LEO Trek

LEO Trek

Förderjahr 2024 / Projekt Call #19 / ProjectID: 7442

LEO Trek ermöglicht die nahtlose Ausführung von Serverless Functions im 3D Continuum. Disaster Response Anwendungen müssen schnell Earth Observation (EO) Daten von Satelliten mit InSitu Daten von der Erde kombinieren, um wichtige Infos für Hilfeteams zu erarbeiten. EO Rohdaten von Satelliten sind riesig, sodass das Herunterladen auf die Erde zeitintensiv ist. Eine Verarbeitung der EO Daten auf Low Earth Orbit (LEO) Satelliten kann viel Zeit sparen und schneller Ergebnisse an Hilfeteams liefern.

Themengebiet

Distributed Systems

Zielgruppe

Start-ups
,
Systemintegratoren
,
Techniker:innen
,
thematische Community

Gesamtklassifikation

Cloud Service

Technologie

Cloud Service

Lizenz

Apache 2.0
,
CC-BY

Uni | FH [Universität]

Technische Universität Wien

Projektergebnisse

Zwischenbericht CC-BY

This interim report summarizes the LEO Trek project, which extends serverless computing into the Edge–Cloud–Space 3D Continuum by leveraging LEO satellites for distributed computation, highlighting achieved objectives, published results, released software, and key outcomes.

Paper CC-BY

Stardust is a scalable and extensible simulator for the 3D Continuum, enabling experimentation with large LEO satellite constellations, custom routing protocols, and orchestration algorithms, while simulating up to 20K satellites.

Paper CC-BY

HyperDrive is an SLO-aware scheduler for serverless functions in the 3D Edge–Cloud–Space Continuum that optimally places workloads across Cloud, Edge, and LEO satellite nodes based on availability and SLO requirements.

Paper CC-BY

ChunkFunc is an SLO- and input-aware framework for optimizing serverless workflows that automatically tunes resource configurations based on the size of function inputs.

Paper CC-BY

FedCCL is a Federated Clustered Continual Learning framework that combines static pre-training clustering with an asynchronous Federated Learning protocol to enable privacy-preserving, adaptive, and efficient model training across heterogeneous clients.

Paper CC-BY

Cosmos is a cost-performance tradeoff model for serverless workflows in the 3D Edge–Cloud–Space Continuum, identifying key cost drivers across workloads and cloud providers.