simulation environment can be found in Figure 3.3. The subsequent subsections outline
the design and logic of each component in detail.

3.3.2 State and Action Space

The environment is designed with distinct state and action spaces to facilitate the agent’s
learning process. The foundation for the definition of the action space has been established
through the results and implications of the parameter study. Based on this, it is defined as
a three-dimensional MultiDiscrete Gym [14] space defined by: model variant, resolution,
and FPS. FPS has been added as a dimension for potential future experiments, but as
discussed for the remainder of this work it is fixed to 1. The models available to the agent
are theYOLOv11 "nano" (YOLOv11n) and "small" (YOLOv11s), and the resolutions are
256, 320, and 640 pixels.

The state space is initialized as a Gymnasium Box [14] space with four continuous dimen-
sions, representing the system’s observable metrics: battery level in percent (between 0
and 1), solar output in milliwatts (mW), average confidence (between 0 and 1), and power
consumption in mW (between 0 and a ceiling of 6000 mW, reflecting the 6W capacity of
the Raspberry Pi 4). Observations are obtained by querying the corresponding custom
observation space functions.

3.3.3 Power Consumption and Confidence Modelling

The core of the simulation relies on the detailed modelling of power consumption and
detection confidence, directly utilizing the empirical data obtained from the parameter
study. For power consumption, the cropped power data from the experiments was grouped
by FPS, resolution, and model type. A Gaussian KDE was then fitted to the power
readings of each group, with the Gaussian distribution chosen based on visual validation
via histograms. These KDEs are exported as pickle files. The dedicated Power() class
is responsible for loading these KDEs and allowing the simulation to sample a realistic
power consumption value corresponding to the agent’s chosen action at each time step.

The confidence modelling is implemented using an identical methodology: the collected
average confidence scores are grouped by resolution and model type (omitting FPS), and
a Gaussian KDE is fitted to each group. The Confidence() class functions the same way
as the power module, allowing the simulation to sample a realistic confidence score for
the selected configuration.

3.3.4 Energy System Modelling

The energy system is composed of the solar and battery modules, which manage the
inflow and outflow of energy. The battery module is an instance of the Battery() class,
which simulates a specific battery configuration defined by its capacity (mAh) and voltage
(V) at initialization. It features functions that charge and drain the battery linearly over
a given time step duration using the simulated incoming solar power and outgoing power
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3. Data-driven Simulation and PPO Policy Formulation

consumption. It also provides functions to read the current battery level and check for
battery depletion.

The solar module is responsible for simulating the energy inflow and is the most complex
component. It simulates a solar panel with a specified maximum output (W) for a given
geographical latitude, time of day, and day of the year, also accounting for cloud cover.
The primary solar output is modelled using a cosine curve that peaks at solar noon. This
output is scaled by two factors: a seasonal modifier and a cloud factor. The seasonal
modifier is based on the solar elevation factor, which is approximated by cos

(︁
π
2 − |ϕ − δ|

)︁
,

where δ is the solar declination on the specified day, and ϕ is the latitude in radians [38].
The solar declination itself is approximated by 23.45◦ · sin

(︂
2π − n−81

2

)︂
, where 23.45◦

is the Earth’s tilt and n = 81 corresponds to the equinox day [38]. The cloud factor
modifies the output based on selected weather conditions. The SolarPanel() class allows
for specific cloud modes: clear (cloud cover fixed at 0), cloudy (fixed at 0.9), and ramp
(a dynamic cloudy day with intermittent sunny hours). If no cloud option is specified,
the cloud cover is randomized between 0 and 1, based on a user-defined mean.

3.3.5 Episode Initialisation

The simulation environment uses the self.reset() function to initialize the state at the
beginning of every episode. This function handles the environment’s starting conditions
based on whether specific options were set for the run. If specific scenario options
(e.g., start day, hour, and cloud cover) are provided, the environment uses those values.
Otherwise, the start day, start hour and cloud cover are randomized. After setting the
start time, the function sets the global simulation time, resets the step counter, and
resets the battery level to full.

3.4 Reinforcement Learning Setup

3.4.1 Reward Function

The reward function was engineered to capture the fundamental dual objectives of energy-
harvesting inference: minimizing battery downtime and maximizing detection confidence
whenever sufficient energy is available. The design combines elements of the Constrained
Markov Decision Process (CMDP) with energy-aware design principles [39].

In line with the CMDP approach, detection confidence is treated as the primary objective
(utility term), while energy consumption and battery downtime are treated as constraint
costs. The main objective is quantified via the confidence margin to threshold (mt).
A form of potential-based shaping is applied to this margin [40, 41]. This reward or
punishment is defined by the quadratic margin, meaning rewards grow quickly the further
the confidence is above the threshold, but also, punishment becomes heavier more quickly
the further the confidence falls below the threshold.
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Energy inefficiency is penalized via a draw norm when the current power drawn by the
device (Pt) is greater than the incoming solar power (St). This mechanism ensures that
the agent is penalized for unsustainable operation.

When the battery is not empty and the system is operational, the final reward is a
weighted sum of the confidence reward (Rconf) and the energy efficiency term (Reff). The
size of the weights is made dependent on the energy context derived from the current
solar output and battery level [7]. When the energy context is high, the confidence
reward (Rconf) is leveraged. Conversely, when the energy context is low, the weighting
shifts, forcing the agent to prioritize minimizing the energy inefficiency term (Reff). When
the battery is empty, instead of the weighted sum, a simple per-step penalty is applied.
Mathematically the reward function can be formulated as follows:

Let:

Bt = battery level at time t, St = solar power output (mw),
Pt = power demand (mw), Smax = maximum solar output (mw),
Ct = confidence estimate, Cth = confidence threshold.

The normalized solar contribution and energy context are:

st = St

Smax + 10−6 , Et = 1
2(Bt + st).

The normalized net grid draw (inefficiency term) is:

Dt = max
(︃

0,
Pt − St

Smax + 10−6

)︃
.

If the battery is depleted, a small constant penalty is applied:

Rt = −κ, κ = 0.3.

Otherwise, the confidence margin and its shaped reward are:

mt = Ct − Cth,

Rconf =
{︄

m2
t , mt > 0,

−m2
t , mt ≤ 0,

Reff = −Dt.

Energy-dependent weights adjust the reward emphasis:

αt = 1 + 2Et, βt = 1 − Et,

leading to the final reward:
Rt = αtRconf + βtReff.
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The per-step penalty κ = 0.3 was calibrated relative to the magnitude of “alive” rewards.
Each environment step corresponds to 10 minutes, so κ = 0.3 implies a cumulative cost
of approximately −1.8 per hour of depletion. During normal operation (when Ct > Cth
and sufficient energy is available), typical rewards lie around 0.08-0.10 per step (≈ 0.5-0.6
per hour). Thus, one hour of battery downtime negates roughly three hours of successful
operation, reflecting the design goal that maintaining uptime is more important than
incremental efficiency gains.

3.4.2 Agent Architecture

The agent architecture utilizes the PPO algorithm. This selection was based on pragmatic
reasons: StableBaselines3 [42] was chosen for the implementation of the learning agent,
because it seamlessly integrates into the Gym environment, and out of its limited
algorithms that were compatible with the state and action space structure of the custom
environment, PPO proved to be the most suitable choice. The alternative, Advantage
Actor-Critic (A2C), is recommended to be used with GPU resources, which are unavailable
for this work [42].

Moreover, PPO is better suited for this control problem for several technical reasons.
The reward function is complex, featuring multiple interacting and dynamically weighted
terms. This interaction creates a non-stationary reward landscape where the scale shifts
significantly depending on the real-time energy context. PPO’s clipped objective function
inherently handles these non-stationary rewards more robustly than standard policy
gradient methods [43].

PPO is also known for its sample efficiency. It utilizes multiple epochs of minibatch
updates per rollout, ensuring a higher signal extraction from the gathered experience. In
environments characterized by slow temporal dynamics and potentially sparse reward
signals, such as this simulation, this efficiency is critical, as A2C performs only a single
gradient step per batch [20].

Finally, PPO offers greater reliability and stability in complex, dynamic environments.
It constrains policy changes within a trust region, which minimizes large, destabilizing
updates. This mechanism makes the algorithm less sensitive to the reward scale and
hyperparameter settings, ensuring a reliable policy determination in an energy-aware
system where multiple, conflicting objectives must be balanced simultaneously [43].

3.4.3 Training Procedure

The simulation environment was configured with specific parameters for agent training.
The energy system utilized a 10,000 mAh battery operating at 3.7 V. The solar panel
maximum output was set to 20 W, with the geographical latitude configured to simulate
Vienna. The temporal settings included a timestep of 10 minutes and a fixed episode
length of 48 hours. To ensure generalized learning across conditions, the start day and
start hour of training episodes were randomized. The target performance requirement
for the agent was defined by the SLA threshold, which was set to 0.6. This value was
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Table 3.4: PPO training hyperparameters, configuration and rationale
Parameter Value Rationale
Total timesteps 1,000,000 Ensures sufficient exploration of the

long-term state space.
Environment vectorization DummyVecEnv Standard setup for single-process en-

vironments.
Normalization VecNormalize Stabilizes training by normalizing ob-

servations and rewards.
Reward clipping 5.0 Prevents destabilizing gradient

spikes from large reward values.
Policy architecture MlpPolicy Suitable for low-dimensional, struc-

tured input spaces.
Rollout length (n_steps) MAX_STEPS (48h episode) Captures full long-term dynamics

across the entire episode.
Batch size 2048 Provides stable gradient updates.
Learning rate 3 × 10−4 Balances convergence speed and sta-

bility.
Discount factor (γ) 0.997 Prioritizes long-term returns for

multi-day processes.
Entropy coefficient (ent_coef) 0.01 Encourages exploration and prevents

premature convergence.
Clipping range (clip_range) 0.15 Maintains PPO stability by limiting

policy updates.
Checkpoint frequency every 50,000 steps Periodically preserves training

progress.
Evaluation frequency every 10,000 steps Tracks performance and saves best

model.

chosen based on the median of the empirical confidence distribution sampled by the KDE
models derived from the parameter study. The exact parameters used for training the
agent are shown in Table 3.4.

3.5 Evaluation Strategy

3.5.1 Evaluation Scenarios and Metrics

Evaluating the agent’s strategy requires focusing on its core objectives: survival and
maintaining the highest possible detection confidence. Therefore, the chosen measures of
success must directly reflect these goals. The key evaluation metrics selected are: survival
time, battery downtime, SLA satisfaction, and prediction performance/confidence [26, 21,
44]. Beyond quantitative results, the evaluation also aims to assess the agent’s desirable,
qualitative behavior, such as adaptive scaling.

To showcase how the agents and baselines perform under various conditions, a set of
specific evaluation scenarios was defined. This approach, which tests adaptation strategies
across different seasons and lighting conditions, is frequently used in related literature
(loosely inspired by [45, 26, 22]). The selection was motivated by the need to include
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diverse seasonal and weather conditions, a stress test, and dynamic environments that
specifically test the agent’s ability to scale up. The six final scenarios that were defined
are summarized in Table 3.5:

Table 3.5: Defined evaluation scenarios

Scenario Name Start Day Start Hour Clouds Objective / Highlight

Summer_Clear 172 6 Clear Optimal Conditions: Tests max-
imum performance under the
longest day and highest solar ir-
radiation.

Winter_Clear 355 6 Clear Seasonal Test: Evaluates oper-
ation during short winter days
with limited solar energy.

Winter_Cloudy 355 6 Overcast Stress Test: Measures system en-
durance during consistently low
light conditions.

Early_Morning 200 4 Clear Dynamic Scaling: Evaluates the
agent’s ability to scale perfor-
mance with increasing solar in-
put after sunrise.

Cloud_Ramp 200 6 Ramp Dynamic Adaptation: Tests re-
sponse to fluctuating light levels
during a partially cloudy day.

Night_Start 200 22 Clear Survival Test: Examines
overnight endurance until
the next sunrise for recharge
recovery.

3.5.2 Baselines

The performance of the trained PPO agent was evaluated against a set of four non-
learning baselines: one random and three static policies. These baselines are designed to
validate the effectiveness of the learned, adaptive strategy and to define the practical
limits of the system’s performance. The defined baselines are:

• RANDOM: This agent chooses a model variant and resolution randomly at every
step. Its primary purpose is to serve as a minimal reference point, confirming that
the PPO agent developed an actual strategy superior to arbitrary decision-making.

• STATIC 1: This policy is fixed to the least power-hungry settings possible: the
YOLOv11 nano model (YOLOv11n) and the 256-pixel resolution. This baseline
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represents the maximum achievable survival time and minimum power consumption
within the environment’s action space.

• STATIC 3: This policy is fixed to the most power-hungry settings: the YOLOv11
small model (YOLOv11s) and the 640-pixel resolution. This baseline establishes
the upper bound for prediction performance and SLA satisfaction but represents
the maximum power consumption and minimum survival time.

• STATIC 2: This policy is a combination of conservative and aggressive settings,
fixed to the YOLOv11 small model (YOLOv11s) but using the mid-tier 320-pixel
resolution. It serves as an intermediate benchmark for evaluating the trade-off
space between the two extreme static policies.

The STATIC 1 and STATIC 3 baselines together define the operational range of possibility
regarding power consumption and prediction performance in the simulated environment.

3.5.3 Evaluation Procedure

The agent and baselines were rigorously evaluated across the defined six scenarios. The
procedure involved two simulation lengths: a 24-hour simulation and a 48-hour simulation,
to assess both dynamic and long-term behaviours. For statistical robustness, 50 evaluation
episodes were run for every unique combination of agent, baseline, scenario, and simulation
length. Apart from setting the specific scenarios and the episode length, the evaluation
environment was configured in the exact same way as the training environment. From
these 50 evaluation episodes per configuration, both aggregated results (average metrics)
and average traces (battery and confidence over time) were extracted for discussion in
the following chapter.

3.5.4 Summary

This chapter detailed the methodology used to transition from empirical hardware
measurements to a validated adaptive policy.

The process began with a parameter study that quantified the power and performance
trade-offs on the Raspberry Pi across model variant, resolution, and FPS. Statistical
analysis confirmed that model and resolution were the highly significant operational
factors, while FPS was subsequently fixed to 1 for the RL agent’s action space.

These insights were used to design the custom simulation environment. The environment
utilizes Gaussian KDEs to model the stochastic power and confidence based on real-world
data, coupled with validated physical models for solar and battery dynamics. The agent
architecture was based on the stable and sample-efficient PPO algorithm, designed around
a Constrained Optimization framework to handle the dual objectives of maintaining high
detection confidence and long-term survival.
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Finally, the evaluation strategy was defined. This strategy outlined the necessity of
testing the PPO agent against four non-learning baselines across six challenging, dynamic
scenarios, with all configurations assessed over 24-hour 48-hour episodes and 50 total
runs per combination to establish the foundation for robust statistical validation in the
subsequent chapter.
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CHAPTER 4
Analysis of Adaptive Behaviour

and System Efficacy

4.1 Overview and Structure

This chapter addresses RQ2 by presenting the qualitative and quantitative results of the
evaluation strategy and scenarios discussed in the previous chapter. It begins by detailing
the aggregated evaluation measures, followed by an inspection of the trade-off between
two key factors: SLA satisfaction and battery downtime. Next, the agents’ temporal
behaviour is analysed using 24-hour traces of battery and confidence levels. Finally, the
chapter concludes by examining the agents’ long-term behaviour through 48-hour results.

The evaluation was executed as follows: To obtain the aggregated results presented in the
tables and bar charts, each agent was run in every scenario for 50 separate episodes. The
mean value across these episodes was then calculated. Trace data was collected similarly.
Over the 50 episodes, the agent’s battery level and confidence were recorded at every
10-minute time step. The average value per time step was then calculated and displayed
as the final average trace.

4.2 Aggregate 24h Performance

This section assesses the overall performance of the agents across all evaluated 24-hour
scenarios. The analysis is based on a set of six key performance measures: two focused
on object detection performance, three on energy management, and the overall reward.
The two main performance metrics discussed, SLA satisfaction and battery downtime,
are representative of the overall trends; the other energy conservation measures behave
very similarly to dead battery hours, and average confidence behaves similarly to SLA
satisfaction.
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The specific measures considered include the average SLA percent (the average percentage
of total time steps where the agent’s confidence exceeded the predefined threshold) and
average confidence for detection performance. Energy management is evaluated using
the average time until first battery death, average total time with dead battery (h), and
average total time alive (h). The final measure is the average reward. An example table
presenting all six measures for a single representative scenario is provided below in Table
11. For the complete set of aggregated results across all scenarios, the reader is directed
to the Appendix. (Note that all time increments are based on the 10-minute timestep of
the simulation.)

Table 4.1: Performance metrics for Night_Start scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 8.52 7.99 24.00 7.50 7.51
Avg_Empty_h 0.66 1.30 0.00 1.83 1.83
Avg_Time_Alive_h 23.34 22.70 24.00 22.17 22.17
Avg_SLA_% 62.21 58.82 0.01 99.99 100.00
Avg_Confidence 0.617 0.607 0.562 0.631 0.648
Avg_Reward -0.087 -0.101 -0.081 -0.109 -0.106

To illustrate the overall agent behavior and the inherent conflict in objectives, the analysis
focuses on two representative measures: SLA satisfaction and battery downtime. These
are shown in Figures 4.1 and 4.2, respectively. The overall behavior exhibits a clear
power-performance trade-off. The power-hungry baselines, STATIC 2 and STATIC 3,
consistently outperform all other agents in performance- and SLA-focused measures, while
the least power-hungry baseline, STATIC 1, performs the worst. For energy conservation
measures, the trend is inverted, with STATIC 1 performing the best.

This trade-off is clearly visible in the figures. Looking at SLA performance (Figure 4.1),
STATIC 2 and 3 achieve consistently high SLA percentages, averaging between 99% and
100%. In contrast, STATIC 1 barely exceeds 0% in most scenarios. The PPO agent
delivers an average SLA of 45% to 72%, outperforming the RANDOM baseline in every
scenario except the low-energy Winter_Cloudy and Winter_Clear environments. While
this drop in performance may seem alarming, it reflects the agent’s training objective:
the PPO agent is explicitly trained to prioritize survival in low-energy contexts (like
winter) and maximize performance only in high-energy contexts.

The battery downtime data (Figure 4.2) confirms the PPO agent’s conservative strategy.
PPO consistently achieves less dead battery time than the RANDOM baseline (and
STATIC 2/3), averaging approximately one hour less than the power-hungry static agents.
This gap is largest in the two winter scenarios, where PPO reduces downtime by about
1.5 hours. The RANDOM baseline also shows less dead battery time than STATIC 2/3,
with a reduction of 19 to 38 minutes on average. This is an expected result, as the
RANDOM agent selects the smaller, less power-hungry model with a 50% probability and

26

Julia Oberauner





4.3. Trade-off Analysis

Summer_Clear

Winter_Cloudy

Winter_Clear

Early_Morning

Night_Start

Cloud_Ramp

Scenario

0

20

40

60

80

100

SL
A 

%

PPO
STATIC1

STATIC2
STATIC3

RANDOM

Figure 4.1: Average SLA across agents and
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Figure 4.2: Average empty hours across
agents and scenarios.

the smallest resolution with a 1
3 probability, giving it an inherent, albeit non-strategic,

chance of saving energy. This aggregated data already highlights the fundamental SLA
vs. battery downtime trade-off, which is explored in greater detail in the subsequent
section.

4.3 Trade-off Analysis

The nature of the optimization problem means that there is an inherent trade-off between
maintaining high confidence and SLA satisfaction and minimizing battery downtime.
This relationship is explored in detail in Figure 4.3, which directly plots the average
percentage of the 24-hour episode spent with a dead battery against the average SLA
percentage fulfilled. This visualization utilizes the percentage of total time steps spent
with a dead battery (instead of the absolute number of hours) to provide a more intuitive
scatter plot comparison against the SLA percentage.

In the figure, the percentage of dead battery time is mapped to the x-axis, and the
percentage of fulfilled SLA is mapped to the y-axis. This means, agents positioned
further left are more energy conservative, while agents further up are more performance
and confidence focused. The dotted grey line represents the theoretical case where
the SLA percentage is equal to the percentage of time the battery is alive (SLA =
1 − Dead Battery %). Points above this line indicate a stronger focus on SLA, while
those below suggest a greater prioritization of energy conservation.

The scatter plots reveal several patterns. First, the overall difference in dead battery
percentage between the most and least power-hungry agents is not very large, which
provides important context for the 20 minutes to 1.5 hours difference previously seen
in the aggregated results. As expected, the STATIC 1 baseline consistently sits in the
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(b) Winter_Clear
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(c) Winter_Cloudy
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(d) Early_Morning

0 20 40 60 80 100
% of Timesteps with Dead Battery

0

20

40

60

80

100

%
 o

f T
im

es
te

ps
 w

it
h 

SL
A 

Fu
lfi

lle
d

PPO
RANDOM
STATIC1
STATIC2
STATIC3

(e) Cloud_Ramp
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Figure 4.3: Trade-off between SLA fulfillment and battery survival by scenario
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bottom-left corner of every plot, achieving essentially no SLA satisfaction while having the
least battery downtime. In contrast, the STATIC 2 and STATIC 3 baselines are positioned
at the top and farthest right out of all agents with almost perfect SLA satisfaction at
the cost of the highest battery downtime. The RANDOM baseline maintains a relatively
stable average SLA around 60 percent across scenarios as well consistently slightly more
dead time steps than the PPO agent.

The PPO agent’s position varies, showing its adaptability. In high-energy scenarios, most
noticeably Summer_Clear and Early_Morning, the PPO agent overtakes the RANDOM
baseline in SLA. This hints at the agent’s ability to successfully scale up its performance
when energy is readily available, a concept explored further in the next section. In
low-energy contexts (night, winter, or cloudy), PPO shifts to leverage survival more. This
survival-first behavior is intentional and directed, which is what differentiates it from the
undirected RANDOM baseline.

4.4 Temporal Behavior (24h)
Beyond the high-level quantitative performance metrics, it is crucial to confirm that the
trained agent reacts to changing conditions as intended. The desired behavior is that the
agent should scale up its object detection performance when solar energy is abundant and
scale down when lighting conditions are poor, such as during cloudy periods or darkness.

The figures in this section illustrate the agents’ qualitative behavior throughout a 24-hour
period. Two representative scenarios were chosen to best demonstrate this dynamic
behavior: Early_Morning and Cloud_Ramp. Both are dynamic scenarios that feature
significant shifts in lighting conditions: from night to full day, and from sunny to cloudy
periods, making them ideal for judging the agent’s learned responsiveness.
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Figure 4.4: 24h battery traces for
Early_Morning.
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Figure 4.5: 24h confidence traces for
Early_Morning.

Figures 4.4 and 4.5 show the average battery and confidence traces for the Early_Morning
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4. Analysis of Adaptive Behaviour and System Efficacy

scenario. This scenario is set on a summer sunny day, but begins at 4:00 AM, with
the sun rising around 6:00 AM and setting at 6:00 PM. In the battery trace (Figure
4.4), the initial period shows a dip as all agents draw power during the dark hours.
Battery recovery begins around 7:00 AM and remains near full until sundown. All agents
show similar general behavior, though the PPO agent exhibits the least deep initial dip
and achieves the longest survival time (after the energy-conservative STATIC 1). The
confidence traces (Figure 4.5) offer the most interesting insight into the learned behaviour.
The static baselines naturally remain at their constant confidence levels (STATIC 3
around 0.65, STATIC 2 around 0.63, and STATIC 1 around 0.56). The RANDOM agent
fluctuates broadly around 0.60 - 0.62. The PPO agent, however, starts on par with
STATIC 3 but quickly dips to around 0.59 as it registers the lack of sunlight. Then,
around 8:30 AM, the agent successfully scales up its performance to match the level of
STATIC 3 and maintains this high confidence until sundown. This trace confirms the
basic learned behavior: prioritizing energy during darkness and maximizing performance
when energy is available.
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Figure 4.6: 24h battery traces for
Cloud_Ramp.
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Figure 4.7: 24h confidence traces for
Cloud_Ramp.

Figures 4.6 and 4.7 show the average traces for the Cloud_Ramp scenario. This scenario
simulates a dynamic environment characterized by a cloudy day broken up by regular
periods of sunshine (four hours of clouds followed by one hour of sun, repeated). The
effect of these solar changes is clearly visible in the dips and spikes of the battery trace
(Figure 4.6). Similar to the previous scenario, only STATIC 1 manages to outlast PPO
and recover faster from cloudy periods. While the RANDOM agent appears close in this
trace, its non-strategic nature is exposed when examining the confidence levels. In the
confidence traces (Figure 4.7), the PPO agent again starts at the level of STATIC 3 before
dipping in response to the initial cloudy period. It then consistently comes back up in
the periods where sunlight becomes available (notably around 9:00 AM, 12:00 PM, and a
final, less pronounced scale-up late in the day). This demonstrates the agent’s ability to
react to short-term energy flux by dynamically adjusting its resource commitment. This
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confirms that the PPO agent has learned the necessary qualitative behavior to manage
resources efficiently in a dynamic environment.

The dynamic scaling behavior observed in the traces provides additional explanation for
the PPO agent’s results in the aggregated figures and trade-off visualization. The ability
to scale up only when energy is abundant and scale down to conserve power directly
leads to the PPO agent’ position on the trade-off curve.

4.5 Long-Term Evaluation (48h)
The analysis of agent behavior is concluded by examining the 48-hour results. As the
PPO agent was specifically trained on 48-hour episodes, this sustained duration represents
the primary validation of its resource management strategy. The expectation is that
the adaptive, conservative decisions observed in the 24-hour analysis should compound,
resulting in significantly improved long-term sustainability compared to static or random
baselines. To evaluate this long-term energy pacing and conservative behavior, a scenario
with low but stable lighting conditions, Winter_Clear, is selected for illustration in
Figures 4.8 and 4.9.

The 48-hour battery trace (Figure 4.8) confirms the compounding benefit. During the
initial 24 hours, the PPO agent’s performance might appear unremarkable, lasting only
slightly longer than the RANDOM baseline. However, in the second half of the cycle,
the cumulative effect of PPO’s energy-aware actions becomes clear: it manages to start
recharging earlier and achieves a higher maximum charge level than STATIC 2, STATIC
3, and RANDOM. Furthermore, in both the peak battery charge and overall survival
time on Day 2, PPO significantly pulls away from the RANDOM baseline and nearly
matches the longevity of the most conservative agent, STATIC 1.
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Figure 4.8: 48h battery traces for
Winter_Clear.
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Figure 4.9: 48h confidence traces for
Winter_Clear.

The corresponding 48-hour confidence trace (Figure 4.9) demonstrates the PPO agent’s
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strict adherence to its survival objective in this extreme environment. After sundown
on the first day, the agent never chooses to scale up again. It correctly remains at its
baseline energy conservation settings, achieving approximately 0.59 confidence. This
behavior is expected because the agent starts Day two with a low battery, and the limited
solar input in this winter scenario is insufficient to sustain high performance (even the
survival benchmark, STATIC 1, only reaches a maximum of about 30 percent charge
on Day 2). The agent correctly identifies this extra-low energy context and prioritizes
survival over performance, confirming the success of its learned, adaptive strategy. This
48-hour analysis confirms that the PPO agent’s ability to compound small, correct energy
decisions across sustained operational cycles is the key to its success, providing the
necessary sustainable management required for persistent operation.

4.6 Summary of Results
This chapter presented the quantitative and qualitative results of the agent evaluation,
demonstrating the performance of the trained PPO agent against various baselines.

The aggregated 24-hour results established the core performance-energy trade-off: Static
baselines excelled in either SLA satisfaction or energy conservation, while the PPO agent
achieved a balanced, competitive performance. This trade-off was further visualized in the
scatterplots, which confirmed that the PPO agent successfully positioned itself away from
the extreme inefficiency of the RANDOM baseline and closer to the optimal region of
the trade-off curve. Specifically, PPO demonstrated the ability to scale up performance
in high-energy scenarios (e.g., Summer_Clear) while prioritizing survival in low-energy
contexts.

The temporal analysis confirmed how the agent operates. Traces from dynamic scenarios
like Early_Morning and Cloud_Ramp proved that the agent learned the intended behavior :
dynamically scaling up performance when solar energy was available and scaling down to
conserve power when conditions were poor.

Finally, the 48-hour long-term analysis validated the agent’s sustainable resource manage-
ment. By demonstrating the compounding benefit of its conservative strategy, particularly
in low-energy environments like Winter_Clear, the PPO agent was shown to significantly
increase its second-day survival and battery charge relative to the RANDOM baseline.
This ultimately confirms that the learned, adaptive approach provides the necessary
longevity required for persistent operation.

Key Results RQ2

1. Optimal Trade-off Policy: The PPO agent achieved a balanced performance
on the survival-vs-confidence trade-off, surpassing the non-learning baselines.

2. Dynamic Adaptation: The policy successfully learned to scale performance
based on real-time energy availability.
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4.6. Summary of Results

3. Goal Prioritization: The agent demonstrated contextual decision-making,
prioritizing long-term survival in low-energy scenarios and maximizing per-
formance in high-energy scenarios resulting in up to 1.5 hours less battery
downtime.

4. Sustainable Longevity: The 48-hour analysis validated the strategy’s com-
pounding benefit, confirming the necessary energy conservation for persistent
multi-day operation
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CHAPTER 5
Discussion and Limitations

This chapter discusses the limitations encountered during the system design and evalua-
tion, and outlines avenues for future research to extend the applicability and robustness
of the adaptive agent.

5.1 Limitations of the Current Prototype

The results presented, while validating the PPO agent’s strategy, are subject to several
inherent limitations related to the simulation environment and agent complexity.

5.1.1 Environment Simplification and Stochasticity

The current simulation environment represents a simplified version of the real world.
Although the power and confidence models are derived from empirical data, the envi-
ronment’s overall stochasticity is limited, especially when specific weather scenarios are
fixed for evaluation. This simplification means that while the agent learns the intended
reactive behavior (scale up in light, scale down in dark), this behavior might appear
overly deterministic, potentially suggesting that a simple rule-based system could suffice.
This is likely a result of the environment’s inherent predictability rather than a limitation
of the policy learning capacity.

5.1.2 Scope and Generalizability

The agent was trained and evaluated under environmental conditions specific to the
latitude of Vienna, and its solar modelling is parameterized accordingly. Consequently,
the agent’s policy may not generalize effectively to different geographic locations with
very different seasonal solar profiles or circadian cycles without specific fine-tuning.
Furthermore, the model does not account for the additional energy overhead consumed
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by the power management system itself, which in a real-world scenario would introduce
a constant, irreducible power floor.

5.1.3 Baselines

The agent’s performance was compared only against static and random baselines. A
more comprehensive evaluation would typically include a second, distinct Reinforcement
Learning agent (e.g., A2C or DQN) or a complex rule-based baseline that attempts to
mirror the adaptive logic (e.g., a policy that switches based purely on battery charge
thresholds). The absence of these comparison agents restricts the ability to definitively
quantify the performance of the PPO algorithm’s learned policy over alternative heuristic
strategies.

5.2 Future work
The following research directions are proposed to enhance the system’s realism, robustness,
and generality.

5.2.1 Enhancing Environment Realism

Future work should focus on integrating more real-world elements and improving stochas-
ticity. This could involve using a live Solar Output API for highly realistic weather and
solar data, or gathering significantly more empirical power meter and prediction confi-
dence data to better train the KDE models. Furthermore, one could integrate the device’s
actual input streams by using real power meter data and recorded prediction confidence
over time, which would introduce greater real-life stochasticity into the environment.

5.2.2 Improving Agent Design and Evaluation

The current reward function, while functional and backed by literature, could certainly be
improved. Future work should explore advanced reward structures beyond potential-based
shaping to encourage more aggressive performance seeking without violating constraints.
Additionally, training and comparing the policy against more diverse RL agents (e.g.,
DQ, A2C) would provide a stronger foundation for validating the PPO approach.

5.2.3 Policy Generalization

To address the limited generalizability, future research should investigate training the
agent using scenarios that span multiple, highly varied geographical locations. Techniques
like Domain Randomization or Meta-RL could be explored to train a policy capable of
generalizing across different solar profiles and latitudes.
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CHAPTER 6
Conclusion

The research first addressed the foundational question (RQ1): quantifying the influence of
operational parameters on performance and power. This involved a parameter study based
on real-world data generated in the lab, measuring power consumption and detection
confidence across different FPS, resolution, and model variants.

The statistical evaluation confirmed the specific trade-offs inherent to the system. For
power consumption, resolution increase significantly raises consumption up to 320px, but
a clear plateau effect exists between 320px and 640px, where the difference is no longer
statistically significant. This effect was most distinct at low frame rates; for instance, the
yolo11n model at 1fps spanned a 1.29W difference in median power consumption, ranging
from 3.78W (at 128px) to 5.07W (at 640px). At high FPS, these differences vanished,
with median consumption clustered tightly near 5.0W (∼ 5.03W to ∼ 5.15W). The
largest median difference across all configurations was 1.37W. For prediction confidence,
both the model variant and image resolution had a statistically significant influence, with
a plateau effect also observed between the two largest resolutions and median differences
up to 26 percent points.

To address the second research question (RQ2), the insights from RQ1 were utilized to
first build a custom data-driven RL environment, and then train a PPO-based agent.
This included modelling all four core simulation components and designing the custom
RL environment. The agent was evaluated against static and random baselines in six
scenarios designed to test adaptability and goal balancing. Quantitative evaluation
showed promising results: the PPO agent consistently managed the trade-off better
than the simple baselines, successfully outliving the more power-hungry policies while
delivering better confidence than the least power-hungry baseline.

The qualitative evaluation of the battery and confidence traces clearly demonstrated that
the agent learned a goal-oriented strategy: it scales up and uses its resources when power
is abundant, achieving confidence on par with the most performant STATIC 3 baseline,
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6. Conclusion

and knows to scale down and conserve its battery when incoming power is limited. The
agent shines especially in the 48-hour long-term evaluation, where it demonstrated the
learned ability to pace its energy consumption for the entire second-day cycle.

The implemented policy successfully validated the feasibility of using a learning-based
approach to manage the dual objectives of survival and performance. While the agent
is not claimed to be universally optimal, it robustly achieved the fundamental goals
established for its design by demonstrably learning the basic dynamics of the simulated
energy environment. Despite its current limitations, this work shows the potential for
the implemented approach to be a promising strategy for dynamic power management in
solar-powered Edge AI systems. Given the inherent practical constraints of the initial
study, including the simplified stochasticity and the bounds of the empirically derived
data, the achieved performance level represents a practical boundary for this specific
prototype. This research, therefore, serves as a necessary and solid foundation for
subsequent exploration into advanced adaptive policies for resource-constrained edge
systems.
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Overview of Generative AI Tools
Used

Generative AI tools were utilized throughout this Diploma Thesis strictly as an aid for
structure, refinement, and technical assistance. The core research, methodology, empirical
data collection, statistical analysis, and final conclusions were the result of independent
intellectual effort, and the content and composition of the final text are entirely the au-
thor’s work. Specifically, Gemini Pro 2.5 flash provided support in standardizing the tone
and phrasing across all chapters, ensuring style consistency, assisting with formulation,
and performing essential spellchecking. For technical documentation, ChatGPT 5.1 was
employed to streamline the presentation of empirical findings by generating LaTeX code
for tables and figures from raw data inputs, while ChatGPT 4.0 served as a utility for
code review and debugging. All usage adheres to the principle that the author’s original
intellectual and creative efforts remain predominant in this work.
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Appendix A: Extended 24h
Results

Table 1: Performance metrics for Summer_Clear scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 19.83 19.43 20.51 18.83 19.00
Avg_Empty_h 4.33 4.74 3.66 5.33 5.17
Avg_Time_Alive_h 19.67 19.26 20.34 18.67 18.83
Avg_SLA_% 72.78 58.19 0.00 99.96 100.00
Avg_Confidence 0.625 0.607 0.562 0.631 0.648
Avg_Reward -0.105 -0.118 -0.107 -0.124 -0.120

Table 2: Performance metrics for Winter_Clear scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 18.48 18.29 19.66 17.17 17.33
Avg_Empty_h 5.69 5.88 4.51 7.00 6.84
Avg_Time_Alive_h 18.31 18.12 19.49 17.00 17.16
Avg_SLA_% 55.51 58.88 0.03 99.97 100.00
Avg_Confidence 0.612 0.608 0.562 0.631 0.648
Avg_Reward -0.130 -0.136 -0.121 -0.148 -0.144
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Table 3: Performance metrics for Winter_Cloudy scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 9.45 8.83 10.14 8.17 8.33
Avg_Empty_h 14.72 15.34 14.03 16.00 15.83
Avg_Time_Alive_h 9.28 8.66 9.97 8.00 8.17
Avg_SLA_% 45.68 58.29 0.01 99.96 100.00
Avg_Confidence 0.601 0.607 0.562 0.631 0.648
Avg_Reward -0.240 -0.248 -0.233 -0.256 -0.254

Table 4: Performance metrics for Early_Morning scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 21.83 21.39 22.51 20.83 21.00
Avg_Empty_h 2.34 2.78 1.65 3.33 3.17
Avg_Time_Alive_h 21.66 21.22 22.35 20.67 20.83
Avg_SLA_% 67.76 58.32 0.00 100.00 100.00
Avg_Confidence 0.621 0.607 0.562 0.631 0.649
Avg_Reward -0.092 -0.105 -0.093 -0.112 -0.108

Table 5: Performance metrics for Night_Start scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 8.52 7.99 24.00 7.50 7.51
Avg_Empty_h 0.66 1.30 0.00 1.83 1.83
Avg_Time_Alive_h 23.34 22.70 24.00 22.17 22.17
Avg_SLA_% 62.21 58.82 0.01 99.99 100.00
Avg_Confidence 0.617 0.607 0.562 0.631 0.648
Avg_Reward -0.087 -0.101 -0.081 -0.109 -0.106

Table 6: Performance metrics for Cloud_Ramp scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 18.67 18.34 19.83 17.67 17.67
Avg_Empty_h 5.50 5.82 4.34 6.50 6.50
Avg_Time_Alive_h 18.50 18.18 19.66 17.50 17.50
Avg_SLA_% 59.72 59.03 0.03 99.97 100.00
Avg_Confidence 0.614 0.607 0.562 0.631 0.648
Avg_Reward -0.136 -0.144 -0.126 -0.153 -0.150
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Figure 1: 24h aggregated evaluation metrics
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Figure 2: 24hh battery traces by scenario and agent
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Figure 3: 24h confidence traces by scenario and agent
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Appendix B: Extended 48h
Results

Table 7: Performance metrics for Summer_Clear scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 19.83 19.41 20.51 18.83 19.00
Avg_Empty_h 9.66 10.60 8.29 11.83 11.50
Avg_Time_Alive_h 38.34 37.40 39.71 36.17 36.50
Avg_SLA_% 66.58 58.85 0.00 99.99 100.00
Avg_Confidence 0.620 0.608 0.562 0.631 0.648
Avg_Reward -0.111 -0.123 -0.112 -0.130 -0.126

Table 8: Performance metrics for Winter_Clear scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 18.48 18.25 19.65 17.17 17.33
Avg_Empty_h 20.04 21.34 18.36 23.40 23.16
Avg_Time_Alive_h 27.96 26.66 29.64 24.60 24.84
Avg_SLA_% 49.45 59.12 0.00 99.97 100.00
Avg_Confidence 0.605 0.608 0.562 0.631 0.648
Avg_Reward -0.162 -0.170 -0.156 -0.180 -0.177
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Table 9: Performance metrics for Winter_Cloudy scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 9.43 8.81 10.14 8.17 8.33
Avg_Empty_h 38.74 39.35 38.03 40.00 39.83
Avg_Time_Alive_h 9.26 8.65 9.97 8.00 8.17
Avg_SLA_% 43.90 58.58 0.00 99.99 100.00
Avg_Confidence 0.600 0.607 0.562 0.631 0.648
Avg_Reward -0.270 -0.274 -0.267 -0.278 -0.277

Table 10: Performance metrics for Early_Morning scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 21.83 21.37 22.50 20.83 21.00
Avg_Empty_h 7.68 8.66 6.33 9.83 9.50
Avg_Time_Alive_h 40.32 39.34 41.67 38.17 38.50
Avg_SLA_% 63.50 58.22 0.00 99.96 100.00
Avg_Confidence 0.618 0.607 0.562 0.631 0.648
Avg_Reward -0.105 -0.117 -0.105 -0.124 -0.120

Table 11: Performance metrics for Night_Start scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 8.53 8.00 28.50 7.50 7.51
Avg_Empty_h 5.99 7.14 4.67 8.33 8.16
Avg_Time_Alive_h 42.01 40.86 43.33 39.67 39.84
Avg_SLA_% 60.70 57.93 0.01 99.98 100.00
Avg_Confidence 0.615 0.607 0.562 0.631 0.648
Avg_Reward -0.102 -0.115 -0.099 -0.122 -0.119

Table 12: Performance metrics for Cloud_Ramp scenario

Metric ppo random static1 static2 static3
Avg_Time_Till_First_Death_h 18.66 18.33 19.84 17.67 17.67
Avg_Empty_h 16.89 18.20 15.15 19.67 19.50
Avg_Time_Alive_h 31.11 29.80 32.85 28.33 28.50
Avg_SLA_% 50.99 57.84 0.01 99.97 100.00
Avg_Confidence 0.606 0.607 0.562 0.631 0.648
Avg_Reward -0.159 -0.169 -0.152 -0.177 -0.175
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Figure 4: 48h aggregated evaluation metrics
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Figure 5: 48h battery traces by scenario and agent
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Figure 6: 48h confidence traces by scenario and agent
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