Advancing Privacy in Federated Learning
Anastassiya
Pustozerova
Advancing Privacy in Federated Learning
Förderjahr 2025 / Stipendium Call #20 / Stipendien ID: 7832
My research aims to improve data privacy in AI by developing better methods for privacy-preserving machine learning. Federated Learning and Differential Privacy allow AI models to be trained without sharing sensitive data, but stronger privacy often reduces model performance. This project works to close that gap by creating open-source tools that help developers build AI systems that are both private and effective, supporting responsible and transparent AI innovation.
Uni | FH [Universität]
Technische Universität Wien
Themengebiet
Artificial Intelligence
,
Datenschutz
,
Sicherheit | Privacy | Überwachung
Zielgruppe
Start-ups
,
Techniker:innen
Gesamtklassifikation
Dissertation | PhD
Technologie
AI | KI
,
Python
Lizenz
MIT