Errare Mobile Est: Studying the Influence of Mobile Context and Stress on Typing Errors in the Field

Svenja Schröder, Albert Rafetseder, Peter Reichl firstname.lastname@univie.ac.at Faculty of Computer Science University of Vienna, Austria

Motivation and Research Question

- Users increasingly communicate with their mobile devices on the go
- They have to pay attention to varying contexts outdoors
- Limited mental resources force them to multitask \rightarrow potential for stress
- Limited attention can lead to errors
- Research Question: Which kinds of contextual factors do influence the occurrence of mobile typing errors? Which role does stress play?

Results

Study Setup

Field Study

- Builds on **exploratory field study with similar design** [1]
- Semi-realistic field study setup with fixed route including commute-like contexts (*tramway station, taking the tramway, walking on sidewalk* see Fig. 1)
- Realistic chat communication was emulated by a chat-bot, which sent series of 16 standardized messages over instant messenger Telegram
- Participants were recruited over university courses

- 44 participants (35m / 9f) took about 15 ± 1.8 minutes to complete the outdoor part
- Single phases had the following durations: Station 1: 162 \pm 76 sec, Tram 1: 192 \pm 35 sec, Station 2: 212 \pm 137 sec, Tram 2: 201 \pm 41 sec, Walking: 520 \pm 57 sec
- Only about 50% realized they were communicating with a bot, 27.3% were unsure and 22.7% did not realize

Fig. 2: Mean and sd of screen touch interactions per second over walking speed for the *Walking* phase. The numbers of touches for each speed are specified in the graph

Fig. 3: RMSSD values per category. As reference, users aged 20-29 have an average RMSSD value of approximately 43 ± 19 [2]

Fig. 1: The route participants had to take

Technical Setup

- CoConUT sensor collection app measured GPS (location, speed, accuracy) and other sensors (QR code for download below)
- Bluetooth chest belt connected to CoConUT and recorded heart rate in a non-intrusive way
- As indicator for stress, RMSSD (root-mean square of successive differences of time spans between heart beats in milliseconds) was calculated as HRV (heart rate variability) measure
- Modified software keyboard logged every key press for calculation of typing slips (number of backspace presses in relation to number of all pressed software buttons)

Fig. 4: Error rate in relation to RMSSD value per participant for the whole experiment

Category	mean	sa	meaian
Station	9.13	7.16	6.67
Tramway	12.04	9.30	10.64
Walking	10.55	8.91	11.30

Tab. 1: Mean, sd and median of error rates in percent for different parts of the route

Contributions

- Users do not slow down to type on their smartphones during walking (see Fig. 2), although walking stresses them (see Fig. 3)
- Typing during walking did not significantly raise the error ratio above the other categories (see Tab. 1)
- Users that are more stressed tend to cause more typing errors (see Fig. 4)

Further Information

Homepage of the COSY (Collaborative Systems) Research Group

Download the CoConUT sensing app for Android [1]: S. Schröder, J. Hirschl, and P. Reichl: "Exploring the Interplay of Context and Interaction in the Field". In: *2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX).* IEEE. 2018, pp. 1–6.

[2]: K. Umetani, D.H. Singer, R. McCraty M. Atkinson: "Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades". In: *Journal of the American College of Cardiology.* 1998, 31(3), pp. 593-601.

This work is supported with a netidee scholarship by the Internet Foundation Austria.